

5149

Archiwum

HANDBUCH

Archiwum

DER

SPECTROSCOPIE

VON

H. KAYSER UND H. KONEN

PROFESSOR DER PHYSIK AN DER UNIVERSITÄT BONN PROFESSOR DER PHYSIK AN DER UNIVERSITÄT BONN

ACHTER BAND ERSTE LIEFERUNG

UNTER MITWIRKUNG VON

DR. HEDFELD, DR. HESE, DR. SCHEIB, DR. JOHANN, Frl. DR. VON MATHES

200

VERLAG VON S. HIRZEL IN LEIPZIG · 1932

Archiwum

357499L/1

PRINTED IN GERMANY DRUCK VON AUGUST PRIES IN LEIPZIG

Begleitwort

In dem Begleitwort zur zweiten Lieferung von Band VII dieses Handbuches haben wir bereits auf die äußeren und inneren Schwierigkeiten hingewiesen, die sich einer schnellen Fortführung der die einzelnen Spektra behandelnden Teile des Handbuches in der gleichen Weise, wie es noch bei den Bänden 5 und 6 möglich war, entgegenstellen. Ja es ist sogar von einigen Kritikern die Möglichkeit bezweifelt worden, überhaupt auf einem dem bisherigen Verfahren ähnlichen Wege mit den in immer größerem Umfange sich ausbreitenden Fortschritten der speziellen Spektroskopie Schritt zu halten. Auf der andern Seite wird einmütig der Bedarf nach einem Nachschlagewerk bejaht, das in handlicher Weise die erdrückende Fülle der Einzelergebnisse sichert, ordnet und die Literatur zusammenfaßt. In konsequenter Verfolgung des im Begleitwort von Band 7 angedeuteten Planes bringen wir mit diesem Teilstück von Band 8, mit dem die Reihenfolge der chemischen Elemente in alphabetischer Ordnung neu beginnt, eine Fortsetzung, in der die Elemente Silber bis einschließlich Kupfer weitergeführt werden, so daß die Literatur bis etwa Anfang 1932 berücksichtigt ist. Die Annäherung an die Gegenwart wird damit so weit geführt, wie es praktisch möglich sein dürfte. Das nächste Heft, welches bereits in Arbeit ist und dessen Erscheinen auf jede Weise beschleunigt werden wird, beginnt mit den Elementen vom Buchstaben J an und führt Band 7 weiter. So wird fortgefahren, bis der gesamte Kreis der Elemente wieder mit möglichster Annäherung an die Gegenwart dargestellt sein wird, im Sinne eines zusammenhängenden und fortlaufenden Nachschlagewerkes.

Nach mannigfachen Versuchen haben wir uns entschlossen, indem wir zugleich damit einer Anregung der Kritik entgegenkommen, bei der Bezeichnung der Terme wie der einzelnen Linien grundsätzlich die moderne Bezeichnungsweise anzuwenden. Freilich ist dies zur Zeit noch gar nicht in vollkommen konsequenter Weise möglich, weil die Anwendung der modernen Terminologie durch die einzelnen Autoren vielfach ganz verschieden, ja von dem gleichen Autor oft in wechselnder Weise geschieht. Eine Übersetzung in die adoptierte Terminologie ist aber in vielen Fällen gar nicht ohne eine neue Untersuchung des betr. Spektrums möglich, die schon aus Gründen des Zeitaufwandes nicht allgemein für das Handbuch auszuführen war und nicht in ein Handbuch gehört, welches die vorliegenden Ergebnisse sammeln soll. In solchen Fällen bringen wir unter genauer Quellenangabe die Originalbezifferung des betreffenden Autors. Was von den Linienspektren gesagt ist, gilt natürlich auch in entsprechender Weise von den Bandenspektren.

An Wellenlängentabellen werden in der Regel nur solche gebracht, die auf Messungen beruhen, die seit dem Erscheinen der beiden ersten Teile von Band 7 ausgeführt worden sind. Die Bände 5, 6 und 7 sind daher in der Regel neben Band 8 zu benutzen, wie auch die Literatur für jedes Element fortlaufend numeriert ist. In einzelnen Fällen, in denen es um den gesetzmäßigen Aufbau eines Spektrums geht, mußten

Begleitwort

Wellenlängentabellen benutzt werden, die von den betreffenden Autoren aus anderen Messungen, oft mit einer gewissen Willkür zusammengestellt sind. Bei dieser Gelegenheit kann es dann auch vorkommen, daß Linien aus dem Fraunhoferschen Spektrum mit verwendet worden sind, die wir sonst grundsätzlich ausgeschlossen haben. Im Texte ist in solchen Fällen jedesmal auf die Sachlage hingewiesen und der Leser wird gewarnt. Register und Übersichten über Bezifferungen usw. werden am Schluß der Bände 7 und 8 gebracht werden. Es sei noch bemerkt, daß wir uns bemüht haben, den Gesamtbereich der Wellenlängen, der bisher erforscht ist, möglichst gleichmäßig zu berücksichtigen, damit also auch den Bereich der Röntgenspektren.

Wie bisher ist die astrophysikalische Literatur nur in Sonderfällen herangezogen. Der Ramaneffekt ist nur insoweit berücksichtigt, als er zu den einfacheren Spektren in unmittelbarer Beziehung steht, nicht jedoch in seiner ungeheuren Weite, namentlich auf dem Gebiete der organischen Verbindungen.

Wie in den vorhergehenden Teilen der speziellen Spektroskopie haben wir uns bemüht, die bisherige Homogenität, die in den Personen der Verfasser und ihrer jahrzehntelangen Zusammenarbeit gesichert ist, zu bewahren. Wir glauben, daß es dem nicht widerspricht, wenn wir uns für die Fortsetzung der Bände 8 und 7 der Mitarbeit von Bonner Physikern versichert haben, die mit uns in täglichem Gedankenaustausch und Zusammenarbeit stehen, und denen wir an dieser Stelle für ihre selbstlose und hingebende Arbeit aufs wärmste danken. Es sind dies die Herren: Dr. Hedfeld, Dr. Hese, Dr. Scheib, Dr. Johann und Fräulein Dr. von Mathes, sämtlich Assistenten am hiesigen Physikalischen Institut; außerdem hat Dr. Slevogt bei einem Elemente (Kobalt) mitgearbeitet.

Wenn vielleicht hier und da der einheitliche Charakter des Werkes durch die Zusammenarbeit einmal beeinträchtigt erscheint, so glauben wir, daß der Vorteil doch weit überwiegt, der in der schnelleren Fortführung bis zur Gegenwart gefunden werden muß, und in dem Umstand, daß die Mitarbeiter in verschiedene Abschnitte der Spektroskopie besonders eingearbeitet sind, während ein Einzelner heute kaum mehr alle Teile gleichmäßig beherrschen kann.

Wir haben getan, was möglich war, um Druckfehler und Irrtümer in der Übertragung zu vermeiden, sind uns indessen bewußt, daß vieles unerreicht geblieben ist. Um so mehr würden wir den Fachgenossen danken, die uns auf Fehler aufmerksam machen, wie wir ebenso denjenigen danken, die uns durch die Überlassung von Sonderdrucken oft schwer zugänglicher Arbeiten unterstützen.

Bonn, im September 1932.

H. Kayser. H. Konen.

Inhalt

Silber — Aluminium — Argon — Arsen — Gold — Bor — Barium — Beryllium — Wismut — Brom — Kohlenstoff — Calcium — Cadmium — Cer — Chlor — Kobalt — Chrom — Caesium — Kupfer.

Silber (Ag¹⁰⁷, Ag¹⁰⁹ = 107.880, Z = 47).

Literatur.

1. Nachtrag.

[127] E. et L. Bloch, Soc. franç. de phys. 61 p. 3-5 (1914).

[128] T. Takamine and Shigaharu Nitta, The spark and the vacuum arc spectra of some metals in the extreme ultraviolet. Mem. Coll. Kyoto 2 p. 117-135 (1917).

[129] L. et E. Bloch, Sur quelques nouveaux spectres d'étincelle dans l'ultraviolet extrême.
 C. R. 170 p. 320-322 (1920).

2. Fortsetzung.

[130] J. C. McLennan, J. F. T. Young and H. J. C. Ireton, Arc spectra in vacuo and spark spectra in helium of various elements. Proc. Roy. Soc. A 98 p. 95—108 (1920).

[130a] R. A. Millikan, The extension of the ultraviolet spectrum. Astroph. J. 52 p. 47-64 (1920).

[131] L. et E. Bloch, Spectres d'étincelle dans l'ultraviolet extrême. J. de phys. et le Rad.
(6) 2 p. 229-257 (1921).

[132] B. C. Moore, Excitation stages in open arc light spectra: Part. II, silver, bismuth, cadmium, zinc and copper. Astrophys. J. 54 p. 246-272 (1921).

[133] O. B. Overn, An absolute scale of X-ray wave-lengths. Phys. Rev. (2) 18 p. 350-355 (1921).

[134] M. Siegbahn, Bericht über die letzte Entwicklung der Röntgenspektroskopie. Jb. Radioakt. 18 p. 246-292 (1921).

[135] A. Campetti e H. Corsi, Sugli spettri di scientilla mediante la fiamma. N. Cim. (6) 43 p. 117-127 (1922).

[136] J. Cario, Über die Entstehung wahrer Lichtabsorption und scheinbare Koppelung von Quantensprüngen. Zs. f. Phys. **10** p. 185—199 (1922).

[137] D. Coster, On the spectra of X-rays and the theory of atomic structure. Phil. Mag. (6) 43 p. 1070-1107 (1922). Ib. (6) 44 p. 546-573 (1922).

[138] L. et E. Bloch, Spectres d'étincelle dans l'eau. J. de phys. et le Rad. (6) 3 p. 309-325 (1922); C. R. 174 p. 1456-1457 (1922).

[139] W. Grotrian, Die Absorptionsspektra einiger Metalldämpfe. Zs. f. Phys. 18 p. 169-182 (1923).

[140] M. Kimura and J. Takamine, The broadening of spectral lines caused by increasing current density and their Stark-effects. Jap. J. Phys. 2 p. 61-75 (1923).

[141] T. Royds, The effect on wave-length in arc spectra of introducing various substances into the arc. Kodaik. Bull. **73** p. 53-61 (1923).

[142] A. G. Shenstone, Ionisation potentials of oxygen and silver. Nat. 112 p. 100 (1923).

[143] Emory Carl Unnewehr, An experimental investigation on the energy of the characteristic K-radiation from certain metals. Phys. Rev. (2) 22 p. 525-528 (1923).

[143a] A. Dauvillier, Mesures préliminaires d'intensité dans les spectres de haute fréquence des éléments. C. R. **178** p. 1522—1524 (1924).

Kayser u. Konen, Spektroskopie, VIII.

1

[144] E. O. Hulburt, The ultraviolet absorption spectra of the spark in water between metallic electrodes. Phys. Rev. (2) 23 p. 108-109 (1924); 24 p. 129-131 (1924).

[145] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Jap. J. phys. 3 p. 197-215 (1924).

[146] K. Lang, Messungen von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).

[147] H. Lowery, Pole lines in the interrupted arc spectra of silver, gold and copper. Phil. Mag. (6) 48 p. 1122-1131 (1924).

[148] H. Nagaoka and Y. Sugiura, Distribution of electric field in metal arcs of silver, copper... Jap. J. Phys. 3 p. 47-73 (1924).

[149] A. G. Shenstone, Low-voltage arc spectra of copper and silver. Nat. 114 p. 501 (1924).

[150] Ernest Bengtsson et Erik Svensson, Sur les conditions d'apparition et la structure des bandes de l'argent λ 3330 et λ 3358. C. R. **180** p. 274–276 (1925).

[151] L. et E. Bloch, Nouvelles recherches sur quelques spectres d'étincelle dans la région de Schumann. J. de Phys. (6) 6 p. 154—165 (1925).

*[152] M. C. W. Buffam and H. J. C. Ireton, Das Unterwasser-Funkenspektrum einer Anzahl Elemente. Trans Roy. Soc. Canada (3) 19 p. 113—118 (1925). — Ref. Phys. Ber. 7 p. 967 (1926).

[153] J. Holtsmark and B. Trumpy, Über die Verbreiterung der Spektrallinien. Zs. f. Phys. 31 p. 803-812 (1925).

[154] Arvid Leide, Recherches sur la série K des rayons X. C. R. 180 p. 1203-1204 (1925).

[155] A. Leide, Experimentelle Untersuchungen über Röntgenspektra. K Serie. Diss. Lund (1925).

[156] J. C. McLennan and A. B. McLay, Absorption spectra of various elements. Trans. Roy. Soc. Canada (3) 19 Sect. III p. 89—111 (1925).

[157] J. C. McLennan and A. B. McLay, On the series spectrum of gold. Proc. Roy. Soc. A, 108 p. 571-582 (1925).

[158] A. G. Shenstone, The arc spectra of silver and copper. Phil. Mag. (6) 49 p. 951-962 (1925).

[159] R. V. Zumstein, The absorption spectra of copper, silver and gold vapors in the ultraviolet. Phys. Rev. (2) 25 p. 523-526 (1925).

[160] C. S. Beals, Regularities in the spectrum of ionized silver. Phil. Mag. (7) 2 p. 771-777 (1926).

[161] D. Coster und E. P. Mulder, Über die Röntgenniveaus der Elemente Cu (29) bis La (57). Zs. f. Phys. 38 p. 264-279 (1926).

[162] W. M. Hicks, The analysis of the copper spectrum. Phil. Mag. (7) 2 p. 194-236 (1926).

[163] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 59-78 (1926).

[164] E. Hulthén and R. V. Zumstein, The absorption spectra of some hydride compounds in the ultraviolet. Phys. Rev. (2) 28 p. 13-24 (1926).

[165] Arvid Leide, Messungen in der K-Serie der Röntgenspektra. Zs. f. Phys. **39** p. 686-710 (1926).

[166] J. C. McLennan and A. B. McLay, On the structure of the first spark spectrum of silver. Trans. Roy. Soc. Canada (3) 22, Sect. III p. 1-13 (1926).

[167] George D. Van Dyke and George A. Lindsay, The L X-ray absorption edges of Sn (50), Zn (49)... Phys. Rev. (2) 30 p. 562-566 (1927).

[168] W. Ehrenberg und G. von Susich, Über die natürliche Breite der Röntgenemissionslinien II. Zs. f. Phys. 42 p. 823-831 (1927).

[169] J. Franck und H. Kuhn, Über ein Absorptions- und ein Fluoreszenzspektrum von Silberjodidmolekülen... Zs. f. Phys. 43 p. 164-171 (1927). — Ib. 44 p. 607 (1927).

[170] Yoshio Fujioka and Sunao Nakamura, Stark effect for the spectra of silver, copper and gold. Sc. Pap. Inst. Phys. Chem. Res. 7 p. 263-276 (1927).

[171] M. Fukuda, Reversed spectra of metals produced by explosion under increased pressure. Sc. Pap. Inst. Phys. Chem. Res. 6 p. 1-47 (1927). [172] Axel Jönsson, Beitrag zur Kenntnis der Intensitäten der L-Röntgenreihe. Zs. f. Phys. 41 p. 221—229 (1927).

[173] Gunnar Kellström, Präzisionsmessungen in der K-Serie der Elemente Palladium und Silber. Zs. f. Phys. 41 p. 516-523 (1927).

[174] Gunnar Kellström, Die L-Absorptionssprünge des Silbers. Zs. f. Phys. 44 p. 269-278 (1927).

[175] K. Majumdar, Regularities in the spark spectrum of silver. Nat. 120 p. 918 (1927).

[176] Hantaro Nagaoka, Daizo Nukiyama and Tetsugaro Futagami, Instantaneous spectrograms of copper, silver and gold. Proc. Imp. Acad. Tokyo **3** p. 319-323 (1927).

[177] D. Nasledow und P. Scharowsky, Die Abhängigkeit der Intensität der Röntgenspektrallinien von der Zahl der Kathodenelektronen. Zs. f. Phys. 42 p. 870-882 (1927).

[178] William W. Watson and B. Perkins jr., Zeeman effect in the band spectra of AgH, AlH, ZnH and MgH. Phys. Rev. (2) **30** p. 592-597 (1927).

[179] Bergen Dawis and H. Purks, Effect of chemical combination on the structure of the K-absorption limit of silver and molybdenium. Phys. Rev. (2) **31** p. 1119 (1928).

[180] M. J. Druyvesteyn, Het Röntgenspectrum van de tweede soort. Diss. Groningen (1928).

[181] F. Enger, Präzisionsmessungen in der K-Serie des Elementes Rhodium. Zs. f. Phys. 46 p. 826-832 (1928).

[182] R. C. Gibbs and H. E. White, Doublets and quartets of doubly ionized silver (Ag III). Phys. Rev. (2) **32** p. 318—319 (1928).

[183] Axel Jönsson, Weiteres über Intensitätsverhältnisse in der L-Röntgenreihe. Zs. f. Phys. 46 p. 383 (1928).

[184] Wladislaw Kapuscinski, Sur le rayonnement de résonance de la vapeur d'argent (Note préliminaire). Bull. int. Acad. Polon. A **1928** p. 284-286 (1929).

[185] F. Löwe, Atlas der letzten Linien der wichtigsten Elemente. Verl. Steinkopff, Dresden und Leipzig (1928).

[186] K. Majumdar, On the spark spectrum of silver. Indian J. of Phys. 2 p. 257-266 (1928).

[187] A. G. Shenstone, The spark spectrum of silver (Ag II). Phys. Rev. (2) **31** p. 317-322, 707 (1928).

[188] Ivor Brackhurst, The absorption of X-rays from 0,63 to 2 A. U. Phil. Mag. (7) 7 p. 353 bis 373 (1929).

[188a] H. Fesefeld und Z. Gyulai, Zur Lichtabsorption in Silber- und Kupferhalogenidkristallen. Nachr. Ges. Wiss. Göttingen math. phys. Kl. p. 226-230 (1929).

[189] Paul R. Gleason, The reflecting power of some substances in the extreme ultraviolet. Proc. Nat. Acad. 15 p. 551-558 (1929).

[190] R. G. Loyarte und A. F. Williams, Über die Absorptionsspektren der Dämpfe des Zinns, Silbers und Mangans zwischen 5500 und 2140 Å. Phys. Zs. **30** p. 68-75 (1929).

[191] F. K. und R. D. Richtmyer, The satellites of the X-ray lines. Phys. Rev. (2) 34 p. 574 bis 581 (1929).

[192] E. W. H. Selwyn, Arc spectra in the region 1600-2100. Proc. Phys. Soc. London 41 p. 392-402 (1929).

[193] A. G. Shenstone and H. A. Blair, A method for the magnetic analysis of a spectrum of unresolved Zeeman patterns and its application to Ag II. Phil. Mag. (7) 8 p. 765-771 (1929).

[194] R. H. Snyder, Some studies in the Stark effect for the diffuse lines of Silver and Lithium. Phys. Rev. (2) 33 p. 354-361 (1929).

[195] H. C. Webster, The photographic measurement of the relative intensities of L_{a_1} , a_n , a_n lines of silver. Proc. Phys. Soc. London **41** p. 181—191 (1929).

[196] H. C. Webster, Spark satellites of the L_a lines of silver. Proc. Phys. Soc. London 41 p. 192-193 (1929).

3

[197] H. A. Blair, The spark spectra of silver and palladium. (Ag II and Pd II). Phys. Rev. (2) 36 p. 173-186 (1930).

[198] Brooks A. Brice, Band spectrum of silver chloride. Phys. Rev. (2) 35, p. 960-972 (1930).
 S. auch Phys. Rev. (2) 33 p. 1090 (1929) Abstract, und 34 p. 1227 (1929) Brief.

[199] H. A. Blair, Correction and extension of the series in the silver arc spectrum, Ag I. Phys. Rev. (2) 36 p. 1531—1534 (1930).

[200] W. Gerlach, Ramanspektra von kristallisierten und gelösten Nitratsalzen. Ann. d. Phys. 5, p. 196-205 (1930).

[201] P. Krishnamurti, The Raman effect in crystall powders of inorganic nitrates. Indian J. of Phys. 5 p. 1-12 (1930).

[202] P. Krishnamurtii, Raman spectra of crystalline inorganic chlorides. Indian J. of Phys. 5 p. 113-128 (1930).

[203] Heinrich Kuhn, Über die Deutung eines Typus von diffusen Bandenspektren. Zs. f. Phys. 63 p. 458-476 (1930).

[204] Lord Rayleigh, The ultraviolet transmission band of metallic silver, as affected by temperature. Proc. Roy. Soc. A **128** p. 131-133 (1930).

[205] S. Sambursky, Intensitätsanomalien in Multipletts von Silber und Gold. Proc. Amsterdam 33 p. 1025-1027 (1930).

[206] Joseph Valasek, The fine structure of certain X-ray emission lines. Phys. Rev. (2) 36 p. 1523-1530 (1930).

[207] E. Bengtsson, The band spectrum of silver hydride. Nature 127 p. 14 (1931).

[208] E. Bengtsson und E. Olsson, Eine neue Untersuchung über die Banden des Silberhydrids. Zs. f. Phys. **72** p. 163-177 (1931).

[209] Brooks A. Brice, Absorption band spectra of silver bromide and silver iodide vapors. Phys. Rev. (2) 38 p. 658-669 (1931).

[210] R. D'heil, Beitrag zur Seemannschen Schneidenmethode. Diss. Bonn (1931).

[211] S. Frisch, Zur Hyperfeinstruktur in den Spektren einiger Elemente. Zs. f. Phys. 71 p. 89-92 (1931).

[212] R. S. Loyarte und Cl. T. Williams, Los espectros de absorcion de los vapores de Cu, Ag y Au. Estudio de las Ciencias fisicas y matematicas. Vol V p. 393-398 (1931).

[213] R. Mecke, Bandenspektra negativer Ionen. Zs. f. Phys. 72 p. 155-163 (1931).

[214] S. Samburski, Über die Intensitätsverhältnisse der durch innere elektrische Felder erzwungenen Mehrfachübergänge. Zs. f. Phys. 68 p. 774-781 (1931).

[214a] Roy C. Spencer, Study of the shape of the Ag L, Mo K and Cu K lines. Phys. Rev. (2) 38 p. 630-641 (1931).

[215] Wali Mohammad and Prem Nath Sharma, Hyperfine structure of spectrum lines of silver arc in the visible and the ultraviolet regions. Indian J. of Phys. 6 p. 75–80 (1931).

[216] Sechi Kato, On the absorption spectra of salt-solutions. Appendix. The absorption spectra of metallic ions. Sc. Pap. Inst. Phys. Chem. Res. Tokyo **15** p. 161-162 (1931).

[217] S. Schubin, Über die Transmissionsbande des Silbers. Zs. f. Phys. 73 p. 273-280 (1931).

[218] A. Terenin, Dissociation fluorescence of Ag I vapour. Physica 10 p. 209-212 (1930).

An neuen Messungen der Silberspektra liegt nur folgendes vor: Lowery [147] sucht "Pollinien" heraus. Er benutzt einen Silberbogen, dessen unterer Pol feststeht, während der obere beweglich ist. Stellt man Kontakt her, so daß der Bogen sich bildet und zieht dann den oberen Pol schnell in die Höhe, so sind im ersten Moment eine ganze Menge Linien vorhanden, die bei ruhig brennendem Bogen fehlen. Diese nennt er Pollinien. Er unterscheidet unter ihnen noch zwei Klassen der Linien: Zur

Klasse II rechnet er die, welche verschwinden, wenn die Pole 1 mm entfernt sind, während die Linien der Klasse I bis zu 3 mm Abstand bestehen bleiben. Es ist wohl anzunehmen, daß es sich bei diesen Pollinien um höhere Ionisationsstufen handelt. Eine Anzahl der Linien ist schon sonst im Bogen oder Funken beobachtet und hier nimmt Lowery die alten Zahlen, andere mißt er selbst. Die Tab. 1 enthält diese Linien mit der Intensität und der Klasse.

4934.9	1	II	4615.82	2	I	4206.8	0	Ι	3920.10	2	Ι	3630.6	1	II
4870.2	3	Ι	14.5	1	II	4182.1	1	II	14.32	4	I	30.09	1	I
43.3	1	Ι	10.6	1	Ι	41.6	1	II	07.48	4	I	3580.62	1	I
11.3	3	Ι	4550.4	1	Ι	4085.90	1	Ι	3877.25	1	Ι	76.2	1	II
4785.5	1	II	48.9	1	Ι	68.01	3	Ι	40.80	3	Ι	60.56	. 1	II
21.1	1	Ι	4455.4	1	Ι	63.6	1	Ι	29.3	1	I			
4680.4	1	I	4395.94	2	Ι	12.3	1	II	3766.35	1	I			
77.8	2	Ι	81.4	1	II	04.75	1	Ι	28.2	2	Ι			
50.3	1	I	4298.1	1	Ι	3985.03	2	Ι	3683.25	3	I			
20.39	0	I	81.2	1	II	45.6	1	II	49.82	2	I			

Tabelle 1. Lowery, Pollinien.

Ferner hat Shenstone [158] zwei Linien von Ag I genauer gemessen: 2069.85 und 2061.19, und eine ganze Menge Linien von Ag II zwischen λ 2246 und λ 1932 [187].

Endlich sind bei noch kürzeren Wellenlängen neue Messungen ausgeführt, die aber weit davon entfernt sind, das Spektrum wirklich festzulegen. Takamine und Nitta [128] geben Messungen zwischen λ 1989 und λ 1826, die offenbar sehr unvollständig und ungenau sind. Dann haben McLennan, Young und Ireton [130] die stärksten Linien des Bogens zwischen λ 1888 und λ 1650 gemessen, wohl auch mit Fehlern von mehreren Zehntel Å, und endlich haben die Brüder Bloch wiederholt [127, 129, 131, 151] Messungen im Funkenspektrum veröffentlicht. Es soll hier nur die letzte Publikation [151] berücksichtigt werden, da wohl anzunehmen ist, daß sie die früheren an Genauigkeit übertrifft¹). Diese kurzwelligen Messungen sind in Tab. 2 vereinigt; sie reicht bis λ 1389. Zu erwähnen ist noch, daß Shenstone [187] drei viel kürzere Wellenlängen angibt, die von White gemessen seien, und die der Tabelle angeschlossen sind.

¹⁾ Die Genanigkeit dieser Messungen ist kaum zu schätzen, noch weniger, wie weit Verunreinigungen ausgeschieden sind. Als Beispiel diene folgendes: Bei λ 1760.85 liegt eine Linie von C nach Bowen und Fowler. An dieser Stelle gaben die Brüder Bloch in verschiedenen Arbeiten folgende Linien: 1760.46 Co (5) C?, 60.60 Cr (o), 60.75 Mn (3) C? 60.76 Ag (4) C?, 60.88 Pt (3) C?, 60.97 Cu (2u) C?.

Tabelle	2.	Kurze	Wel	lenlängen.	
---------	----	-------	-----	------------	--

	Bloch [151]	Takamine u. Nitta [128]	McLennan Young, Ireton [130]		ripeirei Sipeirei Sipeirei Sipeirei Sipeirei Sipeirei Sipeirei	Bloch [151]	Mc Lennan [130]
	λ vac.	λ Luft	λ vac.1)		oh ban	pairingental m	kar nopel.
1993	-	89.6 1	_		1788	86 00	-
88	-	88.5 1	_		85	85 0	-
30	-	30.6 2	-		84	79 0	-
1889	54 5	-	88.7 2		84	31 0	
85	20 2u	-	-		79	04 1	-
82	92 0	-	-		74	18 0	-
82	37 1	-	-		72	06 4	-
80	35 5	-	79.3 2		69	07 4	68.2 1
78	56 1	-	-		65	97 0	-
74	92 3		_		64	13 2	-
73	50 5	-	72.8 4		62	77 2	-
72	55 4	-	-		60	76 C? 4	-
70	56 00	-		Paris I	58	89 0	-
68	07 5	-	-	1	58	14 2	- 12
67	11 5	and the state of the state	66.9 4	1001	56	12 2	Secur-Base
63	41 4	62.7 4			55	09 0	-
60	61 5	-	59.1 2		51	84 C? 3	1.111 -
58	88 5	-	-		51	14 6	50.5 10
54	23 3	52.9 1	55.7 1		47	94 2	-
50	10 4	48.7 1			47	48 3	
47	18 4	11 · · · · · · · · · · · · · · · · · ·		1.00	40	48 1	Ball - beat h
40	26 5			in and	36	52 0	
38	87 4	38.6 3	38.9 3		28	09 3	27.8 1
36	33 4	37.0 2	-		26	86 2u	-
34	41 3			1011	22	19 3	21.8 1
32	55 4	32.6 2		10121	18	59 2	-
29	07 5	30.6 1	28.3 4	hind	17	64 2	RUD Lopa
28	52 1	disal Transfer		12/12/	13	64 1	Spins - Soll
26	91 3	26.3 3			12	42 3	ALL AND ALL AND A
24	22 2		-		11	65 1	-
22	78 4		21.8 1		08	71 3	<u> </u>
22	03 00		-		06	68 3u	-
17	12 4		16.1 4	2	04	99 4	-
16	63 2	1.5.5	-		02	87 1	-
15	39 00	1.	-		1693	36 6	93.5 8
13	71 00		-		89	85 2	-
11	04 00		-		83	34 0	-
09	17 3		_	1000	80	83 5	80.8 2
08	60 5		07.8 4		80	03 00	-
06	06 0		-		78	66 00	-
02	52 4		01.4 1		78	11 3	77.8 1
1794	20 4		93.2 2		75	67 2u	-

 Stenstone [158] gibt noch die Messung zweier Linien von größerer Wellenlänge: 2069.85 und 2061.19. Dieselben führt Selwyn [192] als Ag I: 2069.86 (4), 2061.19 (4), λ Luft.
 ²) Selwyn gibt noch 1709.33 (0).

	Bloch [151] Funke	McLennan [130]			Bla [15	och 51]	McLennan [130]			ВІ [1	och 51]	Mc Lennan [130]
1674	73 2			1595	02	2	_		1552	01	1	in cont
74	09 4	74.0 3		94	47	3	0 _ 0		51	76	0	
64	38 00	_		93	61	00	100		51	32	3	
62	50 00	-		92	96	2			50	80 C	223	
60	29 2	-		91	72	4			50	37	. 0	-
58	76 00	-		91	28	00	-		49	08	0	-
57	69 C? O	-		. 90	34	2	-		48	19 0	3?4	-
56	89 C? 5	57.1 7		90	14	00	-		47	52	00	-
56	03 C? 0	-		89	57	1	-		46	21	00	
53	98 1	-		88	77	1	-		44	54	2	-
51	61 1	-		88	44	2	-		43	43	00	-
50	62 2	50.8 1		87	64	2	-		42	48	Ou	-
50	22 2	-		87	36	2	-		41	14	00	401.9
41	82 00	-		00	02	0	- /		20	84	1	40.1 4
44	45 5	-		85	50	2			20	28	1	1. 1. 1.
42	62 00	-		84	10	11			30	18	1	
20	00 60	-		82	45	1			38	52	0	
39	09 00			82	68	2			37	96	1	1.10
38	38 00			82	05	111	S COM		35	44	2	
34	45 00			81	19	0			34	90	00	
36	24 00	_		80	60	00	_		34	20	00	
34	81 1	_		78	77	4	_		. 33	28	00	
33	00 00	_		78	08	1	1		32	35	2	
32	46 0	1 2 21	1.1.1	77	33	3	CONTRACTOR OF		31	70	3	
31	36 0	-		76	85	1	_		28	19	1	ans.loll.
30	71 0	-		76	25	2u	bos-r-		27	19	1	halt that
28	28.00	-		75	30	1		1.	27	04	1	tel motione
27	30 2	-		73	20	00u	-		26	07	00	and maile
25	35 Ou	-		71	91	3	-		25	82	3	
24	10 1	-		70	94	0	-		25	48	00	
22	40 00	-		70	35	2	-		24	30	00	
21	00 0		1.00	69	74	2	-		22	67	1	PRODUCT:
18	88 1	-		69	00	1			21	71	00	are instruct
18	05 0	-		68	08	1	-		21	46	00	
15	77 2	-		67	11	0			20	69	00	
13	99 0	-		60	97	6	66.6 1	1	10	11	00	- second and a
12	40 1	10.000		04	18	1	Kost In		10	02	2	
03	20 4	-		01	20	00	617 9	1	10	14	1	EL installa
01	42 2			60	21	021	01.7 0		15	10	3	T activity
00	37 1	_		50	20	011	-		10	10	0	a line and
1590	50 0			58	12	3			19	66	0	
98	49 9			56	50	0			11	15	0	
97	60 2			56	37	0			10	24	0	
97	23 1	1916		54	65	4	55.3 2		08	96	0]	
96	41 0	100 110		53	67	00	_		08	72	OR	and the second
95	58 2	-		52	77	00u	-		08	18	2	A States

~			
-	611	h	1.1
O.	LL.	U	0.1

in a second	BI [1.	och 51]		Bl [1.	och 51]		BI [14	och 51]			Blo [14	och 51]
1505	18	1	1483	64	00	1460	38	1		1430	25	1
04	75	3	83	05	0	58	16	2		28	10	00
04	17	Ou	81	84 (C? 4u	57	05	3		26	34	0
03	21	00u	79	72	1	56	45	1		25	32	0
01	80	Ou	78	63	0	55	95	0		23	00	00u
1499	47	2u	77	13	00	55	68	1	-	21	90	00
98	22	0	76	81	00	54	69	00		20	64	1
97	55	0	75	84	1	54	49	1	1	18	52	2
96	27	4	74	38	3	53	73	0		09	45	2
90	26	00	72	60	1	52	92	00	1	05	08	2
90	05	00	71	43	0	52	24	00		1392	26	0
89	36	0	70	41	0	51	60	1		89	07	0
89	04	1	69	69	1	51	28	0				
87	92	00	68	83	00	45	24	5		H. 1	E. Wh	ite
87	35	0	68	20	0	44	95	1		nac	h [18	71
86	88	3	67	410)? 1u	38	25	1			in fro	.1
85	79	4	65	33	0U	36	30	0		1105		
85	05	00	64	10	0	34	10	2		1195	87	50
84	55	0	61	62	2	32	21	1		12	46	80
84	09	00	60	90	2	30	44	0		07	05	25

Ag I: Einvalenzelektronensystem mit Achtzehnerschale, gibt Dubletts. Ionisierungsspannung 7,542 Volt (${}^{2}S_{4}$), Anregungsspannung 3,647 Volt (${}^{2}S_{4} - {}^{2}P_{4}$).

Mit diesem Spektrum beschäftigen sich drei Abhandlungen: Shenstone [158, 149] McLennan und McLay [166], Blair [199]. Die beiden ersten erweitern den Inhalt der Tabellen von Paschen und Fowler kaum; dagegen gelangt Blair etwas weiter. Zuerst benutzt er ohne Erfolg einen Bogen zwischen Silberelektroden; dann aber bemerkt er, daß eine Schülersche Hohlkathode Neues gibt, und macht mit ihr Messungen. Die Nebenserien werden etwas erweitert, einige neue Linien gefunden, einige andere eingeordnet. Zu den 4 Linien der Hauptserie fügt er nichts hinzu, die "Fundamentalserie" erwähnt er nicht. Es seien die Angaben von Blair, da manche Linien von ihm neu gemessen sind, in Tab. 3 gegeben.

Ag II: Zehnvalenzelektronensystem mit Singuletts und Tripletts. Ionisierungsspannung 21, 9 Volt $({}^{1}S_{0})$.

Mit diesem Spektrum hat sich zuerst Beals [160] beschäftigt, indem er einige (30) Linien heraussucht, die dazu gehören, Gesetzmäßigkeiten findet und einige Niveaus feststellt. Shenstone [187] hat die Arbeit fortgeführt und wesentlich erweitert. Er photographiert Bogen und Funken, kann so eine große Anzahl Funkenlinien erkennen. Er benutzt aber dafür die Wellenlängen von Exner und Haschek. Nur für die kürzesten Wellenlängen unter λ 2250 führt er eigene Messungen aus: er sagt, Gärtlein habe ihm Messungen aus demselben Gebiet geschickt, die aber von den seinigen um etwa 0,8 in Wellenzahlen abwichen. Das Schema von Beals findet er fast durchweg richtig, kann

8

Sabarfa Nabansaria	Sorio	Ter	me
Benarie rebenserie	Serie	ns ² S beob.	berechn.
8273.73	5p ² P,1 ⁰ -6s ² S1	18548.4	18548.5
7688.12	$5p^2P_1^0 - 6s^2S_1$	18548.6	-
4668.50 500	$5p^2P_{10}-7s^2S_{1}$	9217.3	9217.3
4476.06 500	$5p^2P_1^0 - 7s^2S_1$	9217.3	
3981.62 30	$5p^2P_{,1}^0 - 8s^2S_1$	5523.2	5521.7
3840.82 20	$5p^2P_1^0 - 8s^2S_1$	5523.4	-
*3709.30 10	$5p^2P_1^0-9s^2S_1$	3680.2	3680.2
*3586.91 6	$5p^2P_1^0 - 9s^2S_1$	3680.9	-
3569.76	$5p^2P_{10} - 10s^2S_1$	2626.4	2626.7
3487.76	$5p^2P_1^0-11s^2S_1$	1968.0	1968.5
3434.65	$5p^2P_{10}$ 12s ² S1	1524.8	1531.3
Diffuse Nebenserie		$n d^2 D_{1}$	max and and and
5471 59	$5n^2P_1^0_5d^2D_1$	nu 102±-1±	H Man I have
5465 47	$5n^2P_1^0 - 5d^2D_1$	19839 9	
5209.04	$5p^2P_1^0 - 5d^2D_1$	12360.0	19360.0
*4919.68 100	$5n^2P_1^0-6d^2D_1$		12000.0
*4210.94 500	$5p^2P_1^{0}-6d^2D_1$	6890.5	peletra mad meete
4055 27 200	$5n^2P_1^0 - 6d^2D_1$	6899.8	6900 3
*3811 79	$5n^2P_1^0 - 7d^2D_1$		0000.0
* *2810.93 5	$5n^2P_1^0 - 7d^2D_1$	4398 G	
*3689 47	$5n^2P_1^0 - 7d^2D_1$	4404.1	4404.4
*3694.71	$5n^2P_1^0 - 8d^2D_1$	3050.9	1101.1
*2508.08	$5n^2P_1^0 - 8d^2D_1$	3054.6	8054.1
*2591 16	$5n^2P_1^0 - 9d^2D_1$	9929.9	0004.1
*2410.78	$5n^2P_1^0 - 9d^2D_1$	9941 7	9949 7
*9457 10	$5n^2P_1^0 - 10d^2D_1$	1718.8	2212.1
*2250.56	$5n^2P_1^0 - 10d^2D_1$	1714.9	1716.5
*3414 55	$5n^2P_{-1}^0 - 11d^2D_{-1}$	1353.4	1110.0
*2310.51	$5n^2P_1^0 - 11d^2D_1$	1353.9	1356.0
*3989 53	$5n^2P_1^0 - 12d^2D_1$	1100.5	1098.1
Vershinetionen		1100.0	1000.1
Kombinationen	5-2D . C-2D.		17000.0
*0000.00 4	$5p^{2}P_{1\frac{1}{2}}$ $-6p^{2}P_{1\frac{1}{2}}$		1020.0
*0040.94 20	$5p^{2}\Gamma_{11} - 0p^{2}\Gamma_{11}$ $5n^{2}D$ $6n^{2}D$		10020.7
*5070.47 9	$5p^{2}P_{\frac{1}{2}} - 5p^{2}P_{\frac{1}{2}}$	the sector who have the	18745.9
-02(0.4) 0	$5p^{*}r_{\frac{1}{2}} = -6p^{*}r_{\frac{1}{2}}$	Sile support states	10041.0
Selwyn [192]			
2069.86 4	$5s^2S_1 - 6p^2P_1$	-	-
2061.19 4	$5 s^2 S_1 - 6 p^2 P_2$	- 1	to first and the second
Blair [199] Hauptserie	the question where the	$n p^2 P_{1\frac{1}{2},\frac{1}{2}}$	
3280.66 150	$5s^2S_{\frac{1}{2}}$ - $5p^2P_{1\frac{1}{2}}^0$	30631.5	lack of -al anno
3382.86 150	$5s^2S_1 - 5p^2P_1^0$	31552.1	Viscoust Inter in lette
2061.21	$5s^2S_1 - 6p^2P_{1\frac{1}{2}}$	12604.8	-
2069.81	$5s^2S_{\frac{1}{2}}$ - $6p^2P_{\frac{1}{2}}^0$	12808.2	-
Shenstone [149]			and great work
2024.33	$1 \mathrm{S}$ -2 ² P ₂		the data of the particular
And and and and an other design of the local division of the local			

1) Die Tabelle gibt keineswegs eine vollständige Liste der Linien von Ag I. Sie enthält nur die von den genannten Autoren gemessenen bzw. eingeordneten Linien und setzt die Benutzung der Tabelle S. 31 Bd. VII, sowie der weiter folgenden voraus. Die mit * bezeichneten Linien sind von Blair gemessen; die übrigen von Exner und

Haschek, Frings, Kasper und Shenstone.

aber eine große Anzahl neuer Terme feststellen und 130 Linien einordnen. Das Resultat entspricht durchaus den theoretischen Erwartungen. Dann hat Blair [197] noch einige Linien in dies Schema einreihen können.

Gleichzeitig mit Shenstone hat sich auch Majum dar [186] mit der Ordnung von Ag II beschäftigt. Alle von ihm eingeordneten Linien hat auch Shenstone. Auch McLennan und McLay [166] haben sich mit dem Bau beschäftigt, doch ist ihre Arbeit nicht zugänglich.

Shenstone und Blair [193] wenden eine Methode, auch aus unaufgelösten Bildern des Zeemaneffektes Schlüsse zu ziehen, auf Linien von Ag II an und bestätigen ihr Schema.

Die Zahlen für Ag II sind in der Tab. 4 zusammengestellt¹). Shenstone nimmt, wie oben gesagt, fremde Messungen, aber gibt eigene Intensitätsangaben und fügt den Namen des Autors bei jeder Linie hinzu. Dabei bedeuten: E = Exnerund Haschek, F = Frings, S = Shenstone.

Ag III. Über dies Spektrum ist noch so gut wie nichts bekannt. Nur Kim ura und Nakam ura [145] machen eine Angabe. Sie photographieren die Funkenspektra und messen die Länge der Linien, die von der Kathode ausgehend sich nach der Anode hin erstrecken. Die ganz durchgehenden Linien gehören zu Ag II, die kürzeren zu Ag III usw. Bei Silber finden sie zwei Stufen, die sie also als Ag II und Ag III bezeichnen. Sie geben als Linien von Ag III an: 3241, 3230, 3229, 3219, 3217, 3210, 3201, 3193, 2862, 2857, 2850, 2844, *2838,* 2839, *2829, 2297, 2287, 2282, 2238, 2211, 2162. — Die so gewonnenen Resultate müssen natürlich recht unsicher sein, da die Länge der Linie von der Intensität abhängt; eine sehr schwache Linie von Ag II wird nicht so weit reichen, wie eine starke Linie und wird so als Ag III erscheinen. In der Tat werden die drei mit * bezeichneten Linien von Shenstone als Ag II geführt, aber als sehr schwache Linien. — Man sieht, daß die Methode mit der von Lowery analog ist. Die Resultate aber kann man nicht vergleichen, da die Autoren verschiedene Spektralgebiete behandeln.

Gibbs und White [182] bringen eine Angabe, wie sich einige Dublett- und Quartetterme der Elektronenkonfigurationen 4 d⁹, 4 d⁸ 5 s und 4 d⁸ 5 p des zweiten Funkenspektrums des Silbers bestimmen lassen. Der Übergang von 4 d⁸ 5 p nach 4 d⁹ (${}^{2}D_{2, 3}$) ermöglicht die Bestimmung des Termwertes des untersten Energieniveaus des Spektrums, woraus die Ionisierungsspannung des Ag III zu etwa 34 Volt berechnet wird. Die größten Termabstände gebildet durch ${}^{2}D_{3} - {}^{2}D_{2}$ (4 d⁰) werden für Ag III zu $\Delta \nu = 4607$ berechnet.

Aus der Umkehrung einer Linie kann man vielfach Schlüsse auf ihre Einordnung in den Spektralbau ziehen. Daher sind zahlreiche Untersuchungen über das Absorptionsspektrum gemacht worden. Als erste sind die Brüder Bloch [138] zu nennen, welche im Funken unter Wasser folgende Linien umgekehrt erhalten: 3382, 3289, 3232, 2437, 2414, 2375, 2331, 2324, 2320, 2317, 2300. — Grotrian [139] findet die Linie 3280, $1^2 S_1 - 2^2 P_2$, und die Linie 3382, $1^2 S_1 - 2^2 P_1$. — Dann folgt Zumstein [159], der Silber in einem Kohlerohr in Dampf verwandelt. Er sieht umgekehrt zuerst 3280 und 3382, erstere Linie stärker. Dann kehren sich auch

¹⁾ Man sehe auch Tab. 2.

Tabelle 4. Ag II.

	Sh	enstor	10	Blair	Majumdar	Terma [187]	Terme [197]	Zeeman-
		[187]		[197]	[186]	Terme [107]	Terme [194]	[160]
3372	51	1	?	-	2.65 1u	$5 p^1 D_2' - 6 s^3 D_3$	-	
29		-		9.71 10	0.55 3u		$5 p^1 D_2^0 - 6 s^3 D_2$	-
3269	81	1	?	-		$5p^{3}D_{1}'-6s^{3}D_{2}$	-	-
23	50	3	E	-	3.47 2u	$5p^{1}P_{1} - 6s^{3}D_{2}$	-	-
3184	2	1u	E	-	4.30 lu	$5p^{1}F_{3} - 6s^{3}D_{3}$		
46		-	-	6.10 8		-	$5p^{1}F_{3}^{0}-6s^{3}D_{2}$	1-15 12
2938	55	15u	E	-	8.51 4u	$5p^3F_2 - 6s^3D_2$	-	1
34	24	30u	E	-	4.21 6u	$5p^{3}D_{3}$ $-6s^{3}D_{3}$		-
29	31	30	E	-	9.34 bu	$5s^{1}D_{2} - 5p^{3}P_{2}$	-	0.90
20	07	101	E	-	0.08 34	$5p^{1}D_{2} - 6s^{3}D_{1}$	TUMP	The Taken
02	09	20u	E	-	2.06 4u	$5p^{s}D_{3} - 6s^{s}D_{2}$	- And	ALC: T
2090	00	200	E	-	0.47 4u	$op^{1}D_{2} - os^{1}D_{2}$	The other	The The
72	60	20	E			$5p^2D_2 - 5d^3S_1$	Sala T	-
10	02	200	F	-	7 50 9.	$5p^{\circ}D_1 - 6s^{\circ}D_1$ $5p^{1}D$ $6s^{3}D$	Ser Trans	18 70
	01	10	F		1.09 20	$5p^2 \Gamma_1 - 6s^3 D_1$		
15	57	2011	E		5 75 71	$5p^2D_2 - 6s^2D_3$ 5plP - 6slD		11. 1
01	01	200	ц	1 93 4	0.10 14	$5p^{-1}1 - 0s^{-1}D_2$	5n1 P 0_5d3 S	
2799	70	301	E	1.00 4	9.64 71	5n3D '_6.3D	op 11 - ou 51	
86	50	211	E		0.01 14	$5p D_2 = 0s D_2$ $5p D_1 - 5d 3P'$		
67	54	75	E		7.58 9.0	$5p D_2 - 5n^3 F$	and the second second	(0.00) 0.97
56	48	351	E		6.49 Su	$5n^{1}E_{2} - 6s^{1}D_{3}$		(0,00) 0.01
52	10			2.19 4	0.40 04		5p1D.0_5d3D.	
43	92	15	E	3.78 15	3.91 5u	5s ³ D5p ³ P.	$5p^3D_2$ $5d^3P_3$	
28		-	-	8.73 3	_		$5p^1D_a^0-5d^3D_a$	_
12	07	40u	E	_	_	5p ³ F, -6s ³ D.		
11	21	15u	E	_	— ¹)	5p1P, -5d3P,'		
2688	39	3u	E	_		5p ³ D,'-5d ³ D.	_	-
81	38	20 u	E	-	1.36 7u	$5p^{3}P_{1} - 6s^{3}D_{2}$	_	
60	49	60	E	_	0.46 Su	$5s^{1}D_{2} - 5p^{3}P_{1}$	_	_
56	92	6u	F	-	-	$5p^{1}P_{1} - 5d^{3}D_{2}$	-	-
56	65	4u	F	6.59 10	6.65 3u	$5p^{1}P_{1} - 5d^{1}S_{0}$	$5p^{1}F_{3}^{0}-5d^{3}P_{2}$	_
25	70	8u	E	-	-	$5p^{1}F_{3} - 5d^{3}D_{3}$		_
17		-		7.01 12	-		5p3D10-5d3P0	-
14	56	15u	Е		4.57 7u	$5p^{3}F_{2} - 6s^{3}D_{1}$	-	-
06	14	15u	Е	-	6.16 7u	$5 p^3 F_3 - 6 s^3 D_3$	-	-
2598	55	3u	S	-	-	$5p^{1}F_{3} - 5d^{3}F_{4}'$	-	-
95	67	8u	Е	-	5.60 5u	$5 p^{3} F_{2} - 6 s^{1} D_{2}$	-	-
87	1	-		7.24 3	14.	-	$5p^{1}P_{1}^{0}-5d^{3}P_{0}$	-
84	21	2u	E	-	- 1-	$5 p^3 F_2 - 5 d^3 S_1$	-	-
80	77	35 u	E	-	0.74 8u	$5p^{3}F_{3} - 6s^{3}D_{2}$	-	-
67	21	5u	S	-	7.16 4u	$5p^{3}D_{3}'-6s^{1}D_{2}$	-	-
64	41	8u	Е	-	4.41 5u	$5p^{3}P_{0}$ — $6s^{3}D_{1}$		
53	43	5	E	-	3.41 4u	$5s^{1}D_{2} - 5p^{3}D_{2}'$	-	-
35	30	30	E	5.07 2	5.32 8u	$5s^3D_2$ $-5p^3P_2$	$5p^{3}P_{0}^{0}-5d^{3}S_{1}$	0.81
07	30	Su	E	-		$5p^{1}D_{2}'-5d^{1}P_{1}'$	-	-

1) Majumdar gibt noch als eingeordnet: 2708.53 (1).

	Sh	enstone	Blair	Majumdar	Terme [187]	Terme [197]	Zeeman- Effekte
		[187]	[197]	[186]	Terme [rol]	Terme [101]	[160]
2506	63	60 E	6.91 1	6.60 7u	5s ³ D ₁ -5p ³ P ₁	5p3F30-5d3P2	0.84
04	11	Su E	-	4.09 5u	$5p^{3}D_{2}'-6s^{3}D_{1}$	-	-
2486	72	4u F	-	6.72 3u	$5p^{3}D_{2}'-6s^{1}D_{2}$	-	-
85	78	Su E	-	-	$5 p^3 D_3' - 5 d^3 G_4$	-	-
80	41	20u E	-	—	$5p^{3}D_{3}'-5d^{3}P_{2}'$	-	-
79	31	1u E	-	-	$5p^{3}F_{2} - 5d^{3}D_{3}$	-	-
77	25	25u E	-	7.28 7u	$5 p^{3} P_{2} - 6 s^{3} D_{3}$	-	-
76	74	4u E	-	-	$5p^{1}D_{2}'-5d^{3}G_{3}$	-	
76	21	2u E	-	-	$5p^{3}D_{2}'-5d^{3}S_{1}$	-	
73	84	80 E	-	3.80 8u	$5s^1D_2$ — $5p^3D_3'$		(0.00) 1.53
72	92	5u E	-	-	$5p^3D_1'-5d^1P_1'$	shull a Transa	-
62	26	20u E	-		$5p^{a}F_{2} - 5d^{a}F_{3}$	Telens	an Tan
61	28	2u E	-	-	$\operatorname{op^1}D_2$ $-\operatorname{od^3}D_1$	The second	and Tarres
60	32	20u E		0.32 Gu	$\operatorname{pp}^{\circ} \operatorname{F}_2 - \operatorname{pd}^{\circ} \operatorname{D}_2$	5-3D0 C-3D	_
54	0.		4.20 4	-		$op^{\circ}P_2^{\circ} - os^{\circ}D_2$	
53	31	30u E	-	7.01 8.	$5p^{\circ}D_3 - 5d^{\circ}D_3$ $5s^{1}D - 5r^{3}F$		
47	93	80 E	-	(.91 Su	$5s^2D_2 - 5p^3F_2$ $5n^1P - 5n^1P'$		(0.98) 1.00
40	04	10u E	-	STREET, DOOR	$5p^{1}p'_{1} - 5p^{1}p'_{1}$	and a supplicit	(0.20) 1.00
97	22	2011 E		7 70 9n B	$5p^2D_2 = 5u^2D_2$ $5s^3D_2 = 5n^3P_2$	and the second	(0.00) 1.18
20	69	Sn E		1.15 54 16	$5n^{3}D_{3} - 5d^{3}F_{2}$		(0,00) 1110
00	65	251 E			$5p^{3}D_{3} - 5d^{3}F_{3}$	_	
20	91	5n E		1998 1912 B	$5p^{3}D'_{3} - 5d^{3}D$	_	
99	62	2n E		Mark Barris	$5p^1D_a'-5d^3F_a'$	The Case of	
20	11	30n E	Not Sent to		5p ¹ D ₂ '-5d ¹ F ₂ '	and an and the states of	
13	23	90R E		3.19 8u R	$5s^{3}D_{a} - 5p^{3}F_{a}$	The state of the second	(0,00) 1.04
11	59	20	1.59 20	_		5p3D10-5d1D.	-
11	41	15 E		1.35 7u	$5s^{3}D_{1} - 5p^{3}D_{2}'$		(0,00) 1.23
09	01	2u E	_	8.96 1u	$5p^3P_1 - 6s^3D_1$	_	_
05	00	Su E	-	The Party	$5p^{3}D_{2}'-5d^{3}P_{1}'$	_	-
02	60	Su E	_		$5p^{1}P_{1} - 5d^{3}D_{1}$		_
2392	98	5u E	-	2.97 3u	$5p^3P_1 - 6s^1D_2$	-	-
90	58	25u E	-	_	$5p^{3}D_{1}'-5d^{3}F_{2}'$	-	-
86	32	5u E	-	-	$5p^1P_1 - 5d^1D_2$	-	-
83	17	Su E	-	-	$5 p^{3} P_{1} - 5 d^{3} S_{1}$	-	-
79	7	1u E	-	-	$5p^{3}D_{2}'-5d^{3}D_{3}$		-
73	71	Su E	-	-	$5 p^{1} F_{3} - 5 d^{3} G_{3}$	-	-
65	69	10u E	-	-	$5p^{1}P_{1} - 5d^{3}F_{2}'$	-	-
64	01	30u E	-	-	$5p^{3}D_{2}'-5d^{3}F_{3}'$	-	-
62	20	20u E	-	-	$5p^3D_2'-5d^3D_2$		-
58	87	35u E	-	8.85 7u	$5p^1F_3 - 5d^1G_4$		
57	92	70 E	-	-	$5s^{a}D_{1} - 5p^{a}P_{0}$	And The second	(0,00) 0.44
43	77	Su E	-	-	$5p^{1}F_{3} - 5d^{1}D_{2}$	The second	-
39	17	3 E	-	1.05 5	$5p^{\circ}D_1 - 5d^{\circ}P_0$?	-	(0.00) 0.00
31	40	SOR E	-	1.35 7u	$5s^{\circ}D_2 - 5p^{\circ}P_1$		(0,00) 0.99
25	12	400 E	-	4.05 7.	5 m 5 m 5 m 3 F		0.76
24	68	OR E	-	4.05 71	$5r^3F$ $5d^3C$	A STATE A COMPANY	0.70
24	48	ou S			5plF 5dlF		
21	00	SOP F	-	0.23 8.	5s1D 5p1F	tone the retain	(0.00) 1.18
20	20	001 13		1 0.20 04	0 0 0 1 2 0 P 1 3		(0,00) 1120

			1	1	1		E. Let IN .	
		Shenstone	Blair	Majumdar	Selwya			Zeeman-
		[197]	[107]	F1901	[100]	Terme [187]	Terme [197]	Effekte
		[101]	[197]	[100]	[192]			[100]
	2317	05 70R E	7.26 1	7.02 7u		5s3D, -5p3F.	5p3P.0-5d3P.	(0.00) 1.30
	15	32 1 E	lan Tau		101109100	$5p^{1}P_{1} - 5d^{3}P_{0}'$		-
	12	4 1u E	drad <u>es</u> mä	2.5 1u	(considered	$5p^{3}F_{3} - 6s^{1}D_{2}$	and <u>sparsing</u>	program and
	2296	08 8u E	an 11 h	net - tot	mester 4	$5p^3F_4 - 5d^3D_3$	and the statistic	
	80	03 75 E	(dir	9.96 7u	lantari	$5s^1D_2 - 5p^1P_1$	down sub-arb	(0,00) 1.04
	77	43 10u E	-	-	Printing 1	$5p^{3}P_{1} - 5d^{3}D_{2}$	Lot La Tradicion	
	75	32 25u E	-	-	1	$5p^{3}F_{4} - 5d^{3}F_{4}'$	-	-
	65	-	5.85 3	-		-	$5 p^3 D_1^0 - 5 d^1 S_0$	-
	57	41 1 E	-	-		$5s^{1}D_{2} - 5p^{3}D_{1}'$	and Transie	-
	53	45 30u E	-		10.000	$5p^{3}F_{2} - 5d^{3}G_{3}$		-
	48	74 75R E	-	9.71 6u	the last of	$5s^{3}D_{2} - 5p^{3}D_{2}'$	10.7 0 - pr m. 1	0.83
	46	43 100 R E	Tan	The second second	and a sol	$5s^3D_3 - 5p^3F_4$	Contraction of the second	(0,00) 1.19
	46	14 20u S	-	-		$5p^{3}F_{3} - 5d^{3}G_{4}$	-	ALCONTROL OF
	43		. 3.44 40		the same		$5p^1P_1^0$ — $5d^1S_0$	-
	41	80 3u S	0.47 9	-	1	$5p^3F_3 - 5d^3P_2'$		-
	40	59 10u S	0.47 3	0.49 0		$5p^{3}P_{0} - 5d^{1}P_{1}$	$\operatorname{op}^{\mathfrak{s}}\operatorname{F}_{2}^{\mathfrak{o}}$ - $\operatorname{od}^{\mathfrak{s}}\operatorname{D}_{1}$	-
	29	05 00 5	6.09 15	9.48 ou		$\operatorname{DS^{*}D_{2}} \operatorname{-Dp^{*}D_{2}}$	5.3D0 5.33D	-
-	19	69 10n S	0.02 10	1000 2000 000		5.73E 5.43D	opoP ₁ o-odoP ₀	10 1-
	17	87 2n S	A DIT A	MAL CEAL OF	a latelog	$5p^{\circ}r_{3} - 5d^{\circ}D_{3}$	and a start of the second	21.11
1 -	10		0.32 4	dish hits	(ball	5p-D ₃ -5d-G ₄	5p3D0 CalD	C LASTE
112	08	49 15u S	0.02 4	an stadard a	adst. 171	503F _5d3F'	$op^{\circ}P_2^{\circ} - os^{\circ}D_2$	industries and
1 7	05	95 35u S	_		10 L	$5p^3F_2 - 5d^3F'_2$		_
M	04	38 10u S	_		3.3.1.1	$5p^3F_2 - 5d^3D$		
	03	64 15u S	-	_		$5p^3 P_a - 5d^3 D_a$		
	02	09 40u S	-	_		$5p^3 P_a - 5d^3 S_a$		
	2186	76 50 S	-	6.73 4	Sta Bana	$5s^3D_s - 5p^3D_s'$	and realizable	0000
	71	66 10 S		1.58 2	the crotest	5s ³ D ₃ -5p ³ D ₃ '	1100102	and the little of the little o
	70	87 25u S		ning have a start	and prove	5p3D,'-5d3G,	and in the second	
	66	51 45 S	-	6.42 3	and the second	$5s^3D_2 - 5p^3F_2$	-	
	66	05 10 S	-	6.06 1		$5s^3D_1 - 5p^1P_1$	-	-
	58	95 1u S	-	-		$5p^{3}D_{2}'-5d^{3}D_{1}$	-	_
	45	76 20u S	-	-		$5 p^{3} P_{2} - 5 d^{3} P_{2}'$	_	<u> </u>
	45	60 60 S	-			$5s^3D_1 - 5p^3D_1'$	Clean Prairie	_
	29	12 10u S	-	- 0.00		$5 p^3 D_2' - 5 d^3 F_2'$	intis an and	
-	25	50 18u S	-	-	5.47 Ou	$5 p^3 P_2 - 5 d^3 D_3$	a tabi-dil ta	124 -
12035	20		0.81 2		-		$5p^{3}P_{1}^{0}-5d^{1}P_{1}$	
	20	45 40 S	The	0.36 2	0.48 Su	$5s^3D_1 - 5p^1D_2'$	-	-
	18	82 SOR S	-	3.76 3 1)	3.87 10u	$5s^3D_3 - 5p^3D_3'$	-	-
	11	43 1u S	-	-	-	$5 p^3 P_2 - 5 d^3 D_2$	-	-
	2075	01 10u S	-	5.00 0	5.65 Ou	$5p^{3}P_{1} - 5d^{1}D_{2}$	-	-
- 1023	22	00 40 S	-	0.82 8	2.02 0	$5s^3D_2 - 5p^1F_3$	-	-
	91	65 5 8		0.02 4	3.35 2	$5s^{\circ}D_2 - 5p^{1}P_1$	-	-
	15	89 15 S			5.96 9	$5p^{\circ}P_1 - 5d^{\circ}P_0'?$	-	-
	00	68 20 S		0.56.8	0.79 2	$5s^{a}D_{2} - 5p^{a}D_{1}$		
	1993	67 20 S		3.55 3	4.35 3	$5s^{3}D_{3} - 5p^{4}F_{3}$	_	-
	32	88 8 S	_	2.76 1	3.51 1	$5s^3D_2 = 5p^2D_1$	The state of the s	
	1				and a	55 13 OP 12		

1) Selwyn gibt noch: 2114.77 (0), ohne Einordnung.

2061 und 2070 um, erstere schwächer. Das gleiche gibt McLennan [157] an. — Hori [163] verwendet eine andere Methode: durch einen dünnen Draht wird eine kräftige Entladung geschickt; dann explodiert gewissermaßen der Draht, wird plötzlich in Dampf verwandelt und eine Menge Linien erscheinen umgekehrt¹).

Fukuda [171] verfährt ebenso, schließt aber den Draht in einen Kasten unter höherem Druck ein, wobei noch zahlreichere Linien mit Umkehrungen und Verbreiterungen sichtbar werden. Endlich folgen Loyarte und Williams [190] und [212], die auch noch weitere zum Teil unzugängliche Arbeiten anführen. Die Zahl der umgekehrten Linien wächst im allgemeinen in den Arbeiten; aber es würde zu weit führen, die Resultate und Schlüsse im einzelnen anzugeben. Man vergleiche auch Anderson und die Angaben in Bd. VII.

Für das Ionisationspotential liegt eine Angabe von Shenstone [187 u. 142] vor, der es zu 6,0 Volt angibt. Er sagt, bei 3,1 Volt scheine ein Resonanzpotential zu sein. Blair gibt 7,53 Volt an, in guter Übereinstimmung mit dem zu erwartenden Werte.

Der Effekt des elektrischen Feldes ist in zwei Arbeiten behandelt. Nagaoka und Sugiura [148] gelingt es, einen Bogen, der bei 500 Volt brennt, durch Einfügung von Kapazität und Selbstinduktion ruhig brennen zu machen. Dann zeigt sich an der Kathode der Effekt deutlich. Es wird das Verhalten einer großen Zahl von Linien besprochen. Das Gesamtresultat ist, daß Linien derselben Serie sich gleich verhalten, verschiedener Serien verschieden, und daß in jeder Serie der Effekt mit der Ordnungsnummer zunimmt. Die Arbeit enthält auch sonst manche interessante Angaben, z. B. über die Gestalt des Bogens. - Die zweite Arbeit stammt von Fujioka und Nakamura [170]. Auch hier wird das Verhalten vieler Linien zwischen λ 4226 und λ 3520 einzeln besprochen und eine Menge neu auftretender Linien angegeben. In allen Fällen wächst die Wirkung mit der Ordnungszahl des Gliedes. - Snyder [194] fand, daß die violette s-Komponente der Gruppe 5² P₂ - $6^2 D (\lambda 4211)$ im elektrischen Feld in zwei Zweige aufgespaltet ist. Den starken äußeren Zweig bezeichnet er mit 2Da, den schwachen inneren mit F. Die rote s-Komponente hat nur einen Zweig, ebenso die violette und rote p-Komponente. Sie werden mit ²D₂ bzw. ²D₃ und ²D₂ bezeichnet. Dasselbe Verhalten zeigt die Gruppe $5^2 P_1 - 6_2 D$ ($\lambda 4055$). Der starke innere Zweig der violetten s-Komponente wird als F-Zweig, der schwache äußere mit G bezeichnet.

Eine Übersicht gibt Tab. 5.

¹⁾ Das Verfahren stammt von Anderson (Astrophys. J. 51, 37 [1920]).

Tabelle 5. Ag I. Starkeffekt.

	Fujioka u. Nakamura [170]									Terme				
	1	17					v un-		m 200					
Serie	2	s-Kom	p.	p-Kom	р.	E104V/cm	gestört	2º P2-1	somb.	2º P1-1	somb.			
		12	i	12	i		Beserver	n	р	· n	р			
(42 P	4996.9	119	1	+ 0.9	15	4.8	6979	1.3	19					
$4^2 D_a$	4212.36*	+ 1.6	9	+1.3	6	4.3	6891.4	+4	+3	+6	+5			
$2^2 P_2 - 4^2 F$	4212.3						6890.3	+4	+3	-9	-11			
4^2D_3	4210.71*	-2.2	10	- 3.7	8	4.3	6880.7	-6	-9	-	-			
[42 P	4078.8	+ 0.2	1	+ 0.9	0.7	12								
$9^2 P_{-} 4^2 D_{-}$	4055.01*	+ 2.0	7	+1.8	5	4.0								
$4^{2}F$	4055.1	- 3.1	7	- 3.9	7	4.3	198			1.040				
	100011					10								
$\int 5^2 P_1$	3819.1	+ 0.6	1.5	+ 2.0	1	4.0	4457	+4	+14	+5	+5			
$5^{2}P_{2}$	3813.38	+2.83	2	+2.04	0.5	4.0	4420	+10	+7	+9	-			
$2^{2}P_{o} = 5^{2}D_{2}$	3811.72	-	-	-			4394.3	-	-	+20	+17			
5 ² D ₃	3810.71*	-0.35	3	- 2.80	3	4.0	4388.6	-12	-10	-	-			
5° F	3810.7	-4.3	1	- 0.6	2	4.0	4388	-10	-19	-3	-7			
fo.a	3810.7	- 1.1	0.5	- 0.2	1	4.0	4000	-20	-20	-22	-22			
(5º P1	3693.5	+1.5	0.5	+1.4	1	4.5				Bir in				
$5^2 P_2$	3687.4	+2.8	0.5	-		4.5	value			- distant				
$2^{2}P_{1} - 5^{2}D_{2}$	3682.30*	+5.7	2	+4.8	1	4.5								
$5^2 F$	3682.3	-0.74	4	-1.78	3	4.5	-							
[5 ² G	3682.3	- 6.2	2	- 6.3	2	4.5				1.110				
(6º P.	3628.6	+ 83	1			4.5	3079	+ 29	_	+ 17	+ 19			
$6^2 P_a$	3626.3	+ 7.4	1	+9.8	1	4.5	3062	+25	+33	+15				
62 D.	3623.85*	+3.20	2	+1.00	0	4.5	3035.9	+10	+3.2	-				
$2^{2}P_{2} = 6^{2}F$	3623.8	- 2.9	3	_		4.5	3035	-3	-	-11	-18			
62 G	3623.8	- 6.2	1	- 5.5	1.5	4.5	3035	-20	-18	-32	-37			
6 ² H	3623.8	- 10.4	1	- 11.8	1	4.5	3035	-33	-38	-	-			
(cap	8519		0.5	1.5.4	0.5	47	- 6.51			-				
0° P ₁ 62 P	3511	+0	0.5	+ 0.4	0.5	4.7								
62D	3507 35*	+ 4	0.5	+ 1 19	1	4.7				0.200				
$2^{2}P_{1} - 6^{2}F_{6^{2}F}$	3507	+1.00 -97	0.0	-4.2	1.5	4.7				-				
62 G	3507	-7.6	0.5	- 8.7	0.5	4.7	1.32							
6 ² H	3507	-	0.0	-										
Coam	1 - 1 7													
7 ² P ₁	9500 4	-	0.5		0.5	4.7	00.11							
7°P2	3022.4		0.5	-	0.5	4.7	2241		-					
$2^{2}P_{2} \rightarrow 7^{2}P_{3}$	3520.30*	+ 6.7	0	1.0	0.5	4.7	2224.8	+23						
72 G	3520	-61	1	-1.0	0.5	4.7	2222	01	-0.0	1				
72 H	3520	- 12.5	0.5	- 12.6	0.5	4.7	2222	-44	-44	tioner.				

	and the second	s-Komn	n-Komn.
λ	Serie	1 2 .	11 1
- And and alle			
2220 66	12 S 92 D	$\int -1.05$	$\{-1.06$
0200.00	1 51-2 11	l + 0.83	l + 0.84
3305.32	-	d	d
2220 86	12 S 92 P	{−0.66	∫− 0.54
0002.00	1 01-2 11	l + 0.49	[+ 0.34
3547.3		d	d
3557.3	-	d	d
3580.77	_	+1.66 1	+1.96 1
3693 85	22 P62 D.	$\int -6.03 3$	-9.35 3
0020.00	2 1 ₂ 0 D ₃	lsd	[sd
the second has been	and the second	(-9.34 1)	[- 9.32 2
3689 30	2º P5º D.	-2.92 3	-5 3
0002.00		0 4	0 4
		lds	[ds
3709.96	$2^{2}P_{2}$ — $5^{2}S_{1}$	+ 0.75 2	+ 0,88 2
the same state and the	Kaling Marshall	- 12.12 2	-16.77 2
3810.71	$2^{2}P_{a}-5^{2}D_{a}$	-0.46 5	[-7.005]
ocaotta		0 5	0 5
		l d	
3841.15	$2^{2} P_{1} - 5^{2} S_{1}$	+0.30 3	+ 0.62 3
3981.72	$2^2 P_2 - 4^2 S_1$	+0.04 4	+0.004
pit dos Chipappi	and the standard in	- 12.70 3	- 12.8 5
	00.0	-8.04	0.72 0
4055.31	$2^2 P_1 - 4^2 D_2$	$\begin{cases} -0.73 & 9 \\ 0 & 0 \end{cases}$	-0.73 9
		0 9	0 9
1001 5		(+ 0.0 0	
4081.7	-	+ 2.00 1	+ 2.5 1
4187.5	a Dare a transmission	a (11.05 9	(19.95 9
THE STREET	telepine Yill the	- 11.00 0 E 59 0	- 10.00 0
4210.71	$2^{2}P_{2}$ — $4^{2}D_{3}$	- 0.05 0	0 10
		1*)	1*)
		(1*)	(1*)
4919.00	92 D 42 D	0 8	0 8
4212.00	2-r ₂ -4-D ₂	1 865 3	8.48 3
4998 55	new constants with	± 6.98 1	+ 8.00 1
4476 19	92 D42 S	± 0.08 5	+ 0.17 5
4668 59	$2^{-1}1^{-4}S_1$ 92P - 42S	+0.13 6	+ 0.13 6
4678.92	2-12-1-D1	d 0.10 +	d
1010.20		[-15.30 2	(-23.10 1)
5909.08	92 P32 D.	0 10	0 10
0200.00		+ 13.95 2	+12.80 3
		- 15.80 1	- 17.50 1
5465.45	$2^{2} P_{s} - 3^{2} D_{s}$	0 10	0 10
0100110		1*)	1*)
		1 1*)	(1*)
5471.51	2 ² P3 ² D.	0 8	0 8
		+ 8.20 2	+15.73 1
5545.64	$2^{2}P_{2}$ — $3^{2}P_{2}$	+0.40 2	+0.29 1

Tabelle 5. Ag I. Fortsetzung. Starkeffekt. Nagaoka u. Sugiura [148].

 $d = diffus \ ; s = schwach \ ; l^*) = \ddot{u} berlagert \ von \ der \ benach barten \ Linie. \ Die \ mittlere \ Feldstärke \ ist 180 \ kV/cm.$

Das Zeemaneffekt ist von Shenstone [193] für Ag II untersucht worden. Er gibt die g-Werte für die von ihm festgestellten Terme [187], indem er an einigen aufgelösten Typen die g-Werte mißt und sie für die übrigen unaufgelösten Aufspaltungen berechnet. In Tab. 4 sind aus Beals [160] die Aufspaltungen angegeben, in Tab. 6 die Messungen und Berechnungen von Shenstone.

Der Ramaneffekt wurde an Silbernitrat und Silberchlorid von Krishnamurti [201, 202] und von Gerlach [200] untersucht. Gerlach findet für krystallisiertes

(187)	[187]	[193] g		[187]
Bezeichnung	Term	Landé	beob.	Struktur
5 s ³ D ₂	0.0	1.33	1.33	1
5 s ³ D ₂	1577.1	1.17	1.13	4 49 58
5 s ³ D,	4574.8	0.50	0.50	14 05
5 s ¹ D.	6881.3	1.00	1.03	. 2163) In Lo
5p3P.	41008.3	1.50	1.50	1 our 0.9800 -1
$5p^3F_2$	43003.2	1.08	1.08	a much man of the
5p ³ P,	44457.0	1.50	1.50	
5p3F.	44501.3	1.25	1.26	a far bromatos
5p ³ D _a '	46032.4	1.17	0.87	a Beating and
5p ³ P	46972.1		diana 44 April	4.19 5.
5n ³ D.	47292.4	1.33	1.25	4d° op
5p ³ Fa	47719.8	0.67	0.92	and and and
5p1F	49966.4	1.00	1.10	
5p1P.	50727.1	1.00	1.10	The second second
5n ³ D.'	51166.6	0.50	0.52	1.25 2 2540.20
$5n^1D_1$	51719.5	1.00	1.20]
$6 s^3 D$	81362.7	1.33	1.34	1
6 e ³ D	81740.2	1.17	1.11	
Ge ³ D	85955.5	0.50	0.53	} 4d ⁹ 6s
6 e ¹ D	86233.9	1.00	1.11	
5d3S	86405.0	2.00	1.84	i
5d3G	87496.6	1.20	?	
5d3G	87509.2	1.05	1.03	a linear linkerson
5d3P'	87596.3	1.50	1.37	
5d3P'	87599.8	1.50	0.90	and the state of the
5d3D.	88041.1	1.33	1.34	
5d3E.'	88320.6	1.08	1.04	
5d3D	88353.1	1.17	1.07	ALL CONTRACTOR OF CONTRACTOR
5418	88356.9?	the second second second	a (ambun hef	Str. Jahrmenhan
5d3F.	88437.9	1.25	1.26	} 4d ⁹ 5d
5d1P.'	91592.1	1.00	1.51	A Rome Roop T 14
5d3G	92082.4	0.75	0.75?	
5d3D.	92336.6	0.50	0.74	and of events more of the
5d1G.	92346.6	1.00	1.06	and a second second
5d ¹ D	92620.0	1.00	1.20	1 and a terms of the
5d3E'	92985.0	0.67	0.71	- and slow mi the
5d1F.'	93027.9	1.00	1.10	
5d ³ P _o '	93904.5?		10. 11. 10 - 1 - 1	

Tabelle 6. Ag II. Zeemaneffekt.

2

wasserfreies $AgNO_3$ den Mittelwert $\Delta v = 1045$. In einer Tabelle wird der Effekt an fünf Linien im einzelnen angegeben. Krishnamurti [201] findet eine weitere Frequenz $\Delta v = 1372$. An AgCl findet Krishnamurti [202] keine Ramanlinien und schließt daraus und aus seinen Beobachtungen an mehreren anderen Chloriden, daß elektrovalente Bindungen, mithin die Chloride der stark elektropositiven Elemente mit großer Leitfähigkeit, im geschmolzenen Zustand keinen Ramaneffekt zeigen.

Majumdar [186] schätzt die absolute Termgröße von $1^{3}D_{3}$ auf 138000 und des Grundterms ${}^{1}S_{0}$ auf 171000. Ferner gibt er an ${}^{3}D_{3} - {}^{3}D_{2} = 1577,7$ und ${}^{3}D_{2} - {}^{3}D_{1} = 4576$ cm⁻¹. Als Grundterme des Ag II findet er [175] die zu erwartenden ${}^{1}S - ,$ ¹D - und ³D-Terme und identifiziert einige höhere Terme.

Die Hyper-fein-Struktur der Bogenlinien des Silbers im Sichtbaren und Ultravioletten wurde von Wali Mohammad und Prem Nath Sharma [215] untersucht. Die meisten Silberbogenlinien werden einfach gefunden, aber die Linie 3382 $(2^2P_1 - 1^2S_1)$ hat zwei Satelliten -0,019 und +0,025 ebenso 3280 $(2^2P_2 - 1^2S_1)$ bei -0,018 und +0,023. Nur das Grundniveau 1 S ist also mehrfach, und zwar ein Triplett mit den Aufspaltungen 0,218 und 0,166 cm⁻¹ (Phys. Ber. 12, 1931, p. 2183). — Im Gegensatz hierzu findet Frisch [209] die Resonanzlinien $5^2S_{\frac{1}{2}} - 5^2P_{\frac{1}{2}}$ $\lambda = 3382,9$ und $5^2S_{\frac{1}{2}} - 5^2P \lambda = 3280,7$ in vierter Ordnung eines großen Gitters bei Anwendung von Hohlkathoden einfach. In diesem Zusammenhang sei Kapuscinski [184] erwähnt, der das gleiche Paar in Silberdampf oberhalb von 840° bei Bestrahlung mit dem Licht des Silberfunkens in Resonanz findet.

Als Restlinien des Ag sind in Löwes Atlas [185] die folgenden zu finden¹):

2229.5	B2 F4	2437.8	B3F8
2246.4	B3 F3	2447.9	B2 F8
2248.7	B3 F3	2473.9	B3F8
2309.5	B6RF4	2506.7	B5 F5
2317.0	B2 F5	2660.4	B3F8
2320.2	B2 F6	2767.5	B-F8
2324.6	B2 F6	2799.6	B-FS
2331.4	B4 F6	3280.7 Ag I u	BIORES
2411.4	B- F8	3383.9 Ag 1 u	BIOR FOR
2413.2	B4 F8	cocore rig 1 u	DIONTON

Banden.

Es sind verschiedene Banden im Silberspektrum als Banden des Elementes selbst angegeben, von Lecoq, Hartley und Duffield (siehe Bd. V dieses Handbuchs), aber so verschieden und so unvollkommen, daß sich nichts daraus entnehmen läßt. Inzwischen sind einige Verbindungsspektra aufgeklärt.

Ag H: Bengtsson und Svensson [150] erhalten zunächst zwei Banden bei λ 3358 und bei λ 3330 in der Knallgasflamme, besser im Bogen, der in Wasserstoff brennt. Die Untersuchung zeigt, daß jede Bande 2 Zweige enthält, P und R, die Linie u = 0 fehlt. Sie vermuten, es handle sich um ein Hydrid. — Hulthén und Zumstein [164] erhalten dasselbe Spektrum in Absorption in einem Kohlerohr, in welchem sie den Metalldampf bei 1700^o mit Wasserstoff mischen, und be-

¹) B = Bogen, F = Funke, R umgekehrt.

trachten es als vom Hydrid stammend. Auch Watson und Perkins [178] beschäftigen sich mit diesen Banden, bestätigen, daß nur P- und R-Zweige vorhanden sind. Sie finden keinen Zeemaneffekt, was als Bestätigung der Mulliken'schen Einordnung als ¹S—¹S Übergänge zu betrachten ist.

v"	$\mathbf{v}' = 0$	1	2	3
1000	(10)	(1)	CARE AND	and a state of the
0	3330	3179	-	-
	(29900)	(31389)	- 11	-
	(0)	(0)	(9)	
1.1.6	(2)	(0)	(2)	
1	3516	3308	3220	
		(29696)		
		(2)		(1)
0	9750	0544		(1)
2	5750			X
			(2)	
3	M and hand	3810	3583	
		ferrer [income	the free mats	
				(1)
4	inter i Trans fil		3900	3638
	1			

Tabelle 7. Wellenlängen der Bandenköpfe. Darüber Intensitäten, darunter Wellenzahl der Nullinie.

In einer zweiten Tabelle findet man bei Hulthén und Zumstein die Struktur der Bande λ 3179.4 mit ihren R- und P-Zweigen aufgeführt. Ferner wurde ein System von Absorptionsbanden mit zweifachen Köpfen bei λ 2661.91, 61.46 λ 2660.22, 59.90 λ 2658.63, 58.18 und λ 2657.19, 56.64 gefunden.

Mecke¹) gibt für das Molekül AgH folgende Konstanten an:

V ₀	Term	a' b'	a'' b''	J	·J**	v'	v''
29900	¹ S — ¹ S	1489	1693	4.57	4,37	1.67	1.63

In neuester Zeit haben dann Bengtsson und Olsson [208] in einem Vakuumbogen in Wasserstoffatmosphäre zwischen 3180 und 4700 nicht weniger als 37 Banden mit großer Dispersion photographiert, gemessen und analysiert. Eine Reihe bemerkenswerter Einzelheiten wurde gefunden. Die wesentlichsten Daten sind die folgenden: Scharfe Begrenzung der Banden im Ultraviolett bei 3179, wahrscheinlich Fortsetzung nach längeren Wellen, Beginn einer noch nicht gemessenen Bandengruppe bei 2700, größte Anhäufung der Linien zwischen 4490 und 4460. Die Banden entsprechen ${}^{1}\Pi_{1} - {}^{1}\Sigma =$ Übergängen, wie schon bemerkt, und bestehen aus einfachen P- und R-Zweigen mit einer Dublettaufspaltung, die den Isotopen 107 und 109 zugeschrieben wird. Die Kanten sind teils nach Violett teils nach Rot abschattiert. Die Zweige lassen sich bis v = 30 verfolgen; 27 Banden, die meisten Linien sind eingeordnet.

2*

¹) Handb. d. Phys. 21, p. 542 (1929).

stehen jedesmal die Werte von v' und v". v' - v'' $\mathbf{v}' - \mathbf{v}''$ 0-Linie, v Kante 2 O-Linie, v Kante λ 3781 1 0 31 387.6 3179 2 4 26 444.5 3 26 035.3 3833 5 4 2 31 388.9 2 31 011.2 3220 4 6 25 579.5 3905 1 7 5 3 2 30 496.8 3275 25 038.4 3990 3 6 24 687.2 4039 0 0 29 897.94 3330 4 7 24 303,0 4108 1 1 29 695,6 2 2 5 8 23 835.2 4190 29 387.4 3396 3 3 28 941.0 3451 6 9 23 377.4 4273

3516

3546

3583

3637

3710

3740

4 8

5 9

6 10

7 11

6

11

23 099.5

22 708.3

22 330.7

22 014.2

21 368.4

4328

4397

4472

4536

4669, 4675

Die Bandenkanten und die Schwingungszahlen der Nullinien sind ohne Angabe der Intensität in dem folgenden kleinen Schema angegeben. In der ersten Spalte

Bezüglich der Molekülkonstanten im erregten und im Normalzustand, der Berechnung des Isotopieeffektes und weiterer Einzelheiten muß auf das Original verwiesen werden. Die Dissoziationsenergie des Normalzustandes wird in guter Übereinstimmung mit chemischen Versuchen auf 19000 cm⁻¹ aus der Konvergenzstelle berechnet. Die Moleküldaten sind die folgenden, in der Bezeichnung von Mecke, der sie vorausberechnet, darunter die experimentellen Daten.

0.000	$\begin{vmatrix} w_0'' \cdot \\ (1-x) \end{vmatrix}$	$ _{(1-x)}^{w'_0}$	J″	J'	r″	r	B"e	B _e '	k
Mecke Bengts-	1693	1499	4.37.10-40	4.57.10-40	$1.63 \cdot 10^{-8}$	$1.66 \cdot 10^{-8}$	6.33		14.4 Volt
son u. Olsson	1760.0	1663.6	4.293.10-40	$4.421 \cdot 10^{-40}$	1.614.10-8	1.638.10-8	6.453	6.265	

Hier bedeuten die B "Bindungswerte", k dasselbe in Volt (vgl. Mecke [213]). Mecke betrachtet das AgH-Spektrum, das einem neutralen Molekül angehört im Zusammenhang mit andern Hydrid-Spektren und berechnet daraus weitere Daten.

Ag0: Hulthén und Zumstein [164] beobachten bei ihren Absorptionsuntersuchungen neben den Hydridbanden auch noch nach rot abschattierte Doppelbanden bei 2 2661.91/61.46; 2 2660.22/59.90; 2 2658.63/58.18; 2 2657.19/56.64 und vermuten als Träger AgO, ohne aber ein anderes Argument als eine gewisse Ähnlichkeit mit CuO-Banden anzugeben.

AgCI: Franck und Kuhn [169] finden zuerst das Spektrum in Absorption; Banden zwischen λ 3100 und λ 3300, die nach langen Wellen abschattiert sind. Sie untersuchen auch die Fluoreszenz des Dampfes, geben aber keine Bandenanalyse.

Brice [198] zeigt, daß 4 Serien vorhanden sind, welche zu den 4 möglichen Isotopenverbindungen gehören: Ag107 Cl35, Ag109 Cl35, Ag107 Cl37, Ag109 Cl37. Als Dis-

20

0 1

1

2

3

4

1

2

3

4

5

3

28 026.1

28 071.8

27 831.8

27 453.6

26 927.5

26 516.2

soziationswärme findet sich 3.11 Volt, was gut übereinstimmt mit der Schätzung von Franck und Kuhn aus thermodynamischen Daten (3.1 Volt). Während aber Franck und Kuhn meinten, die Dissoziation liefere ein normales Silberatom und ein angeregtes Chloratom, schließt Brice, es entstehe ein normales Chloratom und ein metastabiles Silberatom. Zu erwähnen wäre noch, daß Brice als Ionisationspotential des Ag angibt 7.35 Volt.

Tab. 8 gibt eine Übersicht der Bandenkanten und der Schwingungsfrequenzen.

	Ag ¹⁰⁷ Cl ³⁵	Ag ¹⁰⁹ Cl ³⁵	Ag ¹⁰⁷ Cl ³⁷	Ag ¹⁰⁹ Cl ³⁷	Frank u. Kuhn [167] Ag Cl
(v', v'')	λ.	λ.	2	λ	2 .
(2,0)	_	-	3114.60	_	and the second
(3,1)	3124.17		3124.79	1 · · · · · · ·	Des Partie des
(4,2)	3135.10		3135.39	-	
(1,0)	3139.70	-	3140.15	-	and the second second
(2,1)	3147.93			-	100000000
(3,2)	3157.48	-		-	1.1.1
(0,0)	3166.21		-	-	and the second second
(1,1)	3173.35	-	3173.60	-	Barrister Barris
(2,2)	3181.95	-	3181.59	-	I SALES AND
(0,1)	3200.81	-	3200.07		TRACE BUILD
(1,2)	3208.03	-	3207.14	-	and the state
(2,3)	3216.26	-	3215.28	3215.16	APRIL PARTY PLAT
(3,4)	3225.79	-	3224.46	-	125 121 121
(0,2)	3235.98	3235.82	3234.50	3234.50	
(1,3)	3243.18	3242.97	3241.50	3241.31	
(2,4)	3251.35	3251.14	3249.47	3249.24	a strategy and
(3,5)	3260.77	3260.52	3258.63	3258.35	
(4,6)	3271.76	3271.46	3269.26	3268.98	
(1,4)	3278.63	3278.33	3276.23	3275.91	
(2,5)	3286.77	3286.48	3284.15	3283.87	a a fill and a l
(0,6)	3296.20	3295.87	3293.30	3292.94	Ind mallip, all and
(4,7)	3307.14	3306.82	3303.91	3303.49	i and a second of the
(2,6)	3322.77	3322.42	-	-	
(3,7)	3332.14	3231.73	Logo to-people	html - ili i	In Action Action
(4,8)	3343.11	3342.70	a la transition	-	des Danudes on
(4,9)	3379.55	3379.10	-	-	in under Base of
(5,7)	-	-	-		3284,8
(5,8)	The second second	-			3320,3
(5,9)	in isotem proving	000-000-000	0000000-00000	The second	3356,3
(6,10)	tie wied anere	-nash	e (I ob -out :)	teni a sti stin	3372,1
(3,8)	-	-		and the second	3368,7
(5,10)	-	-	-	-	3392,7
(6,11)			-	-	3409,8
(4,10)	-		o notice the original		3416,5
(5,11)	and - amount	Tanttalloog	Ining Limit	AT STE N	3429,2
(6,12)		A Mary Theorem	na committee and	Interior Trends	3446,6
(5,12)	-	-	-		3467,5
(6,13)					3485,1

Tabelle 8. Bandenkanten der AgCl-Isotopen.

	April 19					Contraction of the second		
	Ag107	Cl35	Ag ¹⁰⁹	Cl35	Ag107	Cl ³⁷	Ag ¹⁰⁹	Cl37
u	w"u	w'u	w''u	wu	w"u	wu	w"u	w'u
0	343,6	281.0	342.4	_	336,0	276	1-1-11	10-0100
1	342.4	275.0	341.3	275	334.9	270		-
. 1	341.3	268.3	-	-	-	263.6	-	
11	340.2	262	339.0	262	332.7	257	-	-
2	339.0	255.1	-	255.0	332.5	251.1	-	250.7
21	337.8	249	336.8	249	330.5	245	-	-
3	336.5	242.8	-	242.4	329.9	238.5	-	238.4
31	335.5	235	334.5	235	328.3	231.3	-	
4	334.3	226.4	332.4	226.2	327.0	223.2	325.9	222.5
41	333.2	217	332.2	217	326.2	214	-	-
5	331.9	206 ?	330.7	-	325.0	-	324.5	-
51	330.8	194 ?	330.0	194	324.0		- 8	
6	329.6	173 ?	328.9	-	322.9	-	322.2	_
61	328.5	_	327.8	-	321.8	- 97	133 - 1	
7	327.1	-	326.7	-	320.7	- 11	319.5	-
71	326.2	_	325.6	-	319.6		0.0	-
8	325.2	_	324.4	-	100-00	- 19		-
81	323.8	-	323.3	18-1	317.4	-	0000-	-
9	322.5		322.2	- 11	-	-	-	-
91	321.5	-	_	-	-	-		-
101	319.2	_	-	-	-	-	-	-
111	316.8	-	_	- 5	-		-	
$12\frac{1}{2}$	314.5	-	-10		-	-	-	-

Tabelle Sa. Werte der Schwingungsfrequenzen.

 $u = v + \frac{1}{2} = effektive Quantenzahl.$ v = wahre Quantenzahl. $u = \frac{1}{2}$ = tiefster vorkommender Schwingungszustand.

'' = normal. ' = angeregt.

u = 0 schwingungsloser Zustand.

Da die Anregungsspannung zu 1.1 ± 0.12 Volt gefunden wird, wird geschlossen, daß die Silberhalogenide dissoziieren in ein Silberatom in einem ²D'-Niveau und ein Halogenatom in einem metastabilen ²P₄-Niveau.

Ag Br: Auch diese Verbindung ist von Franck und Kuhn [169] in Absorption des Dampfes untersucht. Sie zeigt kontinuierliche Absorption und darin Banden, die nach Rot abschattiert sind. Es werden die Wellenlängen für eine Anzahl von Kanten gegeben. Eine Ordnung derselben und eine Formel dafür liefert wieder Brice [209], der die Messungen weitgehend ergänzen und auch den Isotopieeffekt Ag₁₀₇, Ag₁₀₉ und Br₇₉, Br₈₁ feststellen kann; auch die Dissoziationsenergie wird angegeben.

AgJ: Mit AgJ haben sich Franck und Kuhn [169] zuerst beschäftigt. Es zeigt ein kontinuierliches Absorptionsband, dessen langwellige Grenze bei 3500 liegt und das ein Maximum bei 3170 hat. Darin liegen nach Rot abschattierte Banden zwischen 3349 und 3168. Der Dampf zeigt Bandenfluoreszenz. Es werden diffuse Bandenreihen in den Absorptionsspektren von AgJ und AgBr-Dampf gedeutet. Zur Erklärung der kontinuierlichen Absorptionsbanden sehe man auch Kuhn [203].

	Ag107 Br79	Ag109 Br79	Ag107 Br81	Ag ¹⁰⁹ Br ⁸¹
(v', v'')	2 (Luft)	1	2	1
	N (Luc)			^ ^
(2,0)	3165.3 ?	_	antes - Contras	-
(3,1)	3174.9 ?	-		
(1.0)	3182.15 ?		-	- 120
(1.1)	NO-	Are - N	1000 - 50	
(2.1)	3190.2 ?	A PERSONAL PROVING		- 100
(0.0)	Leon man	Caller - Comment	- 1 STR	3199.5 ?
(4.3)				3210.4 ?
(2.2)	-		- 100	8215.7 ?
(0.1)	-	-		8225.23 ?
(1.2)	-		- ac	3232.7 ?
(4.4)	-	-	-	3236.2 ?
(2.3)	_	-		3241.3 ?
(0.2)	there increases and	_	_	3250.76
(1.3)		ten recinquite	A TEMPLET THE T	3258.34
(2.4)		_	_	3267.0 ?
(0.3)	in the second second second	Contraction in the	antekeli	3276.66
(1.4)			3284.55	3284.21
(2.5)	disk - h	-	3292.93	3392.59
(3.6)	_	-	_	3301.68 ?
(0.4)		-		3302.76
(1.5)	3311.69	3311.21	3310.84	3310.37
(2.6)	3320.17	3319.68	3319.33	3318.76
(3.7)	3329.76	3329.21	3328.73	3328.16
(1.6)	3338.41	3337.86	3337.43	3336.87
(2.7)	3346.93	3346.34	3345.84	3345.25
(3.8)	3356.52	3355.84	3355.27	3354.64
(4.9)	3367.38	3366.70	3366.11	3365.36
(2.8)	3374.03	3373.30	3372.69	3371.97
(3.9)	3383.53	(Ag 3383)	3382.13	3381.40
(4.10)	3394.51	3393.65	3392.91	3392.00
(2.9)	- 101	10.8 - 11	-	3398.97
(3.10)	3410.95	3410.05	3409.30	3408.42
(4.11)	3421.97	3420.96	3420.15	3419.18
(5.12)	-	-	-	3431.06 ?
(3.11)	-	3437.68	-	3435.91 ?
(4.12)	3449.48 ?	3448.34 ?	3447.43	3446.51
(5.13)			3460.16 ?	3458.78 ?
(6.14)	and the second second	-		3473.29 ?
(5.14)	-	-	-	3486.87 ?
(6.15)	aspolation (12 6)	nation/ +) don	beobuchtering .	3500.85 ?

Tabelle 9. Wellenlängen der Bandenköpfe der AgBr.-Isotopen.

Brice [209] ergänzt diese Messungen, findet den Isotopieeffekt und berechnet die Molekülkonstanten. Die folgende Tab. 10 gibt die Wellenlängen der Bandenkanten von AgJ.

Ferner sind noch schwache nicht eingeordnete Banden des AgJ bei: 3015.8, 3053.3, 3074.3, 3094.8, 3113.7, 3115.9, 3136.4, 3138.2, 3156.4.

(v', v'')	Ag ¹⁰⁷ J	Ag ¹⁰⁹ J	(v', v'')	Ag ¹⁰⁷ J	Ag ¹⁰⁹ J
(0.4)	_	3294.74	(2.11)	3427.04	3425.83
(1.5)	-	_	(3.12)	3438.24	3436.93
(0.5)	3317.35	3316.83	(2.12)	3450.16	3448.87
(1.6)	3326.47	3325.89	(3.13)	3461.50	3460.13
(0.6)	-	-	(2.13)	3473.67	3472.23
(1.7)	3348.77	3348.04	(3.14)	3484.84	3483.38
(2.8)	3358.73	3358.08	(3.15)	3508.47	3506.82
(1.8)	3371.27	3370.47	(4.16)	3521.62?	3519.86?
(2.9)	3381.31	3380.44	(3.16)	3532.16	3530.42
(1.9)	3394.01	3393.04	(4.17)	3545.83	3543.79
(2.10)	3404.10	3403.06	(3.17)	3556.55?	3554.61?
(3.11)	3415.55	3414.32			

Tabelle 10.

Zum Schluß folgt in Tab. 11 noch eine Gesamtübersicht über die Konstanten der Molekülspektra der Halogenverbindungen des Silbers.

Calendary Pre-	S all	AgCl	AgBr	AgJ
Grundzustand	v _e	31606.92 cm ⁻¹	31280.43	31190.87
(0.0) Bande	ν ₀	31574.40 cm ⁻¹	31246.02	31152.24
Schwingungsfrequenzen	$\omega_0^{\prime\prime}$ ω_0^{\prime} $\omega_0^{\prime\prime}$ ω_e^{\prime}	$\begin{array}{c} 342.4 \ \mathrm{cm^{-1}}\\ 275.0 \ \mathrm{cm^{-1}}\\ 343.6 \ \mathrm{cm^{-1}}\\ 281.0 \ \mathrm{cm^{-1}}\end{array}$	247.05 176.2 247.72 180.8	205.75 126.2 206.18 131.3
Anharmonische Konstanten	$\omega_{e}^{\prime\prime} x_{e}^{\prime\prime}$ $\omega_{e}^{\prime} x_{e}^{\prime}$ $\omega_{e}^{\prime} y_{e}^{\prime}$	1.163 6.00 - 0.095	0.6795 4.45 -0.060	0.4327 5.175 -0.050
Dissoziationswärmen	${f D}_0'' \\ {f D}_0'' \\ {f D}_c$	3.11 Volt 0.33 Volt 3.1 Volt	2.77 0.21 2.6	$\begin{array}{c} 3.02 \\ 0.10 \\ 2.0 \end{array}$
Größe von J'/J" Reduzierte Masse Kernabstand	ω_0''/ω_0' μ r_0' r''	1.25 26.37 2.06 A	1.40 46.47 2.30 A	1.63 58.05 2.44 572 $10-49$

Tabelle 11. Molekularkonstanten der Silberhalogenide.

Gleichung der beobachteten Bandenköpfe der 3 Silberhalogenide:

$$\begin{split} \nu &= \nu_{\rm e} + \omega_{\rm e}^{'}\,{\rm u}^{'} - \omega_{\rm e}^{'}\,{\rm x}_{\rm e}^{'}\,{\rm u}^{'2} + \omega_{\rm e}^{'}\,{\rm y}_{\rm e}^{'}\,{\rm u}^{'3} - \omega_{\rm e}^{''}\,{\rm u}^{''} + \omega_{\rm e}^{''}{\rm x}_{\rm e}^{''}\,{\rm u}^{''2} \\ {\rm Ag^{107}\,Cl^{35}\colon \nu = 31606.92 + 281.0\ {\rm u}^{'} - 6.00\ {\rm u}^{'2} - 0.095\ {\rm u}^{'3} - 343.6\ {\rm u}^{''} + 1.163\ {\rm u}^{''2} \\ {\rm Ag^{109}\,Br^{81}\colon \nu = 31280.43 + 180.8\ {\rm u}^{'} - 4.45\ {\rm u}^{'2} - 0.060\ {\rm u}^{'3} - 247.72\ {\rm u}^{''} + 0.6795\ {\rm u}^{''2} \\ {\rm Ag^{107}\,J\colon \nu = 31190.87 + 131.3\ {\rm u}^{'} - 5.175\ {\rm u}^{'2} - 0.050\ {\rm u}^{'3} - 206.18\ {\rm u}^{''} + 0.4327\ {\rm u}^{''2}. \end{split}$$

Es wird der Elektronenübergang ${}^{1}\Sigma_{-}{}^{1}\Sigma$ angenommen. Die beobachteten Abstände des Niveaus der Isotopen der 3 Silberhalogenide werden bei Brice an Hand von Tabellen mit den berechneten verglichen. Dünne Schichten von metallischem Silber lassen bekanntlich im Ultraviolett bei etwa λ 3200 einen schmalen Streifen des Spektrums durch. Lord Rayleigh [204] findet, daß mit steigender Temperatur dieser Streifen nach längeren Wellen rückt. So liegt das Maximum der Durchlässigkeit bei -180° bei λ 3180, bei $+254^{\circ}$ bei λ 3300.

Gleason [189] mißt das Reflexionsvermögen für kurze Wellenlängen. Über das Reflexions- und Absorptionsvermögen des metallischen Silbers in diesem Bereiche sind noch eine Reihe weiterer Arbeiten erschienen, die wir in diesem Zusammenhang übergehen.

Röntgenspektrum.

Im Röntgenbereiche konnte die Meßgenauigkeit der Linien auf 4-5 Stellen, die der Absorptionskanten auf 3-4 Stellen gesteigert werden. Für die L-Reihe liegen Messungen von Coster [137], Druyvesteyn [180], Webster [196] und Richt-

Entission, L'oeffe.						
Übergänge	Bezeich- nung	i	Coster [137]	Druyvesteyn [180]	Webster [196]	Richtmyer [191]
L _{III} M _r	1 Ind	0	4697.6	100, 1201 N	held national	(Blothering)
L _{II} M _Y	17	0	4410.1	more the	for L lief	in remains which it
Lur May	a	1	4153.821)	Internet and a	4153.82 ¹)	notiset but
Lux My	a	10	4145.641)	-	And The A	4145.6 ¹)
Funkenl.	a	00		4135.5	4134.7	4131.9
a characteristic of	a	00	4131.0	4131.5	4130.5	4130.6
	a	00	4125.4	4126.1	4125.6	4125.6
"	a	00	4119.4	4119.4	4119.0	4119.3
,,	a	00	a local and	4113.4	A.N -mask	4112.5
Les Mars	B.	6	3926.64 ¹)	_		3926.6 ¹)
Funkenl	B'	00	3914	-	-	3915.0
1 uniternit	B''	00	3906.9	and the state of the	Total a	3907.1
T. M	B.	1	3861.09 ¹)	_	_	
L M	Ba	1	3824.45 ¹)	torentering mil	nin and the	24-110
L N	Ba	00	3799.4	-12.69		ini - uni
LN	Bo	2	3693.831)			3693.8 ¹)
Ennkenl	B'	00	3663.3	3663.5	_	3663.7
runkem.	B"	00	3653.7	3653.6	ap some a	3653.9
T. M	Bra	00	3630	a star have a	rend_rh_1	Intelling Toppenda
L M	P10 B	00	3620	_	_	
L N	Po	00	3607.3	the second second	protecti	
L N	75	1	3514.851)	-		-
Funkon	1	00	3479.5	3480	_	
T N	71	00	8999 7	-		
Funkenl.	72.3 2'2.3	00	-	3270	-	-

Messungen mit Kristallgitter.

Wellenlängen in XE, bezogen auf Kalkspat: $d_{18^{\circ}} = 3029.45$.

Emission, L-Serie.

Richtmyer [191] bringt noch weitere Satelliten:

$\beta_1^{\text{III}} = 3899.6$	$\beta_2(b) = 3658.7$
$\beta_1^{IV} = 3893.5$	β_2 (c) = 3646.5
$\beta_{\rm e}({\rm a}) = 3689.3$	

¹) Nach älteren Messungen von Hjalmar [124].

Übergänge	Bezeichnung	i	Lang ¹) [146]	Leide [155]	Kellström [173]
KLII	a2	5	562.52	562.64	562.669
KLIII	a1	10	558.18	558.21	558.277
KMII	β_{3}	00	1 400 07	496.98	496.647
KMIII	β_1	2	\$ 490.07	496.33	496.009
KNIL III	β_2	0	-	486.10	486.030

Towns in some of the	- T.	C1
P.m18810	n. K-	Serie.
ALTERNING OF	any an	POTTO:

Niveau	Art	i	Coster [137]	Coster und Müller [161]	van Dyke und Lindsay [167]	Enger [181]	Leide [155]
L _{III}	Kante	st.	3684.4	3693.0	3690.8	_	_
L _{II}	"	m.	3504.7	3506.7	3506.7	lines 1-2	-
LI	,,	schw.	3260.5	3244.8	3247.4	C COL	_
K		st.	_	_		484.48	484.80

Absorption

myer [191] vor, die außer den schon früher bekannten eine größere Anzahl schwächerer Linien auffanden. Die beiden letzten konnten bei einigen Linien Satelliten nachweisen. Lang [146], Leide [154, 155, 165], Kellström [173] und D'heil [210] machen neue Messungen in der K-Reihe. Jönsson [172] bestimmt die relativen Linienintensitäten und -breiten [183], für letzteres ist auch Valasek [206] zu nennen, desgleichen Spencer [214a]. Auch Dauvillier [143a] gibt Intensitätsmessungen.

Auch für die Absorptionskanten liegen mehrere neue Messungen vor. Coster [137], Coster und Mulder [161], van Dyke und Lindsay [167] finden und bestimmen die 3 erwarteten Kanten der L-Absorption, während Enger [183] und Leide [155] die früher bekannte K-Kante neu messen. Davis und Purks [179] finden hier eine von der chemischen Bindung abhängende Feinstruktur. Kellström [174] und Brackhurst [188] geben Messungen des Absorptionskoeffizienten im Gebiete der L-Kanten.

Die Bezeichnungen der Röntgenniveaus sind nach Bohr und Coster gewählt, die der Linien nach Siegbahn.

Den Schluß bildet eine Tabelle der Röntgenniveauwerte nach Siegbahn. Für das K-Niveau wurde der experimentell bestimmte Wert der Absorptionskante zugrunde gelegt, die übrigen sind aus den Linienfrequenzen berechnet.

Röntgen- niveau	K	$\mathbf{L}_{\mathbf{I}}$	$\mathbf{L}_{\mathbf{II}}$	L_{III}	MI	M _{II}	MIII	M _{IV}
Opt. Symbol	1 ² S _{1/2}	$2 \ ^2S_{1/_2}$	2 ² P _{1/2}	2 ² P _{3/2}	$3 \ ^2S_{1/_2}$	3 ² P _{1/2}	3 ² P _{a/a}	3 ² D _{a/2}
$\frac{\nu}{R}$	1880.9	282.0	261.3	248.6	54.7	46.1	43.7	29.2

Energiewerte der Röntgenniveaus nach Siegbahn²).

¹) Relativ zu Cu Ka₁ = 1537.30 XE. Bei a₁, a₂ Mittelwerte aus 1., 2., 3. Ordnung.
 ²) Spektroskopie der Röntgenstrahlen, Berlin 1931, 2. Aufl., p. 346.

Röntgen- niveau	M _V	N _I	N _{II, III}	N_{IV}	N _V	
Opt. Symbol	3 ² D _{*/2}	$4 {}^{2}\mathrm{S}_{1/_{2}}$	4 ² P _{1/2} , ³ /2	$4\ ^{2}\mathrm{D}_{\mathrm{s}/_{2}}$	4 ² D _{5/2}	
$\frac{\nu}{R}$	28.8	8.7	5.9	2.1	1.9	nutA a series a series

Energiewerte der Röntgenniveaus nach Siegbahn (Fortsetzung).

Abgeschlossen am 15. Nov. 1931.

Aluminium (A1 = 26.97, Z = 13).

Literatur.

1. Nachtrag zu Bd. VII, p. 48-50.

[156] T. Royds, The different character of spectrum lines belonging to the same series. Kodaikan, Bull. 43 p. 109-112 (1914).

[157] T. Takamine and Shigeh Nitta, The spark and the vacuum arc spectra of some metals in the extreme ultraviolet. Mem. Coll. Kyoto 2 p. 117-135 (1917).

[158] J. C. McLennan, J. F. Young and H. J. C. Ireton, Arc spectra in vacuo and spark spectra in helium of varions elements. Proc. Roy. Soc., A 98 p. 96-109 (1920).

2. Fortsetzung.

[159] A. de Gramont et G. A. Hemsalech, Sur les conditions d'émission des raies d'étincelle.
 C. R. 173 p. 278-284 (1921).

[160] A. Hörnle, Über Zentren und räumliche Verteilung der Lichtemission der Metalle, besonders im elektrischen Bogen. Jhrb. Radioakt. 18 p. 297–326 (1921).

[161] E. H. Kurth, Soft X-rays of characteristic type. Phys. Rev. (2) 17 p. 528-529 (1921).

[162] E. H. Kurth, The extension of the X-ray spectrum to the ultraviolet. Phys. Rev. (2) 18 p. 461-476 (1921).

[163] R. A. Millikan, The further extension of the ultra-violet spectrum and the progression with atomic number... Proc. Nat. Acad. 7 p. 289-294 (1921).

[164] F. Paschen und E. Back, Liniengruppen magnetisch vervollständigt. Physica 1 p. 261 bis 273 (1921).

[165] C. Ramsauer und F. Wolf, Leuchtdauer der Spektrallinien im erlöschenden Bogen. Ann. d. Phys. (4) 66 p. 273—296 (1921).

[166] R. Seeliger und D. Thaer, Die Bogen- und Funkenspektra der Alkalien, Erdalkalien und Erden. Ann. d. Phys. (4) p. 423-448 (1921).

[167] J. A. Anderson, The spectral energy distribution and opacity of wire explosion vapors. Proc. Nat. Academ. Amer. 8 p. 231-232 (1922).

[168] Erik Bäcklin, Notiz über die Erregung der sogen. Funkenlinien in der K-Reihe der Röntgenspektren und Zs. f. Phys. 27 p. 30-31 (1922).

[169] L. et E. Bloch, Spectres d'étincelles dans l'eau. J. d. Phys. et le Radium (6) 3 p. 309-325 und C. R. 174 p. 1456-1457 (1922).

[170] C. L. Glaser, Über das Spektrum des Berylliums und eine bemerkenswerte Beziehung zu dem Aluminium. Ann. d. Phys. (4) 68 p. 73-88 (1922).

[171] A. de Gramont, Raies ultimes et series spectrales. C. R. 175 p. 1025-1030 (1922).

[172] G. D. Schellenberger, Two new lines in the aluminium spectrum and their possible series relations. Phys. Rev. (2) 19 p. 398-399 (1922).

[173] L. de Boisbaudran et A. de Gramont, Analyse spectrale. Paris, Hermann 1923.

[174] J. A. Carrol, Notes on the series spectra of the aluminium sub-group. Proc. Roy. Soc. A 103 p. 334-338 (1923).
[175] F. Fues, Die Verwandtschaft des Bogenspektrums von Natrium mit dem ersten Funkenspektrum von Magnesium und dem zweiten Funkenspektrum von Aluminium. Zs. f. Phys. **13** p. 211 bis 221 (1923).

[176] J. J. Hopfield and S. W. Leifson, Wavelength standards in the extreme ultra violet. Astrophys. J. 58 p. 59-63 (1923).

[177] Frank Horton, Ursula Andrewes and Ann Catherine Davies, Excitation potentials of caracteristic X-rays from certain metals. Phil. Mag. (6) 46 p. 721-741 (1923).

[178] R. O. Hutchinson, Arc and spark spectra of Aluminium, Zinc and Carbon in the extreme ultraviolet. Astrophys. J. 58 p. 280-293 (1923).

[179] A. Landé, Termstruktur und Zeeman-Effekt der Multipletts. Zs. f. Phys. 15 p. 189-205 (1923).

[180] F. Paschen, Über die Schwingungsdifferenzen der Linien des Dubletts. Naturw. 11 p. 434-435 (1923).

[181] F. Paschen, Die Funkenspektren des Aluminiums. Ann. d. Phys. (4) 71 p. 142-161 und p. 537-561 (1923).

[182] St. Procopiu, Sur les spectres d'arc des métaux dans divers milieux et dans le vide.
 C. R. 176 p. 385-388 (1923).

[183] St. Procopiu, Sur l'aspect des raies de flammes C. R. 176 p. 504-507 (1923).

[184] R. A. Sawyer and A. L. Becker, The explosion spectra of the alkaline earth metals. Astrophys. J. 57 p. 98-113 (1923).

[185] X. Waché, Recherches quantitatives sur le spectre d'étincelle ultraviolet du cuivre dans l'aluminium. C. R. 177 p. 39-41 (1923).

[185a] W. Gerlach, Über neue spektroskopische Absorptionsmethoden. Festschrift Frankfurt p. 45-61 (1924).

[186] Assar Hadding, On the structure of X-ray analysis spectrograms. Lunds Univ. Årsskr. N. F. 20 II, 8 (1924).

[187] D. R. Hartree, Some relations between the optical spectra of different atoms of the same electronic structure. II Aluminium and copper-like atoms. Proc. Roy. Soc. A 106 p. 552-580 (1924).

[188] W. M. Hicks, Notes on the constitution of spectra. Phil. Mag. (6) 48 p. 321-348 (1924).

[189] Seiichi Higuchi, On the absorption of near infra-red radiation by alums. Sc. Reports Tohoku Univ. **12** p. 359-363 (1924).

[190] E. O. Hulburt, The absorption lines in the spectrum of the metallic spark in water. Phys. Rev. (2) 24 p. 129-133 (1924).

[191] E. O. Hulburt, Balmer lines from hydrogen in certain gases. Phys. Rev. (2) 23 p. 107 (1924).

[192] E. O. Hulburt, The ultra-violet absorption of the spark in water between metallic electrodes. Phys. Rev. (2) 23 p. 108-109 (1924).

[193] W. Jevons, On the band spectra of silicon oxide and chloride and chlorides of carbon, boron and aluminium. Proc. Roy. Soc. A 106 p. 174-194 (1924).

[194] M. Kimura and G. Nakamura, Cathode spectra of metals. Japan. J. of Phys. 3 p. 43-44 (1924).

[195] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[196] M. Kimura, Classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 219-225 (1924).

[197] P. Lukirsky, Über weiche Röntgenstrahlen. Zs. f. Phys. 22 p. 351-367 (1924).

[198] Th. Lyman, Series in the spectra of aluminium and magnesium in the extreme ultraviolet. Nat. 114 p. 461-462 (1924). — Science 60 p. 388 (1924).

[199] Donald H. Menzel, A Study of line intensities in the stellar spectra. Harv. Coll. Obs. Circ. 258 p. 1-20 (1924).

[200] R. A. Millikan and J. S. Bowen, Extreme ultra-violet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[201] W. Mörikofer, Das Bandenspektrum des Aluminiumhydrids. Verh. Schweiz. Naturf. Ges. II p. 106-107 (1924).

[202] St. Procopiu, Sur l'apparition des raies ultimes dans les spectres de l'arc électrique. Ann. de Phys. (10) 1 p. 112 (1924).

[203] St. Procopiu, Sur la largeur des raies du spectre de l'arc électrique à diverses pressions. J. de phys. et le Rad. (6) 5 p. 220-224 (1924).

[204] St. Procopiu, Sur les spectres de l'arc entre metaux, dans divers milieux et dans le vide. Ann. de Phys. (10) **1** 89—133 p. (1924).

[205] Henry Norris Russel, Singlett series in the spark spectrum of aluminium. Nature 113 p. 163 (1924).

[206] Felix J. v. Wišniewski, Zur Theorie des Funkenspektrums des Aluminiums. Phys. Zs. 25 p. 477-480 (1924).

[207] Erik Bäcklin, Das K-Dublett der leichteren Elemente und Abhängigkeit der Röntgenspektren von der chemischen Bindung. Zs. f. Phys. **33** p. 547-556 (1925).

[208] J. S. Bowen und R. A. Millikan, Relations of P P'groups in atoms of the same electronic structure. Phys. Rev. (2) 26 p. 150-164 (1925).

[209] J. S. Bowen und R. A. Millikan, Series spectra of two-valence-electron systems and three valence electron systems. Nat. **115** p. 422-423 (1925).

[210] G. Eriksson und E. Hulthén, Über die Bandenspektra von Aluminium. Zs. f. Phys. 34 p. 775-787 (1925).

[211] G. Eriksson und E. Hulthén, Berichtigung zu der Arbeit: Über die Bandenspektra des Aluminiums. Zs. f. Phys. **35** p. 722 (1926).

[212] P. Kapitza und H. W. B. Skinner, The Zeeman-effect in strong magnetic fields. Proc. Roy. Soc. A 109 p. 224-239 (1925).

[213] A. S. King, Spectroscopic phenomena of the high current arc. Astrophys. J. 62 p. 238-267 (1925).

[214] Kanakendu Majumdar and Naline Kauta Sur, On the absorption spectrum of aluminium. Nat. **115** p. 459 (1925).

[215] O. Laporte, Some remarks on permitted terms in the spectra of the lighter elements. J. Wash. Acad. 15 p. 409-413 (1925).

[216] R. Mecke, Bandenspectra. Phys. Ztschr. 26 p. 217-237 (1925).

[217] W. Mörikofer, Die Bandenspektren des Aluminiums. Diss. Basel (1925).

[218] R. S. Mullikan, On a class of one valence electron emitters of band spectra. Phys. Rev. (2) 26 p. 561-572 (1925).

[219] W. C. McQuarrie, The spectra of silicon and aluminium. Phil. Mag. (6) 50 p. 819-821 (1925).

[220] K. Rangadhama Rao, On the spectra of the metals of the aluminium sub group. Proc. Phys. Soc. 37 p. 259-264 (1925).

[221] A. E. Ruark and Roy L. Chenault, Fine structure of spectrum lines. Phil. Mag. (6) 50 p. 938-956 (1925).

[222] E. Schrödinger, Die wasserstoffähnlichen Spektren vom Standpunkte der Polarisierbarkeit des Atomrumpfes. Ann. d. Phys. (4) 77 p. 43-70 (1925).

[223] Sinclair Smith, A study of electrically exploded wires. Astrophys. J. 61 p. 186-203 (1925).

[224] Erik Bäcklin, Röntgenstrahlen und chemische Bindung. Zs. f. Phys. 38 p. 215 (1926).

[225] R. T. Birge and W. C. Pomery, The spectrum analysis of the band spectrum of Al O (λ 5200 — λ 4650). Phys. Rev. (2) 27 p. 107 (1926) Abstr.

[226] J. S. Bowen and R. A. Millikan, Stripped oxygen, O VI, the PP'group in O V and new aluminium lines in the extreme ultraviolet. Phys. Rev. (2) 27 p. 144-149 (1926).

[227] J. S. Bowen and S. B. Ingram, Wavelength standards in the extreme ultra-violet spectra of carbon, nitrogen, oxygen and aluminium. Phys. Rev. (2) 28 p. 444-448 (1926).

[228] Edward Condon, A theory of intensity distribution in band spectrum. Phys. Rev. (2) 28 p. 1182-1201 (1926).

[229] John G. Frayne and Alpheus W. Smith, The absorption spectra of the vapours of aluminium, gallium Phys. Rev. (2) 27 p. 23-30 (1926).

[230] M. Holweck, Spectrométrie de la série K des éléments legers C. R. 183 p. 48-51 (1926).

[231] M. Holweck, La spectroscopie des radiations intermédiaires entre la lumière et les rayons X. J. de phys. et le Radium (6) 7, p. 337-338 (1926).

[232] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. phys. chem. res. 4 p. 59-78 (1926).

[233] E. Hulthén and V. Zumstein, The absorption spectra of some hydride compounds in the ultra-violet. Phys. Rev. (2) 28 p. 19-24 (1926).

[234] H. Ludloff, Zur Termdarstellung der AlH-Banden. Zs. f. Phys. 39 p. 519-527 (1926).
 [235] Robert S. Mulliken, Electronic states and band spectrum structure in diatomic mole-

cules Phys. Rev. (2) 28 p. 1202-1222 (1926). - Ib. 29 p. 391-412 (1927).

[236] W. C. Pomery, The fine structure of the 4842 band of Al O. Phys. Rev. (2) 27 p. 640 (1926).

[237] R. A. Sawyer, On the deep lying terms in two- and threevalent electron system spectra. J. O. S. Am. 13 p. 431-442 (1926).

[238] N. K. Sur and K. Majumdar, On the absorption spectra of aluminium and cobalt. Phil. Mag. (7) 1 p. 451-461 (1926).

[239] C. F. Elan, Banded Stucture in Aluminium and Copper. Nature 120 p. 259 (1927).

[240] Franklin L. Hunt, X-rays of long wave length from a ruled grating. Phys. Rev. (2) 30 p. 227-231 (1927).

[241] Hantaro Nagaoka, Daizo Nukiyama and Tetsugaro Futagami, Instantaneous spectrograms of boron, aluminium and thallium. Proc. Imp. acad. Tokyo **3** p. 319-323; 324-329; 330-333 (1927).

[242] W. C. Pomeroy, The quantum analysis of the band spectrum of AlO. Phys. Rev. (2) 29 p. 59-78 (1927).

[243] R. A. Sawyer und F. Paschen, Das erste Funkenspektrum des Aluminiums Al II. Ann. d. Phys. (4) 84 p. 1-19 (1927).

[244] William W. Watson and B. Perkins jr., Zeeman effect in the band spectra of AgH, AlH, ZnH, and MgH. Phys. Rev. (2) **30** p. 592-597 (1927).

[245] Torsten Wetterblad, Die K β_1 -Linien von Na, Mg, Al Zs. f. Phys. **42** p. 603-613 (1927).

[246] Torsten Wetterblad, Über die Funkenlinien des K-Spektrums von Natrium, Magnesium und Aluminium. Zs. f. Phys. 42 p. 611 (1927).

[247] Ernst Bengtsson, Über die Bandenspektren von Aluminiumhydrid. Zs. f. Phys. 51 p. 889-898 (1928).

[248] E. Bengtsson und E. Hulthén, Über eine experimentelle Prüfung der Kombinationsregeln unter den Bandenspektren. Zs. f. Phys. 52 p. 275-279 (1928).

[249] M. J. Druyvesteyn, Het Röntgenspektrum van de tweede soort. Diss. Groningen (1928).

[250] Erik Ekefors, Das Spektrum von Aluminium im extremen Ultraviolet. Zs. f. Phys. 51 p. 471-480 (1928)

[251] J. Franck und H. Sponer, Beitrag zur Bestimmung der Dissoziationsarbeit von Molekülen aus Bandenspektren. Göttinger Nachr. p. 241-253 (1928).

[252] C. C. Kiess, Interferometer measurements of wave-lengths in the vacuum arc spectra of titanium and other elements. J. Bur. of Stand 4 p. 77—90 (1928).

[253] Fritz Löwe, Atlas der letzten Linien der wichtigsten Elemente. Dresden-Leipzig, Steinkopff (1928).

[254] Egon Lorenz, Über die Intensität der Röntgenspektrallinien, insbesondere der K-Serie des Aluminium Zs. f. Phys. 51 p. 71-94 (1928).

[255] M. Miyanishi, The nature of streamers in elektric sparks. Japan. J. of phys. 5 p. 67-82 (1928).

[256] R. F. Paton and G. M. Rassweiler, The vacuum spark spectrum of aluminium. Phys. Rev. (2) **31** p. 151 (1928).

[257] Adolfo T. Williams, Sur les raies ultimes du mercure et de l'aluminium. C. R. 187 p. 761 bis 763 (1928).

[258] Ilse Wyneken, Die Energieverteilung im kontinuierlichen Spektrum des Aluminium-Unterwasserfunkens. Ann. d. Phys. (4) 86 p. 1071-1088 (1928).

[259] Kwanichi Asago, Stark effect for the spectral lines of chlorine, bromine and jodine. Scient. Pap. Inst. Phys. Chem. Res. Tokyo 11 p. 243-250 (1929).

[260] Iva Backhurst, The absorption of X-rays from 0,63 to 2 A. U. Phil. Mag. (7) 7 p. 353 bis 373 (1929).

[261] E. Bengtsson und E. Hulthen, Trans. Farad. Soc. 25 p. 751 (1929). Metallhydride.

[261a] A. Corsi, Classificazione delle righe dell' allumino e del mercurio. N. Cim. (N. S.) 6 p. 206-215 (1929).

[262] Henry Crew, On The influence of a hydrogen atmosphere upon the arc spectra of certain metals. Phil. Mag. (7) 7 p. 312-316 (1929).

[263] P. Daure, Sur les radiations secondaires observées dans la diffusion moléculaire de la lumière (effet Raman). C. R. **188** p. 61-62 (1929).

[264] G. Joos, Die Linienspektra der chem. Elemente in ihren verschiedenen Ionisationszuständen. Hdb. d. Exp.-Phys. W. Wien u. F. Harms (1929). Akadem. Verlagsgesellsch. Leipzig. Bd. 22 p. 240-242.

[264a] J. v. Koczkás, Die ultraviolette Absorption der anorganischen Salzlösungen. I. Die Absorption der Chloride. Zs. f. Phys. 59 p. 277-288 (1929).

[265] R. Mecke, Bandenspektra, Hdb. d. Phys. Geiger-Scheel. Jul. Springer, Berlin (1929). Bd. 21 p. 542 u. 544.

[266] William D. Lansing, New terms in the spectra of Al I, Ga I and Zn I. Phys. Rev. (2) 34 p. 597-598 (1929).

[267] A. Larsson, Experimentelle Untersuchung über die Dispersion der Röntgenstrahlen. Upsala Univ. Årsskr. (1929).

[268] S. K. Mukherjee and P. N. Sengupta, The Raman spectra of sulphuric acid and the sulphates. Ind. J. of Phys. 3 p. 503-505 (1929).

[269] R. F. Paton and W. D. Lansing, New terms in the spectrum of Al I. Phys. Rev. (2) 33 p. 1099 (1929).

[270] E. W. H. Selwyn, Arc spectra in the region $\lambda 1600 - 2100$ A. U. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[271] Erik Bäcklin, Absolute Wellenlängenbestimmungen der Röntgenstrahlen. Diss. Uppsala 78 pp. (1930).

[272] Ernst Bengtsson und Ragnar Rydberg, Die Bandenspektra von Aluminiumhydrid. Zs. f. Phys. **59** p. 546-557 (1930).

[273] B. Edlén et A. Ericson, Sur le spectre d'étincelle condensée dans l'ultraviolet extrème jusqu'à 88 A. C. R. **190** p. 116-118 (1930).

[274] B. Edlén et A. Ericson, Sur le spectre de l'aluminium dans l'ultraviolet extrème. C. R. 190 p. 173-174 (1930).

[275] Erik Ekefors, Spektren im extremen Ultraviolett. Phys. Ztschr. 31 p. 737-738 (1930).

[276] Algot Ericson und Bengt Edlén, Serienspektren der leichtesten Elemente im extremen Ultraviolett. Zs. f. Phys. **59** p. 656-679 (1930).

[277] Yoshio Ishida and Masaichi Fukushima, On the Stark-effect of aluminium and carbon. Scient. Pap. Inst. Phys. Chem. Res. Tokyo **14** 123-143 p. (1930).

[278] L. S. Ornstein und W. R. van Wijk, Temperaturbestimmungen im elektrischen Bogen und aus dem Bandenspektrum. Proc. Amsterd. **33** p. 44-46 (1930).

[279] R. de L. Kronig, Über den spontanen Zerfall zweiatomiger Moleküle. Zs. f. Phys. 62 p. 300-310 (1930).

[280] E. Paschen, Eine Erweiterung der einfachen Spektra. Berliner Ber. p. 574-578 (1930).

[281] C. Ramaswamy, Raman spectra of inorganic sulfates and nitrates. Ind. J. of Phys. 5 p. 193-206 (1930).

[282] M. Södermann, Some precision measurements in the soft X-ray region. Phil. Mag. (7) 10 p. 600-616 (1930).

[283] G. Stenwinkel, Zur Deutung einiger Prädissoziationserscheinungen in Bandenspektren. Zs. f. Phys. 62 p. 201-207 (1930).

[284] Otto Struve, Identification of Al III and of Al II in stellar spectra. Astrophys. J. 71 p. 67-69 (1930).

[284a] A. Terenin, Dissociation fluorescence of AgJ vapour. Physica 10 p. 209-212 (1930).

[284b] D. S. Villars and E. U. Condon, Predissociation of diatomic molecules from high rotationel states. Phys. Rev. (2) 35 p. 1028-1032 (1930).

[284 c] J. Evershed, The shift towards red of the calcium, aluminium, and iron lines in the solar spectrum. Month. Not. **91** p. 260-270 (1931).

[285] L. Farkas, Über das Absorptionsspektrum des Aluminiumhydrids. Zs. f. Phys. **70** p. 733 (1931).

[286] V. Henri, Molekülstruktur. Leipzig bei Hirzel p. 131 ff. (1931).

[287] G. Herzberg, Die Prädissoziation und verwandte Erscheinungen. Ergebnisse der exakten Naturwissenschaften 10 p. 207-285 (1931).

[288] R. C. Gibbs and P. G. Kruger, Nuclear spin of aluminium. Phys. Rev. (2) 37 p. 656-657 (1931).

[289] R. de L. Kronig, Molekülstruktur. Leipzig, S. Hirzel p. 155ff. (1931).

[290] R. Mecke, Bandenspektra negativer Ionen. Zs. f. Phys. 72 p. 155-163 (1931).

[290a] L. S. Ornstein and H. Brinkman, Temperature determination from bandspectra. II. Rotational energy distribution in the cyanogen and Al O-bands, and temperature distribution in the arc. Proc. Amsterd. **34** p. 498-504 (1931).

[291] Manne Siegbahn, Spektroskopie der Röntgenstrahlen. 2. Aufl. Springer, Berlin (1931).

[292] Jonas Söderqvist und Bengt Edlén, Wellenlängennormalen im extremen ultravioletten Aluminiumspektrum. Zs. f. Phys. **69** 356-360 (1931).

[293] W. Weizel, Bandenspektren. Hdb. d. Exp.-Phys. Wien. Harms, Leipzig. Erg.-Bd. 1 p. 310 u. 326 (1931).

[294] H. E. White, Aluminium may have a nuclear spin. Phys. Rev. (2) 37 p. 1175 (1931).

Al I [264]. 3 Valenzelektronen mit Neonrumpf; gibt ohne Störung der abgeschlossenen Teilgruppe Dubletts. Ionisierungsspannung 5.957 V (${}^{2}P_{\frac{1}{2}}$), Anregungsspannung 3.128 V (2 $P_{\frac{1}{2}}$ — ${}^{2}S_{\frac{1}{2}}$). Seit Erscheinen der Tabellen von Dunz [102] und Paschen [140], sowie von Fowler ist nur noch ein kurzwelliges Triplet von Bowen und Millikan [208] hinzugefügt: 1768.95, 1766.31, 1761.79. — Ferner ist zu der Tabelle auf S. 53 und 54 von Band VII nachzutragen, daß bei den beiden Dubletts der diffusen Nebenserie 3092/82 und 2575/67 die Bezeichnung vergessen ist, daß ferner 3 Paare, die nur von Kayser und Runge gegeben sind, fehlen, nämlich 2123.38 (1), 2118.52 (1) von der diffusen Nebenserie, und die Kombinationen: 2426.14 (4r), 2419.56 (2r) und 2231.20 (1r), 2225.70 (1r). Bei Fowler finden sie sich¹).

Al II. Magnesiumähnliches Zweivalenzelektronensystem mit Triplett- und Singulett-Termen, Ionisierungsspannung 18.75 V (${}^{1}S'_{0}$). Die Erkennung und Trennung der Spektren Al II und Al III gelang Paschen [181]. Er benutzt eine Hohlkathode aus Al in He; dann erzeugt Gleichstrom ein Gemisch von Al I und Al II. Verwendet man aber Funkenentladung, so tritt auch Al III auf, während höhere Ionisationsstufen

¹) Kiess [252] hat 2 Linien im Vakuumbogen interferometrisch gemessen: 3961.527, 3944.009. Sawyer [237] fügt einen tiefen Term hinzu. Lansing [266] gibt neue Terme. — Zum Bau des Spektrums siehe Hicks [213].

Kayser u. Konen, Spektroskopie. VIII.

ganz zu fehlen scheinen, wenigstens in dem von Paschen untersuchten Bezirk, λ8000λ1930. Außerdem benutzt Paschen einen Abreißfunken nach dem Vorgange von Schüler.

Das Spektrum enthält nach der Theorie Serien von Singuletts und Tripletts. Letztere waren Paschen schon früher bei He-Aufnahmen aufgefallen, ohne daß er ihren Ursprung kannte. Jetzt ließ sich ihre Serie mit 4 N vorzüglich darstellen, ebenso die von Al III mit 9 N. Al ist von besonderem Interesse, weil bei ihm zuerst diese Folge aus der Bohrschen Theorie bestätigt werden konnte.

Die Formeln für die Singuletts aufzustellen gelang Sawyer und Paschen [243], nachdem ersterer durch Vakuumfunken-Aufnahmen das Spektrum bis λ 933 ausgedehnt hatte. Dadurch ist das Spektrum wohl nahezu vollständig geordnet, wenn man noch die Beiträge von Bowen und Millikan [208, 226] hinzunimmt.

Es ist noch zu erwähnen, daß Kimura und Nakamura [194, 195, 196] eine angenäherte Trennung der Linien der verschiedenen Ionisationsstufen aus der Länge der Linien von der Kathode aus im Bogen und Funken versuchen. Sie geben an, daß sie für Al II und Al III nur Linien finden, die auch Paschen so bezeichnet hat, nur viel weniger.

Hier sei auch eine Arbeit von Miyanishi [255] angeschlossen. Schuster und Hemsalech (Phil. Trans. A 193 p. 189, 1900) haben zuerst eine spektrale Untersuchung der Einzelfunken einer oszillierenden Funkenentladung versucht, und die Geschwindigkeit gemessen, mit der sich die Lichtzentren in den von den Polen ausgehenden Lichtbüscheln (Miyanishi nennt sie streamers) bewegen. Später hat Royds (Phil. Trans. A 208 p. 340, 1908) gefunden, daß die Linien desselben Elementes zwei verschiedene Geschwindigkeiten ergeben. Miyanishi setzt die Untersuchung fort und findet 4 verschiedene Geschwindigkeiten, und zwar stellt sich heraus, daß die Geschwindigkeit von der Ionisationsstufe abhängt. Wenn man also in allen Fällen die Geschwindigkeit messen könnte - die meisten Linien sind aber zu lichtschwach dazu -, würde man eine völlige Trennung durchführen können. Näher auf das Detail einzugehen, würde zu weit führen; es sei nur gesagt, daß die streamers, die von der Anode und die von der Kathode ausgehen, sich verschieden verhalten. Die von der Anode ausgehenden haben für Al I die Geschwindigkeit 1700 m/sec, für Al II 2500 m, für Al III 2800 m, während in den von der Kathode ausgehenden streamers alle Linien die gleiche Geschwindigkeit von 1700 m zeigen.

Es folge nun in Tab. 1 das Verzeichnis der Linien von Al II, wie es von Sawyer und Paschen [243] gegeben ist, bis $\lambda 2000$. Tab. 2 enthält die Linien im Schumanngebiet nach den Messungen von Sawyer [243]; doch sind hier auch andere Messungen angegeben, deren eine größere Anzahl vorliegt. Dabei sind aber die ältesten recht ungenauen Angaben fortgelassen; nämlich solche von Handke [93], die sich aber auf S. 55 von Bd. VII finden, von Bloch [127], die auf S. 54 angegeben sind, von Takamine und Nitta [142] (siehe S. 54 u. 55), von Mc Lennan, Ainslie und Fuller [150] (siehe S. 54 u. 55), endlich von McLennan, Young und Ireton [158]. Dagegen sind berücksichtigt: Lyman [108], Hutchinson [178], Paschen [181], Millikan [200], Bowen und Millikan [208, 226], Bowen und Ingram [227]. Namentlich letztere Zahlen sind sehr zuverlässig; werden sie doch als Normalen benutzt. Für die Wellenlängen oberhalb 7500 vgl. man Bd. VII.

Tab	belle 1	. Al	II	nach	Sawy	rer	und	Pasel	hen	[243]
-----	---------	------	----	------	------	-----	-----	-------	-----	-------

(ID (IR	7474	97 1	1	43F _ 78D	5976	49 9
4*D4*F	7100	81 05		41F - 73G	5158	187 1.4
5°F4-10°G	(138	81 0.5		413-73C	45	654 154
0°F3-10°G	34	66 0.5		4°r4-1°G	40	009 1
0°F2-10°G	31	29 0		4 ³ F ₃ -7 ³ G	44	875 0.5
$4^{\circ}G - 4^{\circ}P_0$	7063	62 3		4312 730	44	412 0.54
$4^{a}S - 4^{a}P_{1}$	56	56 4		4°F2-7°G	44	415 0.5u
$4^{3}S - 4^{3}P_{2}$	42	06 5		$4^{\circ}D_1 - 7^{\circ}F_2$	5009	04 1
4 ¹ P5 ¹ S	6919	96 0.5		$4^{\circ}D_2 - 7^{\circ}F_3$	0095	00 4
$5^{1}D - 6^{1}F$	17	84 0.5		$4^{\circ}D_3 - \ell^{\circ}F_4$	00	02 4
$4^{3}P_{2}$ — $5^{3}S$	6837	09 3		5*D	1000	91 0
$4^{3}P_{1}-5^{3}S$	23	38 2	13.1.1.1	5'D -9'P	4902	10 5
$4^{3}P_{0}-5^{3}S$	16	83 1		$5^{4}P - 10^{4}S$	18	90 0
$5^{3}D - 11^{3}P$	6775	97 0.5		5°P2-10°S	1200	((D 04 D
$5^{3}S - 6^{3}P_{1}$	6699	46 0		5°P ₁ -10°S	4899	04 J
$5^{3}S - 6^{3}P_{2}$	96	39 0.5		5°P ₀ -10°S	98	02 2
$5^{1}D - 7^{1}P$	09	70 0		5 ⁴ P -10 ⁴ D	4774	10 0
$4^{3}F_{4}-6^{3}D$	6495	45 0.5		5°S -10°P	4/14	0 11
$4^{1}D - 5^{1}P$	6335	70 5		5 ¹ P -11 ¹ S	4000	054 0
$4^{3}P_{2}$ — $4^{3}D_{3}$	6243	35 10	1 and	31D -41P	00	054 0
$4^{3}P_{1}-4^{3}D_{2}$	31	76 7		$5^{1}P - \Pi^{1}D$	50	05 0.5
$4^{3}P_{0}-4^{3}D_{1}$	26	19 5	0.8	5'D -9'F	00	0 0.5
$4^{1}F_{3}-6^{3}G$	01	49 3d	12.848.6	41F4-83G	50	040 1.0 544 9
$4^{3}F_{4}-6^{3}G$	6183	39 4d		SID 10D	00	044 2
$4^{3}F_{3}-6^{3}G$	82	28 3d	1	0 ¹ D -10P	48	02 1
$4^{3}F_{2}-6^{3}G$	81	57 2d		43F4-83G	40	384 0.0
$5^{3}P_{2}$ — $8^{3}S$	6073	17 3		100 1 A 2 4 4	40	002 4
5 ³ P ₁ —8 ³ S	68	-37 1		43Fa-83G	39	833 1.0
5 ³ P ₀ -8 ³ S	66	40 0.5			39	120 2
$5^{1}P - 8^{1}S$	61	06 0.5		43F,83G	36	384 1
$5{}^{3}P_{2}$ —7 ${}^{3}D$	06	38 6			36	326 0.5
$5^{3}P_{1}$ —7 ³ D	01	81 4		5°P2-10°D	30	1 1
$6^{1}S - 15P$	01	18 1		5°P ₁ -10°D	33	2 0.0
$5^{3}P_{0}$ —7 ³ D	5999	83 2		5°P ₀ -10°D	31	0.0
$5^{1}P - 8^{1}D$	72	05 5		4°D	29	1 1
$4^{3}D_{1}-6^{3}F_{2}$	5867	81 3		018 -81P	09	1 1
$4^{3}D_{2}$ — $6^{3}F_{3}$	61	53 4		$4^{3}D_{1} - 8^{3}F_{2}$	4589	750 4
$4^{3}D_{3}-6^{3}F_{4}$	53	62 5		4°D2-8°F2	89	104 5
$5^{1}D - 7^{1}F$	5613	19 3		4°D2-8°F3	88	194 0
4 ¹ P -5 ¹ D	5593	23 10		4°D ₃ -8°F ₃	88	082 0.5
5 ¹ D8 ¹ P	02	88 3	1993.20	4°D ₃ -8°F ₄	4489	87 0.0
$5^{1}S - 7^{1}P$	5388	48 1		5 ¹ P -12D	80	820 6
4 ³ D _{3, 2} —7 ³ P	71	84 6		5 ¹ D -11 ¹ P	47	8 3
5 ¹ P —9 ¹ S	24	61 4		5*D -10*F	32	82 0.0
$5^{3}P_{2}$ —9 ³ S	16	07 7		41F3-93G	4300	807 1.0
$5^{3}P_{1}$ —9 ³ S	12	32 5		100 Mar 100	56	200 25
$5^{3}P_{0}-9^{3}S$	10	76 2		43F4-93G	41	795 4
$5^{1}P - 9^{1}D$	5285	85 6		an and at	47	016 1 5
53P2-83D	83	77 8		43F3-93G	47	000 1.0
5 ³ P ₁ -8 ³ D	80	21 6		Dr as a L	47	225 2
5 ³ P ₀ -8 ³ D	78	62 3		43F2-93G	46	918 1
$4^{3}F_{4}$ -7 ³ D	77	68 2		F90 090	46	0 0.5
4 ³ F ₃ -7 ³ D	76	81 2	1	0°8 -8°P	32	*

51D -121P	4307	20	3	1.1.1.1	43D1-123F2	3734	567	1
$5^{1}D - 11^{1}F$	4282	97	0.5	CONTRACT OF	43D2-123F3	33	910	2
51S -91P	40	75	3		43D3-123F4	31	950	1
43D,-93F.	27	982	4	Theory	$4^{1}P - 6^{1}D$	03	217	4
43D93F.	27	923	1.5	-1.2	4 ³ D ₃ -13 ³ F ₄	3656	319	0.5
43D3-93F2	27	861	0.5		$4^{3}P_{2}-5^{3}D_{3}$	55	000	8
43D,-93F3	27	493	5		$4^{3}P_{2}$ — $5^{2}D_{2}$	54	979	4
43D3-93F3	27	406	2		$4^{3}P_{1}-5^{3}D_{3}$	51	090	4
$4^{3}D_{9}-9^{3}F_{4}$	26	904	0		$4^{3}P_{1}$ — $5D_{2}$	51	064	6
$4^{3}D_{3}-9^{3}F_{4}$	26	812	6	Treate lie	$4^{3}P_{0}-5D_{3}$	49	221	1
$5^{1}D - 13^{1}P$	02	4?	2	1294	$4^{3}P_{0}-5D_{2}$	49	182	1.5
110 100	4168	511	0.5		-	03	597	1
41F3-10G4	68	424	1		$4^{3}D_{3}$ -1 $4^{3}F_{4}$	3597	50	2
Deor 191	60	263	3		$3^{3}D_{1}-4^{3}F_{2}$	87	441	7
4°F4-10°G	60	239	2.5		$3^{3}D_{2}-4^{3}F_{2}$	87	327	2u
Dent 701	59	809	1	The second second	33D1, 3-43F3, 2	87	176	1
4°F3-10°G	59	725	1.5	1 million	$3^{3}D_{2}-4^{3}F_{3}$	87	057	8
1 DEDL 37	59	450	1		$3^{3}D_{3}-4^{3}F_{3}$	86	908	3.5
4°F2-10°G	59	407	0.5		$3^{3}D_{1}-4^{3}F_{4}$	86	802	0
5 ¹ D -15 ¹ P	4056	8	0.5		$3^{3}D_{2}-4^{3}F_{4}$	86	692	2
110 1120	39	397	0	1.	$3^{3}D_{3}-4^{3}F_{4}$	86	546	9
41F3-11°G	39	302	0.5		$4^{3}D_{3}$ —15 ³ F	52	00	1
43F4-113G	31	633	0.5d	The Locale	$4^{3}D_{3}$ —16 ³ F	16	05	0.5
1312 1130	31	210	0	B 46 1	$4^{3}D_{3}$ — $18^{3}F$	3463	63	0
4°F3-11°G	31	135	0.5		-	58	230	3
$4^{3}F_{2}$ —11 ³ G	30	867	Ou		- /	45	60 *	0.5
$4^{1}D - 6^{1}P$	26	5	5		_	44	871	2
5 ¹ S -10 ¹ P	09	58	1	1000000000	The Part of the	43	651	3
$5^{1}D - 10^{1}P$	05	7	0			41	53	0
$4^{3}D_{1}$ — $10^{3}F_{2}$	3996	381	3	1.1	-	40	597	0.5
$4^{3}D_{2}$ — $10^{3}F_{2}$	96	323	0.5			39	352	1
$4^{3}D_{1}$ — $10^{3}F_{3}$	96	182	0.5		$4^{1}D - 6^{1}F$	28	916	6
$4^{3}D_{2}$ — $10^{3}F_{3}$	96	159	4		$4^{1}D - 7^{1}P$	3351	456	3
$4^{3}D_{3}$ — $10^{3}F_{3}$	96	075	1	100,000	$3^{3}D_{1}-5^{3}P_{0}$	15	614	1
$4^{3}D_{3}$ — $10^{3}F_{4}$	95	860	5		$3^{3}D_{1} - 5^{3}P_{1}$	14	988	0
4 ³ D −10 ³ P ∫	83	705	1	1 1 1 1 1 1	$3^{3}D_{2}-5^{3}P_{1}$	14	889	2
5 ³ S —9 ³ P	00	100	*	1	$3^{3}D_{2}-5^{3}P_{2}$	13	467	0.5
$4^{1}F - 12G$	46	406	0.5 d		$3^{3}D_{3}-5^{3}P_{2}$	13	351	3
$4{}^{3}F_{4}$ —12 G	39	066	0.5 d		$4^{1}S - 5^{1}P$	3275	776	4
$4{}^{3}F_{3}$ —12 G	38	621	0.5 d		$4^{1}P - 7^{1}S$	3135	875	3
$3^{1}P - 3^{1}D ^{1}$	00	680	10		$4^{1}P - 7^{1}D$	3088	523	3
$4^{3}F_{4}$ —13 G	3870	057	0.5		$4^{1}D - 7^{1}F$	74	665	6
$4^{2}P - 6^{1}S$	66	160	2		$3S - 3P_2'^2$	57	155 1	0
5 ¹ S —11 ¹ P	59	33	3		3P -4S	50	073	8
$4^{3}D_{1}$ —11 $^{3}F_{2}$	42	317	1	1.12.	$4^{1}D - 8^{1}P$	41	278	6
$4^{3}D_{2}$ —11 $^{3}F_{3}$	42	213	2		$4^{3}P_{2}$ -73S	26	762	1.5
$4^{3}D_{3}$ —11 $^{4}F_{4}$	42	037	3		$4^{3}P_{1} - 7^{3}S$	24	074	1
5 ³ S8 ³ P	3774	3	0		$4^{3}P_{0}-7^{3}S$	22	786	0.5
$5^{1}S - 12^{1}P$	53	10	1		-	01	82	3
$4^{3}P_{2}$ — $6^{3}S$.38	003	3		$4^{3}P_{2}-6^{3}D$	2998	174	2
$4^{3}P_{1}-6^{3}S$	34	805	0		$4^{3}P_{1}-6^{3}D$	95	524	1.5
$4^{3}P_{0}-6^{3}S$	34	715	0.5	1	$4^{3}P_{0}-6^{3}D$	94	280	1
the second se								

1) Diese Linien zeigen den "normalen" Zeemaneffekt.

²) Nach Russel.

36

					0511	-	0
-	2924	52 3		-	2544	79	2
$4^{3}S - 5^{3}P_{0}$	03	74 0.5		$4^{1}D - 15^{1}P$	40	70	3
$4^{3}S - 5^{3}P_{1}$	03	19 1		$4^{1}P - 10^{1}D$	40	12	4
$4^{3}S - 5^{3}P_{2}$	02	08 2		$3^{3}D_{1}-6^{3}P_{0}$	33	41	0.5
-	2884	20 4		$3^{3}D_{2}-6^{3}P_{1}$	33	16	1
$4^{1}D - 8^{1}F$	81	463 4		$3^{3}D_{3}-6^{3}P_{2}$	32	655	2
4 ¹ D —9 ¹ P	68	52 9		$4^{1}D - 14^{1}F$	32	10	3
	40	05 3		-	27	47	1
	37	95 2		$4^{1}S - 6^{1}P$	26	477	1
4 ¹ P8 ¹ S	20	632 1		$4^{1}D - 16^{1}P$	20	64	2
3 ¹ P -4 ¹ S ¹)	16	179 20		$4^{1}D - 15^{1}F$	13	15	3
_	05	65 4		$4^{1}D - 17^{1}P$	04	25	1
4 ¹ D -8 ¹ P	01	173 1		$4^{1}D - 16F$	2497	85	2
	2769	69 1			90	625	0
$4^{1}D - 9^{1}F$	62	460 2			88	138	0.5
$4^{1}D - 10^{1}P$	60	852 1		$4^{1}D - 17^{1}F$	85	35	1
_	48	86 4u		and marit of	85	16	1
43P83S	23	091 2		-	83	273	1
43P,-83S	20	918 1		$4^{1}P - 11^{1}S$	76	30	4
43P83S	19	862 0.5		$3^{1}D - 5^{1}P$	75	260	4
_	18	96 2		4 ¹ P	72	95	1
4 ³ P _o -7 ³ D	09	582 1.5		$4^{1}D - 19^{1}F$	66	28	0.5
43P73D	07	444 0.5		$4^{3}P_{2}-10^{3}S$	59	82	4
43P_73D	06	41 0		4 ¹ D -20 ¹ F	58	88	0.5
4 ¹ D -11 ¹ P	2688	728 2		4 ³ P ₁ -10 ³ S	58	05	2
$4^{1}D - 10^{1}F$	83	280 3		4 ³ P ₀ -10 ³ S	57	20	1
31S33P.	69	166 10		4 ³ P ₉ -9D	55	22	2
41P -91S	50	10 4		4 ³ P ₁ -9D	53	47	1
4 ¹ P9 ¹ D	40	36 3	h less	4 ³ P ₀ -9D	52	59	0.5
3°D,-5°F.	38	695 3		4 ¹ P -12 ¹ S	27	70	3
3°D. 5°F.	38	625 0.5		4 ¹ P	25	61	0.5
3°D5°F.	38	547 0		4 ³ P ₂ -11 ³ S	2393	835	2
33D53F.	38	263 4		4 ³ P ₁ -11 ³ S	92	15	4
3°D5°F.	38	182 0.5		4 ³ P ₀ -11 ³ S	91	35	1
33D53F.	37	771 0		4 ³ P ₂ -10 ³ D	90	755	2
3°D5°F.	37	696 5		4 ³ P ₁ -10 ³ D	89	08	1
4 ¹ D -12 ¹ P	36	725 1		4 ³ P ₀ -10 ³ D	88	25	0.5
41D43F.	35	17 1	1		70	23	3
31D-43F	35	03 3			69	30	4
31D _41F	31	553 7		-	68	11	3
4 ¹ D	27	68 7			67	61	3
4 ¹ D —13 ¹ P	2597	18 6		4 ¹ P	65	49	1.5
$4^{1}D - 12^{1}F$	86	95 6		12 - 12	50	20	2
4 ¹ D	65	68 4		43P2-123S	47	54	2.5
43P93S	59	614 3		$4^{3}P_{1}$ —12 ³ S	45	92	1.5
43P,-93S	57	71 5		4 ³ P ₂ -11 ³ D	45	47	0.5
43P93S	56	78 3		4 ³ P ₀ -12 ³ S	45	17	0
4 ¹ D -13 ¹ F	56	01 4		41P	44	69	1
4 ³ P ₉ -8 ³ D	52	12 5		4 ¹ P	28	20	0.5
4 ³ P ₁ -8 ³ D	50	23 3		33D1-63F2	26	498	2
4 ³ P ₀ -8 ³ D	49	30 1.5		33D2-63F2	26	440	0
4 ¹ P10 ¹ S	45	60 6		$3^{3}D_{3}-6^{3}F_{2}$	26	374	0

¹) (3D-4F).

93D C3E	0205	407	9	1	23D 73D	0044	91	0.5
$3^{\circ}D_2 - 0^{\circ}\Gamma_3$	2020	401	0.5		110 71D 1)	4244	05	4
3°D ₃ —6°F ₃	20	421	0.0		4-5 -(-P -)	40	05	4
$3^{3}D_{2}-6^{3}F_{4}$	24	274	0		$3^{3}D_{1}$ — $7^{3}F_{2}$	2195	502	0.5
$3^{3}D_{3}-6^{3}F_{4}$	24	200	4		$3^{3}D_{2}$ — $7^{3}F_{3}$	94	251	1
	21	56	6		$3^{3}D_{3}-7^{3}F_{4}$	92	607	1.5
	19	05	0.5		41S -71P	2099	68	5
12	17	48	8		$3^{3}D_{1} - 8^{3}F_{2}$	95	2	5
10 11. 19	14	98	0.5		$3^{3}D_{2} - 8^{3}F_{3}$	94	8	5.5
$4^{3}P_{2}$ —13 ³ S	13	77	1		$3^{3}D_{3} - 8^{3}F_{4}$	94	3	6
	13	53	1u		$3^{3}P_{2}$ — $3^{1}D_{2}$	87	0	5
	12	47	0.5		$3^{3}P_{1}$ — $3^{1}D_{2}$	81	5	2
$4^{3}P_{2}$ —13 ³ S	12	225	0.5		$3^{1}D - 5^{1}F$	73	8	3
43S -63Po	2285	69	0.5		3 ³ D —9 ³ F	16	09	1
43S -63Po	85	52	2		3 ¹ P4 ¹ D	1989	85	2
43S -63P2	85	17	3		$3^{3}D_{3}$ — $10^{3}F_{3}$	62	0	0

1) (3P-4D) (3D-5F) nach Russel.

Tabelle	2.	Al	II.	kurze	W	ellenl	ängen.

		Sawyer	[243]	Sonstige Messungen ¹)		
43S -73Pi	2048	39	1	and the second second		
	39	93	3			
$3^{1}D - 6^{1}P$	22	80	2			
3 ³ D _i —9 ³ F _i] 4 ¹ S —9 ¹ P	16	91	10	6.09 (1) BuM P		
31P1-41D2	1990	53	7	9.9 (9) L; 0.94 H; 0.56 (2) Se		
	65	23	4	0.50 (20) P; 0.534 (4) BuI		
$3^{3}D_{i}$ —10 $^{3}F_{i}$ $4^{3}S$ —10 ^{1}P	62	67	7	-		
- 1	60	70	3			
- 198	45	35	5			
³ P''_3P ₁ ''	39	30	5			
³ P ₁ ' ³ P ₀ ''	36	96	4			
³ P ₁ ' ³ P ₁ '''	34	75	10			
³ P ₂ '_3P ₂ '''	34	54	10			
³ P ₀ ' ³ P ₁ ''	32	43	5			
³ P ₁ ' ³ P ₂ ''	30	03	5	0.5 (4)L; 0.99 H; 0.93 (2) P		
$4^{3}S - 8^{3}P_{i}$	26	99	1			
4 ¹ S	25	99	2			
$3^{3}D_{i}$ — $11^{3}F_{i}$	24	81	4			
-	. 10	91	5			
_	06	57	4			
	04	38	2			
4 ¹ S —12 ¹ P	1899	17	4			
$3^{3}D_{i}$ — $12^{3}F_{i}$	97	49	2			
41S	78	48	3			

¹) Es bedeutet L = Lyman [108], H = Hutchinson [178], P = Paschen [181 p. 544,] M = Millikan [200], BuM = Bowen und Millikan [208, 226], BuI = Bowen und Ingram [227] E = Ekefors [250], Se = Selwyn [267].

38

ang an	- Manufact	Sawyer	[243]	Sonstige Messungen
3°D;-13Fi	77	13	1	and the second second second
$3^{3}P_{2}-4^{3}S_{1}$	00	00	15	2.6 (10) L; 2.70 H; 2.749 (5) E; Siehe Al III
418 -141J	62	38	10	2.7 (10) M; 2.48 (10) P; 2.42 (1) Se
31D61F	59	99	3	
$3^{3}P_{1} - 4^{3}S_{1}$	58	08	10	8.2 (10) L; 8.0 H; 8.10 (1) Se; 8.13 (7) P
$3^{3}P_{0}-4^{3}S_{1}$	55	97	8	6.01 (10) Se
3 ³ S ₁ —9 ³ P	54	76	3	4.7 (50) L; 4.7 H; 4.7 (10) M; 4.67 P; 4.735 (10) BuI; 4.715 E. Siehe Al III; 4.78 (1) Se
$3^{3}D_{i}$ - 15 $^{3}F_{i}$	48	90	2	
3°D-16°F.?	39	64	2	
$4^{1}S - 16^{1}P$	38	27	1	
31D -71P	36	97	1	1
43S -3P."	34	82	6	1 1 1 1 1 1 1 - 1 1 - HE
43S -3P1"	32	87	8	a set and the set
43S -3P."	28	61	10	1
$4^{3}S - 10^{3}P_{1}$	07	95		8.1 H
	07	40	4	101 2 10 2 10 - 1 1 102 - 115
43S	1776	24	0	6.9 (4) L; 7.2 (1) H; 7.5 (0) H
3 ³ P ₂ -3 ³ P ₁ '	67	76	7	7.6 (8) L; 8.4 (2) M; 7.60 (10) P; 7.77 (2) Se; 7.75 BuM; 7.730 BuI
3 ³ P ₁ -3 ³ P ₀ '	1765	82	4	5.7 (8) L; 5.72 (8) P; 5.81 BuM; 5.81 (1)Se; 5.814 (4) BuI
33P33P.'	64	01	10	
33P2-33P2'	63	85	8	3.8 (10) L; 3.8 H; 3.95 (10) P; 3.95 BuM; 3.939 (5) BuI; 3.95 (2) Se
3 ³ P ₀ -3 ³ P ₁ '	62	00	5	1.9 (5) L; 1.8 H; 0.7 (2) M; 1.94 (7) P; 1.95 BuM; 1.973 (4) BuI; 2.03 (0) Se
3 ³ P ₁ -3P ₂ '	60	15	7	0.0 (8) L; 0.0 H; 0.09 (7) P; 0.12 BuM; 0.101 (4) BuI; 0.13 (1) Se
31D -71F	50	56	6	
31D -81Pa	39	64	5	
3 ³ P ₂ -3 ³ D ₁	25	01	15	5.0 (10) L; 5.0 H; 5.6 (2) M; 5.01 4.64 (20) P; 4.912 (5) BuI; 4.99 (3) Se
3°P1-3°Di	21	31	10	1.2 (9) L; 1.3 H; 1.0 (3) M; 1.16 (15) P; 1.273 (5) BuI; 1.28 (2) Se
3 ³ P ₀ -3 ³ D ₁	19	43	3	9.3 (9) L; 9.5 H; 9.29 (10) P; 9.455 (4) BuI; 9.46 (1) Se
31D-81F	1686	19	5	_
31D -91P	81	78	5	E E E E E E E E E E E E
3 ¹ S ₀ -3 ¹ P ₁	70	81	15	0.6 (10) L; 0.9 H; 1.0 (4) M; 0.802 (6) BuI; 0.98 (20) P; 0.76 (4u) Se
31D -91F	44	78	5	4.9 (4) H
31D-101P	44	15	5	
31P	25	60	3	_
31D	18	38	4	
31D	16	41	4	_
$3^{1}D - 12^{1}P$	1599	44	3	_
31D	96	02	3	
31D	84	77	2	
31D	80	93	2	-

39

	Prill Prill	Sawyer [243]	Sonstige Messungen
3 ¹ D —14 ¹ P	72	97 1	
3 ¹ D —13 ¹ F	69	35 1	
3 ¹ D15 ¹ P	63	56 1	_
$3^{1}D - 14^{1}F$	60	35 1	0.7 (1) H
3 ¹ D	55	95 0	
31P 51D	39	74 10	0.1 (1) L: 0.1 (3) H: 0.3 (0) M
31P61S	1371	26 2	
31P	50	15 6	
31P	1266	71 0	61 (0) H
31P	58	88 4	
38P-58S	11	93 3	193 (1) BnM 201 E
31P		00 0	1.00 (1) Duar, 2.01 15
33P -538	10	15 2	0.12 (1) BuM; 0.4 E
33P _53S	00	10 1	9.95 (0) BuM. 0.22 F
21p	08	25 2	5.25 (0) BILM, 5.52 E
33P	1101	86 5	91 (4) H. 182 (1) P.M
$3^{2}P_{2} - 4^{3}D_{1}$	00	07 4	2.1 (4) H; 1.00 (1) BUM
$3^{-}P_1 - 4^{-}D_1$	00	01 4	$0.1 (4) H; 0.07 (2) Bust 0.07 (1) P_{\rm eff}$
$3^{\circ}\Gamma_0 - 4^{\circ}D_1$	00	21 2	5.07 (1) BUM
3*P 9*5	19	10 1	
31P	11	48 4	
31P	00	14 1	
31P-101D	1157	13 3	-
	52	14 4	2.3 (1) H
3 ¹ P —11 ¹ D	42	97 2	
$3^{3}P_{2}-6^{3}S$	1056	68	A to an all you want to a strength
$3^{3}P_{1}-6^{3}S$	55	28 0.5	
$3^{3}P_{2}$ — $5^{3}D_{1}$	49	93 2	0.01 (0) BuM
$3^{3}P_{1} - 5^{3}D_{1}$	48	53 1	8.83 (0) BuM
$3^{3}P_{0}$ — $5^{3}D_{i}$	47	82 0	
$3^{3}P_{2}$ —7 ³ S	990	88 1	
$3^{3}P_{1}-7^{3}S$	89	70 0	
$3^{3}P_{2}$ — $6^{3}D_{1}$	87	80 0	1 1 1 1 - 1 Ph-010
$3^{3}P_{1} - 6^{3}D_{1}$	86	55 0	12 at 10 at - 10 at - 10
$3^{3}P_{2}$ — $8^{3}S$	55	99 1	· _
3 ³ P ₁ -8 ³ S	54	87 0	2 91 15 19- det
$3^{3}P_{2}$ —7 ³ D	54	35 0.5	_
3 ³ P ₁ -7 ³ D	53	18 0	300-00D () () () () () () () () () (
3 ³ P ₀ -7 ³ D	52	43 .00	
31S -41P	35	20 1	
33P83D	33	95 0	1 m p= m up
23D 83D	22	08 0	

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
n1S.	151860.4	56512.0	35495.2	19084.0	13061 1	9499 6	7918 5	5670 3	4571.6	3763 3	3153 5	2680 6	2305 7	2003.8	3			
n ¹ P ₁	92010.7	44942.2	25993.7	16943.1	11943.7	8901.5	6921.3	5562.9	4591.6	3858.4	3281.0	2808.5	2425.6	2112.4	1852.8	2-2-1		
n ¹ D ₂	66381.4	41772.9	27068.4	17946.3	12573.7	9253.4	7080.2	5586.0	4517.2	3727.7							1.89	
n ¹ F ₃ ²)		28392.3	18177.0	12617.5	9258.8	7078.5	5583.9	4516.2	3727.8	3128.8	2661.2	2291.8	1994.2	1750.7	1549.3	1380.7	1238.2	1116.3
$n^{3}S_{1}$		60589.2	31770.6	19648.0	13363.7	9680.6	7336.1	5751.6	4631.4	3807.9	3186.7			1 23		1		
n ³ P ₂	114281.1	46392.7	26141.4	16841.5	11769.2	8693 ?	6675 ?	5283?	4288?					12 2	E.B.			
n ³ P ₁	114406.6	46422.0	26154.2	16848.3	11767.4	8688.5	6676.9	5291.0	4295.7		- 22	180	1	100	6 4	13	2219	
n ³ P ₀	114468.4	46436.1	26159.9	16851.4					1 2 2					E B		3 2 1		2 2
n ³ D ₃	56313.6	30380.1	19040.7	13048.5	9497.6	7221.5	5675.4	4577.6	3770.4	19-50					2	2.21		
n ³ D ₂	56312.5	30379.5	19040.5			- 21	1.4		23	315		18.5		2.5	1	1.2	12.3	
n ³ D ₁	56311.6	30379.2						1			1000		132.9		E LES		19.3	
$n^{3}F_{4}^{1}$		28439.6	18413.1	13301.2	10719.9	8579.8	6728.3	5361.2	4359.6	3610.8	3037.9	2590.9	2234.9	1947.2	1712?	1516.9		
$n^{3}F_{3}^{2}$)		28442.4	18420.0	13324.0	10752.9	8590.6	6731.5	5362.6	4360.2	3611.3	1 28		125	12.5	-	A 75	1.0.9	
n ³ F ₂ ³)		28444.5	18425.4	13341.7	10778.0	8597.7	6733.9	5363.7	4360.6	3611.7			2 2	10	3.37	2.18		
n ³ G ₅	12 2 3	12 8 8	17678?	12271.7	9011.2	6895.7	5445.9	4409.4	3642.8	3060.0	2607.5		22.3					

Tabelle der Terme von Al II.

¹) ²) ³) Als Grenzterme der Serien $4^{3}F - nG$ doppelt: $\Delta 4^{3}F_{4} = 0,100, 4^{3}F_{3} = \Delta 4^{4}F_{3} = 0.490, \Delta 4^{3}F_{2} = 0.252.$

Aluminium

Al III. Natriumähnliches Einvalenzelektronensystem mit Dubletts, Ionisierungsspannung 28.32 V (${}^{2}S_{\frac{1}{2}}$). Linien des Al III treten bereits im kondensierten Funken auf. Die beste bekannte Anregung ist jedoch der Hochvakuum-Abreißbogen. Der erste, der eine Liste für Al III gegeben hat, ist Lyman [198], aber nur im Gebiet von λ 891 bis λ 511. Für das kurzwellige Gebiet liegen außerdem noch Angaben von Bowen und Millikan [226], Ekefors [250] vor. Aber im wesentlichen ist die Kenntnis des Spektrums Paschen [181] zu verdanken. Es besteht aus einer größeren Anzahl von Paarserien, Hauptserie, Nebenserien, Bergmannserie usw., die durch die üblichen Formeln dargestellt werden, wenn man darin N, die Rydbergkonstante, durch 9 N ersetzt. Für die kürzesten Wellenlängen hat Ekefors [250] Paschens Rechnungen bestätigt. Paschen macht auf die Analogie des Spektrums zu dem von Na I und Mg II aufmerksam. Siehe dazu auch Fues [175].

In der folgenden Tabelle 3 sind die Messungen von Paschen gegeben, wozu sonstige Messungen hinzugefügt sind.

Al IV. Während Paschen [181] angibt, daß er im Gebiet der längeren Wellen bis herab zu etwa λ 1900 keine Linie gefunden habe, die auf höhere Ionisationsstufen hinwiese, als Al III, geben Ericson und Edlén [273, 274, 276], welche die kürzesten Wellen mit großem Erfolg untersucht haben, zwei Linien als Al IV angehörig an: 160.071 (4), 161.686 (3). Millikan [163] gibt in einer seiner ersten Veröffentlichungen als zweifelhafte Al-Linie λ 162.4. Vielleicht ist das dieselbe Linie.

								s
42S,-42P,	5722	65	6	$4^{2}P_{1}-5^{2}S_{1}$	3713	103	2	
$4^{2}S_{1} - 4^{2}P_{2}$	5696	47	8	$4^{2}P_{1}-5^{2}S_{1}'$	02	086	1	
5°F -7°D,	5260	91	Ou	$5^{2}F - 9^{2}F''$	3658	3	1u	
5°F'-7°F	5172	6	1	$4^{2}D_{2}-4P_{1}$	12	352	4	
52F'-72F"	63	90	7	$3^{2}D_{2}-4^{2}P_{2}$	01	916	1	
5°F -7 F'	50	86	6u	$3^{2}D_{3}-4^{2}P_{2}$	01	623	6	
$5^{2}D - 7^{2}F$	4903	71	4	_	3350	87	41)	
$4^{2}F - 5^{2}D$	4701	65	6	-	48	42	51)	
$4^{2}P_{2}-4^{2}D_{2}$	4529	176	6	$5^{2}P_{2}-7^{2}D_{3}$	3287	37	1	
4 ² P ₉ —4D ₉	28	911	1	5 ² P ₁ -7 ² D ₂	83	11	0.5	
42P,-42D.	12	535	4	$4^{2}F - 6^{2}D$	2961	06	1.5	
$4^{2}F - 5^{2}F$	4490	90	2u	$4^{2}F - 6^{2}F$	09	77	2u	
42F,-52F'	79	968	4	42Fi-62F'	07	05	10	
42F-52F'	79	891	3	42F -62F"	06	34?	3u	
52P62D.	4364	59	2u	4ºDi-6ºFi	2762	815	9u	
	(57	2)		$4^{2}D - 6^{2}F'$	60	48	1u	
5°F'-6°D?	4199	00	0.5	4 ² Fi-7 ² Di	2422	44	0.5	
$5^{2}F - 8^{2}D$	88	88	0.5	$4^{2}F - 7^{2}F$	00	33	3u	
42D52F.	50	138	2	$4^{2}F - 7^{2}F'$	2398	98	5u	
42D3-52F3'	. 49	917	1	42F -72F'''	98	76	0.5	
$4^{2}D_{2}-5^{2}F_{4}$	49	897	3	$4^{2}D - 7^{2}F$	2299	47	3u	
52F -82F'	42	15	2u	$4^{2}D - 7^{2}F'$	98	36	0	
52F	41	25	Ou	$4^{2}P_{2}-5^{2}D$	13	56	2u	
$5^{2}F - 8^{2}F$	40	21	2u	$4^{2}P_{1}-5^{2}D$	09	66	1u	
$5^{2}D_{3}$ — $8^{2}F$	3980	56	2u	42Fi-82F'	2154	635	1	

Tabelle 3. Al III nach Paschen.

1) Nach privater Mitteilung von Paschen.

	Von hie	er an λ vac.	
$3^{2}D_{i}-4^{2}F_{i}$	1935	83 10	5.881 (6) BuI; 5.9 (5) L; 5.87 (7) H
32S1-32P1	1862	899 10	2.775 (10) BuI; 2.749 (10) E. Siehe Al II
an and and and an	die mite o	Addition built	2.75 (1) Se
$3^{2}S_{1} - 3P_{1}$	54	670 10	4.725 (10) BuI; 4.715 (10) E; 4.78 (1) Se. Sieh
	whether the	menhebran	Al II
2 oder 17 mbo 2	1662	etqu Triona a	2.66 0d E
$3^{2}P_{2}$ — $3^{2}D_{3,2}$	11	9 8	1.8 (8) L; 1.9 (3) H; 2.0 (5) M; 1.858 (7) Bul
			1.849 (9) E
3^2P_1 — 3^2D_2	05	7 8	5.6 (8) L; 5.8 (1) H; 5.9 (5) M; 5.764 (7) Bull
99D 49C	1994	0 5	3.770(7) E 29(5) I: 45(6) H: 45(4) M: 4140(4) BnI
0-P2-4-51	1004	2 0	4 144 (8) E
32P42S.	79	6 3	9.5 (3) L: 0.0 (5) H: 9.7 (4) M: 9.675 (8) Bul
0 11 1 01			9.670 (1) E
$3^{2}D - 5^{2}F$	52 .	8 1	2.8 (1) L; 3.3 (0) H; 3.0 (1) M; 2.857 (1) Bul
			2.92 (2d) E
$3^2D - 6^2F$	1162	-	2.59 (0) BuM
$3^{2}P_{2}$ —4 ² D	893	- 1	3.8 (1) L; 3.93 BuM; 3.905 (5) E
$3^{2}P_{1}$ — $4^{2}D_{1}$	92	12 -	1.9 (1) L; 2.00 (1) BuM; 2.056 (4) E
$3^{2}P_{2}$ — $5^{2}S_{1}$	56	PU - 1	6.7 (4) L; 6.9 (0) M; 6.80 (3) BuM; 6.768 (5)
$3^{2}P_{1}$ — $5^{2}S_{1}$	55		5.0 (3) L; 4.98 (3) BuM; 5.040 (4) E
		Floren	Bowon und Lyman
		[950]	Millikan [226] [198]
99D 090	790	048 2	695.0 67.9
$3^{*}P_{2} - 0^{*}S_{1}$	05	716 9	574 0 57 1
$3^{2}S_{-}4^{2}P_{-}$	696	212 4	6.23 2 6.0 6
$3^{2}S_{-}4^{2}P_{-}$	95	817 5	5.82 1 -
$3^{2}P_{e} - 7^{2}S_{1}$	71	198 2	the tool - allowed links - draw and a grain
32P,-72S	70	144 1	Party - and I have be-
32S1-52P	560	390 7	0.24 0 0.3 3
$3^{2}S_{1}-6^{2}P$	11	215 4	- 1.1 1
$3^{2}S - 7^{2}P$	486	95 1	and the manufacture of the second states and the

Tabelle der Terme von Al III.

Bezeich- nung	3	4	5	6	7	8	9
n ² S ₁	229453.99	103291.41	58817.61			inder sensi	
n ² P ₁	175774.11	85821.74	51023.50	ie k uguna	and using	- and a state	
n ² P ₂	175536.11	85741.61	50984.35	131 64	Produce de	35 Tab.	sett sale
n ² D ₃ ¹)	113498.96	63668.73	40578.47	28079.62	20573.62	15712.57	and A
n ² D ₂ ¹)	113496.68	63667.45	edd here	depindents	Second in	-industries	monitin
n ² Fa		61841.94	39578.65				aland a
n ² F ₄		61841.56	39578.53	27484.47	20193.01	15461.87	
nºF'		AUTO STORE	39526.23	27452.67	20171.82	15443.32	N TUDIN
n²F"		CONSERVING N	ada alta	27446.67	20166.47	15438.2	12198.8
9 N Al/n ²	109735.0	61725.96	39504.60	27433.71	20155.41	15431.49	12192.75

¹) n²D₃ entspricht der stärkeren Linie, hat aber einen höheren Wert als n²D₂.

43

Unerklärte Linien. Wenn man die Linien, die als zu Al I, Al II, Al III, Al IV gehörig erkannt sind, streicht, so bleiben doch noch eine ganze Menge Linien übrig, die von dem einen oder andern als Al-Linien gemessen worden sind. Es handelt sich freilich meist um ganz schwache Linien und solche, die nur ein Beobachter hat, und man wird oft nicht fehlgehen, wenn man an Verunreinigungen denkt. Namentlich bei Exner und Hascheks Funkenspektrum scheinen viele Luftlinien, besonders Ar II, vorhanden zu sein. Aber es finden sich auch Linien, die von 2 oder 3 Beobachtern gegeben, aber nicht eingeordnet sind. Es sei in der folgenden Tab. 4 ein Ver-

		The second se
4510	3775	3336
4466	72	18
00	40	01
4370	3563	3242
3810	61	36
04	39	28
3791	35	3138
88	34	3066
85	27	64
82	04	59
81	03	54
79	3491	2927
	$\begin{array}{c} 4510 \\ 4466 \\ 00 \\ 4370 \\ 3810 \\ 04 \\ 3791 \\ 88 \\ 85 \\ 85 \\ 82 \\ 81 \\ 79 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabelle 4. Liste der als Al gemessenen, aber bei keiner Ionisationsstufe eingeordneten Linien.

zeichnis dieser Linien gegeben, aber im Gebiet bis λ 2000 nur in ganzen A; das Genauere findet man auf S. 51—54 von Band VII. Für die kürzeren Wellen dagegen gibt Tab. 5 genaue Angaben. da für diesen Teil die Untersuchungen für den Bau weniger oder noch gar nicht durchgeführt sind. Hier sind solche Linien hauptsächlich von Hutchinson [178] und Lyman [108] gegeben. Für die allerkürzesten Wellenlängen hat Millikan [200] Linien angegeben, aber mit Fragezeichen versehen; dagegen haben Eriksson und Edlén [276] eine größere Anzahl sicherer Linien. Von ihnen ist aber nur ein kleiner Teil veröffentlicht. Sie geben an, sie hätten zwischen λ 132.9 und λ 290.4 im ganzen 42 Linien gefunden. Wahrscheinlich werden diese zu den höheren Ionisationsstufen gehören. — Eine neueste Veröffentlichung von Söderquist und Edlén [292] bringt die Angabe, daß das Al-Spektrum bis λ 48 erhalten worden ist. Die Wellenlängen wurden mittels 1 m Metallgitter nach Eisenlinien anderer Ordnung gemessen und 3cheinen bis auf 0.01 A genau zu sein. Eine Liste der stärkeren Linien zwischen λ 312 und λ 68 wird für Normalen empfohlen. Sie folgt hier in Tab. 6 auf Seite 46.

Absorptionsspektra. Nachdem man erkannt hatte, daß die größere oder geringere Leichtigkeit der Selbstumkehr und Absorption einer Linie von ihrer Stellung im Spektralschema abhänge, sind Untersuchungen über Absorption zahlreich ausgeführt werden und haben häufig zur Aufklärung der Struktur wesentlich beigetragen. Für Al war ein solches Hilfsmittel unnötig; aber trotzdem liegen auch hier viele Arbeiten der Art vor, die zur Bestätigung des Gefundenen dienen. Die Brüder Bloch [169] und Hulburt [190] haben zuerst dazu den Unterwasserfunken benutzt, in welchem bekanntlich sehr viele Linien sich umkehren. Dasselbe Mittel verwendet

	Paschen [181]	Millikan [200]	Hut- chinson [178]	Lyman [108]			Millikan	Hut- chinson	Lyman
1928 1818 1773	68 <u>1</u>	$8.8\ 0$ $4.2\ 0$	8.8? 0	1) 3.8 2		1292 76 75		2.4 2	6.4? 2 5.0? 2
51 47 45	04.31			$1.7\ 2$ 7.7\ 1 5.3		65 62 60	4.8 Si? 0	$5.2 1 \\ 2.8 0 \\ 0.9 0 \\ 0.9 0$	4.5? 1
42 18 06	30 1		6.9	2.7 8.3 1		53 38 15 06		3.6 0 8.8? 1 5.9 6	8.8? 1
1000 73 51 39	milet /	eesta siiii Jadag	3.2 1.9 2 9.4 4	Colomp de	dada Rada	1176 13 10	a tilliparte	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s anbrol V seden
29 22 19		terfle-ge	$\begin{array}{cccc} 9.2 & 4 \\ 2.6 & 2 \\ 9.7 & 3 \end{array}$	and the second		1037 10 977	anip ania zanaisie ie tahan	$\begin{array}{ccc} 0.1 & 1 \\ 7.2 & 2 \\ 0.7 & 2 \\ 7.4 & 4 \end{array}$	Di sti Gaŭ
01 1598 81	, na odra Usadraju	APT 21.25	$\begin{array}{ccc} 1.0 & 2 \\ 8.6 & 2 \\ 1.7 & 6 \end{array}$	15 ANR A		04 881 34	i sizoni (n i oli i n	4.5 4 1.2 2 4.9	to Parijos
62 61 52	and and ip der	1 0010) nemiáni	$\begin{array}{ccc} 2.4 & 0 \\ 1.3 & 1 \\ 2.6 & 3 \end{array}$	pasark pasark		33 718 678		3.5 j ^{6u} 8.9 3 8.0 5	n dan da na nadana 1907 anis
48 15 06	141 (TL7)	RI Barris	8.5 2d? 5.8 2 6.0 2	Science in		58 56 230	4 0 0? 7 0 0? 8? 0	redoz 16 fradiri o	Shaffanis Shi di Shi di
1499 91 86 78	and the second	antida est 616	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n,abian aminto		20 21 19 186	9? 0 5? 0 1? 0 9? 0	inden vill	simbary President
64 56 37	in Elerer	to inter	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	territer d		162 144	4? 0 3? 0	hiterad Niterad	inina ang Nataoping Salata Jula
1360 43 36	rach debi	3.5 1	$ \begin{array}{cccc} 0.0 & 2 \\ 3.8 & 1 \\ 6.2 \\ 7 \end{array} $	3.4?2		130	Ericson u. Edlén 86 0	icepid silk Silinerpas Manufid se	ternet si trahak
34 26 19	t bes -tr	goll inin	4.8 j ⁴ 8.7 2 9.3 1	6.6?1 9.4?6	hau	130 129 129	$\begin{array}{c} 40 \ 1 \\ 86 \ 1 \\ 73 \ 1.5 \end{array}$	ukinand ninatero	(88) (SM) (ni onini
10 07 05	manodt i		7.4 1u 5.5 0	0.8?6		125 124 124	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	des Rigg des Rigg	tte data autoritation
1299	There	12 94	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Longy P		116 116	99 0 51 0	en frantes	n bit coli

Tabelle 5. Liste kurzer Wellenlängen, die nicht eingeordnet sind.

McQuarrie [219]. Dann haben Majumdar und Sur [214, 238] die Absorption durch Dampf hervorgebracht, der in einem Kohlerohr erzeugt wurde, ebenso Frayne und Smith [229]. Als letzter sei Hori [232] genannt, der Drähte durch plötzliche

¹) Selwyn [267] gibt noch 1936.45 (12 u) u. 1932.25 (10 u).

1	312.241	3		130.999	3	108.391	4	104.075	4	
	310.908	3		130.845	4	108.114	4	104.052	4	
	309.852	2		130.402	3	108.059	3	103.887	4	
	309.596	4		129.729	5	108.004	3	103.805	4	
	308.560	3		126.063	3	107.948	5	99.286	3	
	307.248	3		125.527	4	107.714	3	92.624	3	
	281.397	7		118.987	2	107.625	4	90.195	2	
	278.699	8	er hid or	118.500	2	104.498	3	85.514	2	
	243.760	5		116.920	2	104.456	3	76.570	2	
	161.686	7	10.1	116.458	2	104.361	4	75.463	1	
	160.073	8		108.708	2	104.185	3	75.360	1	
	131.445	2		108.463	4	104.123	3	68.376	1	

Tab. 6. Aluminium-Normalen von Söderquist und Edlén [292].

Entladung zur Explosion bringt. Er spricht nur von den dabei umgekehrt sichtbaren Banden, seine Photographie zeigt natürlich auch Linien. — Alle diese Arbeiten haben nichts Wesentliches ergeben; das Detail sehe man in ihnen selbst.

Es folgen zunächst eine Reihe vermischter Angaben.

Kapitza und Skinner [212] erzeugen Magnetfelder von über 100000 Gauß für Bruchteile einer Sekunde. Sie machen aber nur für eine Linie, λ 3944, Angaben betr. Zeemaneffekt. Zur Theorie sehe man Landé [179]. — King [213] gibt an, daß in Bogen von 1000 Amp. 100 Volt die Linien 3944 und 3962 sich enorm verbreitern; ist aber Al nur spurenweise vorhanden, so tritt nur Verbreiterung nach Rot auf. — Paschen und Back [164] gelingt es, in Magnetfeldern bis 40000 Gauß am Al-Dublett 3092/3082 das von Sommerfeld aufgestellte Auswahlprinzip der inneren Quantenzahl außer Kraft zu setzen.

Zu den früheren Untersuchungen über den Zeemaneffekt (vgl. Bd. VII) ist weiter Neues nicht hinzugefügt worden. Dagegen ist der Starkeffekt genauer untersucht worden. Wir geben die Resultate von Ishida und Fukushima [277].

Diese fanden bei Starkeffektuntersuchungen an Helium und Neon bei sehr hohen Feldstärken Verschiebungen einiger Aluminiumlinien, die offenbar von den Aluminiumelektroden herrührten, und haben dann das Verhalten dieser Linien im elektrischen Felde bis zu 600000 Volt/cm systematisch untersucht. In zahlreichen Figuren haben sie ferner die beobachtete Verschiebung als Funktion der Feldstärke dargestellt. Die für $\Delta \lambda$ ermittelten Werte sind in der folgenden Tabelle zusammengestellt.

Von der übrigen angeführten Literatur sei noch folgendes angegeben: Procopiu [182, 183] bespricht in summarischer Weise das Auftreten von Bogen- und Funkenlinien in verschiedenen Lichtquellen und verschiedenen Atmosphären. — Ruark und Chenault [221] beschäftigen sich mit der Feinstruktur der Linien. Bei Al II ergebe sie sich aus den Regeln der Relativitätstheorie (??). Wyneken [258] behandelt das kontinuierliche Spektrum des Unterwasserfunkens, welches oft als Lichtquelle für Absorption bei sehr kurzen Wellen benutzt wird, wohl aber kaum mit Al zusammenhängt,

Struve [284] sucht Linien von Al II und Al III in Sternspektren auf. Gibbs und Kruger [288] untersuchen die Linien von Al II, sie finden keine Feinstruktur; daher habe das Atom keinen Kern-spin. White [294] meint, das sei noch nicht bewiesen, da ungünstige Linien benutzt worden seien. — Die Restlinien des Al sind häufiger untersucht worden. Wir begnügen uns hier mit den Angaben von Löwe [253].

Wellenlänge	Serien	Polaris.	$\Delta \lambda$ in AE	Feldst. in KV/cm
[$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 2^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	· p	+ 0.5	500
3961.54	$\left.\begin{array}{c}2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2}-2^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}\\2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2}-2^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}\end{array}\right\}$	S	+ 0.5	,,
3944.03	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 2^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	р	+ 0.5	"
1	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 2^{2}S_{\frac{1}{2}}, \mp \frac{1}{2}$	S	+ 0.4	**
[$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	р	+ 0.1	"
3092.836 ¹)	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 3^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	S	+ 0.9	**
	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	s	0	
ſ	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}D_{\frac{5}{2}}, \pm \frac{1}{2}$	p	+ 0.1	,, ,
2002 710 1	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - \frac{3^{2}D_{\frac{5}{2}}}{2^{2}D}, \pm \frac{1}{2}$	s	+ 0.9	"
3092.(10*)	$2^{2}P_{\frac{3}{2}}, \pm \pm 5^{2}D_{\frac{6}{2}}, \pm \pm J$	CLARING STREET, I	122	
	$2^{2}P_{4}^{2}, \pm \frac{3}{2} - 3^{2}D_{4}^{2}, \pm \frac{3}{2}$	S	0	"
i	$2^{2}P_{1}, +1 - 3^{2}D_{2}, +1$	p	+ 0.8 .	,,
3082.1521)	$2^{2}P_{1, +1} - 3^{2}D_{3, \mp 1}$	S	+ 0.8	19
No. of the second s	$2^{2}P_{1}^{2}, \pm \frac{1}{2} - 3^{2}D_{3}^{2}, \pm \frac{3}{2}$	8	0	,,
Ì	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}P_{\frac{1}{2}}, \pm \frac{1}{2}$	p	- 0.5	400
3046.0 ²)	$2^{2}P_{\frac{1}{2}}, \pm \frac{3}{2} - 3^{2}P_{\frac{1}{2}}, \pm \frac{1}{2}$	s	- 0.5	
	$2^{2}P_{\frac{8}{2}}, \pm \frac{1}{2} - 3^{2}P_{\frac{1}{2}}, \mp \frac{1}{2}$ J			
	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 3^{2}P_{\frac{3}{2}}, \pm \frac{3}{2}$	p	- 0.6	
001100	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}P_{\frac{3}{2}}, \pm \frac{1}{2}$		P. D. O. Barrer	Note Croin
3044.8 ²) {	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}P_{\frac{3}{2}}, \pm \frac{1}{2}$	had the	0.0	
	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 3^{2}P_{\frac{3}{2}}, \pm \frac{1}{2}$	S	- 0.6	"
i	$2 \pm \frac{1}{2}, \pm \frac{1}{2} = 0 \pm \frac{1}{2}, \pm \frac{1}{2}$	n	- 0.6	
3036,0 ²)	$2^{2}\Gamma_{\frac{1}{2}}, \pm_{\frac{1}{2}} = 0^{2}\Gamma_{\frac{1}{2}}, \pm_{\frac{1}{2}}$	P S	- 0.5	"
i	$2^{2}P_{1}, \pm 1 - 3^{2}P_{2}, \pm 1$	p	- 0.5	
3034.5 ²)	$2^{2}P_{1}, \pm 1 - 3^{2}P_{3}, \pm 3$	F		- "
	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 3^{2}P_{\frac{3}{2}}, \pm \frac{1}{2}$	S	- 0.5	**
[$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 3^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	p	+ 0.7	500
2660.39	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 3^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	S	+ 0.6	
	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 5^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$		1.0.9	
2652.48	$2^{\circ}P_{\frac{1}{2}}, \pm_{\frac{1}{2}} - 5^{\circ}S_{\frac{1}{2}}, \pm_{\frac{1}{2}}$	p	+ 0.3 + 0.8	
	$2^{2}\Gamma_{\frac{1}{2}}, \pm_{\frac{1}{2}} = 3^{2}S_{\frac{1}{2}}, \pm_{\frac{1}{2}}$	2	+ 1.9	
	$2^{2}P_{2}, \pm \frac{1}{2} - \frac{4^{2}D_{2}}{4^{2}D_{2}}, \pm \frac{1}{2}$	р	1.1.5	**
2575.11	$2^{2}P_{3}, \pm 2^{-1}D_{3}, \pm 1$	S	+ 1.2	"
	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 4^{2}D_{\frac{3}{2}}, \pm \frac{3}{2}$	S	+ 0.8	,,
ſ	$2^{2}P_{3}, \pm \frac{1}{2} - 4^{2}D_{3}, \pm \frac{1}{2}$	р	+ 1.2	
	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 4^{2}D_{\frac{5}{2}}, \pm \frac{1}{2}$	g	+ 1.2	
2575.00	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 4^{2}D_{\frac{5}{2}}, \mp \frac{1}{2}\int$	5	1 1.2	"
	$2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 4^{2}D_{\frac{5}{2}}, \pm \frac{3}{2}$	S	+ 0.8	
	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 4^{2}D_{\frac{3}{2}}, \pm \frac{3}{2}$			

Tabelle der Starkeffektaufspaltungen $\varDelta \lambda$ und Serienterme

¹) Diese Linien wurden von Paschen und Back genau gemessen.

2) Diese Linien wurden von Ishida und Fukushima gemessen.

Wellenlänge	Serien	Polaris.	$\varDelta \lambda$ in AE	Feldst. in KV/cm
[$2^{2}P_{1}, \pm 1 - 4^{2}D_{2}, \pm 1$	р	+ 1.2	500
2568,00	$2^{2}P_{1}, +1 - 4^{2}D_{3}, +1$	8	+ 1.2	,,
	$2^{2}P_{4}, \pm_{4}-4^{2}D_{8}, \pm_{8}$	S	+ 0.8	"
i	$2^{2}P_{8, +1} - 4^{2}S_{1, +1}$	р	+ 0.7	300
2378.41	$ \left. \begin{array}{c} 2^{2} P_{\frac{3}{2}}, \pm \frac{3}{2} - 4^{2} S_{\frac{1}{2}}, \pm \frac{1}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm 1 - 4^{2} S_{\frac{1}{2}}, \pm \frac{1}{2} \\ \end{array} \right\} $	s	+ 0.7	
i	$2^2 P_{3, +1} - 5^2 P_{3, +1}$	р	+ 1.2	
2373.36	$ \begin{array}{c} 2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 5^{2}D_{\frac{3}{2}}, \pm \frac{1}{2} \\ 2^{2}P_{3}, \pm 1 - 5^{2}D_{3}, \pm 1 \end{array} \} $	s		
	$2^{2}P_{3}, \pm 2^{-5^{2}D_{3}}, \pm 3$	s	+ 1.0	
i	$2^{2}P_{2} + 1 - 5^{2}D_{5} + 1$	p	+ 1.2	
handing the PA	$2^{2}Pa, \pm 3 - 5^{2}D5, \pm 1$	P	1	the first of the second
2373,11	$\begin{bmatrix} 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} & 5^{2} D_{\frac{5}{2}}, \pm \frac{1}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} & 5^{2} D_{\frac{5}{2}}, \pm \frac{1}{2} \end{bmatrix}$	8		Phi Public
	$ \left\{ \begin{array}{c} 2^{2} P_{\frac{3}{2}}, \pm \frac{3}{2} - 5^{2} D_{\frac{3}{2}}, \pm \frac{1}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} - 5^{2} D_{\frac{3}{2}}, \pm \frac{3}{2} \end{array} \right\} $	8	+ 1.0	"
9979 09	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 4^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	p	+ 0.6	
2012.00	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 4^{2}S_{\frac{1}{2}}, \mp \frac{1}{2}$	8	+ 0.5	
[$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 5^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	p	+ 1.0	
2367.05	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 5^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	S		and the second second
	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 5^{2}D_{\frac{3}{2}}, \pm \frac{3}{2}$	S	+ 0.9	"
1	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	p	- 2.0	"
2269.21	$\left[\begin{array}{c} 2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{3}{2}}, \pm \frac{1}{2} \\ 2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{3}{2}}, \mp \frac{1}{2} \end{array}\right]$	S		
and the second second	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{3}{2}}, \pm \frac{3}{2}$	S	- 1.8	,,
in den i film	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{5}{2}}, \pm \frac{1}{2}$	р	- 2.0	**
2269.09	$\begin{bmatrix} 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} & 0 & D_{\frac{3}{2}}, \pm \frac{1}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} & -6^{2} D_{\frac{3}{2}}, \pm \frac{1}{2} \end{bmatrix}$	8		
Dissection (in the	$\left[\begin{array}{c} 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2} D_{\frac{3}{2}}, \pm \frac{1}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} - 6^{2} D_{\frac{5}{2}}, \pm \frac{1}{2} \end{array}\right]$	S	- 1.8	"
1	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 5^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	p	+ 1.6	100 miles
2263.73	$\left[\begin{array}{c} 2^{2}P_{\frac{3}{2}}, \pm \frac{3}{2} - 5^{2}S_{\frac{1}{2}}, \pm \frac{1}{2} \\ 2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 5^{2}S_{\frac{1}{2}}, \pm \frac{1}{2} \end{array}\right]$	8	+ 1.5	
i	$2^{2}P_{1, +1} - 6^{2}D_{2, +1}$	p	- 1.7	A Starting
2263.45	$2^{2}P_{1}, \pm 1 - 6^{2}D_{3}, \pm 1$	S		
	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 6^{2}D_{\frac{3}{2}}, \pm \frac{3}{2}$	S	- 1.5	The second
i anno i	$2^{2}P_{1}, +1 - 5^{2}S_{1}, +1$	p	+ 1.6	
2258.00	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 5^{2}S_{\frac{1}{2}}, \pm \frac{1}{2}$	S	+ 1.5	
1	$2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 7^{2}D_{\frac{5}{2}}, \pm \frac{1}{2}$	р	— groß	
2210.05	$\left\{\begin{array}{c} 2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 7^{2}D_{\frac{5}{2}}, \pm \frac{1}{2} \\ 2^{2}P_{\frac{3}{2}}, \pm \frac{1}{2} - 7^{2}D_{\frac{5}{2}}, \pm \frac{1}{2} \end{array}\right\}$	8		all denising
	$\left\{\begin{array}{c} 2^{2} P_{\frac{3}{2}}, \pm \frac{3}{2} - 7^{2} D_{\frac{5}{2}}, \pm \frac{5}{2} \\ 2^{2} P_{\frac{3}{2}}, \pm \frac{1}{2} - 7^{2} D_{\frac{5}{2}}, \pm \frac{3}{2} \end{array}\right\}$	S	— groß	
- Charles States	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 7^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	p	— groß	-
	$2^{2}P_{\frac{1}{2}}, \pm \frac{1}{2} - 7^{2}D_{\frac{3}{2}}, \pm \frac{1}{2}$	S		and the second
	$2^{2} P_{\frac{1}{2}}, \pm \frac{1}{2} - 7^{2} D_{\frac{3}{2}}, \pm \frac{3}{2}$	S	- groß	

Im übrigen sind die Messungen bereits in Bd. VII_1 angegeben.

48

Element	Wellenlänge	Wellenlänge in Bogen oder Funken Intensität		Wellenlänge	in Bogen oder Funken Intensität		
ALIII	1854.7	B 10 F 10	Al II	2631.6	F 7		
Al III	1862.9	F 10	AlI	2652.3	B10 R F10 R		
AlI	2263.5	B4RF2R	Al II	2669.2	F 10		
AlI	2269.1	B4RF2R	Al II	2816.2	B 20 F 20		
AlI	2367.1	B SR F 4R	AlI	3082.2	B10R F8R		
AlI	2373.1	B SR F 4R	AlI	3092.7	B10R F8R		
ALII	2568.0	B10R F 6R	AlI	3944.0 _n	B10R F 8R		
AlI	2575.1	B10R F6R	AlI	3961.5 _{u1}	B10R F 8R		

Löwe [253] bezeichnet in seinem Atlas der Restlinien (raies ultimes) folgende Aluminiumlinien als besonders geeignet für die quantitative Spektralanalyse.

Über das Röntgenspektrum des Al ist seit dem Erscheinen des Bandes VII₁ eine große Zahl guter Arbeiten erschienen. Vor allem sind hier die im Siegbahnschen Institut angefertigten Arbeiten von Bäcklin [168, 207, 224, 271], von Wetterblad [245, 246], Druyvesteyn [249], Larsson [267] und Södermann [283] zu erwähnen, deren Wellenlängenmessungen nebst Termen in Tab. 7 zusammengestellt sind. Dabei sind die absoluten oder Gittermessungen neben denjenigen, die auf der Gitterkonstante des Kalkspates beruhen, besonders aufgeführt. Zu den Gittermessungen gehört auch eine Angabe von Hunt [241], die im Bureau of Standards ermittelt wurde und in der Tabelle mit enthalten ist. — Ferner haben Bäcklin [207] und Wetterblad [245] eine Beeinflussung der Wellenlänge durch die chemische Bindung des emit-

Tab. 7. Tabelle der K-Reihe des Aluminiums. (Fortsetzung der Tabelle X-Einheiten Bd. VII, S. 56.)

	Diese An des K	gaben beruhen auf der alkspates 3029.45 X-E Siegbahn [291]	Diese M Glas- o	ner Frank				
Be- zeich- nung der Linien	Bäcklin [207], [224] X-Ein- heiten	Wetterblad [245, 246]	Druy- ve- steyn [249]	Larsson [267]	Söder- mann [282]	Bäcklin [271]	Hunt [240]	Terme nach Sieg- bahn [291]
$a_2 \\ a_1$	2 2.44	3320.5 diente als Normale	-	8322.48	8323	8333	8340	K-L _{II} K-L _{III}
a	-	8286.3	-	-	- I	- 1	-	_
α_3	-	8266.9	-	particit exp	0000	-	1101034	- ALLAND
a	-	8251.2		-	8262	10-201	-	- ·
as		8209.9			-			-
a		8189.7	-	-	-	-	-	-
β		8043	-	-	1	-	-	-
β_1	-	7965	-	_	5050	-	-	K-MIII
$\beta_{\rm X}$	_	7944	7819	-	1952		-	
β'''	_	AT AND STORE (DE	J		100000			

Termwerte von Al nach Siegbahn [244a]

Bezeichnung .	K	LII	L _{III}	MII	MIII
Wert von v/R	114.8		5.3	0.4	

tierenden Atoms festgestellt und gemessen. — Horton, Andrews and Davies [178], Lukirsky [185] und Holweck [208, 208a] haben ferner Anregungspotentiale und Ionisierungsspannungen von Aluminium ermittelt. — Horton [177] findet mit Hilfe der photoelektrischen Wirkung der Röntgenstrahlen als Anregungsspannung 107 und 66 Volt für die L_{III} - und L_{II} -Niveaus, während die weiter gemessene Anregungsspannung von 42 Volt vielleicht eine m L_{II} -M_{II}-Übergang zukommt. — Lukirsky [197] erhält mit Hilfe von Sekundär-Elektronen für die Absorptionsgrenze der L-Serie 119 Volt und für die M-Serie 40 Volt. Als Anregungsspannung der L-Serie findet er etwa 80 Volt und gibt ferner als Wellenlänge für die L-Serie von Al etwa 154 AE an. — Lorenz [254] untersucht die Abhängigkeit der Intensität der Röntgenlinien von der Röhrenspannung. — Blackhurst [260] führte Absorptionsmessungen am Al von 0,63 bis 2 AE aus und fand das λ^3 -Gesetz nicht bestätigt.

Weiter sind hier die Arbeiten von Kurth [162 und 163] zu erwähnen. Kurth hat mit Hilfe der Mindestspannungen für Röntgenstrahlen die Lage der Absorptionskante der M-Serie von Al zu 326 AE und die der L-Serie zu (133?) 103 AE bestimmt.

Bandenspektra. Es sind zwei verschiedene Bandengruppen bekannt: die erste zwischen λ 5700 und λ 4160, deren stärkste Gruppen im Grün liegen, und die daher meist die grünen Aluminiumbanden genannt werden, und sehr lange bekannt sind. Ferner eine zweite etwa zwischen λ 4600 und λ 4070 liegende Gruppe, die erst in neuer Zeit mehr Beachtung gefunden hat. Für beide Bandengruppen ist die neue Literatur recht umfangreich, und es kann nur in aller Kürze darüber berichtet werden.

1. Die Oxydbanden. Man hat sehr lange darüber gestritten, ob die grünen Banden zum Metall selbst oder zum Oxyd gehören. Man kann jetzt wohl sagen, daß die Frage zugunsten des Oxyds entschieden ist; Gründe, die sich aus der Struktur ergeben, sehe man z. B. bei Mulliken [218].

Die Messung dieser Banden ist in neuerer Zeit besonders genau von Lauwartz [68] ausgeführt, und nach dessen Zahlen hat Deslandres [147] das Spektrum berechnet. Auf S. 58 von Band VII₁ ist versehentlich eine falsche Formel als das Ergebnis von Deslandres angegeben; richtig heißt es:

$$\nu = 36825.9 + \frac{12.776}{2} (n + 0.873)^2 - \frac{7.06}{2} (p + 0.424)^2.$$

Die Formel soll gelten für n von 69 bis 75, für p von 122 bis 114. Nach Rechnung von Mörikofer [217] ergibt aber die Formel durchschnittlich um 10A zu große Zahlen.

Dann hat sich Glaser [170] mit offenbar ungenauen Messungen der Banden befaßt und vergleicht die Banden mit denen des Beryllium. Seine Betrachtungen sind unzutreffend; eine gerechte Kritik gibt Mörikofer [217]. Dieser hat eine sehr ausführliche und sorgfältige Untersuchung des Spektrums und seiner Struktur ausgeführt, soweit der damalige Stand der Theorie es gestattete. Zu den 6 bekannten Bandengruppen fügt er noch zwei freilich recht schwache hinzu und mißt im ganzen

71 Kanten. Er stellt ein Kantenschema auf und berechnet eine Gleichung, die alle Kanten darstellt:

$$\nu = 24867.48 - 139.06 \text{ n} + 3.327 \text{ n}^2 - 685.52 \text{ g} - 7.16 \text{ g}^2$$

für n von 1 bis 18, g von 1 bis 8.

Ein anderes Kantenschema gibt Mecke [216] nach denselben Messungen, das hier wiedergegeben sei.

n/n'	0	1	2	3	4	б	6	7	8
0	4842	5079	5337	5615	and R with	alessered.			
1	4648	4866	5102	5358	5635				
2	4470	4672	4888	5123	5376	5651			
3	4308	4494	4694	4909	5143	5594	5666		
4	4158	4330	4516	4715		5161	5409	5677	
5	nine mide	4181	4352	4537	4736	1	5177	5422	5687
6			4202	4373	4557	4754	-	5192	5434
7				4223	4394	4576	4771	-	5205
8	121-0	And service	in the second		4243	4412	4594	4788	
9	Inter office		No. of the Local Distance	1000	BALL SH	4261	4430	4610	4801
10	mi wate	steicig d	R. mini	Service Id.	issencenti	NO subre	4279	4463	4625

Die schwächsten 13 Kanten für n' > 8 und n > 0 sind weggelassen, ließen sich aber auch einordnen. Auch Mecke berechnet eine Kantenformel:

$$\nu = 20646.0 + n (866.1 - 4.0 n) - n' (971.0 - 7.2 n')$$

und bemerkt, daß es sich um ${}^{2}\Sigma^{1} - {}^{2}\Sigma^{1}$ -Terme handelt.

Dies Kantenschema wird von Eriksson und Hulthén [210] bestätigt. Sie versuchen als erste, die Einzelbanden zu betrachten. In der Nähe der Kante können sie zwar das Spektrum nicht genügend auflösen, aber in den Banden 4471 (n' = 2, n = 0), 4648 (1.0) und 4842 (0.0) finden sie P- und R-Zweige. Endlich hat Pomery [225, 236, 242] diese Aufgabe an den Banden (0.0), (0.1) und (1.0) aufgenommen. Auch er findet, daß kein Q-Zweig vorhanden sei, die Zweige P und R aus Paaren bestehen. Mit den Angaben von Eriksson und Hulthén ist er nicht einverstanden. Als Trägheitsmoment für den Anfangs- und Endzustand berechnet er: $(46.02 \pm 0.02) \times 10^{-40}$ und $(43.38 \pm 0.02) \times 10^{-40}$, als Kernabstand in den beiden Fällen 1.665×10^{-8} und 1.617×10^{-8} cm.

Hori [232] findet, daß bei Explosion von Al-Drähten die Banden (0.0), (1.0) und (0.1) umgekehrt sichtbar sind.

Condon [228] hat eine Theorie für die Verteilung der Intensitäten unter den Banden gegeben; er prüft sie auch an den AlO-Banden und findet sie ziemlich gut bestätigt. — Ornstein und Wijk [278] berechnen nach ihr die Temperatur des strahlenden Moleküls; das Gleiche wiederholen Ornstein und Brinkmann [290a] mit größerer Genauigkeit; sie finden als Mittelwerte der Temperatur aus der $1 \rightarrow 0$ AlO-Bande etwa 3600° abs. und aus der $0 \rightarrow 0$ -Bande 2980° abs.

2. Die Hydridbanden. Wenn man den Aluminiumbogen in Luft von Atmosphärendruck brennen läßt, so erscheinen nur die Oxydbanden. Wird aber der Druck

4*

verkleinert, so treten neue, auch nach Rot abschattierte Banden auf, deren Kanten etwa bei 4067, 4241, 4354 und 4368 liegen. Sie werden viel stärker, wenn der Bogen in Leuchtgas, Ammoniak oder gar Wasserstoff brennt und nehmen dann mit dem Druck zu.

Zuerst hat Basquin [66] sie im Jahre 1901 bemerkt, als er einen rotierenden Bogen in Wasserstoff brannte; er hat auch einige Linien gemessen, worüber das Wesentliche im zweiten und dritten Band zu finden ist. Er gibt aber falsche Linien als Köpfe an. — Dann hat Barnes [103] die Banden bei vermindertem Druck erhalten und Linien zwischen 4241 und 4379 gemessen. Als Kanten gibt er 4241, 4259, 4353. Er veranlaßte Miß Howson [115] zu einer erneuten Messung. Sie gibt noch 4280 als Kante an und berechnet Formeln für 3 von den Banden, — aber die ganze Rechnung ist unbrauchbar, wie eine scharfe Kritik von Mörikofer [217] zeigt.

Einen wesentlichen Fortschritt bringt Mörikofer [210, 217]. Er fügt vor allem noch Banden nach kürzeren und längeren Wellen hinzu mit Köpfen bei 4066 und 4586. Es findet, das Spektrum trete in zwei "Formen" auf, in der zweiten aber nur selten, ohne daß es ihm gelingt, die Bedingungen für die zweite Form zu finden, in welcher die Banden weit linienreicher sind und weiter reichen. Später [210, 247] hat sich gezeigt, daß es im wesentlichen nur Intensitätsunterschiede sind. Die Linien der Banden werden mit wachsender Ordnungszahl unschärfer. Bei gesteigerter Intensität, wie man sie z. B. durch gesteigerten Gasdruck erreichen kann, werden sie deutlicher, das Band reicht weiter, namentlich, da die Linien dann wieder schärfer werden. Zu dieser "Prädissoziation" vgl. man Stenwinkel [283], Kronig [279], Franck und Sponer [251], Herzberg [287], Henri [286]. Mörikofer mißt dann sorgfältig alle sichtbaren Linien; er zeigt, daß jedes Band aus 3 Linienserien besteht, von denen 2 den gleichen Anfang haben, die dritte weiter nach Rot zu beginnt. Er berechnet Formeln für die sämtlichen Linienserien. Seine Messungen sind in Tab. 8 zusammengestellt.

Die sorgfältige und umfangreiche Arbeit gibt indes keinen Aufschluß über den Bau des Spektrums. Erst Mecke [216] sagt, es handele sich augenscheinlich um P-, Q- und R-Zweige. Das bestätigen denn auch Untersuchungen von Eriksson und Hulthén [210]. Sie messen die 3 ersten Banden 4067, 4241, 4354, während die vierte bei 4586 zu schwach war; die üblichen Ansätze für die 3 Zweige jedes Bandes erweisen sich als angenähert erfüllt. Die Kombinationsbeziehungen werden herangezogen. Es wird festgestellt, daß die Banden 4067 und 4241 denselben Endzustand, 4067 und 4354 denselben Anfangszustand haben. Ferner wird ein Niveauschema gezeichnet. Für das Trägheitsmoment des nicht angeregten Moleküls ergibt sich J = 1.54×10^{-40} gcm⁻², für den Kernabstand 0.984×10^{-8} cm. Später finden Bengtsson und Hulthén [248] noch zwei neue Banden bei 2 2229 und 2 2254, die nur P- und R-Zweige haben, 2229 hat denselben Endzustand wie 4241, 2254 den von 4354. Endlich fügen Bengtsson und Rydberg [272] noch eine Bande bei 2 2033 hinzu. Hulthén und Zumstein [233] erhalten die 3 Banden 4241, 4067, 4354 in Absorption und bestätigen die Analyse [210]. - Asagoe [259] teilt mit, daß er bei Untersuchungen von J gefunden habe: Wenn Jod und Wasserstoff zugegen sind, man Aluminiumelektroden benutzt, tritt ein neues AlH-Band auf, das in reinem H fehlt.

Endlich ist noch zu erwähnen, daß Mörikofer im Bogenspektrum des Al eine

Tabelle 8.

Wellen-	Intens	sität	,	Wellen-	Inte	nsität		Wellen-	Inte	Intensität	
länge	Form I	Form II		länge	Form I	Form II	15	länge	Form I	Form II	
4066.3	-	2	4	261.64	5	8.5	12	4355.07	1	2.5	
66.7	-	0.2		62.432	5	3.5	317	55.71	0.1	0.1	
67.4		0.3		63.361	5	3.5	1	56.44	0.5	2.5	
68.5		0.5		64.073	1	1		57.47	0.1	0.1	
70.2	_	0.5		64.441	5	4	1997	58.14	0.5	1.5	
71.5	-	0.2		65.678	5	4	dia.	59.81	0.5	0.5	
71.8	-	(0.5)	(T)	66.553	1.5	1.5	min	60.30	0.1	0.1	
72.5	-	0.7	1	67.091	5.0	4		60.48	1	2.5	
73.6	-	1		68.698	5	4		61.10	2	2.5	
75.0	-	1.2		69.139	2	2		62.07	2.2	2.5	
76.8	_	1.5		70.523	5.8	4	4.3	62.27	0.1	0.5	
78.9	10 140	2	1.8 10	71.820	2.5	3	100	62.91	0.1	0.1	
81.5	-	1.5		72.572	5.5	4	28	63.38	2.5	2.5	
85.4	-	1	1	74.644	3	3.5	11.5	65.14	2.2	3	
89.3		1		74.89	5.5	4.5		67.08	2	3	
93.5		1		77.52	6.0	5		68.04	0.5	0.5	
98.2	-	1		80.453	4	2		69.52	1.5	3.5	
4241.048	4	4		80.60	3	2.5		71.36	1	1	
41.19	5	5		83.780	4	2.5		72.3	-	3.5	
41.57	4	4		87.08	3.5	3.0		75.0	1	1	
41.64	3	3		87.57	-	8.3		76.0	-	3.5	
42.173	3.5	3.5		90.54	3.5	3.5		79.2	-	2	
42.444	3	3		91.85	-	3.5 -		79.9	-	8.5	
42.989	3.5	3.5		94.15	3.5	3.5		83.6	-	3	
43.650	2.5	2.5		96.79	-	1		84.4	-	3	
43.982	3.5	3.5		97.97	3.5	4	-	88.2	-	2.5	
45.149	3.5	3.5	4	4301.97	3.5	4		90.1	-	2.5	
45.31	2.5	2.5	1	02.25	-	1.5		93.3	-	2.5	
46.482	3.5	3.5		06.19	3.5	4		95.7	-	1	
47.48	2.5	2.5		09.0	-	4		99.0	- 1	2.5	
47.96	3.3	3.3		10.67	3.3	2		4404.9	-	2.5	
49.57	3.0	3	10.12	15.41	3	4		12.2		2	
50.3	2	2		16.4	-	2		19.8	-	1.5	
51.29	2.5	2.5		20.48	2.5	4		27.9	-	0.6	
53.15	2	2		25.91	2	3		37.2	-	0.3	
53.9	1.5	1.5		31.8	-	4	1	4586.4	_	0.5	
55.12	1.5	1.5		38.2	10-10	8.5	10.7	88.7	i curunda	0.5	
57.20	1	1		45.1	-	4.5	1	91.3	mound	0.8	
58.4	0.1	0.1		52.8	-	5		94.2	·	(0.9)	
59.5	2	2	-	53.12	1.5	3		97.5	-	1	
59.7	3	2.5		53.27	1	2.5		4601.6	-	1.5	
60.0	4	2.5		53.42	1	2		06.6	-	1	
60.45	4.4	3		54.07	1	2		12.8	-	0.5	
60.98	4.7	3.3		54.77	0.1	0.1		-		and the second	

Reihe von Banden gefunden zu haben glaubt, deren Ursprung unbekannt ist. Sie sind nach Violett abschattiert, zeigen keine Auflösung in Linien. Sie treten nur auf, wenn auch die Oxydbanden sichtbar sind, werden von der Bogenmitte, nicht von der

Aureole ausgesandt. Die Kanten, von welchen aber einige unscharfe Linien oder Liniengruppen sein können, sind:

4642.4	4482.5	4443.0
4627.1	4475.5	4427.3
4616.3	4466.5	4408.4
4599.5	4455.3	4390.2

Auf einer Aufnahme erhält er von der Aureole eine nicht aufgelöste, nach Rot abschattierte Bande bei 4546.2.

Weiter sei noch eine Abhandlung von Ludloff [234] erwähnt. Es gelingt ihm nicht, die Terme der Banden vollständig zu isolieren. Die 3 Endterme der Hauptbanden unterscheiden sich nur in einer in m linearen Funktion. Die Laufzahl ist halbzahlig.

Watson und Perkins [244] untersuchen die AlH-Banden in zweiter und dritter Ordnung eines großen Konkavgitters bei Feldstärken bis zu 35000 Gauß und deuten die AlH-Banden als ¹P—¹S-Kombination.

Mecke [265, 290] gibt folgende Werte für die AlH-Banden an:

Term	Distanting and	1.0.1 11		Trägheitsmomente		Kernabst.	
	v ₀	a'/b'	a''/b''	J'	J''	r'	r''
¹ P — ¹ S	23477.0	1082	1625	4.58	4.38	1.69	1.66
'S-'S	44597	1326	1625	4.33	4.38	1.65	1.66

Term ν_0		$\Gamma erm \qquad \nu_0 \qquad a'/b'$		a ₀	10 ³ r ₀ cn	
15	cor-	1652.8 2773	6.33	0.21	1.66	
1П	23471	1082.8	6.08	0.62	1.69	
15	44597	1326	6.40	0.56	1.65	
15	49290	_	6.54	-	1.63	

Ferner führt W. Weizel [293] folgende Molekülkonstanten für AlH an:

Zum Schluß seien noch kurz einige Ramaneffektuntersuchungen an Aluminiumverbindungen erwähnt.

Daure [263] fand an wässerigen Lösungen von AlCl₃ und AlBr₃ keinen Ramaneffekt, während Ramas wamy [281]' und Mukherjee and Sengupta [268] an wässerigen Lösungen von Aluminiumsulfat und Aluminiumnitrat einige Ramanlinien fanden, die dem SO₄-Ion zuzuordnen sind.

Abgeschlossen am 15. Nov. 1931.

54

Argon (Ar³⁶, Ar⁴⁰ = 39.94, Z = 18).

Literatur.

[101] E. Böttcher, Der Effekt des elektrischen Feldes im Spektrum des Argons und Sauerstoffs. Diss. Greifswald (1918).

[102] T. Takamine and N. Kokubu, The effect of an electric field on the spectrum lines of argon. Mem. Coll. Kyoto 3 p. 282-285 (1919).

[103] G. Déjardin, Ionisation de l'argon par des électrons lents. C. R. 172 p. 1347-1348 (1921).

[104] G. Déjardin, Excitation des spectres de l'argon par des électrons lents. C. R. 172 p. 1482 bis 1484 (1921).

[105] W. F. Meggers, Interference measurements in the spectra of Argon, Krypton and Xenon. Bull. Bur. Stand. **17** p. 193—202 (1921). — Sc. Pap. Nr. 414.

[106] W. F. Meggers, Standard wave-lengths and constant frequency differences in spectra of inert gases. Phys. Rev. (2) 18 p. 160-161 (1921).

[107] E. Schramm, Die Anregung der Lichtemission durch den Stoß schneller Elektronen. Diss. Greifswald (1921).

[108] F. Horton and A. C. Davies, A spectroscopic investigation of the ionization of argon by electron collisions. Proc. Roy. Soc. A **102** p. 131-151 (1922).

[109] R. Seeliger, Über die Lichtemission der Glimmentladung. Ann. d. Phys. (4) 67 p. 352-358 (1922). – Zs. f. Phys. 5 p. 182-187 (1921); ib. 7 p. 93-96 (1921).

[110] W. W. Shaver, Trans. Canada (3) 16, Sect. III p. 135 (1922). Erwähnt in [63].

[111] J. Steubing, Die Spektra von Argon, Jod und Stickstoff im elektrischen Felde. Phys. Zs. 23 p. 427-432 (1922).

[112] P. Zeeman und H. W. J. Dik, A connection between the spectra of ionized potassium and argon. Proc. Amsterdam 28 p. 67-80 (1922).

[113] L. et E. Bloch et Georges Déjardin, Spectres d'ordre supérieur de l'argon, du crypton. et du xenon. C. R. 178 p. 766-769 (1923).

[114] G. Hertz, Über die Anregungs- und die Ionisationsspannung von Neon und Argon und ihren Zusammenhang mit den Spektren dieser Gase. Zs. f. Phys. 18 p. 307-316 (1923).

[115] W. M. Hicks, Notes on the radiation and ionization potentials of the rare gases, and the singled and enhanced series of argon. Phil. Mag. (6) 45 p. 480-496 (1923).

[116] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of physics 2 p. 167-278 (1923).

[117] P. Zeeman und H. W. J. Dik, Weitere Beobachtungen über eine Beziehung zwischen den Spektren des ionisierten Kaliums und des Argons. Ann. d. Phys. (4) **71** p. 199–208 (1923).

[118] L. et E. Bloch et Georges Déjardin, Spectres d'étincelle d'ordre supérieur de l'argon, du crypton et du xenon. Ann. de phys. (10) 2 p. 461-505 (1924).

[119] A. L. Clark, Intensities in the argon spectrum. Trans. Canada (3) 18 Sect. III p. 313-323 (1924).

[120] Georges Déjardin, Recherches sur l'excitation des spectres des gaz monoatomiques. Ann. de phys. (10) 2 p. 241-327 (1924).

[121] Georges Déjardin, Excitation des spectres de l'argon, du crypton et du xenon. C. R. 178 p. 1069-1071 (1924).

[122] G. Holst und E. Oosterhuis, De laagspanningsboog. Physica 4 p. 42-45 (1924).

[123] R. C. Johnson and W. H. B. Cameron, The effect of argon on certain spectra. Proc. Roy. Soc. A 106 p. 195-215 (1924).

[124] J. C. McLennan and G. M. Shrum, On the luminescence of nitrogen, argon and other condensed gases at low temperatures. Proc. Roy. Soc. A **106** p. 138-149 (1924).

[125] Percy Lowe and D. C. Rose, Intensities in the argon spectrum. Phys. Rev. (2) 23 p. 770 (1924).

[126] Henry A. Barton, Single and double ionization of argon by electron impacts. Phys. Rev. (2) 25 p. 469-483 (1925).

[128] G. Hertz und R. K. Kloppers, Die Anregungs-Ionisationsspannung der Edelgase. Zs. f. Phys. 31 p. 463-469 (1925).

[129] F. Holweck, Détermination du potentiel critique L_{III} de l'argon. Discussion de la précision de cette mesure et des mesures analogues. C. R. **180** p. 203-206 (1925).

[130] Percy Love and D. C. Rose, Trans. Canada (3) 18, Sect. III p. 313 (1925); ~erwähnt in [176].

[131] Th. Lyman and F. A. Saunders, On the spectra of Neon and Argon in the extreme ultraviolet. Nat. **116** p. 358 (1925).

[132] K. W. Meißner, Absorption in angeregten Gasen. Physik. Zs. 26 p. 687-689 (1925).

[133] Lucien B. Taylor, The spectrum of krypton in the extreme ultraviolet. Proc. Nat. Acad. 12 p. 658-659 (1925).

[134] J. Vegard, The luminescence from solidified gases down to the temperature of liquid hydrogen and its application to cosmic phenomena. Comm. Leiden phys. Lab. Nr. 175 (1925).

[135] D. Coster und J. H. van der Tunk, Das Röntgenabsorptionsspektrum des Argon. Zs. f. Phys. **37** p. 367-373 (1926), u. Physica **6** p. 258-265 (1926).

[136] D. Coster and J. H. van der Tunk, The fine structure of the X-ray absorption edge in the K-series of Argon and its possible interpretation. Nat. **117** p. 586-587 (1926).

[137] H. B. Dorgelo und J. H. Abbink, Das Argonspektrum im äußersten Ultraviolett. Naturw. 14 p. 755-756 (1926).

[138] H. B. Dorgelo, De metastabiele toestanden van Neon, Argon en Kwick. Wis. en Natuurk. Tydschr. 3 p. 65-68 (1926).

[139] H. B. Dorgelo en T. P. K. Washington, De levensduur van metastabiele toestanden van neon, argon en helium. Natuurkunde **35** p. 1009-1022 (1926).

[140] W. Grotrian, Bemerkungen über das M-Dublett des Argons. Zs. f. Phys. 40 p. 10-11 (1926).

[141] S. Goudsmit und E. Back, Die Koppelung der Quantenvektoren bei Neon, Argon und einigen Spektren der Kohlenstoffgruppe. Zs. f. Phys. 40 p. 530-538 (1926).

[142] G. Hertz und H. Abbink, Die Resonanzlinien der Edelgase. Naturw. 14 p. 648 (1926).

[143] W. M. Hicks, Sur la structure des spectres des gaz rares. Ann. de phys. (10) 6 p. 294-309 (1926).

[144] J. J. Hopfield and G. H. Dieke, PP' group in the elements S I to K IV. Phys. Rev. (2) 27 p. 638 bis 639 (1926).

[145] M. Kahanowicz, Spettro tipo "Pickering" nell' argon. Lincei Rend. (6) 4 p. 285-291 (1926).

[146] K. W. Meißner, Über den Bau des Argonspektrums. Zs. f. Phys. 37 p. 238-242 (1926).

[147] K. W. Meißner, Die Serien des Argonbogenspektrums. I. Zs. f. Phys. 39 p. 172-180 (1926).

[148] K. W. Meißner, Die Serien des Argonbogenspektrums. II. Zs. f. Phys. 40 p. 839-875 (1926).

[149] F. L. Mohler, Excitation potentials of the spectra Argon II and Neon II. Science 63 p. 405 (1926).

[150] F. L. Mohler, Photo-ionization of a gas by a discharge in the same gas. Phys. Rev. (2) 28 p. 46-56 (1926).

[151] F. A. Saunders, On the spectrum of argon. Proc. Nat. Acad. 12 p. 556-560 (1926).
 [152] F. A. Saunders, On the spectra of argon. Bull. Amer. Phys. Soc. Apr. 1926 p. 18.

[153] F. A. Saunders, On the spectra of argon. Phys. Rev. (2) 27 p. 799-800 (1926). Abstr.

[154] Günther Cario, Die Wellenlänge der grünen Nordlichtlinie. Zs. f. Phys. 42 p. 15-21 (1927).

[155] C. Cuthbertson, Absorption of radiation in the extreme ultra-violet by the inert gases. Proc. Roy. Soc. A 114 p. 650-658 (1927).

[156] H. H. Dorgelo und J. H. Abbink, Das "rote" und "blaue" Argonspektri m im äußersten Ultraviolett. Zs. f. Phys. 41 p. 753—768 (1927).

[157] H. B. Dorgelo and T. P. K. Washington, The duration of metastable states of Neon, Argon and Helium. Proc. Amsterdam **30** p. 33-46 (1927).

[158] Karl E. Dorsch und Hartmut Kallmann, Über Ionisationsvorgänge in Wasserstoff, Stickstoff und Argon. Zs. f. Phys. 44 p. 565-574 (1927).

[159] K. W. Meißner, Resonanzstrahlung des elektrisch erregten Argons. Zs. f. Phys. 43 p. 443-453 (1927).

[160] F. M. Penning, Messungen über die Potentialdifferenz zwischen den positiven Schichten in Argon und Neon. Zs. f. Phys. **41** p. 769-774 (1927).

[161] J. W. Ryde, The spectrum of carbon-arcs in air at high current densities. Proc. Roy. Soc. A 117 p. 164-182 (1927).

[162] F. A. Saunders, On the spectrum of argon in the extreme ultra-violet. Proc. Nat. Acad. 13 p. 596-600 (1927).

[163] C. J. Bakker, T. L. de Bruin und P. Zeeman, Der Zeemaneffekt des Argonfunkenspektrums (Ar II) Zs. f. Phys. 51 p. 114—135 (1928); Proc. Amsterdam 31 p. 780—799 (1928); Zs. f. Phys. 52 p. 299—300 (1928).

[164] T. L. De Bruin, Over de spectra van geïoniseerd neon (Ne II) en geïoniseerd argon (Ar II). Acad. Wet. Amsterdam **37** p. 340-350 (1928).

[165] T. L. de Bruin, On the structure of the spectrum of ionized argon (Ar II). Proc. Amsterdam **31** p. 771-779 (1928).

[166] T. L. de Bruin, The spectra of ionized Neon (Ne II) and ionized Argon (Ar II). Proc. Amsterdam 31 p. 593-602 (1928).

[167] T. L. de Bruin, Über das Funkenspektrum des Argons. I. Zs. f. Phys. 48 p. 62-66 (1928).

[168] T. L. de Bruin, Über das Funkenspektrum des Argons. II. Zs. f. Phys. 51 p. 108-113 (1928).

[169] L. S. Bowen, Series spectra of potassium and calcium. Phys. Rev. (2) 31 p. 497-502 (1928).

[170] K. T. Compton and J. C. Boyce, Extreme ultraviolet spectra excited by controlled electron impacts. J. Franklin Inst. 205 p. 497-513 (1928).

[171] K. T. Compton, J. C. Boyce and H. N. Russell, Extreme ultra-violet spectrum of argon excited by controlled electron impacts. Phys. Rev. (2) 32 p. 179-185 (1928).

[172] Ira M. Freeman, The spectrum of the solar corona. Astrophys. J. 68 p. 177-193 (1928).

[173] W. Gremmer, Ergänzungen zu den Spektren des Neons, Argons und Kryptons. Zs. f. Phys. 50 p. 716-724 (1928).

[174] Carl Kenty, The recombination of argon ions and electrons. Phys. Rev. (2) 32 p. 624-633 (1928).

[175] C. Kenty and L. A. Turner, An afterglow spectrum of argon. Phys. Rev. (2) **31** p. 710 (1928).

[176] K. W. Meißner und W. Graffunder, Über die Messung der Lebensdauer angeregter Atomzustände. Ann. d. Phys. (4) 84 p. 1009-1046 (1928).

[177] H. N. Russel, L. T. Compton and J. C. Boyce, The spark spectra of neon and of argon. Phys. Rev. (2) 31 p. 709 (1928).

[178] Adolfo T. Willmas, Estructura a de los espectros de inducción de los gases raros. Espectros del átomo neutro del argon, cripton y xenon. Publ. La Plata 4 p. 253-281 (1928). Phys. Ber. 9, 2 p. 1214. (1928). Proc. Phys. Soc. London 40 p. 312-315 (1928).

[179] C. J. Bakker, On the anomalous g-values in the spectrum of ionized argon. Proc. Acad. Amsterd. 31 p. 1041-1085 (1929). [180] K. A. J. Bosschart, Nachweis der Absorption und der Resonanzstrahlung des elektrisch erregten Argons an einigen Gliedern der Hauptserien 1 s_i — np_k. Diss. Frankfurt (1929).

[181] J. C. Boyce und K. T. Compton, Higher spark spectra of neon and argon in the extreme ultra-violet. Proc. Nat. Acad. 15 p. 656-658 (1929).

[182] K. T. Compton and J. C. Boyce, On the use of the electrodeless ring discharge to excite extreme ultra-violet spectra. Science 69 p. 528-529 (1929).

[183] M. J. Druyvesteyn, Das Nachleuchten von Glimmlampen mit Neon, Argon und Neon mit einigen Prozent Argon. Zs. f. Phys. 57 p. 292-304 (1929).

[184] W. Gliwitzky, Messung von Anregungs- und Ionisationsspannungen nach der Diffusionsmethode. Ann. d. Phys. (5) 1 p. 701-720 (1929).

[185] D. S. Jog, Spectrum of the trebly ionised argon. Nat. 124 p. 303 (1929).

[186] J. C. McLennan, E. W. Samson and H. J. C. Ireton, On the phosphorescence of solid Argon irradiated with cathode rays. Trans. Canada (3) 23, Sect. III p. 25-34 (1929).

[187] O. Oldenberg, Über Struktur und Deutung der Quecksilber-Edelgasbanden. Zs. f. Phys. 55 p. 1-15 (1929).

[188] H. Rosenthal, Die Wellenlängen des blauen Argonspektrums (mit Beiträgen zur Termanalyse). Ann. d. Phys. (5) 4 p. 49-81 (1929).

[189] H. N. Russell and L. S. Bowen, Is there argon in the corona? Astroph. J. 69 p. 196-208 (1929).

[190] Bernhard Schulze, Die Anregung des "roten" und "blauen" Argonspektrums durch Elektronenstoß. Zs. f. Phys. 56 p. 378-393 (1929). — Phys. Zs. 30 p. 169 1929).

[191] C. J. Bakker und T. L. de Bruin, Der Zeemaneffekt des Argonfunkenspektrums (Ar II). II. Zs. f. Phys. **62** p. 32-42 (1930).

[192] C. J. Bakker, Die Änderung der Elektronenkopplung in den Edelgasen. Naturw. 18 p. 1100 (1930). — Nature 126 p. 955 (1930).

[193] Walker Bleakney, Ionization potentials and probabilities for the formation of multiply charged ions in helium, neon and argon. Phys. Rev. (2) **36** p. 1303—1308 (1930).

[194] Werner Braunbeck, Berechnung der Röntgen-K-Terme der leichtesten Elemente und der Edelgase aus optischen Ionisierungsspannungen. Zs. f. Phys. **63** p. 154-167 (1930).

[195] T. L. de Bruin, On the structure of the spectrum of ionized Argon (Ar II). Proc. Amsterdam **33** p. 198-212 (1930).

[196] T. L. de Bruin, Über das Funkenspektrum des Argons. III. Zs. f. Phys. 61 p. 307-320 (1930).

[197] Ira M. Freeman, Über das Leuchten des Argons in der Verzweigung einer Argonröhre. Zs. f. Phys. 59 p. 635-637 (1930).

[198] Ebbe Rasmussen, Bergmannserien im Argonspektrum. Naturw. 18 p. 1112-1113 (1930).

[199] Philip T. Smith, The ionization of helium, neon and argon by electron impact. Phys. Rev. (2) 36 p. 1303-1308 (1930).

[200] L. Vegard, Continued investigation on the luminescence from solidified gases Comm. Leiden labor. Nr. 205 (1930).

[201] L. C. Van Atta, Excitation probabilities for electrons in Helium, Neon and Argon. Phys. Rev. (2) 38 p. 876-887 (1931).

[202] Otto Beeck and J. Carlisle Mouzon, The ionisation of Kr and Xe by positive alkali ions and the ionisation potentials of Ne, Ar, Kr and Xe. Phys. Rev. (2) **38** p. 967—968 (1931).

[203] Suresh C. Deb and Arun K. Dutt, Über die Spektren von doppelt ionisiertem Argon, Krypton und Xenon. Zs. f. Phys. 67 p. 138-146 (1931). Nat. 126 p. 13 (1930).

[204] O. Fischer und W. Hanle, Über photographische Messung von Anregungsfunktionen im Argonspektrum. Zs. f. wiss. Photogr. **30** p. 141-146 (1931).

[205] Ebbe Rasmussen and H. Swenson, Intensity anomalies in rare gas-spectra. Nature **128** p. 188 (1931).

[206] E. L. Wormser, Ionization of helium, neon and argon. Phys. Rev. (2) 38 p. 454-456 (1931).

Für die wenigen Jahre, die seit dem Erscheinen der ersten Bogen des Bandes VII im Jahre 1923 verflossen sind, ist der Fortschritt in der Kenntnis der Argonspektra sehr bedeutend. Neue Messungen sind gemacht, welche die alten von Kayser, Eder und Valenta u. a. weit übertreffen, sowohl an Genauigkeit, wie an Linienreichtum. Ferner ist es gelungen, den Bau wenigstens von Ar I und von Ar II nahezu vollständig aufzuklären, während für die höheren Ionisationsstufen nur allererste Anfänge zu verzeichnen sind. So kann man die Spektra der spektroskopisch verschiedenen Elemente Ar, Ar⁺ usw. getrennt behandeln, statt ein Gemisch derselben zugrunde zu legen, wozu man früher genötigt war.

Ar I. Die Ordnung dieses Spektrums verdankt man fast ausschließlich Meißner. Er geht aus von der Auffindung der Resonanzlinien λ 1066, 1048 durch Lyman und Saunders [131, 153], die dann von Hertz [114], Taylor [133], Hertz und Abbink [142] bestätigt wurden. Dazu nimmt er die Analogie mit dem von Paschen aufgeklärten Neonspektrum, und eigene Versuche über Absorption des Gases [132]. Da die alten Messungen sich als zu unvollkommen erweisen, macht Meißner neue Aufnahmen mit Gitter und Prismenapparaten; als Normalen zur Messung werden teils Argonlinien, die er selbst früher [80] mit Interferometer gemessen, kombiniert mit gleichen Messungen von Meggers [96], benutzt, teils Eisenlinien. Die Messungen reichen vom Ultrarot bis λ 2961. Es gelingt, die große Mehrzahl der Linien in ein Schema zu bringen, und damit das Spektrum Ar I im wesentlichen aufzuklären. Auch für das Schumanngebiet lagen schon mehrfache Messungen vor, und einen Teil derselben kann Meißner mit seiner Ordnung vereinigen und neue Terme gewinnen. Doch sollen diese kurzen λ gesondert besprochen werden [146, 147, 148].

Später hat Gremmer [173] den langwelligen Teil erneut untersucht; einige der Meißnerschen Linien findet er nicht. Andererseits findet er eine Anzahl neuer Linien, die das Meißnersche Schema ergänzen, und eine größere Zahl von sehr schwachen Linien, die sich nicht einordnen ließen, deren Bedeutung also unsicher ist. Endlich hat Rasmussen [198] Linien im Ultrarot und Rot gemessen, eine größere Zahl neuer gefunden, Bergmannserien und Kombinationen eingeordnet, auch einige der schwachen Linien von Gremmer.

Die folgende Tabelle enthält die Zahlen von Meißner nebst den von Gremmer und Rasmussen eingeordneten Linien. Angeschlossen sind die schwachen Linien von Gremmer.

Die Tabelle enthält ferner die Kombinationen der Terme der von Meißner [146, 147, 148], Rasmussen [198] und Gremmer [173] eingeordneten Linien. Die mit G bezeichneten Linien sind von Gremmer, die mit R bezeichneten von Rasmussen eingeordnet. Ganz analog dem von Paschen analysierten Neon fand Meißner 10 p-, 4 s- und 12 d-Termfolgen. Wie beim Neon zerfallen die 10 p-Termfolgen in zwei Gruppen, deren Grenzen eine Differenz von 1423 cm⁻¹ aufweisen. Hinsichtlich der gewählten Termsymbolik ist zu bemerken, daß hier von einer Übertragung in die Russell-Saundersche Symbolik abgesehen werden mußte. Die Bezeichnung ist den Originalarbeiten entnommen, in denen die Verfasser ganz analog der von Paschen bei der Analyse des Neonspektrums angegebenen verfahren. Tab. 1a enthält eine Zusammenstellung der p-, s- und d-Terme von Ar I.

Tal	hel	0	1 .	Ar	I.
Las	ocr	10		m	**

	Kombination		Meißner [147, 148]	Gremmer [173]	Rasmussen [198]	
	$1s_{2} - 2p_{10}$	11590	8	-		1)
R	$2p_{s} - 2s_{s}$	10685			5.6 3	
	$1s_3 - 2p_{10}$	640	_	-	_	
R	2p10-2s5	77	NOTED DI	TOUTOT CAME	7.3 5	and of
	_	40	12	a she to she	1.19/2_10799	1)
R	$3d_{a}-4Z$	10506			6.9	
R	$2p_{10} - 2s_4$	10478	_	-	8.2 5	
R	$1s_3 - 2p_{10}$	70		0 110 10 200	0.0 8	1.16
R	$3d_4 - 5U$	10331	110 L007 M	100 100	1.3	100
R	$3 d_4 - 5 W$	07	no measie n	nelli	7.0	1.1
R	$2p_9 - 3s_2''$	10251	T are him		1.2 1	
		10066	-	_	6.9 2	
R	3d4'-5U	49	-	-	9.8	
R	3 d ₄ '-5 W	27	_	_	7.5	
Territ	$1S_2 - 2P_8$	9784	46		Participation of the second	112
692	and the second second second	66	58 0			2)
e interes	$1S_4 - 5P_{10}$	9657	90 2	-	-	
R	$3d_3 - 5X$	9477		_	7.6	
R	$3d_3 - 2Y$	59	-	9.64	9.64	
	1S2P.	9354	04 3		Do no na n	14
0100		9291	62 0		Carried and S	1
	1 S2 P.	24	50 5	1	with sufficient	000
R	$3d_{s} - 5X$	9198	-	8.58	8.58	
R	$3d_{5}-5Y$	80			0.07	
R	$2p_{10}-2s_{9}$	94	60 0	Profession and	L'aron <u>en</u> nord	100
R	$2p_{10}-2s_{2}$	92	and the state	ninit 2 hours	2.61 10	
	-110	22	98 10	Innin - Danie	-	
	$2p_{a} - 4d_{10}$	9075		3.35	. 3.32	3)
R	3d5 X	73	_	_	3.32	1
R	3d, -6U	60	na pim mu	7.79	6.79	3)
G	3p, -3W	57		7.29	7.29	1
R	2p10-2sa"	8994		Prove and all a	4.6 2	
R	$2p_1 - 4d_2$	88	-		8.6 1	1
G	$2p_a - 4d_s$	62		2.82	_	3)
G	2p10-3s1'	8874	-	4.18	and the second	1
R	3d.'-6U	49	44 0	unpil Althou	9.44	
R	3d4 6 W	40	Partin - herer	0.27	0.27	
	$2P_{a}-4D_{s}$	99	20	-		
G	$2p_4 - 4d_e$	8784		4.38	_	3)
	2P4D.	61	68 0	_	1	1
	2p4d.	8678	61 0	a stieleine	Red CL. Arris	
	$1s_{2} - 2p_{2}$	67	94 8	allo teoremite	trata name	
	0 11	1000				

R: Einordnung nach Rasmussen [198], G: Einordnung v. Gremmer [173].

1) Gemessen von Paschen [59] mit Thermosäule und Galvanometer.

²) Diese Linien findet Gremmer [173] nicht.

3) Gemessen von Gremmer [173] und in das Schema von Meißner eingeordnet.

- A -	-	_		-
<i>a</i> .	r	cr.	α	-
<i>4</i> a		<u> </u>		

	Kombination	Transland Series	Meißner [147, 148]	Gremmer [173]	Rasmussen [198]	
	$2p_5$ — $4d_5$	20	43 0	- 12	- 14	a
	100-T-10-10-10-10-10-10-10-10-10-10-10-10-10-	05	84 0	- 1 hr	100 - a 1	
G	$1s_2 - 2p_5$	8578		8.20	1001 - 1	1)
	$1s_2 - 2p_4$	21	442 10			2)
	$2p_6 - 4d_3$	8490	30 0		-	
R	$3d_4 - 7U$	43	-		3.5	
R	$3d_4 - 7W$	37	-	- 19 m	7.9	
10	$1s_4 - 2p_8$	24	648 8	1.480	-	2)
	$1s_2 - 2p_3$	08	213 15			2)
R	$3 d_3 - 6 X$	8399		. 9	9.4	15
R	3 d ₃ 6 Y	92	- 1	2.27	2.27	
	$2p_3 - 4d_4$	84	73		100	
G	$2 p_2 - 4 d_1''$	66	-	6.41	- 84	1)
	$3d_3 - 5Z$	32	0-	2.25	2.25	
14	$1 s_2 - 2 p_2$	8265	524 20		-	2)
R	3d4'-7U	55		5.11	-	
	$3d_{4}'-7W$	49	- 11		9.7	
G	$2 p_3 - 4 d_1''$	24	199-	4.72	-	1)
	$2 p_2 - 3 s_5$	03	42 0			19
R	$3d_5 - 6X$	8178	0- 2	8.91	8.91	
R	$3d_5 - 6Y$	71		1.99	1.99	
G	$2p_{2} - 3s_{4}$	51	-	1.86	-	1)
192	$2p_4 - 4d_1''$	19	- 1	9.13	-	
	$1s_5 - 2p_9$	15	309 20		_	2)
77	$1s_4 - 2p_7$	03	692 10	_	_	2)
	2p4d.	8094	05 1		_	3)
R	3d8U	83	194	- 10	3.1	1
R	3d6 X	79	1.18-	9.72	9.73	
	2 p3 s.	66	57 2		_	
	2p - 4d.	53	33 2		_	
	$2\mathbf{p}_{6} - 4\mathbf{d}_{6}$	46	08 1			
	2p38.	87	22 1	_		
	$1s_{-2}n_{-2}$	14	785 15		_	2)
1	1s9n	06	157 15	_		2)
	1.54 - P6	7997	-		7.59	1
1201	2n3e_	65	00 0		1.00	
	$2p_4 - 0.55$	60	76 1			3)
	$2p_3 - 4d_2$	57	01 0			1
	1e - 2n	48	176 20	13		2)
1.0	2n - 2n	16	47 1		1.27	-)
R	2 P4 - 054 2 d' OT	10	- T	0.49	0.49	10
R	2d' OW	10	and strength	0.45	7.50	
10	ou ₄ —ow	7901	10 6		1.09	103
	$2p_6 - 4d_3$	1091	10 6		-	
	2p ₅ -3s ₄	68	19 4		-	
	$^{2}p_{4} - ^{4}d_{2}$	61	92 1	-		1

1) Gemessen von Gremmer [173] und in das Schema von Meißner eingeordnet.

2) Mittel aus interferometrischen Messungen von Meggers und Meißner.

³) Diese Linien findet Gremmer [173] nicht.

Argon

	Kombination	and a start	Meißner	Gremmer	Rasmussen	
	Kombination		[147, 148]	[173]	[198]	
R	3da7 X	60	_	0.48	0.48	
	3d ₃ -7Y	55	70	-	-	
R	3d49U	53	-		3.37	
		7835	70 0	-	-	
	$2p_{5}-4d_{2}$	14	35 0	-	- 11	
	$2p_{7} - 4d_{3}$	7798	52 1	- 1	-	
	$1s_3 - 2p_2$	24	210 10	- 7	- 12	1)
	1 s ₅ -2p ₇	23	759 10		-	1)
	$2 p_a - 4 d_a$	04	83 3		-	1
R	3d,'-9U	7690	09 0		0.09	
	XX 1823	79	54 0	-	- 14	2)
	$2p_{8}-4d_{5}$	70	05 3			
R	$3d_{5}-7X$	66	99 0	-	6.99	2)
R	3d5-7Y	61	_		1.65	
	$1s_5 - 2p_8$	35	107 10		- 1	1)
	$2p_{2} - 4s_{1}'''$	28	88 2	- 10-	- 94	198
	$2p_{2} - 4s_{1}''$	18	34 2	-	56	
		7594	48 Ou	- 51	-	2)
R	3d7X	79	73 0		9.73	
	$2p_{e} - 4d_{1}''$	69	48 0		-	18
	$2p_1 - 5d_5$	67	85 0	- 97	- 14	
R	3da -8Y	43	-	3.96	3.96	10
1	$1 s_4 - 2 p_5$	14	650 8		-	1)
	2pa -4s1""	10	42 3		-	
	$1 s_{a} - 2 p_{1}$	03	866 15	-	-	1)
	$2p_{a} - 4s_{1}''$	00	70 0			2)
R	3d -6Z	7491	-		1.88	
	$2p_{7} - 4d_{1}''$	84	24 6	- 7.44	-	
	$1 s_4 - 2 p_4$	71	18 2			
	$2p_{a}-4d_{a}$	36	25 5	-	-	
	$2p_{e} - 3s_{5}$	35	33 8	-	- /	
	$2p_{a} - 4s_{1}^{\prime \prime \prime}$	25	24 6	-	-	
	2p4 -4s1""	22	26 3			
	$2p_4 - 4s_1''$	12	31 6	-		
	$2p_{a} - 4s_{4}$	7399	97 6	-		
	$1 s_{4} - 2 p_{3}$	83	978 15			1)
	$2p_{a}-4d'_{a}$	72	119 10	<u> </u>		3)
R	3d5-8X	68	08 0	-	8.08	
	$\left(2p_{8} - 4d_{4} \right)$	10	01 010			3
	2p ₇ -3s ₅	03	010 10		-	-)
	$2p_{a} - 3s_{a}$	50	78 3	-	-	
	$2p_{6}-4d_{2}$	45	34 0	-	-	16
R	3d ₃ 9 Y	43	51 00	- 51	3.51	
	-	32	71 00	-	-	

1) Mittel aus interferometrischen Messungen von Meggers und Meissner.

²) Diese Linien findet Gremmer [173] nicht.

3) Gemessen von Meggers [96] interferometrisch.

	Kombination		Meißner [147, 148]			Kombination		Meißr [147, 1	ner [48]
	$2p_2 - 3s_2$	7316	00 8	0		2p5-5d5	6719	20	10
	$2p_7 - 3s_4$	11	71 10			$2p_{6} - 3s_{2}$	6698	85	10
	$3p_3 - 4s_1'$	7285	44			$2p_7 - 4s_1$	98	45	3
	$1 s_4 - 2 p_2$	72	935 10	1)		$2p_2 - 4s_5$	89	91	1
	$2p_9 - 4d_4$	70	66 5			$2p_4 - 5d_3$	84	73	3
	$2p_1 - 4s_4$	67	20 1	2)		$1 s_4 - 2 p_1$	77	282	8
	$2p_7 - 4d_2$	65	23 1			2p8-4s1""	72	10	1
G	$2p_1 - 5d_2$	48	85 —	3)		$2p_8 - 4s_1''$	64	02	10
	$2p_8 - 4d_1''$	29	93 2			$2p_7 - 3s_3$	60	64	10
	$2p_3 - 3s_2$	06	986 10	1)		$2 p_2 - 5 d_2$	56	88	3
	$2p_4 - 4s_2'$	02	55 1			$2p_7 - 3s_2$	32	04	4
R	$3d_5 - 9X$	7176	34 2	2)4)		$2p_{8} - 4s_{1}'''$	04	853	8
	2p5-4s1	62	57 4			2p9-4s1""	04	02	1
	$2p_4 - 3s_3$ 1s 2n.	58	83 8 042 8	1)		${2p_3 - 4s_5 \\ 2p_4 - 5d''}$	6598	66	3
	2n3s.	25	80 8	1		2n4s."	96	10	4
		08	60 0	2)		$2p_9 - 4s_1$ $2n_1 - 4s_1$	94	66	1
	2n3s-	07	496 10	1		$2n_{2} - 4s_{4}$	81	60	1
	2p38.	7086	70 6			2p6d.	71	37	1
	2p3s.	68	73 8		G	$2p_{2} - 5d_{2}$	66	51	_
	1s2p.	67	218 20	5) 6)		-132	45	11	1
R	3d	42	77 -	1		2p4s."	38	115	8
	2p3s.	30	250 10	1)		$2p_4 - 4s_5$	30	52	0
G	2p8-4d2	25	14 -	3)	G	2p10-4d1"	15	98	_
	2p2-5d	6992	17 2			$2p_4 - 4s_4$	13	84	4
	$1s_4 - 2p_2$	65	431 20	5)		$2p_4 - 5d_2$	6499	. 10	3
	2p4s,""	60	23 7			$2p_8 - 4s_1'$	93	97	6
-	2p4s1"	51	46 7			$2p_5 - 4s_4$	81	15	4
	2p10-4de	37	666 10	1)		$2p_{5} - 5d_{2}$	66	56	7
	$2p_2 - 5d_5$	25	00 1			$2p_8 - 3s_2$	31	57	6
	2p7-4s1""	6888	17 10			$2p_{10}$ -3s ₅	16	307	10
	2p4s1'''	87	10 7			$2p_{10}$ — $3s_4$	6384	719	10
	2p7 -4s1"	79	59 8			$2p_{6}-5d_{5}$	69	577	8
	4p10-4d5	71	290 10	1)		$2p_7 - 5d_6$	64	89	7
	$2p_2 - 5d_3$	51	86 2			$2p_{10}-4d_2$	49	20	1
	$2p_3 - 5d_5$	27	24 8		G	$2p_1 - 7d_5$	14	39	-
	$2p_4 - 5d_6$	18	26 2			$2p_7 - 5d_5$	09	14	4
	$2p_1 - 6d_5$	6779	85 2			$2p_{6} - 5d_{3}$	07	662	8
	$2p_{6} - 4s_{1}'$	66	56 10			$2p_2 - 5s_1''$	6296	876	7
	$2p_{3} - 5d_{3}$	56	10 10			$2p_{6} - 5d_{4}$	78	64	3
	$2p_4 - 5d_5$	54	30 4			$2p_2 - 6d_5$	59	41	0
	2p10-4d3	52	831 20	1)		$2p_7 - 5d_3$	48	40	6
	$2p_3 - 5d_4$	22	90 2		G	$2p_2 - 5s_1'''$	44	62	

1) Gemessen von Meggers [96] interferometrisch.

²) Diese Linien findet Gremmer [173] nicht.

³) Gemessen von Gremmer [173] und in das Schema von Meißner eingeordnet.

4) Eingeordnet von Rasmussen.

5) Mittel aus interferometrischen Messungen von Meggers und Meißner.

⁶) Hier ordnet Rasmussen noch eine scharfe Linie von Gremmer ein: 7042.77.

1)

3)

3)

1)

3)

3)

Argon

	Kombination		Meißner [147,148]				Kombination		Meißr [147, 1	ner 148]
1	2p2-6d	6243	39 3				$2p_4 - 4s_3$	5971	59	1
	$2p_{a} - 5d_{1}''$	30	91 2				$2p_4 - 4s_2$	68	31	0
G	$2p_1 - 7d_2$	22	74 —	1)				64	46	1
	$2p_{3} - 5s_{1}''$	15	945 9				$2p_4 - 6d_2$	49	26	.3
	$2p_e - 5d_1'$	12	507 10	291			2p ₉ -5d ₁ "	43	89	1
	$2p_3 - 6d_5$	6179	41 2				$2p_8 - 4s_5$	42	668	5
	$2p_7 - 5d_1''$	73	100 10				$2p_5 - 4s_2$	40	86	1
	$2p_{a} - 4s_{5}$	70	183 10				$2p_8 - 4s_4$	28	818	8
	2p3 -5s1""	65	11 4	12			$2p_9 - 5d_1'$	27	13	3
	[2p4s4]	E.E.	0 99			G	$2p_{5}-6d_{2}$	22	02	-
	2p4 -5s1"	. 00	20 9				$2p_8 - 5d_2$	16	58	2
	2p3 -4s1""	45	43 10			100	2p10-4s1'	12	088	10
	$2p_{e} - 5d_{2}$	42	05 0				$2p_9 - 4s_5$	5888	591	9
	$2p_{2} - 5s_{1}'$	28	71 4				2p10-3s3	82	625	7
	$2p_s - 5d_5$	27	38 6				$2p_2 - 7d_6$	70	26	1
	-	26	02 0				$2p_{10}$ — $3s_2$	60	312	6
	$2p_2 - 6d_1''$	21	86 0		1.1		$2p_2 - 7d_3$	43	74	1
	$2p_4 - 6d_5$	19	67 1				$2p_{e} - 5s_{1}''$	34	265	6
	$2p_7 - 4s_5$	13	47 4				2p6d.	02	082	5
1	2p4 -5s1""	05	639 9	123			$2p_3 - 7d_5$	5790	39	2
-	(2p4 -6d.)	0.1	00 0			1.1	2p5s.""	89	48	4
	2p4s.	04	60 3				2p7-5s1"	83	52	5
	2p4s.	01	16 3				$2 p_3 - 7 d_3$	74	00	5
	$2p_7 - 4s_4$	6098	807 9	12			2pa-5s1'''	72	116	7
3	$2p_{2} - 5s_{5}$	93	33 0				$2p_3 - 7d_4$	58	84	2
	(2p5-6d5.)	00	70 5				101	51	90	0
	[2p, -8d5?]	50	10 0				$2 p_4 - 7 d_6$	47	18	1
	$2p_7 - 5d_2$	85	86 1		1.		2p7-5s1""	39	523	10
	$2p_2 - 6d_2$	81	23 2				$2p_7 - 6d_6$	38	40	4
	$2p_{3} - 6d_{4}$	64	75 3		-		$2p_4 - 7d_5$	37	96	2
1	2p10-4s1""	59	377 10				$2p_{5} - 7d_{5}$	12	48	0
	2p10-4s1""	52	726 8			1	$2p_{6} - 6d_{4}$	00	86	6
	$2p_3 - 6d_1''$	45	34 0				$2p_4 - 7d_1''$	5693	10	0
	2p8-5d4]	49	01 100				$2p_2 - 6s_1''$	89	91	8
	2p3 -6d1'	40	224 10				2p5s1	89	64	8
	$2p_9 - 5d_4'$	32	127 30	2)			2p ?	87	40	4
	$2p_3 - 4s_2$	25	14 5				2p6 -6d1"	83	73	5
	$2p_{3} - 5s_{5}$	17	53 0				$2p_{6} - 6d_{1}'$	81	900	10
	$2p_9 - 5d_3$	13	68 3				-	80	90	0
G	$2p_1 - 5s_2$	11	33 —	1)			$2p_2 - 6s_1'''$	74	73	0
	$2p_3 - 6d_2$	05	74 2				2p4 -6s5	67	40	0
	$2p_8 - 5d_1''$	5999	00 4				2p2-8d5	0.	10	0
	$2p_4 - 5s_1'$	94	66 1	1			$2p_{6} - 4s_{2}$	65	82	2
	$2p_4 - 6d_1''$	88	11 1				$2p_4 - 6s_4$	63	80	0
	$2p_9 - 5d_4$	87	289 5		-		$2 p_4 - 7 d_2$	62	00	2
	$2p_s - 5d_1'$	81	90 2			1	$2p_{6} - 5s_{5}$	59	130	10

1) Gemessen von Gremmer [173] und in das Schema von Meißner eingeordnet.

²) Gemessen von Meggers [96] interferometrisch.
Ī	Kombination		Meißner [147, 148]				Kombination		Meißr [147, 1	1er [48]
	2n -5d	5650	708 30	1)			$2p_4 - 6s_1'$	5507	63	3
	2p10 6de	48	66 8	1			2p8-6d4	06	11	10
	2P6 042	44	00 0				2p4 -8d1"	05	18	3
	2n -5s'	41	34 6				2p10-5d1"	5499	00	3
	$2p_7 - 6s_1$	39	11 7				2p6d4'	95	875	20
	$2p_5 - 7d_2$	37	29 4				$2p_4 - 7s_5$	93	49	4
	$2p_5 - 6d_1''$	35	.54 6				∫2p4 -8d2]	92	90	0
	2p8-5s1"	30	44 3				$2p_4 - 7s_3$	00	00	
	_	25	30 0				$2p_4 - 5s_3$	92	06	b
	$2p_{3} - 6s_{1}''$	23	76 6				$2p_8 - 6d_1$	90	13	6
	$2p_7 - 4s_3$	20	89 6		1		$2p_8 - 6d_1'$	88	46	1
	$2p_2 - 6s_1'$	20	66 1				$2p_4 - 5s_2$	86	47	4
	-	19	00 2				$2p_5 - 5s_2$	83	32	3
	$2p_7 - 4s_2$	17	97 6		1		$2p_8 - 4s_2$	73	44	10
	2p7-5s5	11	35 4				-	69	65	4
	2p3 -6s1""	08	90 4		1.00	1	$2p_{8}-5s_{5}$	67	13	6
	2p10-5d5	06	738 10	1)			-	63	18	0
	$2p_2 - 8d_2$	05	25 2				$2p_9 - 6d_4$	59	61	4
	$2p_2 - 5s_3$	04	36 4				$2p_8 - 7d_5$	57	75	3
	$2p_3 - 8d_5$	01	85 1		100		$2p_8 - 6d_2$	57	37	8
	$2p_7 - 6d_2$	01	08 6				$2p_3 - 9d_5$	56	01	2
	$2p_{8} - 6d_{5}$	00	43 5				2p10-4s5	51	657	10
	$2p_2 - 5s_2$	5598	50 4				$2p_3 - 9d_3$	- 48	61	3
	2p3 -6s1""	97	46 10				$2p_9 - 6d_1''$	43	88	4
		91	75 2				$2p_8 - 7d_3$	43	21	7
	2p8-5s1""	88	69 10	-			$2p_9 - 6d_1$	42	22	10
	2p, -5s,"	81	83 6				$2p_{10}-4s_4$	39	97	10
		80	95 1				-	37	04	0
	2p4 -6s1"	74	20 2				$2p_3 - 9d_1'$	35	83	0
	2p8-5s1"	72	546 10	1)			$2p_2 - 10d_6$	33	48	0
	- 10	65	96 2				$2p_2 - 10d_5$	32	60	0
	<u> </u>	51	66 0				$2p_2 - 7s_1''$	30	27	3
	$2p_3 - 8d_4$	60	22 3				[2p ₁₀ -5d ₂]	29	69	4
	$2p_4 - 6s_1$	59	62 8	1			$\left[2p_{6}-ra_{4}\right]$	97	20	0
	$2p_{10}-5d_3$	58	709 10	-)			$2p_3 - 0s_5$	00	55	1
	$2p_3 - 8d_1''$	53	40 1				$2p_2 - 10d_3$	22	00	10
	$2p_3 - 8d_1''$	52	76 3				2p9-085	17	000	10
	$2p_4 - 8d_5$	42	73 1				$2p_6 - id_1$	10	22	0
-	$2p_{3} - 7s_{5}$	41	46 1				$2p_7 - 7d_5$	10	32	10
1	[2p9-5s1"]	40	90 5				$2p_6 - rd_1$	10	94	10
	$[2p_3 - 8d_2]$						$2p_4 - 9d_5$	09	09	0
	$2p_3 - 5s_2$	34	45 6				$2p_4 - 9d_3$	5200	00	0
	-	33	20 0				$2p_7 - 7d_3$	0399	00	4
	$2p_5 - 8d_5$	28	93 5				0 0	96	96	0
	T	27	10 0				2p ₆ -6s ₅	93	0/1	0
	$2p_9 - 5s_1''$	24	93 9				2p ₆ -6s ₄	90	12	0
	$2p_2 - 9d_6$	23	70 2				$2p_6 - 7d_2$	89	10	3
	$2p_2 - 9d_5$	18	20 2			1	$2p_2 - rs_1$	1 81	1 31	0

¹) Cario mißt diese Linien nach Ne-Normalen zu: 5650.712, 5606.748, 5572.550, 5558.706. Kayser u. Konen, Spektroskopie. VIII.

Argon

Meißner

[147, 148]

1)

	Kombination		Meißner [147,148]				Kombination
1	2p9d_	5386	79 0				2p8-6s5
	-10 0	84	80 0	1			$2p_8 - 6s_4$
		79	52 0				$2p_8 - 7d_2$
	2n7d."	73	493 10				$2p_9 - 7d_4$
	2p10ds	72	29 0	12.			$2p_7 - 6s_1'$
	$2p_{a} - 7s_{1}''$	69	97 2				$2p_7 - 5s_2$
	$2p_{a} - 10d_{a}$	62	48 0				2p7-8d1"
	-1-3	56	49 3				-
		53	46 4				- 1
	2p6s.	50	58 4				$2p_9 - 7d_1''$
	2p6s.	47	412 8				$2p_7 - 7s_5$
	2p7d.	45	81 4				$2p_7 - 8d_2$
	$2p_{a} - 6s_{a}$	44	28 2				$2p_7 - 5s_3$
	2p6s.	41	78 3				2p10-7d1'
	2p7s.""	28	02 4				2p10-5s1"
	$2p_{4} - 10d_{5}$	27	07 0				$2p_9 - 6s_5$
	$2p_4 - 7s_1''$	24	80 2			100	2p10-6d5
	$2p_{a} - 7s_{1}^{\prime \prime \prime \prime \prime}$	17	726 6				$2 p_{6} - 9 d_{5}$
		13	63 0		1000		$2 p_6 - 9 d_3$
	2p6s1"	09	517 8				2p10-6d6
	$2p_{5} - 10d_{5}$	05	17 0				-
	_	5299	41 0				$2p_6 - 9d_1'$
	$2p_3 - 11d_1'$	96	91 0				$2p_{6} - 8s_{5}$
	$2p_{e} - 6s_{1}''''$	96	32 2				$2p_{6} - 8s_{4}$
	$2p_{e} - 8d_{5}$	90	00 4				$2p_8 - 6s_1'''$
	$2p_{a} - 6s_{1}'''$	86	08 6				$2p_7 - 9d_6$
	[2p4 -7s1""]	83	43 4				$2p_8 - 8d_5$
	2p3-6s2 J	00	10 1		1		$2p_7 - 9d_5$
	-	82	52 0				$2p_8 - 6s_1$
	-	80	40 6		1		$2p_7 - 9d_3$
	$2p_{8} - 7d_{5}$	79	05 4				$2p_7 - 9d_1''$
	$2p_7 - 6s_1''$	67	48 1				$2p_9 - 6d_1''$
		63	02 1		1997		-
	2p7-6s1""	54	476 6		1.00	10	2p7-8s5
	$2p_{8} - 7d_{4}$	52	795 9		1.50%	1.8	$2p_7 - 8s_4$
	$2p_6 - 6s_1'$	49	20 5				$2p_8 - 8d_4$
	[2p ₆ -5s ₂ ?]	48	18 0				$2p_6 - 10d_5$
	[2p7-8d5?]						$2p_8 - os_2$
	2p6-8d1"	46	76 2				2p ₈ -0d ₁
	$2p_6 - 8d_1'$	46	24 5				0. 0.111
	$2p_4 - 6s_3$	42	13 1				$2p_9 - 0s_1$
	$2p_8 - 7d_1''$	41	096 60	V			2p6 -10d3?
	$2p_4 - 6s_2$	39					2p ₁₀ -081
	$2p_{6} - 7s_{5}$	36	21 4				(2p. 9d.)
	$2p_8 - 7d_1$	34	00 5				2p8-002
	$2p_6 - bs_2$	29	00 0				2n 10d'
	2p9-7d3	22	90 4				$2p_6 - 10d_1$
1	2p9-704	1 21	1 211 10	1	1	1	- P10 001

1) Nach Rosenthal [175] Ar II.

	Kombination		Meißner [147, 148]				Kombination		Meiß [147, 1	ner 148]
	$2p_8 - 5s_2$	5065	48 2				2p6-13d1'	4949	64	0
	$2p_{6} - 9s_{5}$	63	99 2	-	1000		-	46	91	0
	$2p_{6} - 9s_{4}$	62	72 0				$2p_9 - 9d_3'$	44	80	3
	2p9-8d4	60	08 10				_	42	81	0
	2p10-4s3	56	53 8				$2p_{9} - 8s_{5}$	37	718	6
	$2p_{10}-4s_2$	54	18 9				8 -db, 0	36	50	0
	2p10-5s5	48	813 10				11 120 94	30	26	0
	$2p_9 - 8d_4?$	47	30 1				$2p_8 - 10d_5$	29	16	2
	$2p_7 - 10d_6$	47	00 0				10-01 t	26	55	0
	2p6-7s1""?	44	97 0				$2p_8 - 10d_4$	21	042	8
	2p7-7s1"	44	15 1				$2p_8 \rightarrow 10d_1''$	17	85	3
	2p9-8d1'	41	23 3				$2p_8 - 10d_1'$	15	03	0
	$2p_{10}-6d_2$	40	51 3				0 -0 .0	13	88	11
190	$2p_6 - 7s_1'''$	35	88 2				$2p_6 - 8s_1''$	12	30	0
	$2p_7 - 10d_1''$	34	25 3				$2p_{8} - 9s_{5}$	09	71	1
		33	39 0				$2p_{8} - 9s_{4}$	08	52	4
	$2p_9 - 7s_5$	32	025 6	15				02	23	0
	3 -34 2	-29	64 2				1 - 3 - 8	01	26	2
	$2p_7 - 9s_5$	25	74 0				$2p_{10}$ — $7d_6$	4894	692	10
	$2p_7 - 9s_4$	24	50 0				$2p_9 - 7s_1'''$	90	19	0
	-20	18	12 0					89	22	0
	$2p_6 - 11d_1'$	17	25 2					89	05	0
	$2p_{6} - 10s_{5}$	13	47 0				$2p_{10}$ -7d ₅	87	951	15
	$2p_7 - 7s_1'''$	07	09 1				$2p_9 - 10d_4'$	86	29	6
		06	84 1				$2p_9 - 10d_4$	83	86	3
	$2p_8 - 6s_2$	05	13 0	1			$2p_8 - 7s_1'''$	83	27	6
		04	318 4		1 2 2 3		$2p_9 - 10d_1'$	77	96	0
	$2p_{8} - 9d_{5}$	4999	65 0				$2p_{10}$ — $7d_3$	76	263	15
6		96	43 Ou				$2p_9 - 9s_5$	72	73	4
	$2p_7 - 11d_6$	91	66 0				$2p_9 - 11d_4$	67	84	4
	$2p_8 - 9d_4$	89	945 8				$2p_8 - 11d_1'$	65	91	01
	$2p_8 - 9d_1''$	85	09 4				$2p_{8} - 10s_{4}$	62	16	0
	$2p_8 - 9d_1'$	82	81 0					61	91	0
	-00 R	82	41 0		100		-	60	29	0
		80	55 0				-	59	44	3
	-	79	89 0				2p ₁₀ -7d ₁ "	55	37	0
	$2p_6 - 12d_1$	79	05 0				$2p_8 - 6s_2$	54	37	0
	-	76	87 0				-	51	35	0
	2p8-885	10	00 1				$2\mathbf{p}_9 - i\mathbf{s}_1$	46	73	3
	9	10	20 0				2p ₁₀ —085	36	691	10
	2p8-884	74	18 4				$2p_9 - 11d_4$	35	97	6
R	2n _ 6a	10	98 0		1.00		2p ₁₀ -0S ₄	34	10	6
10	2 P7 -083	09	752 0	1			2p ₁₀ —7d ₂	32	19	3
	2n _ 0.1 '	50	759				2p8-12d4	32	58	-
	2pg-9d4	55	01 0	1)				31	02	0
	- P9 - 0 U3	59	21 2)			$2p_9 - 11d_4$	30	04	0
	2n9d.	51	75 4				p ₉ —IId ₁	29	41	1
	-1.9 0.01	1 01	1 10 4		1	1		1 20	14	0

1) Nach Rosenthal [175] Ar II.

1)

1u

Ou 1)

1)

5*

Argon

 $\overline{\mathbf{5}}$

2)

2)

[Kombination		Meiß [147,	ner 148]				Kombination		Meiß [147, 3	ner 148]
-	2p	4825	97	2		-	İ	2p10-7s1"	4584	958	4
	2p13d.	04	33	3				-	71	10	1
	2p12d.	4798	742	6				2p10-9s5	69	69	2
	2p12d.	96	87	0				2p10-9s4	68	64	1
	2p12d.'	94	10	0					64	82	2
	2p	91	15	2				2p10-7s1'''	54	319	5
	2p14d.	82	35	1					46	39	1
	-10 -	78	20	0					44	746	6
	_	78	37	2				2p10-11d6	41	60	5
	2p13d4'	70	34					-	40	40	00
	2p10-6s1"	68	674	10				-	34	78	5
	-110 1	59	65	0				-	34	46	0
	_	59.	09	0				2p10-6s3	23	35	0
	2p10-8d5	52	940	10				1 s3 -3 p10	22	325	40
	-110 5	51	30	0				$1s_2 - 3p_5$	10	733	80
	$2p_{0} - 14d_{4}$	48	23	3				-	09	87	2d
	2p10-8de	46	823	8		100		2p10-12d5	07	45	0
	-110 - 0	44	47	1					05	16	2
	ai	43	64	0				19	4498	17	1
	-	32	05	0	1)				97	79	0d
	2p15d.	30	66	3					80	83	3
		27	48	3					79	31	3
	lan	24	10	3					74	72	3
	2p10-6s1	19	94	5					68	68	1d
	2p10-5s	19	22	2				14	61	85	0
	2p10-8d,"	18	10	1				10	61	46	3
	2p16d.	16	47	0					60	53	4
	2p10-785	09	50	6		1.000		-	56	61	2
	2p10-8da	09	08	4		1000		100	48	88	2
	2p10-582	08	46	2	3.12			2p10-8s1"	45	84	3
	2p10-550	04	35	1					39	48	0
	1s3p.	02	317	100	2)			10 - Law 1.4	35	15	1
	2p9d.	4651	-388	5				$1 s_3 - 3 p_7$	23	98	8
1	2p9d.	47	493	7					04	75	1
	2p10-9d2	42	148	8				1 A A A A A A A A A A A A A A A A A A A	4385	58	1
	-110	40	75	1					83	48	1
	1s3p.	28	445	90	2)	1.1			68	36	3
	2p10-855	26	78	6					67	83	0
	2p10-884	25	46	4				1 s4 -3p10	63	79	8
		15	15	0				$1 s_2 - 3 p_4$	45	168	90
	_	11	75	0				$1 s_2 - 3 p_2$	35	35	70
	_	4598	78	1	1)			$1 s_2 - 3 p_3$	33	561	90
		97	20	0					10	47	E
	1s3p.	96	096	90	2)			$1 s_4 - 3 p_8$	00	100	100
	1s3p.	89	29	8					4299	24	8
	2p10-10da	87	21	3				A	94	97	I
	2p10-10d5	86	610	4				10	89	09	-

1) Eingeordnet von Rasmussen.

²) Gemessen von Meggers [96] interferometrisch.

		Kombination		Meißner [147, 148]			Kombination		Meif [147,	3ner 148]
		1s4-3p7	4272	169 100	1)		1s2-5X	3663	76	3
		_	71	29 3			1s4-4p10	59	50	8
		$1s_4 - 3p_6$	66	286 100	1)		$1s_2 - 4p_1$	49	83	30
		-	65	52 2			$1s_4 - 4p_8$	43	09	8
		$1s_2 - 3p_1$	59	362 100	1)		1s4-4p7	34	44	10
			58	59 3			$1s_4 - 4p_6$	32	64	10
			54	95 4			$1s_4 - 4p_5$	06	51	50
		1S5-3p10	51	184 60	1)		$1s_2 - 5p_{10}$	3599	67	5
			50	42 2			$1s_2 - 5p_7$	88	97	1
			49	37 5			$1s_2 - 5p_6$	88	11	2
		1 -1	41	09 0		1.000	$1s_4 - 4Z$	82	70	6
		-	39	82 1			1 B	78	13	0
		$1s_4 - 3p_9$	00	678 100	1)		$1s_2 - 5p_5$	72	29	10
		$1s_{5} - 3p_{5}$	4198	316 100	1)		$1s_5 - 4p_9$	67	64	10
		$1s_{a} - 3p_{4}$	91	027 100	1)		$\int 1s_5 - 4p_8$	C.A	07	0
		$1s_{5} - 3p_{8}$	90	714 50	1)		11s3-4p4	04	21	0
		$1s_3 - 3p_2$	81	884 80	1)		$1s_3 - 4p_2$	63	26	8
			79	56 1				59	51	1
		1 10	76	33 5			$1s_{5}-4p_{7}$	55	97	8
			75	40 4			$1s_{5}-4p_{6}$	54	30	10
			68	70 2			1s3 5X	53	58	6
		S	68	41 2			0 -	44	76	0
		1s5-3p7	64	180 80	1)		$1s_5 - 4Z$	06	46	6
		1s5-3p6	58	591 100	1)	2	1s3-5p10	3493	29	5
			52	54 5			$1s_2 - 6X$	90	50	2
		$1s_4 - 3p_4$	4054	50 8			1s3-5p7	83	17	3
		$1s_4 - 3p_2$	45	96 10			$1s_4 - 4p_4$	65	15	1
	1.0	$1s_4 - 3p_3$	44	419 100	1)		$1s_4 - 4p_2$	64	08	0
1		$1s_{2} - 4X$	32	97 5	1		$1s_4 - 4p_3$	61	07	10
		$1s_4 - 3p_1$	3979	71 5		0.000	1s2-6p10	57	81	2
		$1s_5 - 3p_2$	48	980 100	1)		$1s_4 - 5X$	54	94	5
		1s5-3p3	47	50 10			$1s_4 - 5Y$	52	32	2
		1s3-4X	99	86 8			$1s_2 - 6p_6$	49	52	1
	17	$1s_2 - 4p_{10}$	3894	65 10	13.4		[1s2-6p5]	10	50	5
		$1s_2 - 4p_8$	76	07 4			11s4-4p1	42	00	0
		$1s_{2} - 4p_{7}$	66	28 3			$1s_2 - 5p_4$	18	51	2
		$1s_2 - 4p_6$	64	26 4	1		$1s_2 - 5p_2$	17	68	2
		$1s_{2} - 4p_{5}$	34	68 30			$1s_2 - 5p_3$	16	80	3
		$1s_4 - 4X$	3781	35 10			$1s_2 - 5p_1$	06	17	6
		$1s_4 - 4Y$	75	45 5			1s4-5p10	3397	90	5
	1	1s3-4p10	70	38 15		Chester 1	[1s2-7X]	00		10
		$1s_{3} - 4p_{7}$	43	76 8			11s5-5p4	93	13	10
		1s5-4X	3696	51 5			1s5-4p2	92	81	8
		$1s_5 - 4Y$	90	89 10			1s4-5p	92	31	2
		$1s_2 - 4p_4$	75	22 10			1s3-6X	90	29	2
		$1s_2 - 4p_2$	74	05 1	10	and so the	1s5-4pa	89	85	5
		$1s_2 - 4p_3$	70	64 10	1	Non et 1	1s4-5p7	88	35	5

¹) Gemessen von Meggers [96] interferometrisch.
 ²) Eingeordnet von Rasmussen.

Argon

Ou

0u

	Kombination		Meiß [147, 1	ner 148]				Kombination		Meiß [147, 1	ner [48]
-	1s4-5p6	3387	58	5				{1s4-5p3}	3234	51	8
	$1s_5 - 5X$	83	98	1	1)			$[1s_4-6Y]$			-
	$1s_5 - 5Y$	81	49	5				$1s_3 - 8p_{10}$	29	91	2
	$1s_5 - 7p_{10}$	72	88	2				1s5-5Z	25	58	0
	$1s_4 - 5p_5$	73	47	10				$1s_4 - 7X$	13	84	1
	$1s_2 - 4p_6$	68	- 84	0				$1s_4 - 17Y$	12	99	1
	$1s_2 - 7p_5$	63	47	5				$1s_2 - 7p_1$	11	99	1
	1s ₃ -6p ₁₀	59	48	4					11	36	1
	$1s_3 - 6p_7$	52	20	0	2)			1s ₅ -6p ₁₀	07	50	4
	\rightarrow	50	89	0	1)			1s5-6p9	03	66	4
		36	60	1				1s5-6p8	02	85	3
	$1s_2 - 8X$	33	84	1				1s ₃ -6p ₄	01	12	2
	0 -0 10	28	19	1				1s5-6p7	00	81	1
	T been and	25	95	1				$1s_5 - 6p_6$	00	39	8
	$1s_5 - 5p_9$	25	50	8				$1s_4 - 7p_{10}$	3195	12	3
	$1s_5 - 5p_8$	23	82	6				1s ₃ -9p ₁₀	94	93	0
	$1s_3 - 5p_2$	22	44	3				$1s_4 - 7p_7$	91	72	1
	$1s_3 - 5p_4$	21	58	3				$1s_4 - 7p_6$	91	50	1
	1s2-8p10	20	67	1				$1s_4 - 7p_5$	86	63	3
	$1s_5 - 5p_7$	20	06	3			1	$1s_5 - 5p_4$	73	71	1
	$1s_5 - 5p_6$	19	34	10				$1s_5-5p_2$	72	96	9
	$1s_2 - 8p_6$	17	54	0				1s5-5p3	72	18	3
	$1s_2 - 8p_5$	14	49	1				1s4-8X	60	06	3
		12	71	1				1s4-8Y	59	55	0
	10 0 h 10	10	47	2				1s5-7X	52	29	2
	$1s_4 - 6X$	00	39	5				1s5-7Y	51	52	2
	1s4-6Y	3299	26	1	1			1s4-6Z	50	42	00
	1s3-7X	99	02	0				1s4-8p10	48	20	0
	$1s_4 - 5Z$	89	95	2				1s4-Sp7	45	63	0
	$1s_2 - 6p_3$	89	39	2				$1s_4 - 8p_6$	45	42	0
	$1 s_2 - 6 p_1$	85	10	1				$1s_4 - 8p_5$	42	60	2
	1s2-9p10	83	74	0	-			-	37	70	1
	$1s_2 - 9p_6$	82	70	0				$1s_5 - 7p_{10}$	34	27	1
	1s ₃ -7p ₁₀	79	25	2				$1s_5 - 7p_9$	32	87	2
	$1s_2 - 9p_5$	78	93	2		11 P		1s5-7p8	32	31	1
	$1 s_3 - 7 p_7$	75	72	1				[1s5-7p7]	31	04	1
	$1s_4 - 6p_{10}$	71	16	4				$[1s_3 - 7p_4?]$	00	00	
	$1s_4 - 6p_8$	66	34	Ou				1s5-7p6	30	80	5
	$1s_4 - 6p_7$	64	29	2				-	21	62	0
	$1s_4 - 6p_6$	63	78	2				1s4-0p3	20	06	2
5	$1s_4 - 6p_5$	57	58	8				-	17	85	2
	$1s_2 - 10p_5$	56	20	1				-	16	63	2
	-	43	71	10	1)	-		1s4-6p1	16	22	0
	-	43	12	10				1s4-9p10	14	96	(
	1s3-8X	42	40	10	1			1s4-9p7	14	10	0
	$1s_2 - 10p_5$	38	49	00				[1s4-9p6]	10	00	
	185-6X	30	1 07	1	1			184-9p5	1 10	00	

1) Eingeordnet von Rasmussen.

2) Williams [178] hat hier zwei neue Linien gefunden und eingeordnet: 3355.4 und 3354.3.

	Kombination		Meiß [147,	iner 148]		Kombination		Linien Gremm	nach er[173]
	1s, -8Y	3100	09	2	1)		8736	79	
	1s, -10p10	3092	97	0	-	and the second second second	14	70	-
	1s5-6Z	91	32	1		_	8616	09	-
	1 s4 10 p5	90	18	0		_	8561	36	1
		89	79	Ou		_	8392	27	-
	1s8p.0	89	17	1			53	52	1
	1s5-8p9	87	81	0			32	25	-
	1s5-8p8	87	31	Ou			8282	14	-
	1s5-8pe	86	47	1		_	55	21	-
		83	30	00		_	8178	91	-
	-	81	58	0 u		_	71	99	-
		80	81	Ou		_	43	59	-
		80	00	Ou			8079	72	-
	1s,	74	15	00	100	19 et al 19 an	7910	43	-
		66	89	00	1)		07	59	_
	1s9Y	65	78	0		and a set a second and	7860	48	
	1s,6p.	63	44	3	-	_	59	71	-
	1s5-6p4	62	82	0	100		02	51	-
-	1s6p.	62	06	2			7677	40	
		59	77	00	1982		7543	96	-
	1s, -9p.	56	28	2	100	11.11.11 (7431	23	
	1s,	34	86	0	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	48	-
		33	47	0	1)		7226	45	-
	a a second a second a	32	37	0	1		7192	15	-
	A Standard	2994	05	0		-	7042	77	
		61	63	0			27	01	-
	_	61	00	0		_	20	45	
							18	08	
		Lini	ien nac	ch		_	04	08	-
	PALA PROPERTY	Grem	mer [1	781			6926	70	-
	bren hie black	9459	64	-			6833	06	-
	and the second	9198	50	_		_	6640	27	-
1	Part Later	80	07		1	-	23	72	-
	_	9073	32			-	6506	51	
	_	66	79	-	1	-	6487	53	-
		8992	38	_		-	6380	67	
		66	04	-		-	6002	85	-
		8840	27	_		_	5899	78	

Schon früher war ein Versuch, dies Spektrum zu ordnen, von Nissen [90] gemacht; aber er ist allseitig als verfehlt bezeichnet (siehe auch Band VII S. 24). -Zu den Versuchen einer Ordnung der Linien ist auch die Arbeit von Clark zu rechnen [119]. Er benutzt die viel verwandte Methode, das Gas anregen zu lassen durch den Stoß von Elektronen, die von einer Glühkathode ausgehen, eine Geschwindigkeit von 20-120 Volt erhalten. Bei jeder Geschwindigkeit wird die Intensität der Linien roh gemessen. Zuerst sind nur Linien von Ar I vorhanden, von etwa 39 Volt an erscheinen auch Linien von Ar II. Je nachdem die Linien schnell oder langsam wachsen,

1) Eingeordnet von Rasmussen.

FY1 . 3		1.1	14	121
1 0 h	01	0	1	9.
TOT	01	10		e.e.e.

			p-Te	erme de	es Ar I-S	Spel	ktrums [147]			
Term	2	3		4	5		6	7		8	9
m p ₁ m p ₂	18388.83 19615.04	3 8240 4 8651	.51 43 .83 45	20.86	2361.55 2460.87	2	1279.98 1334.11	3 587	.23		
m p ₃ m p ₄	19821.70 19979.70	6 8642 5 8703	.38 44' .94 45:	76.24 10.00	2452.93 2467.83		1319.48 1327.71	1000	81	1549.49	1999 28
m p ₅ m p ₆	20057.1 20873.9 21024.2	$\begin{array}{c cccc} 7 & 9548 \\ 1 & 9927 \\ 0 & 9960 \\ \end{array}$.47 56 .84 58 .10 58	40.46 54.19	3849.73 3856.43	3	2730.41 2735.10	L 2036 2038	.53	1577.61 1579.91	1257.65 1258.13
m p ₈ m p ₉	21494.1 21648.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.12 59 .70 59	19.48 44.94	3890.68 3805.68	5	2754.70 2762.38	2051 2057	.60	1586.42 1591.58	1967.17
m p10	23009.4	2 10451 10 p	.43 60 $_5 = 1009$	42.50 .72.	3938.90 $10 p_6 = 9$	999	2799.70	$1 p_5 = 84$.83	1605.92	1207.17
			s-Te	erme de	es Ar I-S	Spel	ktrums [148]		1	
Term	1	2	3	4	5		6	7	8	9	10
m s ₂ m s ₃	31711.62 32557.79	12228.2 12400.	5950.13 6014.82	3229.2 3238.4	1 1758. 4 1776.	19 73	899.88 908.49	1770 50	1206 (1 1197 1	7
m s ₄ m s ₅	33360.86 33967.70	13463.6 13700	7351.29 7428.39	4632.0	1 3208.	24	2339.84	1781.51	1402.0	07 1132.1	1 933.22
		1949	d-Te	erme de	es Ar I-S	Spe	ktrums [[148].		-	_
Term	3	4	5	6	7		8	9	10	11	12
$m d_2$ $m d'_1$ m d''	12961.6	7263.70 7666.55	4597.22 4781.81 4829.28	3175.5 3279.0 3284.6	3 2323. 3 2396.3 5 2419.4	11 35 50	1779.56 1817.83 1820.18	1430.78 1440.06	1154.0	948.33	
$m d_4$ $m d'_4$	14362.0	7898.59 8087.81	4951.29 5075.38	3337.5 3458.2	4 2461.9 8 2501.4	97 59	1842.03 1891.62	1459.46 1479.81	1188.9	975.99	815.71
md ₃ md ₅ md ₆	15285.8	8204.85 8460.07 8599.40	5024.56 5178.63 5317.39	3643.5 3602.5	2507.4 1 2556.4 5 2584.7	59 77	1975.62 1948.52	1498.39 1516.41	1212.8 1215.8	37 32 996.85	
m s ₁ , m s ₁ , m s ₁ , m s ₁ ,	11742.3	6099.53 6357.99 6492.46 6510.60	3554.05 3738.54 3605.97	1928.4 1961.5 2045.0 1998.0	0 1021.9 3 1205.0 9 1058.3	95 00 32	522.72			-	
		0010.00	Х, Ү,	U, W,	Z-Terme	de	es Ar I-S	pektrums	elle . Tenio		is some
Term	m	4	5	6			7	8		9	10
m X m Y m U m W	622 688 545	2.9 1.55	4425.09 4403.25 4413.7 4390.7 2974.22	3070 3059 3069 3069 3059	0.31 9.85 3.9 2.2 8.26	224 224 224 222	54.16 46.15 50.1 42.2	1725.03 1719.90 1722.3 1718.1	1 1 1	362.6 358.49 360.2	1098.3

dann abnehmen, teilt er sie in 5 Klassen, deren 3 erste er zu Ar I rechnet, die andern zu Ar II. Natürlich werden nur die stärksten Linien berücksichtigt.

Es möge nun das Schumanngebiet besprochen werden, wobei aber alle Ionisationsstufen gemeinsam behandelt werden sollen, da eine einwandfreie Trennung noch nicht durchgeführt ist. Zuerst hat Lyman [67] Versuche zwischen λ 2000 und λ 1200 ausgeführt. Ar I gab ihm keinerlei Linien, dagegen erhielt er von Ar II eine größere Anzahl, welche in Band VII S. 21 mitgeteilt sind. Als kürzere λ fanden zuerst Lyman und Saunders [131] die Resonanzlinien von Ar I: 21067 und 21048, die dann auch von anderen (siehe oben) bestätigt wurden. Dann veröffentlicht Saunders [151] 17 weitere Linien, während Dorgelo und Abbink [137, 156] eine Liste von 43 Linien bringen. Sie vergleichen Aufnahmen des Bogens, des Glimmlichts, der positiven Säule und der kondensierten Entladung und trennen danach Ar I und Ar II. Die sämtlichen längeren Linien von Lyman [67] erhalten sie nicht, bis auf die 3 Linien & 1675, & 1673, 21669, die auf einer Aufnahme erschienen. Auch der Unterschied gegen Saunders ist außerordentlich groß, nur einige Linien sind beiden Reihen gemeinsam. Eine Diskussion Saunders [162], Dorgelo und Abbink [156] führt zu einer gewissen Aufklärung: Saunders hatte eine Reihe von Linien zwischen 2894 bis 2797 zwar auf seinen Platten gesehen, aber fortgelassen, da ihre Intensität nicht proportional mit der der Resonanzlinien wächst. Sie waren aber zu führen. - Dann folgt eine Arbeit von Compton, Boyce, Russel [171, siehe auch 170], welche 88 Linien zwischen λ 1066 und λ 461 enthält. — Hopfield und Dieke [144] hatten schon vorher eine Reihe von Linien als die PP'-Gruppe von Ar III erkannt, Boyce und Compton bei elektrodenloser Ringentladung [181, 182] dieselbe Gruppe und 3 Linien von Ar IV.

Alle diese Messungen sind in der folgenden Tabelle 2 zusammgestellt. Zu ihr ist noch folgendes zu bemerken: Bei den kürzesten λ haben Dorgelo und Abbink etwa um 0.03 kleinere Werte, als Compton, Boyce, Russell; es scheint aber, daß die Angaben der letzteren zuverlässiger sind, da sie bessere Normalen benutzen. Dorgelo und Abbink teilen ihre Linien in solche, die zu ArI und ArII gehören; unter letzteren führen sie aber auch Linien von ArIII und vielleicht eine von ArIV. In der Tabelle ist angegeben, bei welcher Ionisationsstufe sie die Linien einordnen.

Meißner hat fast alle von Dorgelo und Abbink mit I bezeichneten Linien einordnen können. — Einige der von Meißner gemessenen Linien hält Rosenthal für zu Ar II gehörig; sie sind in der Tabelle bezeichnet.

Ar II. Eine, wie es scheint, sehr genaue Messung des Spektrums gibt Rosenthal [188]; sie reicht von λ 8000 bis λ 2100, enthält etwa 1200 Linien. Als Lichtquellen werden teils Geißlerröhren, teils die elektrodenlose Ringentladung benutzt, als Normalen die Burnsschen Eisenlinien. Zur Aufnahme dienen Prismenapparate und Gitter.

Die Kenntnis des Baus des Spektrums ist nicht ganz so weit gediehen, wie die von Ar I. An ihrer Ausarbeitung haben sich vornehmlich de Bruin [164, 165, 166, 167, 168, 195, 196], dann Saunders [151, 162], Compton, Boyce und Russell [171], Dorgelo und Abbink [156], Rosenthal [188] betätigt. Aber eine große Menge von Linien ist noch nicht eingeordnet, und die verschiedenen Forscher stimmen nicht in allen Punkten überein, wenn sie auch im Großen einer Ansicht sind. De Bruins Anordnung wird wesentlich gestützt durch Untersuchung des Zeemaneffektes

Tabelle 2. Ar Kurze Wellenlängen.

Kombination		Compton, Boyce, Russell [171]	Dorgelo, Abbink [137, 156]	Saun- ders [151]	Saunders [162]	Bowen [169]	Boyce u. Compton [181, 182]	Hopfield u. Dieke [144]
$1 p_0 - 1 s_4$	1066	72 15	6.70 I	_	-	-	-	- ¹)
$1 p_0 - 1 s_2$	48	28 25	8.28 I	-		-	-	- ¹)
_	958	34 1 d	-		-	-		-
$A_1 - s p^{6} {}^2S_1$	71	97	_	-	_	_	-	-
	46	-	6.72?	6.95		NI COL		-
Shall - Bang and	41	-		1.39	- (1s		-	— ²)
	31	97 7 +	2.06 II	2.09		2.06 II	the second se	— 3)
-	31	-	-	1.43	-	-	-	-
-	20	-	-	0.43	-	-	-	-
$A_2 - s p^{6} {}^2S_1$	19	89 9 +	9.79 II	9.80	-	9.79 II	-	-
	19	- 10	TO THE OTHER	9.17				_
na siner e trais un	18	-	1 + h	8.70		ni -nhi		
	08		-	8.48	-	This	102-001	
	00	-	-	0.18	-	-	-	-
$1 p_0 - 3 d_b$	894	27 4	4.31 I		4.32 7	-	-	
$s^2 p^{4} {}^3P_1 - s p^5 {}^3P_2^0$	87	-	7.45 II	7.43	-	7.45 III	7.41 4 III	7.39 III
$s^2 p^{4 \ 3} P_0 = s p^{5 \ 3} P_1^0$	83		3.22 II	3.20	-	3.22 III	3.15 3 III	3.17 III
$1 \mathrm{p_0} - 2 \mathrm{s_4}$	79	88 3	9.97 I	-	9.95 8		-	- 11
$s^2 p^{4} {}^3P_1 - s p^5 {}^3P_1^0$	79	-	9.62 II	-	-	9.62 III	9.56 2 III	9.60 III
$s^2 p^{4} {}^3P_2 - s p^{5} {}^3P_2^0$	78	68 0	8.78 II	-	-	8.78 III	8.54 3 III	8.71 III
$1 p_0 - 3 d_2$	76	00 4	6.10 I	-	6.06 8	-	-	-
$s^2 p^{4} {}^3P_1 - s p^5 {}^3P_1^0$	75	-	5.56 II	. 5.64	-	5.56 III	5.54 3 III	5.53 III
$s^2 p^{4 \ 3} P_2 - s p^{5 \ 3} P_1^0$	71	-	1.11 II	1.10		1.11 III	1.15 3 III	1.11 III
$1 p_0 - 2 s_2$	69	70 2	9.75 I	-	9.76 7	-		
$1 p_0 - 3 s_1'$	66	77 4	6.84 I	-	6.80 6	NUMBER OF	-	-
$s^2 p^{34} S_{1\frac{1}{2}}^0 - s p^{44} P_{2\frac{1}{2}}$	63		T	3.64	-	1.1 77 1.0		S. A. Dina
-	53	-	-	-			3.53 5 IV	and the second
-	50	-	0.71? 11	0.66	-	-	0.00 1 11	-
$s^2 p^{44} S_{1\frac{1}{2}}^0 - s p^{44} P_{1\frac{1}{2}}$	46	-		-	-	-	6.79 4 IV	-
$s^2 p^{34} S_{1\frac{1}{2}}^0 - s p^{44} P_{\frac{1}{2}}$	43	-	3.75? 11	3.78		-	3.6 4 IV	-
$1 p_0 - 4 d_5$	42	78 2	2.79 1	-	2.80 6		ennini me	1710TES
-	40	-	0.01? 11	0.02		-		A TA
$1 p_0 - 3 s_4$	34	-	4.98 1		4.98 4	-	the line	-
$1 p_0 - 4 d_2$	34	45 6	4.42 1	-	4.38 6			
$1 p_0 - 4 s_1'$	26	39 2	6.34 1	-	6.37 4	_	-	- •)
$1 p_0 - 3 s_2$	20	42 2	0.36 I	-	0.11 0		-	-
1 p ₀ — 5 d ₅	20	22 0	0.12 1	-	0.11 2 fe 40 1 2	ALL DE	The state of the	-
$1 p_0 - 5 d_2$	16	37 4	6.27 I	-	6.22 3	-		and the second
$1 p_0 - 6 d_5$	09	-	9.95 I	-	9.90 0	-		-
_	08	-	8.82? I	-	-		-	-

¹) Taylor [133] gibt 1066.62(0) u. 1064.90(4). — ²) Diese Linie finden Dorgelo u. Abbink nicht.

³) In der Tabelle von Compton, Boyce, Russell bedeutet ein Kreuz hinter der Linie, daß sie sicher bei Ar II eingeordnet sei, eine O, daß sie nur wahrscheinlich eingeordnet sei.

⁴) Hier gibt Meißner [147, 148] als Ar I noch 3 Linien, mit Stern versehen, was wohl bedeuten soll, daß sie nur berechnet sind: 829.13, 807.23, 806.86.

	Kombination		Compton, Boyce, Russell [171]	Dorgelo, Abbink [137, 156]	Saun- ders [151]	Saunders [162]	Bowen [169]	Boyce u. Compton [181,182]	Hopfield u. Dieke [144]
	$1 p_0 - 5 s_1^1$	807	-	7.65 I	1 L	41		_	— ¹)
	- 10 - 1	00	60 03	0.40 T		∫6.65 0	0 03		- 1)
	_	06	62 2 d	0.40 1	TT IS	6.44 2			,
	_	03	-	3.80? I	-		-	-	-
		02	-	2.95? I	-	-	-	-	-
	_	01	41 1	1.33 I	-	1.22 1	-	-	-
		799	-	-	-	9.21 0	-	-	-
	-	97	78 0	7.63 I	-	7.57 1	-	-	-
	-	95	70 ?	-	-	-	-	-	
	-	69	37 ?	9.12? II	-	-	-	-	-
	$3 p^2 P_1 - 3 d^4 D_2$	62	37 2 +	-		-	-	-	-
	-	55	21 0	-	-	-	_	-	-
	$3 p^2 P_2 - 3 d^4 D_3$	54	99 4 +	-	-	-	-	-	-
	$3 p^2 P_1 - 4 s^4 P_2$	48	39 1 +	-	-	-	-	-	-
	$3 p^2 P_2 - 4 s^4 P_3$ $3 p^2 P_1 - 4 s^{43} P_1$	45	22 8 +	-	-		-	10	-
	$3 p^2 P_0 - 4 s^4 P_0$	40	45 5+	0.23 II	-	-	-	-	-
	$3 p^2 P_1 - 4 s^2 P_2$	31	10 3 +	0.91 II	-	-	0.91 II	-	-
	$3 p^2 P_1 - 4 s^2 P_1$	25	73 5+	5.53 II	-		5.53 II	-	-
	$3 p^2 P_2 - 4 s^2 P_2$	23	54 6+	3.35 II		-	3.35 II	-	-
	$3 p^2 P_2 - 4 s^2 P_1$	18	29 4 +	8.05 II	-	-	8.09 II	-	-
	$3 p^2 P_1 - 3 d^4 F_2$	04	72 3 0	-	-	-	-	-	-
	$3 p^2 P_2 - 3 d^4 F_3$	699	00 4 +		-	-	-	-	-
	$3 p^2 P_2 - 3 d^2 P_1$	98	19 2 0	-	-	-	-	-	-
	$3 p^2 P_2 - 3 d^4 F_2$	97	82 1 0	-	-	-	-	-	-
	$3 p^2 P_1 - 3 d^2 P_2$	93	55 4 0	-	-	-	-	-	-
	$3 p^2 P_2 - 3 d^2 P_1$	91	29 1.5 0	-	-	-	-	-	-
	$3 p^2 P_2 - 3 d^2 P_2$	86	73 2 0	-	-	-	-	-	-
	$3 p^2 P_1 - 4 s^2 D_2$	79	59 6	9.37 II	-	-	-	-	-
	—	78	17 4	7.97 II?	-	-		-	-
	apre des com	76	48 5 +	6.18 II?	-	-	-	-	
	$3 p^2 P_2 - 4 s^2 D_2$	73	13 0 +	2.79 II?	-	-	-	-	-
	$3 p^2 P_2 - 4 s^2 D_3$	72	03 6	1.81 II	-	-	-	10. 10	-
	$3 p^2 P_1 - 3 d^2 D_2$	71	21 6	0.93 11	-		T		T
	$3 p^2 P_2 - 3 d^2 F_3$	66	23 5	5.97 11	-	-	-	1.75	1
1	$3 p^2 P_2 - 3 d^2 D_2$	64	84 2	4.50 11		in solution	-		TT
	$3 p^2 P_2 - 3 d^2 D_3$	62	11 6	1.84 11	-	_			-
		37	52 0		-		-	_	
	9 - 90 - 4.00	12	59 4		-				
	$3 p^2 P_1 - 4 s^2 S_1$	03	11 20		107	ally may	(alternal)		HA CIER
	$3 p^* P_2 - 4 s^2 S_1$	597	97 30	Tim		1000 000	in the second	lease of the	A DORTOON B
	2 n2D 0 19D	84	03 1.5 0	T	-	1000	mentode	and the second	
	$3 p^{*}P_1 - 3 d^{*}D_2$ $3 p^{2}P_1 - 3 d^{*}D_2$	83	47 5 0	T	-			1000	
	$3 p^2 P_2 - 3 d^2 D_3$	80	91 1 5 0	-					
	$3 p^2 P = 2 d^2 D_2$	18	84 1 5 0	-	-	and the second second			_
	$3n^{2}P = 3d^{2}P$	70	02 0 0	6 68 113		the barrows	the same	-	-
	$3 p^2 P_2 - 3 d^2 P_1$	79	55 4 0	3.29 112			_		
		1 10	1 00 1 0	Lough A.L.					

Kombination	101	Compton Boyce, Russell [171]	Dorgelo, Abbink [137, 156]	Saun- ders [151]	Saunders [162]	Bowen [169]	Boyce u. Compton [181, 182]	Hopfield u. Dieke [144]
$3 p^2 P_a - 3 d^2 P_a$	572	20 1 0	1.89 II?	_		_	_	_
$3 p^2 P_1 - a^2 P_1$	60	38 3	0.13 II?	-	_	-	-	-
$3 p^2 P_a - a^2 P_a$	57	01 3	6.70 II?		_	-	-	
$3 p^2 P_0 - 5 S^4 P_0$	48	92 1+	-	-		-	-	-
$3 p^2 P_1 - 3 d^2 S_1$	47	54 4 0	7.29 II?	-	-	-	-	-
$3 p^2 P_a - S s^2 P_a$	46	36 2 +	-	-	-	-	-	-
$3 p^2 P_2 - 5 s^2 P_1$	43	96 1 +	_	-	-	-	-	-
$3 p^2 P_2 - 3 d^2 S_1$	43	33 5 0	3.13 II?		-	-	-	
	38	47 0	-	-	-	-	-	-
$3 p^2 P_2 - 4 d^4 P_1$	37	18 1	6.94 II?			-	-	-
$3 p^2 P_1 - 4 d^2 P_2$	30	65 1	-	-	-	-	n+	-
$3 p^2 P_2 - 4 d^2 P_1$	26	54 0	-	-	-	-	-	-
$3 p^2 P_2 - 4 d^2 P_2$	24	83 3	4.59 II?	-	-	-	-	19.7
$3 p^2 P_1 - 4 d^2 D_2$	22	93 2 0	2.63 II?	-	-	-	-	-
$3 p^2 P_2 - 4 d^2 D_3$	19	47 4 0	9.20 II?	-	-		-	-
$3 p^2 P_1 - 3 d^2 D_2$	14	43 1 0	-	-	-	-	-	-
	12	72 0		-	-	-	-	-
$3 p^2 P_1 - 3 d^2 D_3$	10	68 3 0	-	-	-	-	-	-
$3 p^2 P_1 - 4 d^2 P_2$	03	78 0		-	-	-	-	
$ \left\{ \begin{array}{c} 3 p^2 P_2 - 6 s^4 P_2 \\ 3 p^2 P_1 - 6 s^2 P_1 \end{array} \right\} $	02	20 0	-	-	-	-	-	-
-	491	09 0	-	-	-	-		10.00
$3 p^2 P_1 - 4 d^2 S_1$	90	76 2		-	-	-	-	-
$3 p^2 P_2 - 5 d^2 P_2$	89	26 0	-	-	-	-	-	-
$3 p^2 P_2 - 5 d^2 D_3$	88	88 2 d	-	-	-	-	-	-
$3 p^2 P_2 - 4 d^2 S_1$	87	27 2	- 1	-	-	-	-	an -
	75	79 0		-	-	-		-
— ¹)	64	20 0+	-	-	-	-		-
— ¹)	61	11 0+	-	-	-	-		

durch Backer, de Bruin, Zeeman [163, 179, 191]. Die Grundlinien sind nach de Bruin 2931 und 2919. Das Spektrum ist ein Dublett-Quartett-Multiplett-System.

Es folgt die Tabelle 3 von Rosenthal. Manche Linien, die Kayser oder Eder und Valenta in ihren Tabellen geführt haben, die er aber nicht erhält, bezeichnet er als Geister.

Viele Linien von Ar II haben auch L. u. E. Bloch und G. Déjardin [113, 118] angegeben, auf Grund der elektrodenlosen Ringentladung. Wir kommen gleich darauf zurück. Sie sind in der Tabelle durch ein + kenntlich gemacht.

Auch dieser Tabelle wurden die den Linien entsprechenden Kombinationen der Terme beigefügt, und zwar die von de Bruin [167, 168, 196] und die von Rosenthal [188] angegebenen. Die von Rosenthal eingeordneten Linien sind mit R bezeichnet. Tab. 3b enthält die Termwerte der Terme mit den Grenzen ³P, ¹D und ¹S nach de Bruin und die von Rosenthal.

¹) Compton, Boyce u. Russel [171] klassifizieren die Linien λ 464.20 und λ 461.11 als $A_1 - 4d ({}^{1}D){}^{2}P_{12}' 4d ({}^{1}D){}^{2}D_{2}$? bzw. $A_2 - 4d ({}^{1}D){}^{2}P_{12}', 4d ({}^{1}D){}^{2}D_{23}$?

Tabelle 3. Ar II nach Rosenthal [188] [Kombinationen 167, 168, 196].

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kombination				Kombination			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	7689	36 3		-	6403	10	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$4p^{2}P_{1}$ -3d ² D ₂	17	86 1		$+ 3 d^4F_3 - 4 p^2D_3$	6399	23	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4p^2D_2$ -3d ² D ₂	7440	54 0			96	63	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7380	45 4		- 00 00	94	77	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4p^{2}D_{3}$ 3 $d^{2}D_{3}$	48	11 2		E 100 -	93	82	Ou
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	44	58 000	u	$4p^{2}D_{3}$ -3 $d^{2}P_{2}$	76	00	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$3d^{2}P_{2}$ — $4p^{2}D_{2}$	7284	27 0			57	69	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	65	17 2		100. 201 TT. 100.	57	05	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	33	58 4		South The	48	27	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4p^{2}D_{3}$ $3d^{2}D_{2}$	7090	55 000			33	21	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{4}F_{3}$ -4p ⁴ D ₄	77	03 1		4 40 -65	32	51	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4p^{2}P_{2}$ 3d ² P ₂	55	01 2		+ -	24	40	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	25	24 0		$+ 3d^{4}F_{4} - 4p^{2}D_{3}$	6243	13	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d {}^{4}F_{2} - 4p {}^{4}D_{3}$	6990	16 2		3d*F ₂ -4p*D ₂	01	10	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	80	74 000	u	114 Bar (1997)	6197	11	ou
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3d^{4}F_{4}$ $4p^{4}D_{4}$	6886	50 0	1000	1 4n2F 5c2D	79	98	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d*F_3 - 4p*D_3$	03	02 0 90 4		+ 4p-r ₄ -08-D ₃	71	37	001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3d*P ₂ -4p*P ₂	20	79 000		$(3d4F - 4n^{2}D)$.01	oou
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4n2D 242D	18	39 4		$4n^{2}F_{-4}d^{2}F_{-1}$	- 38	67	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4p^2D_2$ $-3d^2D_2$ $2d^2P - 4p^2D$	08	55 8		$4n^2F_{2}-5s^2D_{2}$	23	38	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4n^{2}P - 3d^{2}P$	6799	32 9		$3d^4F_{e}-4p^2P_{e}$	20	12	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{4}F_{-4}n^{4}D_{-}$	56	61 5		$+4p^{2}F_{s}-5s^{2}D_{s}$	14	92	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		53	96 0			09	25	00 u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22	92 2		$3d^{2}P_{1}-4p^{2}S_{1}$	03	56	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	6696	31 ($4s^{2}P_{1} - 4p^{4}P_{1}$	6077	43	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ 3d^{4}F_{4}-4p^{4}D_{3}^{-1}$	84	36 8			49	10	0u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^{2}P_{1}-4p^{2}P_{1}$	66	36 E		-	46	89	0u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	53	68 00	u	$4 p^2 D_2 - a^2 P_1$	44	43	00 u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ 3d^{4}F_{5} - 4p^{4}D_{4}$	43	79 10		-	5989	38	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ 3d^{4}F_{2} - 4p^{4}D_{1}$	39	72 7		-	85	94	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ 3 d^{4}F_{3} - 4 p^{4}D_{2}$	38	24 8			71	61	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	21	01 2		-	68	35	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	6564	19 00	u	-	64	50	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ -	51	60 00	u	$4s^2P_2 - 4p^4P_3$	50	91	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3 d {}^{4}F_{2}$ - 4 p ${}^{2}D_{3}$	09	16 00	9 - 400 -	$4s^2P_2 - 4p^4P_2$	5843	80	00u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3d^2P_2$ — $4p^4S_2$	00	25 8	and the second	$4p^2D_3-4d^2P_2$	12	81	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ 3d^2P_2 - 4p^2S_1$	6483	10 6		$4s^2P_2 - 4p^3D_2$	5724	37	ou
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	80	16 0	1 324	3d*P2-4p*P2	5691	11	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- inter	75	41 00	u	R In The	10	10	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	second the second	72	41 2		and the line	04	40	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	68	08 2		0 - 18 - 1 - 2	21	02	001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ -	43	05 2		3d2D _5n2P	95	20	On
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sdap	91	63 0		ou D3-op 12	5578	56	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	our -4prr2	90	94 9		$3d^2P - 4n^2P$	77	70	2
		18	43			54	07	2
		09	00 0		1	45	08	1

¹) Die mit einem + bezeichneten Linien sind auch von L. u. E. Bloch und G. Déjardin [113, 118] angegeben, bei Versuchen mit der elektrodenlosen Ringentladung.

Kombination					Kom	bination		
_	5537	39	1	1		_	5312	13 00 u
handle state in	19	46	00u			-	09	22 000u
1 11 200	14	45	1	1000	$+4p^{2}S$	-a ² P ₁	5305	77 3
	00	38	1	-		_	5296	48 00u
1419 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5498	24	2		$+ 4s^{2}P$	$-4p^4D_2$	86	92 5
	97	26	000 u		+	-	81	66 1
diversity in the	69	20	1			-	67	22 00u
and and and the	66	53	0		+	-	64	79 0
+ -	54	41	3			-1995	45	49 0
	53	68	00 u		$+4p^{2}D$	$a - 4 d^2 D_3$	16	84 3
+ -	07	44	4		$+4p^{2}D$	$D_2 - 4 d^2 D_3$	04	46 0
+ -	02	69	3		000-66		5191	37 00 u
+ -	5397	60	3		$+ 3d^{2}D$	$_{3}$ -4 p ² F ₃	76	28 3
10000	93	68	Ou	12		_	69	81 00u
sharp	84	48	0		$+4p^{2}P$	2-a ² P ₂	65	82 5
Constant and a second second	76	74	000 u		4p ² D	D_2 -4 d ² D ₂	62	80 1
man and and and a	58	48	00 u	17.1	$+ 4s^2P$	2-4p4D3	45	36 8
1914022-1280	51	60	00 u	17. 14	$+ 3d^{2}I$	$_{3}$ -4 p ² F ₄	41	84 6
1000000 ATT 11	44	61	Ou		$+ 3 d^{2}I$	$D_2 - 4p^2 P_1$	25	84 0
Lange 1 State 1 Lange 1 Lange	31	09	Ou		$+ 3 d^{2}I$	D_{3} -4 p ² P ₂	5090	55 2
	29	76	Ou		1.00		1	
	1		1			Zoomar	offekt	
Kombination			1 ST		Zeemanenekt			
Kompination					theor	x heab	theor	beah
			1 10	00	theor.	Deoron	uncorr.	00001
-	50	088	43	00	0.05	-	1 70	-
$+4s^{4}P_{1}-4p^{4}P_{2}$	and a state	62	07	8	2.07		1.70	
-		32	25	00 u	-	-	(Palma	are the second
$4s^{2}P_{2}$ - $4p^{4}D_{2}$		17	63	2	- 10	-	STal-	9710
$+ 3d^{2}D_{2} - 4p^{2}F_{3}$	19	17	16	6	1.70		1.00	-
$+ 4s^{4}P_{2} - 4p^{4}P_{3}$		09	35	8	1.73	-	1.00	THE COM
$+ 4s^{4}P_{1} - 4p^{4}P_{1}$	49	972	16	D	2.67	0.07	2.07	0.00
$+ 4s^2P_1 - 4p^2D_2$		65	12	1	0.67	0.67	0.00	0.00
+ -	11-11-1	50	18	2	14 ETT 50		1000	
	100	02	14	oou	1.00	1000		S.C. Trans
$+4p^2D_2$ - a^2P_2	91	49	45	2	1		1 CANADA	No.
$+4p^{2}P_{1}-a^{2}P_{1}$		42	96	4	_			100
0.107	191	31	39	000	-		122	120.00
$3d^{2}F_{3} - 4p^{2}F_{3}$		36	13	cou	1.79	1 79	1.79	1 79
$+4s^{4}P_{2}-4p^{4}P_{2}$	2	33	24	0	1.70	1.10	1.10	1.73
$+4p^{2}P_{2}-4d^{2}D_{3}$		14	32	2			-	A Text
$+ 3d^{2}F_{3} - 4p^{2}F_{4}$		04	10	5	0.67	0.67	0.67	0.04
$+4s^{2}P_{1}-4p^{2}P_{1}$	4	589	06	0	0.07	0.07	0.07	0.94
$3d^{2}P_{2}$ - $5p^{2}F_{3}$		88	29	0	-	-		
-		82	25	4	1.00	1.00	1.00	1.04
$+ 4s^{2}P_{2} - 4p^{2}D_{3}$		79	90	12	1.33	1.33	1.20	1.24
$4p^2P_2-4d^2D_2$		11	08	Ou			-	
$+ 4p^{2}D_{2} - a^{2}P_{1}$		67	59	3	_		-	-
$+4p^{4}S_{2}-5s^{4}P_{3}$		65	96	G	-	10	-	-
-		63	85	00u	-	-	in the second	-
		56	20	oou	_	_	_	_
		D	05	0			-	and and a second

	-		
×4.		ur i	
6 R.		_	
	- 1	-	

			Zeemaneffekt			
Kombination			theor. g	x beob.	theor. g ₃	beob.
$+48^{4}P_{e}-4n^{4}P_{e}$	4847	90 8	1.73	1.73	2.67	2.67
	39	93 0	_	_		_
	34	27 000 u		ert it	-	
	32	11 1	_	_		
	10	05 1	_	_		_
$+4s^{4}P_{a}-4p^{4}P_{a}$	06	07 20	1.60	1.60	1.60	1.60
$+4p^2D_2-a^2P_2$	4792	12 5	_		1	_
+	86	19 2	_	_	10.44 .01	_
$+4s^{2}P_{1}-4p^{2}P_{2}$	64	89 10	0.67	0.67	1.33	1.23
·	57	24 00u	-	_		_
_	40	96 00u		_	1000	-
$+4s^{4}P_{2}-4p^{4}P_{2}$	35	93 15	1.60	1.60	1.73	1.73
$+ 3d^2D_2 - 4p^2P_2$	32	08 5	1.20	1.20	1.33	1.33
4p ² S, -5s ⁴ P ₂	30	69 2	_	_	-	
$+ 4s^2P_a - 4p^2D_a$	26	91 10	1.33	1.33	0.80	0.90
·1 -1	22	73 00u	_		_	_
$+4p^4S_a-5s^4P_a$	21	62 4	-	_	State and	
+ -	11	64 1	_	_		_ !
$+ 3d^2P_a - 5p^2P_a$	03	36 4	_			_
$+ 3d^2P_2 - 5p^2P_2$	4682	29 4	_	_	0	
$4n^2P_2 - 58^4P_2$	81	52 1	_		mber in	_
$+4n^{4}D_{2}$ $-3^{2}P_{2}$	66	28 2u	_	_	1002	_
$+4s^2P_2-4p^2P_2$	57	94 9	1.33	1.33	0.67	0.94
4n ⁴ D	49	06 Ou	_	_		_
$+4s^2D_2-4n^2F_2$	37	25 6	_	_		_
	35	81 Ou	_		10-1- C	
	14	99 00u		_	1000- 100	MILL I
	14	15 1u	-	_	11-11-11	_
8d ² P ₂ -5n ² P ₂	11	25 3	-	_	110-11	_
$+4s^{2}D_{2}-4n^{2}F_{2}$	09	60 15	1.20	1.20	1.14	1.14
	04	20 00u	_	_	_	_
	01	51 00u	_	_	_	_
$\pm 3d^2D - 4n^2P$	4598	77 5	_			
$4n^{4}D_{2} - n^{2}P_{2}$	93	44 2	_	_	-	_
$+ 4s^2D_2 - 4n^2F_2$	89	93 9	0.80	0.80	0.86	0.86
$3d^2P_2 - 5n^2D_2$	88	42 0	_	_	_	_
$4n^4S$ $-4s^2P$	87	90 2		_		_
xp 02 10 x1	84	29 Ou		_		_
$\pm 4s^2P = 4n^2S$	79	39 8	0.67	0.67	2.00	1.68
$+4n^2S$ -5s4P	72	92 1		_		1.00
$+4n^{4}S_{-5s}^{4}P_$	64	43 5	_	_		
- + + p 52-03 11	63	78 5	_			
$+4p^{4}D_{2}-2p^{2}P_{2}$	61	03 4	_ 00	_		_
· · P · · 3 · · · · 2	54	40 2		_		
	49	99 00u	_	_	-	
$+4p^{2}P_{0}-5s^{4}P_{0}$	47	78 5	_		_	
$+ 48^{2}P_{0} - 4n^{2}P_{0}$	45	08 10	1.33	1.88	1.88	1.28
$4p^2S_1 - 5s^2P_1$?	43	91 1				
	41	07 0	_	L		100
$4p^2F_4-4d^2D_2$	38	73 1u	-	_	100- 00	

			Zeemaneffekt				
Kombination			gx		g	y	
			theor.	beob.	theor.	beob.	
$+ 3d^{2}D_{0}-5p^{2}F_{3}$	4537	67 4		_	-	_	
$+4p^{4}S_{a}-5s^{2}P_{a}$	35	51 4		-	-	-	
$+ 3d^2F_{\circ} - 4p^2P_{\circ}$	30	57 4		-	_	-	
	17	54 1	- 01	_	-	-	
_	10	00 00u		_	-	-	
_	07	83 00u	-	-	197	-	
$\pm 4n^2D_s$ $-5s^4P_s$	02	95 5		_	_	_	
$+ 3d^2P_2 - 5p^2D_2$	4498	55 5	_		1	-	
	93	15 000u	- 10	_	_	_	
$\pm 3d^2D_2-4p^2D_2$	90	99 5	_		_	_	
- 00 23 -F 22	88	24 1	_	_	11-11	-	
$\pm 3d^2D_2-4p^2D_2$	81	83 8	1.20	1.20	1.20	1.20	
$4n^2F_2 - 4d^2D_2$	80	85 Ou	-		110-1-127	-	
$\pm 3d^2D - 4n^2P$	74	77 6	0.80	0.80	0.67	0.60	
+ 50 D2 - 19 11	69	38 Ou	-	-	-	_	
\pm 3d4D $-$ 4n4P	60	56 6	_	_	-		
- ou 22 - P - 3	59	27 Ou	_		-	_	
	58	89 Ou	_	_		-	
$+ 4n^2D - 3d^2D$	48	88 6	_	_	-		
$+$ $4p^2D_3$ $-3d^2D_3$	48	47 1	_	_	_	_	
$4p^2D - 3d^2D$	40	09 3			11-11		
$4p^2D - 3d^2D$. 39	45 8			1997	-	
$+ 4p^{-}D_{2}^{-}-5u^{-}D_{2}^{-}$	38	12 1	_	_	-	-	
5u-D ₃ -5p-13	85	45 00	_		_	_	
1 2 d2D 5n2F	33	83 5	1.20	1.20	1.14	1.14	
$+ 30^{-}D_3 - 5p^{-}T_4$	21	02 8	1.37	1.38	1.60	1.60	
$+ 30^{\circ}D_3 - 4p^{\circ}T_4$	20	18 9	2.67	2.67	1.20	1.20	
$+4s r_1 - p D_2$	96	01 15	1.73	1.73	1.37	1.33	
$+ 48 r_2 - 4p D_3$	20	90 7	0.00	0.00	1.73	1.73	
+ 30 -D1 - 4b - 13	07	90,000,1	0.00		-	_	
-	01	91 9				_	
+	01	74 11			ma_ d	-	
$4p^{*}P_{2} \rightarrow 5s^{*}P_{1}$	UL	14 14			1 - Transie		
$+ 4p^{*}P_{2} - 0s^{*}P_{1}$	01	02 7	1.43	1.43	1.60	1.60	
$+ 3d^{4}D_{2} - 4s^{4}P_{2}$	00	09 6	1.20	1.20	1.73	1.73	
$4 p^{4}S_{2} - 4 d^{4}D_{3}$	4394	65 2u		-	1997 - 19		
-	86	99 1	- 19	-	-	-	
$4s^2S_1 - 5p^2P_2$	85	72 000		-	- 1	1 m -	
	85	08 4	2.00	2.00	1.33	1.25	
$+ 4s^{2}P_{2}-4p^{4}S_{2}$	83	79 4	-	-	- 3	-	
$+4s^{4}P_{1}-4p^{4}D_{1}$	70	74 8	2.00	1.68	0.67	0.81	
$4p^{2}S_{1} - 5s^{2}P_{1}$	10	0 11	2.00	1.00	0.01	0.01	
$4 p^2 D_2 - 5 s^4 S_2$	79	25 1	-		-	-	
$+ 4s^2P_2 - 4p^2S_1$	75	96 5	1.33	1.33	2.00	1.68	
$+ 4 p^2 F_2 - 5 s^2 P_2$	74	87 3	-	-	-	-	
- 10 I I	74	13 0	-	-	-	-	
$4 p^2 D_3 - 5 s^4 P_3$	72	50 0	-	-	-	-	
$4p^{4}S_{2}-5s^{2}P_{1}$.	72	09 Ou	_	-	-	-	
$+ 3d^{4}D_{3}-4p^{4}P_{2}$	71	36 8	1.37	1.38	1.73	1.78	

	-		Zeemaneffekt				
Kombination	1 m		g	x	g	y	
	-	odia .	theor.	beob.	theor.	beob.	
$+ 3d^2D_a-4p^2D_a$	4370	76 6	0.80	0.80	0.80	0.80	
$+4s^2S, -5p^2P,$	67	87 5	2.00	2.00	0.67	0.94	
$+ 3d^{2}D_{2} - 4p^{2}D_{2}$	62	07 5	_		10-10	-	
$3d^2D_s$ $-5p^2P_s$	59	67 2	_	-	_	_	
$4n^{4}S_{2} - 4d^{4}D_{2}$	58	53 1	_	_	_	_	
$+ 3d^{4}D, -4p^{4}P,$	52	23 6	0.00	0.00	2.67	2.67	
$+4s^{4}P_{2}-4p^{4}D_{4}$	48	11 20u	1.60	1.60	1.43	1.43	
4n ⁴ S ₂ -3d ² S ₂	38	24 1	-	_	_	_	
$+ 4p^2P_2 - 3d^2D_2$	37	10 6	_	_	_	_	
· · · · · · · · · · · · · · · · · · ·	36	51 3	_	_	_	_	
$+ 3d^{4}D_{-}-4S^{4}P_{-}$	32	06 8	1.20	1.20	2.67	2.67	
$+48^{4}P_{2}-4n^{4}D_{2}$	31	25 10	1.73	1.73	1.20	1.20	
4n ⁴ S4d ⁴ D.	19	69 00n		_		_	
	17	44 00u	_	_	_	-	
	16	59 000		_			
$\pm 4s^2S_{2} - 5n^2D_{2}$	09	25 3		_		_	
+ 45 51 op 52	09	11 2		_		_	
	07	54 0000	_	_	_	_	
	06	71 00u		_	_	_	
	04	62 000	_	_	_		
	02	67 000	_		_	_	
$1.2d^2F - 4n^2D$	00	66 6	_				
$+ 2d^2D - 5n^2P$	4997	99 5	1 _		1		
+ 50-D2-5p-11	95	92 1		_		_	
	86	38 1			_	_	
1 4e4P _4p4D	89	90 7	1.73	1.73	0.00	0.00	
+ 48 12-4p D1	81	53 000 n	_	1.10	0.00	0.00	
	80	96 Qu		_	100-0	_	
	78	84 00u	_			_	
$\pm 4s^2D = 4n^2P$	77	55 8	1.20	1.20	1.33	1.33	
+ 45-D3-4P-12	76	18 000		1.00	1.00	1.00	
$4n^{2}D - 5e^{2}D$	75	19 4	0.67	0.94	1.33	1.43	
$+ 2d^2D - 5n^2P$	67	73 01	_	-	-	1.10	
$+ 50^{\circ}D_3 - 5p^{\circ}T_2$	67	47 0	_	_		_	
$\pm 4s^{4}P - 4n^{4}D$	66	53 10	1.60	1.60	1.73	1.33	
+ 48 13 - 4p D3	56	71 000	_				
$+4n^{1}D_{-5s^{4}P_{-5s^$	55	62 3	1	_	_	_	
1 1 P D3 05 12	54	71 00µ	_	1	_		
	46	61 00n		_		_	
4n2D 5s4P.	43	71 20	_	_	_		
	40	95 00 n	_	_	-	_	
	38	56 00	1 1	_	-	1.1	
$+48^{2}D_{e}-4n^{2}P_{e}$	37	23 7	0.80	0.80	1.33	1,33	
1 10 D2 - 10 L2	35	92 00n	_	_		-	
	35	29 00n		-	-	_	
	29	89 4	_	_		-	
	29	49 0	_	_		_	
$+4s^{4}P_{e}-4s^{2}D_{e}$	28	18 7	1.78	1.73	1.20	1.24	
$+4p^2P_c$ -3d ² D _a	27	02 4		_			
Kayser u. Konen, Spel	troskopie.	VIII.			6		

Kayser u. Konen, Spektroskopie. VIII.

a tellaritera				Zeeman	neffekt	
Kombination			g,	ĸ	g	у
And Antonio (Mode.			theor.	beob.	theor.	beob.
4n ² P-3d ² D	4226	65 2		_	10 H	NN0-
$+4n^{2}P_{2}-5s^{2}P_{1}$	22	67 5	1.33	1.23	0.67	0.81
$+4n^{2}D_{2}-5s^{2}P_{2}$	18	69 5	0.80	0.90	1.33	1.43
	17	45 4	-	-	10	P68-
	14	89 1u	-	_		191-
	10	98 000 u	2 - 2	-	11	268-
and the second	10	00 00u		-	11	- 11
and the second second	05	19 00u	-		-	- 10
+ -	03	43 5	- 1	-	-	- 1
+ -	01	99 5	10 - 11	-	-	-
(4s4P1-5p4P2)	01	59 9	0			
4p4D1-5s4P2	01	00 4			1000	takin s
$3d^{2}D_{2}$ - $5p^{2}D_{3}$	4199	93 3	- 1	-	A Property of	
	89	67 4	-	-	-	-
_	82	98 0		-	-	-
$+ 4p^{4}D_{3}$ $- 4p^{2}D_{2}$	79	31 5	- 1	-		-
$+ 4s^{4}P_{3}$ -4 $p^{4}D_{2}$	78	39 5		-	-	-
	75	96 00u		-	-	-
e-territy, of the	74	15 000u	- 1	-	-	-
	68	98 3		-	-	-
	59	84 0	-		-	-
$+4p^{4}D_{2}-5s^{4}P_{2}$	56	11 5	1.20	1.20	1.73	1.63
$4s^{4}P_{1} - 4p^{2}P_{1}$	47	43 1u	-	-		- 20-
-	44	27 00u	-	-	-	-
- And - And -	43	21 000	-	-	-	-
$+ 4s^{2}D_{2}$ -4p ² P ₁	31	73 8	0.80	0.80	0.67	0.60
	30	42 0	-	-	-	-
$4p^{2}P_{1} - 5s^{2}P_{1}$	29	70 4	0.67	0.99	0.67	0.81
	28	65 5	-	-	-	-
$4p^{4}P_{1} - a^{2}P_{1}$	27	09 0011	-	-	-	-
$4p^{4}P_{2}$ $a^{2}P_{2}$	24	09 0	-	-	-	-
$3d^{2}D_{3}$ — $5p^{2}D_{2}$	16	39 4	-	-	-	-
$3 d^2 D_3 - 5 p^2 D_3$	14	52 2	-	-	-	-
$4s^{4}P_{2}$ - $4p^{2}D_{2}$	12	88 D	-	-	_	-
$\begin{cases} 4p^4D_4 - 5s^4P_3 \\ 4p^2P_1 - 3d^2S_1 \end{cases}$	08	91 10	-		-	-
+ -	4099	47 9		-		- 11
$+ 4s^2S_1 - 5p^2S_1$	97	15 3	-	-	-	-
$+ 4p^2D_2 - 4d^4D_3$	96	47 000	-	-	-	-
_	87	11 00u	-	-	1 - P	- 12
$\left\{ \frac{4p^{2}P_{2}-4d^{2}D_{3}}{4s^{4}P_{2}-4p^{2}D_{2}} \right\}$	82	40 6	-	-	-	-
+ -	80	67 4		-	1944	101-
$+4s^{2}D_{2}-4n^{2}D_{2}$	79	60 5	1.20	1.20	0.80	0.80
$+ 58^{2}P_{1} - 4p^{2}D_{2}$	76	96 4	0.80	0.90	0.67	0.81
$+4p^{4}D_{2}-58^{4}P_{2}$	76	64 5	0.00 .	0.00	2.67	2.53
$+4p^{4}D_{2}-58^{4}P_{2}$	72	40 7	-		-	-
$+48^{2}D_{2}-4p^{2}D_{2}$	72	01 9	1.20	1.20	1.20	1.20
	71	33 1u			-	- 11

1 destinant			Zeemaneffekt			
Kombination			g _x g _y			,
And Deres		di la la la	theor.	beob.	theor.	beob.
_	4070	80 1		- 1		- '
	64	14 3	- 1	-	-	
	62	05 00u		-	100 H 310	nh
$4s^{4}P_{1}$ — $4p^{2}P_{2}$	57	72 Ou	-	-		- 1
$4p^{4}D_{1}$ — $5s^{2}P_{2}$	53	56 0		-	10° 10	-
$+ 4s^2S_1 - 4p^2P_2$	52	94 5	2.00	2.00	1.33	1.33
_	51	19 1u	- 1	-		- 1.
$4p^{2}D_{2}$ 3 $d^{2}S_{1}$	47	51 3		-	-	-
-	45	71 1	-	-	-	
$+4s^{2}D_{2}-4p^{2}D_{2}$	42	91 8	0.80	0.80	0.80	0.80
$3d^2P_2 - 4p^2F_3$	42	20 1	-	-		-
$+ 3d^{4}D_{3}$ -4p ⁴ D ₄	38	82 7	-	-	-	-
$+4s^{2}D_{2}-4p^{2}D_{3}$	35	47 6	-	-	-	-
$+4p^{4}D_{2}-5s^{4}P_{1}$	33	83 6	1.20	1.20	2.67	2.53
$4p^{2}D_{2}-4d^{4}D_{1}$	31	41 2	-	-	-	_
-	19	86 1	1.49	1 49	1 49	1 40
$+3d*D_4-4p*D_4$	13	87 10	1.40	1.45	1.40	1.45
$+4p^{a}D_{2}$ $-5s^{a}P_{2}$	11	25 0	-	-		-
$4p*D_3-4d*D_4$	07	40 1		-	-	
-	00	16 0				
- 4-20 4-2D	2004	81 5	2.00	2.00	0.67	0.76
$+48^{-}S_{1}-4p^{-}r_{1}$	0004	06 7	2.00	2.00	0.01	0.10
$+ 3d^{*}D_{2} - 4p^{*}D_{3}$	90	76 001				110
	89	78 00				
1 4n2D 4d4D	88	18 4	_	_	_	_
$+4p$ - D_3 - $4d$ $4p$	79	36 7	_	_	_	_
+ + p 52-14 11	75	47 000	_	_	100-0	_
$4s^{4}P_{-}=4n^{2}D_{-}$	74	76 6		_	_	
$\left[4s^{4}P_{a} - 4p^{2}P_{a} \right]$						
$4n^2P_1-4d^2D_2$	74	48 5	-	-	10000	-
$+ 3d^{4}D_{2} - 4n^{4}D_{2}$	68	36 10	1.37	1.38	1.37	1.33
$+4p^{2}D_{0}-4d^{4}D_{0}$	58	39 5		-		-
$+4p^{4}S_{*}-4d^{4}F_{*}$	52	74 6	- 1	-	-	
$+4p^{2}F_{4}-3d^{2}D_{3}$	46	10 7	-	-	-	-
$+ 3d^{4}D_{4} - 4p^{4}D_{3}$	44	27 8	1.43	1.43	1.37	1.33
	36	71 Ou	-	-	-	-
	36	29 00u	-	-		
	35	27 Ou	-	-	-	-
$4 p^4 D_3 - 5 s^2 P_2$	33	19 0	-	-	10-0	
$+ 4p^{4}S_{2}$ -4d ⁴ P ₂	32	55 7	-	-	- 0	
$+ 3 d^{4}D_{1} - 4 p^{4}D_{2}$	31	24 6	-	-		at -
$+ 4s^{4}P_{1} - 4p^{4}S_{2}$	28	62 9	2.67	2.67 .	2.00	2.00
$+ 4p^{2}F_{3}$ -3d ² D ₂	25	. 71 3	-	-	-	-
STATE I	23	57 Ou		-	- 1	- 11
$\{4s^{4}P_{1}-4p^{2}S_{1}\}$	22	54 11	_ 2	_	-	_
$4p^{4}D_{1}-5s^{2}P_{1}$		-				
	17	77 2	-	-	-	-
$+ 3d^{4}D_{2} - 4p^{4}D_{2}$	1 . 14	76 7				
					6*	

1 gentle danser			Zeemaneffekt				
Kombination			g	x	g	y	
			theor.	beob.	theor.	beob.	
$+ 4p^4D_1 - 4d^4D_2$	3911	58 5	< - 11	- 1	_	-	
	07	68 1	-	-	-	-	
$+ 4p^{4}D_{2}$ $- 4d^{4}D_{3}$	00	63 5	-	-		-	
$4p^{4}D_{1}$ — $3d^{2}S_{1}$	3895	26 2	- 1	-		-	
$4 p {}^{4}S_{2} - 5 s {}^{2}D_{3}$	93	14 00u	-	-		- 1	
$+ 3 d^4 D_3 - 4 p^4 D_2$	91	97 7	-	-	-		
$+ 3 d^{4}D_{1} - 4 p^{4}D_{1}$	91	40 6	-	T	-	-	
	81	03 00u	-	-		-	
$+ 4p 4D_1 - 4d 4D_1$	80	34 4	-	-	-	-	
$+ 3 d^{4}D_{2} - 4 p^{4}D_{1}$	75	26 7	-	-	-	-	
$+ 4p^{4}D_{2}$ $- 4d^{4}D_{2}$	72	15 5		-	-	-	
$4p^{2}P_{2}$ -4d ⁴ F ₃ ?	69	61 0	-	-	-	-	
$+ 4p^{4}S_{2}$ $- 4d^{4}P_{3}$	68	35 8	-	-	-		
	61	37 1		-		- 17	
$4p^{4}D_{2}$ — $3d^{2}S_{1}$	56	16 1	- 1	-		- 19	
$4p^{2}P_{2}$ -4d ⁴ P ₁	55	18 0		-	-	-	
1. The set of a market of the set	53	95 000 u	-	-	-	-	
$+ 4s^{4}P_{2} - 4p^{4}S_{2}$	50	57 15	1.73	1.73	2.00	2.00	
$\int +4p^{2}D_{3}-4d^{2}D_{3}$	45	42 5		_		_	
$+4s^{4}P_{3}-4p^{2}P_{2}$	10		S				
$+ 4p {}^{4}D_{3} - 4d {}^{4}D_{4}$	44	75 4		-	-	-	
$4p^{4}D_{2}$ — $4d^{4}D_{1}$	41	54 3	-	-	-	-	
	38	28 00		-	-	- 64	
$+ 3 d^2 D_2 - 4 d^2 P_1$	30	43 5	-	-	-	-	
$+ 4 p^{4} D_{3} - 4 d^{4} D_{3}$	26	83 6	-	-	-	-	
$+ 4p^{2}D_{3}$ - $4d^{2}D_{2}$	25	70 5	-	-		-	
	23	29 2	-	-	-		
$4p^{2}D_{2}$ - $4d^{2}D_{2}$	19	04 4	-	-	-	-	
—	17	65 00	-	-	-	-	
	17	42 0	-	-	-	-	
$4p^2P_2$ -4d ⁴ P ₂	11	22 1	-	-	- 1	-	
$+ 4p^{4}P_{2} - 5s^{4}P_{3}$	09	49 7	1.73	1.73	1.60	1.60	
$+ 3 d {}^{4}D_{3} - 4 p {}^{2}D_{3}$	08	61 5	-	-	-	-	
$+ 4p^{2}D_{3}$ $4d^{2}D_{3}$	03	19 6	1.20	1.20	1.20	1.20	
$+ 4 p {}^{4}D_{3} - 4 d {}^{4}D_{2}$	3799	39 6		-	-	-	
$+ 4p^{2}D_{2}$ $4d^{2}D_{3}$	96	60 4	-	-	-	-	
-	95	36 1	-	-	-	-	
-	93	25 00u	-	-	-	-	
—	92	74 000 u		-	-	-	
$+ 3 d^4 D_4 - 4 p^2 D_3$	86	40 6		-	-	- 11	
$+ 4 p^{4} D_{4} - 4 d^{4} D_{4}$	80	84 8	-	-	+ 8		
$4p^{2}P_{1}$ — $4d^{4}P_{1}$	77	55 2	-	-	- 1	- 11	
	76	82 00 u	-	-	+	-	
	74	54 3	-	-	-	-	
$+ 4p^{4}P_{1} - 5s^{4}P_{2}$	70	54 6	2.67	2.67	1.73	1.63	
$+ 3d^{2}P_{2} - 4p^{2}P_{2}$	66	13 5	1.33	1.33	1.33	1.33	
$+4p^{4}P_{3}-5s^{4}P_{3}$	65	27 6	1.60	1.60	1.60	1.60	
$+4 p^{4} D_{4} - 4 d^{4} D_{3}$	63	52 5		-	-	-	
_	62	30 00u	-	-	and the second second		

Sindle Sector			Zeemaneffekt			
Kombination	1. 25		g	x	g	y
diand mining the	-		theor.	beob.	theor.	beob.
	3756	68 2		-	_	-
$+ 4p^2P_1 - 4d^2P_1$	54	06 3		-	-	-
$+ 4p^2D_2 - 4d^2P_2$	53	53 4		-	-	_
$4p^{2}P_{2}-4d^{4}P_{3}$	51	71 00u	- 10	-		_
	51	35 00 u	8 - W	-	.914	
	51	06 0	- 1	-	-	-
$3d^{4}D_{1}-4p^{2}D_{2}$	50	50 4	-	-	-	
$+ 4p^{2}D_{2}$ $- 4d^{4}F_{3}$	46	92 4	- 1	-		-
$+ 4p^{2}D_{2}-6s^{2}P_{2}$	46	46 4	10° - 01	-	-	-
$4 d^2 D_3 - 4 d^4 P_3$	41	21 0			-	-
	40	15 1	1 - 4	-	1 - 1	- 1
$+ 4p^2D_3 - 4d^2F_4$	37	89 6	- 1	-	-	- 1
	36	13 0		-	100-	- 10
$3d^{4}D_{2}$ — $4p^{2}D_{2}$	35	49 4	-	-	-	11-21-
$4 p^2 D_2 - 4 d^4 P_1$	33	36 Ou	-	-		-
$+ 4s^{4}P_{3}$ $- 4p^{4}S_{2}$	29	29 10	1.60	1.60	2.00	2.00
	26	37 Ou		-	-	- 1
	25	22 000u	- 1	-	-	-
$+ 4p^{2}D_{3}$ -4d ² F ₃	24	51 4		-	-	- 20
$+4p^{4}P_{2}-5s^{4}P_{2}$	20	43 5	1.73	1.73	1.73	1.63
$+ 4p^{2}D_{2}-4d^{2}F_{3}$	18	21 6	0.80	0.80	0.86	0.86
$+ 4p^{2}D_{3}$ -4d ⁴ F ₄	17	17 5	-	-	-	-
	16	57 000 u		111	-	-
$3d^{4}D_{3}$ -4p ² D ₂	14	74 3	-	-	-	-
$4p^{2}P_{2}-6s^{4}P_{2}$	13	03 2	-	-	-	-
	11	54 1	-	-	-	-
$+ 4p^{2}D_{2}$ -4d ⁴ F ₂	09	90 4	-	-	-	-
$3d^4D_1 - 4p^2P_1$	06	94 4	-	-	-	-
-	04	48 0	-	-	-	-
	03	56 1	-	-	-	-
-	02	01 1	-	-	-	-
	3698	36 .00u	-	-	-	-
	94	66 1	-	-	-	-
$3d^4D_2 - 4p^2P_1$	92	33 Ou	-	-	-	-
	92	17 00u	-	-	-	-
$3d^2P_2 - 4p^2P_1$	82	56 4	-	-	-	-
$+4p^{2}P_{4}-4d^{2}P_{2}$	80	06 5	-	-	-	-
$+4p^{4}P_{3}-5s^{4}P_{2}$	78	27 5	1.60	1.60	1.78	1.73
$4p^{2}P_{1}-6s^{2}P_{2}$	73	26 4	-	-	-	-
$4p^{2}P_{4}-4d^{2}P_{1}$	71	01 3	-	-		-
$+4p^{2}P_{1}-5s^{4}P_{1}$	69	62 5	-	-	-	-
-	68	19 Ou	-	-	-	-
$+4p^{2}P_{2}-4d^{2}D_{2}$	60	41 6	-	-	-	-
-	58	52 Ou	-	-	-	-
	57	25 0	-	-	-	-
$+4p^{2}D_{3}-4d^{4}F_{3}$	56	05 5	-	-	-	-
$+4p^{2}P_{2}-4d^{2}F_{3}$	55	29 6	-	-	-	
$+4p^4P_2-5s^2P_2$	50	90 4	-	-	-	1.00
$+4p^{2}P_{2}-4d^{2}D_{3}$	39	85 7	1.33	1.33	1.20	1 1.20

.

			Zeemaneffekt			
Kombination					G	in a
romoniation			theor	x	theor	bach
deed and a second			theor.	beob.	theor.	DeoD.
_	3637	89 3		-	-	-
+ -	37	05 5	0 - V	-	11-1	110 -
_	35	67 2		_		- 11
3d4D,-4p2P.	35	13 00u	- 1	_	11-11	- 10
$3d^2P_1 - 4p^2P_2$	34	83 4	- 1	-	-	-
	30	86 00u	- 10	-	-	-
_	29	20 00u		-	- 1	
_	28	87 00u		_		- 10
-	26	93 1	-	_	-	- 11
_	23	52 1	- 11	- 1	10-4-10	112-
$+4p_{1}^{4}P_{2}-5s^{4}P_{1}$	22	15 6	1.73	1.73	2.67	2.53
3d4D,-4p2P,	21	06 0	- 1	-	+	- 11
3d4F4p2D.	20	82 0		-	-	-
- 1 - 5	14	31 00u		-	1 - 1	- 11
_	12	99 000u	2 - 2	-		-
$+ 3d^{2}P_{o}-4p^{2}D_{o}$	11	84 4		-		-
	10	24 00u		-	-	-
_	07	47 Ou	-	_	-	-
$+ 3d^2P_0 - 4p^2D_0$	05	89 6	1.33	1.33	1.20	1.20
4s4P5s2P.	03	91 3		-	P	196-
$+4p^{2}D_{2}-4d^{2}P_{2}$	03	46 3	-	-11	1944	-
· · · · · · · · · · · · · · · · · · ·	02	90 0	-	-	11-10	-
_	02	60 0		-	-	-
$+ 3d^4D_3 - 4p^2P_2$	01	51 4	- 1	-	- 1	NR -
$4p^2P_2$ -4d ² P ₂	00	22 3	-	-		11-
+ -	3598	83 00	- 1		-	-
$3d^{2}F_{4}$ -4p ² F ₄	94	41 00u	- 1	-	1 ···· (- 10
$4p^{2}P_{2}-6s^{2}P_{2}$	93	76 00u	-	-		100-
$4p^{4}D_{4}-4d^{4}F_{5}$	88	44 10		-	-	-
$+4p^{4}D_{2}-4d^{4}F_{3}$	82	35 8	N 0	-	-	-
$+4p^{4}D_{1}-4d^{4}F_{2}$	81	62 6		-	-	-
_	79	79 00u		- 10	-	-
_	78	36 2		-	-	-
$+ 4 p^4 D_3 - 4 d^4 F_4$	76	62 10	12 - 2	-	11-17	- 3/1
-	75	40 000u	- 1	-	-	-
$4 p^2 P_2 - 4 d^2 F_3$	70	77 00u	5	-	-	-1.1
$4p^{2}D_{3}-5s^{2}D_{3}$	69	94 1		-		at-
$4p^{4}D_{2}-4d^{4}P_{1}$	67	78 1u	-	-	- 2	101-
$+4p^{4}D_{1}-4d^{4}F_{2}$	65	02 5		-		- 12
$+ 4p^{4}P_{2} - 5s^{2}P_{2}$	64	34 4		-	-	- 49
$+ 4p^{2}F_{4} - 4d^{2}G_{4}$	62	19 4		-	9-	191+
$+ 4p^{2}F_{4} - 4d^{2}G_{5}$	61	04 6	1.14	1.14	1.11	1.11
$+ 4p^{2}D_{3}$ -4d ² F ₄	59	53 6				Park +
+ -	58	49 0	-	-	-	-
$3d^{2}P_{1} - 4p^{2}P_{1}$	56	91 5	-	-	-	-
-	50	03 4	-	-	-	-10
$+ 4p^{4}D_{2}$ $- 4d^{4}F_{2}$	48	51 7	-	-	-	-
$+ 4p^2F_3 - 4d^2G_4$	45	84 9	0.86	0.86	0.89	0.89
$+ 4p^2D_2 - 4d^2F_3$	45	58 10		-		- 10

.

	Kombination	celtra	nines.	Kombination		
-		3543	16 5	$+4p^{4}D_{3}-4d^{2}F_{4}$	3430	44 4
	$+4p^{4}P_{-}-4d^{4}D_{0}$	35	33 6	$+ 4p^{2}F_{4} - 4d^{2}D_{3}$	29	64 3
	-	32	42 00u		62	03 00 u
	$4p^{4}D_{0}-4d^{4}P_{0}?$	32	19 00u	0 20 - 20	25	54 Ou
	3d4D,-4p4S.	31	22 2		23	67 00u
	$+4p^{4}P_{,-}-3d^{2}S_{,-}$	21	98 4	$+4p^{4}D_{3}-4d^{4}P_{3}$	21	64 5
	$+4p^{4}D_{4}-4d^{4}F_{4}$	21	27 5	$+4p^{2}F_{3}-4d^{2}D_{3}$	14	46 3
	$+4p^{4}D_{3}-4d^{4}F_{3}$	20	00 6	- m - m	09	74 00u
	3d4D ₂ -4p4S ₂	17	90 3		08	62 1
	$+4p^{4}P_{2}-4d^{4}D_{3}$	14	39 9	$+ 4p^{4}D_{2}$ $- 4d^{2}F_{3}$	3397	89 4
	+ -	11	67 0		91	89 00
	+ -	11	15 3		90	70 00u
	$+4p^{4}P_{1}-4d^{4}D_{1}$	09	78 6	$+ 4p^2S_1 - 4d^2P_2$	88	54 7
	+	09	35 1		84	79 00u
	2	08	15 00u	$4 p^4 S_2 - 4 d^2 P_2$?	83	94 2
		03	59 2		83	07 0
	$3d^{4}D_{3}$ -4 $p^{4}S_{2}$	3499	68 1		82	22 2
	+	99	49 5	+ -	79	58 5
	$+ 4p^{4}P_{3} - 4d^{4}D_{4}$	91	54 8	$4p^{2}F_{3}-4d^{2}P_{2}$	79	48 2u
	$4p^{4}P_{2}$ - $4d^{4}D_{2}$	91	24 6		78	35 0
	$3d^{2}P_{1}$ — $4p^{2}D_{2}$	90	89 4	$+4p^{2}F_{4}-4d^{2}F_{4}$	76 *)	46 7
	0 - 10 000	88	17 000	$4p = F_3 - 6s = P_2$	18	07 5
	$4p^{4}D_{3}$ - $4d^{4}F_{2}$	87	33 3	$+4p*D_4-4d*P_3$	00	50 4
	A 4 - 9	81	64 1u	$+4p^{2}P_{2}-4d^{2}P_{1}$	00	54 4
	$4p^{4}D_{2}$ -4d ⁴ P ₃	80	52 5	$+4p^{2}r_{3}-4d^{2}r_{3}$	61	72 2
	$+4p^{4}P_{2}-3d^{2}S_{1}$	78	24 4	+ 4p*r3-4d*r4	61	54 0
	$+4p^{4}P_{3}-4d^{4}D_{3}$	76	74 6		59	56 3
	a n - m	74	47 0		54	79 001
		74	14 00u		51	98 1
	$4p^4D_3$ -4d ⁴ P ₂	71	09 2	1 9n2F 4d2F	50 2)	94 6
	-	10	21 0	+ 2p-r ₃ -4u-r ₃	50	19 001
	$4p*P_2-4d*D_2$	66	34 5		44	79 3
	$[+4p*D_4-4d*F_3]$	OF	80 8	$\pm 4n^{4}D - 4d^{2}F$	41	77 2
	$4p^*S_1 - 4d^*P_2$	60	14 6		38	85 2
	$+4p-D_3-4a-r_3$	50	81 00n		36	20 4
	1 4= 4D 4 44D	54	10 5		24	28 0
	$+4p*P_{3}-4d*D_{2}$	52	10 0n		17	85 Ou
		48	31 On		14	61 000 u
		47	40 00		12	97 2
		39	28 000		11	26 4
	$4n^{4}D_{-}-5s^{2}D_{-}$	38	14 000 n		09	39 2
		33	44 On	$+4p^{2}P_{1}-4d^{2}P_{1}$	07	24 6
	$+4p^{2}F_{-}-4d^{2}D_{-}$	32	64 2		06	50 3
		31	77 1	- 10	01	87 5
		31	04 1	$4p^2P_2-4d^2P_2$	3293	95 4

¹) Zeemaneffekt: 3376.46: $g_x = 1.14$, 1.14; $g_y = 1.14$, 1.14.

²) Zeemaneffekt: 3350.94: $g_x = 0.86$, 0.86; $g_y = 0.86$, 0.86.

88

Argon

Kombination		input.	Kombination	and it is	telen 2 See de
+ -	3293	66 7	+	3165	81 5
6 10 + 15	91	47 4	$4p^2P_1 - 5d^2P_2$	63	61 1
EN 80 - 15	87	40 0	1000-00-00	61	45 3
0	86	95 0	$+ 4p^2S_1 - 3d^2D_2$	61	38 4
100 KB - 1297	85	87 5	1 1 - B - R	54	31 0
$+4p^{4}P_{1}-4d^{4}P_{1}$	81	72 6	$+ 4p^2P_1 - 5d^2P_1$	53	80 4
	80	00 1u	-	52	66 2
	79	01 Ou	+	50	56 2
	78	28 Ou	+ -	48	24 3
1 . 18 - 1953	75	69 1	$+ 4 p^4 P_3 - 4 d^2 F_4$	46	47 2
$+ 4p^{2}D_{2}$ -4d ² P ₁	. 73	36 4		43	93 0
	71	25 0	1.2 - 2 - 1	41	01 0
1 100 + 100	70	53 2	-	39	29 1
$4p^{4}P_{3}-4d^{4}F_{4}$	69	05 2	$+4p^{4}P_{3}-4d^{4}P_{3}$	39	02 7
$+4p^{4}P_{1}-4d^{4}F_{2}$	63	60 5	$4p^{2}D_{3}$ - $4d^{2}P_{2}$	37	66 4
	62	12 0	-	36	55 4
+ -	59	71 4	-	14	42 2
$4p^{4}P_{2}-4d^{4}F_{3}?$	54	03 3	-	09	75 3
	53	59 Ou	-	09	41 00u
	51	85 00u	$4s^2P_2 - 4p^2F_3$	08	82 000u
$+4p^{4}P_{1}-4d^{4}P_{2}$	49	82 7	$+4p^{2}P_{2}-5d^{2}P_{2}$	04	38 5
	48	74 Ou	T	02	95 000u
	47	55 3	+ -	02	63 3
$+ 4p^{4}P_{2} - 4d^{4}P_{1}$	43	70 7	-	02	17 0
$+ 4p^2P_1 - 4d^2P_2$	36	82 4	+ -	3099	97 4
+ -	30	08 2		96	33 000u
$4p^{4}P_{2}$ $-4d^{4}F_{2}$	26	00 3	$4p^{2}P_{2}$ — $od^{2}P_{1}$	94	98 8
$+4p^{2}D_{3}-5d^{2}P_{2}$	22	42 3	$+4p*P_2-4d*D_3$	93	41 8
$+4p^{4}P_{3}-4d^{4}F_{3}$	21	64 3	Tet a de la	00	90 2
4p*D ₂ >d*P ₂	17	10 0	$+4p^{-1}P_{2}-5d^{-1}D_{3}$	00	05 1
+ -	10	74 0	+	89	99 4
LAND AND	10	54 5	$+ 4p r_1 - 4u s_1$	78	14 On
$+4p*P_2-4d*P_2$ +4p*D 5d2P	12	61 4		66	92 4
$+4p^{2}D_{2}-5d^{2}P_{1}$	05	03 4	T	65	19 2
$\pm 4 p^2 D_3 - 5 d^2 D_3$ $\pm 4 p^2 D_3 - 4 d^2 P_3$	04	34 5		64	77 0001
-+ + + p-D2+ d-12	03	44 00n		62	70 2
	8195	79 2	+	60	94 5
	94	63 1	_	54	81 1
$\pm 4n^{4}F_{-}-4d^{4}F_{-}$	94	25 5		53	20 3
	92	41 1		48	85 1
$\pm 4n^{4}P_{e} - 5s^{2}D_{e}$	86	19 3	Linester _ gas	48	09 1
$+4p^{4}P_{2}-4d^{4}P_{3}$	81	05 7	+ 1 - 1	46	10 4
· · · · · · · · · · · · · · · · · · ·	71	44 1.	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	36	95 1
1 10 L 10 10 10	70	87 000	$+4s^{2}P_{1}-4p^{2}P_{2}$	33 1)	52 6
$+4p^{4}P_{e}-4d^{4}P_{e}$	69	68 8	$+4p^{2}P_{1}-4d^{2}D_{2}$	28	93 6
	67	52 2	$+4p^{2}P_{0}-4d^{2}S_{1}$	26	75 4

¹) Zeemaneffekt 3033.52: $g_x = 0.67, 0.67; g_y = 1.33, 1.33.$

Kombination			Kombination	
_	3024	04 1		2806
$+ 4p^{2}D_{2} - 4d^{2}D_{3}$	14	49 5	+	06
an 19 -	09	99 000 u		00
2 19710 - 10-PU	03	00 3	12 DE 18 - 01	00
A AL THE	02	66 2		2796
$+ 4p^{2}D_{2}$ -4d ² D ₂	00	45 5	100 m - 10	95
	00	14 4	the set the set	95
E. 1997 - T. 198	2999	21 Ou	later a - a - i	85
0 10 -	93	70 000u	1 or 10 - or 1	83
00.00 -	90	93 Ou	1 2 AL - 40	75
$+ 4s^{2}P_{1} - 4p^{2}P_{1}$	79 ¹)	05 6	1 m + 6 1	74
+ -	60	27 4		72
10 10 -	57	56 2	+	69
0 12 -	56	55 3	1 12 - 21 I	67
$+ 4p^2D_3 - 4d^2D_3$	55	39 5	$+ 4 s^4 P_3 - 4 p^2 F_3$	64
00 00 -1	47	33 2	1 1. 21 + 24	63
$+ 4s^{2}P_{2} - 4p^{2}P_{2}$	(42 ²)	90 8		62
$4p^{2}F_{4}$ -5 $d^{2}D_{3}$	35	57 2	+	57
$+ 4s^{2}P_{1} - 4p^{2}D_{2}$	32	60 4	$4s^4P_3 - 4p^2F_4$	54
+ -	31	49 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53
$+ 4p^{2}F_{3} - 5d^{2}D_{3}$	24	66 4	+	44
+ -	15	62 2	Vern as - a l	41
Du aparo, the Provi	04	80 00	and in - and	41
8 52 -	2897	30 3	0 191-30	33
+ -	96	75 4	+ -	32
	93	98 1	-	24
$+ 4s^{2}P_{2} - 4p^{2}P_{1}$	91	61 5		20
-	87	53 0	+ -	08
	84	21 2		08
181 EH -	79	31 2		01
10 10 -	78	76 1	$4 s^4 P_2 - 4 p^2 P_2$	2692
+ -	74	55 2		90
The market of the second	71	04 0		89
- a m	69	29 00		86
$+4p^{4}P_{1}-4d^{2}P_{2}$	65	85 4	+ -	83
+ -	60	73 2		78
1 90 10	55	33 2	10 mm +4	74
000.40	53	33 Ou		56
	51	85 00		55
$+4s^{2}P_{2}-4p^{2}D_{2}$	47	81 2	1 000 400 - March	54
-	47	14 0	The st - m	51
$4s^2P_2$ -4p ² D ₃	44	12 2	$4s^{4}P_{2}$ - $4p^{2}P_{1}$	49
() () () () () () () () () ()	43	37 1	+ -	47
-	42	96 0	- 10 T	36
$4p {}^{4}P_{2} - 4d {}^{2}P_{3}$	36	79 00	$3d^{4}D_{3}$ -4p ² F ₃	36
	23 A			

¹) Zeemaneffekt theor. und beob.: 0.67. ²) Zeemaneffekt theor. und beob.: 1.33.

00u

00 u

00 u

00u

00 u

0.

00 u

0u

Ou

0u

- A.	-	~	~	**
-				
		-		

Kombination	mine			Kombination
$+3d^{4}D_{3}-4p^{2}F_{4}$	2627	41	1	+ -
	24	63	2	-
+ -	21	03	3	-
-	17	64	1	-
$3d^{4}D_{4}$ -4p ² F ₄	16	87	0	$+ 4p^2P_1 - 4d^2P_2$
-	12	01	00 u	+ -
-	01	00	0	+ -
	2592	12	0	- 1 ap 0 ap
-	79	69 (000u	$+4p*P_1-6s*P_2$
+ -	79	51	0	0.19E 5-9D
-	70	46	2	$3d^*F_3 - 3p^*D_2$
$+4p^{2}P_{2}-6s^{4}P_{2}$	70	01	1	$+4p^{-}P_{2}-0s^{-}P_{1}$
-	69	25	1	+ -
$4p^{2}S_{1}-6s^{2}P_{2}$	67	15	00u	
-	65	84	0u	
$+4p^{4}S_{2}-6s^{2}P_{2}$	64	40	3	
$+ 3d^2D_3 - 5p^2P_2$	62	12	.4	4x2D 4d2P
+ -	59	31	2	4p-D ₂ -4d-F ₂
+ -	50	63	2	- 4n2D 6e2P
$4s^{*}P_{3} - 4p^{2}D_{3}$	03	44	00	$+4p-D_2-0s-T_2$
- 0.18D 5-8D	02	44	1	4p-D ₂
$+ 3d^2D_3 - 5p^2P_2$	49	04	1 001	
-	41	24	001	
E State	40	69	000	ALL AND A SALE TO AN A SALE OF
	40	00	5	
	44	12	0	
0.19D 5-9D	40	00	1	$4n^{2}D - 4d^{2}F$
$3d^*D_3$ — $5p^*D_2$	00	04	*	4p D ₂ -40 13
4p*P ₁ -0s*P ₂	00	20	1 5	$4n^{2}P - 6s^{2}P$
+	00	71	0	4p 11-03 11
4p*S1-08*P1	20	11	2	$4n^2D - 4d^2D$
+	9596	15	001	$4p D_3 - 4a D_3$ $4n^4D - 6s^4P_3$
4p*82-08*1	2020	51	000	4p D2 05 12
+ -	20	52	0	
$+ 30^{-}D_{2} - 5p^{-}P_{2}$	16	81	4	
$+ 30^{2}D_{2}$ $- 3p^{2}P_{1}$	15	60	*	
$+ 4p - r_1 - 0u - r_1$	15	90	0	$+4p^{4}D_{2}-6s^{4}P_{2}$
An2D Ga2D	19	97	0	
$4p r_2 - 0s r_2$ $2d^2D - 5n^2P$	10	63	0	_
$4n^2P - 6s^4P$	07	34	01	$4p^2D_0-6s^2P_1$
4P 12 05 11	04	78	00 1	
	03	96	0	
3 d2F-5n2P	01	86	0	
	00	42	2	0 70 -
$4p^2P_{-}-4d^2F_{-}$	2499	55	1	
3d ² D-5n ² D	97	25	0	+ -
$4n^2D_2-4d^2P_2$	95	95	00	$+4p^{2}D_{a}-6s^{2}P_{a}$
	94	67	0	_
Contraction in the second	92	05	0	and the second s

ation	-		
_	2491	06	2
1900	88	88	00
	86	07	000
	83	26	00 u
$-4d^2P_2$	82	17	2
-	81	50	2
- 11/1	80	87	3
	80	48	0
-6s ² P ₂	79	08	2
	78	58	0
$-5p^2D_2$	76	99	00
$-6s^2P_1$	75	48	2
	74	02	2
27	72	96	00
	70	38	0
	69	85	00u
	66	90	00u
-4d ² P ₂	63	03	00
-	60	69	00u
-6s ² P ₂	59	97	2
$-6s^4P_3$	59	63	000u
_	57	98	00
21/ 11	56	31	00u
_	55	09	0
	54	27	3
	52	83	00u
	49	21	00 u
$-4d^2F_3$	47	77	00
_	44	87	Ou
$-6s^2P_1$	43	24	00
_	42	82	00
$-4d^2D_3$	41	33	00
$-6s^4P_2$	40	07	1
-	38	78	1
_	36	44	00 u
<u>a</u> d	32	80	00
120	31	64	00
$-6s^4P_3$	30	06	2
-	29	45	000
_	25	50	000 u
$-6s^{2}P_{1}$	24	70	1
_	24	34	0
-	24	00	1
-	23	55	0
-	22	73	1
_	22	15	00
-	21	55	0
$-6s^2P_2$	20	49	3
_	18	87	0
Stene and	17	24	00

Kombination	-in-it	-	Ko
_	2415	80 1u	100.5
$+ 4p^2D_3 - 4d^2F_4?$	14	26 2	+
- 10	13	25 0	1.1 108 144
-	12	50 1	
$4 p {}^{4}D_{3} - 6 s {}^{4}P_{2}$	10	97 2	+
	08	24 00u	
- 3.9% - 187.P	00	08 0	+
4-4D 0-4D	00	40 2	1
4p*D ₄ -0s*P ₃	01	40 5 96 0	+
Aver 50 Menus	9299	89 01	
	99	26 1	
4n4D6s4P.	98	39 1	
	97	57 00	
to be in the second	95	69 00	The state
	92	92 0	4s
-	90	94 3	1 60
-	89	11 2	+
$4p^{4}D_{2}-6s^{2}P_{2}$	87	96 5	Sec. 18
+ -	86	6 000	+
100-110 - 1100	85	8 0	+
-	85	00 5	
	83	9 0	+ •
$+4p^{4}D_{2}-6s^{4}P_{1}$	83	50 5	
100	82	60 0	
-	81	18 1	
-	. 79	88 1	+ 4p
-	19	4 00	
-	70	2 1	
	70		1 harris
+ -	70	5 00	
	69	97 1	
$\pm 4n^{4}D = 6s^{2}P$	69	28 1	
+ + p D1 -03 11	68	6 00	11 n 00
and in the shift	67	1 00	hard and the
all a line users	66	78 3	A A
1001_10 _2 Hits	66	0 00u	and the second
+ -	64	14 5	2007
-	62	8 1	A CONTRACTOR
-	61	9 0u	41
-	61	2 0u	
-	60	7 00u	30
$4p^{4}D_{3}-6s^{2}P_{2}$	60	07 5	
-	58	3 0	
+ -	57	60 6	
	56	7 00	
+ 4p*D2-05*P1	54	10 2	
+ -	59	14 4	
	00	12 0	

Kombination	-		
	2352	73	2
	50	50	4
-	46	61	00
4	45	27	00
- 8	44	22	5
Par and	39	80	3
4	37	79	6
	34	5	00
- 2.5	32	9	0
	31	45	6
	29	3	00
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	27	6	0
01-1-100	24	40	2
-	22	11	2
- 1970	19	37	0
$4s^{2}D_{2}-4p^{2}P_{2}$	17	77	1
	17	37	3
	16	31	7
a destand	15	32	1
	14	99	5
-	13	74	6
	09	6	00
L	09	16	5
	06	6	On
	04	5	1
	04	0	1
An4D Ge4D	00	19	3
- 4p-r205-r3	00	07	1
and the ball	9908	17	5
	96	2	0
_	05	20	0
	00	00	000
_	09	0	000
	95	21	4
	91	0	000
-	89	10	4
-	00	4	1
	87	8	0
	87	19	4
-	80	01	ou
	84	91	2
4p*P ₃ -6s*P ₃	84	02	3
-	83	26	ou
$3d^{2}D_{3}$ - $5p^{2}F_{4}$	82	64	4
-	82	05	5
-	81	2	4
-	80	6	6
-	78	1	1
-	72	6	1
	71	0	000u
- CM	1 70	1	00 u

92

Argon

Kombination			
	2266	7	000
- 2	65	6	000
	63	9	0
$3d^{4}P_{2}$ -5p ⁴ P ₃	63	1	00
$3d^{4}P_{1} - 5p^{4}P_{2}$	61	8	3
	60	6	000
- 19	59	5	00 u
	54	5	$000\mathrm{u}$
	54	30	0
	52	87	1
$3d^{2}D_{2}$ -5p $^{2}F_{3}$	52	26	2
3d4P2-5p4P2	50	3	4
	. 48	0	4
3d4P1-5p4P1	47	1	0
-	45	97	2
the state	44	8	1
	43	66	0u
- 21	40	6	0
3d4P3-5p4Pa	38	2	6
-	36	2	0
3d ² F ₃ -5p ² F ₃	35	77	5
-	34	0	00
12 -	31	42	0
-	30	3	0
3d ² P ₂ -5p ² D ₂	29	5	1
	27	70	6
4	27	30	0
3d4P3-5p4Pa	25	67	0
	24	.76	5
	23	6	0
	22	93	6
-	21	94	5
	18	87	6
- '	15	2	1
_	14	5	00
	13	0	6
	12	22	4
-	08	9	3
-	06	9	00 u

		-	-
	2203	22	1
$3d^{4}P_{2}$ — $5p^{2}D_{3}$	02	77	1
-	00	4	0
$3d^{4}P_{3}$ - $5p^{4}D_{4}$?	2197	56	3
$3d^{4}P_{1} - 5p^{4}D_{2}$	94	1	000 u
-	93	1	00 u
-	87	34	4
_	84	3	0
-	83	1	4
$3d^{4}F_{2} - 5p^{4}P_{3}$ $3d^{4}P_{2} - 5p^{4}D_{2}$	83	3	5
$3d^2P_1$ — $5p^2D_2$	82	74	2u
-	81	26	0
	80	3	0
$3d^4P_3$ - $5p^4D_3$	79	25	5
-	77	04	4
$3d^{2}P_{2} - 5p^{2}S_{1}$	71	41	6
$3d^{4}P_{1} - 5p^{4}D_{1}$	70	8	1
	64	17	7
	62	74	6u
$\left\{\begin{array}{c} 3d^4P_3 - 5p^4D_2\\ 3d^4P_s - 5p^4D_3\end{array}\right\}$	60	2	00 v
3d4F3-5p4P3	59	0	61
3d4F4-5p4F3	52	6	61
_	51	1	0
-	48	15	2
- :	45	2	11
-	40	01	3
4 m - 1 m	39	2	2
-	37	2	5
North - Child	32	7	000
	31	0	1
-	29	5	0
$3d^{2}P_{1} - 5p^{2}S_{2}$	27	1	0
-	25	9	0
-	22	6	2
-	06	1.00	001

Tabelle 3 b.

Termtabelle für Ar II nach de Bruin [196].

Term	Termwert	Term	Termwert	Term	Termwert
(Gre	nze ³ P)	$4 d^2 D_2$	32197.69	4p ² D ₃	51361.07
0. 00	1 004501	4d ² D ₂	32042.57	$4p^2D_2$	51406.72
3p ² P ₂	224721	1.140	200001 59	Adac	96150 79
3p ² P ₁	223290	4d*F5	20120.02	4d=G5	20150.72
3d4D4	92427.28	40 *F4	20000 44	40-04	20109.09
$3d^4D_3$	92273.30	40°F3	28414 11	$4 d^2 F_4$	24615.66
$3d^4D_2$	92123.68	40 °r 2	00414.11	$4 d^2 F_3$	24519.80
$3d^4D_1$	92016.65	4d4P1	38583.18	4 d2D	25074.92
2,42D	79667 15	4d4P2	38284.18	4d ² D ₂	25229.54
3d2D	74979 58	4d4Pa	37863.58	1 100	0.0000
50 D2	1110.00	4d2F.	37938.38	$4d^2P_2$	24772.54
$3d^4F_5$	82568.08	4d2F	37165.88	$4d^2P_1$	25307.94
3d4F4	82037.49	Id Ig	01010.00	$4d^2S_1$	19511.54
$3d^4F_3$.	81646.87	$4d^2P_1$	34819.88	5.520	28027.00
$3d^4F_2$	81383.02	$4d^2P_2$	34161.88	5 S 2D	28004.26
3d4P	79543.06	5s4Pa	43160.38	1 05-D ₂	00004.00
3d4P.	79768.71	5s4P.	42532.62		
3d4P.	80260.26	5s4P1	41803.48	Weitere Ter	me von Ar II
0 1977	75000 700	5.2D	41664 18	[]	[96].
3d*F4	10200.767	DS"P2	40480.18		1
3d*F3	74606.87	os-P1	40400.10	Term	Termwert
$3d^2P_1$	80044.50	5p4Pa	35595.29		and sandles of the
3d ² P ₂	79085.59	$5p^4P_2$	35344.10	Gren	ze: ³ P
As4P	90512.88	5p4P1	35055.20	6s ⁴ P ₃	25942.33
484P	89668.48	5n4D.	34769.50	$6 s {}^{4}P_{2}$	25616.58
484P.	89152.78	5p4Da	34386.43	6s ⁴ P ₁	24644.34
45 11	00100.10	5p4D.	33981.42	6s ² Pa	24722.85
$4s^2P_2$	86510.88	5n4D.	33491.44	6s ² P.	24131.50
$4s^2P_1$	85496.14	op 21			
4p 4P.	69711.13	5p2D2	34247.50	5p ² P ₂	34648.66
4p4P.	69403.38	$5p^2S_1$	33047.04	5p ² P ₁	34558.70
4 p 4P,	69046.08			$5d^2P_1$	20239.69
1	07500 50			5d ² P ₂	20237.50
4p*D4	67520.58	(Gre	nze ¹ D)	5.42D	01 00100
4p*D ₃	07081.22	3d2Fa	53644.71	50-D3	20105.10
4p*D ₂	00000000	0.12D	59419.08	Grer	ize: 1D
4p*D1	00320.33	2 d2D	51094 59	5n2F	1 90971 59
$4p^2D_3$	66024.28	50-D2	01024.00	5p ² F	20011.02
$4p^2D_2$	65361.19	$3d^2P_2$	50344.60	op-r3	20000.10
4n4S.	63705 60	$3 d^2 P_1$	49919.93	$5p^2P_2$	28993.46
~P ~2	00100.00	3d2S.	40661.40	$5p^2P_1$	28664.46
4p ² S ₁	63665.08	1.00		5p2D.	28121.46
$4p^2P_2$	64515.02	4 s ² D ₃	75912.01	5p2D.	28132.78
$4p^2P_1$	65047.98	$4s^2D_2$	76134.36	51 22	1
4.140	41070.09	$4p^2F_4$	54224.21	Gren	ize: ¹ S
4.14D	40957.99	$4p^2F_3$	54353.62	$4s^{2}S_{1}$	57446.84
4.14D	40768.67	4n2D	59540 70	4.2D	20720.24
4.04D	40569.99	4p ² P	51929.90	4p ² P	29491 41
1 40 D1	10002.00	1 4p-11	01000.20	4p-11	02421.41

Term	Termwert	Term	Termwert
3d4Fs	82568.08	5p4P3	35595.29
3d4F4	82037.49	5p4P2	35344.10
3d4F.	81646.87	5p4P1	35055.20
3d4F.	81383.02	· 5p4D4	34769.50?
3d4Pa	80260.26	· 5p4D ₃	34386.43
3d4P.	79768.71	$5p^4D_2$	33981.42
3d4P,	79543.06	$5p^4D_1$	33491.44

Termtabelle für Ar II nach Rosenthal [188].

Ar III, Ar IV, Ar V. Über diese höheren Ionisationsstufen ist noch sehr wenig bekannt. Zuerst haben Bloch und Déjardin [113, 118] darüber eine Mitteilung gebracht. Wird eine mit dem Gas gefüllte Kugel oder Röhre mit äußeren Drahtwindungen umgeben, durch welche Entladungen geschickt werden, so wird das Gas angeregt. Die Erregung ist außen am stärksten, nimmt nach innen ab. So erhält man verschiedene Ionisationsstufen räumlich getrennt. Bei einer Kugel mit Ar sieht man so die Mitte rot leuchten, dann folgt ein blauer Ring, endlich außen ein weißer. Projiziert man ein Bild des Querschnitts auf den Spalt des Spektroskops, so sind die Linien verschieden lang: Die des weißen Ringes sind am kürzesten, die des blauen länger, die des roten am längsten, und aus der Länge kann man auf die Ionisationsstufe schließen. Natürlich ist dies Verfahren nicht ganz sicher, da die Länge der Linien z. B. auch von ihrer Intensität abhängen muß. Die Autoren nennen die Spektra nach abnehmender Länge E1, E2, E3, was also Ar II, Ar III, Ar IV entsprechen soll. Sie sagen bei Ar II sei E₁ sehr linienreich, E₂ zeige im Sichtbaren gar nichts, E₃ sei von mittlerem Linienreichtum. Sie geben [113] für Ar folgende Tabelle nach den Wellenlängen von Kayser (die hier auf I. A. reduziert sind).

E, 3376.48 (6.46 Rosenthal)	E ₂ 3344.66 (4.79? Rosenthal)	E ₃ 4182.96 (2.98 Ros.)
3350.97 (0.94 ,,)	3336.13 (6.20? ,,)	4023.58 (fehlt ,,)
3307.23 (7.24 ,,)	3311.18 (1.26? ,,)	3960.44 (fehlt ,,)
3293.63 (3.66 ,,)	3301.77 (1.87? ,,)	3858.31 (fehlt ,,)
3281.73 (1.72 ,,)	3285.77 (5.87? ,,)	3750.28 (fehlt ,,)

Wenn diese Klassifikation richtig ist, so würde sich daraus ergeben, daß sowohl bei Kayser, wie bei Rosenthal die Tabelle des "blauen" Spektrums Linien höherer Ionisationsstufen enthält, als Ar II — wie ja von vornherein zu erwarten —, und das würde zum Teil erklären, warum so viele Linien aus Rosenthals Tabelle nicht in de Bruins Ordnung passen. Es würde weiter zeigen, daß Kayser mit höherer Spannung gearbeitet hat, da bei ihm $E_3 = Ar IV$ noch vertreten ist, was bei Rosenthal zu fehlen scheint¹). — Déjardin [120, 121] sagt, daß er dieselben Resultate bei Anregung durch verschieden schnelle Elektronen erhalte, und macht Angaben über die Potentiale; davon später. Lowe und Rose [125] machen mit Hilfe eines

¹) Es ist auffallend, daß für E_1 die Messungen von Kayser und von Rosenthal unerwartet gut übereinstimmen, während für E_2 Rosenthal um 0.1 A größere Werte hat, obwohl die Zahlen in demselben Gebiet liegen, also nach denselben Normalen berechnet sind.

Graukeiles Messungen der Intensitätsänderung von 50 Ar-Linien, wenn diese durch Elektronenstöße bei Spannungen zwischen 24 und 140 Volt angeregt werden. Die Linien lassen sich in 2 Gruppen teilen, die in der Hauptsache dem blauen und roten Spektrum entsprechen. Bei etwas über 40 Volt erscheinen die Linien des blauen Spektrums, nehmen bis 65 Volt stark an Intensität zu, dann wieder etwas ab und bleiben bei höheren Spannungen nahezu konstant. Beim roten Spektrum nehmen einige Linien über 30 Volt ständig an Intensität zu, während andere Linien praktisch konstant bleiben.

Rasmussen und Swenson [187] finden Intensitätsanomalien in den d-Termfolgen, wie sie auch beim Neon, Krypton und Xenon bekannt sind. Diese Unregelmäßigkeiten der Intensitäten gehen parallel mit den Abweichungen bei den Termwerten.

Die Methode der elektrodenlosen Ringentladung ist in neuester Zeit von Compton und Boyce [163, 171, 172] aufgenommen worden, aber es sind nur provisorische Mitteilungen erfolgt. Sie geben nur an [172], daß sie Messungen für Ar III, Ar IV, Ar V gemacht haben, und bringen in [171] einige Zahlen für Ar III und Ar IV im äußersten Ultraviolett, die in der Tabelle schon gegeben sind. — In diesem Gebiet hatten zuerst Hopfield und Dieke [139] eine Gruppe Ar III zugeschrieben, Bowen [162] dieselbe bestätigt, und einige Linien zu Ar II gerechnet. Auch diese Daten finden sich in der Tabelle für das Schumanngebiet.

Zu Ar III haben in neuester Zeit Deb und Dutt [203] einen Beitrag geliefert: sie ordnen 24 Linien zwischen λ 3379 und λ 2418 ein. Leider haben sie keine eigene Messungen, sondern nehmen die Zahlen, welche Bloch und Déjardin [118] benützt haben, d. h. im wesentlichen die unkorrigierten Zahlen von Kayser und solche von Eder und Valenta. In der folgenden Tabelle sind die Linien von Ar III nach L. und E. Bloch und Déjardin [118] angeführt. Die Zahlen von Kayser und Eder und Valenta sind auf I. A. umgerechnet. Die Zahlen sind aber wenig genau; Kayser hat sie seinerzeit mit ungenügenden Mitteln, Expositionen von vielen Stunden in einem fortwährend erschütterten Gebäude gewonnen, und glaubt, daß nur die Zehntel A Wert haben. Bloch und Déjardin fügen Linien nach eigenen Messungen hinzu, welche mit einem * bezeichnet sind. Diese sind noch ungenauer. Die Autoren geben an, sie seien im Sichtbaren auf 1 A genau, im äußersten Ultraviolett auf 0.1 A. Die von Deb und Dutt [203] eingeordneten Linien sind bezeichnet. Zu dieser Tabelle wären noch die wenigen Linien aus dem Schumanngebiet aus Tab. 2 hinzuzufügen.

Für Ar IV liegen nur die ebenso gewonnenen Angaben von Bloch und Déjardin vor, nebst den 3 Linien von Boyce und Compton aus Tab. 2. — Jog [185] gibt nur an, er habe nach den Zahlen von Bloch und Déjardin geordnet und alle Quartettmultipletts gefunden.

Potentiale. Die für Argon in Betracht kommenden Spannungen sind oft Gegenstand der Untersuchung gewesen. Die älteren Angaben sind schon auf S. 25 Bd. VII besprochen. Die neueren sollen kurz in zeitlicher Reihenfolge zusammengestellt werden.

Horton und Davies [108] bestätigen ihre früheren Zahlen. — Hertz [114] findet als Anregungsspannungen 11.55, 13.0 und weniger ausgeprägt 14.0, als Ionisationsspannung 15 Volt.

Kombination	maid (Fil) as a	Kombination	all and a little	Kombination	
and the new	3819 00 ?		2806 2		2504 6
	3756 39 ?		02 2 *		2497 1
	3637 77		00 6		95 5 *
	3504 93	APPENDING TO BE	2796 9		88.8
	03 61		95 55		85 7 *?
areas Tabi deals	3480 54	and the second second	84 5	and the first from	85 0 *?
	73 22		82 9 *		84 0
	72 56		75 0		76 9
⁵ D ₂ - ⁵ P ₂	3361 281)	IC PRO CERNO BURN	67 4 *	Sector Sector	76 3 *
⁵ D ₃ - ⁵ P ₂	58 53	to building the last	62 0	ther chievest inte	73 0
C. instruction	44 75	and a subserver	53 8	- Internet	68 7
	36 18	A REAL PROPERTY.	29 2 *		63 1 ?
	33 7 *?		24 7		55 2 ?
	27 30 ?	of the second second	017?	a the particular sector as	40 0 ?
${}^{5}S_{2} - {}^{5}P_{1}$	11 20	No. I all a ladio and	2685 5 *	and a state of the second	38 7
${}^{5}S_{2} - {}^{5}P_{2}$	01 83	March Strengton of Data	78 5	⁵ P ₃ -5D ₂	32 7
${}^{5}S_{2} - {}^{5}P_{3}$	3285 77	and a second strange	76 6 *	⁵ P ₂ - ⁵ D ₁	25 3
	3127 87	and the second second	74 2	⁵ P ₂ -5D ₂	23 8
${}^{5}P_{2}$ — ${}^{5}S_{2}$	10 32		54 7	⁵ P ₃ -5D ₄	23 5
	3078 09	E PEUCE Back	47 5 ?		22 6
	64 71	to and think all h	32 2	⁵ P ₁ -5D ₁	19 9 *
	54 73	in the second second	14 1	⁵ P ₁ - ⁵ P ₂	18 8
	48 43	a survey and	09 4 *?		15 6
	37 1 *?		05 4 *		13 1
	23 96	and sources and a	02 1 *		11 1
	10 6 *	A DELEVISION OF A DELEVISIONO OF A	2597 2 *		05 1
	02 55	Yerholder Veller	94 3 *	tord LA. dama	2399 2
	2929 0 *?	The Manual State	92 2	and the sine that	95 6
	2884 0		91 4 *		85 0 *?
	78 9		90 1 *?		82 5
	76 5 *?	and monthly field	84 9	Lis n 150%	77 8 *
	74 5 ?	allo north and	83 5 *?	ophilister (Linghis	67 0 ?
	55 3	metroplas me	79 6	in committees	57 1 *?
	53 4	The state of the state	77 7 *?	in the state	19 4
	43 6		76 4 *		17 9
	42 5		44 7		17 5
	24 1	and spin A month	35 9		02 0
	18 3	and an to to the	07 2	men in make inter	

Tabelle 4. Ar III nach Bloch und Déjardin [118].

Hicks [115] meint, letztere liege bei 17 Volt. Déjardin [120] gibt als Ionisationspotential 15.2 ± 0.2 , für die höheren Ionisationsstufen 19.0 ± 0.5 und 34.05 ± 0.5 . — Hertz und Kloppers [128] modifizieren Hertz ein wenig, geben jetzt 11.5, 13.0, 13.9 Volt als Anregungsspannungen, 15.3 als Ionisationspotential. — Barton [126] sagt: nimmt man für Ar+ 15.2 Volt an, so findet man für Ar++ 45.3 ± 1.5 Volt.

¹) Deb und Dutt geben außerdem als eingeordnet: 3379.78 (3), 3376.61 (4), 3371.07 (3), 3366.75 (3), 3341.88, 3333.32 (7), 3024.08 (7), 3002.73 (6), 2427.7 (2), 2420.5 (1), 2418.8 (4).

Tabelle	5.	Ar	IV	nach	Bloch	und	Déi	ardin	1881.
a serve care of			a	**********	2220011	CALL CA	a. v.	LU & LA & A A A	10010

				No. 22	
6325 3 *?	5490 16 ?	4417 1 *	3776 76 ?	2840 3 *?	2493 3 *?
6235 71	5276 *	14 6 *	50 64	30 2 *	79 9 *?
15 4	04 *	07 91	13 04 ?	09 6	71 1 *?
6140 7	5195 *	4364 6 *	00 2 *?	2789 0	67 2 *?
6090 76	25 96	4249 4 *	3696 01 ?	43 8 *?	64 6 *?
55 *	5080 *	45 2 *	92 59 ?	39 6 *?	58 1 ?
15 18 ?	33 *	39 4 *	78 5 *?	06 *?	47 8
5999 3 ?	4992 8 *	29 65 ?	3438 03 ?	2667 5 *	43 1
76 *	81 5 *	28 86 ?	24 26 ?	60.2	41 3
38 *	37 2 *	14 4 *	17 47 ?	45 5 *	36.8 ?
5870 30	22 0 *?	4182 81	13 53 ?	40.8	31 5 *
47 *	4893 39	75 09	3391 72 ?	39 0 *?	27 4 *2
30 *	82 28	74 04	23 53 ?	24.9	26 6 *?
18 3 *	4771 57	4172 79	3299 4 *?	16 *	26 1 *?
5739 65 ?	08 48	71 89	51 76 2	08 *	2360 1 2
10 *	4697 6 *	46 53	3187 84	2599 4 *	52 4 *
5691 *	93 6 *	88 89	57 44 2	78 *2	51 7 *
84 *	88.5 *	60.5 *	25 85	67.4 *	47 7 *
39 17	76.8 *	23 53	16.03	66 3	45 8 2
16 *	49 6 * 2	3960 44	3039 36	63 4 *2	95.4 *
5577 76	40 03	07 65	2985 9 *	58 5 *2	20 1 *
19 *	4573 5 *	3858 31	83 *	34.0 *2	99.0
06.90	4488 95	00 95 2	96.3 *	19.0 *	02 8 * 2
5498 84 2	19 99	9705 41 2	12.2 *	10 2 *	02 8 * ?
0100 01 1	40 00	0100 41 1	10 0	10.0 -	00 8 *?

Meißner [148] ermittelt für das erste Ionisationspotential 15.69 Volt, und diese Zahl ist seitdem allgemein angenommen worden. — Mohler [149] gibt für die höheren Stufen 32.2 ± 2 , 34.8 ± 0.5 , 39.6 ± 0.5 , beruhend auf 15.4 nach Hertz und Kloppers.

Hertz und Abbink [142] sagen wieder, die Anregungsspannung betrage 11.5 Volt, und Dorsch und Kallmann [158] setzen die Ionisationsspannung zu etwa 15.6 Volt an. Dorgelo und Abbink [156] sagen: die Linien λ 769 und λ 718 geben als Anregungsspannung des Ions 17.1 Volt, also für das Atom 15.69 + 17.1 = 32.79 Volt. - Compton, Boyce und Russell [171] geben für Ar III: 40.7 Volt, während de Bruin [196] aus seinen Termwerten berechnet 15.69 + 27.7 = 43.44 Volt. Gliwitzky [184] erhält Anregungspotentiale 11:51, 12.89, 14.02, 14.79 Volt, das Ionisationspotential zu 15.81 Volt. - Bleakney [193] findet als Potentiale der 4 ersten Ionisationsstufen: 15.7, 44, 88 und 258 Volt. - Deb und Dutt geben für Ar III 36.75 Volt. In neuester Zeit haben O. Fischer und W. Hanle [204] die Anregungsfunktionen einer Reihe von Bogen- und Funkenlinien photographisch gemessen. Es zeigt sich, daß die Anregungsfunktion zunächst linear ansteigt, ein Maximum erreicht und dann wieder abfällt. Die Anregungsspannungen der Bogenlinien des Typus 1s1-3pk liegen zwischen 14 und 15 Volt. Die Funkenlinien (Typus: 4 s mPi - 4 p mDk) erscheinen erst oberhalb 35 Volt. Van Atta [201] gibt als Anregungsspannungen 11.53 ± 0.5 und 13.9 Volt an.

Von der übrigen Literatur seien folgende Arbeiten mit ihrem Hauptinhalt besprochen: Ryde [161] untersucht die Emission der Gase bei einem Kohlebogen,

Kayser u. Konen, Spektroskopie. VIII.

der in Luft brennt; er gibt dabei auch eine Liste von darin auftretenden roten Argonlinien.

Cuthbertson [155] untersucht die Absorption der seltenen Gase in der Schumanngegend. Als Lichtquelle dient eine Kohlebogenlampe, die Gase werden bei Drucken zwischen 5.57 und 0.007 mm untersucht. Bei 5.57 mm Druck beginnt die Absorption bei λ 904, bei 0.236 mm bei λ 810, bei 0.007 ist noch λ 595 sichtbar. Viel kürzere Wellenlängen ließen sich mit den benutzten Gittern nicht erreichen, so daß die untere Grenze der Absorption nicht festzustellen war. Es sieht so aus, als liege das Maximum des Absorptionsbandes unter λ 687, vielleicht sogar unter λ 595.

Vegard hat bekanntlich Untersuchungen über die Emission fester Gase ausgeführt, die bei der Temperatur von flüssigem H und He mit Kathoden- und Kanalstrahlen bombardiert werden. Bei Ar erhält er in beiden Fällen keine Emission [134, 200]. Mc Lennan und Schrumm [124] bekommen durch Kathodenstrahlen Nachleuchten. Dieses zeigt eine starke Linie bei λ 4750, eine schwächere bei λ 5300, das Nachleuchten klingt aber sehr schnell ab. Bei Anregung mit Thermionen treten 2 Linien auf: λ 5607.4 sehr stark, λ 5648.3 schwach, und andere unbekannte Linien. In einer späteren Arbeit [185] von Mc Lennan, Samson und Ireton wird genauer untersucht und gefunden, daß eine große Anzahl von Banden auftreten, die denen von N unter gleichen Bedingungen sehr ähnlich seien. Es wird angenommen, daß sie in beiden Fällen von Wasserstoff herrühren. Eine genauere Angabe der Messungen unterbleibt hier.

Kenty [174] sagt, daß, wenn in Ar von 0.5 mm Druck ein Bogen von 0.4 Amp. gebrannt habe, Nachleuchten auftrete, dessen Spektrum das Linienspektrum sei, aber mit ungewöhnlichen Intensitäten; die höheren Glieder der Serien seien relativ stärker.

Kenty und Turner [175] finden mit Hilfe einer schnell rotierenden Sektorscheibe und eines Kommutators, daß das Bogenspektrum des Ar noch 0.001 Sekunden andauert, nachdem ein Lichtbogen von 0.5 Amp. in reinem Argon von 0.5 mm Druck ausgeschaltet worden ist. Es wird nachgewiesen, daß das Spektrum nicht durch direkte Anregung durch Elektronen erzeugt ist. Der Vergleich der Photographien der Spektren des Nachleuchtens und des Bogens selbst zeigt, daß im Nachleuchten Linien, die zu Sprüngen von hohen s- und d-Zuständen zu 2 p-Zuständen gehören, im Vergleich zu den 1 s-3 p-Linien viel stärker sind als im Bogen selbst. Alles das führt zu der Hypothese, daß das Nachleuchten von Wiedervereinigungen herrührt.

Druyvesteyn [183] untersucht das Nachleuchten des Glimmlichtes in Glimmlampen, die mit Neon, Argon und Neon mit einigen Prozent Argon gefüllt sind, wenn die Spannung während des Nachleuchtens nahe der Minimum-Brennspannung der Lampe ist. Außer dem Nachleuchten des Glimmlichtes ist immer ein Nachleuchten in der Aureole wahrzunehmen. Dieses Nachleuchten erweist sich durch spektroskopische Beobachtungen als Wiedervereinigungsleuchten. Das Glimmlicht aber wird als Anregungsleuchten aufgefaßt, da die Intensitätsverteilung der Linien im Glimmlicht eine ganz andere ist als im Nachleuchten.

Johnson und Cameron [123] untersuchen, welchen Einfluß der Zusatz von Ar zu anderen Gasen auf deren Spektrum hat. Als solche andere Gase nehmen sie: H₂, wo die relativen Intensitäten sich ändern; N, bei dem das Nachleuchten beeinflußt wird; Verbindungen von C mit N, H, O; O, wo O II relativ geschwächt wird; S und Verbindungen: ein besonderes Bandenspektrum wird gestärkt. Im allgemeinen ist der Einfluß geringer, als der des Zusatzes von He.

Meißner und Graffunder [176] machen folgenden Versuch: Wird vor ein angeregtes Ar-Rohr, das als Lichtquelle dient, ein zweites auch angeregtes gelegt, durch welches das erste beobachtet wird, so findet man Absorption durch das zweite Rohr, wenn die Anregung beider Rohre gleichzeitig stattfindet. Regt man aber das erste Rohr später an, so wird das zweite nur absorbieren können, wenn in ihm die angeregten Atome noch existieren. Wenn man daher das Zeitintervall der Anregungen meßbar variiert, immer die Größe der Absorption mißt, kann man die Lebensdauer und den Lebensablauf der erregten Atome verfolgen. Für den s5-Zustand beträgt die Halbwertszeit 3×10^{-3} sec. Dorgelo und Washington [138, 139, 157] untersuchen unter Verwendung der Meißnerschen Anordnung teils auf photographischem, teils auf thermoelektrischem Wege, bei welcher minimalen Frequenz sie noch Absorption bekommen. Der verwendete verzerrte Wechselstrom weist sehr ausgeprägte Maxima auf, so daß die Zeitdifferenz Erregung-Absorption mit größter Genauigkeit festgelegt werden kann. Bei Ar-Linien, bei denen Meißner angeregte Absorption beobachtet hatte, werden Lebensdauern von $\sim 1/75}$ Sekunden gemessen. Diese metastabilen Zustände sind sehr empfindlich gegenüber Zusammenstößen zweiter Art mit Wasserstoff. Meißner [159] beobachtet in einer schwach angeregten Argonröhre Resonanzstrahlung durch eine benachbarte Argonröhre. Die verstärkten Linien gehören alle zu $s_i - 2 p_k$. Kleine Spuren von Verunreinigungen des Gases schwächen die Resonanz stark. Bosschart [180] untersucht mit Hilfe einer direkten photoelektrischen Methode, Absorption sowie Resonanz und Fluoreszenzstrahlung an den höheren Gliedern der Hauptserien 1 s, -n p, festzustellen. Eine Absorption trat nur bei den Linien auf, die sich auf den Niveaus 1 sa und 1 s5 aufbauen, wie auf Grund der Metastabilität dieser Terme [Meißner] zu erwarten war. Eine entsprechende Resonanzstrahlung fehlte bei diesen Linien fast gänzlich. Die absorbierte Energie trat, durch Stöße erster Art auf andere Niveaus übertragen, durchweg in Form von Fluoreszenzstrahlung auf.

Schulze [190] erregt das Gas durch Stöße verschieden beschleunigter Elektronen, beobachtet das Auftreten und Anwachsen der einzelnen Linien, wie es schon oft gemacht worden ist (siehe z. B. [128]). Frühere Beobachter, z. B. [110, 103, 120, 108] haben angegeben, daß alle Linien des Ar I-Spektrums fast gleichzeitig bei etwa dem Ionisationspotential erscheinen. Er findet, daß sie bei recht verschiedener Anregung kommen. Als Anregungspotentiale gibt er: 13.30, 13.5, 14.5, 14.7, 15.1, 15.4, 15.7 Volt. Er gibt eine Tabelle der bei diesen Stufen erscheinenden Linien. Es findet sich völlige Übereinstimmung mit der Meißnerschen Analyse des Spektrums. Für Ar II erhält er etwa 35 Volt.

Endlich sei noch die Abhandlung von Freeman [172] erwähnt. Er vergleicht die Linien des Koronaspektrums mit denen von Ar I, und meint, daß die meisten Koronalinien — 33 von 38 — mit Argonlinien koinzidieren. Die stärkste Koronalinie λ 5302.9 liegt an einer Stelle, wo 2 Kombinationslinien des Argon bis auf 0.1 A zusammenfallen; davon könne ihre große Intensität herrühren.

7*

Russell und Bowen [189] untersuchen daher diese Frage kritisch und können mit Hilfe der Wahrscheinlichkeitsrechnung nachweisen, daß die Übereinstimmungen, die Freeman gefunden haben will, wohl nur durch Zufall bedingt sind, so daß auch dieser Erklärungsversuch ausscheidet.

Zu erwähnen wäre noch, daß Oldenberg [205] in einem Gemisch von Quecksilberdampf mit Argon in der Nähe der Hg-Linie λ 2537 diffuse Bandenreihen beoobachtet, die er einem (unstabilen) HgAr-Molekül zuschreibt.

Zeemaneffekt.

Von den neueren Arbeiten über den Zeemaneffekt ist vor allem die Arbeit von Bakker, de Bruin und Zeeman [163] zu erwähnen, die den Effekt am Ar II untersuchen. Die Arbeit ist deshalb wertvoll, weil sie die von de Bruin [167, 168, 196] durchgeführte Analyse des Ar II-Spektrums sicherstellt. Die bei den Versuchen angewandte Feldstärke beträgt 41000 Gauß. 110 Ar II-Linien werden untersucht. Die Resultate für die gemessenen Ar II-Multipletts werden in Tabellen gegeben, weiter die nach Landés Formel berechneten und die beobachteten g-Werte, sowie die berechneten und gemessenen g-Summen für die Terme, die durch Bindung eines 4 s-, 4 p- und 5 s-Elektrons entstehen. Alle Terme des 4 s-Elektrons haben normale g-Werte. Der g-Summensatz ist erfüllt. Von den 13 Termen des 4 p-Elektrons sind 8 Quartetterme, 7 darunter haben normale g-Werte. Die 5 Dubletterme haben alle anormale g-Werte. Die Übereinstimmung der g-Summen ist ausgezeichnet. Alle Terme des 5 s-Elektrons haben anormale g-Werte im Gegensatz zu denen des 4 s-Elektrons. Für 4 d-Elektronen läßt sich die Summenregel nicht nachweisen. Die von den Verfassern mitgeteilten g-Werte sind in die Wellenlängen- und Termtabelle nach Rosenthal und de Bruin (Tab. 3) mit aufgenommen worden. Tab. 4 gibt die theoretisch zu erwartenden und die beobachteten g-Werte der Terme. Eine geringe in [156,] von den Verfassern angegebene Abweichung von dem g-Summensatz bei den Termen mit j = 1 des 4 p-Elektrons wird in [156₂] überprüft und führt zu einer vollkommenen Übereinstimmung mit dem Wert des Landéschen g-Summensatzes.

Bakker [179] unternimmt den Versuch, die anormalen g-Werte dadurch zu erklären, daß der Kopplungsfall, für den die Landésche Formel streng gilt, beim Ar II nicht vorliegt. Er bestimmt die theoretischen g-Werte, die sich bei Annahme dreier weiterer von dem genannten verschiedener Kopplungsfälle ergeben, wenn das äußere Elektron 4 p und 5 s ist. In keinem der betrachteten Kopplungsfälle jedoch stimmen die beobachteten Werte mit den errechneten überein.

Die in [163] veröffentlichte Arbeit wird von Bakker und de Bruin [191] ergänzt, die die Zeemaneffekte einer Reihe von Linien geben, die erst durch die Auffindung neuer Termsysteme durch de Bruin klassifiziert werden konnten. Die Werte der aus der Landéschen g-Formel berechneten und die aus den gemessenen Aufspaltungen bestimmten sind ebenfalls in die Tab. 3 mit aufgenommen. Die Terme des 4 s-Elektrons zeigen normale, die des 4 p-Elektrons anormale g-Werte. Die g-Summenregel ist aber bei beiden erfüllt. Tab. 6 gibt eine Zusammenstellung der beobachteten und der aus der Landéschen Theorie berechneten g-Werte für die Terme des 4 s-, 4 p- und 5s-Elektrons nach Bakker, de Bruin und Zeeman [163, 191].
Argon

Die asymmetrischen Aufspaltungen, die in [163] angegeben werden, werden als partieller Paschen-Beck-Effekt erklärt und mit Hilfe einer Formel von Sommerfeld berechnet.

Terme	des 4s-Ele [191]	ktrons	Terme	Terme des 4p-Elektrons [191]		Terme	des 5s-Ele [163]	ktrons
Term	g-W Landé	erte beob.	Term	g-W Landé	erte beob.	Term	g-W Landé	erte beob.
4 P ₃	1.60	1.60	4 P ₃	1.60	1.60	4P3	1.60	1.60
$^{4}P_{2}$	1.73	1.73	4P2	1.73	1.73	4P2	1.73	1.63
4P1	2.67	2.67	4P1	2.67	2.67	4P1	2.67	2.53
$^{2}P_{2}$	1.33	1.33	4D4	1.43	1.43	² P ₂	1.33	1.43
² P ₁	0.67	0.67	⁴ D _a	1.37	1.33	² P ₁	0.67	0.80
² D ₃	1.20	1.20	4D2	1.20	1.20			
$^{2}D_{2}$	0.80	0.80	4D1	0.00	0.00	1.111.101	pance/a.c	ise men
² S ₁	2.00	2.00	² D ₃	1.20	1.24	10-20-16-0-23	ie me, e	and the state
voo sul oon	al att.	NAL INC.	² D ₂	0.80	0.90	a deivitais	e anh-eas	a pylin
	A Straight	in the second	² P ₂	1.33	1.23	in Statistics	A CONTRACT	Sec. 20
	1.00.00	and the second	2P1	0.67	0.99	And the second second		-
	10.000	ATT NOT	4 S.	2.00	2.00			
	1.4194		2 S1	2.00	1.68	a second		Carlos
	1 220 3	Desiries 1	² F ₄	1.14	1.14	19 Contraction	10 TED -	i pin pit i
	all sein	n ni 25 u	² F ₃	0.86	0.86	1 Black grant	100 1000	natifitan
	in Their	D ministra	² P ₂	1.33	1.33	in the Internet	ti speictre	
	Sincht	(TEPRE)	2 P1	0.67	0.60		1000	
			² D ₃	1.20	1.20			
	No. No	Sector of the	² D ₂	0.80	0.80	California de la	A REAL PROPERTY.	
	Contri m	and the state	² P ₂	1.33	1.33	a walk the	Jahr P	milet
	- inter	2 8 3 3 4	² P ₁	0.67	0.76	And Andrew D	Alter alter	A State

Tabelle 6. Tabelle der theoretischen g-Werte (gr) und der beobachteten g-Werte (beob.)

Goudsmit und Back [141] wenden das von Goudsmit und Uhlenbeck angegebene allgemeine Schema für die Kopplung der Quantenvektoren, d. h. für die Kopplung der Drehimpulsvektoren in komplizierten Atomen auf die tiefliegenden Terme vom Si-, Sn-, Pb-, Ne- und Ar-Spektrum an. Eingehende Berücksichtigung der spektroskopischen Tatsachen und besonders der Zeemaneffektanalyse führt zu dem Ergebnis, daß nur für Silicium und die Grundterme des Neons und Argons das einfache Kopplungsschema von Russel und Saunders weitgehend gültig ist.

Bakker [179] endlich gibt die g-Werte des Terms der Konfiguration $3 p^{5}4 s$ für Ar I an, und zwar für ${}^{1}P_{1}$: $g_{beob.} = 1.10$, $g_{ber.} = 1.101$ und ${}^{3}P_{1}$: $g_{beob.} = 1.40$, $g_{ber.} = 1.339$.

Starkeffekt.

Die Untersuchungen über den Starkeffekt an Argonlinien haben bisher keine nennenswerten Resultate ergeben. Böttcher [101] konnte bei einer Feldstärke von 26000 Volt/cm keinen Effekt feststellen, ebenso bemerkt Steubing [111] keine Spur von Zerlegungen, Verschiebungen oder neuen Linien bei der von ihm erreichten Feldstärke von 38000 Volt/cm. Hingegen geben Takamine und Kokubu [102] an,

Argon

daß bei einer Feldstärke von 170000 Volt/cm 16 Linien eine ganz geringe Verschiebung nach längeren Wellenlängen hin erfahren. Fast alle diese Linien gehören dem roten Spektrum des Argons an.

Röntgenspektren.

Coster und van der Tuuk [135, 136] führen eine genaue Untersuchung an dem Röntgenabsorptionsspektrum des Argons durch, um Feinstruktur der Absorptionskanten zu suchen. Die bei gleichzeitiger Entfernung zweier Elektronen aus dem Atom zu erwartenden Nebenkanten, die sich für Argon annähernd berechnen lassen, waren experimentell nicht aufzufinden. Dagegen finden die Verfasser eine auf der kurzwelligen Seite liegende Nebenkante im Abstand von 2.0 ± 0.4 XE. Sie wird dadurch gedeutet, daß das K-Elektron auch in eine der "optischen" Bahnen an der Peripherie des Atoms übergeführt werden kann.

Braunbeck [194] errechnet aus der bekannten "optischen" Ionisierungsspannung den Röntgen-K-Term durch Subtraktion der "äußeren Abstimmung" der Außenelektronen, die sich unter Benutzung der Sommerfeldschen "inneren" Abschirmungszahlen aus den relativistischen Dublettabständen berechnen läßt. Die berechneten K-Terme stimmen mit den empirischen nach Berücksichtigung der Relativitätskorrektion ziemlich genau überein.

Aus der von Meißner [146, 147] im Bogenspektrum des Argons gefundenen Differenz der Seriengrenzen $\Delta v = 1423.2 \text{ cm}^{-1}$ und ihrer Deutung als M-Dublett, bestimmt Grotrian [140] die Abschirmungskonstante zu 7.3 in guter Übereinstimmung mit spektroskopischen Beobachtungen ähnlicher Art beim Chlor.

Isotopie.

Im Jahre 1923, also vor der von Rosenthal bzw. de Bruin durchgeführten Analyse des roten bzw. blauen Spektrums haben Nagaoka u. Sugiura [116] versucht, eine Erklärung für das Auftreten von Linienpaaren zu geben, deren Wellenlängendifferenz sich stetig ändert. Die Linien sollen durch die Kernschwingungen von Atompaaren (Molekülen) bewirkt werden, welche beim Zusammentreffen zweier Atome gebildet werden. Unter der Annahme, daß die potentielle Energie eines solchen Systems sich nicht ändert, wenn man ein Atom durch sein Isotop ersetzt (?), wird die durch die Verschiedenheit der Masse bewirkte Frequenzänderung berechnet und von der Größenordnung der Wellenlängendifferenz der Paare gefunden (50—200 AE). Durch die neuerdings durchgeführte, restlos gelungene Analyse des Ar I- und Ar II-Spektrums darf man die Annahme eines Isotopieeffektes zur Erklärung der Paare als unberechtigt ablehnen, zumal bei dem außerordentlichen Linienreichtum des Spektrums das Auffinden der berechneten Differenzen keine Schwierigkeiten macht; auch die Wellenlängendifferenz ist für die Annahme zweier Isotope viel zu groß.

Abgeschlossen am 15. November 1931.

102

Arsen (As = 74.93, Z = 33).

Literatur.

[53] J. Kleinermanns, Das Bogen- und Funkenspektrum des Arsens nach Internationalen Normalen. Diss. Bonn (1920).

[54] L. et E. Bloch, Spectres d'étincelle de quelques éléments dans l'ultraviolet extrême. C. R. 171 p. 709-711 (1921). — J. de Phys. et le Rad. (6) 2 p. 229-257 (1921).

[55] A. E. Ruark, F. L. Mohler, P. D. Foote and R. L. Chenault, Spectra and critical potentials of fifth group elements. Nat. 113 p. 831 (1923). — Sc. Pap. Bur. Stand 19 p. 463—486 (1924). — Phys. Rev. 23 p. 770 (1924).

[56] R. J. Lang, On the ultra-violet spark-spectra of some of the elements. Phil. Trans. A 224 p. 371-419 (1924).

[57] Arvid Leide, Recherches sur la série K des rayons X. C. R. 180 p. 1203-1204 (1925).

[58] J. C. McLennan and A. B. McLay, Absorption spectra of various elements. Trans. Canada (3) 19 Sect. III p. 89-111 (1925).

[59] Arvid Leide, Messungen in der K-Serie der Röntgenspektra. Zs. f. Phys. 39 p. 686-710 (1926).

[60] A. Terenin, Anregung von Atomen und Molekeln zur Lichtemission durch Einstrahlung. II.Zs. f. Phys. 37 p. 98-125 (1926).

[61] Robert Thoraeus, The X-ray spectra of the lower elements. Phil. Mag (7) 2 p. 1007-1018 (1926).

[62] J. C. Mc Lennan and A. B. Mc Lay, A note on the structure of the arc spectra of the elements of the nitrogen group. Trans. Canada (3) 21, III p. 63-77 (1927).

[63] P. Daure, Sur les radiations secondaires observées dans la diffusion moléculaire de la lumière (effet Raman). C. R. 187 p. 826—828, 940—941 (1928).

[64] Bengt Edlén, Präzisionsmessungen in der K-Serie der Elemente 30 Zn bis 44 Ru. Zs. f. Phys. 52 p. 364-371 (1928).

[65] C. W. Gartlein, The first spark spectrum of arsenic, As II. Phys. Rev. (2) 32 p. 320 (1928).

[66] R. J. Lang, On the spectra of doubly ionized arsenic, antimony and bismuth. Phys. Rev. (2) 32 p. 737-745 (1928).

[67] P. Pattabhiramiah, On the spectra of As III. and Sb III. Indian J. of Phys. 3 p. 437-444 (1928).

[68] Sir Rob. Robertson, J. J. Fox, Studies in the infra red region of the spectrum. Part III.
 u. IV. Proc. Roy. Soc. A 120 p. 161-189, 189-210 (1928).

[69] R. A. Sawyer and C. J. Humphreys, The 29- and 30-electron-system of arsenic and selenium. Phys. Rev. (2) 32 p. 583-592 (1928).

[70] R. A. Sawyer and C. J. Humphreys, The spectra of cadmium II, arsenic IV, arsenic V and selenium V. Phys. Rev. **31** p. 1123 (1928).

[71] R. M. Badger und R. Mecke, Das Rotationsschwingungsspektrum des Ammoniaks. Zs. f. phys. Chem. (B) 5 p. 333-354 (1929).

[72] P. Daure, Contribution expérimentale à l'étude de l'effet Raman. Ann. de Phys. (4) 12 p. 375-441 (1929).

[73] W. F. Meggers and T. L. de Bruin, The arc spectrum of arsenic. Bur. Stand. Res. Pap. No. 116 (1929). — J. of Res. 3 p. 765-781 (1929).

[74] P. Pattabhiramiah und A. S. Rao, Serien im As VI-Spektrum. Zs. f. Phys. 53 p. 587 bis 591 (1929).

[75] Paul Queney, Spectres du phosphore et de l'arsénic dans l'ultraviolet extrême. C. R. 189 p. 158-159 (1929).

[76] Paul Queney, Sur le spectre de l'arsénic dans l'ultraviolet extrême. J. de Phys. et le Rad. (6) **10** p. 448-452 (1929).

[77] K.A.Rao, Regularities in the arc spectrum of arsenic. Proc. Roy. Soc. A 125 p. 238-24 (1929).

[78] A. S. Rao and A. L. Narayan, Spectrum of doubly ionised arsenic. Nat. 124 p. 229 (1929).
 *Indian J. of Phys. 5 p. 3 (1930). — Zs. f. Phys. 57 p. 865—868 (1929).

[79] K. R. Rao, Further triplets of trebly ionised arsenic (As IV). Nat. 123 p. 244 (1929).

[80] S. Bhagavantam, Polarisation of the lines in Raman spectra. Indian J. of Phys. 5 p. 59-71 (1930).

[81] S. Bhagavantam, Raman spectra of some elements and simple compounds. Indian J. of Phys. 5 p. 35-48 (1930).

[82] H. Beuthe, Über neue schwache Linien in der K-Serie der Elemente von V bis Y. Zs. f. Phys. 60 p. 603-616 (1930).

[83] D. Borg und J. E. Mack, The sixth spectrum of arsenic. Phys. Rev. (2) 37 p. 470 (1931).

[84] J. D. Hanawalt, Dependence of X-Ray absorption spectra upon chemical and physical state. Phys. Rev. (2) 37 p. 715-726 (1931).

[85] K. B. Rao, The spectrum of doubly ionized arsenic. Proc. Phys. Soc. London 43 p. 68-71 (1931).

Die Spektra des Arsens sind zwar in den wenigen Jahren seit dem Erscheinen der ersten Lieferung (1923) von Band VII erheblich besser bekannt geworden; aber immer stehen wir noch am Anfang, z. B. wissen wir über As II nur wenig. An Neumessungen ist nur eine solche des Bogenspektrums von Meggers [73] zu nennen, wobei er im Ultrarot bis λ 10024 gelangt und dort eine Gruppe kräftiger Linien findet. Sonst sind nur Messungen bei kürzesten Wellen gemacht. Zuerst haben die Brüder Bloch ihre alten Messungen [44] durch neue ersetzt [54], welche bis λ 1558 reichen. Dann hat Lang [56] den Funken zwischen λ 2074 und λ 529 gemessen. Ferner sind einzelne Liniengruppen von Lang [66, 74], Mc Lennan [62], Sawyer und Humphreys [69], Rao [83, 77, 79] gegeben worden. Endlich hat Queney [76[mit elektrodenloser Entladung und kleinem Vakuungitter zwischen 2500 und 700 gemessen. Er gibt die Genauigkeit zu 0.05 A an. Mit Hilfe der neuen Messungen wurde es möglich, die Ionisationsstufen teilweise zu trennen.

As I: Fünfelektronensystem mit Dubletts und Quartetts.

Zuerst haben Ruark, Foote, Mohler, Chenault [55] eine Ordnung dieses Spektrums versucht, scheinen aber nicht alles richtig gefunden zu haben. Dann haben Mc Lennan und Mc Lay [62] ihren Irrtum in betreff der niedrigen Niveaus berichtigt, sind aber sonst nicht weiter gekommen. Die Aufgabe war dadurch erschwert, daß für As keine Untersuchungen des Zeemaneffektes vorliegen, auch das Hilfsmittel, die Grundzustände durch Absorption zu finden, hier versagt (siehe z. B. [50, 55]). Nur im Bogen treten reichlich umgekehrte Linien auf. Trotzdem gelang die Analyse Meggers und de Bruin [73] für die Linien zwischen λ 10614 und λ 1916. Fast gleichzeitig hat Rao [77] die Untersuchung aufgenommen. Er stimmt mit Meggers und de Bruin im wesentlichen überein, doch ergänzen sich die Arbeiten, da ihm der ganze langwellige Teil bis λ 3119 fehlt, dagegen seine Messungen ihm den kurzwelligen linienreichen Teil bis λ 1563 liefern. Die Tab. 1 gibt dies Spektrum.

Tabelle 1. As I.

Kombin [73]	nationen [77]		Meggers [73]	Rao [77]	McLennan [62]	Queney [76] λ vac.
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	nationen [77]	10614 10453 10023 9923 9833 9826 9597 9300 9267 9134 8993 8935 8869 8821 8654 8564 8564 8541 8428 8355 8055 8055 8055 8055 8055 8055 805	Meggers [73] 98 4 03 5 76 5 69 8 94 10 62 50 29 25 81 15 08 20 58 50 69 100 76 50 94 100 65 50 94 100 65 50 94 100 62 50 94 100 62 50 94 100 62 50 95 10 26 25 45 4 07 8 60 50 32 20 85 40 99 20 71 50 44 100r 22 200r 80 50r 91 50	Rao [77] 5.576 4 5.817 2 2.845 4 0.991 2 8.702 5 0.452 7 0.197 8 4.991 6 2.89 2	McLennan [62] vorh. 4 ", 2 ", 4 ", 2 ", 4 ", 2 ", 4 ", 6 R ", 6 R ", 6 R ", 6 R ", 1	Queney [76] λ vac.
		91 83 66 65				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c}$		62 60 56 55 47 37 37 37 34 33 24			vorh. 4R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

106

Kombina	tionen		Meggers	Rao	McLennan	Queney
[73]	[77]1)	-	[73]	[77]	[62]	[76] 2 vac
					1000 C	0.70 0
-		2418	-	-	-	6.70 0
-	Constantion of the log	16	in the second	-	an Theater	4.90 9
The second	des Carrosser	14	-		and the state	4.20 2
	a hardward a start	11	per freme 1			1.60 5
THE R. P.	Angelander mit stander after	06	and the second		in the state	4.02 8
The state	Action Concerning	04	of literatory	Install Install	E ANS	8.91 3
Salar Trebas		2398	(B) (Real)	_		6.52 4
A State	and show the state of the	09	State Barriel	Constant and the	and the second second	374 0
-		95	82 07.00.			0.44 0
LEST BALLER	USA mateaduries	90	BED STORE BY		and the second second	4.70 Ou
in the Transmerie	19372	84				4.91 2
No. 13 The Marrie	A SIE MARKER	82	the second second			3.99 1
5e4P 4n2D	and the second second	81	18 150r	1.19 4	vorh. 4R	2.11 5
$58^{2}P_{3} - 4p^{2}P_{3}$	F 10 10 - 180 (1)	70	77 100 r	0.80 6	_	1.59 5
$5s^2D_3 - 4p^2P_2$		69	67 80r	9.67 5		0.47 5
$5s^4P - 4p^2D$	_	63	05 10	3.04 2	vorh. 2	3.85 2
55-13-4p-D2	_	62		_	-	2.53 4
	_	59		-	-	9.58 6
$5s^{2}P_{-}-4n^{2}D_{-}$	_	49	84 500R	9.83 10	vorh. 10R	0.69 6
$5s^2D - 4n^2P$		44	03 50	4.02 6	_	4.86 5
	etan ingene inte	26	_		_	6.96 4
ALL TOPPET	the subscript	24	_	-	- 11	4.54 0
		21	-	-	-	1.81 0
-	-	18	-	-	-	8.00? 0
_	_	08	-	-	-	8.81 4
	_	06	-	-	-	6.53 5
noshes <u>Ci</u> ncolate		03	-	-	-	3.57 0
	- 19	01	-	1201-101	-	1.72 6
	Galling- 12 and	2294	-		-	4.11 1u
$5s^{2}P_{2}$ -4p ² D ₃		88	12 500R	8.12 10	vorh. 10R	8.87 6
-	-	87	-	-	-	7.62? 2
-	-	79	-	-	-	9.52 0
	HOMING - THEN IN	77	-	-		7.61 5
$5s^2P_2 - 4p^2D_2$		71	36 50	1.39 4	vorh. 4	1.96 4
-		68	-	-	-	8.76 6
$4 p^2 P_2 - 4 d^4 F_3$	$4p^{2}P_{2}$ — $4p'^{4}P_{3}$	66	70 25	6.75	-	6.78 0
-	-	63	-	-	-	0.11 0
-	-	56	-	-	-	0.14 4
-	-	53	-	-	_	2.50 9
-	-	47	-	-	-	2.11 9
-	-	43		0.70 0	The second	0.11 2
$4p^2P_2 - 4d^4F_2$	$4 p^2 P_2 - 4 p'^4 P_2$	28	66 20	0.72 3		4.95 0
-	-	24				9.20 0
-		19	T		ALL FRAME	8 50 1
-		18	_			7.00 6
	4. 2D 4. 40	17	07 15	6.01 9		6.48 0
$4p^{2}P_{1} - 4d^{3}F_{2}$	$4p^{2}P_{1} - 4p^{4}P_{2}$	05	16 10	5.20 1		-
4p=r2-4d+D1	4p-12-4p-P1	03	10 10	-		3.69 2
		1 00	1		1	1

			_
			n .
-			

Kombina	tionen	-	Meggers	Rao	McLennan	Queney
[73]	[77]		[73]	[77]	[62]	[76] λ vac.
		2202		_		2.39 2
$4n^2P_{e}-4d^4D_{e}$	_	2198	34 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9.55 00
	_	93	-		-	3.23 6
$4p^2P_a$ — $4d^4D_a$	- and	87	75 5	20	- , 54	9.97 0
	- 18.4	86	-		(1) - (T)	6.52 0
$4p^{2}P_{1}-4d^{4}D_{1}$	$4 p^2 P_1 - 4 p'^4 P_1$	82	94 20	2.98 2	- 81	2.83 1u
		79	- 1	- 10	na - 31	9.86 1u
$4p^{2}P_{1}$ — $4d^{4}D_{2}$		76	26 15	6.26 1	11 - SP	7.64 2
- 10 -	- 176	74		-	-	4.20 6
		73	+	Salar	-	3.28 4
		68		_	-	8.46? 0
$4p^{2}P_{2}-5s^{2}S_{1}$	$4 p^2 P_2 - 4 p'^2 D_{2,3}$	65	52 100r	5.57 6		6.90 7
10-11	OTAL BACK	65				5.98 2
	2.1%-1 1	61	-			1.39 5
Just Handler	See Line + R. P. du	56			10.11 (- AIL)	6.79 6
-	1-000	52	-		-	2.15 6
		48		-	_	8.24 6
-		46	10 100=	111 5		6.38 0
$4p^{2}P_{1} - 5s^{2}S_{1}$	$4p^{2}P_{1}-4p'^{2}D_{2}$	44	10 100r	4.14 0	_	4.40 0
		43	-	0 50 0	-	5.20 5
		00		0.00 2		6.40 9
		00	81 20	2 77 A	La 2 1 The soul	2.40 5
4p*P ₂ -4d*P ₁	4p*P ₂	00	01 50	4.06 1		0.40 0
10-		00		4.00 1		2 03 3
4m2D 4.14D	4n2D 5e2S	18	01 100	2 99 4		3.58 4
4p=r1-4d=r1	4p-r1-08-01	10				0.40 4 4)
		09		1 2 2 2 3 1	L.	9.33 4
CALCER C PORT		2098			Disease 4 3	8.07 4
HIRSTON Date in	and the least of the	96	_		1	6.03 4 4)
$4n^2P - 4d^4P$	$4n^{2}P_{-}-4d^{4}D_{-}$	89	79 10	9.68 3	_	0.55 0
		88				8.76 4
$4n^2P_a-4d^4P_a$	$4 p^2 P_0 - 4 p'^2 S_1$	85	29 25	5.33 5	-	-
	$4p^2P_0-4d^4D_0$	79	-	9.41 2	-	
4p2P,-4d4P,	$4p^{2}P_{1}-4d^{4}D_{2}$	69	83 30	9.79 5	-	
	$4p^{2}P_{1}-4d^{4}D_{1}$	68	-	8.34 4	-	1912 - 1915
$4p^2P_a-4d^4P_a$	$4p^{2}P_{9}-4p'^{2}P_{2}$	67	16 25	7.13 4	- 10 ¹	Manager and Com
$4p^2P_1 - 4d^4P_2$	$4p^{2}P_{1}-4p'^{2}S_{1}$	65	41 40	5.42 6	-	rin in i
$4p^{2}P_{2}-4d^{2}F_{3}$	$4p^{2}P_{1}-4p'^{2}P_{2}$	47	59 50	7.58 5	-	
$4p^{2}P_{2}-4d^{2}P_{1}$		28	87 4			-
-	10140-0155	25	-	5.36 1	· · ·	-
$4p^2P_2$ -4d ² D ₂		13	32 50r	3.30 6	-	3.92 2
$4p^2P_2$ - $4d^2P_2$	$4p^{2}P_{2}$ — $4p'^{2}P_{1}$	12	77 20	2.74 4		-
$4p^{2}P_{1}-4d^{2}P_{1}$	-	10	04 20	0.05 4	-	_
$4 p^2 P_2 - 4 d^2 D_3$		09	18 100r	9.21 9	-	9.76 4
$4p^{2}D_{3}$ -5s^{2}D_{3}		03	34 300 R	3.28 10	-	4.03 4
$4p^{2}D_{3}-5s^{2}D_{2}$		02	54 20r	2.53 43) –	-
$4p^2P_1 - 4d^2D_2$	-	1994	79 100r	5.45 7	-	5.87 2
$4p^2P_1 - 4d^2P_2$	$4p^{2}P_{1}-4p'^{2}P_{1}$	94	25 25	4.87 6		1.11
4p*D2-5s*D3		90	49 50r	1.08 7		1.11 4

Kombin	ationen		Meggers	Rao	McLennan	Queney
[78]	[77]		[73]	[77]	[62]	[76] λ vac.
$4p^{2}D_{2}-5s^{2}D_{2}$		1989	71 200	0.37 9	-	0.35 4
10 204	_	88	_	-	- 00	8.90 1
-	_	87	-	-	-	7.49 1
$4p^{4}S_{2}-5s^{4}P_{1}$	-	72	03 1000 R	2.64 15	$1.97 \ 4R$	2.75 5
$4p^{2}D_{3}$ - $4d^{4}F_{4}$	$4p^2P_2-\beta$	58	29 20 R	8.91 7		8.85 0
$4p^{4}S_{2}-5s^{4}P_{2}$		37	02 1000 R	7.68 15	6.94 5R	7.62 5
$4 p^2 D_3 - 4 d^4 F_3$	$4p^{2}D_{3}$ — $4p'^{4}P_{3}$	28	58 4	9.17 1	-	_
$4p^2D_2$ -4d4F ₃	$4 p^2 D_2 - 4 p'^4 P_3$	16	61 5	7.24 4		7.25 0
-	-	13	-	-	-	3.02 5 5)
	$4p^{2}D_{3}$ — $4p'^{4}P_{2}$	01	-	1.59 2	-	2.26 4
	-	00		0.02 1	-	-
$4 p^4 S_2 - 5 s^4 P_3$	- 33.6	1889	$85 1000 \mathrm{R}$	0.53 15	9.91 4R	0.54 5
$4p^{4}S_{2}-5s^{2}P_{1}$	-	81	08 2)	2.03 5	1.08 1	2.01 2
$4p^{2}D_{2}$ — $4d^{4}D_{1}$	$4p^{2}D_{2}$ — $4p'^{4}P_{1}$	72	33	3.09 4		3.13 2
$4 p^2 D_3 - 4 d^4 D_3$	$4 p^2 D_3 - 4 d^2 F_3$	71	07	1.74 5	-	1.70 1
	$4 p^2 P_2 - \gamma$	70	-	0.05 4	-	-
1112-1111-	-	65	-	5.21 3	-	-
$4 p^2 D_2 - 4 d^4 D_3$	-	59	90	0.77 1	-	0.55 5
	$4 p^2 D_2 - 4 d^2 F_3$	59	-	0.48 8		-
$4 p^2 D_3 - 4 d^4 D_4$	$4 p^2 D_3 - 4 p'^2 D_{2,3}$	54	4	5.48 4	-	-
	- 00.8	53	-	3.29 5	—	-
0.00-	-	50	-	0.32 6	-	0.30 4
	$4p^{2}P_{2}$ — $4d^{2}P_{2}$	47	-	7.39 6		7.42 2
$4p^{2}D_{2}-5s^{2}S_{1}$	$4p^{2}D_{2}$ — $4p'^{2}D_{2,3}$	44	3	4.49 7	-	4.57 4
1 X 22 2	$4p^{2}P_{1}$ - $4d^{2}P_{1}$	46	-	0.58 4		9.45 2
$4 p^4 S_2 - 5 s^2 P_2$	$4 p^2 P_1 - 4 d^2 P_2$	31	1	1.80 6	1.11 1	1.44 4
P-4 01-	$4{ m p}^4{ m S_2}5{ m s}^2{ m P_2}$	31	-	1.39 6		-
-	$4p^{2}D_{2}-5s^{2}S_{1}$	21	-	1.44 2	-	1.40 0
1 2 (T+)	$4p^2P_2-\delta$	18		8.72 1	-	-
	-	16	-	6.87 2	-	-
-		13	-	3.18 0		3.47 3
$4p^2D_3$ - $4d^2F_4$	-	05	6	6.21 9	-	6.25 4
-	$4p^2P_1 - \delta$	03	-	3.60 3	-	-
_	$4p^{2}D_{3}$ -4d $^{4}D_{2}$	1799	-	9.61 2	-	0.00 0
-	-	98		8.71 4	-	8.68 0
4-2D (14D	$4p^{2}D_{3}$ $-4d^{3}D_{3}$	91	-	1.80 4	_	1.84 2
4p*D ₂ -4d*P ₁	$4p^{*}D_{3}$ $-4d^{*}D_{4}$	89	2	9.94 4		0.02 4
-	$4p^{*}D_{2}$ - $4d^{*}D_{2}$	07	_	9.20 0	-	8.88 2
_	$4p^{*}P_{2} - \varepsilon$	01	_	1.20 2		0.00 0
_	$4p^{-}D_{2}$ $-4p^{-}S_{1}$	00	-	0.97 1	_	0.09 2
	4p-D ₂ -4d-D ₃	09	_	1.00 0		1.04 2
$4n^{2}D - 4d^{4}P$	dn2D a	70	5	0.01 0		0 01 2 5
4p-D2-40-13	4h-1 ¹ -6	12	0	8.07 2		9.06 4
	-	60	_	0.89 1	E	5.00 4
$4n^2D - 4d^2F$		59	9	8.62 7		8.67 5
4p 12-40 13	4n2D	54	-	4.94 9		0.01 0
	ap 123-0	41		1.24 2		1 862 9
$4n^2D - 4d^2D$		20	4	9.53 4		9.54 4
$4p^2D - 4d^2D$		20	8	2.87 2	-	2.94 2
1h 13 10 15		04	1	1 101 1		and a

 T 12	633	
		•

Kombin		Meggers	Rao	McLennan	Queney		
[73]	[77]	[78]		[77]	[62]	[76] 2 vac	
		1732	-	2.51 3		2.52 2	
$4p^{2}D_{2}$ — $4d^{2}D_{3}$	-	29	8	9.85 2	-	9.92 2	
-	-	24	-	4.84 2	-	3.86 2	
	$4 p^2 D_3 - \beta$	01	-	1.22 3	-	1.22 3	
$4 p^4 S_2 - 5 s^2 D_3$	-	1644	0	4.40 3	-	4.45? 3	
-	$4 p^2 D_3 - \gamma$	33	-	3.78 3	-	-	
-	$4p^{2}D_{3}-4d^{2}P_{2}$	16	-	6.56 5	-	-	
	$4 p^2 D_2 - 4 d^2 P_1$	14	-	4.92 5	-	4.82? 2	
-	$4p^{2}D_{2}-4d^{2}P_{2}$	08	-	8.17 2	-	-	
$4p^4S_2-4d^4F_3$	$4p^{4}S_{2}-4p'^{4}P_{3}$	1593	4	3.66 6	-	3.65 3	
$4p^{4}S_{2}$ -4d ⁴ F ₂	$4p^{4}S_{2}-4p'^{4}P_{2}$	74	7	4.75 5	-	4.79 4	
-	-	71	-	1.34 2	-	1.48 6	
	$4p^{4}S_{2}-4p'^{4}P_{1}$	63	-	3.08 3	-	2.95 2	

¹) Die Einordnung von Rao [77] ist nur soweit angegeben, als sie nicht mit der von Meggers [73] übereinstimmt.

²) Von hier an nimmt Meggers die Zahlen von Bloch [53].

³) Von hier an bei Rao λ vac.

4) Ruark [55] gibt als As I an: 2109.80, 2095.10.

⁵) Ruark [55] gibt hier als As I: 1912.27 an.

In die Tabelle sind auch Messungen von Queney [76] bis zu λ 2494 aufgenommen, auch wenn sie nicht zu As I gehören, um sie in den Tabellen unterzubringen. Seine kürzeren Wellenlängen dagegen finden sich in Tab. 6.

Meggers [73] bestimmt die Termwerte des As I-Spektrums durch Vergleich mit analogen Termen in den Spektren der benachbarten Elemente. Er geht aus von dem Wert 30000 für den Term 5 s ${}^{4}P_{1}$ und erhält für den Grundterm 4 S₂ den Wert 80692.72. Das entspricht einem Ionisationspotential von 10 Volt. Dieser Wert ist um 1.5 Volt niedriger als der von Ruark, Mohler, Foote und Chenault [55] bestimmte. Rao [77] geht in seiner Bestimmung der Termwerte von dem Wert 93500 cm⁻¹ für den Term 4 p ${}^{4}S_{2}$ aus, der aus dem Ionisationspotential 11.54 Volt der genannten Autoren [55] abgeleitet ist. So ergeben sich andere Termwerte; jedoch sind die Termdifferenzen bei Rao dieselben wie bei Meggers. Als Anregungsspannung wird in [55] 4.70 angegeben. Meggers [73] gibt noch zwei Linien im Sichtbaren und zwei im äußersten Ultraviolett an, die er als verbotene Kombinationen deutet:

5361.12	(10)	4 p ⁴ S ₂ —4 p ² P ₁	1612.3 (2)	$4 p {}^{4}S_{2} - 5 p {}^{4}D_{1}$
5497.10	(4)	4 p ⁴ S ₂ —4 p ² P ₂	1558.4 (1)	4 p ⁴ S ₂ —5 p ² D ₃

As II: Über dieses Spektrum liegt nur eine kurze Mitteilung von Gartlein [65] vor, der das Funkenspektrum von As unterhalb von 2300 A mit einem Vakuumspektrographen photographiert hat. Er hat etwa 75 Linien des As II in ein Termschema angeordnet, gibt aber keine näheren Resultate an, als daß sämtliche Terme der untersten Konfiguration $(4 p)^2$ sowie der 4 p 5 s-Konfiguration und einige Terme der 4 p 4 d-Konfiguration identifiziert sind.

Elektronen- konfiguration	Termsymbol	Termwert	Elektronen- konfiguration	Termsymbol	Termwert
	[4S ₂	80692.72		X (1D)	7448.76
	² D ₂	70101.26			
$s^2p^2 \cdot 4p$	2D3	69779.03		4F5	-
	2P1	62507.46		4F4	18730.75
	2P.	62046.13		⁴ F ₃	17942.81
				4F2	17190.10
	[⁴ P ₁	30000.00			10210 10
	⁴ P ₂	29083.52		^a D ₁	16712.10
$s^2p^2 \cdot 5s(^3P)$	4P3	27795.83		^a D ₂	16571.50
	² P ₁	27558.28		^a D ₃	16351.41
	2P2	26088.49		⁴ D ₄	15853
	(3D	10979 50	and in the	4P. ? ·	15196.55
$s^2p^2 \cdot 5s(^1D)$	2D	10050.00	$s^2 p^2 \cdot 4 d$	4P.	14209.76
	(-D ₂	19090.09		4P.	14106.48
$s^2p^2 \cdot 5s(^1S)$	² S ₁	15882.49		⁴ P ₃	13686.10
	f 4P,	19833.73	and and all solution	2F4	14396
	4P.	19110.17		² F ₃	13223.96
	4P.	17721.02			
				² P ₁	12773.46
	4D1	18667.48		² P ₂	12379.43
mannoundter	4D2	18295.86	man nonmann M. J		10000 00
and the second	4D3	17410.89	T. areholen and	² D ₂	12392.99
$s^2p^2 \cdot 5p$	4D4	16243.87	in an index of the	L ² D ₃	12209.75
Indiana V Man	4S2	17046.80	at die Terrane	(23) Demine	Magnet
many sum billion -	2D2	18139.38	The post of the second	Termers in de	resolune fr
	2D3	16524.57	man The A Shine		00 500 mm
and the second	² P ₁	16441.66			at offenne
THE DEPART TREES	2P2	16370.04	and and a state of		1
Densels (no)	2S1	15592.46	a land mey state		

As III: Dreielektronensystem mit Dubletts und Quartetts. Es liegen Einordnungen durch Lang [66] und Pattabhiramiah [67] vor, die im wesentlichen die Paare gefunden haben. Die kurzen Wellenlängen, die P. benutzt, sind von Sawyer gemessen, aber noch nicht veröffentlicht.

Rao und Narayan [78] haben eine Reihe von Linien des As III in Quartetts eingeordnet und die Termdifferenzen angegeben, und weiter hat Rao [85] das zuerst von Lang untersuchte Dublettsystem des As III teils etwas abweichend neuerdings eingeordnet und die Termwerte der Dubletterme angegeben. Ferner hat Rao die Satelliten λ 2155.78 und λ 1274.13 berechnet, konnte sie aber nicht beobachten, da sie wahrscheinlich zu schwach sind und zu nahe an den zugehörigen Hauptlinien liegen, die stark und diffus sind. Die dem 4 p ${}^{2}P_{4}$ -Term entsprechende Ionisierungsspannung wird zu 28.19 Volt angegeben.

As IV: Zweielektronensystem mit Singuletts und Tripletts.

Tabelle 2. As III.

Rao und Na [78, 85	arayan 6]	Pattabhiramiah [67]		Lang [66]	Rao [78, 85]
*7240	3			_	$4d^2D_2 - 5p^2P_1 *1$
*6923	1	_		-	$4 d^2 D_2 - 5 p^2 P_2 *$
5885.67	1	5885.67	1	_	32P32D.
75.56	2	75.56	2		$3^2 P_a - 3^2 D_a$
5783.48	6	5783.48	6	_	32P,-32D
63.35	5				5p'4D,-5d'4F.
5684.97	7	5684.97	7		$2^{2}D_{2}-2^{2}P_{3}$
43.97	4				5p'4D,-5d'4F,
5568.42	4	5568.42	4		1 ² D ₂ —2 ² P ₂
5497.12	6	5497.12	6	_	$2^{2}D_{2}-2^{2}F$
71.95	6	71.95	6	-	$2^{2}D_{e}-2^{2}F$
60.80	1	60.80	1	_	$1^{2}D_{2}-2^{2}P_{2}$
5385.55	6	-	-	-	5p'4D5d'4F.
59.82	3	_		-	$5p'^{4}D_{2}-5d'^{4}F_{2}$
24.39	5	_		_	5p'4D-5d'4F
5993 99	6	_			$5p'^4D_{-}5d'^4F_{-}$
5141.61	2				$5p'^{4}D_{2}-5d'^{4}F_{2}$
32.94	2			_	$5s' {}^{4}P_{2} - 5p' {}^{4}D_{2}$
07.82	8			_	5p'4D-5d'4F
5030.2	6	_			$5p'^{4}D_{*}-5d'^{4}F_{*}$
4992 14	1	and taking the			$5p'^4D_2-5d'^4D_2$
4932.14	3	cashines apared. The		Sefer Street State	$5s'^{4}P_{-}-5n'^{4}D_{-}$
4888.76	8				$5p'^4D_{-}-5d'^4D_{-}$
46.15	6				$5p'^4D_2 - 5d'^4D_1$
12.00	G			_	5p'4D5d'4D
02.00	6				$5p'^4D_{2}-5d'^4D_{2}$
4787.97	ß	and the second second			$5p'^4D_2 - 5d'^4D_2$
90.28	0	A Private State			$5s' 4P_{-} - 5p' 4D_{-}$
4625.15	Ĩ				$5p'^4D_{-}-5d'^4D_{-}$
95.50	9				$5s' 4P_{-} - 5p' 4D_{-}$
07.44	5	District Ph			5 s' 4P-5p' 4D.
4599.97	G	PUT PUT P			$5n'^{4}D_{-}-5d'^{4}D_{-}$
4002.01	7	A. A. HANDER			$5s' 4P_{-} - 5p' 4D_{-}$
61 02	5			The second	5s' 4P - 5p' 4D
01.00	1	ALL ALL ALL ALL			5s' 4P - 5n' 4D
4949.98	4 C	0.00			5s' 4P - 5n' 4S
*4996.74	C	1008		6.87 6	$4e 4n^{22}S - 5n^{2}P *$
*4101.27	0 C	4220	e	1.49 6	$4s 4p^{2}S - 5p^{2}P *$
*4027.01	0	4101.45	8	7.17 15	$5 e^{2S} - 5 p^{2P} *$
*4039.45	10	4007.14	0	1.11 10	$4 f^{2}F = 5 a^{2}G$ *
* 31.01	10	Control Control			$41^{-1}r_{3} - 5g^{-0}$
3945.90	5				5s'4D 5s'4D
* 99.46	10	2000 61	10	2.61 90	$5 s^{2}S - 5 n^{2}D *$
3896.18	5	2851.90	10	2.01 20	$5s'_{4}D$ $5n'_{4}S$
3749.74	5	001.00			$5s'_2 - 5p'_{2}$
3741.99	1	The second second			$5s'_{13}$ $5p'_{13}$
0141.22	T	-			08 -r1-op -02

1) Die mit * versehenen Linien sind nach [85].

112

Arsen

Rao und Narayan [78, 85]	Pattabhiramiah [67]	Lang [66]	Rao [78, 85]
3740.12 2			5s'4P5n'4P.
3645.08 4	3645.08 4		$x = 2^{2}p$
39.74 3		_	5s'4P-5n'4P-
_	3638.89 5	_	
3597.24 2	_	in _ sharks	5s'4P,-5p'4P.
91.40 2	3591.40 2	Law The second	$2^{2}D_{a}-4^{2}P_{1}$
83.79 5	83.79 3		$2^{2}D_{3}-4^{2}P_{2}$
72.94 3	72.94 3	_	$2^{2}D_{2}-4^{2}P_{2}$
59.43 1	59.43 1		$3^{2}P_{2}-4^{2}D_{3}$
51.80 5	46.75 —	_	x-2 ² P ₂
23.98 1	23.98 1		$3^{2}P_{1}-4^{2}D_{2}$
04.32 3		_	$5s'^{4}P_{1}-5p'^{4}P_{2}$
3477.02 2	3477.02 2		$3^{2}P_{2}-4^{2}S_{1}$
72.34 3	_	_	$5s'^{4}P_{2}-5p'^{4}P_{3}$
41.09 2	41.09 2	-	$3^{2}P_{1}$ — $4^{2}S_{1}$
	3399.19 —	9.25 1	_
*3255.55 5	3255.69 5	5.69 8	$5p^{2}P_{2}-6s^{2}S_{1}$ *
-	3241.46 —	-	—
*3180.64 4	3180.78 5	0.78 5	$5p^{2}P_{1}-6s^{2}S_{1}$ *
-	22 —	2.06? 4	-
-	09.1 —	—	
-	3091. —	1.18? 3	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
-	40.79 —	-	-
*2989.42 3	2989.54 4	9.54 2	$5p^{2}P_{2}$ — $5d^{2}D_{2}$ *
* 81.88 10	82.00 10	2.00 15	$5p^{2}P_{2}$ — $5d^{2}D_{3}$ *
* 26.15 10	26.32 10	6.32 10	$5p^{2}P_{1}$ — $5d^{2}D_{2}$ *
2168.83 5	2168.83 3	-	$1^{2}D_{3}$ — $1^{2}F$
* 66.21 5	66 —	6.28 2	$4s 4p^{22}D_2 - 5p^2P_1 *$
* 56.20 9	-	-	$4 d^2 D_3 - 4 f^2 F_4 *$
* [55.78] -	-	-	$4 d^2 D_3 - 4 f^2 F_3 *$
52.18 4	52.18 4	-	$1^{2}D_{2}$ — $1^{2}F$
* 51.55 8	51 -	1.58 4	$4 d^2 D_2 - 4 f^2 F_3 *$
* 47.46 7	47 -	7.59 5	$4s 4p^{22}D_3 - 5p^2P_2 *$
* 00.50 0	2144 —	4.13 4	
* 32.76 3	33 —	3.89 1	$4s 4p^{**}D_2 - 5p^2P_2 *$
2053.37 5	2053 -	3.31 1	$4s 4p^{}P_{2} - 4t^{2}F_{3} *$
1(49.7 3	1749.7 3		$2^{2}P_{2} - 3^{2}D_{3}$
*1074.07 0	28.8 1	100 0	$2*P_1 - 3*D_2$
* [74.27 9	1274 -	4.28 8	$484p^{-1}D_{3}-41^{2}F_{4}$ *
* 68.05 0		0 07 E	$484p^{**}D_{3}-41^{*}F_{3}$
00.00 6	1986	6.20 20	48 4p**D ₂ -41*F ₃ *
* 14.00 9	1200 -	0.55 50	4n2D (1.4.22D)
* 09.99 10	14	9.00 0	$4p^{2}r_{2} - 4s 4p^{2}D_{2} + 4s 4p^{$
*1179.16 10	1179	9.15 10	$4p^{2}r_{2}$ $4s^{4}p^{**}D_{3}^{*}$
1030.93 5	1030.99 5	2.10 12	$4p^{*}r_1 - 4s 4p^{*}D_2 *$
1003.43 7	03.49 7	_	1°r ₂ —X
1000.40	00,40 (-	1-r ₂ -1-5 ₁

Die mit * bezeichneten Linien sind in [85] angegeben.

Die inneren Quantenzahlen in den Serienbezeichnungen dieser Linien sind durchweg um ½ erhöht.

	-		~	-
1.4		82		
£ 3.				

Rao und N [78, 84	arayan 5]	Pattabhir [67]	amiah	Lang	[66]	Rao [78, 85]
1000.56	7	1000.56	7	_		1 ² P ₁ —x
974.62	8	974.62	8	-		$1^{2}P_{1}-1^{2}S_{1}$
* 63.80	8	63	-	3.75	20	$4p^{2}P_{2}$ — $5s^{2}S_{1}$ *
* 53.55	4	_		-		$4p^{2}P_{2}$ — $4s 4p^{2}S_{1}$
* 37.26	6	937	-	7.20	20	$4p^{2}P_{1}$ — $5s^{2}S_{1}$
32.90	3	32.90	3	35.57	20	$1^{2}P_{2}$ — $1^{2}D_{3}$
* 27.57	4	27	-	7.52	20	$4p^{2}P_{1}$ — $4s 4p^{2}S_{1}$
10.90	5	10.90	5	100 -		$1^{2}P_{1}$ — $1^{2}D_{2}$
* 900.94	6	00.90	9	1911		$4p^2P_2$ — $4s 4p^{22}P_1$
* 889.03	8	888	-	8.98	20	$4p^2P_2$ -4s $4p^{22}P_2$
* 77.67	7	77.65	9	-		$4p^{2}P_{1}$ — $4s 4p^{2}P_{1}$
* 71.79	8	71	-	1.73	25	$4p^{2}P_{2}-4d^{2}D_{2}$
* 71.07	10	_		-		$4p^{2}P_{2}-4d^{2}D_{3}$
* 66.36	7	66.34	10	6.28	15	$4p^{2}P_{1}$ — $4s 4p^{22}P_{2}$
* 49.99	9	49	-	9.91	15	$4p^{2}P_{1}-4d^{2}D_{2}$
		845		5.86	2	-
_		28		8.65	2	-
* 614.70	1	614	-	4.73	6	$4p^{2}P_{2}$ — $5d^{2}D_{2}$
* 14.38	3	14	-	4.41	3	$4p^{2}P_{2}-5d^{2}D_{3}$
* 03.79	2	03	-	3.81	3	$4p^{2}P_{1}-5d^{2}D_{2}$

Die mit * bezeichneten Linien sind in [85] angegeben.

Die inneren Quantenzahlen in den Serienbezeichnungen dieser Linien sind durchweg um ½ erhöht.

Term	Termwert	Term	Termwert
4p ² P ₄	228406	² F ₃	64301
² P ₁ ¹	225466	$5 d^2 D_{1\frac{1}{2}}$	62783
5s 2S1	121712	$^{2}D_{2\frac{1}{2}}$	62698
$4 d^2 D_{11}$	110755	5g2G	[39500]
2D24	110664	$4s 4p^{22}D_{1\frac{1}{2}}$	143097
$5p^2P_1$	96948	$^{2}D_{2\frac{1}{2}}$	142776
2P11	96225	² S ₁	120600
6s2S1	65517	$^{2}P_{\frac{1}{2}}$	114468
4f2F21	64292	² P _{1¹/₂}	112981

Termtabelle As III. [85]

As V: Einelektronensystem mit Dubletts.

Diese Spektra sind nur von Sawyer und Humphreys [69] herausgesucht durch Vergleich mit den Spektren von Cu, Zn, Ga, Ge und Extrapolation des Gesetzes von Moseley, des Gesetzes der irregulären Dubletts usw.

Die Zahlen finden sich in den Tab. 3 und 4. Einen Nachtrag gibt Rao [79], der das Triplettsystem des As IV von Sawyer und Humphreys durch 3 weitere Tripletts vervollständigt.

Kayser u. Konen, Spektroskopie. VIII.

Tabelle 3. As IV.

Rao [79]		Rao [79]		Terme	[79]
		3216.90 2	5s ³ S ₁ -5p ³ P ₀	5s3S1	199087
		3190.00 3	5s ³ S ₁ - 5p ³ P ₁	5p3Po	168010
		3109.01 5	5s ³ S ₁ - 5p ³ P ₂	$5p^{3}P_{1}$	167748
		2461.37 3	$4 d^3D_1 - 5p^3P_0$	$5p^{3}P_{2}$	166932
		53.93 4	4d ³ D ₉ -5p ³ P ₁	-	-
		45.61 1	4d ³ D ₁ -5p ³ P ₁	-	-
		17.49 5	$4d^{3}D_{3}-5p^{3}P_{2}$	-	-
		05.72 2	$4 d^{3}D_{2}$ -5 $p^{3}P_{2}$		
Queney	Sawyer und		Terme [69]		
[75]		Humphreys [69]		and and	
980.61	5	980.58 8	4s4p ³ P ₂ -4p ^{2,3} P ₁	$4s 4p^3P_0$	343400
71.12 8	5	71.13 8	4s 4p ³ P ₁ -4p ^{2 3} P ₀	$4s 4p^{3}P_{1}$	342250
56.88 8	5	56.87 8	4s 4p ³ P ₁ -4p ^{2 3} P ₂	$4s 4p^3P_2$	339720
53.31 (6	53.25 8	$4s 4p^{3}P_{2}$ — $4p^{2} {}^{3}P_{2}$	-	-
46.43 8	5	46.45 8	$4s 4p^{3}P_{0} - 4p^{2} {}^{3}P_{1}$		-
30.75 8	5	30.80 8	$4s 4p^{3}P_{1} - 4p^{2} {}^{3}P_{2}$	-	-
892.71 (6	892.68 10	$4s^{21}S_0$ -4s $4p^1P_1$	-	-
	-	762.75 2	$4s 4p^{3}P_{2}$ -4s 4d ³ D ₁	$4 \text{ s} 4 \text{ d}^3 \text{D}_1$	208615
761.96 5	2	61.99 4	$4s 4p^{3}P_{2}$ $-4s 4d^{3}D_{2}$	$4s 4d^3D_2$	208485
60.83	4	60.80 5	$4s 4p^{3}P_{2}$ - $4s 4d^{3}D_{3}$	$4 \mathrm{s} 4 \mathrm{d}^3 \mathrm{D}_3$	208279
48.27 5	2	48.33 5	$4s 4p^{3}P_{1}$ $-4s 4d^{3}D_{1}$	-	-
47.55	2	47.57 5	$4s 4p^{3}P_{1}$ — $4s 4d^{3}D_{2}$	-	
41.94	2	41.93 5	$4s 4p^{3}P_{0}$ -4s $4d^{3}D_{1}$	-	-
		11.07 7	$4s4p^{3}P_{2}$ -4s5s ³ S ₁	-	-
	-	698.50 6	$4s 4p^{3}P_{1}$ — $4s 5s^{3}S_{1}$	-	-
	_	92.94 4	4s4p3P0-4s5s3S1		

Tabelle 4. As V.

Queney [75]		Sawyer und Humphreys [6	1 39]	Terr	me
	_	1056.71 5	4d ² D ₃ -4f ² F _{3,4}		_
	_	51.64 4	$4 d^2 D_2 - 4 f^2 F_3$		- '
1029.62	7	29.50 10	$4s^2S_1 - 4p^2P_1$	$4s^{2}S_{1}$	505136
987.72	6	987.69 10	$4s^2S_1 - 4p^2P_2$. 5s ² S ₁	241540
		737.77 8	$4p^{2}P_{2}$ — $4d^{2}D_{2}$	$4p^2P_1$	408001
734.75	2	34.77 8	$4p^{2}P_{2}-4d^{2}D_{3}$	$4p^2P_2$	403891
15.46	2	15.50 7	$4p^2P_1-4d^2D_2$	$4 d^2 D_2$	268239
		615.95 4	$4p^{2}P_{2}-5s^{2}S_{1}$	$4d^2D_3$	267794
1990	4	00.7 3	$4 p^2 P_1 - 5 s^2 S_1$	$4f^{2}F_{3,4}$	173149

Als Ionisierungsspannung für den 4 ²S-Term des As V geben Sawyer und Humphreys [70] 62.4 Volt an.

Später wurden dieselben Linien von Queney [75] gemessen und eingeordnet.

As VI: Zehnelektronensystem mit Singuletts und Tripletts.

Nach unveröffentlichten Messungen von Lang sind diese Linien von Pattabhiramiah und Rao [67] herausgesucht und in Tripletts und Singuletts eingeordnet worden. Der tiefste Term d¹⁰ ¹S ist nicht gefunden, da seine 3 möglichen Kombinationen im fernen Ultraviolett liegen. Borg und Mack [83] geben an, daß sie eine andere Einordnung der Linien für richtiger halten.

Patta	bhira	miah und Rao [74]	Relative Termwerte		
1016.39	1	3d94s3D1-3d94p3P2	3dº4s 3Da	0	
07.15	0	3d94s1D2-3d94p3F3	3d94s 3D2	1909	
01.49	1	$3d^{9}4s^{1}D_{2}$ - $3d^{9}4p^{3}P_{1}$	3d94s 3D1	5606	
979.54	1	$3d^{9}4s^{3}D_{2}$ $3d^{9}4p^{3}P_{2}$	3d94s 1D2	9701	
74.62	8	$3d^{9}4s^{1}D_{2}$ - $3d^{9}4p^{3}F_{2}$	3d94p3D30	118223	
62.03	1	3d ⁹ 4s ³ D ₃ -3d ⁹ 4p ³ P ₁	$3d^{9}4p^{3}D_{2}^{0}$	117503	
61.68	4	$3d^{9}4s^{3}D_{3}$ - $3d^{9}4p^{3}P_{2}$	3d94p3D10	112587	
37.22	9	$3d^{9}4s^{3}D_{1}$ $-3d^{9}4p^{3}F_{2}$	$3d^{9}4p^{1}D_{2}^{0}$	123136	
35.14	2	$3d^{9}4s^{3}D_{1}$ $- 3d^{9}4p^{3}P_{0}$	3d ⁹ 4p ³ P ₂	103985	
33.92	2	$3d^{9}4s^{3}D_{2}$ - $3d^{9}4p^{3}F_{3}$	3d94p3P1	109554	
28.98	1	$3d^94s^3D_2 - 3d^94p^3P_1$	3d ⁹ 4p ³ P ₀	112542	
27.59	8	$3d^{9}4s^{1}D_{2}$ - $3d^{9}4p^{3}D_{2}^{0}$	3d94p1P1	121283	
17.47	1	$3d^{9}4s^{3}D_{3}$ - $3d^{9}4p^{3}F_{3}$	$3d^94p^3F_4$	111258	
05.74	1	$3d^{9}4s^{3}D_{2}$ - $3d^{9}4p^{3}F_{2}$	3d94p3F3	108995	
02.68	2	$3d^94s^1D_2$ -3d $^94p^1F_3$	$3d^94p^3F_2$	112322	
898.81	2	3d ⁹ 4s ³ D ₃ -3d ⁹ 4p ³ F ₃	3d ⁹ 4p ¹ F ₃	120481	
96.22	1	$3d^{9}4s^{1}D_{2}$ - $3d^{9}4p^{1}P_{1}$			
93.65	1	$3d^{9}4s^{3}D_{1}$ $-3d^{9}4p^{3}D_{2}^{0}$			
90.30	0	$3d^{9}4s^{3}D_{3}$ - $3d^{9}4p^{3}F_{2}$			
81.61	2	$3d^{9}4s^{1}D_{2}$ - $3d^{9}4p^{1}D_{2}^{0}$			
65.10	5	$3d^{9}4s^{3}D_{2}$ - $3d^{9}4p^{3}D_{2}$			
64.48	0	3d94s3D1-3d94p3P1			
59.72	2	$3d^{9}4s^{3}D_{2}$ - $3d^{9}4p^{3}D_{3}^{0}$			
54.77	4	$3d^{9}4s^{3}D_{1}-3d^{9}4p^{3}D_{1}^{0}$			
45.86	2	$3d^{9}4s^{3}D_{3}$ - $3d^{9}4p^{3}D_{3}^{0}$			
43.37	0	3d94s3D2-3d94p1F3		1	
28.65	2	3d94s3D2-3d94p3D10			
24.84	1	$3d^94s^3D_2-3d^94p^1D_2^0$			
12.11	3	$3d^{9}4s^{3}D_{3}$ - $3d^{9}4p^{1}D_{3}^{0}$			

Tabelle 5. As VI.

Für kurze Wellenlängen liegen die beiden Messungen von Bloch [54] für den Funken und von Lang [56] für den "hot spark" vor; sie sind in Tab. 6 zusammengestellt. Die beiden Messungen haben kaum Ähnlichkeit. Die Bedeutung davon wird klar, wenn man auch die Messungen von Rao [77] für As I heranzieht, die dazu in die Tab. 6 mit aufgenommen sind. Dann erkennt man sofort, daß die Messungen von Bloch im wesentlichen solche von As I sind, die bei Lang ganz zu fehlen scheinen. Lang wird nur Linien der höheren Ionisationsstufen haben, die dagegen bei Bloch fehlen. Dazu sind die Messungen von Queney [26] gefügt.

8*

Tabelle 6.	As.	kurze 1	Wellen	ängen.
------------	-----	---------	--------	--------

ahaoagar damid a		Lang [56]	Queney [76]	Bloch [54]	Rao [77]
10 30 00	9074	5 19	Carried Contract		Contraction of the second
	69	3 1	outries and the second	alement profilition	
	59		9.21 00		
III	53	- I	3.84 5		
	40	9 3			
	81	4 10			
	25	7 1	_		
	22	-	2.69 0		
Contraction of the	01		1.39 3		
1.1	1999	3 4	. 0.36 0		
	92	8 3	_		
	88	_	8.90 1		
	87	_	7.49 1		
1.1.1	83	-	3.55 1		
	64	-	4.53 0		
	61	7 2			
12.2020	46	2 1	-		
1.199371	43	-	3.45 2	ALL ALL ALL	
	38	-	8.75 2	Lange Per La Prince	
	32		2.27 5	and the state	
1?	28	2 5	-		
	26	_	6.32 2	and a literation	
	22	-	2.87? 2	and the state	
	15		5.13 2u	1.6.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	14		4.12 3u	14.2 1 15 634	
	07	8 5	-	1965 0 000	
1.1.1.1	1896		6.29? 4	NEC 5 13.	
	95	-	5.33 6u	19.5 1 8 00	
	83	9 2	Televis	1958 . 0 84	S VERY
	74	3 5	4.96 0	1911 1 2 5 6 1	
	67	9 1	CONTRACTOR	196. 1 2 1 2	
	61	5? 2	0.55 5		E 40 4
	54	6? 5	5.65 0	4.4 2	0.48 4
	51	-	1.42 6	0.0 0	0.29 0
	50	-	0.30 4	0.0 2	0.02 0
	48	-	8.047 1	77 9	7 39 6
	47	-	1.42 2	1.1 2	1.00 0
	44	-	4.07 4	16 9	4.40 1
in the state	42	2 2	9.45 9	1.0 2	STREET, BRIER
in the second	20		6.482 9	Lange St.	and better postero
	25	0 2	0.101 2	manuschi mala	of all
	. 31	0 0	1.44 4	1.1 1	1.39 6
	02		3.84 9		
T	20		1.40 0	Contracting and	
1	20	Sole David	0.30 1	Store Contractioners	State of the state of the state
In ANS AND	13	the constant and the	3.47 3	Linksuler Did	mar here and
Serie I	08	In the Barrison	8.06 4	man million hoh	risinger (20 mon 14

Arsen			
A ISED	A. 1		
A 1 3 C 1	-		
	~		

Runn (121)		Lang [56]	Queney [76]	Bloch [54]	Rao [77]
I	1806		6.29 -	56 5	6.21 9
	02	0 5	_	-	-
	1798	0 1	8.68? 0		_
I	91		1.84 2	_00	_
	90		0.02 4	9.2 2	9.94 4
	88		8.88 2		-
-	86	10	6.09 2		_
6 0	84	1.0 1.	4.25 1		-
6 1	81	1 2 2	1.54 2	1.4 2	-
	78	3? 5	9.11 7	- 1	-
2 1	74	6 1	3.44 1		· · · ·
I	72	-	2.21? 5	2.5 1	2.63 2
	69	-	9.06 4	-	-
1	58	P	8.67 5	8.2 —	- 11
	51		1.16 4	-	-
m	49	7 3	1.902 0		—
	42	9 20	1.367 2	1.6 2	
1	39		5.11 0	9.4 2	_
T	00	- 15	0.11 0	- 1	0.07 0
1 1	20	0 15	2.74 2	2.6 1	2.87 2
	20	_	0.79 0		
T	90	82 1	9.92 2		
1	20	01 1	3.86 2		
	19	4 1	9.79 0		
	19	_	9.49 0		_
	12		2.43 0	_	_
1	11	-	1.44 0		
	09	_	9.09 2		
	05	101 - 1 100 km	5.64 3u		_
	02	2.98? 1	mg-		-
	02	4	2.15 1		-
I	00	2 10	1.22 3	1.1 1	1.22 3
	1698		8.77 1	-	- 4
	91	7 1	100 - 100	-	
	87	-	7.21 1		
	86	- 0	6.22 0		-
	84		4.61 2		-
	74	-	4.68 1		
	73		3.47 4		-
	71	0 5	1.95 1	-	-
	69		9.75 5		-
	62	6? 5	1.00 1		-
	61	4 5	1.92 1		
	60		0.75 6	0.8 4	1.10 0
	44		4.407 0	4.0 1	4.40 3
	42		0.02 4		
	40		0.55 2	The second	
	38	8 3	0.107 1		
	00	0.0	1 States and the states of the		

118

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rao [77]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
28 — 8.94 5	
25 - 5.76 0	
23 0 2 -	
13 - 3.79 0	
06 - 6.77 1	
1498 - 8.60 2	
96 7 1 -	
87 - 7.62 3	
80 - 0.65 7	
78 - 3.21 1	
72 - 2.55 2	
71 - 1.30 1	
66 - 6.84 0	
54 - 4.41 0	
48 - 870 6	
41105 _1	

Yon G	2	Lang [56]	Queney [76]		190		Lang [56]	Queney [76]
			0.00 1			1100	102 1	0.20 0
-	1440	ALT TAR	0.00 1		Printer -	1139	107 1 0 N 1	9.02 0
18 51	37	- 3.1	7.517 2			04		
2	30		0.80r 4		1-1-1-10	11	5 10	7.91 1
Spend	22	2 7 4	2.97 0			00	5 10	1.21 1
THE O	17	_	1.24 0			1005		5.56 9
(Income	10		5.30 0	*	100 m bi	1095	5 90	4.03 0
	13	4 1	0.90 1		1946 - 127	90 Q1	5 50	9.94 3
	1900	0 1	0.52 4			70	5 50	9.47 3
	1390	0 I	1 762 5			65	4 1	0.11 0
1000	01		5.00 5			56	4 1	6.68 3
	10	2 78	9.69 A			49	9 1	0.00 , 0
1	10	_	1.00 4		1100.12	90	9 1	9.62 7
	11 20	9 9	0.85 5			91		1.98 2
	50	0 0	6.22 0			20	0.0000000	0.50 0
1.2	55		5.96 9			15		5.40 2
	55		5.01 2		17/25	09	1 10	9.42 0
1 - CRUZ	47	6 1	7.59 5	1000	III	03	1 10	3.39 4
	41	0 1	2.69 5		VI?	01	8 10	2.27 2
	42	5 1	1.46 2			999	- 10	9.25 5
	22	5 1	3.20 5			91	_	1.64 0
1071647	91	Company again	138 0			87	_	7.76 6
201. IN	07	Ceremula dieu	7.76 2	1		84	6 10	
	06	0 Sh2 20	5 75 5		IV. VI?	79	8 2	0.61 5
	1998	7 1	9.34 7		III? VI?	74	9 2	4.61 5
	87	8 10	7.54 4		IV	70	1 2	1.12 5
	80	- 10	0.95 4		III	63	3 10	3.77 5
III	74	RREAD	4.22 5		VI	60	2 C? 5	1.70 0
III	68	1 4 4 4 4 4	8.93 4		IV	56	0 8	6.88 5
	67	6 40	7.55 4		IV	52	8 8	3.31 4
III	66		6.34 5			49	0 1	
	63	5 A12 40	3.72 5		IV	46	_	6.43 5
	58	0 2	8.53 4	1000		42	CONFR - CONFR	2.81 0
	42	8 N 25	3.09 5			41	3 3	1.89 0
	41	_	1.29 4	-	III, VI?	37	-	7.26 5
Constant of the local division of the local	33	a line of the line	3.85 0	D.C.S.	IV	30	- and	0.75 5
10201110	28	3? 1	8.98 4	1.0.1	III, VI	27		7.56 5
in marin	26	_	6.16 5	201	a his all	25	7 8	in Reserve
Profession in	22	6 3	3.08 2	1.00	webs Section	17	0 N 8	
	15	_	5.64 1	-		13	1 1	· -
	13		3.99 5	1.	III	00	_	0.96 4
	11	the plant of the later	1.11 2u		IV	892	_	2.71 6
III	08	8 30	9.33 7		III	89		9.01 4
instell?	1196	50? 2	6.49 2	reeb	(menered)	83	4 3	terriseen bit
	89	-	9.74 0	1	III	78	0 8	7.68 2
A ALAS	81	2 2	1.36 2			75	-	5.67 2
III	71	4 15	2.26 7			73	7 8	-
	57	100 m 2 10 1	7.21 1		III	71	_	1.75 2
- BITES	48	70 5	9.19 2		0.00	71	NUMBER TRAD	1.09 4
1 1 1 1	43	3 1	- 94		III	66	The Barrison	6.45 4

7841949 (105)		Lang [56]	Queney [76]			Lang [56]	Queney [76]
07.55	857	80? 3	-	IV	746	9 N 3	7.55 2
	51	-	1.81 5	IV	41	5 2	1.94 2
III	50	-	0.05 4	V	34	-	4.75 2
	39	6 1			18	00 2	-
	29	-	9.86 0	V	15	-	5.46 2
	27	4 5	7.16 0	IV	10	_	0.93 0
9	23	-	3.33 0	IV?	697	6 1	
	19	-	9.55 0	IV?	92	2 1	
	15	8 Si? 2	_		82	2 1	
	08	3 3	_		50	3 1	
9	02	20 3	-	1225	24	80 2	
	776	6 N 3	7.82 00		13	8 3	
IV	61	-	1.96 2		541	60? 1	
IV	60	40 3	0.83 4		29	2 1	
IV	48		8.27 2				

Von den übrigen im Literaturverzeichnis genannten Arbeiten seien noch erwähnt: McLennan und McLay [58], welche die Absorption untersuchen, und Terenin [60], der bei Anregung des Dampfes durch einen Vakuumbogen desselben Elementes die Linien λ 2288 stark und λ 2381 schwach erhält. Robertson und Fox [12] untersuchen das Absorptionsspektrum von AsH₃. Siehe dazu auch James Moir, Nat. 123, p. 190 (1929).

Als Restlinien sind in Löwes Atlas die folgenden zu finden:

2281.1	As	Ι	B10 F3	2745.0	As	Ι	B6RF5	5
2349.8	As	I	B10 F5	2780.2	As	Ι	B8RF1	10
2369.7	As	I	B4RF5	2860.5	As	Ι	B4RF8	8
2370.8	As	I	B4RF5	2898.7	As	Ι	B4RF6	6
2456.5	As	I	B4RF7	100 - 4.				

Im Röntgengebiet bringt eine Arbeit von Thoraeus [61] die vollständigere Kenntnis der L-Reihe, wobei die Messungen von Hjalmar (Bd. VII, I [51]) als Bezugslinien dienen. Die L-Absorptionskanten sind wegen der experimentellen Schwierigkeiten noch nicht gemessen. Leide [57] und Edlén [64] machen genauere Messungen der K-Serie, die in der fünften Stelle bei den stärkeren Linien ziemlich übereinstimmen. Beuthe [82] findet noch eine sehr schwache Linie β y, — nach Siegbahn, dessen Bezeichnungen durchgehend benutzt werden, β_5 , — die er als verbotenen Übergang K—M_{IV,V} denkt. Die K-Absorptionskante wird von Leide [57] und Hanawalt [84] erneut gemessen. Letzterer untersucht die Abhängigkeit der Kantenlage von der chemischen Bindung und findet außerdem deutliche Sekundärabsorption. Siehe hierzu auch Meyer [82a], der an anderer Stelle [73a] auch über Intensitätsmessungen der K-Linien berichtet. Schließlich seien noch Energiewerte der Röntgenniveaus nach Siegbahn (Spektroskopie der Röntgenstr. 2. Aufl. S. 348) wiedergegeben, berechnet aus dem experimentellen Wert der K-Absorptionskante. Die Bezeichnungen sind nach Bohr und Coster gewählt.

120

Messungen mit Kristallgitter.

Wellenlängen in XE, bezogen auf Kalkspat: $d_{1s^0} = 3029.45$.

Limission			n-w					
Übergänge	Linie	i	Thoraeus [62]	Leide [57]	Edlén [64]	Beuthe [82]		
L _{III} -M _I	Ll		11047	-	-			
L _{II} -M _I	η	_	10710	-	-	-		
LIII-MIV.V	a12	10	9650.3 ¹)	-	-	-		
Funkenl.	a	_	9616	and reprinted	alla a <u>lla</u> basara	indiana and		
.,	-	D	9581	-	_			
L _{II} -M _{IV}	β_1	6?	9394 ¹)			alar		
Funkenl.	β'		9372	-		-		
"	β''	_	9346	_	_			
LI-MILIII	B3. 4	1?	8911	para outre	Pquanti otta	0.000000000		
K—L _{II}	K a ₂	$49,2^{2}$)	neder-asher	1177.40	.434	inni_abma		
K-LIII	<i>a</i> ₁	100 ²)	Commun Sa	1173.43	.443	min- hu		
K-MII, III	β_1	21.7^{2})	the start Provide	1055.18	.099			
K-MIV. V	β_5	-	-	-		1046.6		
K-NII, III	β_2	0.69^{2})	-	1042.93	.807	-		

Absorption

K	Kanta	et	Leide (57)	Hanawalt (84) 42.49	Perio (20 and 10 and 20 and 10 and 20 and 20 and 10 and 20 and 20 and
	1 Indiana 1	50	1 1012.00	1 20.30	

1) Nach Hjalmar [51].

2) Nach Meyer [73a].

Sekundärabsorption verschiedener Verbindungen.

Nach Hanawalt [84].

Substanz	Temperatur C ⁰	Hauptkante	⊿V (Volt)	Abstände der Begrenzungen von Absorptions- linien (in Volt) von der Hauptkante
Fest				
As	-	1042.49	0	0-3.6; 10-12; 40-58; 75-92; 130-152; $168-?$
As Cla	_	.41	0.9	0-7.6; 14-22; 33-38; 48-92; 145-?
As Oa		.22	3.1	0-5.1; 12-18; 55-97; 140-?
As_2O_5	-	.03	5.2	0-5.4; 54-30 (schwach); 60-118; 150-?
Dampf	1 149	1815.2 -		ier 5 Grundscheingungen; so - 2162
	350	and - march	mil-ell al	I statushen (30.0 - a) (300 - a here
As4	270	.31	2.0	0-4.4; 57-102; 135-?
	95	-	-	-
As Cl ₃	35	.31	2.0	0-3.8; 57-82; 125-?
As_2O_3	320	.34	1.7	0-5.2; 55-93; 160-?
	260	THE T	10 10	in the sea a set of the second
AsH ₃	20	.43	0.7	0-3.0

Röntgenniveau .	K	LI	L_{II}	LIII	MI	M _{11, 111}	M _{IV} , v	$\rm N_{II,III}$
Opt. Symbol	$1 \ {}^2S_{1/2}$	$2 \ ^2 S_{1/_2}$	$2 \ ^{2} P_{t/_{2}}$	$2 \ ^{a}P_{a/a}$	3 ² S _{1/2}	3 ² P _{1/2}	3 ² D _{s/2} , ⁵ /2	4 ² P _{1/2} , ³ / ₂
$\frac{\nu}{R}$	874.01)	112.6	100.0	97.4	14.9	10.3	3.0	0.1

Energiewerte der Röntgenniveaus nach Siegbahn.

1) experimentell; die übrigen berechnet.

Banden : Das ultrarote Absorptionsspektrum von AsH_3 wurde von Robertson und Fox [68] untersucht. Es wurden 21 Bandenkanten gemessen und in 3 Serien eingeteilt. Die Hauptserie wird aus 7 Schwingungsbanden gebildet, deren Grundbande bei 9.946 μ liegt. Alle Banden dieser Serie haben einen intensiven Q-Zweig und weniger intensive R- und P-Zweige. Von der 2. Serie ist nur eine Bande bei 3.683 μ gemessen. Die 3. Serie beginnt mit dem Q-Zweig der Grundbande bei 11.037 μ . Es ist dies die äußerste Bande am langwelligen Ende der Folge. Aufgelöst sind nur die Grundbande der Hauptserie und der 3. Serie. Die Mittelwerte für $\Delta \nu$ dieser beiden Banden betragen 8.5 bzw. 10.0. Dies entspricht den Trägheitsmomenten J = $6.51 \cdot 10^{-40}$ bzw. $5.53 \cdot 10^{-8}$. Daraus wurden für den Kernabstand die Werte 1.65 und $1.07 \cdot 10^{-8}$ berechnet. Im zweiten Teil der Untersuchung werden diese Banden mit den entsprechenden Banden von NH₃ und PH₃ verglichen. Die Abhängigkeit vom Druck wird in der Arbeit eingehend dargestellt.

S	$\lambda(\mu)$	i	S	λ	i	S	λ	i
3	11.037	8	2	3.683		3	2.550 .	0
1	9.946	9	3	3.506	1	1	2.441	
3	5.514	4	3	3.461	1	1	2.403	9
3	5.393	4	3	3.370	2	1	2.364	
3	5.207	4	1	3.316		1	1.951	1
1	4.860		1	3.235	6	1	1.634	1
1	4.713	10	1	3.178	6	1	0.6	1
1	4.562		1.00					

Bandenkanten des As Ha.

Eine Deutung des ultraroten Absorptionsspektrums von As H₃ geben Badger und Mecke [71]. Alle Banden des Spektrums werden als Kombinationsschwingungen der 3 Grundschwingungen: $v_1 = 2162 - 40$ n ($\mu = 4.713$), $v_2 = 906$ ($\mu = 11.037$) und $v_3 = 1005$ ($\mu = 9.946$) gedeutet. Die Bandenformel lautet dann v = 2162 n – 40 n². Die Dissoziationswärme wird zu etwa 3.5 Volt angegeben. Eine Deutung des Spektrums findet man auch im Handbuch der Experimentalphysik, Ergänzungsband I, S. 418. Leipzig 1931.

Der Ramaneffekt wurde an As Cl₃ von Daure [63, 72] und von Bhagavantam [80, 81] untersucht. Es wurden vier starke Ramanlinien gefunden

mit den folgenden Ramanfrequenzen, relativen Intensitäten Jr' (bezogen auf die unverschobene Streulinie) und Depolarisationsfaktoren ϱ :

$\Delta v = 158$		194	370	405
Jr' =	0.04	0.01	0.0225	0.0225
$\rho =$	0.86	0.33	0.80	0.17

Näheres findet man auch bei Kohlrausch, Der Smekal-Raman-Effekt. Berlin 1931.

Abgeschlossen am 8. Dezember 1931.

Gold (Au = 197.2, Z = 79, Isotope 197, 199).

Nachtrag zum Literaturverzeichnis zu Band VII.

[83] T. Takamine and S. Nitta, The spark and the vacuum arc spectra of some metals in the extreme ultraviolet. Mem. Coll. Kyoto 2 p. 117-135 (1917).

[84] J. C. Karcher, Wave-length measurements in the M-series of some high-frequency spectra. Phys. Rev. (2) 15 p. 285-288 (1920).

[85] L. et E. Bloch, Spectres d'étincelle dans l'ultra-violet extrême. J. de Phys. et le Rad. (6) 2 p. 229-257 (1921).

[86] L. et E. Bloch, Sur quelques spectres d'étincelle dans l'ultraviolet extrême. C. R. 172 p. 803-805 (1921).

[87] D. Coster, Le principe de combinaison et la loi de Stokes dans les séries des rayons X. C. R. 172 p. 1176-1178 (1921).

[88] A. Dauvillier et L. de Broglie, Sur la distribution des électrons dans les atomes lourds. C. R. 173 p. 137-139 (1921).

[89] A. Dauvillier, Contribution à l'étude de la structure électronique des atomes lourds et de leur lignes spectrales. C. R. **173** p. 647-649 (1921).

[90] A. Dauvillier, Contribution à l'étude de la structure des éléments de nombre atomique moyen. C. R. 173 p. 1458-1460 (1921).

[91] F. M. Walters, Wave-length measurements in arc spectra photographed in the yellow, red and infra-red. Bull. Bur. Stand. 17 p. 161-177 (1921).

Literatur ab 1922.

[92] I. A. Anderson, The spectral energy distribution and opacity of wire explosion vapours. Proc. Nat. Acad. 8 p. 231-232 (1922).

[93] L. de Broglie et A. Dauvillier, Sur le système spectral des rayons Röntgen. C. R. 175 p. 685-688 (1922).

[94] D. Coster, Le principe de combinaison et la loi de Stokes dans les séries des rayons X. Phys. Rev. (2) 19 p. 20-23 (1922).

[95] A. Dauvillier, Nouvelles recherches sur les spectres des rayons Röntgen. J. de Phys. et le Rad. 3 p. 221-251 (1922).

[96] W. Duane and R. A. Patterson, Note on X-ray spectra. Proc. Nat. Acad. 8 p. 85-90 (1922). — Phys. Rev. (2) 19 p. 542-543 (1922).

[97] E. Hjalmar, Recherches sur la série des rayons X. C. R. 175 p. 878-880 (1922).

[98] P. Auger et A. Dauvillier, Sur l'existence de nouvelles lignes, dont un doublet de Sommerfeld, exclues par le principe de sélection, dans la série L des éléments lourds. C. R.**176** p. 1297—1298 (1923).

[99] E. Hjalmar, Röntgenspektroskopische Messungen. Zs. f. Phys. 15 p. 65-109 (1923).

[100] M. Kimura and G. Nakamura, The broadening of spectral lines caused by increasing current density and their Stark effects. Jap. J. Phys. 2 p. 61-75 (1923).

[101] St. Procopiu, Sur les spectres d'arc des métaux dans divers milieux et dans le vide.C. R. 176, p. 385-388 (1923).

[102] V. Thorsen, Seriendarstellung des Goldbogenspektrums. Naturw. 11 p. 500-501 (1923).

[103] E. Bengtsson, Die Kombinationsbeziehungen bei den Bandenspektren der Goldflamme. Ark. f. Mat., Astron. ok Fysik 18, Nr. 27 (1924).

[104] I. C. Boyce, Soft X-rays from heavy elements tantalum to gold. Phys. Rev. (2) 23 p. 575 bis 579 (1924).

[105] K. Lang, Messung von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).

[106] R. I. Lang, On the ultra-violet spark-spectra of some of the elements. Phil. Trans. A. 224 p. 371-419 (1924).

[107] H. Lowery, Pole lines in the interrupted arc spectra of silver, gold and copper. Phil. Mag. (6) 48 p. 1122-1131 (1924).

[108] H. Nagaoka, Y. Sugiura and T. Mishima, The fine structure of mercury lines and the isotopes. Japan. J. of Phys. 2 p. 121-162 (1924).

[109] St. Procopiu, Sur les spectres de l'arc entre métaux dans différents milieux et dans le vide. Ann. de Phys. (10) 1 p. 89—133 (1924).

[110] L. et E. Bloch, Nouvelles recherches sur quelques spectres d'étincelle dans la région de Schumann. J. de Phys. et le Rad. (6) 6 p. 154-165 (1925).

[111] *M. Buffan and H. I. C. Ireton, Das Unterwasser-Funkenspektrum einer Anzahl von Elementen. Trans. Canada (3) 19, III. p. 113—118 (1925). — Ref. Phys. Ber. 7 p. 967 (1926).

[112] A. Leide, Experimentelle Untersuchungen über Röntgenspektren. K-Serie. Diss. Lund. (1925).

[113] I. C. McLennan and A. B. McLay, On the series spectrum of gold. Proc. Roy. Soc. A. 108 p. 571-582 (1925).

[114] I. C. McLennan and H. Grayson Smith, C. S. Peters, The infra-red spectra of certain elements. Trans. Canada (3) **19**, III. p. 39-56 (1925).

[115] I. C. McLennan and A. B. McLay, Absorption spectra of various elements in the ultraviolet. Trans. Canada (3) 19, III. p. 89-111 (1925).

[116] G. Rechou, Etude spectrographique de la série K des éléments lourds. C. R. 180 p. 1107 bis 1108 (1925).

[117] R. V. Zumstein, The absorption spectra of copper, silver and gold vapours in the ultraviolet. Phys. Rev. (2) 25 p. 523-526 (1925).

[117a] J. A. Carrol, The vacuum spark spectra of some of the heavier elements and series classification in the spectra of ionised atoms homologous with copper, silver and gold. Phil. Trans. Roy. Soc. A. 225 p. 357-420 (1926).

[118] I. M. Cork and B. R. Stephenson, The K-series emission spectra for elements from atomic number 50 (Sn) to atomic number 83 (Bi). Phys. Rev. (2) 27 p. 103, 138-143 (1926).

[119] E. Friman, Präzisionsmessungen in der L-Serie der Elemente Wolfram bis Uran. Zs. f. Phys. **39** p. 813-827 (1926).

[120] W. M. Hicks, The analysis of the copper spectrum. Phil. Mag. (7) 2 p. 194-236 (1926).

[121] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Instit. Phys. Chem. Res. Tokyo 4 p. 59-78 (1926).

[122] E. Hulthén and R. V. Zumstein, The absorption spectra of some hydride compounds in the ultraviolet. Phys. Rev. (2) 28 p. 13-24 (1926).

[123] I. C. McLennan and A. B. McLay, On the structure of the arc spectrum of gold. Proc. Roy. Soc. A. 112 p. 95-110 (1926).

[124] I. C. McLennan, M. I. Ligett, Arc and spark spectra of rare elements in the fluoride region. Trans. Canada (3) 20, III. p. 377-383 (1926).

[125] H. G. Smith and M. E. Westman, Some infra-red spectra. Trans. Canada (3) 20, III. p. 323—325 (1926).

[126] E. I. Allin and H. I. C. Ireton, The under-water spark of certain elements. Trans. Canada
 (3) 21, III. p. 127-131 (1927).

[127] W. F. C. Ferguson, The spectrum of gold chloride. Nature 120 p. 298 (1927).

[128] Y. Fujioka and S. Nakamura, Stark effect for the spectra of silver, copper and gold. Sc. Pap. Instit. Phys. Chem. Res. Tokyo 7 p. 263-276 (1927).

[129] M. Fukuda, Reversed spectra of metals produced by explosion under increased pressure. Sc. Pap. Instit. Phys. Chem. Res. Tokyo 6 p. 1-47 (1927).

[130] H. Nagaoka, D. Nukiyama and T. Futayami, Instantaneous spectrograms of copper, silver, gold Proc. Imp. Acad. Tokyo 3 p. 319-323 (1927).

[131] W. F. C. Ferguson, The spectrum of gold chloride. Phys. Rev. (2) 31 p. 969-972 (1928).
 [131a] W. Gerlach und E. Schweitzer, Der quantitative spektralanalytische Nachweis von Blei

im Gold und eine neue Methode zur Emissionsspektralanalyse. Zs. f. anorg. Chem. 173 p. 92 bis 103 (1928).

[132] K. Lang, Messung von Röntgennormalen. Ann. de Phys. (4) 75 p. 489-512 (1928).

[133] E. Lindberg, Röntgenspektroskopische Messungen der M-Serie der Elemente Uran bis Gadolinium. Zs. f. Phys. 50 p. 82-96 (1928).

[134] I. Backhurst, The absorption of X-rays from 0,63 to 2 A.U. Phil. Mag. (7)7 p. 353-373 (1929).

[135] A. I. M. Johnson, The M-series absorption spectra of metallic platinum and gold. Phys. Rev. (2) 34 p. 1106—1114 (1929).

[136] E. Lindberg, Röntgenspektroskopische Messungen in den Absorptionsspektren der Elemente Uran bis Wolfram. Zs. f. Phys. 54 p. 632-642 (1929).

[137] E. W. H. Selwyn, Arc spectra in the region λ 1600-2100. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[138] A. S. W. Symons and I. Daley, The Zeeman effect for the arc spectrum of gold. Proc. Phys. Soc. London 41 p. 431-441 (1929).

[139] S. Idei, The precise measurement of the L-group of the X-rays in the heavy elements. Sc. Rep. Tôhoku Imp. Univ. **19** p. 559-639 (1930).

[140] S. Idei, The precise measurements of the L-group of the X-rays in the heavy elements. Sc. Rep. Tôhoku Imp. Univ. 19 p. 641-649 (1930).

[141] P. Krishnamurti, Raman spectra of crystalline inorganic chlorides. Indian J. of Phys. 5 p. 113-128 (1930).

[141a] S. Sambursky, Intensitätsanomalien in Multipletts von Silber und Gold. Proc. Amsterdam 33 p. 1025-1027 (1930).

[142] A. Sandström, Röntgenspektroskopische Messungen der L-Absorption der Elemente 74 Wolfram bis 92 Uran. Zs. f. Phys. 65 p. 632—655 (1930).

[143] S. Frisch, Zur Hyperfeinstruktur in den Spektren einiger Elemente. Zs. f. Phys. 71 p. 89-93 (1931).

[143a] P. Kraft, Untersuchung der Absorptionsspektren der M-Serie der Elemente Wismut, Blei, Thallium und Gold. Wiener Anz. 17 p. 175-176 (1931).

[144] E. Lindberg, The M- and N-Series. A Spectroscopic Study of X-rays. Nova acta reg. soc. sci. Ups. (4) 7, Nr. 7 (1981).

[144a] R. S. Loyarte und A. T. Williams, Los espectros de absorcion de los vapores de Cu, Ag y Au. Estudio de las Ciencias físicas y matematicas. Vol. V p. 393-398 (1931).

[144b] L. S. Ornstein und S. Sambursky, Multiplettintensität und Bogentemperatur. Proc. Amsterdam **34** p. 339-340 (1931).

[145] R. Ritschl, Über Hyperfeinstrukturen in den Spektren von Kupfer und Gold. Naturw. 19 p. 690 (1931).

An neuen Messungen sind solche bei langen Wellen hinzugekommen: an erster Stelle sei Walters[91]genannt, der aber nur 17 Linien zwischen 7510 und 5629 mißt. Dann haben McLennan, Smith und Peters [114] eine lange Tabelle veröffentlicht, die von 8928 bis 5656 reicht, aber mit viel zu kleiner Dispersion ausgeführt ist. Bei 9000Å kommen 150Å auf den Millimeter, bei 6000 noch 70; Fehler von vielenÅ sind also zu erwarten. Endlich hat Smith [125] 5 Linien mit dem gleichen Instrument gemessen; er gibt etwa 10Å als Fehlergrenze. Diese Messungen sind in Tab. 1 vereinigt.

Ebenso sind die kurzen Wellen reichlich gemessen, aber auch ungenügend. Lang [106], dem wir später so vorzügliche Messungen im Schumanngebiet verdanken, hat in seiner ersten umfangreichen Untersuchung offenbar mit ganz ungenügenden Mitteln und Erfahrungen gearbeitet. Seine Messungen reichen von λ 2039 bis 458; hier finden sich etwa 180 Linien, von welchen aber 78 als sichere oder mögliche Verunreinigungen bezeichnet werden. Die Wellenlängen werden auf nur Zehntel Å angeführt, d. h. Fehler von mehreren Zehnteln sind möglich, und das genügt in dem linienreichen kurzwelligen Gebiet nicht annähernd. — Eine erheblich ältere Messung von Takamine und Nitta [83], die früher nicht erwähnt war, weil sie nicht zugänglich war, reicht nur bis 1844 hinunter. Die Ungenauigkeit wird wohl eher größer

127

Tabelle 1.	Lange	Wellenlängen.	
 			-

	Walters [91]	McLennan [114]	Smith [125]		Walters [91]	Mc Lennan [114]
8928	-	8.5 3	-	6484	-	4.2 2
8692		2.3 5	-	72	_	2.3 2
8410		- 14	0.1 1	62	-	2.0 2
8360	-	-	0.5 1	44		4.1 2
7725	-	-	5.6 0	36	_	6.2 5
7597	97 1u	-	-	29	-	9.3 2
7510	69 5	0.5 15	0.6 4	6390	-	0.7 4
7330	-	0.8 2	0.6 1	77	41 1u	-
00	-	0.0 2		37	-	7.4 1
7281		1.8 1		12	-	2.8 4
61	-	1.0 1	4.1	02		2.2 2
40	-	0.5 1	2.3 8	6278	20 6	8.5 15
18	-	8.4 1	1 1 1	6160		0.1 3
7177	-	7.0 1		02	-	2.5 1
56	82 1	-		6062	-	2.0 3
00	-	0.0 8		23	-1.6	3.5 3
7023	28 1u	-	0.00.000	5991	-	1.0 1
6873	-	3.9 3		68	96 1u	-
58	-	8.5 2	1.1.1	62	72 2	1.8 2
29		9.0 1		56	98 3	7.6 10
6794	-	4.6 4		33	-	3.7 2
81	97 2	-		21	-	1.5 4
66	-	6.9 2	11110	5883	-	3.0 1
32	-	2.5 3		62	92 2	2.8 10
21	-	1.5 10		59	34 1u	-
6691		1.2 1		53		3.5 2
76		6.4 7		41	44 2	-
52	-	2.6 7		37	40 5	7.6 15
6590	-	0.6 4		5660	46 1	-
30		0.2 2		55	79 3	6.5 10
06	-	6.3 1		51	07 1	
01	-	1.2 2		29	27 1u	

sein als bei Lang; zu beachten ist auch, daß die Wellenlängen in Luft gemessen sind; durch Reduktion auf Vakuum werden sie durchschnittlich um 0.6 Å vergrößert. — Eine dritte Messungsreihe bis 1341 stammt von den beiden Bloch [110]. Eine ältere Messung [81, 85] ist schon auf S. 74 von Band VII abgedruckt. Die neue Messung ist viel linienreicher, die Fehlergrenze wird zu 0.2 Å angegeben. Man kann sich bei Vergleich der vielen Messungen der beiden Bloch des Eindrucks nicht erwehren, daß überall noch viele Verunreinigungen darin stecken. — Endlich ist eine vierte Messungsreihe von McLennan und Ligett [124] vorhanden, die bis zu 1550Å hinunterreicht; sie stimmt mit Bloch ziemlich gut überein, die Fehlergrenze mag die gleiche sein. Auf die viel ältere (1909) Messung von Handke (Band VII, S. 74) sei nur hingewiesen, sie ist noch erheblich ungenauer.

Die Messungen von Selwyn [137] aus jüngster Zeit umfassen den Bereich von 1991 bis 1646 Å und geben auf Vakuum bezogene Messungen. Die neuen Messungen sind in Tab. 2 vereinigt.

Tabelle	2.	Au,	kurze	We	llen	längen.
---------	----	-----	-------	----	------	---------

	Lang [106]	Takamine [83]	Bloch [110]	McLennan [124]	Selwyn [137]
2039	4 1				-
05	0 1				
01	6 Cu? 1	0.2 8		1.28 6	States and Lake
1996	4 1	6.0 2		6.88 1	
91	_	1.8 8	San Charles Inc.	2.05 4	1.94 10
89	_	9.2 4		9.57 3	
88	0 Cu ? 2				
84	_	4.5 1	1 1 10 1		4.54 1
77	6 2	7.5 8	added to an and a	8.31 7	8.14 15
71	9 1	2.7 2			
65		_	in the resident	5.63 1	5.34 Ou
57		7.5 1		8.72 1	
55	_	5.7 1	the second states	6.24 1	
54		4.5 1			
51	_	1.8 3	and a start of the start of	2.31 3	1.97 7 I
50	9 1	-	and a start of the start of the		
48		80 1		8.97 2	
46		6.0 1			
45	3 1	0.0		4.99 1	479 8
44	0 1	41 1		4.00 1	1.1
44		4.1 1		9 16 5	
38		88 1		818 1	994 5 T
27		75 9		0.10 1	0.24 01
26	5 1	1.0 2	A DESCRIPTION OF		
25	0 1	50 9		5.79 9	
24		1.0 2		0.10 4	
01		4.0 1		0.14 9	255
20	1200	1.0 2		2.14 0	
00	at all	0.0 1		0.81 0	100
29	and a set of the set of	9.1 1	and the state of the	= 00 E	5 00 9 II
24	-	4.0 0		0.89 0	0.20 0 II
21			0.50 5	1.82 0	1.07 0 11
20	0 1	0.7 6	9.53 5	9.92 0	9.05 8 1
18	I mi mienicha	0.8 6	8.20 2		EN TOWN
16		and the second	0.52 0	Ten Talla	And The American
15	3 1		2.00 00	-	-
13		_	3.96 00		
12	1 1		2.63 00		- 1
10	in bleer exactly	Tellin Tellin	0.94 0	0.01 0	
09	ALL THE ALL AND ALL AN	The Transfer	9.48 2	9.64 2	NAME TO BE
07	-	-	7.85 0	-	
04	3 1	4.1 3	4.44 4	4.68 4	4.55 0 11
00	-		0.26 0	- 10/1	
1899	-	-	9.30 0		11-11-11-11-11-
97	9 1	A CONTRACTOR		State of the second	in the second
94	-	2.4.1	4.23 0	-	
93	9 1	-	3.34 0	-	-
91	-	-	1.84 0	-	-
90	9 2	0.2 4	0.39 4	0.39 4	-
87			7.60 2	7.03 4	

	-
ъ.	

	Lang [106]	Takamine [83]	Bloch [110]	McLennan [124]	Selwyn [137]
1886	mer _ wann	6.0 4	6.92 4		Anter 1
86		_	6.14 00	_	
85		4.6 1	5.23 00	0 25 00 1	
80		0.8 1	0.83 1		
79		9.2 4	9.73 3	9.98 8	9.87 G T
77	RTB	-	7.74 00	0.00 0	0.01 01
72	_		2.39 2	2.31 5	949 6
71		1.3 2	1.95 2	2.01 0	2.12 0
68	are	-	8.72 00		
65	5 1	_	5.45 1	5.51 1	
64	_	_	4.27 0	0.01 1	
61	0 1	1.8 4	1.73 5	178 5	
58	_	8.4 2	8.86 3	870 3	
57	_	7.0 1	7.20 2	7 13 8	7 99 5
55			5.55 4	5.45 4	5.54 4 TT
59	000 -0000	20 1	954 9	9.57 1	4.71 0
51		0.9 1	1.56 3	1 20 2	4.71 0
50		96 9	0.14 8	0.17 9	1.05 0 11
48	0 9	0.0 2	8.91 1	0.17 2	-
40	0 4		7.58 00	0.00 1	_
40			6.91 0		_
40	0 1	40 1	1 99 9	5.07 4	_
44	0 1	4.0 1	4.00 D	0.07 4	-
40		200.0	0.00	-	-
40			0.96 00	- 101	-
40		66.1 (F)	0.00 00		-
00			0.00 2	8.49 2	-
00	TUS		0.40 0	0.38 3	
34			4.50 2	4.43 3	4.28 5
33	-	10-11	3.20 2	3.27 2	3.14 51
30		The second	0.14 5	0.24 2	-
20	_		0.10 1		
23		ALL ALL	0.42 4	3.42 6	3.27 4 11
21	-		1.00 3	1.45 5	-
19	-	and the	9.22 0	-	-
18	-		8.21 1	8.03 1	-0
10	-		0.30 1	6.34 1	-
	-		1.88 1	1.96 2	- 191
09		Conce 1	9.95 2	0.04 2	
07	-		1.20 0		-
00			0.01 .3	0.00 4	
02	o Cu I		2.20 3	2.28 2	-
1704			0.69 6	0.89 8	0.62 7 11
1/94	1 1	under .	4.00 5	3.80 8	-
02	_		3.08 0		3.31 7 II
90	_		3.09 2	0.00	
86	7 0 1		0.23 2	0.20 2	-
88	r cu I		0.40 4	0.48 3	-
81	9 1		0.01 0	3.50 6	3.18 7 11
76	2 I		0.91 2	0.90 1	-
10	-	I Bada	0.70 3	6.80 1	

Kayser u. Konen, Spektroskopie. VIII.

130

Gold

areas Trail	Lang [106]	Bloch [110]	McLennan [124]	Selwyn [187]
1775	7 Cu 1	5.53 5	5.53 5	5.20 0
74	-	4.88 2		
67	0 8	7.65 2	7.63 3	
62		2.24 3	2.15 5	
57	1.2. S- 82.2	7.12 3	7.07 4	
56		6.29 3	6.10 3	6.13 2 II
51	2 - 18.2	1.83 C? 2		
50	5 1	0.95 1	-	- 17
49		9.91 4	9.78 4	9.78 4 II
48 -	- at 10.8	8.30 1		1 2 - 9
47		7.97 1		10
45	7 Cu? 1	6.23 4	6.11 4	19.1-19.
44	3- 01.B	4.50 1	5.19 3	
42	R 15 - 213	2.00 0	2.69 4	
41	0 Cu 1	1.45 0		-
40	- 10 L	0.42 5	0.42 5	0.50 4 11
38	and the state	8.45 3	8.41 2	M
36	- an	6.59 2	6.49 2	- 00
33	- 22	3.00 1	2.97 3	0 - 0
31	0 Cu 2	0.48 0	-	
27	0 Cu? 1	7.13 4	7.11 4	
25	- 10.6	5.73 4	5.67 4	5.91 2 11
19		9.82 3	9.82 3	0.03 1 11
18	0 Cu 1	8.35 1	-	8.27 2 4
17	>	7.58 3	7.55 3	6.96 0
16	- 0.4	6.44 1		The second
15	- 86.B	5.37 2	5.43 3	
13		3.36 00	-	T T
12	18 - 184	2.81 00		
11	3 Cu 2	1.19 00	-	1.47 Ou
09		9.86 3	9.87 4	
07	13 3- 25.2	7.30 2	7.17 2	
02		2.54 0		
02		2.01 2	1.05 2	
01	- 403	1.76 1	0.45 4	
00	- 10.0	0.42 3	0.40 4	T the
1699	6 Cu 2	9.75 2	9 59 9	
98		8.74 2	0.02 0	
98		8.44 2	0.70 0	E E
96	- 944	6.82 2	0.10 2	I. F.C
96		6.30 0	-	
94		4.80 0	9.69 7	
93	-	3.62 6	0.02 (
92	0 Cu? 2	e as00		
86		6.25 00		
84		4.00 10		
76	-	0.07 1		
76		5.59 9		
75 -	0.2 0	2.02 2	3.20 4	3.60 3.11
1 73	97 2	0.20 0	0.20 4	0.00 0.11

Gold

49 19	Lan [106	g]	Blo [11	ch 0]	McLen [124	nan]		in all		Lang [106]	1001	Е [lloch 110]
1672	ehe_		2.39	2			1	605		_		5.74	0
71	01.1-		1.14	00	_			01	2.0		1	1.16	00
70	10.1-		0.58	1	_	1)	1200	00	2	C?	2	0.40	54)
69	500-		9.62	00	_	1	1	599		_	5	9.60	0
67	13.0-		7.85	2	7.80	2		98	an	_		8.67	1
66	24.9-		6.47	1	-			98	6.0	_	1	8.10	1
65	18.8-		5.52	1	5.49	2^{2})		97	1.81	_	223	7.30	1
64	- 8.42		4.50	4	4.46	4		96	2.2	_	221	6.53	0
57	- 216		7.79 C	? 1	-			95	No. L.	_	8.59	5.85	2
57	10.8-		7.42 C	? 1	-			95	3.4	_		5.38	1
56	01.5-		6.80 C	? 2	-		100	93	3.8	_		3.36	35)
56	111-		6.08 C	? 1			11	92	2.2	_	122	2.40	2
53	-2.2		3.16	1	-		1.53	90	0.00	_		0.51	0
52	19.1-		2.47	4	2.55	4		89	0.5	_	2.22	9.91	1
51	82.0-		1.57	0	-			89	0.0	_		9.56	46)
50	050-		0.73	0	-		1.0	87	10.8		223	7.71	2
49	23.0-		9.77	1	9.73	0		87	18			7.06	2u
48	82.0-		8.11	00	-		1.1	85	1.8			5.96	00
47	- 9.15		7.31	00	-		100	85	2.2	-	1	5.35	1
46	08.8-		6.50	2	6.50	33)	1.41	84	7		1	4.63	0
45	17.2-		5.90	3	5.84	2		84	6.0	_		4.00	2
44	2 H?	1	4.01	2	3.98	3		82	1.4	-		2.94	1
40	4	1	9.58	1				82	8.8	-		2.02	0
38	-1.95		8.66	4	8.77	3		81				1.28	0
37	-3.73		7.76	3	7.88	2		80		-		0.25	0
36	0 H?	1	6.34	2	-			79		-		9.70	0
35	911-		5.21	00	-			79				9.39	3
33	1921-		3.57	1	-		6.4	77		-		7.92	2
32	08.0-		2.69	1	-			77		-		7.05	3
28	0.0-		8.90	5	9.04	1		76	8		1	6.34	1
25	- 00 C-		5.60	1	-			76		-	1-10	6.01	00
24	19.2-		4.28	3u	4.29	2		74				4.83	47)
22	3 ?	5	2.61	1	-		1	72		-	100	2.56	1
21	1		1.83	6	1.83	5		71		-		1.95	2
20	100		0.53	00u	-		11	71		-	1	1.72	0
18	0	1	7.54	1	-		104	70			100	0.09	2
17	- 10 M		7.05	4	7.07	3	1	67		-		7.83	0
10	-		5.92	00	-		16418	67		-	-	7.55	3
13	6 0?	1	3.48	3				66		- '	-	6.60	2
12	-		2.08	2	-		199	65			1999	5.72	0
10	107		1.01	2	1.19	2		65		-		5.09	0
10		-	0.35	2	-			64		-	-	4.64	2
09		-	9.28	00	-			63		-	-	3.84	0
07		G	8.20	0	-			62	5		5	2.47	5
06	-		7.35	0	- /			62		-		2.10	4
00		-	6.10	0	-			61		-		1.51	C? 2

4) McLennan [124] 5.50 4.

7) McLennan [124] 4.85 1.

⁵) McLennan [124] 3.41 2.

¹) Selwyn [137] 0.82 1. ²) Selwyn [137] 5.73 1 I. ³) Selwyn [137] 6.66 0 I. ⁶) McLennan [124] 9.61 3.

9*

Gold

10		-	Lang [106]	ania (311	Bloch [110]		tope annies, tek 11 og merg	print and a	Lang [106]	Ble [1	och 10]
1500					0.69.02	1		1522	100 - 10 00	2.52	1
1000					0.05 01	1		21	5 1	1.59	4
50			1.00		9.92	00	a and	21	1.85.0-	1.15	2
57					7.99	1		20		0.67	2
50					6.95	4		20		0.44	1
50		1		1	6.44	4		19	1 TR. R	9.85	2
50		+		-	6.97	1	and your	18	4 1	8.87	3
55					5.66	1	1 1 413	18		8.42	1
54			_		4.99	4		17	87.0 - 5.78	7.66	0
54			_		4.67	3		13	101	3.64	2
53			_		3.84	0	1 2 2 2 2	13		3.10	4
53			_		3.36	0	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	6 1	2.67	2
52			_		2.91	54)	- Change	12	-0.01	2.15	1
52			_		2.56	1	A 10 003	11	1.72.5-	1.49	0
50					0.93 C?	3	a fair and	10	101-	0.95	3
50					0.36	0	6-1	10	0.05.9- 0.50	0.70	1
48			-		8.51	3	0 9 00.0	10	- 1.27	0.42	2
48	10.		-		8.33 C?	2		09	- 11.1	9.83	3
47			_		7.22	2		09	1.18.1-	9.27	3
45	33.				5.86	0	0 39	08	08.0-	8.89	1
45	10.				5.36	0	5 6 485	08	1.08.4	8.70	1
44			_		4.32	2	B.A. 08.4	06	1 1	. 6.94	0
43	- 10		-		3.32	2	R Mark	06	5.80.8-1.6055	5.88	00
42	12		-		2.23	2	1 6 3 72.8	04	00.8-16.03	4.36	1
42	12.		-		2.05	3	1 15 3 28.3	03	0.05.7- 0.00	3.73	4
41	. (5)		-		1.84	2		02	0 2	2.45	3
40			-		0.98	3		01	0 2	1.95	1
40			-		0.41	4	- [110]	01	- 1.57	1.36	0
40					0.07	1	00-1	00	- 2.20	0.50	1
39	18				9.57	1	1 100 24.9	00	0.6-1761	0.30	5
38			-		8.35	2	·	1499	100.0-	9.76	4
36		6		1	6.85	4	1 2 3 44	99		9.14	2
35			-		5.68	0		98	ma- a	8.17	1
35	5		-		5.53	1	1 2 3 9%	98	-	8.47	0
30	5		-		5.10	2	1 2 2 2	97		7.85	8
34	1 13		-		4.17	5		97	-	7.33	00
38	3	7		1	3.47	4	1 6 6 16	96	-	6.54	3
32	2		-		2.89	1		96	-	6.10	3
31			-		1.90	1		93		3.24	2
30)		-		0.99	Ou		91	-	1.34	3
29)		-		9.77	2		90		0.12	0
28	3		-		9.04	2	1 Date Start	89		9.34	3
27			-		7.63	2		00		5.07	1
27			-		7.16	2		00	0.0	7.05	0
20			-		5.74	3		01		6.59	0
24			-		4.09	0		84		1.00	9
24	ł		-		4.22	2	1	82	1 1 1 1 1 1 1 1	2.60	01
2	5		-		3.44	. 3	The local man	00		1 0.02	ou

4) McLennan [124] 2.80 2.

10011 20	Lang [106]	Bloch [110]		Lang [106]	Bloch [110]
1482	1 4	2.39 Ou	1415	_	5.43 3
80		0.97 3	14	0 2	4.18 1
80	1 1	0.60 1	13		3.74 4
78		8.34 00	10	_	0.50 0
76	1. 14	6.81 00	09	7 1	9.38 3
75	1 Sn 1	5.85 1	08	-	8.19 0
74	4	4.68 3	06	-	6.10 0
73		3.20 1	05	-	5.10 1
71	0 ? 2	1.24 4	04	3 3	4.39 2
70	1 12 19	0.24 C? 2	02	-	2.93 Si? 1
69	Parlia House a	9.20 3	00	Chor-o 110	0.38 0
65		5.94 C? 2	1398	_	8.00 2
64		4.64 2	96	-	6.90 2
63	Perint Perint	3.25 C? 2	96		6.01 2
61	and relation	1.94 0	94	Meaning an	4.83 00
61	5 2	1.58 0	93	-	3.89 Si? 00
59	C (#	9.96 2	92	-	2.87 0
59	the Breek dist	9.41 2	92	Million_Section of	2.12 0
59		9.02 C? 2	91	0 1	1.48 2u
58	6. M 949	8.60 4	89	P	9.89 1d
56	P 14 1	6.87 2	89		9.35 0
55	3 1	4.90 4	85	5 Cu ? 3	5.88 3
53	B 010844	3.20 1	81		1.44 2
50	7 Sn? 3	0.92 4	80	_	0.17 0 mehr-
49		9.45 1	78	5 N 1	7.84 1 fach
48	G (#	8.37 4	77		7.19 0
47		- 7.49 3	74	-	4.85 0
46	1 14	6.44 1	73		3.22 0 mehr-
46	-	6.14 4	68	-	8.43 0 fach
45	-	5.56 1	67	-	7.39 1
43	-	3.40 00	65	-	5.73 3
41	time & drawn	1.12 1	61	4 C? 1	1.45 0
39	5? 2	9.06 5	56	-	6.51 C? 2
36		6.72 1	54	9 1	Sum maniner ourse
35	6 ? 3	5.79 6	50	-	0.37 0
34	-	4.79 1	49	-	9.02 0
33	-	3.30 4	41	-	1.78 1
82	5 C 1	2.39 1	16	4 2	and and and a state of the stat
31	Den - Den	1.04 00	11	6? 1	
30	oft -tenin	0.00 3	1274	3C? 1	
29	4 3	8.86 5	71	2 1	
27	The second	7.37 2	57	9 1	
26	-	6.01 1	44	4 1	
25		5.10 2	39	6 1	
24	and the second	4.40 0	31	00 1	
22	Caten-1%	2.87 0	09	9 Sn ? 2	
22	-	2.08 00	1190	0 N? 2	
19	The start of the s	9.99 00	70	3 1	
18	_	8.93 00	65	7 3	a name and
16	9 1	7.03 3	56	2 4	sona lvar nywie

4

134

Gold

	Lang [106]			Lang [106]	isola (1)01	and grant	Lang [106]
1139	0 5		848	50?1		631	4 1
33	6 3		44	0 Cu ? 5	19 (B.)	27	7 1
28	5 ? 3		41	3C?1	18.6	. 21	1 1
21	4 3		39	8 1	08.0	14	0 1
15	00 2		37	0 1	K.84 [-	10	80? 1
13	2 1		36	3 Cu 1	.18.8	06	9 Cu? 1
11	3 1	1. R.M. (199	31	6 5	0.0	02	2 Cu? 1
09	5 3		21	0 2	19 183	597	8 Cu? 1
1097	1 1	1 100 1001	11	0 3	1000	92	6 1
83	0 1	R ALT B L	773	90 2	321	88	0 Cu 1
77	10? 1	- ALESCH	72	7 N 2	173 180	84	5 Cu 1
67	5 1	1 1 1 1 1	67	9 Cu 2	die dere	78	7 1
56	7 1		23	5 Cu 2		70	0 1
52	7 1		19	9 Cu 2		67	7 Cu? 1 O?
30	60 1		18	20 2		63	40 2
24	0 2	1	11	4 Cu? 1 C?		56	4 Cu 1
16	7 1	1 1200 1 1	09	0 1		53	9 Cu? 1 O?
04	5 1		01	0 Cu? 1	10. 00.0	45	5 1
986	6 3		692	0 Cu? 2	11.41	40	2 Cu? 1 O?
81	5 1	0	89	8 2	10 80.8	31	8 Cu 1
75	5 20		82	5 Cu? 3 C?	2 100 A	27	5 Cu 1
66	2 1		73	50 1	12 18.4	23	6 Cu 1
59	6 1		69	0 Ca ? 1	1.90	18	20 1
38	9 3		64	8 3	10 09.8	04	6 Cu 1
34	7 1		61	1 3	911.0	487	2 1
28	4 1		57	9 Cu? 3 O?	100 6472	70	9 1
22	80 4		55	502 3	123 122	70	3 1
899	50 1		49	2 Cu? 1	New York	63	0 1
. 84	5C 5		45	10 2	THE REAL	58	0 1
64	3 5		40	7 1	100 31.0		1992 OF 19
54	5 4		33	3 1	100 20.2		and the second

Außer den aufgeführten Wellenlängen gibt Selwyn [137] noch 9 auf Luft bezogene Linien an:

2082,07 (15 u) II	2044,60 (4)	2014,80 (0)
2073,52 (0)	2025,49 (7)	2012,05 (12 u)
2065,92 (2) II	2021,38 (7) I	2000,03 (12 u) II.

Menzies [133a] gibt folgende Linien des Funkenspektrums:

2022,02	1978,07	1899,9
2012,67	1951,98	1890,5
2001,30	1939,29	1879,8.
1990,43	1919,57	0 0
1984,17	1904,8	0

Zur Ergänzung der obigen Wellenlängentabelle 2 sollen im folgenden die von Selwyn [137] eingeordneten Linien aufgeführt werden:

 ~		
 	~ T	
		<i>(</i> 1
 		

Tabelle 3 nach Selwyn [137].

			I Prove summer	L L SA ST	ma committee la	HIGH GROUPS
II	6s	$^{3}D_{3}-6p^{3}P_{2}$	2082.07	II 6s	³ D ₁ -6p ³ P ₀	1823.27
II	6s	$^{3}D_{1}$ — $6p^{3}F_{2}$	2065.92	II 6s	${}^{3}D_{2}$ — $6p{}^{3}D_{2}$	1800.62
I	1	² D ₃ —b ₂₃	2021.38	II 6s	${}^{3}D_{2}$ -6p ³ P ₁	1793.31
II	6s	³ D ₃ —6p ³ F ₃	2000.83	II 6s	¹ D ₂ -6p ¹ F ₃	1783.18
Ι	1	${}^{2}S_{1}$ — $2{}^{2}P_{2}$	1951.97	II 6s	$^{1}D_{2}$ —6p $^{1}D_{2}$	1756.13
Ι	1	$^{2}D_{3}$ — $3^{2}P_{2}$	1939.24	II 6s	${}^{3}D_{2}$ — $6p{}^{3}D_{3}$	1749.78
Π	6p	${}^{3}F_{3}-6d{}^{3}G_{4}$	1925.26	II 6s	${}^{3}D_{3}$ — $6p{}^{3}F_{4}$	1740.50
II	6s	$^{1}D_{2}-6p^{1}P_{1}$	1921.67	II 6s	³ D ₁ —6p ³ D ₁	1725.91
Ι	1	² D ₃ —c ₂₃	1919.63	II 6s	${}^{3}\mathrm{D}_{3}$ -6 p ${}^{3}\mathrm{D}_{2}$	1720.19
II	6p	³ F ₃ -6d ³ D ₃	1904.55	II 6s	³ D ₃ -6p ³ D ₁	1673.60
Ι	1	${}^{2}S_{1}$ — $2{}^{2}P_{1}$	1879.87	I 1	${}^{2}S_{1} - 3 {}^{2}P_{1}$	1665,73
Ι	1	² D ₃ -d ₂₃	1833.14	I 1	${}^{2}S_{1}$ 3 ${}^{2}P_{2}$	1646.66

Die Grundlage für die Seriendarstellung findet Thorsen [102] in den 3 Dubletts $\lambda = 2676 (10 \text{ R})$ und 2428 (10 R), $\lambda = 7510 (6)$ und 5837 (6) und $\lambda = 4811 (4)$, 4065 (6). Diese Dubletts haben alle denselben Abstand in Wellenzahlen, 3816. Thorsen unterscheidet eine scharfe und eine diffuse Serie im Goldspektrum. Sie sollen im folgenden angeführt werden:

Scharfe Serie des Goldspektrums.

Diffuse Serie des Goldspektrums.

$2 \ ^{2}P_{2} =$	= 33 242 I	$2 {}^{2}P_{1} = 1$ Termwert	87 058.	2 ² P ₂ =	33 242 I	Terr	$2 \ ^{2}P_{1} =$ mwert	= 37 C)58.
2428.06 2676.05	10 10 R	74 4510	10 T	4811.82 4792.79	5 8	12	457	10	0.7
7510.97 5837.64	6 6	19 928		4065.22 3802.12	$\begin{array}{c} 6 \\ 1 \end{array}$	e	940	12	31
4241.99 3650.89	4 · 3	9 666		3795.91 3320.32	4 2	0	940	6	89
3634.75 3192.04	2 1	5 729	-	3471.92 3467.19	1 3	4	439	4	39
3395.66 3006.02	1 0.5	3 791		3065.71 3312.53	1 0.5	3	053		
3270.35	0.5	2 664	10.700	3308.43 2940.87	2		.01	3	01
	Kere is	1		3225.92 3222.19 2872.02	0.5 1 0.5	2	239	2	20

Als letzter Beitrag zur Wellenlängenkenntnis sei Lowery [107] genannt. Er sucht im oft unterbrochenen Bogen die "Pollinien" heraus, d. h. die Linien, die im ersten Augenblick der Zündung sichtbar sind, aber verschwinden, wenn die Pole etwas weiter entfernt sind. Er unterscheidet 2 Klassen; zu Klasse 2 rechnet er die Linien, die nur sichtbar sind, wenn der Polabstand 1 mm ist, zu Klasse 1 diejenigen, die bis zum Abstand 3 mm bleiben. Es handelt sich wohl um Linien höherer Ionisierungsstufen. Die kurze Tabelle ist:

4599,4	1	4361,2	2	4227,3	1	3994,4	2
4597,2	1	4260,5	2	4171,9	2	3968,7	1
4467,3	1	4229,2	1	4027,3	1		

Au I. Die saubere Trennung der verschiedenen Goldspektren und ihre Ordnung ist noch nicht gelungen; nur für Au I sind Anfänge vorhanden. Im Bogen zeigt Gold ein sehr starkes Linienpaar 2675 und 2427, das schon lange als Paar der Hauptserie betrachtet wurde. Fowler gibt in seinem bekannten Buch über die Serien noch 3 Paare mit gleichen Schwingungsdifferenzen, die zu den beiden Nebenserien gehören werden. Eine erhebliche Erweiterung bringt Thorsen [102], der 5 bzw. 6 Glieder der beiden Nebenserien findet. Diese Einordnung ist vorstehend schon angeführt worden. Dann haben McLennan und McLay sich in 2 Arbeiten [113, 123] mit Au I beschäftigt, wobei sie vornehmlich die Absorbierbarkeit der Linien im Dampf und im Unterwasserfunken heranziehen; sie finden ein zweites Glied der Hauptserie und Kombinationen. Sie geben schließlich eine Liste der von ihnen eingeordneten Linien, worunter mehrere zum erstenmal gemessen wurden.

aton non all ?	128 million	Brad a viel in Transferr	A second the second second	Industry has	in the second
$1 {}^{2}P_{2}$ — $2 {}^{2}S_{1}$	7510.74	5	$1 {}^{4}F_{4} - 5$	3207.74 4	u
$1 {}^{2}\text{D}_{2}$ — $1 {}^{2}\text{P}_{1}$	6278.18	4	$1 {}^{4}F_{4} - 5$	3194.73 4	u
$1 {}^{4}\text{D}_{4}$ 4	5956.98	1u	$1 {}^{2}\text{D}_{2}$ — $2 {}^{2}\text{P}_{1}$	3146.37 1	
1 ² F ₃ —1	5862.94	1u	$1 {}^{2}D_{3}$ — $1 {}^{2}P_{2}$	3122.78 8	3
$1 {}^{2}P_{1} - 2 {}^{2}S_{1}$	5837.40	4	1 ² D ₃ —1 ² F ₄	3029.22 8	Bu
$2 {}^{2}P_{2}$ —3	5721.26	0	$1 {}^{3}F_{4}-5$	2891.96	ł
$1 {}^{4}D_{4} - 2$	5655.76	1	1 ² D ₂ -23	2883.46	5
$1 {}^{2}F_{3}-2$	5261.82	1	1 ² D ₃ -1 ⁴ F ₄	2748.26	3
$2 {}^{2}P_{2}$ —2	5147.39	1	1 ² D ₃ —1 ² D ₃	2700.90	1
$1 {}^{2}\text{D}_{2}$ — $1 {}^{2}\text{P}_{2}$	5064.62	2u	$1 {}^{2}\text{D}_{2}$ — b_{23}	2688.72	1
$1 {}^{2}P_{2} - 2 {}^{2}D_{2}$	4811.61	4u	$1 {}^{2}S_{1} - 1 {}^{2}P_{1}$	2675.95 1	0 R
$1 {}^{2}P_{2}$ — $2 {}^{2}D_{3}$	4792.60	8	$1 {}^{2}\text{D}_{3}$ — $1 {}^{2}\text{D}_{2}$	2641.49	1
1 ² D ₃ -4	4620.70	0	$1 {}^{2}D_{2} - 3 {}^{2}P_{1}$	2590.06	4
1 ² D ₂ -3	4607.35	4	$1 {}^{2}\text{D}_{2}$ $- 3 {}^{2}\text{P}_{2}$	2544.20	4
1 4F4-4	4488.26	4	$1 {}^{2}\text{D}_{2}$ — c_{23}	2510.50	4
1 ² D ₃ —3	4437.28	4	$1 {}^{2}S_{1} - 1 {}^{2}P_{2}$	2427.98 1	0 R
1 4F4-3	4315.11	1	$1 {}^{2}\text{D}_{3}$ 1 ${}^{4}\text{D}_{4}$	2387.75	5
1 ² P ₂ -3 ² S ₁	4241.84	2u	$1 {}^{2}\text{D}_{3}$ — $2 {}^{2}\text{P}_{2}$	2376.25	4
1 ² D ₃ -2	4084.14	1u	$1 {}^{2}\text{D}_{2}$ -d ₂₃	2364.57	4
$1 {}^{2}P_{1} - 2 {}^{2}D_{2}$	4065.08	6	$1 {}^{2}\text{D}_{3}$ — $1 {}^{2}\text{F}_{3}$	2352.65	6
$1 {}^{2}\text{D}_{2}$ — $1 {}^{2}\text{D}_{3}$	4040.95	2	1 ² D ₃ —23	2129.46	2
$1 {}^{2}\text{D}_{2}$ — $1 {}^{2}\text{D}_{2}$	4009.39	2	$1 {}^{2}S_{1} - 1 {}^{2}D_{2}$	2126.62	2
14F4-4	3897.88	4	1 ² D ₃ —b ₂₃	2021.40	8
$1 {}^{4}D_{4} - 5$	3889.45	1	$1 {}^{2}S_{1} - 2 {}^{2}P_{2}$	1951.21	8
1 4D4-5	3875.08	1	$1 {}^{2}\text{D}_{3} - 3 {}^{2}\text{P}_{2}$	1938.52	2
1 ² P ₂ -3 ² D ₂	3801.97	1	$1 {}^{2}D_{3}$ — c_{23}	1918.92	4
1 ² P ₂ -3 ² D ₃	. 3795.90	4	$1 {}^{2}S_{1} - 2 {}^{2}P_{1}$	1879.13	3
1 ² P ₁ -3 ² S ₁	3650.74	3	$1 {}^{2}D_{3}$ -d ₂₃	1833.26	2
1 ² D ₂ -2 ² P ₂	3355.18	2	$1 {}^{2}S_{1} - 3 {}^{2}P_{1}$	1665.52	1
1 ² P ₁ -3 ² D ₂	3320.14	2	$1 {}^{2}S_{1} - 3 {}^{2}P_{2}$	1646.50	2
12D-12E	8808 81	9			

Tabelle 4. Au I nach [113, 123].

McLennan und McLay geben auch eine lange Liste von Linien, die nach ihrer Berechnung im Ultrarot vorhanden sein müßten; es ist aber bisher keine von diesen Linien beobachtet worden.
Gold

Term-Be- zeichnung	Term-Wert	Term-Be- zeichnung	Term-Wert	Term-Be- zeichnung	Term-Wert
1 2S1	0	2 2P2	51 231.0	2 2P2	61951.5
1 2Da	9160.8	1 2Fa	51653.1	$2 ^2 D_3$	62033.9
1 2D.	21 434.8	2 2P1	53208.3	3 2S1	64742.4
1ºP1	37 358.6	8 ₂₃	56105.2	3 ² D ₂	67469.1
1 ºP.	41174.2	b23	58616.2	3 2D3	67510.9
1 2F4	42163.0	C23	61 255.4	4	67810.8
14F4	45536.7	d23	63712.9	3	68704.6
1 2Da	46174.5	2 2S1	54484.8	2	70652.7
1ºD,	47007.0	3 2P2	60032.5	5	76731.5
14D4	51028.4	3 °P2	60728.2	5	76829.2

Zur Vervollständigung der Tab. 4 muß schließlich noch eine Tabelle der Termwerte angeführt werden.

Sehr zahlreich sind die Untersuchungen über die Absorption der Linien. Es würde zu weit führen, die Tabellen einzeln anzugeben; es sollen vielmehr nur die Arbeiten genannt werden. Zumstein [117] benutzt Golddampf im erhitzten Kohlerohr; er findet nur die Linien 4793 und 4062. McLennan und McLay ([115] siehe auch [123]) verwenden den Unterwasserfunken, ebenso Allin und Ireton [126]. Fukuda [129] erzeugt Explosionen von dünnen Drähten bei 1 und 8 Atm. Druck, ebenso Hori [121]. Die Arbeit von Hori ist die ausführlichste. Er findet in Abs. die Linien 4793 und 4063 Å.

Loyarte und Williams [144a] messen einige Goldlinien in Absorption im Gebiet von 3122.78 — 2352.65 und geben dazu die Einordnung:

		λ.	J	1 and
×	0	3122.78	8	1 2D3-1 2P2
×	0	3029.22	8 v	1 2D3-1 2F4
	0	2748.26	6	1 2D3-1 4F4
	0	2700.90	4	1 2D3-1 2D3
×I	0	2675.95	10 R.	1 2S4-1 2P1
	0	2641.49	4	1 2D3-1 2D'2
×I	0	2427.98	10 R.	1 2S1-1 2P2
	0	2387.75	S	1 2D3-1 4D4
	0	2376.25	4	1 2D3-2 2P.
	0	2352.65	6	1 2Da-1 2Fa

× In Absorption von Loyarte u. Williams [144a].

|| Von Zumstein [117] beobachtet.

^o Von McLennan u. McLay [123] gefunden.

Hyperfeinstrukturen von Goldlinien werden von Frisch [143] und Ritschl [145] untersucht. Frisch untersucht die Goldlinie 2675.9 des Au I $6\,^{2}S_{1} - 6\,^{2}P_{1}$ in vierter Ordnung, findet aber, daß die Linie keine Hyperfeinstruktur zeigt. Ritschl findet im Gegensatz zur Arbeit von Frisch eine deutliche Duplizität der Linien 2427 und 2675Å, wobei die Aufspaltungen 0.221 bzw. 0.224 cm⁻¹ betragen. Die Linien 4607,

Gold

4488 und 4437 sind sicher vierfach. Ferner zeigen die Linien 5655, 5261, 5147, 4315, 4081 und 4040 Å auch Aufspaltungen.

Ornstein und Sambursky [144b] schließen aus den Abweichungen der Übergänge zum Term 2 ²P ($\lambda = 3815$) von der Summenregel mit Hilfe des Boltzmann-Faktors auf die Bogentemperatur. Für 2 ²P—1 ²S ($\lambda = 2676$ und 2428) sowie 2 ²P—²D ($\lambda = 6278, 5064, 3122$) ist das Intensitätsverhältnis 2:1 zu erwarten, bzw. 5:1. Das Experiment liefert Werte zwischen 0.6:1 und 0.85:1 bzw. 1.3:1 für Bogen zwischen Stäben aus einer 2 prozentigen Legierung von Cu und Au oder Kohlebogen mit Goldchlorid. Mit der angebrachten Korrektur ergibt sich eine Bogentemperatur von etwa 6000° C. Die Linien 3²S—2 ²P ($\lambda = 4241$ und 3650) ergeben direkt den theoretischen Wert 2:1.

Unsere Kenntnis des Röntgenspektrums von Gold wurde durch zahlreiche Messungen erweitert. Die Ergebnisse von Hjalmar [99] und Lindberg [136] [144] lassen die Wellenlängenwerte der M-Reihe auf etwa 3 Stellen gesichert erscheinen. Lindberg findet eine größere Anzahl neuer Linien. Die Angaben Karchers [84] weichen von den obigen stark ab und sind infolge der ungenügenden Apparatur wahrscheinlich ungenau. Sie sollen daher nicht aufgeführt werden.

Tabelle 5. Au-Emission:

Messungen mit Kristallgitter. Wellenlängen in XE, bezogen auf Kalkspat: d_{18°} = 3029,45.

 $n = \infty$

ΰ	bergänge	I ¹)	Linien- bezeichnung M-Serie	Hjalmar [99]	Lindberg [136]
MIN	NII	dirioni	m da <u>un</u> die F	ing lines dish	7507
My	NIII				7451
MIV	NIII			-	7086
Мпп	NI	1		6264 u	6241
My	Nyi		a_2	-	5842
My	NVII	5	a	5831	5828
	-	2	a'	5812	5811
	-		a''	- 1	5794
Mv	0111			-	5755
MIV	Nyi VII	4	β	5619	5612
			β'	-	5595
MIII	NIV		-	-	5175
MIII	Ny	2	2	5131	5135
MIII	Or		-	-	4693
MITT	OIV.V			-	4514
MIL	NIV		R. PREERON I	and the second s	4424
MI	NIL III			The Party of the	4291
			A DECT	4230^{2})	

Dauvillier [95], K. Lang [105], Friman [119] und Idei [139, 140] messen die L-Reihe neu, wobei Dauvillier und Idei besonders die schwächeren Linien

¹) Die Intensitäten beziehen sich auf [99], wobei die Intensitätswerte von 5 bis 1 laufen und 5 die stärkste Linie darstellt.

²) Wahrscheinlich eine Fremdlinie.

untersuchen. Auger und Dauvillier [98] geben noch 2 schwache Linien s, t an, die sie als verbotene Übergänge identifizieren.

In der K-Serie machen Réchou [116] sowie Cork und Stephenson [118] neue Messungen mit einer Übereinstimmung auf 3 Stellen, während diese in der L-Reihe 3-4 Stellen beträgt.

Die Absorptionskanten der M-Reihe werden von Johnson [135] und Lindberg [136] aufgefunden, wobei die Übereinstimmung allerdings auf die erste Ziffer beschränkt ist. Diese Abweichungen können durch die in diesem Gebiet vorhandenen

Übergänge	Linienbez. L-Serie	Dauvillier [89]	Lang ¹) [105]	Friman [119]	Idei [139, 140]
L _{III} M _I	1				1456.9
L _{III} M _{II}	t	1410.0^{3})	-	-	-
L _{III} M _I	S	1384.1^{3})		- 300	-7 -
LIII MIV	a_2	100 00 100	1285.29	1285.02	1268.6
LIII My	a1	1272.8	1274.04	1273.77	— ²)
Funkenl.	aa	1268.9		120 1.0	1268
L _{II} M _I	17	-	-	-	1211.3
L _{III} N _I	β _e	1108.7		in the set in	1108.6
L _I M _{II}	β_4	1104.1			1104.2
L _{II} M _{IV}	β_1	1080.9	1081.38	1081.28	— ²)
L _{III} N _{IV}	β_{15}	1069.5			1069.7
L _{III} N _V	β_2	1067.5	1068.17	1068.01	— ²)
L _I M _{III}	β_3	1065.2		and the state	1065.50
Funkenl.	β_2'	1062.3	_ 000	1.00 67	1062.8
Funkenl.	$\beta_2^{\prime\prime}$	1061.0	-1108	-	1061.2
L _{III} O _I	β_7	1047.2			1047.8
LIII NVI.VII	β_7	1045.3		-	1045
		1041.2			1.1.1.2.1.1
L _{III} O _{IV, V}	β_5	1038.0	-	-*	1038,30
		1036.0	(111) obje		-
66 40 - Ex 46 1	-	1031.6	(<u></u>)	-	-
1 m m - 2	-	1029.6	_	-	-
L _I M _{IV}	β10	1025.4	the det-Rontge	- 7304	1026.0
L _I M _V	β_9	1018.2	-		1018.8
L _{II} N _I	25	953.3			953.6
L _{II} N _{IV}	2/1	924.44)	924.97	924.61	18 . 190
L _{II} O _I	2/1	907.5	1 2 <u>1</u> 201-1		907.9
L _I N _{II}	2'2	901.6	-	-	902.5
L _{II} O _{IV}	20	901.2	-	100	901.0
		899.0	-		-
L _I N _{III}	2'3	896.1		_	895.8
_	_	883.0	_	-	_
L _I O _{II, III}	24	865.8			865.4

Tabelle 5 Forts. (siehe S. 138 u. S. 140).

¹) Relativ zu Cu $K_{a_1} = 1537.30$.

²) Frimansche Messungen als Bezugslinien.

³) Auger und Dauvillier [98].

4) Außerdem 920.1.

experimentellen Schwierigkeiten erklärt werden. Duane und Patterson [96], ferner Sandström [132] geben auf etwa 3 Stellen übereinstimmende Werte für die L-Absorptionskante an. Die gleiche Genauigkeit dürfte wohl auch die Neubestimmung der K-Kante durch Leide [112] beanspruchen.

Als letzte der unten stehenden Tabellen folgen die Werte der Röntgenniveaus nach Siegbahn, aus den Linienfrequenzen auf Grund des experimentellen Wertes der L_{III} -Absorptionskante berechnet.

Symons und Daley [138] untersuchen den Zeemaneffekt an allen Linien, welche McLennan und McLay als Au I angegeben haben. Sie können deren Ein-

Übergänge	Linienbez. K-Serie	Réchou [116]	Cork u. Stephenson [118]
K-LIT	Kaa	184.34	184.83
K-LIII	a	179.26	179.96
K-MIL III	β1. 3	158.90	159.02
K-NIL III	β_2	153.83	154.26

Tabelle 5. Forts.

Au-Absorption:

Traine States	Johnson [135]	Lindberg [144]	Duane u. P. [96]	Sandström [142]
M _V Kante	5711	5529	_	- Alen
MIV "	5506	5330	-	London T
MIII	4677	4508	- 10	Sector The
M11 ,,	4085	A THE		Latt Da
M _T	3742	5. THE	100.00 - 100.00	Lan Nul
LIII .	-	· 6.1+++	1038.6	1038.2
Lu		-	901.1	900.9
LT	(Leide [112])	-	861.3	862.2
К "	153.20	a real	-	-

Tabelle der Röntgenniveaus nach Siegbahn¹).

Röntgenniv Opt. Symbo v/R	eau bl		$\begin{array}{c} {\rm L_{I}}\\ 2\ ^2{\rm S}_{1/2}\\ 1057.1 \end{array}$	$\begin{array}{c} {\rm L_{II}}\\ 2\ ^2{\rm P_{1/2}}\\ 1011.4\end{array}$	L _{III} 2 ² P _{3/2} 877.7	$\begin{array}{c} M_{\rm I} \\ 3 \ ^2S_{1/2} \\ 252.2 \end{array}$	M _{II} 3 ² P _{1/2} 231.8
Röntgenniv Opt. Symbo v/R	eau ol	M _{III} 3 ² P _{3/2} 201.9	M _{IV} 3 ² D _{3/2} 168.6	$\begin{array}{c} M_{\rm V} \\ 3 \ ^2{\rm D}_{5/2} \\ 162.2 \end{array}$	$\begin{vmatrix} N_{\rm I} \\ 4^{2}S_{1/2} \\ 55.8 \end{vmatrix}$	N _{II} 4 ² P _{1/2} 47.3	N _{III} 4 ² P _{3/2} 39.9
Röntgenniveau Opt. Symbol v/R	N _{IV} 4 ² D _{3/2} 25.8	N _V 4 ² D _{5/2} 24.5	$\begin{array}{c} N_{\rm VI} \\ 4{}^2{\rm F}_{5/2} \\ 6.2 \end{array}$	N _{VII} 4 ² F _{3/2} 5.8	$\begin{array}{c c} O_{I} \\ 5 {}^{2}S_{1/2} \\ 7.8 \end{array}$	$\begin{array}{c} O_{II, III} \\ 5 {}^{2}P_{1/2, 3/2} \\ 4.1 \end{array}$	0 _{IV, V} 5 ² D _{3/2, 5/2} 0

1) Spektroskopie der Röntgenstrahlen, 2. Aufl., 1931, p. 346.

ordnung im allgemeinen bestätigen, schlagen aber einige Änderungen vor, und geben neue Terme. Schließlich geben sie auch noch ein Verzeichnis von Linien, die sie für Au II-Linien halten.

Termübergang	λ	I	ZE. beob.	ZE. ber.
6p 2P7s-2S.	7510.74	5	Inda an Galiffandoro apetra	194D, QNE
6s" 2D6p 2P.	6273.18	5	(0)83	(.07)7387
6p" 4D,-6d" 4D,	5956.98	3	-	((01)), (10), (01
6p'' ² D ₂ -6d'' ⁴ D ₂	5862.94	1	_	1020 80 201 20
6p 2P,-7s 2S,	5837.40	6	(.68), 1.31	(.67), 1.33
6p'' 2P6d'' 4D.	5721.26	0		((01)) 100
$6 p'' {}^{4}D_{4} - 6 d'' {}^{4}D_{3}$	5655.76	2	(0), 1.44	(.03, .09, .14), 1.28, 1.34, 1.40, 1.46, 1.51, 1.57
6p'' ² D ₃ -6d'' ⁴ D ₉	5261.82	1	des Trans-	
6p" 2P6d" 4D.	5147.39	1	_	
6s" 2D6p 2P.	5064.62	2	(.79), .57, 1.44, 1.68	(.27, .80), .53, 1.07, 1.60
6p 2P. 6d 2D.	4811.61	3	(.72), .48, 1.02, 1.55	(.27, .80), .53, 1.07, 1.6
6p 2P6d 2D.	4792.60	8	(0), 1.12	(.07, .20), 1.00, 1.13, 1.27, 1.40
6p'' 4F ₃ -6d'' 4D ₄	4620.70	0	din _ Thistern	((0), 100, 100, 110, 110, 110
6p" 4P6d" 4D_3	4607.35	2	(0), 1.22	(.18, .54), .83, 1.19, 1.55, 1.92
$6p'' {}^{4}F_{4} - 6d'' {}^{4}D_{4}$	4488.26	4	(.50), .99, 1.37, 1.69	(.10, .29, .48, .67), .76, .95, 1.14, 1 33 1 59 1 79 1 90
$6 p^{\prime\prime} {}^{4}F_{3} - 6 d^{\prime\prime} {}^{4}D_{3}$	4437.28	1	(.58), .84, 1.34	(.17, .51, .86), .51, .86, 1.20, 1.54, 1.8
6p" 4F4-6d" 4D3	4315.11	4	(0), 1.25	(.0720, .33), .91, 1.04, 1.17
6p ² P ₂ -8s ² S ₁	4241.84	2	6 Komp. mit gleicher Aufspaltung	(.33), 1.00, 1.67
6p" 4F3-6d" 4D.	4084.14	2	(0), 1.07	(.09, .26), .77, .94, 1.12, 1.29
6p 2P1-6d 2D.	4065.08	8	(0), .87	(.07), .73, .87
6s'' ² D ₂ -6p'' ⁴ F ₃	4040.95	4	(0), 1.19	(.11, .34), .69, .91, 1.14, 1.87
6s" 2D6p" 4P.	3909.39	2	(.90), 1.52	(.47, 1.40), .33, 1.27, 2.20
a-6d" 4D4	3897.88	7	(6), 1.26	
6p" 4D4-6d" 4F5	3889.45	1	_ 01 - 0	
6p'' 4D ₄ -c	3875.08	1	1.00	2.6006
6p 2P2-7d 2D2	3801.97	1		
6p ² P ₂ -7d ² D ₃	3795.90	4	Verbreitert, mit Haupt- komponente	(.07, .20), 1.00, 1.13, 1.27, 1.40
6p ² P ₁ -8s ² S ₁	3650.74	3	(.68), 1.33	(.67), 1.33
6s" ² D ₂ -6p" ² P ₂	3355.18	2	.46	(.27, .80), .53, 1.07, 1.06
6p ² P ₁ -7d ² D ₂	3320.14	4	D.I. (D. 14	
6s'' ² D ₂ —6p'' ² D ₃	3308.31	4	(.24, .64), 1.46, 1.85	(.20, .60), .60, 1.00, 1.40, 1.80
6p'' ⁴ F ₄ -6d'' ⁴ F ₅	3204.74	3	(0), 1.28	(.05, .14, .24, .33), 1.00, 1.09, 1.19, 1.28, 1.38, 1.48, 1.57, 1.67
6p'' ⁴ F ₄ —c	3194.74	2		
- 400	3146.37	1	(0)(01)	
6s'' ² D ₃ —6p ² P ₂	3122.78	9	(0), 1.11	(.07, .20), 1.00, 1.13, 1.27, 1.40
6s''' ² D ₃ —a	3029.22	8	(.83), 1.64	
a-6d'' 4F5	2891.96	1	to the second of	PHURIAR DILLARDING
$6s'' {}^{2}D_{2}$ — $6p'' {}^{4}D_{2}$	2883.46	4	(.51)	(.20, .60), .60, 1.00, 1.40
6s'' .	2748.26	8	(0), 1.33	(.20, .60), .60, 1.00, 1.40

Tabelle 6. Zeemaneffekt nach Symons und Daley [138].

Term	Term-Wert	Term	Term-Wert
6s 2S1	74 461.0	6p ² P ₁	37102.2
7s 2S1	19976.2	6p 2P2	33286.8
8s 2S1	9718.6	$7p^2P_2$	14 428.5
6d 2D3	12509.5	7p 2P2	13732.8
6d 2D.	12427.1		- 10
7d 2D.	6991.9	6s 2S1	74461.0
7d 2Da	6950.1	6p'' 2P2	2323D.1
_	_	6p" 4P2	27454.0
6s'' 2D.	53026.2		
6s'' 2Da	65300.2		

Termwert-Tabelle nach Symons und Daley [138].

Tabelle der g-Werte von Linien des Au I nach Symons und Daley [138].

j des Terms	g des Terms	Term	Term- Wert
2	1.14	6p'' ² P ₂	23 230.1
2	1.36	6p' 4P2	27 454.0
3	1.23	6p'' ² D ₃	22807.9
2	1.14	6p'' 4D2	18355.8
3	1.15	6p'' 4Da	13 205.6
4	1.35	6p" 4D4	23 432.6
3	0.97	6p" 2F3	15844.8
3	0.96	6p" 4Fa	28 286.5
4	1.27	6p'' 4F4	28924.3
		a (4Pa?)	23 298.0
00.1 7051	and arts the	b	10748.4

Tabelle von Au II-Linien nach Symons und Daley [138].

Å		Zeemane	effekt (beob.)
*5230.31	(1u	(0)	1.17
4902.27	(1)	(0)	0.86
*4052.80	(6)	(0)	1.05
*4016.07	(5)	(0)	1.05
3915.86	(1)		1.08
3874.68	(1)	(0)	1.09
*3803.99	(6)	(0)	1.33
*3633.25	(4)	(0)	1.19
3607.50	(1u)	(0)	1.34
3553.56	(3)	1.41 (0) 1.28
3586.70	(5)	(0)	1.08
*3122.50	(5)	(0)	1.19
3034.13	(1)	(0)	1.22
*2990.26	(5)		0.86
*2913.51	(10)	(0)	1.19

* Von McLennan und McLay als Au II-Linien eingeordnet.

Fujioka und Nakamura [128] untersuchen den Starkeffekt an einigen Goldlinien, während Kimura [100] schon früher einen Starkeffekt bei 3 Linien beobachtet hatte.

Man and an

2	p-Komp.	s-Komp.	install Kerk	10^{-4} V/cm
3796.15	- 1.61	- 1.57	-0.52	2.1
4084.31	- 0.05	+ 0.04		3.0
4128.80	+	+	SAN (15 - 1- 1)	(diffus

Tabelle 7. Starkeffekt an Goldlinien nach [100].

- = Verbreiterung nach violett, + = V. nach rot.

Starkeffekt an Goldlinien nach [128].

Serie	λ beob. Å	n-Komp. Å.	Ι	p-Komp. Å.	I	E 10 ⁴ V/cm
$2 \ {}^{2}P_{2}$ — $4 \ {}^{2}D_{2}$	3801.97	-	0	+ 1.0	1	4.7
$2 {}^{2}P_{2}$ —x'	3799.8	+ 0.6	1	+ 1.1	1	4.7
$2 {}^{2}P_{2}$ — $4 {}^{2}D_{3}$	3795.90	-1.8 -2.7	2 0.5	- 2.8	2	4.7
2 ² P ₁ -4 ² D ₂	3320.15	+ 0.9	2	+ 0.8	2	4.6
$2 {}^{2}P_{1} - 4 x''$	3317.5	-0.3	1	-0.5	1	4.6

Goldterme (cm⁻¹) [128] ⊿ bei 20000 V/cm

		2 ² P ₁ Übergang		2 ² P ₂ Übergang	
	AL S. AMORPER	n-Komp.	pKomp.	n-Komp.	p-Komp.
4 d ₁	6950.1	- 5.3	- 8.2	_	_
1 (x''	6967.0		-	-1.2	- 2.0
41 x'	6977	1.8	+ 3.2	-	-
$4 d_2$	6991.9		+ 2.9	+ 3.5	+ 3.2

Bandenspektra. Hulthén und Zumstein [122] finden zwei neue AuH-Banden mit je einem P- und R-Zweig, mit Bandenköpfen bei 3298.1 und 3170.0 Å. Im kurzwelligen Ultraviolett finden sie die Banden 2773.9, 2612.3 und 2511.7. Beide entsprechen einem ${}^{1}\Sigma \longleftrightarrow {}^{1}\Sigma$ -Übergang. Zur Unterscheidung der beiden hat die langwellige die Bez. ${}^{1}\Sigma^{*} \longleftrightarrow {}^{1}\Sigma$, die kurzwellige ${}^{1}\Sigma^{**} \longleftrightarrow {}^{1}\Sigma$. Beide haben denselben Endterm. Die Kantenformel des Systems $\Sigma^{*} \longleftrightarrow \Sigma$ lautet:

$$v(v'v'') = 27342.1 + (1630v' - 79v'^2) - (2249.4v'' - 34.0v''^2).$$

Als Kantenschema geben die Verfasser die folgende Tabelle (8):

v''	v' = 0	1	2	3	$v'_1 = 0$	1
0	$\frac{3652}{(27 \ 342)}$	3457 (28 894)	$\frac{3298*}{(30\ 291)}$	$\frac{3170*}{(31\ 523)}$	$\frac{2612*}{(38\ 230)}$	$\frac{2511*}{(39\ 778)}$
1	$\frac{3973}{(25 \ 127)}$	$\frac{3745}{(26\ 679)}$	8.0678 60.0050	2	$\frac{2773*}{(36\ 014)}$	9 0
2	$\frac{4339}{(22 980)}$	$\frac{4068}{(24\ 530)}$	10.0168			
3	12	(4436) (22 452)	64.001-0 101.753-0	-		. }

* Neue Banden, die nicht in Emission gefunden wurden.

Für den Kernabstand r und die Schwingungsfrequenz (ω) des normalen und angeregten Zustandes des AuH finden die Verfasser:

$r_2 = 1.56 \cdot 10^{-8} \text{ cm},$	$\omega_2 = 2256 \text{ cm}^{-1}$
$r_1 = 1.72$	$\omega_1 = 1626$
$r'_1 = 1.74$	$\omega_1' = 1600$.

Ferguson [131] bespricht das Spektrum des Goldchlorids. AuCl₃ wird in einem Strom aktiven Stickstoffs nach der Methode von Strutt und Fowler (Proc. Roy. Soc. A. 86, p. 105 (1911) und von Mulliken (Phys. Rev. (2) 26, p. 1 (1925) im Gebiet von 7000 bis 2000 Å untersucht und dabei die folgenden rotabschattierten Banden gefunden. (Disp. 28 Å pro mm im Grünen). Die folgende Tabelle gibt die gefundenen Banden; die Isotopenziffern beziehen sich auf Cl.

Außer den Banden erscheinen auf den Aufnahmen noch die Goldlinien 4792.6, 3122.8, 3029.2, 2748.3, 2776.0, 2641.5, 2428.0, 2352.7.

n'	n''	I	AuCl ₃₅ Å	1	AuCl ₃₇ Å
2	0	1	5075.0	-	
3	1	00	5094.1	_	
1	0	4	5155.90	-	+
2	1	000	5175.6	-	-
0	0	5	5240.02	-	-
1	1	0	5260.6	Talat man	Baumannel
2	2	0	5278.4	· -	
0	1	5	5346.65	5	5344.4
hist 1	2	0	5365.6	and the formation of the second s	n kurv <u>s</u> tankon i
0	2	4	5456.76	1	5451.1
1	3	2	5476.01	0	5470.1
2	4	0	5495.4	in the second se	hattern She K
0	3	2	5570.4	0	5562.1
1	4	2	5590.20	0	5581.6
2	5	1	5609.5	00	5601.6
3	6	00	5630.0	-	
1	5	00	5706.8	16 - 1	ale to the
2	0	1	5041.74	1	5046.6
3	1	0	5061.4		
1	0	4	5121.95	00	5123.4
2	1	0	5140.8	-	- 307
0	0	5	5205.53	(a) - (a)	1 20 - 2
1	1	000	5223.2	-	-
0	1	5	5310.61	1	5308.24
1	2	1	5329.0	000	5326.7
0	2	3	5419.43	1	5414.2
1	3	2	5437.56	0	5431.8
0	3	1	5531.67	00	5523.0
1	4	1	5549.89	0	5541.1

Tabelle 9. Bandenspektrum von Goldchlorid nach [131]:

Bandenanalyse: Die in der oben stehenden Tabelle zusammengestellten Banden gehören zweifellos dem AuCl an. Die AuCl₃₅-Banden konnten in 2 Systeme A und B eingeordnet werden. Alle beobachteten Banden können innerhalb der experimentellen Fehlergrenze durch die folgenden Formeln wiedergegeben werden:

$$\begin{array}{l} {\rm AuCl}_{37}: {\rm r} = 19113.8 + 304.8\, ({\rm n}' + 1/2) - 373.9\, ({\rm n}'' + 1/2) - 0.67\, ({\rm n}' + 1/2) \ + \\ 1.24\, ({\rm n}'' + 1/2)^2. \end{array}$$

$$\begin{array}{l} {\rm AuCl}_{37}: {\rm r} = 19\,238.3 + \,309.0\,({\rm n}' + 1/2) - 373.9\,\,({\rm n}'' + 1/2) - 1.38\,\,({\rm n}' + 1/2) + \\ 1.24\,({\rm n}'' + 1/2)^2. \end{array}$$

Der Isotopie-Effekt von Gold (197, 199) wird von Ferguson [131] kurz behandelt.

Der Raman-Effekt von Goldchlorid wird von Krishnamurti [141] untersucht. Der Verfasser kann jedoch keine Ramanfrequenzen für Goldchlorid feststellen.

Abgeschlossen am 8. Dezember 1931.

BOT (B = 10.82; Isotopen: B¹⁰ u. B¹¹; Z = 5).

Literatur.

[47] A. de Gramont, Sur la recherche spectrale du bor. Bull. Soc. Franç. de Minéral. (1921).
[48] A. H. Hughes, Characteristic X-rays from boron and carbon. Phil. Mag. (6) 43 p. 145-161 (1922); Trans. Canada (3) 15 Part. III p. 1-5 (1921).

[49] F. L. Mohler and P. D. Foote, Soft X-rays from arcs in vapors. J. Opt. Soc. Amer. 5 p. 328-333 (1921).

[50] A. de Gramont, Raies ultimes et séries spectrales. C. R. 175 p. 1025-1030 (1922).

[51] J. Holtsmark, Über die charakteristische Röntgenstrahlung von Kohle und Bor. Phys.Zs.23 p. 252-253 (1922).

[52] J. C. Mc Lennan and Miss M. L. Clark, On the excitation of characteristic X-rays from light elements. Proc. Roy. Soc. A **102** p. 389-410 (1922).

[53] F. L. Mohler and P. D. Foote, The beginning of the K and L series of X-rays. Phys. Rev. (2) 19 p. 434-435 (1922).

[54] J. Holtsmark, Über die charakteristische Röntgenstrahlung der ersten Elemente. Phys. Zs. 24 p. 225-230 (1923).

[55] R. S. Mulliken, The vibrational isotope effect in the bandspectrum of boron nitride. Science 58 p. 164-166 (1923).

[56] J. S. Bowen and R. A. Millikan, The series spectra of the stripped boron atom (B III). Phys. Rev. (2) 23 p. 664 (1924); Proc. Nat. Acad. 10 p. 199-203 (1924).

[57] J. S. Bowen and R. A. Millikan, The fine structure of the nitrogen, oxygen and fluorine lines in the extreme ultraviolet. Phil. Mag. (6) 48 p. 259-264 (1924).

[58] W. Jevons, The band spectrum of boron nitride. Nat. 113 p. 744 (1924); Naturw. 12 p. 860 (1924).

[59] W. Jevons, The band spectra of the oxide and nitride of boron. Nat. 113 p. 785 (1924).

[60] W. Jevons, On the band-spectra of silicon oxide and chloride, and chloride of carbon, boron and aluminium. Proc. Roy. Soc. A 106 p. 174-194 (1924).

[61] M. Levi, On the characteristic X-rays from light elements. Trans. Canada (3) 18 Part III p. 159-176 (1924).

[62] R. A. Millikan and J. S. Bowen, Extreme ultraviolet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[63] R. S. Mulliken, The band spectrum of silicon nitride and the isotopes of silicon. Phys. Rev. (2) 23 p. 554 (1924).

[64] R. S. Mulliken, Isotope effect in the band spectra of boron monoxide and silicon nitride. Nat. **113** p. 423 (1924).

[65] R. S. Mulliken, The band spectrum of boron monoxide. Nat. 114 p. 349 (1924).

[66] J. S. Bowen and R. A. Millikan, Relation of PP' group in atoms of the same electronic structure. Phys. Rev. (2) 26 p. 150-164 (1925).

[67] J. S. Bowen and R. A. Millikan, Series spectra of two-valence electron atoms of boron (B II) and carbon (C III). Phys. Rev. (2) **26** p. 310-318 (1925).

[68] R. S. Mulliken, Isotope effect in band spectra. Phys. Rev. (2) 25 p. 119-139 (1925). Theorie.

147

[69] R. S. Mulliken, The isotope effect in band spectra, II: The spectrum of boron monoxide. Phys. Rev. (2) 25 p. 259-294 (1925).

[70] R. S. Mulliken, A new system of bands in the spectrum of boron monoxide. Phys. Rev. (2)25 p. 239-240 (1925).

[71] M. F. Holweck, La spectroscopie des radiations intermédiaires entre la lumière et les rayons X. J. de Phys. et le Radium (6) 7 p. 378-385 (1926).

[72] M. F. Holweck, Potentiels critiques K des atomes légers. C. R. 182 p. 779-781 (1926).

[73] M. F. Holweck, Spectrométrie de la série K des éléments légers. Discontinuité K du fluor.
 C. R. 183 p. 48-51 (1926).

[74] J. S. Bowen, Series spectra of boron, carbon, nitrogen, oxygen and fluorine. Phys. Rev. (2)
 29 p. 231-247 (1927); Proc. Phys. Soc. 39 p. 150-160 (1927).

[75] A. Dauvillier, La spectrographie des rayons X de grande longueur d'onde. Séries N et O, et jonction avec l'ultraviolet extrême. J. de Phys. et le Radium (6) 8 p. 1-12 (1927).

[76] F. A. Jenkins, Structure and isotope effect in the *a*-bands of boron monoxide. Phys. Rev.(2) 29 p. 921 (1927).

[77] F. A. Jenkins, The structure of certain bands in the visible spectrum of boron. Proc. Nat. Acad. 13 p. 496-503 (1927).

[78] G. W. Kellner, Die Grundterme des einfach ionisierten Lithiums nach der Schrödingerschen Theorie. Zs. f. Phys. 44 p. 110-112 (1927).

[79] Hantaro Nagaoka, Daizo Nukiyama and Fetsugaro Futagami, Instantaneous spectrograms of boron, aluminium and thallium. Proc. Imp. Acad. Tokyo **3** p. 330-333 (1927).

[80] R. A. Sawyer, Das Bor-Bogenspektrum. Naturw. 15 p. 765-766 (1927).

[81] R. A. Sawyer and F. R. Smith, On the spectra of boron. J. Opt. Soc. Amer. 14 p. 287-303 (1927); Phys. Rev. (2) 29 p. 357 (1927).

[82] J. Thibaud et A. Soltan, Mesures spectrographiques dans le domaine intermédiaire (séries K, L, M, N). C. R. 185 p. 642-644 (1927).

[83] J. Thibaud et A. Soltan, Recherches spectroscopiques dans le domaine intermédiaire. J. de Phys. et le Radium (6) 8 p. 484-494 (1927).

[84] Seth. B. Nicholson and N. G. Perrakis, Evidence of boron in the sun. Astroph. Journ. 68 p. 327-334 (1928).

[85] M. Söderman, Die K-Strahlung der leichtesten Elemente (Al bis Be). Zs. f. Phys. 52 p. 795-807 (1928).

[86] M. J. Thibaud, Beugung der Röntgenstrahlen durch Liniengitter. Spektrographie des Zwischengebietes. Phys. Zs. 29 p. 241-261 (1928).

[87] M. J. Thibaud, Diffractions des rayons X par les résaux lignés. Spectrographie du domaine intermédiaire. J. de Phys. et le Radium (6) 9 p. 108-128 (1928).

[88] C. B. Bazzoni, L. J. Faust and B. B. Weatherby, The fine structure and satellites of the K_{α} -lines of the light elements. Phys. Rev. (2) 33 p. 1101 (1929).

[89] Bengt Edlén and Algot Ericson, Vacuum spark spectra in the extreme ultraviolet down to 100 Å. Nat. **124** p. 688-689 (1929).

[90] Seth. B. Nicholson and N. G. Perrakis, Remarques sur la constitution de l'atmosphère solaire et identification du bore dans les taches. J. de Phys. et le Radium (6) **10** p. 49-51 (1929).

[91] E. W. H. Selwyn, Arc spectra in the region λ 1600-2000. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[92] W. Brannbeck, Berechnung der Röntgen-K-Terme der leichtesten Elemente. Zs. f. Phys.63 p. 154-167 (1930).

[93] B. Edlén et A. Ericson, Sur le spectre d'étincelle condensée dans l'ultraviolet extrême jusqu'à 88 Å. C. R. **190** p. 116—118 (1930).

[94] A. Ericson und B. Edlén, Serienspektra der leichtesten Elemente im extremen Ultraviolett. Zs. f. Phys. 59 p. 656-679 (1930).

[95] A. Elliott, Analysis of the β -bands of boron monoxide. Proc. Amsterd. **33** p. 644-648 (1930).

[96] A. Elliott, Isotope effect in the spectrum of boron monoxide. Intensity measurement and structure of the β bands. Nat. **126** p. 203–204 (1930).

[97] A. Elliott, Determination of the abundance ratios of isotopes from band spectra. Nat. 126 p. 845—846 (1930).

[98] Lawrence Y. Faust, Fine structure of the K radiation of the lighter elements. Phys. Rev. (2) 36 p. 161—172 (1930).

[99] Werner Scheib, Über das Spektrum des Bormonoxyds. Zs. f. Phys. 60 p. 74-108 (1930).

[100] M. Söderman, Some precision measurements in the soft X-ray region. Phil. Mag. (7) 10 p. 600-616 (1930).

[101] M. Söderman, Structure of K radiation from C, B and Be. Phys. Rev. (2) 36 p. 1414-1415 (1930).

[102] M. Söderman, Die Struktur der K-Strahlung im ultraweichen Röntgengebiet. Zs. f. Phys. 65 p. 656-661 (1930).

[103] G. Stenwinkel, Determination of the abundance ratios of isotopes from band spectra. Nat. **126** p. 649 (1930).

[104] J. M. Cork, X-ray wave length change by partial absorption. Phys. Rev. (2) 37 p. 1555-1558 (1931).

[105] Bengt Edlén, Vacuum spark spectra to 40 Å. The spectra of BeIII, BeIV, BIV, BV and CV. Nat. 127 p. 405-406 (1931).

[106] Bengt Edlén, Singlets of the two-electron spectra. Nat. 127 p. 744 (1931).

[107] Bengt Edlén, Das zweite Funkenspektrum des Bors, BIII, im Gebiet 5000-2000 Å. Zs. f. Phys. 72 p. 763-766 (1931).

[108] Bengt Edlén, Das Zweielektronenspektrum des Bors, BII, und irreguläre Dubletts der Serie BeI bis OV. Zs. f. Phys. **73** p. 476-481 (1931).

[109] A. Elliott, Bestimmung des Isotopenverhältnisses durch Intensitätsmessung im Bormonoxydspektrum. Zs. f. Phys. 67 p. 75–88 (1931).

[110] W. Lochte-Holtgreven und W. S. van der Vleugel, Über ein Bandenspektrum des Borhydrids. Zs. f. Phys. **70** p. 188-204 (1931).

[111] W. Lochte-Holtgreven und W. S. van der Vleugel, Bands in the spectrum of boron hydride. Nat. 127 p. 235-236 (1931).

[112] R. F. Platon und G. M. Almy, Boron hydride bands. Phys. Rev. (2) 37 p. 1710 (1931).

Wohl bei keinem anderen Element ist eine so schnelle Entwicklung der Kenntnisse zu finden, wie bei Bor. Vor 10 Jahren waren etwa 15 Linien von verschiedenen Beobachtern angegeben, aber bei 2/3 davon war der Ursprung unsicher. Heute sind mehr als 80 Linien nicht nur sicher bekannt, sondern auch eingeordnet bei 5 Ionisationsstufen; daneben ist noch mindestens die gleiche Zahl von Linien angegeben, deren Ursprung von Bor aber sehr unsicher scheint.

B I. Die einzigen früher vollkommen sichern Linien von B bildeten ein enges Paar bei λ 2498, welches fast mit derselben Häufigkeit in allen möglichen Spektren auftrat, wie etwa die D-Linien. Es ist daher sehr oft als Verunreinigung gemessen; die Wellenlängen sind sehr genau bekannt. Mittelwerte sind: λ 2497.733 und λ 2496.778. Schon Rydberg vermutete, daß dies das erste Glied der Hauptserie und der scharfen Nebenserie sei. Dann bemerkte Catalán [41], daß bei λ 2090 ein zweites Paar mit der gleichen Schwingungsdifferenz liege, Bowen und Millikan [56, 73] fügten ein drittes hinzu. Dann folgten Sawyer [80] und Selwyn [91], so daß jetzt 8 Glieder der Serie bekannt zu sein scheinen. — Das ist aber auch alles, was wir von B I kennen. In Tab. 1 folgen diese Angaben. Tab. 1a gibt die Terme von B I. Als Ionisationspotential wird 8.05 Volt gegeben.

Е	Kombination		Bowen [74]	Bowen u. Millikan [56]	Sawyer [80]	Selwyn [91]
1) S	2 ² P ₂ -3 ² S	2498	48		8.48 15	and an and a state
S	2 ² P ₁ -3 ² S	97	53		7.53 - 10	_
Sw	$2p^{2}P_{2} - 2p'^{2}D_{3}$	2090	25 3	0.29	0.25 12	89.57 10n
Sw	$2p^{2}P_{1} - 2p'^{2}D_{2}$	89	59 3	0.60	9.59 8	88.84 90
Sw	$2p^2P_2 - 3d^2D_{32}$	1828	42 2	6.41	6.42 4	26.52 9n
Sw	$2p^2P_1$ — $3d^2D_2$	25	89 1	5.87	5.89 5	25.97 Su
Sw	$2p^{2}P_{2} - 4s^{2}S_{1}$	18			8.43 2	18.41 6
Sw	$2p^{2}P_{1} - 4s^{2}S_{1}$	17		_	7.93 1	17.90 5
Sw	$2p^2P_2 - 4d^2D_{32}$	1667			7.13 4	67.42 3u
Sw	$2p^{2}P_{1} - 4d^{2}D_{2}$	66	and the second	and the second second	6.74 2	66.99 2n
Sw	$2p^2P_2 - 5s^2S_1$	63	contab (10)	and the set	atomic to be	63.07 2
Sw	$2p^2P_1 - 5s^2S_1$	62	and the second		distingues of the	62.62 1
Sw	2p2P21-5d2D22		_	_		OWIOW I
S	2 ² P _o -5 ² D _i	00	_		0.68 1	00.91 lu
S	2 ² P ₁ -5 ² D ₁	00	NB II M	in the state	0.28 0	00.28 On
Sw	2p2P21-6d2D32	1566	and Sugar as	1711-2 11011	been maaril	66.64 1u

1) S bedeutet Einordnung nach Sawyer [23]; Sw Einordnung nach Selwyn [28].

Tabelle 1a.

Terme von B I. [91].

0.00	00010				
$2p^2P_1$	66840	$3s^2S_1$	26800	3d2D32	12075
$2p^2P_2$	66824	$4s^2S_1$	11831	$4d^2D_{32}$	6851
		$5s^2S_1$	6694	$5d^2D_{32}$	4359
$2p'^{2}D_{32}$	18983			$6d^2D_{32}$	2993

B II. Es war von vornherein klar, daß der Schlüssel für die Borspektra im Schumanngebiet liege. Nachdem Millikan [46] die durch Schumann eingeleitete, durch Lyman fortgebildete Spektralphotographie im Vakuum durch Einführung des "hotspark" vervollkommnet hatte, fand er gleich 3 Borlinien im kurzwelligen Gebiet, wie wir heute wissen, eine Linie von B III, zwei von B II. Und damit beginnt die Entwicklung. In [62] geben Millikan und Bowen schon eine große Anzahl von Linien, in [66] wird die PP'-Gruppe für B II hinzugefügt, in [67] werden Serien von Tripletts und Singuletts gebracht, und damit die Struktur des Spektrums scheinbar völlig geklärt.

Im Anschluß an diese Arbeiten geben Sawyer und Smith [81] eine lange Liste von Borlinien zwischen $\lambda\lambda$ 4940 und 2355, von welchen sie 24 bei B II einordnen zu können glauben.

Nun beginnt aber ein neuer Aufschwung in der Untersuchung des Schumanngebietes; in Upsala werden Glasgitter geteilt und in streifender Inzidenz benutzt; es entstehen so ausgezeichnete Spektralphotographien und so kurze Wellenlängen werden erreicht, daß es für jemand, der vor 40 Jahren die ersten Versuche Schumanns miterlebte und selbst auf diesem Gebiete tätig war, ebenso überraschend wie erfreuend

Bor

ist. Die Untersuchungen sind von Edlén und Ericson ausgeführt. In den ersten Arbeiten [89, 93, 94] werden nur Einzelheiten angegeben, die sich auf B III, auf die Singulettserie von B II, auf Linien von B IV und B V beziehen, dann aber folgen zwei Arbeiten von Edlen, die sich eingehend mit Bor beschäftigen. In [108] wird das Spektrum von BII behandelt zwischen 22 6000 und 700. Edlén erzeugt das Spektrum durch Funken, die zwischen Elektroden aus Beryll übergehen; in die untere Kathode ist eine Höhlung gemacht und diese mit Borsäureanhydrid gefällt. Dann erhält man nur Linien von B, Be und O, von Verunreinigungen nur geringe Spuren. Edlén findet 60 Linien, die sicher zu B gehören. - Bei der Klassifizierung geht er natürlich von Bowen und Millikan aus; er kann deren sämtliche Tripletts bestätigen und neue hinzufügen. Dagegen ist deren Singulettserie nicht richtig, bis auf eine Linie, die Resonanzlinie; statt dessen gibt er eine neue Singulettserie, die von 226081 bis 693 reicht. Im ganzen sind in B II 42 Linien eingeordnet. Die Angaben von Sawyer und Smith [81] lehnt er durchaus ab; da von deren zahlreichen Linien bei ihm überhaupt nur 4 erscheinen, bezweifelt er überhaupt die Zugehörigkeit zu Bor, es seien alles Verunreinigungen.

In Tab. 2 sind alle Messungen für BII zusammengestellt, auch die Linien von Bowen und Millikan und von Sawyer und Smith, welche Edlén für falsch erklärt.

Es ist aber dazu zu bemerken, daß wir von ihnen nicht wissen, ob sie überhaupt zu Bor gehören, und wenn das der Fall sein sollte, ob sie zu B II gehören. Denn diese Bezeichnung ist nur auf Grund der Tatsache gewählt, daß die Beobachter sie in das Spektrum von B II einordnen zu können glaubten. — Es sind noch ein paar Linien, die Selwyn [91] gemessen hat, hinzugefügt. Tab. 2a gibt die Termwerte von B II. Als Ionisationspotential von B II gibt Edlén: 25.007 Volt.

	Edlén [107]	Bowen u. Millikan [67]	Sawyer u. Smith [81]	Selwyn [91]
0001	0 0			
6081	0 2	12 10 MAT 82 80	40.07 1	
4940	64 3	A an Taket St	40.87 1	
4849	-	_	49.6 0	
29	-	-	29.0 0	
4784	29 2		- 11	
61		and - man	61,4 0	
4472	82 3	74.08 1	72.70 8	
72	08 2	73.37 1	71.97 2	
4311		_	11.9 2	
4290		_	90.90 0	
14	_	_	14.17 0	
4194	82 2			
21	95 7	22.99 6	21.68 10	
8451	41 10	52.33 10	51.22 25	
3393	61 3		23.34 3	
0020	20 9	Incommit bi	_	
20	20 2		60.74 9	
	6081 4940 4849 29 4784 61 4472 72 4311 4290 14 4194 21 3451 3323 23 23 3260	$\begin{tabular}{ c c c c c c c } \hline Edlén & [107] \\ \hline & [107] \hline \hline \\ \hline & [107] \hline \\ \hline & [107] \hline \hline \\ \hline \hline & [107] \hline \hline \\ \hline \hline & [107] \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline $	$\begin{tabular}{ c c c c c c c } \hline Edlén & Bowen \\ u. Millikan \\ [107] & [67] \\ \hline & & & & & & & & & & \\ \hline & & & & & &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Tabelle 2. B II.

-	۰.			
	,			
	۰.	e	ъ	
			,	

Kombinationen		Edlén	Bowen u. Millikan	Sawyer u. Smith	Selwyn
[47]		[107]	[67]	[81]	[91]
23D 2n2e3D	2005	97 0	. They are	1000	919 24
$2^{3}D - 2^{3}D^{3}P$	0420	27 0	a maning	The second	
$3^{3}D = 2p3s^{3}P$	00	08 9		D. T KD	6601
31P - 41D	8179	34 9	CONCELL SOL	0.0	16661
01 - 40	36	01 -	1.11	36.85 1	E. 26661
	35		Contraction Contraction	35.64 1	
	02			02.09 9	
31D -2n3s1P	3032	28 3	and a state of the	02.00 2	
o n allou r	2981		Serandi A	81 532 1	1000 86
3°D — 5°F*	18	07 2	18.98 2	18.15 1	101 28.
$3^{3}P_{a} - 5^{3}S$	2709	00 1	-		36 24
3 ³ Po. 5 ³ S	08	73 0	I PARTY AND	B 16 1973 13	B R. Inda
	2652	-	0.00 h	52.81 1	
	52	and	anteritate in a	52.58 1	BILL
	2566			66.40 1	The second second second
	66		_	66.26 3	The second second
	15		The state of the s	15.06 2	ner kranele
$3^{3}D - 6^{3}F$	10	54 0	Angle and a	The Party of the	hamsenger bitt
$3^{3}P_{2} - 5^{3}D$	2459	91 1	5 jet 19 1	nb or_man	hi qualbalt
3 ³ P ₀₁ - 5 ³ D	59	70 8	in man-D prick	nol for	Suith 1813
	32	the standard		32.29 5	alterations of A
2p2p ¹ D— 3 ¹ P	2395	06 5	-		
$3^{3}S - 4^{3}P$	93	23 1	-	and the fam	- 10 M
	63	16 a 10 a 10 a 10		63.88 3	M BS DOV OF
31D -2p3d1F	23	02 1	-	100.00	
3 ¹ P -2p3p ¹ D	2220	31 2	-	" paupa (P	14/25
	2	vac.	-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
2 ¹ P2p2p ¹ S	1842	-	42.83 5	Coldination ()	42.85 1
	1642	80 3	-		100000
$2^{3}P_{2} - 2p2p^{3}P_{1}^{*}$	24	37 4	24.46 4		24.38 0
$2^{3}P_{1} - 2p2p^{3}P_{0}^{*}$	24	16 4	24.25 4	b and a real	-
$2^{3}P_{21}$ — $2p2p^{3}P_{21}$ *	23	99 5	24.08 5		24.06 3
$2^{3}P_{0} - 2p2p^{3}P_{1}^{*}$	23	77 4	23.86 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$2^{3}P_{1} - 2p2p^{3}P_{2}^{*}$	23	57 4	23.66 4	LAST DEST TO	23.61 1
	1378		78.95 3		86 01
$2^{1}S - 2^{1}P^{*}$	62	46 5	62.46 8	1111	
$2^{1}P - 3^{1}D$	1230	16 2	-	15 16 (99)	100-12
$2^{\circ}P_{2} - 3^{\circ}S^{*}$	1082	06 2	82.10 3	1 81 900	18
2 ³ P ₀₁ — 3 ³ S*	81	85 2	81.88 3	AL 15 110	Billion Star
2p2p ¹ D—2p3d ¹ F	48	67 0	-	TO VORINE R	78. 11
2p2p*P-2p3d*D	984	65 1	-	1302	
$2^{\circ}P_2 - 3^{\circ}D^*$	882	67 2	82.69 3	· · · · ·	1
2°P ₀₁ — 3°D*	82	54 2	82.55 2	31 60 18	319 48
2 ⁴ P -2p2p ⁴ D	64	08 0	01.40	R. (1. 110	31 -18
2°P - 4°D*	731	37 1d	31.46 0	In many former	3D
2.5 - 5.F	693	94 2	Part of the second	The Party of the Party	Protoner Und
			· IT DOLLAR	100	

			Tal	belle 2a.			
			Tripletterm	e in BII [1	07].		
3S 4S	73122.1 36545.3	3P ₀₁ P ₂	58900.0 58896.3	4F 5F	27992.5 17986.8	3p3sP ₀ P ₁	21249.8 21240.0
58	21993.2	4P	31350.3	6F	12426.0	P ₂	21219.1
2P ₀ P ₁	165561.4 165555.0	3D	19561.5 52246.0	2p2pP ₀ P ₁	103984.7 103976.3	2p3dD	2410.4
P ₂	165538.6	4D 5D	28817.1 18256.6	P ₂	103962.3	Lang ges	er minnte
			Singulettern	ne in BII [107].		
28	202646.0	2P	129249.3	4F	27724.5	2p3sP	14990.2
3S 4S	[66.700] 34711.8	SP	58544.0	2p2pS	74984.0	2p3pD	13519.4
		3D 4D	47959.1 27100.0	2p2pD	100283.9	2p3dF	4925.0

B III. Auch für dieses Spektrum haben Bowen und Millikan [56] das Fundament gelegt, indem sie die Linien 2S—2P, 3D—4F, 4F—5G und im Schumanngebiet 2P—3S, 2P—3D identifizierten. Darauf weiterbauend haben Ericson und Edlén [94] und namentlich Edlén [107] das Spektrum weiter aufklären, die Termtabelle vervollständigen können, so daß jetzt 19 Linien eingeordnet sind. Auch Sawyer und Smith [81] glauben Kombinationen zu finden, doch erklärt Edlén sie für falsch. — Als Ionisationspotential für 2S gibt Edlén 37.752 Volt.

Es folgt die Tabelle, in welcher außer den von Edlén eingeordneten Linien auch die von Sawyer und Smith aufgeführt sind, und solche, die Bowen und Millikan

Kombina- tionen		Edlén [107]	Bower Millik [56]	u. an	Sawy u. Sm [81	ver lith]		Kombina- tionen		Ed. [10	lén)7]	Bower Millik [56	n u. kan
4P58	4918	63 0			-			3D -4F ¹)	2077	06	1	77.79	3
	4677	-	-		77.9	2	1	2S -2P+1)	67	23	10	67.88	10
4D -5P	32	09 1	-		-			2S -2Pa 1)	65	77	12	66.41	10
4F -5G ¹)	4497	58 10	99.0	2	97.71	5			1842	-	-	42.79	4
4D -5F	87	46 5	-		-				26	-	-	26.41	2
	4311	-	-		1.9	2			25	-	-	25.87	1
4P5D	4243	60 3	-		-				1624	-	-	24.09	7
4S -5P	3567	43 1	-		-				1362	-	- 1	62.45	6
4F - 6S	2914	75 0	-		-				1081	-		81.99	2
4D6F	10	10 0	-		-			2Pg-3S1)	758	704	2	58.68	3
	2267	-	-		67.0			2P1-3S1)	58	505	1	58.47	2
	66	-	-		66.4			2P3 -3D31)	677	152	6	77.16	3
3Pa-4S	34	63 3	-					2P4-3D31)	77	000	5	77.01	3
$3P_{4}-4S$	34	12 2			-			28 — 3P	518	258	3	-	
3D -4P	2137	86 0			-								
	2090		90.29	3	-								
	89	-	89.60	3	-							-	

Tabelle 3. B III.

1) Klassifiziert von Bowen und Millikan [56].

Contraction of the				
28	305931.1	3D	109861.0	
3S	125734.6	4D	61794.7	
48	68235.6	5D	39541.8	
55	42744.9	ST and there		
		4F	61731.9	
2P ₁	257572.6	5F	39516.6	
2Pa	257538.5	6F	27441.4	
3P1	112981.9	ast initial		
3Pa	112971.7	5G	39503.9	
	marks chering for	6G	27433.6	
4P	63100.1			
5P	40212.1			
	And a state of the			

Tabelle 3a. Termsystem von BIII [107].

Bor

in [56] als B III geben, davon führen sie aber λ 1842 selbst in [67] als B II, andere rechnet E dlén zu B II, wieder andere sind sonst nicht mehr beobachtet.

Den Beschluß möge Tab. 4 machen, welche die von Sawyer und Smith als Borlinien gegebenen aber nicht eingeordneten Linien zeigen, und die nach Edlén wahrscheinlich alle zu Verunreinigungen gehören. Es ist freilich nicht gelungen, einen wahrscheinlichen Ursprung dieser Linien aufzufinden.

4937 70	1	4921.07	1	4098 47	1	9110 50		0000.05	-		
1001.10	1	4201.07	1	4026.47	1	5112.50	1	2698.35	0	2446.10	2
01.85	1	26.15	1	3871.39	4	3086.06	1	97.72	0	45.11	2
4493.1	0	01.86	0	3754.86	0	13.28	1.	96.84	1	36.95	1
02.95	1	4194.82	1	3493.85	0	2889.72	1	95.18	2	34.95	4
4394.25	0	92.72	0	3360.09	5	88.32	1	94.23	0	30.82	1
82.95	2	64.43	2	02.51	3	86.80	1	71.94	0	15.06	1
75.60	1	50.71	1	3282.01	1	09.72	1	10.26	1	00.03	1
71.69	1	4090.79	0	60.74	3	2785.14	5	2557.52	2	. 2395.07	3
55.68	3	82.62	1	3191.84	1	79.26	8	14.96	2	69.96	4
53.17	1	50.13	1	78.24	0	49.89	1	14.39	6	63.51	1
44.77	2	39.57	2	58.54	1	31.94	1	08,45	1	55.25	-
4272.86	0	27.82	0	and the second						00140	

Tabelle 4. Nicht eingeordnete Linien nach Sawyer und Smith [81].

BIV und BV. Von diesen Spektren hat nur Edlén einige Linien angegeben, nämlich von B IV in [105] und [107]: das diffuse Dublett:

 $\lambda 2825.85$ $\lambda 2821.68$ 2³S-2³P und $\lambda 60.31$ (1¹S-2¹P), $\lambda 52.68$ (1¹S-3¹P),

als Termwerte gibt er [105]

 $2^{1}P: 433300 \pm 900 \text{ cm}^{-1}, 3^{1}P: 193400 \pm 300 \text{ cm}^{-1}$

 1^{1} S: 2091500 \pm 1400 cm⁻¹, Ionisationspotential 258.1 \pm 0.2 Volt.

Kellner [78] gibt als theoretischen Wert des Grundterms von B IV 593.913 Volt. Von B V ist bisher nur eine Linie bekannt.

Edlén [105] gibt: λ 48.585, die er als 1²S-2²P klassifiziert.

Banden.

Unsere Kenntnis vom Bau der Bandenspektren des Bors hat in jüngster Zeit große Fortschritte gemacht. Bisher unterschied man zwischen 3 Spektren: dem Borsäurespektrum, den Borbanden und einem zuerst von Strutt beobachteten, dann von Jevons [40] genauer untersuchten Bandenspektrum, das einer Verbindung von Bor mit Stickstoff zugeschrieben wurde, weil es auftritt, wenn Bortrichlorid mit aktivem Stickstoff in Berührung kommt. Die ersten beiden Spektren treten besonders stark im mit fester Borsäure beschickten Bogen auf, das erste in der Boräther- und Borsäurebunsenflamme. Das Borsäurespektrum besteht aus einer Reihe diffuser Maxima, die besonders im Grünen sehr stark sind; aber selbst bei größter Dispersion erscheint es vollkommen kontinuierlich. Der Träger dieses Spektrums ist noch nicht bekannt. Die Zugehörigkeit zur Borsäure ist schon wegen des Auftretens im Bogen ziemlich fraglich. Über das dritte, von Jevons [40] dem BN zugeschriebene Spektrum entstand eine längere Auseinandersetzung zwischen Jevons und Mulliken. Zuerst teilte Mulliken die Ansicht Jevons'. Dann aber hielt er die Argumente von Jevons [58, 59, 60], daß das Spektrum nur bei Anwesenheit von Stickstoff auftrete, nicht mehr für beweiskräftig genug, da sich schon des öfteren gezeigt hatte, daß durch die Anwesenheit von Stickstoff das Auftreten von Bandenspektren, namentlich der Verbindungen von Elementen mit Sauerstoff, begünstigt wurde. Durch den Nachweis des Rotationsisotopieeffekts (s. Isotopie) konnte Mulliken [55, 63, 64, 65, 68, 69, 70] einwandfrei nachweisen, daß der Träger des Spektrums das BO-Molekül ist.

Das Aussehen der "Borbanden" ist völlig verschieden von dem der von Mulliken als BO-Banden gedeuteten Bandensysteme. Während die in Bortrichlorid bei Anwesenheit von aktivem Stickstoff erzeugten Banden stark ausgeprägte Kanten mit verhältnismäßig schnell abklingenden Serien (15—25 Linien) zeigen, ähnelt das Spektrum der Borbanden dem eines Viellinienspektrums, ohne daß Kanten zu bemerken sind, und weist einen ungeheuren Reichtum an Linien auf. Erst Scheib [99] konnte durch die Analyse mehrerer Borbanden nachweisen, daß auch der Träger dieses früher dem elementaren Bor zugeschriebenen Spektrums das BO-Molekül ist, daß also die beiden zuletzt besprochenen Spektren identisch sind. Durch die sehr viel höhere Temperatur im Bogen verschiebt sich das Intensitätsmaximum weit von der Kante fort, so daß die Linien an der Kante schwach sind, sich aber bis zu 70—80 Linien einer Serie verfolgen lassen und, da jede Bande aus 6 Serien besteht, so den Linienreichtum bedingen.

Das Spektrum des BO besteht, ganz analog andern Molekülen mit 13 Elektronen, aus 3 Bandensystemen, den α -Banden (α -Banden bei BO, rote Cyanbanden und Kometenschweifspektrum bei CO⁺), die ein ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -System sind, den β -Banden (β -Banden bei BO, violette Cyanbanden, erste negative Kohlegruppe bei CO⁺ und negative Stickstoffbanden), die ein ${}^{2}\Sigma^{*} \rightarrow {}^{2}\Sigma$ -System sind, und den Kombinationsbanden (nur bei BO und CO⁺ gefunden), die ein ${}^{2}\Sigma^{*} \rightarrow {}^{2}\Pi$ -System sind.

Die α -Banden liegen im sichtbaren Teil des Spektrums zwischen λ 2100 und λ 7300, vielleicht sogar noch viel weiter ins Rote hinein. Die Schwingungsstruktur des Spektrums wurde von Mulliken [69], die Rotationsstruktur von Jenkins [76, 77] und Scheib [99] angegeben. Jede der Banden besitzt 4 Kanten (2 Doppelkanten), für die Mulliken [69] die Formel gibt:

$$B^{11}O: \nu(\mathbf{v}'\mathbf{v}'') = \begin{cases} 23661.6\\ 23648.3\\ 23535.4\\ 23535.4\\ 23522.1 \end{cases} + (1247,9 \mathbf{v}' - 10.6 \mathbf{v}'^2) - (1873.2 \mathbf{v}'' - 11.68 \mathbf{v}''^2) \\ 23522.1 \end{cases}$$
$$B^{10}O: \nu(\mathbf{v}'\mathbf{v}'') = \begin{cases} 23652.2\\ 23698.9\\ 23526.0\\ 23512.7 \end{cases} + (1285.6 \mathbf{v}' - 11.7 \mathbf{v}'^2) - (1926.8 \mathbf{v}'' - 12.21 \mathbf{v}''^2) \\ 23512.7 \end{cases}$$

Die zweite Formel gilt für das Borisotop B¹⁰O, dessen Bandensysteme gleichzeitig auftreten.

Die Tab. 5 (auf S. 156) zeigt die von Mulliken [69] gemessenen Kanten der beiden Isotopen B¹⁰O und B¹¹O.

Die Analyse ergibt für die Rotationsstruktur einen ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -Übergang. Es handelt sich hier um eine Dublettbande mit Feinstruktur. Man müßte also im ganzen 12 Einzelserien erwarten, von denen je 6 zu einer Komponente gehören. Etwas modifiziert werden die Banden aber noch durch den Umstand, daß der ${}^{2}\Sigma$ -Term keine meßbare Dublettaufspaltung, der ${}^{2}\Pi$ -Term keine meßbare Aufspaltung in Unterniveaus besitzt. Der allgemeinste Termansatz einer Dublettbande mit Feinstruktur lautet:

$$\begin{split} & \mathbf{R}_{i}^{'}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{2}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{1}^{''}(\mathbf{m}-1) \\ & \mathbf{Q}_{i}^{'}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{2}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{1}^{''}(\mathbf{m}) \\ & \mathbf{P}_{i}^{'}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{1}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{1}^{''}(\mathbf{m}+1) \\ & \mathbf{R}_{i}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{2}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{2}^{''}(\mathbf{m}-1) \\ & \mathbf{Q}_{i}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{1}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{2}^{''}(\mathbf{m}) \\ & \mathbf{P}_{i}(\mathbf{m}) = \mathbf{v}_{0} + {}^{i}\mathbf{F}_{2}^{'}(\mathbf{m}) - {}^{i}\mathbf{F}_{2}^{''}(\mathbf{m}+1), \end{split}$$

wobei sich die Indizes i = 1.2 auf die beiden Komponenten eines Systems beziehen.

Dieser vereinfacht sich nach Scheib [99] durch die Annahme, daß für den Endzustand stets $F_1''(m) = F_2''(m+1)$ und für den Anfangszustand $F_1'(m) = F_2'(m) + \varepsilon$ ist. Durch Einsetzen des neuen Endterms in die Gleichungen erkennt man, daß der R'-Zweig mit dem Q-Zweig, und der Q'-Zweig mit dem P-Zweig zusammenfallen, so daß von den ursprünglich 12 Zweigen nur 8 übrigbleiben. Gleichzeitig wird hierdurch der auffallende Intensitätsunterschied erklärt, den Q- und P-Zweig im Vergleich mit R- und R'-Zweig haben. Es kann jedoch angenommen werden, daß sich bei hinreichender Dispersion die 8 Zweige in 12 auflösen werden. Durch die zweite Gleichung $(F_1'(m) = F_2'(m) + \varepsilon)$ werden die Interkombinationsdefekte erklärt, die von einer feinen Aufspaltung des ²II-Terms herrühren. Jenkins [77] beobachtet diese Interkombinationsdefekte nur bei der ersten Komponente und schließt hieraus sowie aus den am Anfang der Zweige ausfallenden Linien, daß der ²II-Term verkehrt ist. Sch eib [99] dagegen konnte durch Aufstellung der Kombinationsbeziehungen bis zu hohen Laufzahlen nachweisen, daß auch in der zweiten Komponente die Kombinationsdefekte von gleicher Größenordnung sind.

		Buo	TRE (1- 171-0.01	and the second second	B10 O
v'	v''	Int.	λ	Int.	2
7	0	1	3136.1	_	schwach sichtbar
		2	3137.0	-	
		*2	3148.6		Charles Second Montered Long. of
		*2	3149.7		And the second and the second second
8	1	- 1	überdeckt	_	ibordocht durch
	C. C	- 1	durch NO		NO.
	B. Con	1?	3226.6	-	ΝΟβ
		*2?	3227.8	-	antener ertere - and hit segre hard
6	0	2+	3249.4		iberdeckt durch (81)
	a name	2	3250.6	-	J uberdeckt durch (0.1)
	A class	2+	3262.8	*2?	3244.4
	Lassent	2-	3264.2	*2	3245.6
7	1	1	3330.2	trin-ban	Indiate state bien and shall the state
		2	3331.8	a no trai no	sehr schwach
		2+	3344.5	-	oder unsichtbar
		3	3346.2	-]
5	. 0	2	3373.2	-	Bhandaaltt durch (5.11)
		5	3374.7	_	$\int uberdeckt durch (0.11)_{\beta}$
	dini 1	7	3387.6	3?	8370.5
	in And	5	3389.1	*2?	3372.1
6	1	1	3458.9	-] - ConhiChe Dorffreitheast bei Au
	1.18	2	3460.5	-	überdeckt durch (5.0)
		2	3473.8		und $(3.10)_{\beta}$
		3	3475.3	-	
4	0	5	3510.0	1-	3494.7
		6	3511.3	2	3595.9
	1.00	7	3525.5		Bandookt durch BHO
	SPACE IN	7	3526.8	mini-inter	f uberdeckt durch B-O
5	1	1-	3599.6		Louis destantion of the second
	1 1 1	1	3601.3		überdeckt durch NO_{β}
		1	3615.8	-	und (4.0)
		1+	3617.2 .	-]
3	0	5	3660.8	1	3648.2
		6	3662.3	2	3649.7
	1	8	3677.8	5	3664.9
	1 Call	10	3679.1	5	3666.6

Ein Fragezeichen hinter einer Intensitätsangabe bedeutet, daß die Intensität der gemessenen Kante zweifelhaft ist (bei schwachen Kanten unter intensiven Linien).

Ein + hinter einer Identitätsangabe bedeutet, daß die angegebene Intensität in Wirklichkeit die zweier überlagerter Kanten ist. Kanten, die mit "überdeckt" bezeichnet sind, liegen unter starken Linien einer vorangegangenen Kante, so daß sie nicht meßbar sind, obwohl vorhanden.

Nicht angegebene Kante fehlen oder sind außerordentlich schwach.

Ein * bedeutet, daß die Kante überlagert ist von einer starken Linie, so daß die geschätzte Intensität zu hoch ist und die gemessene Lage nicht ganz genau ist.

		BnO	1		B10O	
v'	v"	Int.	2	Int.	λ	
6	2	schwach	n, überdeckt			
-		dur	ch (3.0)	_		
4	1	sohr sohus	ach überdeelt		and supering party of the literature	
x	1	dur	ch (2.0)		debuild to react the second	
	170555	uur	ch (5.0)		ambradtor iden	
2	0	6?	3828.2	1+	3819.4	
		8	3830.2	3	3821.2	
		9	3847.0	3	3837.5	
		10	3848.7	-	überdeckt	
5	2	schwach	, überdeckt			
		durch (2.	0) oder nicht		0.000	
		vor	handen		8 856 8	
2	1	19 1	1 9000		Carse and a second	
0	1	11	0020.4			
		0	0040.0	E and	uberdeckt durch (2.0)	
		0	0040.0 2050 5		in miles of the density of the	
		4	3350.5	7	minimality such much	
6	3	*2?	3959.1	-		
	1928	*2?	3960.8		überdeckt	
		2	3979.5	_		
		*3	5181.9	-		
1	0	5	4015.1	1	4010.5	
		6	4017.1	1	4019.8	
		7	4035.5	*3+	4012.0	
		8	4037.4	3-	4031.4	
4	0	10	1000.0		1000.0	
*	4	11	4033.9	-		
		*9.5	uberdeckt		uberdeckt durch (1.0)	
	176.6	10*	4004.7		J	
		-21	4057.0			
2	1	2	4121.9	1	4120.6	
		4	4124.1	2	4122.9	
	1.00	6	4143.4	*1?	4141.9	
		.7	4145.5	2?	4144.2	
5	3	sehr schwa	ch, überdeckt		and tests	
		von (2.1)	oder nicht			
		vorl	nanden.		askados administra	
0	0	0 1	4995.0	1-	1000.0	
	v	4	4220.0	*9.9	4226.3	
		42	4227.0	*5.9	4229.3	
		52	4241.0	42	4249.4	
		0.	4200.4	47	4201.9	
8	2	*3	4234.4	-		
		2	4236,5	-	iberdeckt durch (0.0)	
		*4?	4257.4	-	(BHO (2.2))	
	1	*4?	4259.5	-	J D-0 (0.2)	
1	1	8	4339.6	_	10M	
	9	8	4342.0		1	
		10	4363.4	_	überdeckt durch B ¹¹ O	
		8	4365.9			

158

		BHO			B100
v'	v''	Int.	λ	Int.	2
	1			- bit	
4	3	sehr schwa	ch, überdeckt		
11	14.08	durch (1.1) oder nicht		
		vorh	anden		and the second second second second second
2	2	nicht v	orhanden		
5	4	1-	4476.7	-	1 -
1		2-	4479.2	-	vorhanden, aber überdeckt durch
	1.4	2+	4502.3 .	-	Buo
	13.15	2+	4504.7	-	J –
0	1	7	4586.0	*2	4600.0
		8	4588.8	*5	4602.0
		10+	4612.7	*7	4626.0
		10+	4615.4	*5	4627.9
8	8	sehr schwa	h überdeckt		NEWS STREET
		durch (0.1) oder nicht		
		vorh	anden		
1	0	5 1	4715.6		üherdeckt
-	-	5	4718 7	52	4736.8
- 25		8	4744.0	52	4761 7
		8	4746.9	5?	4765.0
		2000		0.	100.0
2	3	1-	4852.8	-	} überdeckt
		1+	4855.7]
		2	4882.9	*2	4904.8
		0	4000.7	14	4505.1
0	2	2	5008.0	1 1	
		4-	5011.6	-	überdeckt durch B110
1.000		*9	5040.1	-)
		6	5043.5	-	a serie and the series of the
1	3	0?	5158.8	-	_
6.5		0?	5161.1	-	
1000		2-?	5189.3	-	
		1?	5195.5		and shaked the second second
4	5	sehr	schwach		and the (CR) There is a second
0		0	5915 1		überdeelt durch PUO
2	4	1	5819.0		uberdeckt durch Bad
		1	5351.1	1	5302 0
		3	5354.6	1	5397.1
			0001.0	1	0001.1
3	5	1-	5481.1	-	a second in the second particular particular second
-		1	5485.6		
		überdee	ekt durch		überdeckt durch (0.3)
i ne		(0.3)]
0	3	3	5508.8		
		5	5513.0		Buberdeckt durch Bi'O
		7	5547.5	3	5599.0
		8	5551.5	5	5603.7

		BnO			B10O		
v'	v"	Int.	λ	Int.	2		
1	4	2-	5681.9		iberdeskt durch PUO		
		2-	5687.1	-	J uberdeckt durch Bill		
	1. 1. 1. 1. 1.	3-	5723.1	2	5781.6		
	100	3-	5727.4	2	5787.6		
9	5	00.2	5900 5				
-	0	001	0000.0	_	berdeckt durch N.		
		0	5872.2	-	J		
		0	5910.9				
	100	. 0	5916.0		and the second second second second		
3	6	00	6062.1	_			
	10.0	0	6067.5	indo <u>er</u> nell?	d-Banden: Die im pabrie		
	and rate	0	6107.6	bern moto	iberdeckt von (0.4)		
			überdeckt von]		
	1.00		(0.4)		and a manufacture last		
			()		THE REAL PROPERTY OF THE PROPE		
0	4	3	6113.1	ALL TO Y	B ühertdeelt duch DUO		
		3	6118.2	-	S apertoleckt duch Brio		
	14 M 18	5	6159.7	2	6242.2		
	1.2.3.	5	6165.4	2	6248.2		
1	5	2	6317.1	1	6409.6		
		3	6323.5	1	6414.1		
		5	6368 5	9	0414.1		
		5	6374.8	2	6460.3		
			0014.0	-	6467.2		
2	6	00	6538.0	-	1		
		00	6543.0	- 11			
		0	6590.0		sehr schwach überdeckt durch N		
		0	6596.3	-			
0	5	0	6854.9	0	0055.0		
		1	6861.8	0	6977.6		
		9	6019 5	1	6986.2		
	1.1	2	0010.0 2001 5	1	7041.4		
	1223	0	0321.0	1	7049.2		
1	6	0	7098.9	00	7240.7		
		1	7108.0	00	7251.0		
		1	7163.6	0	7307.8		
		2	7173.2	1	7316.8		
2	7	00	7269.2	1			
		0	7979.9	00	7528		
		0	7404.0	1			
1		12	7404.8	00?	7600		
	19810	11	(441.8	,			
0	6	00	7790	000?	7977		
	mbren	0	7870	- 1	2242 01 + 1 0 + 1 0		
1	7	00	8093	. 000 2	0010		
-		0	8174	000?	8319		
		0	8174				
2	8	000	8419	_	and the second s		
125	10.00	000	8519		3.162		

	(0.1)	(0.2)	(0.3)	(0.4)
Jaı	19.405	19.405	19.405	$19.405 \cdot 10 - 40$
Jag	19.894	19.894	19.894	19.894
Je	15.685	15.847	16.002	16.161
ra ₁	1.349	1.349	1.349	$1.349 \cdot 10^{-8}$
ra ₂	1.366	1.366	1.366	1.366
re	1.213	1.219	1.225	1.231

Für die Trägheitsmomente und Kernabstände für den Anfangs- und Endzustand der verschiedenen Oszillationsstufen gibt Scheib [99] die Werte:

β-Banden: Die im nahen Ultravioletten gelegenen β-Banden sind nach Rot abschattiert, besitzen einfache Kanten und entsprechen einem ${}^{2}\Sigma^{*} - {}^{2}\Sigma$ -Übergang. Ihre Schwingungsstruktur wurde zuerst von Mulliken [69] angegeben. Die Bandenkanten lassen sich durch die Formel darstellen:

B¹¹O: $\nu(\mathbf{v}'\mathbf{v}'') = 42880.9 - 0.17 \,\mathbf{v}'\mathbf{v}'' + 1268.8 \,\mathbf{v}' - 998 \,\mathbf{v}'^2 - 1872.9 \,\mathbf{v}'' + 11.84 \,\mathbf{v}''^2$ B¹⁰O: $\nu(\mathbf{v}'\mathbf{v}'') = 42874.6 - 0.19 \,\mathbf{v}'\mathbf{v}'' + 1304.6 \,\mathbf{v}' - 10.43 \,\mathbf{v}'^2 - 1927.9 \,\mathbf{v}'' + 12.66 \,\mathbf{v}''^2$.

Tab. 6 gibt die Wellenlängen und Intensitäten der einzelnen Bandenkanten nach Mulliken [69].

		PUO	and and a second second	B100					
v'	v''	Int.	2	Int.	λ				
5	0	00.2	CONTRACT OF	0002	10				
G	1	002		0002					
0	1	1+	1000	0001	_				
5	1		9191 80	0	9117.04				
0	1	0	0145 97	1	2117,04				
0	1	0	0172 90	1	2140.33				
4		4	2110.02	0	2172.00				
2	0	4	2202.97	2	2199.92				
·0	1	4	2254.00	4	2232.00				
1	0	0	2204.70	4	2263.33				
2	1	3	2297.21	1+	2296.74				
5	3	überdeckt	durch B ¹⁰ O	2	2299.98				
3	2	6	2330.44	1	2330.96				
0	0	7	2331.33	*2+	2331.83				
4	3	1?	2364.10	-					
1	1	8	2364.54	*3+	2365.97				
2	2	10	2398.53	*6	2401.00				
3	3	6	2433.34	- 00	überdeckt durch (0.1)				
0	1	+10	2437.10	*5	2440.71				
1	2	5	2472.00	*2+	2476.67				
5	5	2	2505.33		überdeckt				
2	3	6	2507.67	*4	2513.61				
6	6	2-	2542.40		überdeckt				
3	4	7+	2544.25	-	überdeckt durch (0.2)				

Tabelle 6.

	÷.			
в.	э.			
			r	
а.				

BnO				B10O			
v'	v''	Int.	2	Int.	λ		
0	0	+9	9551.40	C	0500 75		
4	5	10	2551.40	*02	2008.70		
1	2	4	2501.00	4	2590.15		
1 5	6	*0	2000.01	4	2096.62		
0		6	2013.70		uberdeckt		
20	4 5	0	2020.00	27	2630.43		
0	0	4	2004.09	_	uberdeckt durch (0.3)		
0	0	TO	2070.27	4	2687.02		
4	0	4	2703.37	*2	2715.71		
1	4	10	2713.81	5	2726.91		
5	7	2	2743.42	*1	überdeckt		
2	5	9	2753.38	7	2767.86		
6	8	*2?	2784.35	-	-		
3	6	7	2793.87	-	überdeckt durch (0.4)		
0	4	+8 .	2809.90	2	2826.86		
1	5	8	2850.56	3	2878.97		
5	8	*2+	2877.38	-	überdeckt		
2	6	10	2892.23	7	2912.17		
6	9	*3?	2920.01	-	_		
3	7	9	2934.90	-	überdeckt durch (0.5)		
0	5	+6	2956.56	1	2979.56		
4	8	6	2978.47	2	3001.56		
1	6	7	2999.67	3	3024.22		
2	7	9	3043.64	5-	3069.93		
3	8	9	3088,63	3	3116.70		
0	6	*1?	3117.35	*2?	3147.46		
4	9	6+	3134,59	3+	3164.33		
1	7	4+	3162.79	2	3194 62		
5	10	4	3181.34		überdeckt		
2	8	7	3209.32	4	2042 00		
6	11	*22	3228.91	12	3262.25		
3	9	9	3256.94	4	3999.75		
4	10	8	3305.43	4-	2242.00		
5	11	52	3354 62	-	0040.00		
9	9	*5	3301.02	1-	2424.00		
2	10	G	3441.61	1	0405.07		
4	11	4+	2402.00	4	0400.07		
9	11	4.1	9245.00		uberdeckt		
0	10	1	3045.65		-		
4	12	-	iberdeckt		the second se		

Die Rotationsstruktur wurde von Elliot [95, 96] angegeben. Die Banden bestehen aus doppelten R- und P-Zweigen. Beide Zweige treten nur im Borsäurebogen auf, bei Anwesenheit von aktivem Stickstoff ist nur der R-Zweig vorhanden. Die bei der Analyse errechneten Werte von B¹¹ für den Endzustand stimmen genau mit den von Scheib [99] für das α -System angegebenen überein. Beide Systeme haben also den gleichen Endzustand ² Σ .

Über die Kombinationsbanden des α - und β -Systems, die einem ${}^{2}\Sigma^{*} \rightarrow {}^{2}\Pi_{i}$ -Übergang entsprechen, ist noch nicht viel bekannt. Sie haben mit dem β -System den gleichen Anfangszustand. Für die Wellenlängen der Bandenkanten gibt Mulliken [69] folgende Werte.

Kayser u. Konen, Spektroskopie. VIII.

Bor

FF1 1			_
1.0	hall	0	77
1.61	UCLI		

in come	in initiana	Bn0	interior selection and	AND THE WAY	B100
v'	v"	Int.	2	Int.	λ
2	0	überdec	kt durch (0.1) a	über	deckt
	1	1-	4576.5	*0+	4561.5
3	1	ü	berdeckt	übe	rdeckt
		1	4580.8	*1-	4566.1
4	2	ül	berdeckt	übe	rdeckt
		-	-	*0-	4570.7
5	3	ül	berdeckt	übe	rdeckt
		0	4586.9	*0-	4574.1
1	0]	Har - cas	- Inn - Longel	-	inden ant and this
in the	etter tim 1	in the state of the state	And the Total Local	and the state of t	
2	1		1001.0		
3	2	-4	4850.9	-1+	4872.8
	~	-		_	
	,				
0	0	1	5201.2		
-	a galak	0	5167.3		-
1	1	*1	5195.5 5161.1	Überlagert d	urch B ¹¹ O-Kanten
2	2	1	5189.3		
		1	5155.5	-	
3	3	0?	5184.7		
		- 11	-	_	-
4	4	0?	5176.1	-	
12.11		-	-	the state of the s	
5	5	00?	5170.3	überdeckt	durch B ¹¹ O (0.0)
		0?	5135.5	1?	5133.6
0	1	überdeck	t durch (0.3) a	überdeck	t durch (0.3) a
1	2	- s.	-	überdeckt	t durch (0.3) a
		überdeckt	durch (0.3) Kante	10 10 10	
2	3	ük	perdeckt	_	Anna - Harris
		1-	5493.7	0	5503.5
3	4		überdeckt	über	deckt
and the last	Pin has?	*0	5481.1	0	5489.4
0	2	_	_	_ 1	nue en Tradicio so
THE TON	Section 200	*1+	5916.2	00?	5943.5
1	3	00?	5939.7	The second se	
0110 111	Sall Salary	1-	5895.3	a and a loss of the	and the transferration
2	4	-	überdeckt durch(0.2)		init sidedian Heathing dis
1000	Se la la		Kante	überdeckt	durch (1.3) B ¹¹ O
1000		0+	5872.2	1000-000	Contant and The Strange
3	5	überdeckt	durch (1.3) Kante	10 - 10 L	and the second second
		-			

Hydridspektren.

Beim Durchgang einer Entladung durch ein Gemisch von reinem Bortrichlorid mit Wasserstoff finden Lochte-Holtgreven und van der Vleugel [110, 111] drei Banden bei λ 4332.7, λ 4367.1 und λ 3694.3, die sie dem B₁₁-Molekül zuschreiben. Die Banden bestehen aus P-, Q- und R-Zweigen; bei den intensiveren Bandenlinien finden sich schwächere Begleiter, die zu dem Isotopmolekül B¹⁰H gehören sollen. Die Analyse ergibt für die Banden λ 4332.7 (0.0) und λ 4367.1 (1.1) einen ${}^{1}\Pi \rightarrow {}^{1}\Sigma$ -Übergang. Die Bande λ 3694.4 (0.0) entspricht einem ${}^{3}\Pi \rightarrow {}^{3}\Sigma$ -Übergang. Beide Übergänge unterscheiden sich nur durch die verschiedene Einstellung des Elektronenspins. Aus den Bandenkonstanten errechnen sich die Werte für das Trägheitsmoment J, die Kernabstände r und die Kernschwingung ω für Anfang und Endzustand der verschiedenen Oszillationsstufen zu:

(0.0) <i>λ</i> 4332.7	(1.1) λ 4367.1	(0.0) 3694.4
$\begin{array}{l} {\rm J}^{\prime\prime} &= 2.33 \cdot 10^{-40} {\rm g} {\rm cm}^2 \\ {\rm J}^{\prime} &= 2.32 \cdot 10^{-40} {\rm g} {\rm cm}^2 \\ \omega_0^{\prime\prime} &= 2220 {\rm cm}^{-1} \\ \omega_0^{\prime} &= 2200 {\rm cm}^{-1} \end{array}$	$\begin{array}{l} {\rm J}^{\prime\prime} &= 2.43 \cdot 10^{-40} {\rm g} {\rm cm}^2 \\ {\rm J}^{\prime} &= 2.48 \cdot 10^{-40} {\rm g} {\rm cm}^2 \\ \omega_1^{\prime\prime} &= 2200 {\rm cm}^{-1} \\ \omega_1^{\prime} &= 1700 {\rm cm}^{-1} \end{array}$	$J'' = 2.22 \cdot 10^{-40} \text{ g cm}^2$ $J' = 2.32 \cdot 10^{-40} \text{ g cm}^2$ $-$
$r_0' = r_0'' = 1.2$	4 · 10-8 cm	$r_0' = r_0'' = 1.23 \cdot 10^{-8} \text{ cm}$

Platon und Almy [112] können die Angaben von Lochte-Holtgreven und van der Vleugel bestätigen. Aus 7 Linien des R-Zweiges der beiden Isotopenmoleküle wird das Mengenverhältnis von B¹¹ zu B¹⁰ zu 4.86 ± 0.15 berechnet, was einem Atomgewicht von 10.841 ± 0.005 entspricht, in guter Übereinstimmung mit der chemischen Bestimmung.

Chloridbanden.

Jevons [60] beobachtete im Geißlerrohr bei einer Entladung in BCl_3 zwischen $\lambda 2600$ und $\lambda 2850$ eine komplizierte Reihe von Banden, die zum Teil nach Rot, zum Teil nach Violett abschattiert sind. Leitet man Sauerstoff zu, so verschwinden sie und an ihrer Stelle treten die BO-Banden auf. Dieselben Banden beobachten auch Lochte-Holtgreven und van der Vleugel [110]. Die am meisten hervortretenden Bandenkanten sind in der folgenden Tabelle zusammengestellt:

. λ	λ	λ
2586.7	2627.0	2714.1
90.8	27.8	29.4
95.4	32.8	33.4
2600.7	38.1	41.0
06.7	44.9	49.4
10.2	68.5	62.6
14.2	75.8	2833.2
17.0	84.3	42.9
18.2	94.5	60.4
19.9	97.4	69.6
22.4	2703.7	80.7
23.6	06.3	states and the company of the leader of
		11*

Für den ungefähren Wert des Trägheitsmomentes und den Kernabstand werden die Werte gegeben J $\sim 12.9 \cdot 10^{-40}$ g cm² r $\sim 1 \cdot 10^{-8}$ cm.

Isotopie.

Eines der ersten Elemente, bei dem die theoretischen Betrachtungen über den Isotopieeffekt an Banden auf das glänzendste bestätigt werden konnten, ist das Bor. Die Auseinandersetzung zwischen Mulliken und Jevons über den Träger des Boroxydspektrums, das Jevons [58, 59, 60] einer Borstickstoffverbindung zugeschrieben hatte, vermochte Mulliken [55, 63, 64, 65, 68, 69, 70] zu seinen Gunsten zu beenden, indem er die Werte gewisser aus der Theorie des Isotopieeffekts an Banden berechenbarer Größen mit den empirisch bestimmten verglich. Sind M1 und M2 die Atomgewichte der Isotopen, M' das des Elementes, mit dem eine Verbindung erfolgt ist, so ist der Wert der Größe $\rho = \sqrt{\left(\frac{1}{M_2} + \frac{1}{M'}\right)\left(\frac{1}{M_1} + \frac{1}{M'}\right)}$ für BO: $\rho = 1.0292$, für BN: $\rho = 1.0292$, für BN: $\rho = 1.0276$. Aus der Theorie des Isotopieeffekts folgt aber nun, daß ρ gleich ist dem Verhältnis der Koeffizienten von v' und v'' in der Bandenkantenformel. Der empirische Wert für ρ ist $\rho = 1.0291 \pm 0.0003$. Entsprechend liefern die Koeffizienten v'² und v''² den Wert $\rho^2 = 1.062 \pm 0.008$, während die Atomgewichte 1.0593 für BO und 1.0560 für BN fordern. Die Zahlen sprechen entschieden für BO, so daß dieses Molekül als Träger des Bandensystems zu betrachten ist. - Von nicht minder großer Bedeutung sind die Konsequenzen, die sich aus der gegenseitigen Lage zweier sich entsprechender Isotopenbanden ergeben. Nimmt man nämlich, wie das bisher immer der Fall war, die effektiven Quantenzahlen als ganzzahlig an, so müßten für die (0.0)-Bande die Ursprünge der beiden Isotopenbanden zusammenfallen, oder anders ausgedrückt, die konstanten Glieder in der Bandenkantenformel müßten für B¹¹O und B¹⁰O die gleichen sein. Als Isotopieeffekt der Elektronenterme kann die Differenz zweier entsprechender Konstanten nicht gedeutet werden; dafür ist sie viel zu groß. Durch den Isotopieeffekt der Rotation wird sie nur vergrößert. Eine Deutungsmöglichkeit besteht aber darin, daß sie durch falsche Festlegung der Oszillationsquantenzahlen vorgetäuscht ist. Mulliken zeigte nun, daß die Differenz am kleinsten wird, wenn man die Numerierung der Oszillationstermniveaus halbzahlig macht, ganz in Übereinstimmung mit den Forderungen der neuen Quantenmechanik.

Elliot [96] berechnet das Mengenverhältnis der beiden Borisotopen aus dem Intensitätsverhältnis entsprechender Banden des β -Systems. Es zeigt sich, daß die Banden (1.5), (2.5) und (2.6) innerhalb der Meßgenauigkeit dasselbe Mengenverhältnis der Isotopen ergeben, während der aus der Bande (3.7) bestimmte beträchtlich höher liegt. Diese auffallende Abweichung versucht Stenwinkel [103] dadurch zu deuten, daß er eine Art Boltzmannverteilung der Moleküle auf die einzelnen Anregungsstufen annimmt. Aber Elliot [109] vermag zu zeigen, daß die Zahl der Moleküle im v'' = 1-Zustand, berechnet nach dem Boltzmannschen Gesetz für T = 470°, nur $1/3_{3,0}$ der Zahl der im v'' = 0-Zustand befindlichen ausmacht, so daß man nur schwerlich annehmen kann, daß der v'' = 1-Zustand eine Rolle bei der Bestimmung der Verteilung spielen kann, während Stenwinkel [103] für den v'' = 0-Zustand den 1.3 fachen Wert des Mengenverhältnisses im Vergleich mit dem v'' = 0-Zustand angibt. Dagegen nimmt Elliot [97, 109] eine Korrektur vor, nach der das Mengenverhältnis in allen gemessenen Banden übereinstimmt. Als Mittelwert gibt er 3.63 ± 0.02 , was einem Atomgewicht von 10.794 entspricht.

Platon und Almy [112] geben für das Mengenverhältnis 4.86 ± 0.15 , berechnet aus dem Intensitätsverhältnis von 7 Linien einer BH-Baude.

Röntgenspektrum.

Über die zur Untersuchung des Röntgenspektrums angewandten Methoden sei auf den entsprechenden Abschnitt bei Kohlenstoff verwiesen, da fast alle der im folgenden genannten Arbeiten sich auch auf jenes Element erstrecken.

Die folgenden "kritischen Potentiale" wurden gefunden:

Autor	K-Niveau		L-Niveau	
	Volt	Å	Volt	Å
Mohler und Foote [50, 53]	186	66.4	_	_
ideal to participation biggins. It.	125	98.7	_	-
Hughes [48]	148	83.5	24.5	505
Holtsmark [51, 54]	145-150	83.6	_	_
Mc Lennan und Clark [52]	147.5	83.6	42.2	242
	-	-	23.45	527
Miss Levi [61]	145,7	85	24.7	500

Tabelle 8.

Da diese kritischen Potentiale die Anregungsspannung der betreffenden Serie darstellen, welche kurzwelliger als die Linien sein muß, so zeigt ein Vergleich mit den neueren Ergebnissen, daß in den meisten Fällen hier zum mindesten die Deutung nicht richtig sein kann.

Holweck [71, 72, 73] fand die K-Absorptionsdiskontinuität bei 192 Volt entsprechend 64.3 Å.

Für die Ka-Linie gibt Dauvillier nach der Kristallmethode in [75] 73.5 Å, was mit den neueren Ergebnissen jedoch nicht gut übereinstimmt.

Am zuverlässigsten sind natürlich auch hier die Liniengittermessungen, die in der folgende Tabelle zusammengefaßt sind.

Autor	Å	Bemerkungen
Thibaud und Soltan [82, 83], Thi- baud [86, 87] Söderman [85] Söderman [100] Bazzoni, Faust und Weatherby [87]	$egin{array}{cccc} 68.0 \ 67.80 \ \pm 0.2 \ 67.71 \ \pm 0.1 \ 68.12 \end{array}$	2 Å breit Satelliten bei 72.2, 66.0, 65 1 74 7 (2)
Faust [98]	67.8 69.33	Visuelle Mitte Hauptmaximum, ferner 13 Komponenten

Tabelle 9.

Cork [104] suchte auch bei Bor nach dem Phänomen der Teilabsorption, ebenfalls erfolglos.

town hints were and him to the total

Abgeschlossen am 15. Januar 1932.

Barium

(Ba = 137.36; Z = 56; Isotopen 136 u. 138, dazu neuerdings [214] noch 135 u. 137).

Literatur.

1. Nachtrag.

[157] S. Datta, On the spectra of the alkaline earth fluorides and their relation to each other. Proc. Roy. Soc. A 99 p. 436-455 (1921).

[158] A. St. C. Dunstan and B. A. Wooten, A Study of arc-cathode spectra. Astrophys. J. 54 p. 65-75 (1921).

[159] R. Goetze, Liniengruppen und innere Quanten. Ann. d. Phys. (4) 66 p. 285-292 (1921).

[160] A. Hörnle, Über Zentren und räumliche Verteilung der Lichtemission der Metalle, besonders im elektrischen Bogen. Jahrb. Radioact. 18 p. 297-326 (1921).

[161] C. Ramsauer und F. Wolf, Leuchtdauer der Spektrallinien im erlöschenden Bogen. Ann. d. Phys. (4) 66 p. 373-395 (1921).

2. Fortsetzung.

[162] A. Campetti e A. Corsi, Sugli spettri di scintilla mediante la fiamma. N. Cim. (6) 24 p. 117-127 (1922).

[163] D. Coster, On the spectra of X-rays and the theory of atomic structure. Phil. Mag. (6) 43 p. 1070-1107 (1922) and Phil. Mag. (6) 44 p. 545-573 (1922).

[164] A. Dauvillier, Nouvelles recherches sur les spectres de rayons Röntgen. J. de Phys. et le Rad. (6) **3** p. 6-36 (1922).

[165] A. Dauvillier, Sur la mesure précise des niveaux d'énergie de l'atome de barium et sur l'apparition du spectre L d'ionisation. C. R. **174** p. 1543—1546 (1922).

[166] A. Dauvillier, Analyse de la structure électronique des éléments. J. de Phys. et le Rad. (6) **3** p. 221-251 (1922).

[167] P. D. Foote and F. L. Mohler, The significance of the $\frac{1}{2}$ terms in the spectral series formulae. J. Opt. Soc. Am. 6 p. 54-56 (1922).

[168] G. A. Lindsay, Sur les limites d'absorption L des éléments Ba-Sb. C. R. 175 p. 150-151 (1922).

[169] H. D. Babcock, A determination of $\frac{e}{m}$ from measurements of the Zeeman effect. Astrophys. J. 58 p. 149–163 (1923).

[170] H. D. Babcock, The Zeeman effect for iron, chromium and vanadium and a determination of $\frac{e}{m}$. Phys. Rev. (2) 22 p. 201 (1923).

[171] E. Back, Zur Kenntnis des Zeeman-Effektes. Ann. d. Phys. (4) 70 p. 333-372 (1923).

[172] A. Dauvillier, Recherches spectrographiques de haute fréquence dans le groupe des terres rares. C. R. 176 p. 1381—1383 (1923).

[173] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of Phys. 2 p. 167-278 (1923).

[174] F. A. Saunders and H. N. Russel, New regularities in the spectra of the alkaline earths. Phys. Rev. (2) 22 p. 201 (1923).

[175] R. A. Sawyer and H. L. Becker, The explosion spectra of the alkaline earth metals. Astrophys. J. 57 p. 98—113 (1923).

Barium

[176] G. Wentzel, Bemerkungen über Serienspektren, an deren Emission mehr als ein Elektron beteiligt ist. Phys. Zs. 24 p. 104-109 (1923).

[177] H. B. Dorgelo, Die Intensität mehrfacher Spektrallinien. Zs. f. Phys. 22 p. 170-177 (1924).

[178] M. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Japan. J. of Phys. 3 p. 29-41 (1924).

[179] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[180] E. L. Nichols and H. L. Howes, The photoluminescence of flames II. Phys. Rev. (2) 23 p. 472-477 (1924).

[181] M. Kimura, Classification of enhanced lines of various elements II. Spectra of intermittent arc shunted by a condensor. Scient. Pap. Inst. Phys. Chem. Res. Tokyo 3 p. 71-80 (1925).

[182] Josef Mikulas Mohr, Sur l'effet de pôle des raies du baryum et du neodyme dans la partie visible du spectre. C. R. 180 p. 1397—1399 (1925).

[183] Y. Nishina, On the L-absorption spectra of the elements from Sn (50) to W (74) and their relation to the atomic constitution. Phil. Mag. (6) **49** p. 522-537 (1925).

[184] H. N. Russel and F. A. Saunders, New regularities in the spectra of the alkaline earths. Astrophys. J. 61 p. 38-69 (1925).

[185] E. Schrödinger, Die wasserstoffähnlichen Spektren vom Standpunkte der Polarisierbarkeit des Atomrumpfes. Ann. d. Phys. (4) 77 p. 43-70 (1925).

[186] S. M. Cork and B. R. Stephenson, The K-emission spectra for elements tin (50) to hafnium (72). Phys. Rev. (2) 27 p. 530-537 (1926).

[187] M. Kimura, The number of easily detachable electrons in the atoms of various elements. Japan. J. of Phys. 4 p. 71-74 (1926).

[188] A. Leide, Messungen in der K-Serie der Röntgenspektra. Diss. Lund 1925 und Zs. f. Phys. **39** p. 686-710 (1926).

[189] A. Petrikaln, Über die Explosionsspektra des Quecksilberfulminats und einiger Oxyde. Zs. f. Phys. 37 p. 610-618 (1926).

[190] Katherine Chamberlain and George A. Lindsay, The determination of certain outer X-ray levels for the elements from antimony (51) to samarium (62). Phys. Rev. (2) **30** p. 369-377 (1927).

[191] Hans Kerschbaum, Messung der Leuchtdauer der Atome. Ann. d. Phys. (4) 83 p. 287-295 (1927).

[192] P. K. Kichlu and M. Saha, On the explanation of spectra of metals of group II. Phil. Mag. (7) 4 p. 193-207 (1927).

[193] M. Miyanishi, Spectra of various metals emitted from arcs in chlorine atmospheres. Japan. J. of Phys. 4 p. 119-131 (1927).

, [194] L. S. Ornstein, M. Coelingh und J. G. Eymers, Intensitätsverhältnis für Dubletts mit größeren Frequenzdifferenzen. Zs. f. Phys. 44 p. 653-654 (1927).

[195] L. E. Smith, The luminescence of pure barium bromide under the action of alpha-, beta- and gamma- rays. Phys. Rev. (2) 28 p. 431-437 (1926).

[196] R. C. Johnson, The band spectra of the alkaline earth halides II. Proc. Roy. Soc. A. 122 p. 189-200 (1928).

[197] C. C. Kiess, Interferometer measurements of wave lengths in the vacuum arc spectra of titanium and other elements. Bur. of Stand. J. of Res. 1 p. 75-90 (1928).

[198] F. Löwe, Atlas der letzten Linien, Dresden-Leipzig (1928) u. Phys. Zs. (8) **31** p. 392 (1930).

[199] O. H. Walters and S. Barratt, The alkaline earth halides spectra and their origin. Proc. Roy. Soc. A 118 p. 120-127 (1928).

[200] F. Zambonini e V. Caglioti, Sulla determinazione quantitativa spettroscopica di piccole quantitá di stronzio, di bario, e di cesio nei minerali, nelle roccie, nelle acque minerali, ecc. Lincei Rend (6) 8 p. 262-273 (1928).

[201] G. Joos, Hdb. d. Exp. Phys. Bd. 22 p. 275-276 (1929).

[202] A. Hollaender, I. W. Williams, The molecular scattering of light from solids, crystalline sulfates and their water solutions. Phys. Rev. (2) **34** p. 994 (1929).

[203] J. C. Mc Lennan and E. J. Allin, The fine structure of spectral lines. Phil. Mag. (7) 8 p. 515-520 (1929).

[204] H. Nisi, Raman effect in some crystals. Proc. Imp. Acad. Tokyo 5 p. 407-410 (1929).

[205] E. W. H. Selwyn, Arc spectra in the region & 1600-2100. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[206] W. Gerlach, Ramanspektra von kristallisierten und gelösten Nitratsalzen. Ann. d. Phys. (5) 5 p. 196-204 (1930).

[207] P. Krishnamurti, Raman spectra of crystalline inorganic chlorides. Ind. J. of Phys. 5 p. 113-128 (1930).

[208] P. Krishnamurti, Raman effect in metallic halides. Nat. 125 p. 892 (1930).

[209] P. Krishnamurti, Raman effect in some crystalline inorganic sulphates. Ind. J. of Phys. 5 p. 183-191 (1930).

[210] P. Krishnamurti, Raman spectra of inorganic crystals, Part. I und Part. II. Ind. J. of Phys. 5 p. 633-662 (1930).

[211] P. Krishnamurti, Raman spectra of cristalline powders. Nat. 125 p. 463-464 (1930).

[212] C. Ramaswamy, Raman spectra of inorganic sulphates and nitrates. Ind. J. of Phys. 5 p. 193-206 (1930).

[213] Johanna Querbach, Über die Spektren von Fe, La, Ca, Ba, Sr, Mg und ihren Verbindungen im nahen Ultrarot. Zs. f. Phys. 60 p. 109-124 (1930).

[214] F. W. Aston, New isotopes of strontium and barium. Nat. 128 p. 221 (1931).

[215] Cl. Schaefer, F. Malossi, H. Aderhold, Untersuchungen über den Ramaneffekt an Kristallen. Zs. f. Phys. 65 p. 289-318 (1930).

[216] A. Dadieu, F. Jele, K. W. F. Kohlrausch, Das Ramanspektrum organischer Substanzen. Wien. Ber. 140 IIa p. 293-319 (1931).

[217] W. R. Fredrickson and A. L. Warntz, The spectrum of chromium and baryum hydride (Abstr.). Phys. Rev. (2) 37 p. 472 (1931).

[218] S. Frisch, Zur Hyperfeinstruktur in den Spektren von Ca II, Ba II und TI I. Zs. f. Fhys. 68 p. 758-763 (1931).

[219] A. Harvey and F. A. Jenkins, Interpretation of the spectrum of BaF. Phys. Rev. (2) 37 p. 1709-1710 (1931). (Abstr.)

[220] K. Hedfeld, Die Bandenspektren der Erdalkalihalogene. Zs. f. Phys. 68 p. 610-631 (1931).

[221] Elisabeth von Mathes, Zeemaneffekt an Silizium und den Bandenspektren der Erdalkalifluoride. Zs. f. Phys. 68 p. 493-504 (1931).

[222] E. Ritschl und R. A. Sawyer, Hyperfeinstruktur und Zeemaneffekt der Resonanzlinien von Ba II. Zs. f. Phys. 72 p. 36-41 (1931).

Das Spektrum des Bariums ist noch verhältnismäßig wenig bekannt. Von den gemessenen Linien sind noch über 350 nicht eingeordnet.

Vom Ba II ist wohl nur ein geringer Bruchteil der Linien gefunden und von den höheren Ionisationsstufen überhaupt noch keine Linie mit Sicherheit. Die Wellenlängenangaben aus Bd. V und VII werden hier nicht reproduziert. Sie sind dort nachzusehen.

Bevor wir auf die neueren Arbeiten näher eingehen, seien einige Versehen der ersten Lieferung von Bd. VII richtig gestellt. Von den zu Ba I gehörenden Linien sind einige übersehen, bzw. ihre Klassifikationsangabe. So fehlt bei folgenden Linien diese Klassifizierung: 7911.36; 5425.55 (so von Saunders angegeben; vielleicht ist dies die sonst als 5424.62 ÅE gemessene Linie); 3900.37 (Fowler u. Exner und

Barium

Haschek messen hierfür 3900.41); 3593.28 (hier ist die Bezeichnung eine Zeile zu tief gesetzt); 3117.94 (Saunders und King geben 3117.64 Å an). Ferner ist eine ganze Gruppe fortgelassen worden, die nur Saunders gefunden hat, nämlich:

4674.97; 4629.63; 4606.38; 4593.16; 4591.07 und 3790.27.

Ba I besteht aus einem Zweivalenzelektronensystem mit Xenonrumpf und liefert daher Singuletts und Tripletts. Die Ionisierungsspannung ist zu 5.188 V (${}^{1}S_{0}$) und die Anregungsspannung zu 1.56 V (${}^{1}S_{0}$ — ${}^{3}P_{1}$) von mehreren Autoren [150; 147; 136] bestimmt worden.

Das Bogenspektrum des Ba, das alle charakteristischen Eigenschaften eines Erdalkalispektrums besitzt, ist in neuerer Zeit von Russel und Saunders [184] einer Neubearbeitung unterzogen worden, die für die Systematik der Spektroskopie sehr bedeutungsvoll ist. Diese Arbeit stellt insbesondere die unter Anhebung beider Valenzelektronen zustande kommenden Liniengruppen klar. Besonders auffällig ist der Verlauf der F-Termfolge. Trägt man die Rydbergkorrektur f als Funktion der Laufzahl auf, so erhält man eine Kurve, die an den Verlauf der Dispersionskurve in der Nähe der Resonanzstelle erinnert, wobei die Stellen größter Ausschläge gleichzeitig die Stellen anomaler Aufspaltung sind. Schrödinger [185] hat diesen Punkt dann weiter untersucht und gefunden, daß es sich dabei nicht um eine einfache Resonanzfrequenz des Atomrestes Ba handeln kann.

Kiess [197] hat eine Anzahl von Linien im Vakuumbogen mittels Interferometer gemessen und gibt folgende Wellenlängen an:

λ	Int.	λ	Int.
6595.328	2	6141.716	6r
27.314	2,5	10.785	3r
6498.762	3r	6063.118	2
96.901	6r	19.474	1
82.912	2	5997.091	1
50.854	1.2	71.701	1
6341.683	1.5	5853.679	2

Frl. Querbach [213] hat die folgenden Linien des Bogenspektrums von Ba mit großem Gitter relativ zu Eisennormalen von Burns gemessen:

2	Int.	2	Int.
8915.00	1	8210.28	5
8860.98	1	8161.58	1
8654.07	2	47.72	1
8581.98	1	20.51	1
67.49	1	7911.34	8
59.98	10	05.79	10
14.24	1	7839,56	2
8285.05	1	7780.48	10

Weiter hat Selwyn [205] bei kurzen Wellenlängen einige Linien gemessen, die in der folgenden Tabelle wiedergegeben sind:

-			
1.2	1000		
DB		111	

2	Int.	. 2	Int.
2052.97	2 Ba II	1904.16	1
2024.18	4	1786.76	1
1999.54	3 Avac	1694.31	4
85.89	1 Ba II	1674.39	1
24.77	5		

Ba II besitzt ein Dublettspektrum, da es ein cäsiumähnliches Einvalenzelektronensystem ist. Die Ionisierungsspannung für den ${}^{2}S_{1}$ -Term beträgt 9.96 V. [201]. Zu den Versuchen, die verschiedenen Ionisationsstufen zu trennen, gehören die beiden Arbeiten von Kimura und Nakamura [178 und 179]. Zuerst [178] bedeckten sie die Kathode eines Geißlerrohres mit BaCl₂ und ließen Entladungen hindurch gehen. So erhielten sie nur wenige Linien, die teils zu Ba I, teils zu Ba II gehören. Es hat keinen Zweck diese Klassifizierung hier anzuführen, da sie zu unsicher ist. Bei der zweiten Untersuchung [179] haben sie die Länge der Linien von der Kathode aus gemessen und die Linien als zu Ba II gehörend bezeichnet, wenn sie sich weit von der Kathode erstrecken, dagegen zum Ba III gehörend, wenn sie kurz sind und bis nahe an die Kathode heranreichen. Ihre Messungen sind in folgender Tabelle wiedergegeben:

I	Ba II		Ba III	
2	2	2	λ	λ
4934	2635	3649	3104	2571
4900	2529	3631	3079	2560
4525	2348	3368	3044	2531
4166	2335	3287	3014	2524
4131	2304	3282	2962	2505
3892	2286	3235	2939	2477
2771	2255	3195	2772	2331
2647	2246	3153	2731	2324
2641	2235	3119	2682	2281

Vergleicht man diese Liste mit der Tabelle S. 83-93 von Bd. VII, so findet man, daß die unter Ba II angegebenen Linien wirklich fast alle zu Ba II gehören; jedoch die unter Ba III verzeichneten finden sich nur im Funkenspektrum von Exner und Haschek und von Schmitz als noch nicht eingeordnete Linien, bis auf λ 2772, die zu Ba II gerechnet wird, falls das nicht eine benachbarte andere Linie ist. Popow [116] hatte zuerst bei einigen Elementen eine besonders gebaute Kombinationsgruppe gefunden; derartige Linien sind in der Tabelle für Ba in Bd. VII S. 86 mit C bezeichnet. Russel und Saunders [184] haben bei den drei Erdalkalien ein ganzes System solcher Gruppen aufgefunden. Bei Ba I sind auf diese Weise 96 bereits gemessene Linien neu eingeordnet, wobei freilich erwähnt werden muß, daß einige dieser Linien schon in alten Seriensystemen verbraucht sind. Russel und Saunders geben in ihrer bereits oben erwähnten Arbeit auch einige noch nicht gemessene Linien an, nämlich: 7688.79 (2); 7127.0 (0); 4699.11 (15); 4512.89 (1); 4504.36 (1u); 4459.18 (0); 4430.33 (1); 3980.42 (2u); 3699.94 (2) und 3523.92 (0u) ÅE.

Barium

Mohr [182] untersucht den Poleffekt an Ba-Linien, indem er an Bogenlinien den Unterschied der Wellenlänge mit einem Interferometer feststellt, der zwischen den Teilen der Linien besteht, die von der Mitte des Bogens, der Anode und von der Kathode emittiert werden. Folgende Tabelle gibt die gemessenen Differenzen in 0.001 ÅE an.

λ	Diff. KathMitte	Diff. Anode-Mitte	in Real	λ	Diff. KathMitte	Diff. Anode-Mitte
6527	+ 3	+ 0	The Serie	5826	+ 2	+1
6498	2	0	Burfol Engine	5777	5	0
96	. 3	0	1997 2 100 1	5535	5	0
82	2	0	Cold Ches	4934	3	1
50	3	0		. 4877	- 3	1
341	3	0		4726	-3	0
141	1	2	CIUSIN IS	4673	-5	-1
110	6	2	CALL STREET	4573	+4	+1
063	6	0	ave Orleger 1	4554	3	1
5997	3	1	TEP LAS	4431	3	1
71	2	0		4402	3	1
853	3	1		4283	3	0
49	2	0		4130	4	2

Miyanishi [193] untersucht einen Ba-Bogen in Chlor-Atmosphäre und findet, daß im allgemeinen die Funkenlinien begünstigt werden, wozu noch verbotene Linien und andere sonst nirgends beobachtete auftreten. Er findet folgende neue Ba-Linien.

Wellenlänge λ	Intensität	Wellenlänge λ	Intensität
5606	3	3729	1
5258	2	3723	2
5180	1	3666	2
5165	2	3542	5
5148	3	3521	2
5066	3	3492	1
4712	2	3476	3
4654	1	3459	4
4642 .	1	3440	4
4456	1 1	3414	1
4252	1	3395	1
4050	1	3378	2
4020	2	3339	1
3817	2	3268	2
3766	2	2932	2

Er glaubt alle diese Linien als Kombinationen in das Termschema einordnen zu können; doch die Genauigkeit seiner Messung — ganze Angströmeinheit — genügt nicht in allen Fällen, zu entscheiden, ob es sich wirklich um neue und um gesetzmäßig gelagerte Linien handelt, darum ist hier auf eine Angabe der Terme verzichtet worden.
Wellenlänge λ	Abstände der Komponenten von der Hauptl. 0 und die Intens
6595.3	0 (10) - 0.099 (8)
6527.3	+0.131(1); 0(10)
6450.9	0 (10); -0.104 (1)
6063.1	+0.181(1); +0.066(10); 0(9)
6019.4	+0.161 (1); 0 (10); -0.082 (1)
5997.0	0 (10) - 0.066 (4)
5971.7	+0.137 (1); 0 (10); -0.062 (1); -0.129 (5)
5535.5	+ 0.044 (1); 0 (10); -0.041 (5); -0.065 (5)
4934.0	+0.043 (10); 0 (10)
4899.9	0 (10) - 0.060 (2)
4554.0	0 (10); -0.037 (9); -0.051 (9); -0.085 (8)

Mc Lennan und Allin [203] untersuchen die Feinstruktur einiger Ba-Linien und finden folgende zusammengesetzt:

Die Linien 6694; 6675; 6499 und 6342 sind nach diesen Autoren einfach. Im Gegensatz dazu gibt Frisch [218] an, die Linien 4934 und 4554 seien einfach. Diese beiden Linien wurden später noch von Ritschl und Sawyer [222] auf Feinstruktur untersucht. Sie finden die Linien zwar zusammengesetzt, aber anders als Mc Lennan. Sie untersuchen Ba in einer Hohlkathode bei der Temperatur der flüssigen Luft mittels eines Fabry-Perot-Interferometers und finden folgende Aufspaltungen der Linien:

> λ 4934: + 0.027; 0; -0.045 (oder $\Delta \nu = -0.11$ und + 0.19) λ 4554: + 0.018; 0; -0.034 (oder $\Delta \nu = -0.09$ und + 0.16).

Die Mittellinie ist stark, die äußeren schwach, was diese Autoren darauf zurückführen, daß die mittlere starke Linie von den geradzahligen Isotopen 136 und 138 herrührt, die ohne Kernmoment sind, während die äußeren vom ungeradzahligen Ba 137 stammen. Dieser Ansicht widerspricht auch die Zeemaneffektuntersuchung nicht, die weiter unten noch besprochen werden soll.

Sawyer und Becker [175] tränken Asbestfasern mit Salzlösung und lassen die Entladung eines mit hochgespanntem Strom geladenen Kondensators hindurchfließen; dabei verdampft die Lösung explosionsartig und man erhält ein Spektrum mit umgekehrten Linien. Ba-Salze zeigen die Linien: 4554, 4524, 4350, 4266, 4130 und 3896, also die erste Linie der Hauptserie, der scharfen Nebenserie und drei der diffusen Serie und endlich 4350, eine noch nicht eingeordnete Linie. Petrikaln [179] findet 5535 und 4607 bei Ba-Explosionen.

M. Kimura [187; 181] untersucht das Auftreten der verschiedenen Funkenspektren in einer stark kondensierten Entladung und diskutiert die Ergebnisse hinsichtlich der Bohrschen Theorie.

Röntgenspektra. In der L-Reihe der Röntgen-Emissionslinien machen Coster [163] und Dauvillier [172 und 166] neue umfassende Messungen, die sich zum Teil gegenseitig ergänzen. Die Übereinstimmung beträgt bei den stärkeren Linien 4, bei den schwächeren nur 3 Dezimalen.

Leide [188] und Cork und Stephenson [186] untersuchen die K-Serie von Ba. Ihre Messungen der Ka_{12} -Werte stimmen in den ersten 4 Stellen überein, obwohl die letzteren Autoren eine etwas andere Gitterkonstante zugrunde legen. Auch die Werte für die 3 Kanten der L-Absorption nach Coster [163], Lindsay [168] und Nishina [183] zeigen eine ähnliche Übereinstimmung. Ferner scheint auch der Wert von Leide [188] für die K-Kante noch in der 4. Stelle richtig zu sein.

Weiter sind in den untenstehenden Tabellen die Energiewerte der Röntgenniveaus nach Siegbahn angegeben; sie sind nach dem experimentellen Wert der L_{III} -Absorptionskante berechnet.

		Linission, 13	-Deries	
Übergänge nach [223]	Bezeichnung	i	Coster [163]	Dauvillier [166, 172]
Lux Mr	LI	0	3128.7	She Line-maint f
Lur Mr	n	0	2857.1	2841.3?
Lar Mry	a	1	2779.021)	_
Lux My	a,	10	2769.641)	2768.5
Funkenl.	a.	00	2555.1	2755.4
a united at	a.	6 Find Stor	Section 2 and a	2782.7
"	· B.,	1		2631.5
Lar May	β,	6	2562.241)	
La Mu	B.	1	2549.8 ¹)	2549.9
La Mur	Ba	1	2511.0 ¹)	2511.6
Lur Nr	Be	00	2477.2	2477.6
Larr Nar	Ba	2	2399.3	_
Funkenl	Ba'	00	2381.7	als reconstruction and
La Mar	B."	0		2381.3?
Funkenl.	Ba	- 1.1	2375.6	2375.5
r unkenn.	B.	instantin pro-	-	2371.7
La Way	Ba	00	2371.2	
Funkenl	· B.	100 1	a part to Table a	2359.5
Funkem.	Bro		reiter 12 having	2351.1
. "	P10			2344.7
I N.	24	00	2302.3	2303.6
Funkonl	75		_	2288.2
Tunkeni.	The Pole and			2283.4
"	24.0	and	mark of _hall are	2218.6
I. New	710	2	2236.601)	mindentard men
Funkenl	20	00	2218	This Man-Phillippi
Funkeni.	78	_	_	2211.2
adata national	16			2201.6
Funkenl	72	1 74 <u>1 1</u> 1 2 . 2 1	2140.2	2140.6
T NT	710	_	2134.0	
T N.	72	0	2129.5	2129.1
Funkonl	73	-		2098.9
Funkeni.	24	0	9071.5	
LI UII, III	74	0	L DOLLIO	Convert Corpus and Scheneer

menanden mite minenen	•
-----------------------	---

Wellenlängen in XE, bezogen auf Kalkspat: d_{18°} = 3029.45.

 $\mathbf{n} = \infty$

Emission, L-Serie.

1) Nach Hjalmar [148].

Übergänge	Bezeichnung [223]	i	Leide [188]	Cork und Stephenson ¹) [186]
K L _{II}	a2	5	388,99	388,91
K L _{III}	a1	10	384.43	384.31
К МП	β_{a}	1	active (STE) Sup	340.89
K M _{III}	β_1	2	1 (14)	340,22
K N _{II.III}	β_2	0	- n of	332.22

Emission, K-Serie.

Absorption.

Niveau	Art	i	Coster [163]	Lindsay [168]	Nishina [183]	Leide [188]
L _{III}	Kante	st	2356,7	2357.7	2356.8	and tymestal
L_{II}		m	2198	2199.5	2199.3	
LI		schw	ment - IT	2060.2	2062.0	-
K	,,	st		-	and the second	330.70

Energiewerte der Röntgenniveaus nach Siegbahn²).

Röntgenniveau	K	L_{I}	L_{Π}	L _{III}	MI	M _{II}	M _{III}	M _{IV}
Opt. Symbol $\frac{\nu}{R}$	$1^{2}S_{\frac{1}{2}}$ 2757.2	$2^{2}S_{\frac{1}{2}}$ 441.6	$\begin{array}{c} 2{}^{2}\mathrm{P}_{\frac{1}{2}} \\ 414.6 \end{array}$	2 ² P ₈ 386.7	$3^{2}S_{\frac{1}{2}}$ 95.5	$3^{2}P_{\frac{1}{2}}$ 84.2	3 ² P ₃ 78.7	3 2D 3 58.9
Röntgenniveau	M _v	NI	N _{II}	N _{III}	N _{IV}	NV	OI	011.111
Opt. Symbol $\frac{r}{R}$	3ºD∯ 57.7	4 ² S ₁ 18.8	$4^{2}P_{\frac{1}{2}}$ 14.6	4 ² P _g 13.7	42D3 7.2	4 ² D _§ 6.9	5 ² S ₁ 3.5	$5^{2}P_{\frac{1}{2},\frac{3}{2}}$

Über Raman-Effekt-Untersuchungen an Bariumverbindungen ist bereits eine ganze Anzahl von Arbeiten erschienen, die im folgenden kurz erwähnt werden sollen.

BaCl₂ wurde in zwei Arbeiten von Krishnamurti [207; 208] mit negativem Erfolg untersucht.

Bariumchlorat $Ba(ClO_3)_2$ hat Krishnamurti [210] mit Hilfe der Pulvermethode auf Ramanlinien untersucht und dabei gesetzmäßige Verschiebungen der Linien und Intensitätsänderungen von den XO₃- und XO₄-Gruppen festgestellt. Im zweiten Teil dieser Arbeit [210] berichtet er über seine Untersuchungen an Kristallen von Ba(OH)₂ · 8H₂O und Ba(CNS)₂ und findet für die erstgenannten eine schwache Linie bei 417 cm⁻¹, die dem Kristallwasser oder dem OH-Ion zugehört; für die Barium-

¹) Kalkspat: d₁₈ = 3029.04 angenommen.

²) Spektroskopie der Röntgenstrahlen, Berlin 1931, 2. Aufl., S. 346.

sulfocyanidkristalle erhält er Ramanlinien bei 2053 und 776 cm⁻¹, die wahrscheinlich dem Sulfocyanid zukommen.

Für Bariumnitrat $Ba(NO_3)_2$ erhält Ramaswamy [212] drei Ramanfrequenzen: v = 726; 1048 und 1357 cm⁻¹, von denen die mittlere optisch inaktiv und die beiden anderen aktiv sind. Krishnamurti [211] mißt die folgenden drei Ramanlinien bei 7.17 μ , 9.53 μ und 13.72 μ für Bariumnitratkristalle. Gelegentlich einer anderen Untersuchung [212] mißt er für Ba $(NO_3)_2$ nahezu die gleiche Frequenz (1045) wie für HNO₃. Gerlach [206] findet, daß die Frequenzverschiebung bei Ba $(NO_3)_2$ -Ramanlinien mit zunehmender Konzentration der Lösung zunimmt. In verdünnter Lösung nähert sie sich der unteren Grenze der NO₃-Schwingung in den kristallinen Salzen mit großen Kationen. Schäfer, Matossi und Aderhold [215] erhalten bei ihren Ramaneffektuntersuchungen an Bariumnitratkristallen die optisch inaktive Schwingung bei 9.56 μ .

An schwach gelben Bariumnitratkristallen $Ba(NO_2)_2$ in 33% iger Lösung bestimmen Dadieu, Jele und Kohlrausch [216] die folgenden 8 Ramanfrequenzen v = 23516; 23368; 22400; 22349; 22289; 22228; 22127 und 21613.

Ferner geben Hollaender und Williams [202] als Ramanfrequenzen für Barytkristalle BaSO₄ (fest) 701; 974; 998; 1252 und 2223 cm⁻¹. Dagegen finden Schäfer, Matossi und Aderhold [215] an denselben Kristallen die folgenden 4 Ramanlinien bei $8.8\,\mu$; $10,15\,\mu$; $\begin{cases} 15.6\,\mu\\ 16.3\,\mu\end{cases}$ und $21.7\,\mu$. Nisi [204] mißt die 4 Ramanfrequenzen 452; 622?; 984 und 1148 gleichfalls an festem BaSO₄, während Ramaswamy [211] $\nu = 457$; 617; 918 und 1102 cm⁻¹ feststellt, von denen die erste und dritte inaktiv und die zweite und vierte aktiv sind. Alle 4 Frequenzen sind nach seiner Meinung dem SO₄-Ion zuzuordnen. Krishnamurti [209] untersucht den paramagnetischen Einfluß des Kations auf Ramanlinien u. a. auch an BaSO₄-Kristallen.

Über Zeemaneffektuntersuchungen an Barium finden sich neuere Angaben von Babcock [169] für die Linie 4554, von Back [170, 171] für 2 6498; 6141 und 5853 und ferner auch bei Ritschl und Sawyer [222]. (Man sehe auch Bd. V und Bd. VII.) Aus Intensitätsmessungen ermittelt Dorgelo [177] das Intensitätsverhältnis der Linien eines Tripletts der Erdalkalien zu 5: 8: 4. Ornstein, Coelingh und Eymers [194] stellen Messungen an den weit getrennten Paaren der beiden Nebenserien von Ba II an. Nagaoka und Sugiura [173] machen einen verfehlten Versuch, Isotopien nachzuweisen, während Aston [214] mit einer verbesserten Anordnung seines Massespektrographen sogar 4 Ba-Isotopen nachweisen kann, nämlich: 138; 137; 136 und 135. Ramsauer und Wolf [161] untersuchen die Leuchtdauer von Spektrallinien im erlöschenden Bogen und finden, daß die Linien der Hauptserie am längsten nachleuchten, ihnen folgen bezüglich der Leuchtdauer die Linien der ersten und zweiten Nebenserie. Innerhalb der Serien nimmt die Leuchtdauer mit zunehmender Laufzahl ab. Dunstan und Wooten [158] photographieren das Spektrum eines horizontalen Bogens, dem die Metallsalze im elektrischen Ofen durch einen darunter brennenden Hilfslichtbogen gleichmäßig zugeführt werden, wobei niemals eine Linie an der Kathode stärker auftrat als an der Anode. Entgegenstehende Behauptungen erklären die Verfasser durch ungleichmäßige Zuführung der Substanz. Als Restlinien (raies ultimes) führt Löwe [198] die folgenden an:

Ba I	Intensität im		Ba I	Intensität im		
2	Bogen	Funken	2	Bogen	Funken	
3501.1	B8	F 2	2347.6	5	7	
4467.1	5	1	2528.5	_	6	
4489.0	7	2	2634.8	5	8	
4591.8	3	1	2641.4	2	2	
5535.5	10 R	6	2647.3	4	4	
5777.7	10 R	5	4554.0	10 R	10 R	
2304.2	6 R	8 R	4934.1	10 R	10 R	
2335.3	6 R	10 R	RULE REPAIRS		PDR AV	

Zambonini und Caglioti [200] beschreiben eine quantitative Spektralanalyse von Ba.

Bandenspektra. Vor 10 Jahren waren unsere Kenntnisse über die zahlreichen Bandenspektra der Ba-Verbindungen noch recht kümmerlich. Abgesehen von der Fluorverbindung, deren Banden bereits von mehreren Autoren [57; 62; 66; 110 u. 157] gemessen wurden, waren die Angaben damals noch recht unsicher. Fortschritte machten Walters und Barrat [199], die u. a. die Bariumfluoridbanden zwischen λ 7358 und λ 3311 in Absorption photographierten und feststellten, daß die Banden aller Erdalkalihalogenverbindungen von zweiatomigen Molekülen herrühren, also bei Bariumfluorid nicht, wie man früher glaubte, von dem chemisch gut bekannten Molekül BaF2, sondern von dem unter gewöhnlichen Bedingungen viel weniger beständigen Molekül BaF. Ferner hat Querbach [213] im nahen Ultrarot zwischen 2 8737 und 2 7848 ein neues Bariumfluoridbandensystem gefunden, dessen Deutung jedoch noch nicht gesichert ist. Einen Teil dieser ultraroten Banden hat bereits George [110] gemessen, ohne allerdings zu wissen, zu welchem Molekül sie gehörten. Zuletzt hat Johnson [196] sich sehr eingehend mit der Untersuchung der BaF-Banden beschäftigt. Ihm gelingt es, sie nach modernen Gesichtspunkten zu analysieren. Die von ihm ermittelten Molekülkonstanten sind in der folgenden Tabelle zusammengestellt:

Term	A ₀	ω_0	$\omega_0 x$	ωογ
$1^{2}\Sigma$	anna -	464.644	2.0318	$+ 0.01^{645}$
2ºD1	14042.02	423.133	2.1108	+ 0.01166
22S	19991.97	452.464	1.8767	+ 0.01569
$3^{2}D_{2}$	20193.25	457.189	1.8720	$+ 0.01^{665}$

 $A_0 = Elektronenenergie; \omega_0 = Kernschw.-Energie.$

v. Mathes [221] mißt Zeeman-Aufspaltungen an einzelnen Kanten dieser Banden und deutet diese unter Bezugnahme auf die von Mecke, Zs. f. Phys. 42 p. 390-425 (1927), entwickelte Theorie als Mittelwerte der an den unaufgelösten Bandenlinien hoher Ordnungszahl auftretenden Aufspaltungen. Sie stellen demnach Dubletts der π - und der σ -Komponenten von der Größe $2 \Delta \nu_n$ dar.

Kayser u. Konen, Spektroskople. VIII.

In neuester Zeit haben Harvey und Jenkins [219] die BaF-Banden in Absorption mittels eines 6 m-Gitters zwischen 3600 und 9000 AE photographiert und 200 Bandenkanten gemessen. Außer den bisher bekannten Bandensystemen haben sie noch zwei neue gefunden. Sie bestätigen die Analyse Johnsons, bedingen aber wichtige Korrekturen in Querbachs Ultrarotmessungen.

Zum Abschluß der Betrachtungen über die Bariumfluoridbanden sei noch eine Arbeit von Nichols und Howes [180] erwähnt, die die Banden dadurch erzeugen, daß sie das Salzpulver BaF₂ in eine Knallgasflamme einblasen und finden, daß einzelne Banden heller werden, wenn man die Flamme mit einer Quecksilberlampe beleuchtet.

Neben den Bariumfluoridbanden sind diejenigen der Chlor-, Brom- und Jodverbindungen häufiger untersucht worden. Doch die einzelnen Banden dieser Verbindungen lassen sich selbst mit den besten heute zur Verfügung stehenden Spektrographen nicht voll auflösen, so daß immer nur Bandenkanten gemessen werden konnten. Zu den in Bd. V und VII bereits erwähnten älteren Untersuchungen sind die Arbeiten von Walters und Barrat [107] und von Hedfeld [220] neu hinzugekommen. Die beiden erstgenannten Autoren beobachten in Absorption, indem sie Ba im Stahlrohr erhitzen und das betreffende Gas zuströmen lassen. Sie geben folgende Bandenköpfe an:

λ von Ba Cl	Int.	Absch. nach	λ von Ba Br	Int.	Absch	. nach	λ von Ba J	Int.	Absch. nach
5322.0	1	V.	5417	7	keine	Kante	5609.5	10	V.
5241.9	10	R.	5361	10	,,	•,	5381.7	10	V.
5213.9	0	V.	5303	6	,,	,,	5260.0	0	?
5166.6	2	R.	5261	4			5160.0	0	?
5136.0	10	R.	5206	10			3830.0	1	V.
5066.6	0	V.	5153	5			3804.0	2	V.
		d myschible of D	5101	0			3778.0	3	V.
	has	sig habs pirt	in by good might	ro.s	12 Maila	C more	3756.0	3	V.
	1.13	interesting the series	A Distriction	1	1633		3736.0	1	v.

• Hedfeld [220] photographiert die sichtbaren Emissionsspektren von BaCl₂ und BaBr₂ sowohl im Lichtbogen als auch in der Azetylensauerstofflamme mittels eines 3.5 m Gitters. Die an einigen Bandenkanten gemessene Isotopieaufspaltung der Oszillationsenergie des Chlors, Broms und des Bariums sichert neben den ermittelten Kernfrequenzen und Dublettaufspaltungen die Zweiatomigkeit der schwingenden Molekeln und die Einordnung in Niveauschemata. Börsch [82] hat die Kante 5139 von BaCl bereits dreifach gefunden, so daß wohl anzunehmen ist, daß er, ohne es zu wissen, schon Isotopieaufspaltungen gemessen hat. Jedenfalls würde sich eine genauere Untersuchung mit großer Dispersion daraufhin lohnen.

Die früher von mehreren Autoren als Metallbanden bezeichneten Banden des Bariumoxyds sind von Mecke (Phys. Zs. 28 p. 514; 1927 und Zs. f. Phys. 42 p. 390; 1927) eingeordnet worden, und Birge (Critical Table Bd. V p. 409; 1929) gibt dafür folgende Kantenformel an:

$$v(v'v'') = 14664 + (510 v' - 2,7 v'^2) - (664 v'' - 1,5 v''^2).$$

Weiter wird auch ein Bariumhydridspektrum von Fredrickson und Warntz [217] angezeigt, das im Bogen zwischen Ba und Fe in Wasserstoffatmosphäre auftritt. Es liegt zwischen λ 6925 und λ 6380, ist eine ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ Termkombination und zeigt neben den P-, Q- und R-Serien auch Satellitserien, die ungewöhnlich stark sind.

Smith [195] untersucht die Lumineszenz von reinem Bariumbromid unter dem Einfluß von radioaktiven Strahlen.

Abgeschlossen am 15. 12. 1931.

Beryllium (Be = 9.02, Z = 4)

Isotopen 8, 9. Mischungsverhältnis Be8: Be9: ≥1:2000

Literatur.

[35] S. Datta, The spectrum of beryllium fluoride. Proc. Roy. Soc. A 101 p. 187-194 (1922).
 [36] C. L. Glaser, Über das Spektrum des Berylliums und eine bemerkenswerte Beziehung desselben zu dem Aluminium. Ann. d. Phys. (4) 68 p. 73-88 (1922).

[37] E. Back, Zur Kenntnis des Zeemaneffektes. Ann. d. Phys. (4) 70 p. 333-372 (1923).

[38] J. Holtsmark, Über die charakteristische Röntgenstrahlung der ersten Elemente. Physik. Zs. 24 p. 225-230 (1923).

[39] R. T. Birge, Spectral series of divalent elements. J. Opt. Soc. Amer. 8 p. 233-243 (1924).

[40] M. Levi, On the characteristic X-rays from light elements. Trans. Canada (3) 18, III p. 159-176 (1924).

[41] R. A. Millikan and J. S. Bowen, The assignement of lines and term values in beryllium II and carbon IV. Nat. 114 p. 380 (1924).

[42] R. A. Millikan and J. S. Bowen, Extreme ultra-violet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[43] J. S. Bowen and R. A. Millikan, Relation of pp' group in atoms of the same electronic structure. Phys. Rev. (2) 26 p. 150-164 (1925).

[44] P. Kapitza and H. W. B. Skinner. The Zeeman effect in strong magnetic fields. Proc. Roy. Soc. A. 109 p. 224-239 (1925).

[45] L. Laporte, Some remarks on primed terms in the spectra of the lighter elements. J. Wash. Acad. 15 p. 409-413 (1925).

[46] R. Mecke, Bandenspektra. Phys. Zs. 26 p. 217-237 (1925).

[47] Rob. S. Mulliken, On a class of one-valence-electron emitters of band spectra. Phys. Rev. (2) 26 p. 561-572 (1925).

[48] Yutaka Takahashi, Band spectra and molecular structure. Nagaoka anniv. vol. p. 1-16 (1925). Jap. Journ. of Phys. 2 p. 95-110 (1923).

 [49] J. S. Bowen and R. A. Millikan, Series spectra of beryllium. Phys. Rev. (2) 28 p. 256 -258 (1926); (2) 28 p. 417 (1926).

[50] M. C. Mc Donald, Miss E. E. Sutton and A. B. Mc Lay, The arc and spark spectra of a number of elements in the lower quartz spectral region. Trans. Canada (3) 20, III p. 313-322 (1926).

[51] J. C. Mc Lennan, M. J. Liggett, Arc and spark spectra of rare elements in the fluorite region. Trans. Canada (3) 20, III p. 377-383 (1926).

[52] R. F. Paton and W. H. Saunders, The spectrum of beryllium. Phys. Rev. (2) 27 p. 106 (1926).

[53] H. Grayson Smith and M. E. Westman, Some infra-red spectra. Trans. Canada
 (3) 20, III p. 323-325 (1926).

[54] Elizabeth J. Allin, H. J. C. Ireton, The under-water spark of certain elements. Trans. Canada (3) 21, III p. 27-31 (1927).

[55] Georg W. Kellner, Die Grundterme des einfach ionisierten Lithiums nach der Schrödingerschen Theorie. Zs. f. Phys. 44 p. 110-112 (1927).

[56] E. Bengtsson, Über das Bandenspektrum des Berylloxyds. Arkiv f. Mat. Astron. och Fysik, 20 A p. 1-17 (1928). [57] W. Jevons, Observations in connection with the band system of the fluorides of beryllium and magnesium. Proc. Roy. Soc. A. **122** p. 211-227 (1928).

[58] M. Petersen, Beryllium hydride bands. Phys. Rev. (2) 31 p. 1130 (1928).

[59] M. Saha, The Origin of the spectrum of the solar corona. Nature 121 p. 671-672 (1928).

[60] W. H. Saunders and V. M. Albers, The spectrum of beryllium. Phys. Rev. (2) 31 p. 151 (1928).

[61] Sibylle Tolksdorf, Untersuchung der ultraroten Eigenschwingungen binärer Oxyde (BeO, MgO, CaO, ZnO). Zs. f. phys. Chem. 132 p. 161-184 (1928).

[62] W. W. Watson, Beryllium hydride band spectra. Phys. Rev. (2) 32 p. 600-606 (1928). Phys. Rev. (2) 31 p. 1130 (1928).

[63] A. E. Bengtsson, Origin of the ultraviolet beryllium hydride spectrum. Nat. 123 p. 529 (1929).

[64] N. S. Bose and G. K. Mukherjee, Beryllium spectrum in the region 3367-1964. Phil. Mag. (7) 7 p. 197-200 (1929).

[65] H. Fesefeld, Der spektroskopische Nachweis von Beryllium. Zs. f. phys. Chem. (A) 140 p. 254-262 (1929).

[66] E. A. Hylleraas, Die Ionisierungsspannungen von Atomkomplexen. Naturw. 17 p. 982 bis 983 (1929).

[67] H. Nisi, Raman effect in some crystals. Proc. Imp. Acad. Tokyo 5 p. 407-410 (1929).

[68] R. F. Paton and G. M. Rassweiler, Furnace spectrum of beryllium. Phys. Rev. (2) 33 p. 16-21 (1929).

[69] R. F. Paton and R. E. Nussbaum, Series relationships in Be I. Phys. Rev. (2) 33 p. 1093 (1929).

[70] J. E. Rosenthal and F. A. Jenkins, Quantum analysis of the beryllium oxyde bands. Phys. Rev. (2) 33 p. 163-168 (1929).

[71] M. Söderman, Die K-Strahlung der leichtesten Elemente (Al bis Be). Zs. f. Phys. 52 p. 795-807 (1929).

[72] E. W. H. Selwyn, Arc spectra in the region λ 1600-2000. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[73] R. K. Asundi, A research of new bands in the infra-red spectra of CN, Ne⁺ and BeF. Indian J. of phys. 4 p. 367-384 (1930).

[74] W. Braunbeck, Berechnung der Röntgen-K-Terme der leichtesten Elemente. Zs. f. Phys. 63 p. 154-167 (1930).

[75] Bengt Edlén and A. Ericson, Hydrogen-like spectra of lithium and beryllium in the extreme ultraviolet. Nat. 125 p. 233-234 (1930).

[76] Bengt Edlén and A. Ericson, Vacuum spark spectra in the extreme ultra-violet down to 100 Å. Nat. 124 p. 688-689 (1929).

[77] Bengt Edlén and A. Ericson, Sur le spectre d'étincelle condensée dans l'ultraviolet extrême jusqu'à 88 Å. C. R. **190** p. 116-118 (1930).

[78] A. Ericson and B. Edlén, Serienspektra der leichtesten Elemente im extremen Ultraviolett. Zs. f. Phys. 59 p. 656-679 (1930).

[79] Lawrence Y. Faust, Fine structure of the K-radiation of the lighter elements. Phys. Rev. (2) 36 p. 161-172 (1930).

[80] J. B. Green, Incomplete Paschen-Back-effect. Phys. Rev. (2) 36 p. 157-160 (1930).

[81] F. A. Jenkins, Fine structure in the beryllium fluoride bands. Phys. Rev. (2) 35 p. 315 bis 335 (1930); Phys. Rev. (2) 33 p. 1090 (1929) Abstract.

[82] P. Krishnamurti, The Raman effect in crystal powders of inorganic nitrates. Indian J. of Phys. 5 p. 1-12 (1930).

[83] H. Nagaoka and T. Futagami, Reversal in the spectra of beryllium. Proc. Imp. Acad. Tokyo 6 p. 12-14 (1930).

[84] F. Paschen, Eine Erweiterung der einfachen Spektra. Berl. Ber. 1930 p. 574-578.

[85] Martin Söderman, Structure of K-radiation from C, B and Be. Phys. Rev. (2) 36 p. 1414 bis 1415 (1930).

[86] M. Söderman, Some precision measurements in the soft X-ray region. Phil. Mag. (7) 10 p. 600-616 (1930).

[86a] M. Söderman, Die Struktur der K-Strahlung im ultraweichen Röntgengebiet. Zs. f. Phys. 65 p. 656-661 (1930).

[87] B. Trumpy, Über die inaktive NO₃-Ionenfrequenz. Kon. Norske Vidensk. Selsk. Förh. 3 p. 159—162 (1930).

[88] W. Watson, Evidence for the isotope of mass 8 in the BeH band spectrum. Phys. Rev. (2) **36** p. 1019 (1930).

[89] Bengt Edlén, Vacuum spark spectra to 40 Å. The spectra of Be III, Be IV, B IV, B V and CV. Nat. **127** p. 405-406 (1931).

[90] W. V. Houston, Structure of soft X-ray lines. Phys. Rev. (2) 38 p. 1797-1802 (1931).

[91] R. Mecke, Bandenspektra negativer Ionen. Zs. f. Phys. 72 p. 155-162 (1931).

[92] R. S. Mulliken, Note on the interpretation of the BeF bands. Phys. Rev. (2) 38 p. 836 -837 (1931).

[93] R. S. Mulliken, Interpretation of certain ²Δ, ²Π bands of SiH. Phys. Rev. (2) 37 p. 733 -735 (1931).

[94] R. S. Mulliken and A. Christy, A-type-doubling and electron configurations in diatomic molecules. Phys. Rev. (2) 38 p. 87-119 (1931).

[95] F. Paschen und P. G. Kruger, Die Spektra Beryllium I und II. Ann. d. Phys. (5) 8 p. 1005-1016 (1931).

[96] A. S. Shenstone, The Auger effect in atomic spectra. Phys. Rev. (2) **37** p. 1701-1702 (1931).

[97] W. W. Watson and A. E. Partler, Evidence for a Be isotope of mass 8 and fine structure measurements in the BeH bands. Phys. Rev. (2) **37** p. 167-175 (1931).

Während 1923 im wesentlichen für die Wellenlängen des Be nur eine ganz kurze Liste von Rowland und Tatnall vorlag, deren Linien nicht einmal allgemein für sicher gehalten wurden, über den Bau des Spektrums und Ionisationsstufen gar nichts bekannt war, ist jetzt eine lange Liste von Linien vorhanden, die von λ 8253 bis λ 64 reicht; die Spektren von BeI und Be II sind nahezu ganz bekannt, und einige Linien von Be III und Be IV. Auch die Kenntnis der Bandenspektra hat sich erheblich entwickelt.

Linienspektra. Be I. Zweivalenzelektronensystem mit Singuletts u. Tripletts.

BeII. Einvalenzelektronensystem mit Dubletts.

[•] Den ersten Anfang einer Klärung des Baues verdankt man Popow, der in 2 Arbeiten [27, 29] den Zeemaneffekt einer Reihe von Linien untersucht, und zeigt, daß eine Anzahl der Paare, die Rowland gab, in Wahrheit Tripletts sind. Es ist damit die Triplettserie von Be I gefunden. Er macht es weiter wahrscheinlich, daß auch eine Singulettserie von Be I vorhanden sei, eine Gruppe von 5 Linien (in Wahrheit 6) und eine Paarserie, die zu Be II gehört. — Diese Resultate, die als vorläufige bezeichnet wurden und nicht alle gesichert waren, sind dann durch Back [37] mittels einer Untersuchung der Zeemaneffekte sämtlich bestätigt worden.

Ein zweiter Anstoß kam von Seiten der kürzesten Wellenlängen durch Millik an und Bowen. In der ersten Arbeit finden sie irrtümlich, daß Be zwischen λ 2100 und λ 200 keine Linien besitze [34], aber schon bald [42] finden sie eine Linie bei λ 1512 (in Wahrheit ein Paar von Be II) und geben dann [41] 3 Glieder der Paarserie. Es folgt die Auffindung der PP'-Gruppe mit ihren 6 Linien [43] und dann eine längere

Liste der Tripletts von BeI und der Paare von BeII, welche bis λ 842 hinunterreicht [49].

Den nächsten Fortschritt bringen Paton und Rassweiler [68], die Teile von 2 Singulettserien von Be I im elektrischen Ofen erhalten. Diese Serien werden durch Paschen und Kruger [95] ergänzt, die auch sonst die Spektra von Be I und Be II vervollständigen und die ganze Ordnung zu einem gewissen Abschluß bringen. Sie erzeugen die Spektra teils indem sie eine mit metallischem Be ausgekleidete Hohlkathode benutzen, teils mit einem Bogen zwischen Metallelektroden, der in einem geschlossenen Gefäß brennt, das mit verschiedenen Gasen gefüllt wird, am besten mit Wasserstoff. Bei Gegenwart von O oxydiert das Metall sofort und die Elektroden werden nichtleitend. Beim Bogen in Wasserstoff treten auch 2 Banden auf bei 4991 und 5100 (die zum Hydrid gehören, siehe weiterhin). Gleichzeitig tritt die zweite Singulettserie stark auf, und Paschen meint, zu ihrer Entstehung seien noch chemische Vorgänge erforderlich; die Dissoziation aus einem Molekül scheine eine wesentliche Bedingung zu ihrer Erzeugung zu sein. Paschen und Kruger geben auch vollständige Termschemata und Listen der beiden Spektren Be I und Be II. Paton und Nußbaum [69] glauben noch eine Kombinationslinie 4553.07 zu finden; Paschen hält das für falsch.

Es sind noch mehrere Arbeiten zu nennen, die neue Linien geben; aber ihre Zugehörigkeit zu Be ist sehr unwahrscheinlich. Es seien genannt: Glaser [36], Mc Donald u. a. [50], Mc Lennan und Liggett [51]. Neumessungen geben Bose und Mukherjee [64], Smith und Westman [53]. Die Messung mehrerer Linien durch Selwyn [72] scheint sehr gut zu sein.

Die Ionisierungsspannung für den Grundterm ¹S von Be I wird von Paschen und Kruger zu 9.2810 Volt angegeben. Für Be II gibt Joos (Handb. d. Experim. Phys. **22** p. 229) die Ionisierungsspannung 18.13 Volt an.

Das Be I-Spektrum wurde von Paschen [84] noch erweitert. Er fand die wichtigsten Singulett-Terme und einige neue Triplett-P-Terme. Die Termwerte sind mit den von Bowen und Millikan gefundenen in Tab. 5 angegeben.

Be III. Zweielektronensystem mit Singuletts.

Be IV. Einelektronensystem mit Dubletts.

Etwas wesentlich Neues liefern Ericson und Edlén [75—78], die zum erstenmal Linien von Be III finden, und damit das Spektrum bis zu λ 84 ausdehnen. Sie bemerken, daß Söderman die Röntgenlinie Ka bei etwa 113A gefunden habe, so daß hier Röntgenspektrum und optisches Spektrum in dasselbe Gebiet fallen. Neuestens gibt Edlén [89] weitere Linien von Be III, auch 2 von Be IV, erreicht damit $\lambda 64$. — Kellner [55] sagt, der Grundterm von Be III sei 367.645 cm⁻¹, die Ionisierungsspannung 151.293 Volt. — Edlén und Ericson geben als Ionisierungsspannung von Be III: 153.10 \pm 0.1 Volt.

Es folgen nun die Tabellen 1, 2 und 3. Die Messungen von Rowland und Tatnall [9] sind noch aufgenommen. Bei den Beobachtern außer Paschen und Kruger ist angegeben, zu welcher Ionisationsstufe die Linie gezählt ist, übrigens immer in Übereinstimmung aller Beobachter.

Zu den Linienspektren des Be sei noch bemerkt, daß Allin und Ireton [54] im Unterwasserfunken λ 2175 umgekehrt erhalten.

124.1			14	**	
1.9	neli	10	1.1	Re	-
	N.C.A.			200	

Kombinationen [95]		Pass u. Κ [9 λ Ι	chen ruger 5] Juft	Rowla u. Tat [9] λ Lu	and nall Inft	Bowen u. Millik. [49] λ vac	Paton u. Rassweil. [68]	Bose u. Mukh. [64]	Selwyn [72] λ Luft
21P_31S	8254	10	10	th_ http:	, aut	(plict hnd)	3.5 I	L. bay	100
33P-43S	16	05?	1	dist.		an all		Subjed.	Antoire
3*S-4*P	7209	3?	3	di anno		In Franking		in Barris	millator
33P-53S	6981	0?	1					1.11.1.1	
21P_31D	4572	69	10	2.689	45		2.69 I 12		1)
21P-41S	4407	91	9			1 110 123	8.02 I 5	The second	,
2s 3d 3D-2p 3s 3P.	4254	12	2			Dib birit	_	and shares	A TRADUCTOR
2s 3d 3D-2p 3s 3P,	53	76	5			Bamles, q	S days and	in the	Second V. O
2s 3d 3D-2p 3s 3P.	53	05	6	- 18 -		discourses a	international in	Internet	and and a
2p 2p 3P2p 3s 3P.	3866	03	6						
2p 2p 3P,-2p 3s 3P,	65	74	2	-			-		
2p 2p 3Po-2p 3s 3P1	65	50	5	-			-		and the second second
2p 2p 3P2-2p 3s 3P2	65	43	8			Real lease	ast put		
2p 2p 3P1-2p 3s3P	65	14	3	find m		CALLSREE IN	N. F. LEF IS		al 199
21P-41D	13	40	10	1 1040		susher's p	3.46 I 8		edilmo?
2 ¹ P-5 ¹ S	3736	28	5			Seattle Seattle	6.30 I 3		1.1.1
21P-51D	15	54	8	-			5.57 I 5		
21P-61S	3476	61	3				-		
21P-2p 2p 1D	55	20	7	_		1 DENELON	-		neu ph
21P-61D	3367	64	6	7.579	3	pinter vista	7.67 I 3	7.55	lalt ba
21P-71S	45	44	2	-		tela, state	4	- 1	Burnhash
$2^{3}P_{2}$ — $3^{3}S$	21	347	30	1.347	45	2.303 I	1.35 I)	-	1.350
2 ³ P ₁ -3 ³ S	21	086	20	1.079	45	2.042 I	1.09 I 8	-	1.089
2 ³ P ₀ -3 ³ S	21	013	10	-		1.969 I	1.02 I		1.016
21P-71D	3282	92	5	-		1	3.15 I 1	_	-
21P-81S	68	99	1			A DECK		Source all	
21P-81D	29	62	3	pique-		- h	11	-11-20	
21P-91D	3193	79	2	-			1		-
2 ¹ P-10 ¹ D	68	45	1	and in the		-	-		
$2s 3d^{3}D - 2p 3d^{3}D_{2}$	10	95	6			-	-	0.91	-
2s 3d 3D-2p 3d 3D ₃	10	83	7	-		-	-	-	-
2s 3p ³ P-2p 3p ³ P ₀	3019	60	3	10110		C DE DU	-		
2s 3p ³ P-2p 3p ³ P ₁	19	51	6			Tone be	-	9.54	
2s 3p 3P-2p 3p 3P2	19	34	8	-		-	- '	9.33	-
2s 3s ³ S-2p 3s ³ P ₀	2986	62	5			-	-	6.63	
2s 3s ³ S-2p 3s ³ P ₁	86	44	8	6.426?	2	-	-	6.44	-
2s 3s ³ S—2p 3s ³ P ₂	86	09	10	6.057?	3	-	-	6.08	-
2p 2p ³ P ₂ —2p 3d ³ D ₃	2898	27	8	8.242?	1	-	-	8.26	-
$2p 2p ^{3}P_{1}$ — $2p 3d ^{3}D_{2}$	98	19	7			-	-	8.08	
2s 2p ¹ P-2p 2p ¹ S	2738	09	5			-	-	-	
$2s 2p^{3}P_{2}$ — $2p 2p^{3}P_{1}$	2650	779	10	0.942	45	1.564 I	0.79	Total.	0.776
2s 2p ³ P ₁ —2p 2p ³ P ₀	50	712	5	-	-	1.497 I	. 10	-	0.719
$2s 2p^{3}P_{2}$ — $2p 2p^{3}P_{2}$	50	636	10	-		1.433 I	bis 12	-	0.645
$2s 2p^{3}P_{1} - 2p 2p^{3}P_{1}$	50	613	8	-		1.406 I	.]	-	0.618

¹) Glaser [36] mißt diese Linien 4572.736. Sonst gibt er noch folgende Linien, die von niemand sonst gefunden sind, also wohl zu Verunreinigungen gehören: 4607 (4)?, 4600 (2)?, 4486.7(2)?, 4277.8(3)?, 4263.6(4)?, 4216.0(5), 4079.0(5), 3994.0(4), 3936.0(5), 3909.3(3), 3891.0(4).

Kombinationen [95]		Pas u. K [{ λ]	schen Truger 95] Luft	Rowla u. Tat [9] λ Lu	and nall ıft	Bowen u. Millik. [49] λ vac	Paton u. Rassweil. [68]	Bose u. Mukh. [64]	Selwyn [72] λ Luft
2s2p3P0-2p2p3P1	2650	565	6	_		1.350 I	bis)	_	0.562
2s2p3P1-2p2p3P2	50	470	10	0.314	45	1.255 I	0.47	_	0.467
2 ³ P ₂ -3 ³ D	2494	735	20	4.951	40	5.487 I	4.63)	the in	4.734
2 ³ P ₁ -3 ³ D	94	580	12	4.523	40	5.342 I	4.48 I 6		4.589
2 ³ P ₀ -3 ³ D	94	547	8	-		5.299 I	4.44	λ vac	4.546
$2^{3}P_{2}$ — $4^{3}S$	2350	826	8	0.847	6	1.50 I	0.78 I 5	1.54	0.78
2 ³ P _{1,0} -4 ³ S	50	689	7	- 99		_		1.40	_
21S-21P	48	612	30R	8.690	50R		8.62 I 20		
$2^{3}P_{2}$ — $4^{3}D$	2175	069	6	5.095?	2	5.72 I	5.04 I 4	5.84	
2 ³ P _{1.0} -4 ³ D	2174	942	4			-			-
2 ³ P _{2,1} -5 ³ S	2126	37	5			6.57 I 4			5.70 5
2 ³ P _{2,1} -5 ³ D	2056	52	20			6.71 I 4	ell 2 year		6.06 9u
2 ³ P _{2,1} -6 ³ S	33	30	4			3.43 I 1			2.805^{1}
2 ³ P _{2,1} —6 ³ D	1998	01	10		8.13	8.19 I 2	rombil -		8.11 7u
2 ³ P _{2,1} -7 ³ S	85	13	3			_			5.34 2
2 ³ P _{2,1} -7 ³ D	64	59	9			4.81 I 1			4.79 Gu
23P2,1-83S	56	63	1			-			6.97 1u
2 ³ P _{2,1} -8 ³ D	43	68	5			3.60?11			3.84 4u
2 ³ P _{2,1} —9 ³ D	29	67	3						9.47 1u
2 ³ P _{2,1} -10 ³ D	19	76	3						9.62 1 u
2 ³ P _{2,1} -11 ³ D	12	49	1		964				2.75 Ou
2 ³ P _{2,1} -12 ³ D	07	12	닆						2)
21S-31P	1661	486	12		Chill.	18. au 19	Roasmi		1.48 2
21S-41P	1487	472	4		CET W	in here and	inordaen		h minim

Tabelle 2. Be II.

Kombinat. [95]		Pasch u. Kru [95] λ Lut	en ger ft	Bowen u. Millikan [49] λ vac	Kombinat. [95]		Pase u. Kr [90 λ L	chen ruger 5] uft	Bow Mill [4 λ	en u likan 49] vac	L .
3Pa-4S	5270	843	12	4.28 II 44)	2S-2Pa	3130	416	50	1.324	II	3)
3P1-4S	70	822 :	10		3Pa-5D	3046	676	8	7.86?		4
3D-4P	4828	119	7	9.58 II 24)	3P1-5D	46	520	6		-	
3D-4F	4673	462 5	20	4.55 II 84)	3D-6F	2728	83	4			
3Pa-4D	4361	025 :	10	2.21 II 74)	3P-68	2697	33	1			
3P1-4D	60	690	9	LIGHT	3P-6D	18	10	2		_	
3S-4P	3274	640 1	10	5.57 II 5	3D-7F	2507	40	1		-	
3Pg-5S	41	835 1	10	2.71 II 3	3S-5P	2453	89	3	4.63	II	1
3P1-5S	41	646	6		3P ₈ -7D	13	45	2			
3D-5P	33	538	3	4.47 II 1	3Pa-SD	2296	97	1		_	
3D-5F	3197	164	6	8,01 II 4	3S-6P	2161	275	1		_	
$2S-2P_1$	31	064 8	30	1.972 II 3)	Part and Mark	Ch. THE	1999	12.21			

¹) Selwyn gibt noch 2050.45 (2u) und 2043.13 (1u), die nicht eingeordnet sind. Von 1998 an hat er λ vac. ²) Selwyn gibt noch 1721.43 (1) Al?. ³) Rowland u. Tatnall geben 3131.064 (60), 3130.416 (60). ⁴) Smith u. Westman [53] messen: 7329.8 (1), 7212.6 (0), 5272.7 (20), 4883.2 (2) Band?, 4830.8 (8) Band?, 4672.3 (100), 4573.1 (40), 4364.0 (50).

Kombinat. [95]		Pase u. Kr [93 λ v	hen uger 5] ac	Bowe Milli [4 λ v	en u. ikan 9] rac	Kombinat. [95]		Pasel u. Kri [95 λ vi	nen iger] ac	Bowen u. Millikan [49] & vac
2Pa-3S	1776	339	8	6.339	II 81)	2Pa-6S	984	025	2	11-12-12-12
2P1-3S	76	118	6	6.118	II 6	2Pa-6D	973	266	5	10-12-18:02
2Pa-3D	1512	451	10	2.451	II 10 ¹)	2Pa-7S	49	746	1	192-1922-
2P1-3D	12	303	8	2.303	II 8	2Pa-7D	43	559	4	100 100
2Pa-4D	1197	19	10	1 115.	_	2Pa-8D	25	246	1	122
2P8-4D	43	03	7	3.01	II 2	2S-4P	842	057	7	2.03 II 1
2Pa-5S	1048	234	6		_	2S-5P	775	375	4	
25-3Pa	36	271	8	6.32	II 3	2S-6P	743	579	3	192-210
2P-5D	26	926	6	6.97	II 0	2S-7P	725	71	글	La P Cores

Tabelle 3. Be III.

[89]	Ericson und Edlén [78. 89]
11S-21P	100.250
11S-31P	88.30
11S-41P	84.75
11S-51P	83.19
11S-61P	82.37

Tabelle 4	Be IV.
-----------	--------

	Edlén [89]
12S-22P	75.925
12S-32P	64.063

Über den Zeemaneffekt an Be liegen außer der Arbeit von Back [37], durch welche die Serieneinordnung bestätigt wurde, noch 2 Untersuchungen von 2 Liniengruppen vor. Kapitza und Skinner [44] haben die ${}^{3}P_{0\,12}-{}^{3}P_{0\,12}^{-}$ Gruppe bei λ 2650, die aus 6 nahe aneinander liegenden Linien besteht, in starkem Feld (110500 Gauss) untersucht. Die schon von Back festgestellte Aufspaltung in normale Tripletts wurde bestätigt. Im Transversaleffekt tritt vollständige Paschen-Back-Verwandlung auf.

Von Green [80] wurden die magnetischen Aufspaltungen des Tripletts ${}^{3}P_{0\,12}$ — ${}^{3}S_{1}$ bei λ 3322, bei dem die ${}^{3}P$ -Aufspaltung sehr klein ist, nach der Darwinschen quantenmechanischen Theorie berechnet und so bessere Übereinstimmung mit den Messungen von Back erzielt, als nach der alten Theorie.

Als Restlinien des Berylliums sind in Löwes Atlas die folgenden angegeben:

2348.6 Be I	B 10 R	F 3	3131.1	Be II	B 10	F 10 H
2494.4	B8	F 6	3321.1	Be I	B 10	F 3
2650.9	B 9	F7	3321.4	Be I	B 10	F3
3130.4 Be II	B 10	F 10 R	4572.7	Be I	B8	F1

Im Röntgengebiete ist nur die K_{α} -Linie zu erwarten. Zunächst bestimmten Holtsmark [38] und Miss Levi [40] das kritische Potential. Ihre Methode liefert jedoch sehr ungenaue Werte; sie sind durch die Liniengittermessungen der letzten

¹) McLennan [51] gibt 1776.42 (8) im Bogen, 1776.46 (10) im Funken. Ferner 1660.24 (3) im Funken, 1512.9 (5) im Bogen, 1512.8 (10) im Funken. Selwyn [64] gibt 1776.28 (6), 1661.48 (2).

186

Be I	[84. 49]	Be	II [49]	Be	III [76]
2s 2s 1S	75194	22S	146880.5	21P	243.263
2s 2p ¹ P	32629	32S	58649.3	11S	1240.769
28 38 1S	20518	42S	31424.8	IN ROLL	
2s 3d ¹ D	10766	52S	19546.3		
		22P1	114951.7	[56] au	american.
33S	23110.22	22P2	114945.1	C. Internal on	THE PROPERTY
43S	10685.0	32P	50384.7		
5°S	6186.9	42P	28120.2		
63S	4033.0	5°P	17910.2	in the second	dank shall
23P.	53212.86	3°D	48827.4		
23P1	53212.18	42D	27460.4	a straig	1 2 108 1 24
$2^{3}P_{2}$	53209.83	5°D	17574.6	T. Guld	et. van de-
33D	13137.50	42F	27435.0	100 2-6	Cundence V
43D	7249.2	52F	17558.0		
5°D	4589.7			in Meng	ter moch elt
6°D	3165.7	ainquite		b astal	bau bais
73D	2315.5	minis			Tislar air
83D	1760.1	(Internet		mage in	
2p 2p ³ Po	15497.68	1-1-1701			s lei usten jat s
2p 2p 3P1	15496.18	NUT TOTAL		. Family	inden susmi
2p 2p ³ P ₂	15494.25	in one			destries an
2p 3s 3Po	-10362.5	and a			- abunda
³ P ₁	-10364.6		A Real Property in		
sp.	-10368.5	1000	ale strand		nn Sundous

Tabelle 5 der Termwerte.

Jahre bedeutungslos geworden. Mittels dieser Methode fand Söderman [71] den Wert 113.4 ÅE für das Schwärzungsmaximum, während die ganze Linienbreite von 111—122 ÅE reicht. In einer späteren Arbeit [86] gibt er den, wie es scheint, genaueren Wert 115.7 bei einer Breite von 10 ÅE an. Faust [79] glaubte eine Feinstruktur gefunden zu haben, deren Nichtexistenz jedoch von Söderman [85, 86a] nachgewiesen und durch Gitterfehler erklärt wurde. Schließlich sei noch eine Arbeit von Houston [90] erwähnt, der die Södermanschen Ergebnisse mit den theoretischen Intensitätskurven für die Modelle mit freiem und gebundenem Elektron vergleicht.

Bandenspektra.

1. Oxydspektrum.

Auf p. 102 von Bd. VII dieses Handbuchs war gesagt, daß durch Lecoq und Gramont und durch Glaser [30] die Zahl der Bandengruppen auf 4 gebracht worden war. Glaser hat sich noch einmal mit dem Spektrum beschäftigt [36]. Indessen ist bei ihm keine moderne Analyse durchgeführt; auch sind seine Messungen ungenügend, so daß wir darüber fortgehen. Nur sei erwähnt, daß nach seinen Messungen Mecke [46] eine Gleichung für das Kantenschema aufstellt. Nach eigenen Messungen gibt dann Jevons [57] folgendes Kantenschema:

v"	0	1.	2	3	4	5	6	7
0	4708.67	5054.10	5445.9	PUT R	-	14 - 28	_	
1	4427.34	4732.66	5075.21	5462.7	-	_		-
2	4179.95	4451.79	4754.46	5094.64	5477.0			
3	- 1	4204.21	4474.69	4775.37	5111.97	5481.1	-	_
4	33-		4228.1	4496.47	4795.24	5127.25	-	_
5	- 1		-	4250.3	4517.3	4813.04	5140.53	_
6	-	10 - 2		-	-	4535.5	4827.35	5151.45

Er gibt als Kantenformel

$$\begin{split} \nu &= 21287.0 + 1364.2 \ (\mathrm{v}' + \frac{1}{2}) - 5.90 \ (\mathrm{v}' + \frac{1}{2})^2 - 1479.1 \ (\mathrm{v}'' + \frac{1}{2}) + 15.22 \ (\mathrm{v}'' + \frac{1}{2})^2 \\ &\quad - 5.24 \ (\mathrm{v}' + \frac{1}{2}) \ (\mathrm{v}'' + \frac{1}{2}). \end{split}$$

Jevons findet noch eine Menge neuer Banden zwischen $\lambda 3514$ und $\lambda 2910$, die aber sehr unklar sind und deren chemischer Ursprung, ob BeO oder BeF, ebenfalls unbekannt ist. Daher sei die Liste der möglichen Kanten nicht angeführt.

Am weitesten ist die Kenntnis gefördert durch Rosenthal und Jenkins [70], welche 6 Banden ausmessen. Jedes Band hat nur einen P- und einen R-Zweig, deren Linien streng einfach sind. Es fehlt nur eine Nullinie und ist nur eine Störung im R-Zweig vorhanden. Danach entsprechen die Banden dem Übergang ¹S—¹S. Es wird die Gleichung für die Nullinie gegeben:

$$\begin{split} v_0 &= 21254.05 + 1370.81 \; (\mathrm{v}' + \tfrac{1}{2}) - 7.76 \; (\mathrm{v}' + \tfrac{1}{2})^2 - 1487.45 \; (\mathrm{v}'' + \tfrac{1}{2}) \\ &+ 11.87 \; (\mathrm{v}'' + \tfrac{1}{2})^2. \end{split}$$

Der Bau des Spektrums zeigte, daß das Molekül eine gerade Zahl von Elektronen besitzen muß, wodurch BeN und BeH ausgeschlossen sind; es bleibt nur Be₂ oder BeO möglich. Das Auftreten spricht entschieden für eine Begünstigung durch O — Hellerwerden in der äußersten Flammenhülle, Schwächerwerden im Vakuum, so daß man ziemlich sicher vom Oxydspektrum sprechen kann.

v	0	1	2
	B' = 1.5692	1.5689	_
0	B'' = 1.6421	1.6232	_
100	$v_0 = 21,196.76$	19,732.99	
	1.5534	1.5537	1.5537
1	1.6422	1.6233	1.6052
	22,552.15	21,088.28	19,648.00
	_	1.5363	in conduction
2		1.6231	A. 32211
		22,428.20	and

Labelle o. Dandenkonstanten 14	U	h			
--------------------------------	---	---	--	--	--

Die Koeffizienten für die Nullinie der 00-Bande sind:

$B_0' = 1.5771$	$B_0'' = 1.6514$
$D_0' = -8.44 \cdot 10^{-6}$	$D_0'' = -8.26 \cdot 10^{-6}$
$F_0' = 22 \cdot 10^{-12}$	$F_0'' = 12 \cdot 10^{-12}$
$J_0' = 17.564 \cdot 10^{-40} \text{ gcm}^2$	$J_0'' = 16.774 \cdot 10^{-40}$ [die Trägheitsmomente]
$r_0' = 1.358 \cdot 10^{-8} \text{ cm}$	$r_0'' = 1.327 \cdot 10^{-8}$ [die Kernabstände].

Die gleiche Untersuchung hat auch Bengtsson [56] ausgeführt. Er arbeitete mit einem 6.4 m-Gitter. Als Dissoziationsenergie im Endzustand findet er: 140 kcal. Für Banden im Ultraviolett ergibt sich die Kantenformel

 $v = 31899 + 1006 v' - 10 v'^2 - 1126 v'' + 10 v''^2$.

Über das ultrarote Spektrum von BeO liegt eine Arbeit von Tolksdorf [61] vor. Es wurden die ultraroten Eigenschwingungen im Gebiet von $2-22 \mu$ untersucht. Nachfolgende Tabelle gibt eine Übersicht über die gefundenen Wellenlängen und deren Deutung durch Oberschwingungen.

λ(μ)	Intensität	Frequenz
10.5-14.0	s. st.	V1, V0
8.18	schw.	v _a
7.15	st.	22.
6.40	st.	22,
4.28	m. st.	CO.
4.00	schw.	$2v_2 + v_3$
-	-	$3\nu_1 + \nu_2$
_	_	$3\nu_{1} + \nu_{2}$
2.80-3.15	breit	$2\nu_1 + 2\nu_2$

Tabelle 7.

Das Durchlässigkeitsspektrum von BeO wurde durch Absorptionsmessungen an dünnen Pulverschichten untersucht.

2. Hydridspektrum.

Diese Banden treten im Bogen auf, der in Wasserstoff von 3—15 mm Druck brennt. Auch Paschen [95] sieht sie dort. Sie sind gleichzeitig von Watson [62] und von Petersen [58] bemerkt worden. Watson gibt an, es seien 2 Gruppen vorhanden; die erste liegt bei λ 5120 bis λ 4800. Es sei eine isolierte Gruppe von 12 Zweigen, deren gemeinsamer Anfang bei 20031 cm⁻¹ liege. Die Banden gehören sicher zur ²P₁, $_2 \rightarrow ^2$ S-Klasse. — Petersen [58] sagt, es seien mehrere überlagerte 3-zweigige Banden, deren erste Linien enge Paare. Die Banden sind nach Violett abschattiert, der gemeinsame Anfang sei 20032 cm⁻¹. Das Trägheitsmoment ergebe sich zu 3.53×10^{-40} , der Kernabstand zu 1.54×10^{-8} . — Watson gibt als Trägheitsmoment: 2.6833×10^{-40} und 2.7212×10^{-40} . Watson sieht noch eine zweite Gruppe von λ 3700 bis unter λ 2200. Es sind eine Anzahl nach Rot abschattierter Banden, die einfache P- und R-Zweige besitzen. Diese Gruppe gehört zur ¹S \rightarrow ¹S-Klasse.

Nachfolgende Tabelle gibt das Nullinienschema der ultravioletten BeH-Banden.

v'	v" = 0	1	2	3	4	5
0	39059	36918	34859	32882		-
1	(40505)		-	34328	32433	
2	(41922)	1000	111-1	1	33850	32037

Die Gleichung der Nullinien ist:

 $v_0 = 39059 + 1460.5 \text{ v}' - 14.5 \text{ v}'^2 - 2182.0 \text{ v}'' + 41.0 \text{ v}''^2.$

Als Trägheitsmomente gibt Watson an: $I_0' = 3.85 \cdot 10^{-40}$. $I_0'' = 2.50 \cdot 10^{-40}$ gm cm². Als Kernabstand $r_0'' = 1.29 \cdot 10^{-8}$ cm.

Später hat Bengtsson [63] die ultravioletten BeH-Banden (0-0, 1-0, 2-0, 3-0, 4-0) gemessen und analysiert. Er schreibt sie dem ionisierten BeH-Molekül zu und bezeichnet sie als ${}^{1}\Sigma_{-1}\Sigma_{-}$ Kombinationen. Er gibt die folgenden Banden-konstanten an: $2B'_{n} = 14.45 - 0.31$ n'; $2B''_{n} = 21.7 - 0.62$ n''. $r_{0}^{"} = 1.31 \cdot 10^{-8}$ cm.

In einer späteren Arbeit gibt Watson [88] an, er habe eine Anzahl schwacher Linien gefunden, die nach seiner Rechnung mit solchen eines isotopen Be_8 übereinstimmten. Dies Resultat wird ausführlich besprochen in [97], und weitere Details über den Bau der Banden (Spaltung der ersten Linien der R u. Q-Serie im (00) Bande (4991) werden hinzugefügt. — Man sehe auch Mulliken [93]. Mecke [91] sagt, die Banden stammten von [BeH]⁻.

3. Fluoridbanden. Datta [35] hat zuerst dies Spektrum beobachtet, indem er Beryllium-Kalium-Fluorid in den Bogen brachte. Er findet zwischen λ 3400 und λ 2800 6 Bandengruppen, abschattiert nach Rot. Die 4 kurzwelligen sind gleich gebaut, haben abwechselnd starke und schwache Kanten, die starken sind doppelt. Datta mißt eine große Anzahl der Kanten. Sein Hauptziel ist zu untersuchen, ob zahlenmäßige Zusammenhänge zwischen den Fluoridbanden der alkalischen Erden vorhanden seien, und er meint, das zu finden. Sonst wird für die Kenntnis der Banden nicht viel gewonnen.

Dann hat Mulliken [47] das System theoretisch behandelt nach den Angaben Dattas. Er schließt, es handle sich um einen ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -Übergang. Von den 3 Kanten, die Datta in jedem Band findet, schreibt er das erste einem R-Zweig, die beiden anderen Q-Zweigen zu, und gibt für letztere eine Formel. - Zu einer anderen Auffassung gelangt Jevons [58]; er meint, es seien 2 R-Zweige und 1 Q-Zweig vorhanden, die Doppelkante entspricht den Umkehrpunkten der beiden R-Zweige, die Einzelkante dem Beginn von R2 und Q2. Er gibt Formeln für die 3 Kanten. Daß Jevons auch neue Banden im Ultraviolett findet, deren Zugehörigkeit zu BeO oder BeF zweifelhaft bleibt, ist schon bei BeO gesagt. Wieder eine andere Deutung bringt Jenkins [81], dem die völlige Auflösung der Banden gelingt, so daß er die Kombinationsbeziehungen aufstellen kann. Nach ihm besitzt das Spektrum je 2 P-, 2 Q- und 2 R-Zweige, die mit wachsender Ordnungszahl immer enger zusammenlaufen. Die Doppelkante entspricht auch nach ihm der Umkehrung der beiden R-Zweige, die einfache Kante dem Ursprung von R1, Q1, P1. Das zahlreiche Detail der umfangreichen Arbeit muß man im Original nachsehen. Man sehe auch Mulliken [92]. Es seien nur die Werte der Konstanten angeführt, wie Jenkins sie angibt. Die Kernabstände und Grundfrequenzen für den Anfangs- und Endzustand betragen: $r'_e = 1.390 \cdot 10^{-8}$ cm,

16		IKen VI)
15		TINW) St
14	30096.9	11 42-DWE
13	30153.8 152.4	Wellenzai
12	30209.7 208.3	untere
11	30263.4 30263.4 31257.2	(2)
10	30318.4 313.6.4 313.6.4 	lainker
6	30373.9	Tweng (1)
8	30430.1 428.7 	nzahl K ₁
L L	30485.8 484.3 484.3 1534.6 1334.6 198.0	ere Welle
nscnema 6	30541.8 539.9 539.9 569.6 569.6 569.6 569.6 569.6 569.6 569.6	mittl
, name	30597.5 595.6 595.6 639.4 639.5 639.4 871.6 840.8 840.8	2-Zweig
A I A	30654.0 651.9 651.9 712.7 33930.6 995.8 966.8	enzahl R
0	30710.7 708.9 708.9 827.3 827.3 708.0 31830.1 827.4 934.9 934.9 035.2 035.2 035.2 035.2 035.4 092.4	rste Well
6	30767.6 766.1 766.1 31904.6 901.7 901.7 901.7 33145.7 142.0 142.0 142.0 218.2 218.2 218.2	obei
-	31979.0 976.9 976.9 33125.2 121.2 2251.3 2251.3 368.7 358.7 358.7 355.5 358.7 355.2	tta [35]
0	33217.6 214.6 180.0 34366.7 3332.0 35501.6 472.5 472.5	nach Da
1.4	v v v v v v v v v v v v v v v v v v v	v-Werte

Kantenschema des Dublettsystems ${}^{2}H-{}^{2}\Sigma$ von Be F [58].

Beryllium

191

 $r'_e = 1.357 \cdot 10^{-8}$ cm, $\omega'_e = 1172.56$ cm⁻¹, $\omega''_e = 1256.62$ cm⁻¹. Die Elektronenschwingungsenergie ist $\nu_e = 33,233.61$. Die Gleichungen der Kanten der R₂-, R₁- und Q₁-Zweige lauten nach Jenkins:

 $\begin{array}{l} {\rm R_2:} \ \nu = 33,\!217.3 + 1153.3 \ {\rm v'} - 5.88 \ {\rm v'}^2 - 1247.1 \ {\rm v''} + 11.21 \ {\rm v''}^2 - 4.92 \ {\rm v'} \ {\rm v''} \\ {\rm R_1:} \ \nu = 33,\!214.3 + 1153.9 \ {\rm v'} - 5.67 \ {\rm v'}^2 - 1247.1 \ {\rm v''} + 11.50 \ {\rm v''}^2 - 5.36 \ {\rm v'} \ {\rm v''} \\ {\rm Q_1:} \ \nu = 33,\!179.9 + 1163.8 \ {\rm v'} - 8.78 \ {\rm v'}^2 - 1256.5 \ {\rm v''} + 9.12 \ {\rm v''}^2. \end{array}$

Die Gleichung der Nullinien ist:

 $v_0 = 33,187.21 + 1168.8 \text{ v}' - 8.78 \text{ v}'^2 - 1256.5 \text{ v}'' + 9.12 \text{ v}''^2.$

Auch Takahashi [48] behandelt das Spektrum. Asundi [73] sucht vergeblich nach Banden im Ultrarot.

Der Ramaneffekt wurde an Beryll (Be₃Al₂Si₆O₁₈) von Nisi [67] untersucht. Er fand die beiden Frequenzen $\Delta \nu = 642$ und 3602. Das Nitrat Be(NO₃)₂ wurde von Krishnamurti [82] und von Trumpy [87] untersucht, die die Frequenzen $\Delta \nu$ (krist. + 3H₂O) = 1050 und $\Delta \nu$ (3n-Lösung) = 1049.4 fanden.

Abgeschlossen am 15. 12. 1931.

Wismut (Bi = 209.00, Z = 83).

Literatur.

1. Nachtrag zu Bd. VII, p. 104-113.

[102] M. Siegbahn, Über eine neue Serie (L-Reihe) in den Hochfrequenzspektren der Elemente. Verh. d. Dtsch. Phys. Ges. 18 p. 150-153 (1916).

[103] T. Takamine and S. Nitta, The spark and the vacuum arc spectra of some metals in the extreme ultra violet. Mem. Coll. Kyoto 2 p. 117-135 (1917).

[104] S. N. Collie and H. E. Watson, On the spectrum of cadmium in the inactive gases. Proc. Roy. Soc. A 95 p. 83-99 (1918).

[105] R. J. Strutt, Le Radium 11 p. 200-204 (1919).

[106] L. et E. Bloch, Sur quelques nouveaux spectres d'étincelle dans l'ultraviolet extrême.
 C. R. 170 p. 320-322 (1920).

[107] L. et E. Bloch, Spectres d'étincelle de quelques éléments dans l'ultraviolet extrême. C. R. 171 p. 709-711 (1920).

[108] A. de Gramont, Spectres d'arc direct des métaux très fusibles. C. R. 170 p. 31-34 (1920).

[109] J. C. Mc Lennan, I. F. T. Young and H. I. C. Ireton, Arc spectra in vacuo and spark spectra in helium of various elements. Proc. Roy. Soc. A 98 p. 95-108 (1920).

[110] L. et E. Bloch, Spectres d'étincelle dans l'ultraviolet extrême. J. de Phys. et le Rad.
 (6) 2 p. 229-257 (1921).

[111] D. Coster, Le principe de combinaison et la loi de Stokes dans les séries des rayons X.
 C. R. 172 p. 1176—1178 (1921).

[112] A. de Gramont et G. A. Hemsalech, Sur les conditions d'émission des raies d'étincelle.
 C. R. 173 p. 278-284 (1921).

2. Fortsetzung.

[113] L. et E. Bloch, Spectres d'étincelles dans l'eau. J. de Phys. et le Rad. (6) 3 p. 309-325 (1922).

[113a] D. Coster, On the principle of combination and Stokes' law in the X-ray series. Phys. Rev. 19 p. 20-23 (1922).

[114] V. Dolejšek, Über die N-Serie der Röntgenspektren. Zs. f. Phys. 10 p. 129-136 (1922).

[115] W. Duane and R. A. Patterson, Note on X-ray spectra. Proc. Nat. Acad. 8 p. 85-90 (1922). — Phys. Rev. (2) 19 p. 542-543 (1922).

[116] Elis Hjalmar, Recherches sur les séries des rayons X. C. R. 175 p. 878-880 (1922).
 [117] V. P. Lubovich und F. M. Pearen, Über ultrarote Spektroskopie. Trans. Canada (3) 16,

III p. 195-212 (1922).

[118] H. Nagaoka and Y. Sugiura, The structure of the bismuth lines. Proc. math. phys. Soc. Japan (3) 4 p. 13 (1922). — Japan. J. of Phys. 1 p. 18 (1922).

[119] W. Dolejšek, Sur l'identification des lignes de la série N. C. R. 178 p. 384-386 (1923).

[120] W. Grotrian, Die Absorptionsspektra einiger Metalldämpfe. Zs. f. Phys. 18 p. 169-182 (1923).

[121] E. Hjalmar, Röntgenspektroskopische Messungen. Zs. f. Phys. 15 p. 65-109 (1923). --Diss. Lund 1923.

Kayser u. Konen, Spektroskopie. VIII.

[122] A. E. Ruark, F. L. Mohler, P. D. Foote, R. L. Chenault, The spectra of fifth group metals. Nat. 112 p. 831 (1923).

[123] F. W. Aston, The mass-spectra of cadmium, tellurium and bismuth. Nat. 114 p. 717 (1924).

[124] L. et E. Bloch, Extension des spectres d'étincelle du plomb, du bismuth, de l'antimoine et du thallium dans l'ultraviolet extrême. C. R. **178** p. 472-474 (1924).

[125] W. Gerlach, Eine neue spektroskopische Absorptionsmethode. Festschr. Frankfurt p. 215-216 (1924).

[126] E. O. Hulburt, The absorption lines in the spectrum of metallic spark in water. Phys. Rev. (2) 24 p. 129-131 (1924).

[127] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[128] M. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Japan. J. of Phys. 3 p. 29-41 (1924).

[129] M. Kimura, Classification of enhanced lines of various elements II. Japan. J. of Phys. 3 p. 219-225 (1924).

[130] K. Kopfermann, Über sensibilisierte Fluoreszenz von Blei- und Wismutdampf. Zs. f. Phys. 21 p. 316-326 (1924).

[131] K. Lang, Messungen von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).

[132] R. J. Lang, On the ultra-violet spark-spectra of some of the elements. Phil. Trans. A 224 p. 371-419 (1924).

[133] A. L. Narayan, G. Subratsmuniam, D. Gunnaiya, K. Rangadhama Rao, Absorption spectra of some metallic vapours. Nat. 114 p. 194 (1924).

[134] A. L. Narayan and K. Rangadhama Rao, The fluorescence and channeled absorption spectra of bismuth vapour at high temperatures. Nat. 114 p. 645 (1924).

[135] A. E. Ruark, F. L. Mohler, P. D. Foote, R. L. Chenault, Spectra and critical potentials of fifth group elements. Sc. Pap. Bur. Stand. No. 490. Vol. 19 p. 463-486 (1924).

[136] A. E. Ruark, F. L. Mohler, P. D. Foote and R. L. Chenault, Critical potentials and spectra of arsenic, antimony, and bismuth. Phys. Rev. (2) 23 p. 770 (1924).

[137] A. E. Ruark, F. L. Mohler, P. D. Foote and R. L. Chenault, Critical potentials and spectra of arsenic, antimony, and bismuth. Americ. Phys. Soc. Wash. Meeting **39** (1924).

[138] C. Runge, Isotopes of mercury and bismuth and the satellites of their spectral lines. Nat. 113 p. 781 (1924).

[139] H. Sponer, Über Spektren elektrisch zerstäubter Drähte. Naturw. 12 p. 619-620 (1924).

[140] M. C. W. Buffam and H. J. C. Ireton, The under water spark spectrum of a number of elements. Trans. Roy. Soc. Canada (3) **19** p. 113-118 (1925).

[141] G. Joos, Gesetzmäßigkeiten in der Hyperfeinstruktur von Spektrallinien. Physik. Zs. 26 p. 380-382 (1925).

[142] M. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Nagaoka-Festschr. Tokyo p. 177-188 (1925).

[142a] A. Leide, Experimentelle Untersuchungen über Röntgenspektra. K-Serie. Diss. Lund 1925.

[143] J. C. Mc Lennan and A. B. Mc Lay, Absorption spectra of various elements in the ultraviolet. Trans. Roy. Soc. Canada (3) 19 p. 89-111 (1925).

[144] A. L. Narayan and K. R. Rao, Absorption of light by vapours of Pb, Sn, Bi, Sb and Mg. Phil. Mag. (6) 50 p. 645-649 (1925).

[145] K. R. Rao, On the fluorescence and channelled absorption of bismuth at high temperatures. Proc. Roy. Soc. A 107 p. 760-762 (1925).

[147] A. E. Ruark and Roy L. Chenault, Fine structure of spectrum lines. Phil. Mag. (6) 50 p. 937-956 (1925).

[148] A. Terenin, Anregung von Atomen und Molekülen zur Lichtemission durch Einstrahlung, I. Zs. f. Phys. 31 p. 26-49 (1925).

[149] J. M. Cork and B. R. Stephenson, The K-emission spectra for elements from atomic number 50 (Sn) to atomic number 83 (Bi). Phys. Rev. (2) 27 p. 103 (1926).

[150] John G. Frayne and Alpheus W. Smith, The absorption spectra of the vapours of Zn, Cd, Pb, Sn, Bi and Sb. Phil. Mag. (7) 1 p. 732-737 (1926).

[151] Einar Friman, Präzisionsmessungen in der L-Serie der Elemente Wolfram bis Uran. Zs. f. Phys. 39 p. 813-827 (1926).

[152] C. W. Heaps, The emissivity of bismuth in a magnetic field. Phys. Rev. (2) 27 p. 764 -768 (1926).

[153] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. phys. chem. research 4 p. 59-78 (1926).

[154] H. Nagaoka and T. Mishima, Fine structure of bismuth lines. Proc. Imp. Acad. Tokyo 2 p. 249-251 (1926).

[154a] A. L. Narayan and K. R. Rao, A note on 2 4722 of bismuth and the nature of "Raies ultimes". Proc. Phys. Soc. London 38 p. 321-323 (1926).

[155] V. Thorsen, Über die Seriendarstellung des Wismutspektrums. Zs. f. Phys. 40 p. 642 -647 (1926).

[156] R. V. Zumstein, The absorption spectra of tellurium, bismuth, chromium and copper in the visible and ultra-violet. Phys. Rev. (2) 27 p. 562-567 (1926).

[157] C. E. Eddy and H. Turner, L-emission spectra of lead and bismuth. Proc. Roy. Soc. A 114 p. 605-610 (1927).

[158] S. Goudsmit und E. Back, Feinstrukturen und Termordnungen des Wismutspektrums. Zs. f. Phys. 43 p. 321-334 (1927).

[159] M. Kimura, The number of easily detachable electrons in the atoms of various elements. Japan. J. of Phys. 4 p. 71-74 (1927).

[160] J. C. Mc Lennan and A. B. Mc Lay, A note on the structure of the arc spectra of the elements of the nitrogen group. Trans. Canada (3) 21, III p. 63-77 (1927).

[161] E. Schweitzer, Der quantitative spektralanalytische Nachweis von Blei in Wismut. Zs. f. anorg. Chem. 165 p. 364-370 (1927).

[162] G. R. Toshniwal, On the arc spectrum of bismuth. Phil. Mag. (7) 4 p. 774-787 (1927).

[163] E. Back und S. Goudsmit, Kernmoment und Zeemaneffekt von Wismut. Zs. f. Phys. 47 p. 174-183 (1928).

[164] E. Back und S. Goudsmit, Zeeman-effect of hyperfine structure and magnetic moment of the bismuth nucleus. Phys. Rev. (2) 31 p. 1125 (1928).

[165] P. Daure, Sur les radiations secondaires observées dans la diffusion moléculaire de la lumière (effet Raman). C. R. 187 p. 940—941 (1928).

[166] R. J. Lang, On the spectra of doubly ionized arsenic, antimony and bismuth (As III, Sb III, Bi III). Phys. Rev. (2) 32 p. 737-745 (1928).

[167] Ernst Lindberg, Röntgenspektroskopische Messungen der M-Reihe der Elemente Uran bis Gadolinium. Zs. f. Phys. 50 p. 82-96 (1928).

[168] M. Miyanishi, The nature of streamers in electric sparks. Japan. J. of Phys. 5 p. 67-82 (1928).

[168a] S. Goudsmit and R. F. Bacher, The Paschen-Back-effect of hyperfine structure. Phys. Rev. (2) 34 p. 1499-1500 (1929).

[169] H. E. White, Interpretation of hyperfine structure in spectral terms. Phys. Rev. (2) 34 p. 1404—1410 (1929).

[170] Gustav Arvidsson, Hyperfine structure in some spectral lines from highly ionized atoms of thallium and bismuth. Nat. 126 p. 565-566 (1930).

[170a] E. Back und J. Wulff, Nachtrag zu: Hyperfeinstruktur des Wismuts von Zeeman, Back und Goudsmit [182]. Zs. f. Phys. 66 p. 10-12 (1930).

[171] S. Barratt and A. R. Bonar, The band spectra of cadmium and bismuth. Phil. Mag. (7) 9 p. 519-524 (1930).

[172] S. Bhagavantam, Raman spectra of some elements and simple compounds. Ind. J. of Phys. 5 p. 35-48 (1930).

[173] F. Charola, Die Absorptionsspektren der Dämpfe von Wismut und Antimon. Phys. Zs. 31 p. 457-463 (1930). — Estud. de las cienc. fis. y math. 5 p. 205-220 (1929).

[174] S. Goudsmit and R. F. Bacher, Der Paschen-Back-Effekt der Hyperfeinstruktur. Zs. f. Phys. 66 p. 13-30 (1930).

[175] S. Idei, The precise measurements of the L-group of the X-rays in the heavy elements. Sc.-Rep. Tôhoku Imp. Univ. **19** p. 559-658 (1930).

[176] P. Krishnamurti, The Raman effect in crystal powders of inorganic nitrates. Ind. J. of Phys. 5 p. 1-12 (1930).

[177] P. Krishnamurti, Raman spectra of crystalline inorganic chlorides. Ind. J. of Phys. 5 p. 113-128 (1930).

[178] J. C. Mc Lennan, A. B. Mc Lay and M. F. Crawford, Spark spectra of bismuth, Bi II and Bi III. Evidence of hyperfine structure. Proc. Roy. Soc. A **129** p. 579-588 (1930).

[179] B. A. Lomakin, Quantitative Spektralbestimmung von Wismut in Kupfer. Zs. f. anorg. Chem. 187 p. 75-96 (1930).

[180] Arne Sandström, Röntgenspektroskopische Messungen der L-Absorption der Elemente 74 Wolfram bis 92 Uran. Zs. f. Phys. 65 p. 632-655 (1930).

[181] H. E. White, Relative intensities in hyperfine structure. Phys. Rev. (2) 36 p. 1800 (1930).

[182] P. Zeeman, E. Back und S. Goudsmit, Zur Hyperfeinstruktur des Wismuts. Zs. f. Phys. 66 p. 1-12 (1930).

[183] G. Breit, On the hyperfine structure of heavy elements. Phys. Rev. (2) **38** p. 463-472 (1931).

[184] R. A. Fisher and S. Goudsmit, Hyperfine structure in Bi II and Bi III (Abstr.) Phys. Rev. (2) 37 p. 1013-1014 (1931).

[185] R. A. Fisher and S. Goudsmit, Hyperfine structure of ionized bismuth. Phys. Rev. (2) 37 p. 1057-1068 (1931).

[186] J. B. Green, Paschen-Back-effect and hyperfine structure in the spectrum of bismuth III (Abstr.). Phys. Rev. (2) 37 p. 1013 (1931).

[187] A. Heimer and E. Hulthén, Band spectrum of bismuth hydride. Nat. 127 p. 557 (1931).

[188] F. R. Hirsch jr., The satellites of M-series X-ray lines. Phys. Rev. (2) 38 p. 914-924 (1931).

[189] P. Krafft, Untersuchung der Absorptionsspektren der M-Serie der Elemente Wismuth, Blei, Thallium, Gold. Wiener Anz. Nr. 17 p. 175-176 (1931).

[190] J. C. Mc Lennan, A. B. Mc Lay and M. F. Crawford, Interpretation of hyperfine structure. — Discussion of h. f. s. in Tl II. Relative G (J) factors of Tl, Bi, Pb (207) and nuclear structure. Proc. Roy. Soc. A 133 p. 652—667 (1931).

[191] E. Lindberg, The M- and N-series. A spectroscopic study of X-rays. Nova acta reg. soc. sci. Ups. 7 (4) p. 5-74 (1931).

[192] J. Parys, Über die Resonanzserien des Wismutdampfes. Zs. f. Phys. 71 p. 807-814 (1931).

[193] P. G. Saper, Band spectrum of bismuth chloride. Phys. Rev. (2) 37 p. 1710 (1931).

[194] H. Schüler, Hyperfeinstrukturen und Kernmomente. Phys. Zs. 32 p. 667-670 (1931).

[195] Stanley Smith, The resonance potential of trebly ionised bismuth. Nat. 127 p. 855 (1931).

[196] A. T. Williams, El numero de atomos excitados y los espectros de absorción de varios vapores metálicos. Estudio de las cienc. 5 p. 501-510 (1931).

Bi I ist ein Fünfvalenzelektronensystem, das Dubletts und Quartetts besitzt. Ionisierungsspannung 7.25 V (${}^{4}S_{8}$), Anregungsspannung 4.022 V.

Während bisher über den Bau der Bi-Spektra nur nach Kayser und Runge bekannt war, daß 3 Schwingungsdifferenzen sich oft wiederholen, sind inzwischen die verschiedenen Ionisationsstufen Bi I, Bi II, Bi III und Bi IV teilweise getrennt worden. Ruark, Foote, Mohler und Chenault [135-137] wenden die Methode des thermionischen Bombardements an, wobei die Geschwindigkeiten von 5 Volt bis 60 Volt gesteigert werden. Bei 5 Volt erscheinen nur die Resonanzlinien λ 4722

und λ 3067, während beim Ionisationspotential 8.0 \pm 0.5 das ganze Spektrum Bi I entwickelt ist. Das Spektrum Bi II erscheint oberhalb 14 \pm 1 Volt, höhere Stufen liegen bei 25 \pm 5 und wahrscheinlich bei 45 \pm 5 Volt. Nachdem so die Linien von Bi I gesondert sind¹), wird eine Aufklärung des Baues versucht und es gelingt eine vorläufige Einordnung der meisten Linien, wobei alle ultraroten Linien von Randall [69] und Walters [97] in Bi I einbegriffen sind. Charakteristisch sind weit getrennte Paare. Aber zu einer völligen Klärung des Spektrums und zur Aufstellung einer Termtabelle kommt es nicht. Die von den Autoren zu Bi I gerechneten Linien sind in der weiter unten folgenden Tab. 1 zusammengestellt.

Der nächste, der sich mit dieser Frage beschäftigt, ist Kopfermann [130]. Er macht neue Messungen, die in der folgenden Tabelle angegeben sind. Sie scheinen aber nicht sehr genau zu sein; erstlicht sind alle Wellenlängen um etwa 0.1 A größer, als die der besten Beobachter, und zweitens haben einige Linien erhebliche Fehler, z. B. 2938. Er glaubt noch 17 Linien in das Schema von Kayser und Runge einordnen zu können; aber in einzelnen Fällen ist die Abweichung viel zu groß. Er stellt 4 Terme auf. Dann folgt Thorsen [155], der namentlich fremde Messungen benutzt, aber auch aus eigenen neue Linien gewinnt, welche auch in der Tab. 1 angegeben sind. Auch er ergänzt zunächst die Gruppen von Kayser und Runge auf der langwelligen Seite; dann stellt er eine Reihe von Termen auf und gibt Kombinationslinien ps und pd. Er findet Ansätze zu Serien.

Einige Bemerkungen machen Mc Lennan und Mc Lay [160], doch ist die Abhandlung nicht zugänglich.

Als dritter sei Toshnival [162] genannt, der aber die Kenntnisse kaum fördert. Auch er macht eigene höchst ungenügende Messungen. Er sagt zwar, der größte mögliche Fehler sei 0.08 A, bemerkt aber selbst, daß bei den kurzen Wellen seine Zahlen sehr abweichen von den älteren viel genaueren Messungen. Für einen Teil des Spektrums verzichtet er auf die eigenen Messungen und nimmt die von Offermann [96]. Dagegen findet er eine größere Zahl neuer Linien, bei denen man nach dem Gesagten aber auch nur geringe Genauigkeit, vielleicht bis 0.5 A, erwarten kann. Auch er ordnet nun die Linien wie Ruark und findet kurze Stücke von Serien, ist aber nicht imstande, Termtabellen aufzustellen.

Charola [173] hat das Absorptionsspektrum von Bi mittels Unterwasserwolframfunken und Kohlewiderstandsofen (800–2300°C) aufgenommen und fand 17 neue Terme des Bi, die er zum Teil klassifiziert und mit inneren Quantenzahlen versehen hat. Der tiefste Term des Wismuts ist der ${}^{4}S_{2}$ -Term, von dem alle beobachteten Absorptionslinien herrühren, da der nächst höhere Term (${}^{2}D_{2}$) selbst bei einer Temperatur von 1800° ab nur in einer Konzentration von 10^{-4} vertreten ist.

Aus allen diesen Arbeiten ist also der Schluß zu ziehen, daß jetzt die Linien von Bi I wohl ziemlich vollständig aufgefunden sein mögen, daß aber eine Erkenntnis des Baues des Spektrums noch aussteht. In der nun folgenden Tab. 1 sind die ultra-

¹) Die Forscher führen 16 Linien aus den Tabellen in diesem Handbuch, Bd. V, p. 167—172 an, die zu Verunreinigungen, namentlich Pb, gehören. Sie haben zweifellos in allen Fällen recht. — Sie geben auch 10 Linien von Kayser und Runge, die sie nicht gefunden haben; ob es sich auch hier um falsche Linien handelt, scheint zweifelhaft, da die meisten derselben von mehreren Beobachtern angeführt werden.

Eine Buark u a	ordnung nach Toshnival	Charola		Ruark [135]	Toshnival [162]	Kopferm. [130]	Charola [173]
Ituark u. o.	Tosimivar	Charona	21,2945		Colle Diter		
01.07	40 m [4D/ X	6476	24 3	6.24 3	sp Minute.	6.24 3
$3d_2 - 3D_2$	*S2-*D3	$4P_1 - \Lambda_6$	75	73 3	5.73 3	1 [121] 82	5.78 3
nonin martine	had anno chie	of the second second	6364	75 1	4.75 1u	sitis. and	4.75 1u
basis mentions	Port The Party	18	6184	99 2	4.99 2U	icommet a	4.99 2U
β	$^{2}\overline{\mathrm{P}}_{2}-\mathrm{H}_{2}$	⁴ P ₄ -X ₇	34	82 6	4.86 2	STATE OF B	4.86 2
No Balt - And	10.00	⁴ P ₁ —X ₉	5742	55 6	2.59 3r		2.58 3r
		-	18	-	8.81 2	-	8.81 2
$\beta - \lambda$	$^{2}P_{2}$ —J $_{2}$	² P ₂ ′— ² P ₂	5599	41 3	9.41 3	Buttesar	9.41 3
and the second of the	a secto - co car che	Service Hall	52	35.10	2.23 7r	and (g) the	2.23 7r
Billion-Pehfort	alian resided.	TT IN	08	tester has	in any the surger	id muteri	8.9 lu
-nie strift f	118-15-5 9910	² P ₂ '-X _{2,3}	5486	-	0.00 1	Stants 18	0.0 Iu
and the set	Site march	ant	5298	34 2	8.36 Iu	in the second	1.8 1u
-	The line	$2P_1 - X_2$	09	70 4	2.70 0.		9.0 1u
			4733	13 4	0.18 2r	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.11 21
0. R	2D 4D	notore-inur	28	54 10 P	0.00 1	0.70	9 83 10
$3a_1^{\mathrm{D}}-a$	$^{2}D_{2}$ $^{4}P_{1}$	2D 4D	22	04 10 K	2.00 10	0.10	2.55 10
Thora Toin be	$^{2}D_{2}$ $^{4}P_{1}$	-D ₂ +F ₁	00	nia 10,710	2.04 10	tion mail	2.04 10
-	-D ₂ P ₁	Serien.	16	ant John	6.38 1	nu an in	
all all the de	4D (Carl Michael	10	a Jost is	0.00 1	mistrum-1	maining
_	1 - 4670	-	4692	-	2.32 1u	-	2.32 1u
3d_3DB	$\varphi = 4010$ (2DX.	15	53 1	5.60 1	_	5.59 1u
3d-3DA	⁴ S ₂ - ² P ₁		15	09 1	5.15 1	_	5.15 1
3DA-8	2PB.	2P4P.	4492	99 2	2.97 1	3.16	2.97 1
3DB-8	$^{2}\overline{P}_{1} - B_{2}$		92	62 2	2.61 1	2.79	2.60 1
3DA_2	2PD.	2P,'-X.	4308	54 4	8.53 4	8.70	8.53 4
3DB_C	2P,-D.	2P,'-Xa	08	18 4	8.17 4	8.34	8.17 4
internation	dela	-	4272	5 2u			and the share
terreture - Prost	1	-	60	-	0.05 1U		
	4P1-5 (and the	5.4	17 1.0	4.15 1		4.15 1
a—5	$\xi = 2475$	1940-000	04	II IU	4.10 I	Test of the local data	4.10 1
			20		0.83 2	101-101	0.49 1
100-100	Bint - Contra		4127	n n-	7.36 1u	-	Sector (
$3D_1^A - \eta$	² P ₁ —E ₁	no) atta	21	86 6	1.84 5	2.01	1.84 5
$3D_1^B - \eta$	² P ₁ —E ₁	² P ₁ ′— ² P ₁	21	54 6	1.52 5	1.69	1.52 5
-	-	-	16	-	6.35 1	-	-
-		-	3912	-	2.90 1	-	2.89 1
$3D_1^A - \vartheta$	² P ₁ —F ₁	-	3888	19 1	8.22 2	8.34	8.22 2
$3D_1^B - \partial$	² P ₁ —F ₁	² P ₁ '-X ₅	87	90 1	7.94 2	8.05	7.93 2
aning - Durieu	1	1 1 7 11	3775	1 ott 1	5.75 1	Cast TD 10	5.74 1
	A DATE CARD	ALC: NOT A	3619	1	9.37 2	M nember	W LIR go
ant P	9D TT		8599	11 (1)	9.94 1	6.00	6.11 PD
3DA,B	*P1-H2	$^{2}P_{1} - X_{8}$	96	11 4R	0.11 3R	0.20	0.11 3R
0.0	2D D	9D (D	19	00 10	9.18 8	1.00	0.95 GP
3D2-0	*D ₃ —B ₂	*D ₃ -*P ₂	2505	00 4R	5.63 7	5.20	5.93 OR
ang t	·r1-J2	"P1 - P2	05	20 2R	0.05 /1	0.55	0.20 21
3D1-1.	2D C	de de la	00	10 0	2.80 2		all read about
8D. F	² D D	2DX	3397	17 4R	7.29 5R	7.81	7.21 5R
0195	13 12	1.5 175	0001	21 276	1100 020		

Einc Ruark u. a.	ordnung nach Toshnival	Charola	ang.	Ruark [135]	Toshnival [162]	Kopferm. [130]	Charola [173]
			0000		0.00 1		
_		01.	3382	-	2.28 1	-	
			01	-	1.23 1	-	
_	470 -1		02	-	2.55 1.5	-	
	*P1-d1	BL	3267	-8 -	7.97 1u	-	
8 -8	*P ₂ —b ₂	1.2	39	-	9.73 5	-	0
	-		16		6.8 10	-	
100 100	^a D ₂ —a	11 10	3144	-	4.6 50		
O JR &	² P ₁ —h ₂		3093	-	3.58 5u	-	
3d1-0	² D ₂ —B ₂	² D ₂ - ⁴ P ₂	76	61 2	6.69 2R	6.73	6.67 3
$3d_2 - \alpha$	⁴ S ₂ — ⁴ P ₁	⁴ S ₂ '- ⁴ P ₁	67	69 10R	7.73 10R	7.81	7.73 9R
18-5?	² P ₂ -C ₂	-	34	87 4	5.18 7u		4.91 3r
$3D_2-\iota$	² D ₃ —G ₃	² D ₃ -4P ₃	24	63 8R	4.67 7R	4.75	4.64 88 R
$3d_1^B - \varepsilon$	² D ₂ C ₃	² D ₂ —X ₃	2993	34 SR	3.36 6R	3.46	3.34 9R
$3d_1^B - \varphi$	² D ₂ —D ₂	${}^{2}D_{2}$ —X ₄	89	03 8R	9.05 7R	9.15	9.03 9R
- 10		² D ₃ —X ₈	44		4.28 0	- 0 - 0 -	4.28 0
3D2-*	² D ₃ —H ₂	00	38	30 10 R	8.32 9R	8.75	8.31 10R
$3D_1^B - \eta$	² D ₂ —E ₁	${}^{2}D_{2}$ — ${}^{2}P_{1}$	2897	97 10R	7.99 9R	8.08	7.98 10R
84 10.0	18.8 - 2.01	² D ₃ -X ₁₀	92	5720	2.91 1u		2.91 1u
-		10 - I	83	77 1u	3.81 1u		3.81 1u
$3D_1^{A, B} - \sigma$	${}^{2}\overline{P}_{1}-L_{2}$	² P ₁ '-X ₂₂	63	75 4	4.01 7U	3.86	3.75 3
$3D_2 - \lambda$	² D ₃ —I ₃	${}^{2}D_{3}$ — ${}^{2}P_{2}$	09	63 8R	9.64 6R	9.74	9.63 SR
88 500	02.0 - 9.20	13 180	03	10 - 7	3.53 4	-	1
$3D_2-\mu$	³ D ₃ —J ₃	² D ₂ -X ₁₁	2798	65 4	8.74 6u	8.75	8.69 2
$3d_1^B - \vartheta$	$^{2}D_{2}-F_{1}$	² D ₂ -X ₅	80	47 8R	0.52 8R	0.57	0.53 7 R
-	191 - HE		67	-	7.88 3	-	1.
$3D_1^A - \sigma$	2P1-N2	² D ₂ —X ₆	30	51 6R	0.45 6u	0.61	0.51 5R
$3D_1^{B} - \sigma$		_	30	35 3?	dina che es	1 South Prov	ingle ine the
3dB-1	² D _o -G _o	² D ₀ -4P ₂	2696	74 6R	6.76 6R	6.84	6.76 6R
and - and he		-	96	59 5		_	_
3dB	² DH.	² D _o —X _o	27	89 8R	7.92 SR	7.99	7.93 SR
3D		2Do-Xie	00	64 1	0.61 0	0.73	0.61 0
-	2DK.	-316	2594	05 1	4.12 1	-	4.12 1
		² D _o -X ₁₀	82	08 2	2.20 4	2.17	215 1
		-210	32	56 4U	2.2 511		2.5 21
3dB-2	² D _a —L _a	² D ² P_	24	49 2	4.53 9R	4.58	4.52 7R
3dB-u	2D	² D _o -X _o	15	63 6R	5.68 9R	5.79	5.68 GP
-	3		2499	-	9.52 10	0.112	9.30 9
_	Sector Lange of the		89	4 GU	9.6 9.1		94 51
	2Dd.	48X	48	07 4	8.30 8*		8.06 4
_	12 4g	~ <u>g</u>	35	0. 4	5.81 911		0.00 4
	1	2D Y	22	4 411	9.01 20 9.4 9IT	102 - 0161	94 9.
8D	2D	2D - Y	20	43 90	0.45 20	0.51	0.4 50
0.02-0	13-12	13-A22	00	10 24	9.57 911	0.01	0.40 21
3D	2D - M	2D . V	00	90 SP	0.90 10 10	_	0.02 21
0.02-71	13-113	-D3-A23	9970	no or	0.50 10 R	-	0.90 SR
	1 20	and all	2019		0.01 0	-	0.15
		- 199	09	-	9.21 6u	-	9.17 1
	2D 1	-	68	-	8.18 Ir	-	_
2d B	-r_1	2D Y	60	40 0	0.09 10		
ou10-p	Hay Training	² D ₂ —X ₁₆	54	49 2u	4.60 4u	4.57	4.48 1
-	-	_	53	- 00	3.61 1		101 - 10 M

Ruark u.a.	Toshnival	Charola	RI T	Ruark [135]	Toshnival [162]	Kopferm. [130]	Charola [173]
Avanta a. a.	roomittui	Charona		11	11	[ree]	[r.o]
- Richards and	² Dk.	all ands	9849		9.10 8		
		COL NO	47	The lot	7.89 011		
		man	45		5.91 50		
		182	37	C	7.49 1		
$3D_2-\sigma$	² D _a —N _a	2DX.	33	79 2	3.79 7	3.87	3.80 3
-			29	_	9.95 1	_	
	30	3.1	28	19 2r	8.19 7r	- The	8.24 2u
	va	88.E	17	2000-12	7.43 1r	-11-1	
a = 2	232 - 8.73	33.4 8	16	15 - 19	6.1 1U	- CL	1.256
88 - 7	⁴ S ₂ —a ₃	01- 20	13	SI _ 7	3.80 1R	- 2	Real Bar
16 44		81.4	09	-	9.73 3u		9.3 4U
126 121	TR - 4.75	189-4-1.113	04	10 - 14	4.94 1v	- (IE	4
5.4 BR	8.R - 3.46	1600 28	2297	800 <u>-</u> 17	7.58 1v	- CL	
ne me	210 - 2.10	84 - St	93	10 - 12	3.87 1u	- a	and the second
0	0	122	89	12 - 14	9.98 1		
10B - 10B	SE - 218	25.4 .40	88	-	8.00 1		10-40
201 -1	P. 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	00.5 10	81	32 2u	1.38 6u		1.34 1u
$3d_2-\delta$	${}^{4}S_{2} - B_{2}$	${}^{4}S_{2} - {}^{4}P_{2}$	76	57 8R	6.57 10R	6.64	6.57 5R
at #2	$^{2}P_{1}$ — c_{2}	18 - 104	49	- 1	9.38 5	-	
-	08.5 - 0.5	10.2-	46	2 - al	6.77 1u	-	0-7-408
28 -20.	- 10	10 - 18	37	-	7.84 1R		
$3d_2 - \varepsilon$	⁴ S ₂ -C ₃	${}^{4}S_{2}$ —X ₃	30	63 10 R	0.64 10R	0.70	0.62 SR
$3d_2-\varphi$	⁴ S ₂ —D ₂	${}^{4}S_{2}$ —X ₄	28	24 8R	8.23 10 R	8.31	8.24 6R
-	10.0 - N S	² D ₂ —X ₂₁	24	20 2	4.24 2	- 1	4.21 2
$3d_1B - \sigma$	$^{2}D_{2}-L_{2}$	$^{2}D_{2}$ —X ₂₂	14	14 4	4.11 3R	4.21	4.12 3
	100 - 200		03	1 6U	3.12 4u	-	3.12 4u
			02	-	2.86 2RU	1.7	-
		-	2198	-	8.26 1R	-	-
301D-7	*D ₂ -M ₃	² D ₂ —X ₂₃	89	63 8R	9.58 8R	-	9.58 6R
3d2-1	*S2-E1	40 90	77	33 -	7.22 4R		
18-0		*S2-*P1	76	63 6R	6.62 OR	1.10	6.62 6R
1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		64	09 4R	4.10 4R	4.16	4.10 4R
2d A			00 50	90 10 R	0.90 (R	-	6.95 9R
3d B			50	03 4K	0.00 0R		3.53 4R
3d12-0		in a land	02	91 on	2.91 OR		2.91 7R
3d.A_"			40	20 10 P	0.00 I	-	1.91 OD
3d B_g	2D _ N	2D V	04	CC OP	9.00 CR	0.00	4.51 8K
3d9	4S_F	4S _ X	10	00 0R	0.81 10P	0.95	A CT C
0.02 0	······································	52 A5	2007	20 101	7.63 111	0.50	ST.
_			78	2 3	1.00 10		13
102 LL0	10 - 18	ALC: NO	69		9.70 1		1)
12 240		TAL	68	99 2	0.10 1		-)
88 44		and an	64		4 79 5		
3dc	4So-Go	4S_4P	61	71 10 B	1.70 10 B		
1 12	² D ₃ —b _a	-1 -3	57		7.68 5		

¹) Zumstein [156] findet im Bogen, der mit 70 Amp. brennt, nicht die Linien von Ruark: 2073, 2068, 2020.5. Dagegen treten auf: 2177.33 (3 R), 2110.263 (8 R), 2064.4 (2 R), 2061.73 (10 R), 2057.4 (2 R), 2041.8 (2 R), 2020.99 (3 R).

11/	5.00	 -	
w	182	т	T
	4.67		

Einordnung nach		fi boot	Ruark	Toshnival	Kopferm.	Charola	
Ruark a. u.	Toshnival	Charola	d ander	[135]	[162]	[130]	[173]
_	_	iteredit.	9053	Sost find	3.59 1n	Dis asbeit	Server Biller
7. 3021 2993	0.3312.300	108 2000	49	59 2	9.69 7R	1118110	discila
interaction and	Real of	12/141 33	41	ndo-nie	1.96 8	e dere	TURS APPR
_	_	-	33	-	3.91 1U	any has	August Series
_	-	-	23		3.99 5u	inner in	Country of 1
3d2-2?	⁴ S—H ₂	-	20	99 1	1.21 6R	fact us	
bost 2 Certing	and the second	-	20	5 1	11 1100	and but	
· _ 018D0	190 <u>0 (</u> 001	19-1 <u>1</u> -18	11	10110 E	1.39 1u	1388[.]14	
8896 20089 8	20.94 22.7	0072-100	01	110/44 n	1.59 2U	. bim na	
inarran main fa	hildl- be	a made	1990	2 1	9.96 5	och Pran	1)
-		-	88	9 4	1. In	Contractor and	A ROAD AND
-			84	-	4.5 2U	Thorsen	
			76	1010170	6.42 1	[155]	
	² D ₃ -C ₂		78	3 2	3.08 5	103] here 5	
$3d_2 - \lambda$	4S2-12	1000-1011	59	7 2	9.48 8R	9.9 3	
$3d_2-\mu$	⁴ S ₂ —J ₃	docts Min	53	9 5	3.89 8R	4.5 3	
	-	-	30	1. 1. 1. 1. 1.	0.42 3R	And Thereit	
	-	-	13	-	3.75 3	3.6 2	
			10	2 2	9.6 2R	_	
Contraction of the	States and	100 000 100	02	6 10	1.6 1	No maine re	
Routiz-di seht	scin-effect	il n ut olin	1855	at them	former militar	5.9 1	
and Nationa	na I tosti in	Puntran	52	and the second	Telios	2.3 2	
0.904.000	AD THERE	000 TP00	32	-	-	2.3 1	

roten Linien von Randall und Walters nicht noch einmal sämtlich abgedruckt — sie finden sich auf S. 106 von Bd. VII dieses Handbuchs —, sondern nur die inzwischen eingeordneten angegeben (siehe unten).

Zu den Arbeiten, welche die Linien von Bi I zu finden und einzuordnen bestrebt sind, gehören auch diejenigen, welche die leicht absorbierbaren Linien heraussuchen. Deren Zahl ist sehr groß, und zwar wird sowohl die wirkliche Absorption eines kon-

Tabelle der bereits in Band VII_1 p. 106 dieses Handbuches aufgeführten aber erst nachträglich eingeordneten langwelligen Linien.

Ruark usw. [135]	Toshniwal [162]	λ	Int.	Ruark usw. [185]	Toshniwal [162]	λ	Int.
1	$H_2 - \Psi^2)$	22554.2	7	3d3d.	4S2D.	8754.88	2
y-x	0	11994.5	13	β—ε	2PC.	8579.74	1
a		11711.1	160	B	2PD.	8544.54	2
	$D_2 - \Psi^2$	11073.2	15	8-53)	BE	8210.83	16
2-2		10106.1	20	B-n	2PE.	7840.33	2
n-5	E1-53)	9828.8	20	B-O	2PF.	7036.15	2
4-5	D2-53)	8907.81	2		-1 -1	1000110	See.

 Von hier an hat Ruark λ vac., Toshnival nicht; daher sollten die Werte von Toshnival etwa im 0.64 A kleiner sein.

^a) $\psi = 4670.$ ^a) $\xi = 2475.$

tinuierlichen Spektrums durch Bi-Dampf beobachtet, als die Selbstumkehrungen in Explosionen oder beim Unterwasserfunken. Von allen diesen Arbeiten soll nur kurz angegeben werden, welche Linien umgekehrt beobachtet sind. Die Angaben sind recht verschieden, nur die Linie 3067 findet sich überall.

Bloch [113] Unterwasserfunke: 4722, 4121, 3596, 3510, 3397, 3067, 3024, 2993, 2938, 2897, 2780, 2696, 2627. Sie geben noch 3381, 3279, 3253, die aber keine Bi-Linien sind.

Grotrian [120] erhält in Absorption nur 3067.

Ruark und Mitarbeiter [122] in Absorption: 3067, 2276, 2230, 2228, 1959, 1953. Sponer [139] bei Explosion: 2110, 2066, 2021, 1959, 1903 und andere.

Narayan und Rao [144] in Absorption: 3067, 2730, 2524, 2276, 2230, 2228. Sie geben noch 2745 und 2721, die nicht zu Bi gehören, und in [154a] eine genaue Untersuchung von λ 4722 und 3068.

Frayne und Smith [150] in Absorption: 4254, 3067, 2276, 2230, 2228.

Hori [153] bei Explosion unter Druck: 4723, 4308, 4121.8, 4121.5.

Buffam und Ireton [140] finden im Unterwasserfunkenspektrum ebenfalls Bogenlinien umgekehrt und keine Funkenlinien, doch sind genaue Angaben wegen Unzugänglichkeit der Arbeit hier nicht möglich.

Für die von Toshnival angegebenen Terme findet man die absoluten Werte in der weiter unten folgenden Tabelle der Termwerte von Bi I nach Charola [173]. Bezüglich derjenigen Terme, die nicht in der erwähnten Tabelle enthalten sind, sehe man bei Toshnival [162] selbst nach.

Zumstein [156] in Absorption: 3067, 2276, 2230, 2228, 2177, 2110, 2061, 2020. Charola [173]: 3067, 2270, 2230, 2228.

	Termwert		Termwert		Termwert
σ	4596.41	t	14379.67	3D,A	41207.49
0	5015.92	Ð	15496.12	3D,B	41209.34
π	5793.98	η	16953.70	³ D ₂	47431.76
0	6299.53	5	18004.03	18	50944.00
25	6781.38	ε	18052.13	3d1A	51435.95
v	8991.08	8	18956.53	3d1B	51450.00
μ	11711.13	2	21742.76	3d2	62868.26
2	11850.00	β	29703.81	Township T	1 mile-mildel
26	13408.29	a	30280.38		(and c)

Tabelle der Termwerte von Bi I nach Ruark u.	a. [135].
--	-----------

Tabelle der Termwerte von Bi I nach Charola [173].

Elek- tronenkon- figuration	Quantenzahlen r, j, l	Termwerte	Elek- tronenkon- figuration	Quantenzahlen r, j, l	Termwerte
6s ² 6p ³	$^{4}S_{2}$	Q	6s ² 6p ² 7s ¹	4P1	32588.0
6s ² 6p ³	$^{2}D_{2}$	11418,3	6s ² 6p ² 7s ¹	4P.	43911.7
6s ² 6p ³	² D ₃	15436.5	6s ² 6p ² 7s ¹	4Pa	48489.0
6s ² 6p ³	² P ₁ ′	21659.0	6s ² 6p ² 7s ¹	² P ₁	45915.0
6s ² 6p ³	² P ₂ '	33164.5	$6s^2 6p^2 7s^1$	² P ₂	51018.3

-	72.	-		 Ŀ.,
- 54		ст	m	
		эa.		

Proviso- rische Be- zeichnung	Wahrscheinliche Werte von 1 und j	Termwerte	P ris ze	roviso- che Be- ichnung	Wahrscheinliche Werte von 1 und j	Termwerte
X,	P2	37095.80		X15	P'3 0 P'2	52500.60
X ₂	P ₂ 0 P ₁	40847.61		X16	D ₂₃ 0 F ₂₃	53877.54
Xa	P ₂	44816.0		X17	-	53975.0
X4	P ₂	44864.0		X18	D'2 0 D'3	54152.37
X ₅	P ₂	47371.0		X19	D'1	54253.8
Xe	P. 0 D.'	48024.0		X20	P ₂	56282.78
X ₇	P2 0 D2'	48882.0		X21	D1', 2 0 D'3	56364.16
X ₈	P2 0 D2'	49459.0		X22	D'2	56586.60
Xo	D'2	49993.72		X23	D ₂ , D ₃ , F ₂ 0 F ₃	57057.93
X10	DOP	50133.99	5.0	X24	D_2	58272.05
X11	$P_{2}' 0 P_{3}'$	51156.0		X25	Dg	60382.36
X12	_	51163.0		X26		64019.0
X13	$D_2 0 D_3$	51385.67		X27	-	66102.0
X14	_	52252.0		_	-	

Bi II, Bi III und Bi IV.

Bi II Ionisierungsspannung 14 V [127].

Bi III Ionisierungsspannung 25 ± 5 V [127].

Bi IV Ionisierungsspannung 45 ± 5 V [127].

Um die Funkenlinien verschiedener Ionisationsstufen zu trennen, haben Kimura und Nakamura [128] in Funkenspektren verschiedener Metalle die Länge der Linien von der Kathode aus gemessen. Die Linien, welche am längsten sind, rechnen sie zur niedrigsten Ionisationsstufe (E II), die von mittlerer Länge zur zweiten (E III), die kürzesten zur dritten (E IV). Bei Bi finden sie alle 3 Stufen. — Dann stellt Kimura [129] einen intermittierenden Bogen her, indem er aus dem Metall eine Art Zahnrad baut, gegen welches sich ein an einer Feder befindliches Stück desselben Metalls anpreßt. Bei Rotation des Rades entsteht so ein intermittierender Bogen. Nun findet Kimura, daß bei Parallelschaltung einer großen Kapazität und hoher Spannung die Bogenflamme fast ganz verschwindet und die Funkenlinien der verschiedenen Stufen stark hervortreten. So erhält er die Linien von Bi II und Bi III, während die von Bi IV nicht erscheinen. Die Autoren geben folgende Tabelle:

	Ei II		Bi III		Bi IV
6809	52091)	4272	5080	3115	3040
6600	5202	4260	4798	3039	3009
6498	5145	4079	4755	2856	2942
6129	5125	3864	4561	2847	2931
6059	5091	3793	4328	2822	2918
5861	4993	3431	3696	2653	2840
5819	4734	3111	3632	2576	2784
5719	4705	2951	3614	2415	2774
5656	4477	2746	3541	-	2773
5451	4391	2714	3485	-	2766
5397	4341	2544	3474	-2 -2	2 29-
5271 ¹)	4302	2368	3451	- 141	-

¹) Diese Linien gehören nach Ruark u. a. nicht zu Bi II, sondern zu einer höheren Stufe [135].

203

Tabelle 2. Bi II.

Einordnung nach McLennan		McLennan [178]	Ruark [135]	Einordnung nach McLennan		McLennan [178]	Ruark [135]	k
2°1-61; 3°-61	6808	6 50U	F & 4-1 &	10 10	3430	30 6		
$1^{0}_{0}-6_{1}$	6600	2 40U	E 1 - 1 &	4%2-123	30	10 4	1232	
$10^{0}_{1} - 10_{2}$	6577	2 10		40,-13,	11	8 411	2227 2	
10^{0}_{1} -11 ₂	6497	7 15		5°2-17,	10	1 31	allend in	
$9_{2}^{0}-10_{2}$	6128	0 15		6°1-19,	08	6 4u		
9°2-112	6059	1 15	FR B		3394	1	94.1	1
9°2-123	52	3 5	123-32		39		93.1	1
1001-151	35	6 8	E E -2 V	5°2-181	30	5 31		-
20 -7 -: 30 -7.2	5719	8 22u			15		15.2	2
-1 .0, 0 .0.	18	6 18u	- 4	I I I I I I I I I I I I I I I I I I I	3299	79 4	99.7	2
$9_{2}^{0}-15_{1}$	5655	2 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4º2-15,	99	57 3		-
$10^{0}_{1} - 17_{1}$	5397	8 10			99	3 311	11 2 09	
	5271	07 18	- 4)		3296		96.0	
201-81; 30-81	70	34 10			3187		87.6	2
3 2 2 2 2 3 4 4	69	71 12			3115		15.4	21
20 9. 30 9	09	7 40u	- 4)	1	3111	67 5	10.1	~
-1 02, 0 -02	. 08	8 35u			11	41 4		
1001-181	01	5 20	-	4%2-162	11	20 3	2232	
100-81	5144	3 60u			11	02 2		
9°2-163	24	3 50u			10	88 1	6	
9°2-171	5091	6 10		4%-18,	3033	5 8U		
$10^{0}_{1} - 19_{2}$	4993	6 20	- ¹)	4º2-192	2961	5 211		
9°2-181	16	6 10			2817	36 5		
10°1-200	4749	7 20		2º1-10; 3º-10;	17	17 2		
9°2-192	30	3 30			17	01 3	212	
	4398	4 -	91.4 1u		05	-	05.9	
8°3-102	4379	4 12u			03	70 11	03.69	5
8°3-123	40	5 25u	40.6 2u	4,-201; 4,-30	03	58 9	03.48	A
7°2-102	39	8 12u			03	42 15	00.40	Ŧ

80-13	10	3 8 1		20,-11.; 30-11.	02	6 2U	H 4 5 1
70-11-	05	4 3		30-12,?	01	2 1u	2 2 2
70 - 12	01	7 7011	02.10 50	1	2746	36 5	46.35 1 4)
70 13	4979	0 25		0 ₀ -6 ⁰ 1	46	2 4u	-
8º -14	59	4 75n	59.70 100	En la suma la sign	13	B	13.4 2u
70-15	4097	2 10	-	FIG E THE D MALL PARTY IS ST	2692	-	92.9 -
$6^{0} - 10$	79	1 40m	79.25 30	30-16,?	2584	6 1u	
$6^{0} - 11$	48	4 2	_	1%-17,	45	6 3	44.4 1u
5 _ 20 . 5 _ 30?	3931	9 311			30	56 3	
$6^{0} - 15$	3863	9 30	64.2 100	20,-18,: 30-18,	30	41 3	
5°_{-10}	45	8 10	46.0 20 4)		30	28 2	
80-16-	41	6 5	_	10,-18,	01	0 10	00.5 -
5°	1 18	6 3			2480	25 2	
50-12	15	8 20	16.1 4u	2º,-19.; 3º-19.	80	12 1	
70-16-	11	1 12	11.2 2u		80	03 2	a g - alle a
70-17.	3793	0 5	_	20,-20,: 30-20,	18	6 2U	12-3 - all E
50-13	92	5 700	92.8 50u		2368	54 8	68.40 2
0.2 103	56		56.4 3u		68	46 9	23-22
50-15.	3654	2 12	54.4 1u	440.	68	37 10	
80-19-	15	8 2	13.8 5r ³)		68	25 12	
60,-17.	3592	4 211	_		68	12 16	
·1 ·1	3485		85.6 5u	45%	2214	0 40u	
1	55	28 5	55.2 1u	5 ₀ -10 ⁰ ,	2186	9 60	
	55	01 3			43	46 15	53- 28.
4°2-102	54	82 2		4-60	43	40 15	12 - 2
	54	5 211			43	35 10	
i	31	23 12	31.01 20	42-702	2077	8 8	
40-12	30	83 10		4-8°3	68	9 45u ¹)	2
-13	30	53 8		32-21; 32-30	1902	42 100 U ²)	

¹) Hier soll auch eine schwache Linie von Bi III liegen. — ²) Von hier an λ vac. — ³) Es ist zweifelhaft, ob 3615 von Mc Lennan identisch ist mit 3613 von Ruark. Da aber 3615 von keinem andern Beobachter gesehen ist, 3613 von allen, dies aber bei Mc Lennan nicht vorkommt, so ist es möglich. Übrigens gehört 3613 nach Ruark zu einer höheren Ionisationsstufe, als Bi II. — ⁴) Gehört nach Ruark zu einer höheren Ionisationsstufe als Bi II. Lang [166] führt sie bei Bi III.

204

1u

1u

2u

2u 4) Wismut

205

Wismut

Einordnung nach McLennan	an and the	McLennan [178]	Ruark [135]
42-902	1823	80 80	I note
21-10	1791	93 70	-
42-10%	87	47 80	-
21-201; 21-30	77	13 90u	00000-000
32-402	1691	48 20U	-
32-502	11	38 80	
21-402	1591	76 20u	-
32-6%	73	70 40	
32-702	38	09 60	000 - 00
32-802	33	21 80U	-

Einordnung nach McLennan		McLennan [178]	Ruark [135]	
21-5%	1520	66 40	participation and	
21-601	1487	09 50	-	
21-702	55	23 80u	_	
$1_0 - 2^0_1; 1_0 - 3^0?$	36	98 60U	-	
32-902	1393	98 50	_	
32-10%	72	65 30	-	
21-902	26	9 - 1		
21-10%	06	3 -		
10-601	1241	0 -	-	

Termtabelle von Bi II nach Mc Lennan usw. [178 u. 190].

Energie- niveau		Typus?	Term- wert
6p 1 6p 1	1.0	³ P _o	0
6p ½ 6p 1½	21	³ P ₁	13322
6p 1 6p 11	32	3P2	17025
6p 11 6p 11	42	1D2	33930
6p 11 6p 11	5.	1S.	44166
6p 1/2 7s	1º	spo	69126
6p 1 7s	20	3P01	69590
6s 6p ³	30	⁵ S ⁰ ₂ oder ³ S ⁰ ₁	69590
6s 6p ³	4º2	3D02	76143
6p 1 6d 11	5%	3D°.	79083

Energie- niveau		Typus?	Term- wert
6p 1 6d 11	60,	³ D ₁	80569
6p 1 6d 21	70,	3F2	82041
6p 1 6d 21	80,	3F3	82249
6p 1 7p 1	6,	3P1	84273
6p 1 7p 1	7.	3Po	87070
6p 1 7p 11	8,	3D,	88559
6p 11 7s	90.	sp.	88763
6p 1 7p 11	9.	3D.	88781
6p 11 7s	100,	1P,	89877
6p 1 5f 21	10.	sF.	105077
6p 11 7p 1	11.	3P.	105263

Energie- niveau	8 3 (8 - 5	Typus?	Term- wert
6p 1 5f	123	3F3	105281
6p 1 5f	133	3G3	105443
6p 1 5f 31	144	3G4	105720
6p 11 7p 1	151	3S1	106441
6p 11 7p 11	163	³ D ₃	108772
6p 1 8p 1?	17,	3P1	108398
6p 11 7p 11	18,	IP,	109097
6p 11 7p 11	19,	1D.	109897
6p 11 7p 11	20,0	¹ S ₀	110924
-	-		-
	_		

1) Die drei letzten Linien nach Lang [123, 124].

Vergleicht man diese Klassifizierung mit den weiterhin folgenden Tabellen, so findet man recht gute Übereinstimmung für Bi II und Bi III, während für Bi IV andere Angaben nicht vorliegen.

Später hat Miyanishi [168] eine andere Methode angewandt. Schuster und Hemsalech haben gemessen, mit welcher Geschwindigkeit sich in oszillierenden Entladungen die leuchtenden Teilchen von den Elektroden entfernen; Royds hat bei einer Wiederholung der Versuche zwei verschiedene Geschwindigkeiten für die Spektrallinien desselben Elementes gefunden. Jetzt findet Miyanishi noch mehr, drei oder gar vier, aber nur für die Oszillationen, die von der Anode ausgehen, während die von der Kathode kommenden alle die gleiche Geschwindigkeit haben. Er nimmt an, die Geschwindigkeiten werden durch die Abstoßung zwischen Elektrode und der Ladung des leuchtenden Teilchens hervorgebracht, so daß sie von der Ionisation desselben abhängen muß. Je positiver das Ion wird, desto stärker wird es von der Anode abgestoßen. Bei Bi findet er 3 verschiedene Geschwindigkeiten, etwa 600, 880 und 1000 m/sec. Die entsprechenden Linien sollen also zu Bi I, Bi II, Bi III gehören.

Er findet als Bi I : 3077, 3025, 2993, 2938, 2898; als Bi II : 5209, 5125, 5145, 4707, 4302, 4260; als Bi III: 5080, 4898, 4894, 4798, 4561, 3115, 2856.

Miyanishi mißt ferner die Dauer des Nachleuchtens beim erlöschenden Bogen und findet diese desto kürzer, je höher die Ionisation ist. — Die Klassifizierung stimmt gut mit dem überein, was wir nach anderen Methoden wissen. Dieses Verfahren ist jedoch für schwächere Linien schwer anzuwenden und in linienreichen Spektren gar nicht durchführbar.

Die sicherste Methode ist wohl die von Ruark, Mohler, Foote, Chenault [135] angewandte der Erregung durch verschieden schnelle Elektronen, wie schon oben erwähnt. Die Autoren geben eine Liste von Funkenlinien mit der Angabe, bei welcher Geschwindigkeit jede erscheint. Die bei 14—16 Volt Geschwindigkeit photographierbar sind, gehören zu Bi II, die erst bei 20—25 Volt oder noch mehr erscheinen, gehören zu höheren Stufen. Ruark und Mitarbeiter beschäftigen sich wesentlich mit dem Spektrum Bi I; nur nebenbei werden auch einige Gesetzmäßigkeiten und Terme für Bi II angeführt.

So ist nur eine Arbeit vorhanden, die sich eingehender mit Bi II befaßt, die von McLennan, McLay und Crawford [143. 178]. Sie geben an, sie hätten die verschiedenen Ionisationsstufen angehörenden Linien leicht getrennt durch Einführung von Selbstinduktion, geben Tabellen für Bi III und Bi II nach den eigenen Messungen, und ordnen sämtliche Linien ein. Trotz der Verdienstlichkeit dieser Arbeit wird man sie nur mit großer Kritik benutzen dürfen; denn erstens sind die Messungen sehr schlecht, da Fehler von 0,5 A und mehr gar nicht selten sind, wie ein Vergleich mit den besten vorliegenden Messungen von Offermann [96] zeigt, deren Genauigkeit dadurch erwiesen ist, daß sie bei Prüfung der konstanten Schwingungsdifferenz in den Gruppen von Kayser und Runge einen mittleren Fehler von 0.004 A ergeben und nur einmal der Fehler 0.009 vorkommt. — Daß bei Ungenauigkeit der Messungen alle Rechnungen ihren Wert verlieren, namentlich im kurzwelligen Gebiet, braucht nicht erst gesagt zu werden. — Ein zweiter Grund, der das Vertrauen in die Resultate Tabelle 3. Bi III.

	Powers of	MeL [1	lennan [78]	Lang [166]	and the second s		Mc]	Lennan 178]	Lang [166]
6f 2F03-6g 2G4	6160	6	5		5f 2F04-6g 2G5	2443	3	8	
6f 2F04-6g 2G5	40	4	6		5f 2F46g 2G4	37	6	10	-
6f ² F ₄ -6g ² G ₄	39	2	1		6d 2D2-5f 2F03	37	4	3	128-3
6d 2D3-7p 2P2	5079	3	45 U		5f ² F ₃ —6g ² G ₄	14	6	75u	25-3
5g 2G4-7h 2H0	52	3	3			2184	23	3	18.8-
5g 2G5-7h 2H0	51	7	4	E 1-8 4 4 4		84	10	2	22- 9
6d 2D2-7p 2P01	4797	4	40 u	A BALLETE	0-0-20 05 200	84	00	2	1 - 3
1	52	09	8		05 0p- 33-01 -F 4	83	92	1	1 2 2 - 2
A B E B E 1	51	48	6		22 - 2	83	85	1	4.8- 4
6s 6p ² 3 ₃ -5f ² F ⁰	50	96	5			83	79	1	ER- a
8 8 8 8 9	50	50	4	Ball-Filling A.M.	0-0-20 01000	81	6	1	129-1
EL Box EM	50	12	3	1)	05 0p* 33-01 *F*3	81	5	1	88-9
í	29	53	3	STOLES STOLES		2073	37	14	B.B
	28	95	2		BTBRE S ANT C B	73	22	10	100 2-15
6s 6p ² 33-5f ² F ⁰ 3	28	46	2			73	10	8	3.8
	28	02	1	P S S_P S S S S	65 6p ² 2 ₃ —51 ² F ⁰ ₄	72	99	7	12 3 10
発展できる	27	5	2u		1.321 Make 5 31	72	90	6	
	4561	54	30	61.33 40 °)	きまる 「 読読 図 名 門	72	83	5	NE TRON
$7s {}^{2}S_{1} - 7p {}^{2}P_{1}^{0}$	60	84	30	_		69	08	2	13 3 30
7p 2P0,-8s 2S,	4327	8	25			68	72	1	66 B_300
6d 2D7p 2P0.	3848	8	10		$6s 6p^2 2_3 - 5f {}^2F_3$	68	63	1	10 3. Eve
7p 2P0 -7d 2D.	3708	4	10	08.51 6	EST - BEE SE	68	55	1	12 B B B
	3695	68	50	95,70 50	6s 6p ² 15f ² F ⁰ .	1834	32	20	02 1-10
7s ² S ₁ -7p ² P ⁰ ₂	95	32	50		6p ² P ⁰ -5s 6n ² 1.	1606	40	50 u	12 2 2 3
7p 2P0 -7D.	13		2 8 8	13.41 35	$6p^{2}P_{-}^{0}-6s^{-}6n^{2}2$	1561	02	40 u	5-2-0
7p 2P0,-8s 2S.	3540	8	15		6P°-78	1423		-	23.47 20
5f 2F0 -5g 2G.	3485	5	35	The state of the	6P°-6D	1350	1	1274	50.16 15
5f 2F0,-5g 2G.	73	8	40	_ 0)	6p ² P ⁰ - 7s ² S	46	08	90 n	-
5f 2F0, -5g 2G	73	4	5	NE 2084 8	6n 2P06d 2D	- 26	9		H B F

	7- 200 74 20	51	1.0	40	1 _ 0)	6P°2-6	D ₃ 17	-	17.12	30
	$rp - P_2 - ra - D_3$	0115	0	95	15 20 20 0)		1279		79.44?	15
7	$7p = P_1 - 7d = D_2$	3115	0	30	10.20 20)	THE STOPPENDE	74	28228	74.56?	10
		3039	86	9	-	0 200 0	11 04	70 00		
5		39	53	7	-	op *P*2-0	os op* 3 ₃ 24	10 00	0= 00	
		39	25	5		6P°2-1	D ₂ 07	-	07.08	5
-	6s 6p ² 2 ₃ -7p ² P ⁰ ₂	20	05	4		6P%	D ₃ 1188		88.50	10
5		55	00	*	h. 6-72 - 72 - 72	6 P0	7S. 03	Red-C I	03.46	15 6)
20		38	81	3			1080	1.222 3 3	80.842	2
		38	72	2	-	-	1000		50.00	
2	í	2944	46	6		6P01-6	5D ₂ 58	-	90.00	20
hak		44	20	4	_	6p 2P02-6	6s 6p ² 3 ₃ 45	81 40u	1	-
170	6s 6p ² 1 ₂ -7p ² ² P ⁰ ₁	10	00	9		61P0,-	-b S' 989		89.87	12
ako		43	99	9		6P0_1	bD. 68	_	68.82	10
mi	a e s e e e e	43	84	2	-	CD0 1	LC 000		93.75	10
-	6d 2D3-5f 2F04	2855	6	80 U	-	01%1-1	0.5 025	1 2 3 3 5 4	20.10	
VI	6d 2D3-5f 2F03	47	4	30 U	— °)		FREE FEE			

Termtabelle von Bi III nach McLennan u.a. [178 u. 190].

Energieniveau nach Russell-Sounders	Termwert	Energieniveau nach Russell-Sounders	Termwert	Energieniveau nach Russell-Sounders	Termwert
Cn 2D0	18/1390	7p 2P0,	89188	6f 2F04	43994
Ca Ca 2 1	192142	7p 2P0	84053	6f 2F03	43938
05 0p- 12	110049	5f 2F0.	68725	5g 2G5	39946
68 6p- 23	111105	5f 2F0_	68625	5g 2G4	39943
75 *S1	110007	8e 29	61054	5g 2G.	27713
6d ² D ₂	110027	7 d 2D	57095	6g 2G,	27710
$6d^2D_3$ $6s^2D_3$	103735 89765	7 d ² D ₃	55084	7 h ² H ⁰	20156

1) Hier folgt noch eine Linie, die mit 4749.7 von Bi II zusammenfällt.

²) Hier sollen noch 4 sehr schwache Komponenten folgen.

³) Hier sollen 2 Komponenten folgen, die von 2068.9 von Bi II verdeckt sind.

14

⁴) Von hier an λ vac.
⁵) Diese Linie ist entnommen von Lang [132].

6) Arvidson [170] bezweifelt auf Grund der Feinstruktur die richtige Klassifizierung.

⁰) Diese Linien gehören nach Ruark usw. [135] zu höherer Ionisationsstufe, wahrscheinlich Bi IV.

Wismut

209

208

Wismut

Ungerade Terme			G	Gerade Terme		
Elektronen- konfiguration	Niveau	Termwert	Elektronen- konfiguration	Niveau	Termwert	
6s 6p	6 P ⁰ 1	0	6s ² 7s	78 6D	90624 94438	
6s ² 7n	6P ⁰ 2 7P ⁰	20373	05-04	6D ₂	96296	
	7 P ⁰ 2	117676	6s ² 7 d	7D ₂	144634	
	123.88	STATE	6s 6p ²	bD ₂	103218	
				bD ₃	104513	
			6s 6p ²	bS	121396	

Termtabelle von Bi III nach Lang [166].

sehr schwächt, ist der, daß unter die Linien von Bi II mehrere aufgenommen sind, von denen Ruark u. a. gezeigt haben, daß sie nicht zu Bi II gehören. — So ist offenbar das ganze Fundament unsicher, und es sollen daher in der folgenden Tabelle auch nur die Zahlen von Mc Lennan neben denen von Ruark angeführt werden. Man vergleiche dazu die Tabelle der Funkenspektra in Bd. VII₁ p. 106—110 dieses Handbuches.

Nicht viel besser steht es mit Bi III. Der erste, der einige Gesetzmäßigkeiten angibt, ist Lang [166], der durch Vergleich der Spektra von As III, Sb III und Bi III zu seinen Ansätzen gelangt, dabei aber nur 18 Linien einordnet. Für 2 von ihnen bezweifelt Arvidson [170] die Richtigkeit. Ferner sei hier eine Arbeit von Mc Lennan erwähnt, der auch der Vorwurf der Ungenauigkeit zu machen ist. Zudem sind den beiden Verzeichnissen (72 Linien bei Mc Lennan, 18 bei Lang) nur 4 Linien gemeinsam. Man wird also auch hier gut tun, weitere Arbeiten abzuwarten. Smith [195] ermittelt das Resonanzpotential der Bi III-Linie λ 1317.12 zu 9.36 Volt.

Für Bi IV sind nur die paar oben angeführten Linien von Kimura und Nakamura angegeben.

Erhebliche Fortschritte werden vielleicht von einer genaueren Durchforschung des Schumanngebietes zu erwarten sein, wie bei so vielen anderen Elementen; denn bisher ist das vorliegende Material absolut ungenügend, wenn auch die Zahl der Messungen recht groß ist. Es sollen nun die Messungen unter λ 2100 zusammengestellt werden. Den ersten Vorstoß in dies Gebiet machten Eder und Valenta [70]; ihre Zahlen sind auf p. 110 von Bd. VII₁ angegeben, ebenso 2 Wellenlängen von Bloch [79].

Takamine und Nitta [102] geben die Wellenlängen von 7 Linien.

Dann haben McLennan, Young und Ireton [109] Angaben über Bogen und Funken bis λ 1437 gemacht. Die Brüder Bloch geben in demselben Jahre 2 Veröffentlichungen, deren erste [106] bis λ 1503 reicht, die zweite [107] bis λ 1390. In der folgenden Tabelle soll nur die zweite als die wohl bessere berücksichtigt werden. Vier Jahre später folgt abermals eine Liste der Brüder Bloch [124], welche bis λ 1346 reicht, aber merkwürdig von der vorigen differiert. Im Jahr 1924 bringt auch Lang [132] eine Abhandlung über Wellenlängen im Schumanngebiet, die aber gegenüber seinen späteren so vortrefflichen Messungen durch Unvollständigkeit, Ungenauigkeit und Unsicherheit durch Verunreinigungen stark zurückbleibt. Thor-
sen [155] veröffentlicht einige Linien, die schon in der Tabelle für Bi I angegeben sind, ebenso Zumstein [156] Absorptionslinien. Dann bringt Lang [166] eine Anzahl von Linien, die er zu Bi III rechnet, und Mc Lennan, Mc Lay und Crawford [160] solche von Bi II und Bi III, nachdem auch Toshnival [162] eine größere Anzahl neuer Linien bis zu λ 1902 gemessen hat, die er zu Bi I rechnet, die daher in der entsprechenden Tab. 1 schon angeführt sind. Alle diese Messungen sind in der folgenden Tab. 4 vereint.

F. Löwe gibt als Restlinien (raies ultimes) in seinem Atlas der letzten Linien der wichtigsten Elemente (Dresden, Leipzig 1928) folgende Wismutlinien an:

2780.5	2898.0 Bi I	2938.3	2989.0 Bi I
B7RF4	B10RF5R	B10RF8R	B9R F5R
2993.3 Bi I	3024.6	3067.7 Bi I	3397.2 Bi I
B9RF4	B8RF4R	B9RF6R	B5RF2

Schweitzer [161] gibt eine spektroskopische Methode an, die Reinheit von Bi und den Bleigehalt in Zn und Bi zu prüfen. Lomakin [179] untersucht Cu-Bi-Legierungen mit einem Wismutgehalt von 1.25—0.000625% im 120 Volt-Gleichstrombogen und mißt mit Hilfe eines Kochschen Mikrophotometers die Verhältnisse der Schwärzungsmaxima folgender Bi-Linien: 2780.52; 2798.70; 2897.98 und 3067.73.

Es bleibt noch eine Erscheinung für die Linienspektren des Bi zu besprechen, die freilich ganz kurz abzumachen ist, da ausführliche theoretische Betrachtungen hier nicht gegeben werden sollen und können: Die Feinstruktur vieler Linien. Schon Kayser und Runge fielen die engen Paare auf, deren Mittel genau in die gesetzmäßigen Gruppen hineinpaßte, so daß sie als eine Linie mit Feinstruktur aufzufassen waren. Daß viele Linien auch wesentlich feinere Struktur besitzen, ist später gefunden worden. Die ältere Literatur hierzu ist auf p. 111 und 112 von Bd. VII, besprochen. Nagaoka und Sugiura [99] glaubten auch Gesetzmäßigkeiten zu finden, die aber wohl Zufälligkeiten sind. Inzwischen hat sich die Theorie vielfach mit diesen Erscheinungen beschäftigt. Die ursprüngliche Annahme, daß die verschiedenen Komponenten von Isotopen herrühren, ist wohl endgültig widerlegt (s. Ruark und Chenault [147]). Heute herrscht die Meinung vor, daß einzelne Niveaus kompliziert gebaut seien infolge einer Drehung des Atomkerns. Dabei kommen freilich doch wieder Isotopen hinein, da ihre Kernmomente verschieden sind und ihre Linien daher Aufspaltungen zeigen. Bei Übergängen zwischen 2 komplizierten Niveaus können dann sehr verwickelte Verhältnisse eintreten. Für Bi sind Feinstrukturen an Linien aller Ionisationsstufen gefunden worden (für Bi II und Bi III s. namentlich Mc Lennan [178]). Ruark und Chenault [147] beobachten die Feinstruktur der Linien: 2 4122 und 4308. Joos [141] untersucht ebenfalls die Wismutlinie 4722 und meint, die Feinstruktur weise auf die Existenz einer weiteren Quantenzahl hin. Goudsmit und Back [158] leiten aus den Hyperfeinstrukturen von Wismutlinien eine Anzahl von Termaufspaltungen ab, die die Termordnung Thorsens bestätigen. Back und Goudsmit [163: 164] machen Zeemaneffektuntersuchungen an Bi-Linien (besonders an λ 4722) und finden ihre Auffassung bezüglich der Hyperfeinstrukturen, die durch ein Kernmoment hervorgerufen werden, bestätigt; die Größe des mechanischen Kern-

211

Tabene 4. Kurze wenemanger	Tabelle	4. Kurze	Wellenlanger
----------------------------	---------	----------	--------------

Out to	Lang [132]	Takamine [103]	Mc Lennan [109] Bo Fu	Bloch [110]	Bloch [124]
2022	4 1	and south and the			T million
16	2 1				Colores (Colors
03	3 1				Contraction of the second
1990	and a make ships	0.2 1	num sourt a		C. T. W. L. Law
88	N'inni-sant'N'	8.9 4	garques, 1, cenhic		test setup the particular
81	4 2	-			- Kenter L
73	138 0-4985	3.3 2			PSS Locser
59	BCH HOR	9.7 2	8.68 8.02		T EL SARSON
53	T BR STREET	3.9 5	6.14		203
10	and Take	0.2 2	ALL TAR		C. C
02	7 1	2.6 10	2.6 10 10		
1851	9 2	The present that			
47	5 1	pedept/c eriper		a start we have	
33	5 2	to all the real of the		and a state of the state of	the mainting of the
23	Internet Anternet	-0.901835%C.8	3.3 5 8	3.5 4	and damp in the last
16	7 3	particular rest	and a Top of a		the brit nones
1796	-	AT BORD TO THE		6.2 1	and the second states of the
91		ALCOLD BY SUMPLY	1.5 7 7	1.8 4	
87	and harry balls	Linkengelahen.	7.1 4 7	7.0 4	Saddered of a
81	7 1	Marshall Mitting		07 4	and approved the
76	and a liter of the liter of the	distantin finist	0.1 0 1	0.7 1	alies alfore este
49	-	and an address of the stand	And Statements	9.7 1	The shades
46	3 4				and a line of the
29	0 4			00 2	
1682	a service serv	Law and the state		10 9	
11	-	proble build of the	Contant Tes alcos	1.0 2	Condenses (See on a
01	0 2	na si la mana si la ma	17 1 9	14 1	的目的有关并非法有关
11		altority hills	99 _ 9	9.6 1	white Korts high
00	0 1	internet and down	66 - 1	6.3 3	of the history
00	7 112 1		16 - 2	1.4 2	and an and and
1591	7 1	and other states of	20 2 2	1.7 2	1.7 0
1001	9 Sh2 1	tentity Male Car	2.0 2 2		_
74		mini holes brown	4.1 - 1	3.9 2	the protection and
64	4 1	- bais- installed	4.1 - 1	4.0 2	Sent series
53		Charles in Linds	_	3.3 2	2.9 1
51	6 1	the barries out out of the	-	-	minere - anal
44	_			-	4.1 1u
38	6H? 1	ALL DE MULE IN COM	8.7 2 1	8.3 3	_
37	In the second second	A CONTRACTOR OF A	7.0 - 1	7.2 1	an aller of a
35		In a Colored Distance	and Hitsonstand	Land berrief 18	5.0 1U
34	4 2	Charlie Convertisations	3.7 6 3	3.5 4	STRONG - STRI
28	8 1	17 min man	consider- address	its day - Charles	110 Su to Helan
21	7 1		1.2 1 -	1.0 2	2.0 1
04	5 1	and the second second second	-	3.1 2	2.8 2
1497		and the second s	7.6 2 -		and the second
88	5 1	Protected and the	and the second second	7.4 3	7.4 2
86	7 1	nd and variation	- Internet	TRANSME - Lynik (S. H	Man Pris 7 (5)

nyninger greiftin	Lang [132]	Mc Lennan [109]	Bloch [110]	Bloch [124]	Lang [166]
1462	9 2	2.5 1 -	2.7 8	2.5 3	and mentals
56	4 2	5.4 5 -	5.7 4	5.3 4	and the second
49	20? 1	_	8.5 1	8.2 1	and the second
46	the made and a	uts, desta	and the real state	6.9 0	start opening to
37	8 Sb? 2	6.8 4 -	ill on Dod tory	6.8 Sb? 1	acit(annut/lun
34	ni 1-1 -1 -1	Hall no-depend	4.6? 1	U n-abbra	Hyperfeine
24	_		4.0 4	3.5 3	3.47 2 0
1394			4.4 2	3.2 Sn ? 2	-
90	_	C. Sala and	0.9 1		100-
76	HOLDE GUE	A CONTRACTOR		6.3 1	-
72	_	- 050.L		2.8Sb? 2	
50		101112		0.4 Sb? 2	0.16 15
46	4 10	anness die Terrer		6.2 2	Carlo and Co

101 AN	Lang [132]	Lang [166]	Mc Lennan [109]	Ar- vidsson [170]	Z habi	ing and a	Lang [132]	Lang [166]	Ar- vidsson [170]
1330	0Hg?Ba?5	-				1021	2 1	Shu-th a	I It-an
26	9 5	-	6.9 —	-	and a	07	7 1	Not The local	Dimiting (
17	4 15	7.12 30	-	7.1 tr	1.1	988	9 2	9.87 12	-
06	3 10	-	-	-		67	4 3	8.82 10	-
1279		-	-	-		42	9 2	-	-
74	and hereits day	11 <u>11</u>		-	rod an e	24	7 2	-	
45	1001 - 055	-	101-00	-	PPIP J	21	2 2		
41	ALL HARRISON	-	-	-	1. 100	16	4N? 1		-
25	1 Sb? 10	-	4.78 60	-		07	4 Sn? 2		-
07		7.08 3		-	1	02	2 Sn? 1	-	-
1196	5 1	-		-	1.0.1	889	7 1	-	-
88	n the state	8.50 10	1144	-	1993	76	6 1	-	-
67	6 Sb? 1		-	-	1. 1597	64 ·	-	-	864.5 d
63	5 1	-	-	-		23	Tom	3.75 10	and bao
41	6 1	an <u>el</u> a a	1 <u></u>	-		03	8H? 1		
39	60? 10	-	-	9.4 d		791	5 2		
28	80? 1	-	-	-		79	7 1		
03	-	3.46 15	-	3.4 tr		74	8 1		
1085	0 N 1	-	Lizzak		a to frame	63	0 1	1 date	Lat
80	-	0.84? 2	-	-		56	5 1	and all	a malanti
58	6 3	8.88 20	-	-		37	7 1	1.1.1.1.1.1.1.1	
51	6 10	-	_	-	100 M	17	90? 1	and Diox	po npuni
45	7 10	mi-im	5.81 40	1040	N BRI	- 02	50? 1	and In	11 7 194
28	1 1				in the second	670	6 1	T.C.off	hindline

momentes geben sie zu $\frac{9}{2} \frac{h}{2\pi}$ an, während sich das magnetische Moment nicht feststellen läßt. White [169; 181] stellt theoretische Betrachtungen an über die Messungen von Nagaoka und Mishima sowie von Goudsmit und Back bezüglich der Terme $\nu = 58741$; 47323; 43303; 26153 und der Linien λ 4041 und 4823.

213

Arvidsson [170] macht Messungen an den Hyperfeinstrukturkomponenten der Linien λ 1317.1 und 1103.4 des Bi III und knüpft daran theoretische Betrachtungen. Mc Lennan, Mc Lay und Crawford [178] weisen ebenfalls auf die Hyperfeinstruktur hin. Zeeman, Back und Goudsmit [182 und 170a] machen neue Untersuchungen über die Hyperfeinstruktur der Wismutbogenlinien und ihren Zeemaneffekt, welche die früheren Ergebnisse ergänzen und bestätigen. Weiter machen sie Bemerkungen über das Termschema des Wismuts, die Intensitäten in den Hyperfeinstrukturmultipletts und über "verbotene" Komponenten im Paschen-Back-Effekt der Hyperfeinstrukturen. Die von ihnen angegebenen g-Werte sind in folgender kleinen Tabelle wiedergegeben:

Terme: ${}^{2}D_{2}$; ${}^{2}D_{3}$; ${}^{2}P_{1}$; $6p^{2}7s?_{1}$; $6p^{2}5d?_{2}$; $6p^{2}5d?_{3}$; $6p^{2}7s?_{2}$; $6p^{2}7s?_{1}$; $6p^{2}7s?_{1}$; $6p^{2}7s?_{2}$; $6p^{2}7s?_{1}$; $6p^{2}7s?_{2}$; $6p^{2}7s?_{1}$; $6p^{2}7s?_{2}$; $6p^$

Goudsmit und Bacher [174 und 168a] haben die Theorie des Paschen-Back-Effektes für gewöhnliche Multipletts zum Zweck ihrer Anwendung auf Hyperfeinstrukturen, die von einem Kernmoment herrühren, erweitert und die Ergebnisse mit den Backschen Aufnahmen der Wismutlinien verglichen. Es gelingt ihnen so, den sehr komplizierten Zeemaneffekt der Wismutlinien in allen Einzelheiten zu deuten. Fisher und Goudsmit [184 und 185] bestimmen die Hyperfeinstruktur von 21 Bi II- und 6 Bi III-Linien, die sie je nach Lage und Intensität in dritter bis fünfter Ordnung eines 6.5 m-Gitters beobachten, so daß sie ein Auflösungsvermögen von etwa 200000 erreichen. Als Lichtquelle diente sowohl ein Bogen in Wasserstoff von vermindertem Druck zwischen Wolfram- und Wismutelektroden als auch eine Schülersche Hohlkathode aus Molybdän. Ihre Ergebnisse bestätigen zum Teil die von Mc Lennan u. a. [178] gegebene Einordnung. Green [186] untersucht insbesondere die Linien & 4561 und 3695 von Bi III im Magnetfelde von 34000 Gauß und mißt die Aufspaltungen. Nagaoka und Mishima [154] messen die Feinstruktur von folgenden Bi I-Linien: 2 3596.1; 3510.9; 3397.2; 3076.6; 3067.7; 3024.6; 2993.5; 2938.3; 2989.0; 2898.0; 2780.5 Endlich wird die Hyperfeinstruktur noch von Breit [183] und in einer neuen Arbeit von McLennan, McLay und Crawford [190] theoretisch bearbeitet.

Röntgenspektrum.

Dolejšek [114, 119] glaubte eine größere Anzahl von Linien der N-Reihe gefunden zu haben, die jedoch von Hjalmar [116 und 121] zum größten Teil als Fremdlinien oder solche höherer Ordnung nachgewiesen werden konnten, während Lindberg [167 und 191] bei Verwendung zu hoher Spannungen überhaupt keine Linien auffand. Die N-Reihe ist daher experimentell noch nicht mit Sicherheit nachgewiesen.

In der M-Reihe bringen die Messungen von Hjalmar [121 und 116] und Lindberg [167 und 191] eine größere Anzahl neuer Linien. Die Werte der beiden Autoren stimmen relativ gut überein, wie aus der folgenden Tabelle hervorgeht.

Bei den stärksten Linien der L-Reihe sind von Lang [131] und Friman [151] Präzisionsmessungen ausgeführt worden, die auf 3-4 Dezimalen übereinstimmen,

 $n = \infty$ Lindberg Hjalmar Bezeichnung der [121, 116] [167, 191] Linien Übergänge 6571 NII MIV 6498 6508 My NIII 6149 NIII -MIV 5526 MIII NI 5119 5117 My NVI a_2 5108 My NVII α_1 a' '' 5078 5087 4899 β 4894 NVI, VII MIV β" 48814875 4815 4813 0_{II}, III MIV 4560 MIII NIV 4522MIII Nv 2 4513 2' 4506 4497 4096 01 MIII 3926MIII OIV, V 3884 MI NII 3829 3816 MII NIV 3732 MI NII, III 3672 MI NIII

Tabelle der	Emissionslinien	der M	-Reihe	von	Bi 83.
-------------	-----------------	-------	--------	-----	--------

Die Wellenlängen sind in XE angegeben und beziehen sich auf Kalkspat $d_{18^9} = 3029.45$.

desgleichen die vereinzelte Messung von Brauns (s. Tabelle Seite 216). Eddy und Turner [157], sowie Idei [175] messen relativ zu den Frimanschen Werten schwächere Linien, von denen sie eine größere Anzahl neu auffinden, die in der folgenden Tabelle der Emissionslinien mit enthalten sind. Die Wellenlängen sind dabei in X.E. angegeben und beruhen auf der Gitterkonstante des Kalkspates $d_{18^\circ} = 3029.45$.

Die bereits bekannten Linien der K-Reihe wurden durch Réchou [146] und durch Cork und Stephenson [149] erneut gemessen, wobei die dritte Dezimale noch richtig zu sein scheint. Die von den beiden Autoren angegebenen Wellenlängen sind in der folgenden Tabelle zusammengestellt.

	-			200.0	100.00
C 7 1	D - 1	A 100	100.00	124	00
1	ϵ_{P11}	ne	VOII	- D1	co.

Übergänge	Linienbezeichnung	Réchou [146]	Cork u. Stephenson [149]
KLIT	(La	165.73	165.25
KLIII	a1	160.91	160.41
K MII, III	$\beta_{1,3}$	142.20	142.05
KNII, III	β_2	136.21 (y)	Probable Proba

Die Absorption wurde ebenfalls in den drei Röntgenspektralbereichen untersucht. Lindberg [167, 191] und Coster [113a] haben drei M-Kanten mit ziemlich guter Übereinstimmung gemessen. Ferner geben Sandström [180], sowie Duane

λ		Eddy und Turner [157]	S. Idei [175]	Lang [131] Messung relativ zu $CuK_a = 1537.30$	Friman [151]
LIII MI	1	1312.98	1313.7	_	-
MII	-	1269.3	-	-	-
	S		1209.1		
MIV	a_2	1152.22	1153.01	1153.64	na f <u>ar</u> mún
Mv	a_1	1140.45	1141.501)	1141.62	1141.50 ²)
-	a	-	1138.1	-	-
LII MI	η	1055.40	1056.5	The second	- 7 2
LIII NI	β_6	990.54	991.3	-	-
LI MII	β_4	973.50	975.0	-	-
LIII NV	β_2'	-	-	-	-
-	β_{15}	-	955.1	-	-
LII MIV	β_2	952.16	953.24 ¹)	β_2 953.58	953.24
Indianana ada	β" }		$\beta^{\prime\prime}$ 947.5		-
LIII NV	β_1	948.70	950.021)	β_1 949.63	950.02
LII MIV	β_{11}	-		-	-
LII MV	β_8	952.16	-	-	-
LI MIII	β_3	935.88	936.66	-	-
on all the life has	$\mu \beta_7$		$\mu \beta_7 933.0$	-	-
LIII NVI, VII	β_7		-		
LIII OI	β_7	931.9	-	Trees - said	
LIII OV	β_5	922.47	923.65	and the second second	d and - land
LI MIV	β_{10}	913.4	903.5	of industriation.	Tern Tern
LI MV	β_9	1000	896.0	A SA TRANSPORT	Tanda
LII NI	25	837.8	837.7	-	-
LII NIII	-	821.7	-	_	-
LII NIV	. 71	810.91	811.431)	811.40	811.43
L _{II} Nv	2'10	806.2	-	-	
LI NI	27	802.0	-		
LI NII	22	793.47	794.0		Corle-and
LI P	22	791.3	-	This is a	ing mentioner
LI NIII	2/3	787.59	23 787.5	sits state P and	in the lot of the
LII OIV	29]		Ye 788.7	-	-
LI P	20	777.1	-	-	-
	2/13	The second	760.5	-	-
LI OII	24	760.0	759.3	-	-
TII 0I	23	756.2	-	-	
-	2/14	The state of the s	755.3		-

L-Reihe von Bi.

und Patterson [115] Messungen von L-Absorptionskanten und A. Leide [142a] endlich hat die K-Absorptionskante zu 136.78 XE gemessen.

In der folgenden Tabelle sind die erwähnten Absorptionsmessungen der M- und L-Kanten enthalten.

1) Sind Bezugslinien von Friman.

²) Ferner gibt H. Brauns (Zs. f. wiss. Photogr. 25 p. 325, 1928) aus relativen Messungen $a_1=1141.55.$

Kante	Bezugslinien	λ nach Lindberg	λ nach Coster
Mv	and be - to the bilder	4762	4762
MIV	nis manager in and	4567	4569
MIII	Inner and a second	3893	3894
	three south and a los	λ nach Sandström	nach Duane u. P.
LIII	MLyny, yKaas	922.1	enten 2- anniém
LII	11 *	787.8	787.1
Li		755.9	756.2

M- und L-Absorption von Bi.

Energiewerte der Röntgenniveaus nach Siegbahn¹).

Röntgenniveau	K	LI	L _{II}	L_{III}	MI	M _{II}	MIII	M _{IV}	Mv	NI
Opt. Symbol	$1^2S_{\frac{1}{2}}$	$2^2\mathrm{S}_{\frac{1}{2}}$	$2^{2}P_{\frac{1}{2}}$	22P3	$3^2S_{\frac{1}{2}}$	$3^2P_{\frac{1}{2}}$	3ºPa	$3^2 D_{\frac{3}{2}}$	$3^2 D_{\frac{5}{2}}$	$4^2S_{\frac{1}{2}}$
$\frac{\nu}{R}$	6669	1207.0	1157.1	988.3	294,6	272.2	234.0	198.0	189.9	69.1
Röntgenniveau	N _{II}	NIII	N _{IV}	Nv	N _{VI}	N _{VII}	OI	011	0111	OIV.V
Opt. Symbol	$4{}^2\mathrm{P}_{\frac{1}{2}}$	$4^2P_{\frac{3}{2}}$	$4^{2}D_{\frac{3}{2}}$	$4{}^2\mathrm{D}_{\frac{5}{2}}$	42F	42F	$5^2S_{\frac{1}{2}}$	$5{}^{2}\mathrm{P}_{\frac{1}{2}}$	$5^2 P_{\frac{3}{2}}$	52Da a
$\frac{\nu}{R}$	59.3	49.8	34.2	32.4	11.9	11.5	11.6	8.8	6.8	1.8

Ramaneffekt. Daure [165] und Krishnamurti [177] untersuchen BiCl₃ nach der Kristallpulvermethode, während Bhagavantam die gleiche Wismutverbindung flüssig im Druckrohr auf Ramanfrequenzen prüft.

Die Messungen der 3 Autoren sind in folgender Tabelle zusammengestellt.

Daure (fest)	Krishnamurti (fest)	Bhagavantam (flüssig)
110	153	96
In The second rate	169	12 Intel - Control
240	242	242
290	288	282

Ramanfrequenzen von BiCla

Ferner hat Krishnamurti [176] auch BiNO₃ nach der Kristallpulvermethode untersucht und große Abweichungen von dem Normalwert der inaktiven Frequenz der leichteren anorganischen Nitrate gefunden.

Bandenspektra.

Es sind mehrere neue Beobachtungen über Banden vorhanden, die in Absorption durch den Metalldampf auftreten, also aller Wahrscheinlichkeit nach dem Metall selbst angehören. Aber die Angaben sind teils sehr unbestimmt, teils widersprechen sie sich selbst. Grotrian [120] sieht Banden bei 2600 und 2900, die sich bei steigender

¹⁾ Spektroskopie der Röntgenstrahlen, 2. Aufl. p. 346. Berlin 1931.

Temperatur nach längeren Wellen erstrecken und schließlich das sichtbare Spektralgebiet erreichen. Narayan und Mitarbeiter [133 und 134] beobachten zwischen 2500 und 2900Å etwa 20 Banden, deren jede aus kleineren Banden zu bestehen scheint. Mit steigender Temperatur schmelzen sie zusammen und bilden einen kontinuierlichen Grund, der im Ultraviolett beginnt. Etwas eingehender sind die Angaben von Narayan und Rao [144]. Sie sehen ein Bandenspektrum zwischen 2600—2900, das nach Rot abschattiert ist. Ihre Messungen sind mit denen anderer Autoren weiter unten zusammengestellt. Mit steigender Temperatur fließen auch diese Banden zusammen. Bei etwa 1200^o erscheint ein anderes Bandenspektrum zwischen λ 6500 und 4500. Der Abstand der Bandenkanten beträgt im Rot etwa 10Å und im Violett etwa 35Å.

Frayne und Smith [150] erhalten in Absorption bei niedriger Temperatur ein kanneliertes Spektrum zwischen $\lambda 2880$ und 2670, bei höherer Temperatur schmelzen die Banden wieder zu kontinuierlicher Absorption zusammen. Bei niederer Temperatur erscheint auch ein anderes Band unterhalb 2200 Å, das sich bei steigender Temperatur bis λ 2500 ausdehnt. Ein weiteres typisches Band liegt im Sichtbaren; es besteht aus 2 starken Linien mit feineren Linien zu beiden Seiten. Eine der starken Linien fällt mit der Emissionslinie 4254 zusammen.

Charola [173] erhält ebenfalls die Bandengruppe zwischen λ 2855.9 und 2670.0. Er gibt 2 Kanten mehr als die anderen Autoren. Diese Gruppe ist, wie es scheint, die einzige sichere Bandengruppe des Bi und hat eigentümliche Verwirrungen hervorgerufen, da sie öfter andern Substanzen zugeschrieben wurde, namentlich dem Cadmium und von Waring [Phys. Rev. (2) **32** p. 441 (1928)] einer Verbindung von Tl und Cd.

Mohler und Foote (J. Opt. Soc. Amer. 15 p. 74-81, 1927) haben im Absorptionsspektrum des Cd-Dampfes 7 verschiedene Bandengruppen beobachtet, wozu Walter und Barratt (Proc. Roy. Soc. A. 122 p. 201, 1929) bemerken, daß außer der ersten Gruppe 'alle Banden Verunreinigungen angehören. Speziell die zweite Gruppe glaubten sie zuerst Cadmiumoxyd zuschreiben zu müssen, da sie stärker wurde, als sie in ihr Absorptionsrohr dieses Oxyd einführten. — Dann hat Jablonsky (Bull. Acad. Polon. 1928 p. 163 und C.R. Soc. Polon. de phys. 1928 p. 357) diese Gruppe Cd₂ zugeschrieben und verteidigt seine Ansicht gegen Walter und Barratt (Phys. Zs. 45 p. 788 und 57 p. 692, 1929). Inzwischen haben Barratt und Bonar [171] dieselben Banden von As erhalten. Da die Aufnahme aber auch Bi-Linien zeigt, untersuchen sie auch Bi und erhalten die Banden sehr stark. Nachträglich bemerken sie auf allen Platten von Cd und As, die diese Bandengruppe zeigen, die Bi-Linie 3067, so daß die Banden sicherlich dem Bi zuzuschreiben sind.

Die Messungen der hier erwähnten Autoren sind in folgender Tabelle zusammengestellt.

Es ist zweifellos, daß es sich in allen Fällen um ungenügende Messung derselben Bandengruppe handelt.

Barratt und Bonar [171] sehen bei höherer Temperatur noch ein Absorptionsband im Sichtbaren.

Es scheint dieselbe Bandengruppe zu sein, die Heimer und Hulthén [187] dem Bi-Hydrid zuschreiben und näher untersuchen. Diese Autoren beobachten in

Narayan u. Rao [144]	Mohler und Foote	Waring	Barratt	Jablonski	Charola [173]		
2855.9			2856	-	2855.9		
42.9	ENT TATES	manufactoria m	44		42.9		
28.2	and the state state	an cover cha	25	2825	28.2		
13.5	no. inva	theries_ best	10	10	13.0		
2799.8	toro -Bid ob	2800.2	2797	95	2799.8		
85.0	2781	2787.9	83	81	85.0		
72.7	67	76.3	69	67	72.7		
59.6	56	53.0	56	55	59.6		
44.8	45	44.1	45	45	45.0		
32.6	36	39.7	32	36	32.6		
_	26	29.8	-	27	30.0		
22.0	17	and a second of	21		22.0		
12.3	09	12.4	10	08	12.0		
01.9	01	05.5	2699	00	01.0		
2693.2	2694	2694.2	90	2794	2693.2		
81.5	87	84.2	-	-	. 81.5		
-	80	- Olar	79	78			
70.0	73	72.1	73	72	70.0		
-	66	- 18.)	-	48.74	-		
	59	61.1	60	59	-		
-	53	52.8	52	54	-		
_	-	-	44	46	-		

der Nähe der Wismutlinie bei 4722Å eine Bande, die sie als ${}^{1}\Sigma \rightarrow {}^{1}\Sigma$ -Bande des BiH-Moleküls deuten. Die Konstanten dazu sind:

Term	A ₀	ω_0	$\omega_0 X$	B ₀	a ₀	r ₀
15	hacenes - week	1677	21	5.066	0.16	1.818
15	21278.3	1674	15.5	5.216	0.19	1.791

Saper [193] findet Banden des BiCl zwischen 4300Å und 5500Å mit den Kantenformeln:

BiCl³⁵:
$$\nu$$
 (v', v'') = 21912.2 + (218.6 v' - 2.65 v'²) - (307.6 v'' - 0.95 v''²)
BiCl³⁷: ν (v', v'') = 21909.7 + (213.5 v' - 2.53 v''²) - (300.5 v'' - 1.90 v''²).

BiO-Banden sind von Mecke und Guillery (Phys. Zs. 28 p. 514, 1927) in Kantenschemata eingeordnet; Birge (Int. Crit. Tables Bd. V p. 409, 1929) gibt dafür folgende Kantenformel:

BiO: ν (v', v'') = 22196 + (410 v' - 3 v'^2) - (530 v'' - 7 v''^2).

Fluoreszenzspektren.

Rao [145] beobachtet das orange-gelbe Fluoreszenzspektrum des Wismutdampfes bei 1500—1600° C und hat die folgenden nach Rot abschattierten 16 Banden gemessen: $\lambda = 6533.0$; 6464.5; 6389.0; 6319.5; 6248.5; 6187.5; 6117.5; 6052.0; 5991.5; 5940.5; 5886.5; 5831.5; 5776.5; 5726.0; 5680.0; 5640.0. Ferner veröffentlicht er seine mit einem Hilger-Glas-Spektrometer erhaltenen Aufnahmen, um das Ab-

sorptionsspektrum mit dem oben erwähnten Fluoreszenzspektrum zu vergleichen. Man sieht, daß das Fluoreszenzspektrum dieses Spektralbereiches mehr oder weniger genau die Umkehrung des entsprechenden Absorptionsspektrums ist. Das Fluoreszenzlicht ist nach Angabe des Autors nicht polarisiert. Parys [192] bestrahlt gesättigten Bi-Dampf bei 800° C mit dem Licht einer Quecksilberlampe und erhält ein Fluoreszenzspektrum, das aus drei Dublettserien besteht, zwei von ihnen werden durch die Hg-Linie 4358Å und die dritte durch die Linie 5461 erregt. Die beiden Dublettserien 4358 bilden durch Überlagerung eine scheinbare Triplettserie. Die in der Arbeit angegebenen Wellenlängen und Serienformeln seien hier angefügt:

T	. Die durch	die Hg-Linie 4358.54A erro	egte Resonanzserie
	λ	λ	λ
	4414.16	4661.61	4931.55
	17.34	65.15	35.34
	21.28	69.43	39.57
	4535.43	4727.33	5076.5
	38.66	30.55	79.6
	42.78	34.61	83.4
	97.89	4861.86	5149.7
	4601.29	65.42	53.9
	05.42	69.90	58.1

 $\nu = 23092.0 - 309.16 (p + \frac{1}{2}) + 1.408 (p + \frac{1}{2})^2 - 0.0304 (p + \frac{1}{2})^3$ p = 0, 1, 2...

2. Die durch die Hg-Linie 5460.74 Å erregte Resonanzserie

λ	λ	λ
5170.32	5316.10	5568.52
73.47	61.23	5616.57
5216.46	64.99	20.26
19.87	5410.01	71.71
63.80	60.74	75.78
66.93	5511.81	5722.67
5312.46	64.09	26.50

 $\nu = 19422.4 - 173.30 (p + \frac{1}{2}) + 0.324 (p + \frac{1}{2})^2 - 0.0075 (p + \frac{1}{2})^3 p = 0, 1, 2...$

Abgeschlossen 1. Januar 1932.

220

Brom (Br⁷⁹, Br⁹¹ = 79.966; Z = 30).

Literatur.

1. Nachtrag.

[89] M. Kimura, The spectrum of bromine I and II. Mem. Kyoto 4 p. 127-149 (1920).

[90] M. Kimura, On the distribution of charged ions in the path of an electric discharge through a tube containing bromine vapour. Mem. Kyoto 4 p. 151-154 (1920).

[91] J. J. Dobbie and J. J. Fox, The absorption of light by elements in a state of vapour. Proc. Roy. Soc. A 99 p. 456-461 (1921).

[92] O. B. Overn, An absolute scale of x-ray wave lengths. Phys. Rev. (2) 18 p. 350-355 (1921).

[93] F. Haber und W. Zesch, Anregung von Gasspektren durch chemische Reaktionen. Zs. f. Phys. 9 p. 302-326 (1922).

2. Fortsetzung.

[94] E. C. Kemble, The infra-red absorption spectra of diatomic gases and their ionization potentials. Phys. Rev. (2) 14 p. 394-395 (1922).

[95] M. Curie, Spectres d'étincelles dans des métalloides à l'état liquide. C. R. 172 p. 1021 -1023 (1923).

[96] Sh. Datta, The effect of a probable electric field on the bands of nitrogen. Astrophys. J. 57 p. 114-120 (1923).

[97] F. Haber, Anregung von Gasspektren durch chemische Reaktionen. Berl. Berichte 1922 und Naturw. 11 p. 94 (1923).

[98] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of phys. 2 p. 167-278 (1923).

[99] A. L. Narayan and D. Gunnayya, Emission and absorption of halogens in the visible and ultra-violet region. Phil.-Mag. (6) 45 p. 827-830 (1923).

[100] W. A. Noyes jr., A study of the luminous discharge in bromine. A possible determination of the ionization potential of bromine. J. Amer. Chem. Soc. 45 p. 1192-1195 (1923).

[101] K. Vogt und J. Königsberger, Beobachtungen über Absorption in Joddampf und anderen Dämpfen. Zs. f. Phys. 13 p. 292-311 (1923).

[102] H. Bell, The halogen hydrides. Phil. Mag. (6) 47 p. 549-560 (1924).

[103] P. Bovis, Sur le spectre d'absorption du brome. C. R. 178 p. 1964-1967 (1924).

[104] E. B. Ludlam and W. West, The ultra violet emission spectra of the halogens. Proc. Edinb. 44 p. 185-196 (1924).

[105] C. A. Mackay, Ionizing potentials of multiatomic gases. Phys. Rev. (2) 24 p. 319-329 (1924).

[106] C. A. Mackay, Some new measurements of the ionization potentials of multiatomic gases. Phys. Rev. (2) 23 p. 353 (1924). (Abstr.)

[107] H. Deslandres, Recherches complémentaires sur la structure et la distribution des spectres de bandes. C. R. 181 p. 265-271 (1925).

[108] A. Leide, Recherches sur la série K des rayons X. C. R. 180 p. 1203-1204 (1925).

[109] F. L. Mohler, Relative production of the negative ions by electron collisions. Phys. Rev. (2) 26 p. 614-624 (1925).

[110] A. E. Ruark and R. L. Chenault, Fine structure of spectrum lines. Phil. Mag. (7) 1 p. 937-956 (1925).

[111] P. Daure, Étude qualitative de la fluorescence de la vapeur de brome. C. R. 183 p. 31-33 (1926).

[112] T. Hori, Study of the structure of bromine lines. Mem. Coll. Kyoto Univ. A 9 p. 307-312 (1926).

[113] H. Kuhn, Absorptionsspektren und Dissoziationswärme von Halogenmolekülen. Zs f. Phys. **39** p. 77–91 (1926).

[114] A. Leide, Messungen in der K-Serie der Röntgenspektra. Zs. f. Phys. 39 p. 686-710 (1926). — Dissert. Lund 1925.

[115] G. Nakamura, II. The analysis of the band spectrum of jodine, bromine and chlorine. Mem. College Sc. Kyoto 9 Nr. 5 p. 335-364 (1926).

[116] G. Nakamura, The analysis of the band spectra of jodine, bromine, chlorine. Mem. Coll. Sc. Kyoto Univ. A 10 p. 10—131 (1926).

[117] R. Thoraeus, The x-ray spectra of the lower elements. Phil. Mag. (7) 2 p. 1007-1018 (1926) und Phil. Mag. (7) 2 p. 312-321 (1926).

[118] H. C. Tingey and R. H. Gerke, The ultraviolet absorption spectra and the photochemical decomposition of gaseous hydrogen bromide and iodide. J. Amer. Chem. Soc. 48 p. 1838—1850 (1926).

[119] L. A. Turner, The arc spectra of jodine, bromine and chlorine in the Schumann region. Phys. Rev. (2) 27 p. 397-406 (1926).

[120] K. Asagoe, Large displacements of spectral lines of bromine and jodine. Jap. J. of Phys. 4 p. 85-102 (1927).

[121] L. et E. Bloch, Spectre d'arc et spectres d'étincelles du brome. Ann. de phys. (10) 7 p. 205-231 (1927); Ausz. C. R. 184 p. 193-195 (1927).

[122] L. et E. Bloch, Sur la fluorescence du chlore et du brome. C. R. 184 p. 744-746 (1927).

[123] M. Czerny, Die Rotationsspektren der Halogenwasserstoffe. Zs. f. Phys. 44 p. 235-255 (1927).

[124] M. Czerny, Die Darstellung der ultravioletten Absorptionsspektren der Halogenwasserstoffe nach der Schrödingerschen Theorie. Zs. f. Phys. 45 p. 476-483 (1927).

[125] G. Vaudet, Spectre d'étincelle du chlore et du brome dans la région de Schumann. C. R. 185 p. 1270—1272 (1927).

[126] L. et E. Bloch, Sur les spectres d'étincelle du chlore et du brome. Ann. de phys. (10) 9 p. 554-555 (1928).

[127] P. Bovis, Les larges bandes d'absorption continue des halogènes. Ann. de phys. (10) 10 p. 232-344 (1928).

[128] Bengt Edlén, Präzisionsmessungen in der K-Serie der Elemente 30 Zn bis 44 Ru. Zs. f. Phys. 52 p. 364-371 (1928).

[129] A. Filippov, Untersuchungen über die ultraviolette Fluoreszenz des JBr-Dampfes. Zs. f. Phys. 50 p. 861-873 (1928).

[130] O. Kondratjew und A. Leipunski, Rekombinationsleuchten der Halogene. Zs. f. Phys. 50 p. 366-371 (1928).

[131] W. Prokofjew, Untersuchungen über die anomale Dispersion in Ca-, Sr- und Br-Dampf. Zs. f. Phys. 50 p. 701-715 (1928).

[132] N. Siracusano, Nuovi contributi allo spettro del bromo nella scarica senza elettrodi. Acc. Lincei, Rendiconti (6) 7 p. 835-838 (1928).

[133] N. Siracusano, Spettro continuo e spettro d'arco del bromo. N. Cim. (N. S.) 5 p. 273-283 (1928).

[134] Y. Uchida and Y. Ota, Studies in the band spectrum of bromine. Jap. J. of phys. 5 p. 59-68 (1928).

[135] K. Asagoe, Stark effect for the spectral lines of chlorine, bromine and jodine. Scient. Pap. Inst. Phys.-Chem. Res. Tokyo 11 p. 243—250 (1929). [136] P. Bovis, L'absorption de la lumière par le brome et l'iode. J. de Phys. et le Rad. (6) 10 p. 267-272 (1929).

[137] S. Ch. Deb, Spectrum of doubly ionized bromine. Nat. 123 p. 244 (1929).

[138] S. Ch. Deb, Spectrum of trebly ionized bromine. Nat. 123 p. 981 (1929).

[139] S. Ch. Deb, On the spectrum of bromine in the different stages of ionization. Proc. Roy. Soc. A. 127 p. 197-217 (1930).

[140] A. E. Gittam and R. A. Morton, The absorption spectra of halogens and inter-halogen compounds in solution in carbon tetrachloride. Proc. Roy. Soc. A **124** p. 604-616 (1929).

[141] M. P. Hays, The absorption spectrum of bromine vapour between 6117 A and 6309 A. J. Frankl. Inst. 208 p. 363-369 (1929).

[141a] H. Th. Meyer, Über das Auftreten von Strukturlinien an der K-Absorptionskante des Broms. Wiss. Veröffentl. a. d. Siemens-Konz. 7 p. 101-107 (1929).

[142] H. C. Urey and John R. Bates, The continuous spectra of flames containing the halogens. Phys. Rev. (2) **34** p. 1541-1548 (1929).

[142a] H. Beuthe, Über neue schwache Linien in der K-Serie der Elemente V bis Y. Zs. f. Phys. 60 p. 603-616 (1930).

[143] T. L. de Bruin, The moment of the bromine nucleus. Nat. 125 p. 414 (1930).

[144] T. L. de Bruin, Das Kernmoment des Broms. Naturw. 18 p. 265 (1930).

[145] H. Cordes and H. Sponer, Die Molekülabsorption des Chlors, Broms, Jodchlorids und Jodbromids im äußersten Ultraviolett. Zs. f. Phys. 63 p. 334-344 (1930). Nat. 125 p. 1126 (1930).

[145a] Sakae Idei, The Fine Structure of the K-absorption spectrum of selenium. Sci. Rep. Tôhoku Imp. Univ. 19 p. 653-658 (1930).

[146] C. C. Kiess and T. L. de Bruin, The arc spectrum of bromine. Bur. of Stand. J. of Res. 4 p. 667-692 (1930). Res. Pap. Nr. 172. Science 69 p. 360 (1929).

[147] E. O. Salant and A. Sandow, On the vibration frequencies of HCl and HBr in the liquid state. (Abstr.) Phys. Rev. (2) 35 p. 214-215 (1930).

[148] E. O. Salant and A. Sandow, Raman effect of HBr and HJ. Phys. Rev. (2) 36 p. 1591 (1930). (Abstr.)

[149] W. Weizel, H. W. Wolff and H. E. Binkele, Über ein Spektrum des Bromwasserstoffs. Zs. f. phys. Chem. B 10 p. 459-466 (1930).

[150] L. Bloch, E. Bloch et Pierre Lacroute, Multiplets dans le spectre d'étincelle du brome (Br II). C. R. 193 p. 232-233 (1931).

[151] W. G. Brown, The absorption spectrum of bromine. Phys. Rev. (2) 37 p. 1007-1008 (1931).

[152] W. G. Brown, Vibrational quantum analysis of the visible absorption bands of bromine. Phys. Rev. (2) 38 p. 1179-1189 (1931).

[152a] J. D. Hanawalt, Dependance of x-ray absorption spectra upon chemical and physical state. Phys. Rev. (2) 37 p. 715-726 (1931).

[153] E. O. Salaut and A. Sandow, Modified scattering by hydrogen halides. Phys. Rev.
(2) 37 p. 373-378 (1931).

[154] H. Schüler, Hyperfeinstrukturen und Kernmomente. Phys. Zs. 32 p. 667-670 (1931).

[155] W. W. Sleator, New absorption bands of ammonia, methyl bromide, methyl iodide and carbon dioxyde in the infrared spectrum. Phys. Rev. (2) 38 p. 147-151 (1931).

[156] S. Tolansky, Fine structure in the arc spectra of bromine and jodine. Nat. 127 p. 855 (1931).

Linienspektra.

Br I ist ein Siebenvalenzelektronensystem und läßt in Analogie zu den anderen Halogenen Dubletts und Quartetts erwarten.

Der erste, der versucht hat die Linien der verschiedenen Ionisationsstufen zu trennen, ist Kimura [89; 90]. Er variiert in Geißlerröhren die Entladungsstärke und den Druck. Zunächst glaubte er drei verschiedene Spektren unterscheiden zu können, zwei rote und ein blaues. Das erste rote tritt in den weiten Teilen des Rohres bei schwachen Entladungen auf und entspricht im wesentlichen dem Bogenspektrum. Das blaue Spektrum erscheint am besten in der Kapillare bei kräftigen Entladungen und ist ein Funkenspektrum. Das zweite rote Spektrum erweist sich als Gemisch des ersten roten und des blauen. Kimura bezeichnet eine Reihe von Linien richtig als Bogen- bzw. Funkenlinien, wie der Vergleich mit späteren Einordnungen von Kiess und Bloch (s. weiter unten) zeigt. Dagegen ist ein Versuch, die in dem aus Bogen- und Funkenlinien gemischten Spektrum vorkommenden Linien in ziemlich regelmäßig gelagerte Gruppen einzuordnen, völlig verfehlt.

Asagoe [120] setzt die Versuche über den Einfluß des Druckes auf das Spektrum fort und findet verschiedenartige Verbreiterungen und Verschiebungen der Linien, die er danach in drei Klassen einteilt. Die Linien der ersten Klasse bleiben ziemlich scharf nach der violetten Seite, verbreitern sich nach Rot, während sich ihr Schwerpunkt nur sehr wenig nach Rot verschiebt. Er meint, das seien die Bogenlinien. Die Linien der zweiten Klasse verbreitern sich symmetrisch und werden teils etwas nach Rot, teils etwas nach Violett, teils gar nicht verschoben. Die Linien der dritten Klasse endlich werden stark nach Rot verbreitert und nach Rot verschoben, durchschnittlich um 2 Å. Ob hier wirklich von einer Verschiebung gesprochen werden kann, läßt sich bei so unscharfen und dazu noch verbreiterten Linien, sowie der ganz unzureichenden Dispersion des benutzten Spektralapparates nicht sicher sagen. Asagoe bezeichnet die Linien der zweiten und dritten Klasse als Funkenlinien und gibt eine Tabelle von mehr als 300 Linien bis λ 3500 AE nach den Messungen von Eder und Valenta und weiter nach eignen Messungen mit Angabe der Verschiebung und der Klasse. Vergleicht man diese Tabelle mit den Angaben von Kiess und Bloch, so sieht man, daß die Linien von Br I ziemlich richtig in die erste Klasse eingeordnet sind. Aber die zweite und dritte Klasse entsprechen nicht etwa Br II und Br III, sondern sind Gemische von beiden.

Ein etwas zuverlässigeres Verfahren wenden die Brüder Bloch [121] an, nämlich die elektrodenlose Ringentladung. Um ein geschlossenes, mit Br-Dampf von geringem Druck gefülltes Rohr werden einige Drahtwindungen gelegt und durch sie Entladungsströme von verschiedener Stärke und Kondensation hindurchgeschickt. Ist die Einwirkung schwach, so werden im Rohre neben Atomen von Br auch solche von Br+ entstehen, bei stärkeren Wirkungen auch solche von Br++ und Br+++ usw. Immer ist die Wirkung am Rande des Rohres am stärksten und nimmt nach der Achse zu ab. Wird von einem Ende des Rohres aus ein Bild seines Querschnittes auf den Spalt eines Spektrographen projiziert, so erhält man Linien verschiedener Länge, wobei die der niedrigsten Ionisationsstufe vom Rande des Rohres bis zu seiner Mitte reichen, die der höheren Ionisationsstufen immer weniger weit vom Rande aus zur Achse gehen. So kann man aus der Länge der Linien auf die Ionisationsstufe schließen. Natürlich ist das Verfahren schon deshalb nicht ganz eindeutig, weil auch die Intensität die Länge der Linie bedingt. Eine sehr starke Linie von Br⁺⁺ kann z. B. ebensoweit sichtbar sein, wie eine schwache von Br+; man kann dann jedoch durch Änderung der Erregungsstärke die richtige Entscheidung herbeiführen; denn bei Erhöhung der Erregung wird z. B. die Linie von Br++ noch weiter nach der Mitte vordringen, während die von Br+ verschwinden kann, weil die Zahl der Atome Br+ dabei abnehmen muß.

Nach diesem Verfahren haben die Brüder Bloch [121] die Spektren verschiedener Ionisationsstufen gesondert. Sie bringen in das Rohr ein Br-Salz, z. B. Bromnatrium, das infolge des Stromdurchganges dissoziiert und den Br-Dampf liefert. Sie photographieren mit Prismen und 3 m-Gitter und glauben, daß im Rot und Anfang des Ultraviolett ihr Meßfehler höchstens 0,1 Å beträgt, im übrigen Spektralbereich nur wenige Hundertstel Å. Ferner geben sie eine Liste mit etwa 1100 Linien, in die auch Linien von Eder und Valenta [35] und von Kimura [89, 90] mit aufgenommen sind. Von den zahlreichen Linien sind aber etwa 250 nur auf einer Platte erschienen. In einem Nachtrag [126] wird ferner mitgeteilt, daß in den Tabellen [121] etwa 130 falsche Linien angegeben seien, die einer anderen Ordnung des benutzten Gitters angehörten. Weiter haben sie mittels einer Zeemaneffektuntersuchung mit Lacroute [150] zusammen u. a. zwei falsche Einordnungen richtig gestellt. Die Brüder Bloch haben die Linien in folgende drei Klassen geteilt: A (Bogenlinien), E1 und E2, die Br II und Br III entsprechen. Dann folgt noch eine kleine Tabelle von 34 Linien, die vielleicht zu Br IV gehören. Viele der eingeordneten Linien sind mit Fragezeichen versehen, d. h. die Autoren sind über die richtige Einordnung nicht sicher. Alle diese Umstände - Linien nur auf einer Aufnahme, Fragezeichen, falsche Linien - lassen der sonst sehr verdienstvollen Arbeit gegenüber ein Gefühl der Unsicherheit nicht unterdrücken.

Siracusano [132, 133] hat das gleiche Verfahren, die Linien der verschiedenen Ionisationsstufen zu trennen, auf kürzere Wellenlängen angewandt. Nach seinen Photographien zu schließen, sind seine Messungen ganz unzuverlässig. Er gibt eine größere Zahl von Linien, die er zu Br I rechnet, eine zu Br II und 7 zu Br III.

Um nun zu Br I zurückzukehren, so liefert das Verfahren natürlich vor allem Funkenspektra. Es werden daher nur 21 Linien als zu Br I gehörig bezeichnet. Wie ein Vergleich mit Kiess und de Bruin [146] zeigt, sind sie sämtlich richtig bezeichnet.

Die bisher zuverlässigste Arbeit für Br I verdanken wir Kiess und de Bruin [146], die nicht nur eine Neumessung des Spektrums zwischen λ 9320 und λ 3735 mit 330 Linien vorgenommen, sondern auch zwei Drittel derselben eingeordnet haben. In Geißlerröhren aus Quarz oder Glas erscheinen bei kleinen Drucken und unkondensierten Entladungen in dem orangeroten Licht zuerst Banden. Bei höherem Druck (10-12 mm) wird die Farbe des Lichtes hellrot, die Banden verschwinden und das Bogenspektrum tritt auf, wofür die Linien 6350 und 6148 charakteristisch sind. Erhöht man den Druck auf etwa 50 mm, so leuchtet die Kapillare graublau. die Bogenlinien werden schwach und zahlreiche neue Linien im Grün und Blau erscheinen. Schaltet man dann noch eine Kapazität hinzu, so verbreitern sich die Bogenlinien nur nach Rot, während sich die anderen sehr verschieden verhalten und auch neue Linien auftreten. Das alles entspricht auch den Angaben von Kimura und Asagoe [89, 90, 120] und früheren Beobachtungen. Den Schlüssel für die Ordnung des Spektrums gaben ihnen Beobachtungen von Turner [119] (s. weiter unten), der bei Messungen im Schumanngebiet die Differenz $\Delta V = 3685$ wiederholt gefunden hatte. Dadurch gelangten sie zum Grundterm ²P, dessen Komponenten diese Differenz haben. Die Turnerschen Linien sind gleichzeitig Resonanz- und Restlinien. Ein Teil von ihnen ist in der folgenden Tab. 1 mit eingeordnet neben den bereits erwähnten

Kayser u. Konen, Spektroskopie. VIII.

Tabelle 1. Br I

Salada (21 Second Salada (21 Second Salada (21 Second (Kiess de Brui	und n [146]		ere biographication name bank bahari mening		Kiess de Brui	und n [146]
5s ² P,5p ² D ₂	9320	83	4		5s ² P ₂ —5p ² P ₂	8334	69	20 c 1)
$5s 4P_{a} - 5p 4D_{a}$	9265	39	8		- the Manual -	8294	45	0
5s ² P ₂ —5p ⁴ D ₁	9178	16	4		$5p {}^{4}D_{3}$ $-7s {}^{2}P_{2}$	91	.07	1
58 2P,-5p 2S1	73	59	4		5s 4P3-5p 4D4	72	46	751 2)
5s 4P 5p 4P.	66	07	7		5p ² D ₂ -4d ² P ₁	64	95	10
5p 4D7s 2P2	9078	79	0		5p 4D1-4d 4P1	50	32	1
5s ² D ₃ —5p ² P ₂ , (¹ D)	8963	99	5		and a select of the	48	45	0
5s ² D ₉ —5p ² P ₂ , (¹ D)	49	31	2	in the	5p ² D ₂ -4d ² D ₂	46	87	5
5s 4P1-5p 4D1	32	39	3		- ide man - diamini at an	38	03	1
5s 4Pa-5p 4Pa	8897	64	15		-	15	05	0
5s ² D ₉ —5p ² P ₁ , (¹ D)	88	83	2		-	8184	16	0
_	33	23	0		5p 4D1-7s 4P1	83	47	0
5s ² P ₂ -5p ² D ₃	25	26	15	1	5s ⁴ P ₃ —5p ⁴ D ₃	53	94	12c
5s ² D ₃ —5p ² F ₄ , (¹ D)	19	95	10	-	anter index - since the	52	71	2
5s 2S1-6p 2Pa, (1S3P)?	08	91	1		5s ⁴ P ₁ -5p ² P ₂	31	51	12
5s ² D ₉ —5p ² F ₃ , (¹ D)	07	52	2		-	8073	04	0
5s 2D, -5p 2F, (1D)	8793	46	6		5s ² D ₂ —5p ² P ₁ , (¹ D ¹ S)	28	55	0
	64	08	0		5s ² D ₃ —7p ⁴ P ₂ , (¹ D ³ P)	26	35	6
S	60	26	0		and other - sound, and	23	93	2
- I de la Valence	25	28	1		$5p \ {}^{4}P_{1} - 7s \ {}^{4}P_{2}$. 22	62	1
_	09	00	1		5s ² D ₃ —5p ² D ₃ , (¹ D)	21	61	1
5s 2P5p 4S.	8698	51	10	1	5s ² D ₂ -7p ⁴ P ₂ , (¹ D ³ P)	14	72	2
5p 4D7s 4P.	68	94	1		5s ² D ₂ —5p ² D ₃ , (¹ D)	09	98	4
58 4P5p 4P.	38	66	25		5s ² P ₂ —5p ² D ₂	7989	94	12
	28	85	0		5s ² D ₃ -5p ² D ₂ , (¹ D)	78	50	10
5s 2S, -6p 2P, (1S 3P)	25	40	6		5s ² D ₂ —5p ² D ₂ , (¹ D)	66	95	2
-	12	13	0	-	5s ² D ₃ -5p ² P ₂ , (¹ D ¹ S)]	50	19	5
	8592	53	0		$5s {}^{2}S_{1} - 5p {}^{2}P_{2}, ({}^{1}S {}^{1}D)$		10	
5p 4D1-4d 4D1	78	88	0		$5p 4D_3 - 7s 4P_2$	47	95	4
	66	28	6		5s ² D ₂ —5p ² P ₂ , (¹ D ¹ S)	38	64	12cl
5p 4S4d 4F3	60	58	1			29	71	0
5s ² P ₂ -5p ² P ₁	57	73	5		5p 4D4-7s 4P3	25	88	4
5p 2D2-4d 3F3	13	38	5		5p ² P ₂ -4d ² P ₁			Dra
5p 2D3-4d 4F4	03	82	1		The second s	89	96	0
5s 4P1-5p 4S2	8477	47	20		5s ² P ₂ -5p ² S ₁	81	58	2
	71	58	3		$5p {}^{4}P_{2}$ $-7s {}^{2}P_{2}$	43	60	1
	67	26	0		a here and the second second second	27	24	1
5s 4P2-5p 4D2	46	55	50			07	72	1
-	08	66	1		5s ⁴ P ₁ —5p ² D ₂	03	03	151
5p 2D3-4d 4F2	8389	76	1		5p ² D ₃ -4d ² F ₃	33	64	2
5p 2S1-4d 2P1	84	02	5		5s ² S ₁ -6p ² D ₂	26	15	1
10 - 10 Mar	61	70	1		5p ² D ₃ —4d ² F ₄	15	38	4
5p 2D2-4d 2D3	60	56	1			7688	11	0
	56	51	0		Strategie - and the strategies	84	97	0
5s 4P1-5p 2P1	43	70	20	1	$ 5s {}^{2}S_{1} - 6p {}^{4}S_{2}, (^{1}S {}^{3}P) $	63	40	0

1) c bedeutet: mehrfach (complex).

2) 1 bedeutet: nach Rot abschattiert.

-					
	۰.,				
	. 1	•	~	т	
8				х.	L

0	0	-
2	2	(

tin tin		Kiess und de Bruin [146]					Kies de I [1	s und Bruin .46]	Bloch [121]
5p 4S2-5d 4D1	7652	83	1		5p 4P1-7s 4P1	6904	95	3	50-10 -5d
	47	54	0	14	$5p {}^{4}D_{3}$ - 4 d ${}^{4}F_{4}$	6861	21	5	
	42	99	0		5p 4P1-4d 4F2	40	74	0	all - State
5p 4P3-7s 2P2	41	62	2		-	26	09	2	
5p 4P2-7s 4P3	16	46	6		$5p {}^{4}D_{3}$ — $4d {}^{4}F_{3}$	20	39	2	
5p ² D ₃ —4d ² D ₃	07	40	4		$5p {}^{4}P_{2}$ —4 d ${}^{4}D_{1}$	6791	50	2	
181.112	7595	13	3		$5p {}^{4}D_{4}$ — $4d {}^{4}F_{5}$	90	05	0	
	93	13	0		$5p {}^{4}D_{3}$ — $5d {}^{4}F_{2}$	86	77	5	
5s ⁴ P ₂ -5p ⁴ D ₁	91	59	2		19 at 19 19 - 19 19 1	85	79	1	
$5p \ ^{4}D_{2}$ 4 d $^{4}D_{3}$	70	87	2	-	$5p {}^{4}D_{4}$ $4d {}^{4}F_{4}$	79	48	3	
-	69	16	2		5s ⁴ P ₂ —5p ² D ₂	60	11	3	al all a
5s ² S ₁ —6p ² S ₁ , (¹ S ³ P)	51	59	3		$5p {}^{4}P_{2}$ —4 d ${}^{4}D_{2}$	28	29	6	8.33 00
$5p {}^{4}P_{2}$ 7s ${}^{4}P_{2}$	35	81	3	-	$5p {}^{4}D_{3}$ —4 d ${}^{4}P_{2}$	23	75	1	-
5s ⁴ P ₃ -5p ⁴ D ₂	13	01	501			02	10	0	Life - And
- 0	7493	48	0		$5p \ {}^{4}P_{2}$ —4 d ${}^{4}D_{3}$	6692	16	8	2.19 00
	78	13	0		5s ⁴ P ₂ —5p ² S ₁	82	29	9	2.38 00
-	62	05	0		-	72	22	1	
$5p \ ^{4}D_{2}$ 4 d $^{4}P_{1}$	32	82	0		5s ⁴ P ₃ —5p ² D ₃	31	64	15cl	1.72 4
$5p \ ^{4}P_{3}$ -7s $^{4}P_{3}$	25	89	10	1	$5p {}^{4}P_{2}$ $- 7s {}^{2}P_{1}$	20	50	3	10 - QC
5s ⁴ P ₂ —5p ² D ₃	48	56	251		$5p {}^{4}P_{2}$ - 4d ${}^{4}P_{1}$	6584	22	1	10 - 10
$5p {}^{4}D_{2}$ -4d ${}^{4}F_{3}$	44	55	4		$5p {}^{4}P_{3}$ -4 d ${}^{4}D_{4}$	82	19	10	2.23 2
	33	70	. 2		$5p {}^{4}P_{3}$ -4 d ${}^{4}D_{2}$	79	20	4	Indo the logo
-	19	19	3		$5p {}^{4}D_{2}$ — $5d {}^{4}F_{3}$	71	35	2	Pile-Page
	11	59	2		5s ⁴ P ₃ —5p ⁴ S ₂	* 59	81	12c	$2.89 4^{1}$
$5p *D_2 - 4d *F_2$	00	21	1		5p *D ₄ -4d *P ₃	48	14	4	-
$5p *D_1 - 4d *P_1$	1288	49	3	19	$5p *P_3 - 4d *D_3$	44	61	10	4.64 2
$5s *P_2 - 5p *S_2$	60	49	10		$5p *P_2 - 7s *P_1$	41	44	1	
$\operatorname{sp} * D_2 - 4 \operatorname{d} * P_2$	32	41	2		5- 4D (147	32	30	1	
	22	- 89	1		$5p *P_2 - 4d *F_3$	14	60	1	
	7104	84	1			6488	71	1	7
	1194	29	1		op *P2-4d *F2	83	60	2	_
$5p *P_1 - 4d *D_1$	64	34	0			62	40	1	-
$os *P_2 - op *P_1$	50	14	-		5. 4D (14D	38	08	1	-
5, 90 5, 9D (19)	40	00	c		$5p P_2 - 4d P_2$	20	01	1 E	
$5s + 5_1 - 5p + P_2$, (-5)	42	59	0		op -r ₃ -40 -r ₄	010	52	0	0.41 00
5p-r1-40-D2	10	00	5		5a 4D 5a 2D	000±	70	20.1	0.05 0
5n4D 1214D	7059	40	4		os -r ₃ —op -r ₂	20	(± 50	2001	0.80 8
$5p + D_3 - 4d + D_4$	51	24	*		5n 4D Ad 4D	00	50	1	
$5p + D_3 - 4d + D_2$ $5p + D_3 - 4d + D_2$	15	16	1		5p - r ₂ -40 - r ₃	00	20	4	88-7- 80
5h -D ³ -4d -D ³	10	54	0		5n 4D 1 d 4D	0200	12	4	
5s 4P _5n 2P	05	91	201		op r ₃ -40 ·r ₂	80	50	0	
5n 4P7s 2P	6992	95	0		5n 4P _ 5d 4D	77	20	4	
5n4P - 4d4D	71	97	0		5p 4P - 5d 4D	59	71	1	
op 14-10 -D4	26	71	0		op 11-00 D2	51	11	1	
5n 4D	20	79	3		5n 4D -5d 4P	44	30	1	3.5
	22	96	0		5n 4P-4d 4P	03	08	8	
		00			ob 13 14 13	00	00	0	

1) Die mit * versehenen Linien sind auch von Asagoe zu Br I gerechnet.

15*

Bloch [121]

1)

1

0

9.77

0.32

2.27?

_

1

1

2

0

3

1

1

4.58?

5.72?

5.60

3.47?

2.65

1.77

0.49? 00 7.77

		Kiess und de Bruin [146]		Bloch [121]	A Day of B		Kies de l	ss und Bruin 146]
5p 4D3-5d 4F4	6177	40	6	7.44 00	- inter	5009	40	0
5p 4D4-5d 4D4	58	20	3	-1 14	5s ² P ₁ —6p ⁴ S ₂	02	70	4
5s 4P3-5p 2D2]	* 19	69	19.0	9.57 9	5s ² P ₂ -6p ² P ₂	*4979	76	151
5p 4D ₃ —5d 4F ₃ ∫	- 40	02	120	0.01 0	5s ² P ₁ —6p ² S ₁	54	37	4
	32	70	2	-	5s ² P ₂ -6p ² P ₁	21	00	2
5p 4D4-5d 4F5	22	12	71	2.16 0	-	4860	04	5
	6095	74	2	-	5s ⁴ P ₁ —6p ² P ₁	49	37	7
-	69	75	1	-	5s ⁴ P ₂ -6p ⁴ P ₂	34	46	7 c.
	64	30	0		5s ² P ₁ —5p ² P ₁ , (³ P ¹ S)	07	62	4
	57	82	0	-	5s ² P ₁ —7p ⁴ P ₂	02	65	7
Br II?	30	67	1	-	5s ⁴ P ₂ —6p ⁴ P ₁	4785	19	6
-	07	86	1	-	$5s \ {}^{4}P_{2}$ — $6p \ {}^{4}D_{3}$	* 80	31	15 c.
-	5985	30	0	-	$5s {}^{2}P_{1}$ — $5p {}^{2}P_{2}$, ($^{3}P {}^{1}S$)	75	21	7
$5p {}^{4}P_{2} - 5d {}^{4}D_{1}$	75	40	1	-	5s ² P ₁ -7p ⁴ P ₁	65	62	3
$5p {}^{4}P_{2} - 5d {}^{4}D_{2}$	54	00	3	- 1	-	59	45	0
$5p {}^{4}P_{2} - 5d {}^{4}D_{3}$	50	30	3	-		58	55	0
-	45	50	2	-	$5s \ {}^{4}P_{2} - 6p \ {}^{4}D_{2}$	* 52	27	12
5s ² P ₁ -6p ⁴ P ₁	40	53	51	-		50	46	0
5p 4P1-5d 4P1	05	45	3	-!		48	85	0
5p 4D3-5d 4P3	5869	25	0	-	Br II?	35	42	5
5p 4D3-5d 4P2	61	32	0	-	-	27	05	0
5p 4P3-5d 4D4	52	10	8	2.02 00		11	08	1
$5p {}^{4}P_{3} - 5d {}^{4}D_{2}$	36	85	1	-	-	4698	56	1
5p 4P3-5d 4D3	33	43	6	-		95	11	0
-	28	60	0			54	16	1
5p 4D4-5d 4P3	09	59	1	-	-	48	02	0
Br II?	5794	00	0	-	$5s {}^{4}P_{2}$ — $6p {}^{4}D_{1}$	43	52	71
-	83	31	4	-	—	40	98	2
5p 4P2-5d 4P1	5637	35	0	-	5s ² P ₂ —6p ² D ₂	* 14	60	121
5p 4P2-5d 4P2	34	03	1	-	$5s {}^{2}P_{2}$ — $6p {}^{4}S_{2}$	4592	17	1
-	* 27	23	1	-		76	76	0
-	5558	60	0	-	5s ² P ₂ —6p ² D ₃	* 75	75	121
-	48	20	0	-	-	49	75	1
5p 4P3-5d 4P3	36	40	3	-	$5s {}^{4}P_{1} - 6p {}^{4}S_{2}$	29	77	10
5p 4P3-5d 4P2	29	00	1	-	5s ⁴ P ₃ —6p ⁴ P ₃	* 25	62	121
5s ² P ₁ -6p ² P ₂	*5466	23	81	6.22	$5s \ {}^{4}P_{3}$ - $6p \ {}^{4}P_{2}$	* 13	44	121
	60	70	21	-		4496	52	0
5s ² P ₂ -6p ⁴ P ₃	* 50	06	3	-	5s ⁴ P ₁ —6p ² S ₁	* 90	43	7
5s ² P ₁ -6p ² P ₁	5395	52	81	5.49 —	$5s {}^{4}P_{3}$ -6p ${}^{4}D_{4}$	* 77	75	201
-	82	99	1	-	$5s {}^{4}P_{2}$ — $6p {}^{4}P_{2}$	* 72	62	151
5s ² P ₂ -6p ⁴ P ₁	70	27	3	-	Br II?	71	74	1
5s 2P2-6p 4D3	* 64	20	2	-		71	07	1
5s 4P1-6p 4P2	45	43	61	5.34 —	$5s^{2}P_{2}$ -7 p $^{4}P_{3}$	70	01	2
5s 2P2-6p 4D2	28	89	1 .	-	20	67	56	0
5s 4P1-6p 4D2	5245	13	3	-		58	40	0
5s 2P1-6p 2D2	5022	35	2	-	5s ⁴ P ₃ —6p ⁴ D ₂	* 41	74	121
	14	80	0	_	5s ² P ₂ —5p ² P ₁ , (³ P ¹ S)	27	08	1

1) Bloch geben hier noch 4942.01?

-			
	-	\sim	~

in the second		Kiess und de Bruin [146]		Bloc [121	Bloch [121]				Kiess und de Bruin [146]		Bloch [121]	
58 4P	*4425	14	8	5.12	00			4037	85	3		
58 ² P ₂ -7p ⁴ P ₂	23	04	4		~		58 4P 5n 2P. (3P 1S)	21	78	2		
	04	45	0	_			58 4P -7 n 4P	18	33	1		
5s 2P	4399	72	4	_				12	57	1	2,482 00	
Br II?	94	95	3				58 4P	3999	10	1		
5s 2P 7p 4P.	91	61	7	_			58 4P7p 4P.	92	39	7		
Br II?	79	78	2	_			5s 4P5p 2P (3P 1D)	91	39	2		
5s 4P,-5p 2P, (3P 1S)	69	25	1	-			Br II?	37	64	1		
5s 4P1-7p 4P	* 65	15	5				5s 4P6p 2D.	34	11	2	_	
5s 4P1-7p 4P1	34	58	1				5s 4P	17	83	2	2 1	
	12	67	0	_			_	09	42	1		
the franches	4289	91	0	-			5s 4P	05	92	0		
and the set of the later	83	14	0	-			_	02	93	2	4	
-	60	64	1					3900	00	0	_	
	50	87	0				_ 86.63	3896	68	1	-	
-	48	42	0				- 66413	64	12	2		
-	40	41	0	-			19 0- 11 11 DES	29	76	1	-	
-	20	57	0				5s 4P3-7p 4P3	28	55	5		
-	02	50	7	-				15	68	7	11	
	4197	07	0	-			- 1 20.120	01	04	1		
5s 4P3-6p 4P2	96	48	1	-			- 51.600	3798	28	3		
5s 4P2-6p 2D2	* 75	79	9	5.78?	0		5s ⁴ P ₃ -7p ⁴ P ₂	94	04	6		
5s 4P2-6p 4S2	57	39	4	-			- 00.88	70	99	1		
5s 4P2-6p 2D3	* 43	98	6				- 11 1049	35	83	32)	-	
-	32	49	1	-				1633	6	10 1)		
-	29	09	0				10.00	1582	4	8	_	
5s 4P2-6p 2S1	24	28	0	-				76	5	6	- 11	
	23	45	1	-			_ 19.00	75	0	9	_	
-	4083	23	0	-			_ 7.5%	40	8	6	-	
-	46	55	0	-	1			31	9	7	-	
_	45	10	0				AND A DE LES	1488	ß	8 3)	THE STATE	

1) Die folgenden Zahlen sind Turner [119] entnommen.

2)	Si	racusan	0	[332] gib	t no	och:									
3131	.4	3040.	0	2910.7	1	2808.2	1	2761.0	26	394.8	2544.	8 246	37.9	2375.1	
3091	.9	10.	0	07.7		07.5		52.7		06.2	40.	3 (32.9	74.2	2
84	.0	2984.	9	2874.1		2794.6		33.5	25	597.0	27.	7 239	7.7	53.0)
50	.0	82.	0	72.6		88.7		29.1		85.3	01.	6 8	86.0	2290.4	
														44.0	1
3)	Tu	arner [1	19]	gibt noc	h fo	olgende I	ini	en:							
484.0	0	1459.9	0	1423.0	2	1405.1	0	1391.3	0	1347.3	1*	1286.4	1**	1255.9	1
77.1	2	57.0	1	16.5	2	03.6	0	84.6	8	35.6	0*	79.7	2	51.8	4
68.2	0	49.9	3	11.5	1	00.8	0	79.6	1*	17.8	6**	66.3	1	49.7	(
66.4	0	42.3	0	10.1	1	1397.5	0	63.5	0*	16.9	5	61.8	1	44.0	\$
00 4	4	95.9	0	071	0	DIE	0	54 77	0.*	10.0		50.4	088	00 5	

Die mit * bezeichneten Linien findet er auch in Cl, die ** auch in J.

229

Termtabelle zu Tabelle 1 (Br I).

Term Nr.	Term- type	v	Serien- Elektron	Term Nr.	Term- type	v	Serien- Elektron
1	2P.	95550].	41	2P,	8057.64	1
2	2P,	91865	} 4p	42	$^{2}D_{2}$	6524.95	
3	4P.	32120.18)	43	$^{2}\mathrm{D}_{\mathrm{o}}$	6708.71	6p + sp
4	4P.	30649.50		44	2S1	6409.50	I man and a second
5	4P1	28672.84	5s + 3P	45	4P3	7421.67	1
6	² P ₂	28373.13	and and	46	4P2	7281.23	A These
7	² P ₁	26586.48		47	4P1	5264.38	$7s + {}^{3}P$
8	² D ₃	18225.89	lein	48	$^{2}P_{2}$	7801.70	119
9	$^{2}D_{2}$	18244.07	$\int ds + dD$	49	² P ₁	5447.07	
10	² S ₁	19648.11	5s + 1S	50	⁴ P _a	6008.04	1
11	4P3	20884.33	1	51	$^{4}P_{2}$	5770.52	$7p + ^{3}P$
12	4P2	20547.48	The state of the state of the	52	4P1	5608.86	- and -
13	4P1	19742.67		53	$^{4}D_{4}$	5695.98	1
14	4D4	20035.18		54	$^{4}D_{3}$	5608.71	
15	⁴ D ₃	19859.56		55	$^{4}D_{2}$	5688.87	
16	$^{4}D_{2}$	18813.55		56	4D1	5827.32	
17	⁴ D ₁	17480.71	} 5p + 3P	57	${}^{4}\mathrm{F}_{5}$	5311.81	1 10 10 10 10
18	$^{4}S_{2}$	16880.08	Prof. Strate	58	${}^{4}\mathrm{F}_{4}$	5288.84	
19	² P ₂	16378.36		59	- 4F3	5201.67	
20	² P ₁	16691.02		60	${}^{4}F_{2}$	5128.50	
21	$^{2}D_{3}$	17045.12		61	$^{4}P_{3}$	4767.80	$dd + {}^{3}P$
22	$^{2}D_{2}$	15860.84	Aller Constants	62	$^{4}P_{2}$	4990.88	1.225000
23	² S ₁	15688.70]	63	⁴ P ₁	5363.50	1 1 A 43
24	${}^{2}\mathrm{F}_{4}$	6891.07		64	${}^{2}\mathrm{F}_{4}$	4087.56	1 3 . (B . 13.
25	² F ₃	6875.08		65	$^{2}\mathrm{F}_{3}$	4118.00	
26	$^{2}D_{3}$	5763.03	5n + 1D)	66	$^{2}\mathrm{D}_{3}$	3903.42	1 3
27	$^{2}\mathrm{D}_{2}$	5695.66	(op + b)	67	$^{2}D_{2}$	3738.36	The second
28	² P ₂	7073.27		68	$^{2}P_{2}$	5	
29	² P ₁	6997.08]	69	${}^{2}P_{1}$	3764.65	
30	² P ₂	5650.84	15n + 18	70	$^{4}D_{4}$	3801.16	1
31	² P ₁	5791.96	Job	71	$^{4}D_{3}$	3746.38	
32	⁴ P ₃	10029.86		72	$^{4}\mathrm{D}_{2}$	3756.60	- ALL ALL
33	$^{4}P_{2}$	9970.40		73	$^{4}D_{1}$	3816.76	
34	⁴ P ₁	9757.44	- section along	74	⁴ F ₅	3705.48	a street of a
35	$^{4}D_{4}$	9793.78		75	${}^{4}\mathrm{F}_{4}$	3675.59	5d + 3P
36	⁴ D ₃	9736.18	6p + 3P	76	${}^{4}\mathrm{F}_{3}$	3600.17	
37	$^{4}D_{2}$	9612.78		77	${}^{4}F_{2}$?	
38	⁴ D ₁	9120.12		78	⁴ P ₃	2827.13	
39	4S2	6602.88		79	$^{4}P_{2}$	2803.16	
40	² P ₂	8297.43]	80	⁴ P ₁	2813.70	

Messungen von Kiess und de Bruin, Bloch und Siracusano, wobei die auch von Asagoe zu BrI gerechneten Wellenlängen mit einem * vor der Wellenlänge bezeichnet sind.

Turner [119] benutzte bei seinen Messungen eine enge Kapillare, die von Br-Dampf durchströmt wurde. Er konnte nur zwischen λ 1633 und 1232 photographieren, da die benutzte Geißlerröhre durch eine Fluoritplatte vom Vakuumspektrograph getrennt war. Seine Meßgenauigkeit schätzt er auf 0.2 Å. **Br II.** Es ist schon gesagt, daß die Brüder Bloch [121] eine lange Liste der Linien zusammengestellt haben, die sie zu Br II rechnen. Einen Versuch, diese Linien einzuordnen, haben sie nicht gemacht, sondern das ist durch Ch. Deb [137, 138, 139] geschehen. Auf Grund der verschiedenen theoretischen und empirischen Gesetze sucht er für Br II und ebenso für Br III, Br IV und Br V gesetzmäßig gelagerte Linien auf. Bei Br II sind ungradzahlige Multipletts zu erwarten. Er findet in der Tat Quintetts, während er die Tripletts nicht erhält. Deb benutzt bei seinen Überlegungen die Messungen der Brüder Bloch, die er durch eigene Aufnahmen vervollständigt oder korrigiert. Die gesetzmäßigen Linien liegen alle in dem engen Gebiet von λ 4816 bis λ 4686. In der folgenden Tab. 2 sind die Linien von Bloch [121] und Deb [137–139] mit dessen Einordnung zusammengestellt. Ferner sind darin von Asagoe [120] gemessene, aber nicht eingeordnete Linien enthalten.

Br III. Hier liegen die Verhältnisse ganz ähnlich wie bei Br II, nur daß hier die Untersuchung von Deb [137—139] erfolgreicher gewesen ist. Er erhielt viele Dubletts und Quartetts zwischen λ 6224 und λ 2326. Seine Werte sind mit denen von Bloch und Asagoe in der folgenden Tab. 3 zusammengestellt.

Tabelle 2. Br II.

	[100]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
27 74 1 03 78 0 28 79 0	1 1 1 10 100
	8.79 2
26 87 2 5054 65 8 28 24 4	8.24 4
6297 35 1 42 15 0 20 37 6	0.30 6
6168 73 1 38 77 5 19 77 8	9.77 86
61 74 2 10 86 2 15 75 1	-
40 66 3 4986 98 4 14 48 1	-
17 62 3 59 37 4 13 58 1	-
5871 61 2 50 72 2 04 86 10	4.86 10
68 01 00 49 01 1 01 -	1.00 3
64 17 0 45 61 5 4696 43 2	6.43 4
30 74 6 42 15 0 93 27 7	3.30 1
21 00 0 30 66 8 91 24 1	1.24 1
5794 14? 0 28 79 10 87 39 1	
18 91 3 26 56 4 86 -	6.61 1
10 97 2 21 27 6 78 69 10	
5657 61 1 15 36 0 73 38 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
21 74 0 4868 63 0 56 82 0	
00 83 3 67 75 4 51 99 6	10.10
5589 93 9 66 70 6 51 38 2	
84 78 1 66 52 2 44 76 1	
59 92? 00 61 10 1 44 61 2	4 4 8 10
45 71 0 48 75 10 42 63 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
08 38 1 38 53 2 29 42 5	
$\begin{bmatrix} 88 & 79 & 5^1 \end{bmatrix} = \begin{bmatrix} 16 & 71 & 10 & 6.72 & 8 \\ 16 & 71 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 71 \\ 16 & 71 & 71 & 7$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
33 34 00 03 - 321 0 400 03 4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5070 70 00 78 89 0 - 38 77 F	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
33 48 00 67 10 10 7.10 10 04 10 0	
27 68 00 66 00 8 - 4499 39 1	
5193 89 13) 52 95 1 2.95 3 95 15 2	an estimation of
83 88 1 44 33 2 - 88 77 2	
82 36 6 42 70 10 2.70 10 71 83 0	

1) Asagoe [120] gibt hier noch 5481.41 und 5480.20.

²) Asagoe hat noch 5360.99 und 5335.30.

⁴) Asagoe hat noch 5143.63. ⁵) Siehe [150].

³) Asagoe hat noch 5199.50.⁶) Siehe [150].

1000	Bloch [121]		Bloch [121]		Rines (1227)	Bloch [121]	105	Bloch [121]	Asagoe [120]
4460	13 2	4206	07 2		3997	13 5	3770	242 00	Da Distant
52	05 1	02	88 2		93	95 1	53	55? 0	
45	33 0	01	35 3		92	26 0	40	51 2	- Frances
30	97 1	4193	46 0		87	77 0	37	682 0	5 m
11	36 0	93	11 3		87	40 1	25	362 1	
07	62 5	92	35 9		- 86	54 4	14	30 3	
05	16 1	83	51 1		84	11 1	3699	39 03)	
4396	40 6	82	452 2		82	80 2	84	64 1	10
94	97 5	79	64 6		81	66 1	81	58 1	
88	05 1	60	00 4		80	39 6	61	99 0	
86	69 2	57	14 4		80	02 4	59	50 74)	
79	742 4	51	43 9		77	86 2	88	64 3	a line
78	69 0	44	072.00		-76	70 1	94	78 0	
79	00 3	40	91 7		70	60 4	-91	95 1	a line
65	60 10	38	58 9		68	66 3	20	03 3	
50	50 1	25	66 6		56	67 00	10	99 0	
58	982 0	18	68 9		55	25 2	19	962 1	
50	02 0	17	45 6		51	67 0	10	20. 1	
52	20 1	15	40 0		50	61 7	12	21 0 CC 55)	
50	00 1	10	00 2		10	0 0 0	9595	00 D*)	
40	11 0	10	41 0		40	00 Z	84	44 D	
90	11 0	00	41 2		40	40 1	04	04 I C1 16)	
00	40 0	00	47 1		44	40 1	02	49 1	
20	80 5	00	47 1		40	51 U 20 E	30	42 1	
4907	10 5	04	50 2		00	09 0	34	967 0	
4297	12 0	4007	00 0		00	02 0	20	09 0	0.0
90	10 00	4037	12 0	-	01	15 5	0470	98 0	0.9
91	40 00	90	10 2		00	10 0 EC E	00	101 00	0.7
89	88 2	90	02 2		29	00 00	04	91 00	F 47)
88	38 1	89	20 2	1	21	107 0	02	44? 0	0.4')
87	41 0	(0)	DI 4-)		24	04 2	36	86 0	0.8
18	86 2	03	10 4		24	10 7	28	93 1	0.9
61	04 0	40	13 1		23	00 0 05 5	23	82 2	-
61	27 1	36	43 3	1	20	00 0	09	81 2	9.8
36	88 6	29	83 0		19	01 0	3382		—°)
35		26	58 0		14	28 10	11	10 1	-
30	33 2	24	667 1		14	10 4	66		0.1
30	00 4	24	04 0		01	20 3	46	96 2	6.98
27	82 1	22	85 0		3896	0 00	3289	16 0	-")
26	15 2	08	76 5		91	63 6	69	02 1	-
25	81 0	07	83 3		77	85 0	66	99? 0	-
23	88 8	05	82 1		71	21 4	39	46 2	
22	40 2	05	58 7		57	71 1	17	89 0	
19	97 1	01	85 0		40	56? 1	08	33 3	8.4
18	02 0	01	45 2		34	$69 1^2$	3199	66 4	9.7
08	53 1	3999	62 3		3779	60 1	91	59 1	

¹) Asagoe [120] hat noch 4072.30.

²) Asagoe hat noch 3811.54.

³) Asagoe hat noch 3693.46. ⁴) Asagoe hat noch 3648.0. ⁵) Asagoe hat noch 3600.7.

⁶) Asagoe hat nach eigener Messung noch 3562.4, 3551.04, 3540.2, 3528.9, 3517.4, 3506.5.

⁷) Asagoe hat noch 3447.33, 3417.55, 3414.5.

⁸) Asagoe hat noch 3397.8, 3385.5, 3333.08, 3320.97.

9) Asagoe hat noch 3282.2.

234

Brom

21212	B	loch [21]	Asagoe [120]		ibali(Bl	och 21]	Asagoe			Bl	och 211	Asagoe [120]
		1	1 11				1	[100]			1		[reo]
3165	83	0	-		2885	22	0	-		2576	17	4	-
08	64	0	-	14	83	17	0	-		69	23	4	-
51	10	0	-		80	34	1	-		67	30	4	7.3
40	31	0	-		78	57	0	-		63	19	2	3.2
43	47	0	-		75	42	3	0.37		56	93	1	6.86
36	31	1	-		73	24	1	3.2		55	37	0	-
24	62	0	-		12	59	0	2.0		45	41	2	-
21	18	2	-		67	04	3	6.97		41	45	7	1.42
11	08	0	-	1	48	30	0	-		32	43	2	-
07	10	0	-		46	15	3	6.1	1	24	93	4	4.94
00	61	0	-		17	22	1	-		23	78	1	-
3097	14	0	-		14	10	1	4.0	1	21	66	3	1.69
82	36	0	-		10	37	1	0.3		2495	17	4	5.181)
18	34	0	-		07	57	4	7.5		88	37	7	8.4
53	02	0	3.0		00	12	1	-		84	40	0	-
47	61	00	-		2799	00	6	8.95		64	81	4	-
28	86	2	8.91		55	31	2	-	2	27	77	0	-
16	45	3	6.4		46	17	1	6.4		2395	34	5	5.40
15	87	2	-		28	45	2	8.4		92	44	5	2.3
11	46	1	1.4		27	05	4	6.99		92	33	3	-
08	59	0	8.6		24	88	1	-		89	69	8	9.74
2999	52	0	9.7		20	44	4	0.33		88	94	4	8.98
86	48	2	6.5		18	42	2	-		88	63	2	8.73
85	79	1	5.9		13	74	6	3.67		86	74	6	6.77
83	69	0	-		09	67	6	-		86	51	3	6.6
81	80	2	1.8		05	19	0	-		86	27?	1	-
73	45	2	3.46		02	78	3	-	2	55	69	4	5.71
72	22	6	2.2		2690	13	5	0.1		46	84	1	6.9
67	23	6	7.2		85	25	3	-		43	40	2	-
64	79	0	-		84	09	1	-		39	97	0	-
44	35	1	-		72	53	2	-		37	90	5	7.93
25	66	1	5.64		60	49	6	0.44		36	92	2	6.96
23	06	0	-		58	65	7	-	1	34	42	0	4.5
21	89	1	1.86		56	83	5	-	-	17	27	4	7.35
17	23	4	7.19		42	22	2	-		13	67	0	-
13	32	1	3.3	1.13	07	05	2	-		04	06	1	4.1
10	94	2	0.7		01	90	1	-		2287	80	1	7.6
05	88	2	5.8		01	16	4	1.17	10	87	56?	0	-
04	15	2	4.1		2597	18	0	-		85	20	0	5.2
00	16	3	0.1		93	76	5	3.70		84	50	1	-
2893	44	6	3.39		86	93	3	6.9		81	42	1	1.4
92	93	2	-		78	67	1	8.7		80	56	1	0.6
92	06	2	2.0		78	17	2	8.1		71	-	-	1.0
87	17	2			77	84	2			70	-		0.4^{2}

Asagoe [120] hat noch 2499.3, 2498.4.
 Siracusano [132] gibt noch 2237.9.

. Brom

Tabelle 3. Br III.

			Bloch [121]	Deb [139]		
	_	6644	53 00			
		6567	53 4			1
	-	42	99 3	and here		-
	- 12	6471	66 2			_
		64	26 1			-
		46	15 3			
		6374	88 2			-
	_	6285	04 4			
	-	59	23 2			c ⁴ P ₃ -d
	$c^{2}F_{3}$ — $d^{2}D_{2}$	24	-	4.4 1		-
	_	6190	25 2	-		c^4F_4 —d
	-	6026	50 3	-		-
	c^4F_2 — d^4D_1	23	-	3.98 4	4	c ⁴ D ₃ —d
	-	5983	82 00	-		
	-	79	63 1	-		-
	-	79	04 1	-		-
1	-	26	48 1	-		-
	c^4F_2 — d^4D_2	09	29 00	9.46 2		-
1	c ⁴ F ₃ -d ⁴ D ₂	5899	-	9.8 2		-
	-	80	95 0			-
	$c {}^{2}F_{3}$ — $d {}^{3}D_{2}$	5737	13 3	7.13 3		c ² D ₂ —d
	c^4F_3 — d^4D_3	05	-	5.6 1		-
	c^2F_4 — d^2D_3	00	-	0.1 2		c ⁴ D ₄ -d
	c^4F_4 — d^4D_2	5691	43 3	2.12 3		-
	c^4F_3 — d^4D_4	5471	_	1.3 0		-
	c4F4-d4D4	58	-	8.2 2		-
	c^4F_5 - d^4D_4	35	-	0.11 0		-
	$c^{4}D_{1}$ — $d^{4}D_{1}$	5010	-	0.73 2		-
	$c^{4}D_{2}$ — $d^{4}D_{1}$	4996	-	6.3 1		PT ALL
	$c^{4}D_{2}$ — $d^{4}D_{2}$	15	-	0.02 2		AD d
	c*F2-d*P1	4892	-	2.08 3		C-P1-0
	c ^a D ₃ -d ^a D ₂	80	-	0.2 1 5.9 1		n el men
	$c = D_2 - d = D_2$	40	000 1	0.0 1		
	a PE d PD	07	007 1	20 1		
	$c - r_3 - d - r_2$	4789	201 0	0.4 1		c2Dd
	$c r_2 - d P_2$	102		9.4 1		c4P-d
	$c^4 D_2 - d^4 D_3$	76		6.49 7		C 1 2 0
	C-r3-d-r2	58	07 0	0.22 1		10 200
	e4Dd4D	51	01 0	184 2		_
	0 D ₃ -0 D ₃	26	88 0	1.01 2		
		20	63 1			c4Pa-d
		20	002 0			
	No. on the let	01	40 3	103		1 1 Mar
	c4Dd4D	4686	61 1	6.4 1	-	c4Fa-d
		84	38 1			_
	_	81	82 0	_		1. 1.
		72	11 2	_		_

				1
		Block	n	Deb
		[121]		[139]
		-	1	
	4670	46	2	_
123	43	11?	1	1. 1.
	30	56	2	-
	25	65	1	10-10-10
13 1 22	25	40	0	10-11-1-1
	21	40	0	-
- 8	13	88	2	-
- 19	07	18	2	
⁴ P ₃ -d ⁴ P ₃	05	-		5.66 4
	4599	68	1	10-200
4F4-d4Pa	96	- N.		6.63 6
-	93	30	2	-
4D3-d2D4	89	-		9.21 3
0000	79	95	6	-
	73	41	3	
	72	17	0	-
-	59	94	1	-
-	56	55	2	-
-	54	87	1	-
-	53	62	0	-
$^{2}D_{2}$ —d $^{2}D_{5}$	44	-		4.87 1
-	32	64	0	-
$^{4}D_{4}$ -d $^{4}D_{4}$	29	-		9.49 7
-	19	81	6	-
-	16	18	5	-
-	14	06	8	-
-	06	55	8	-
-	4495	00	0	-
	66	30	0	-
AD JAD	30	76	2	0.00 0
$c*P_1 - d*D_1$	28	=	0	8.09 5
al and a second	4906	25	0	The second
	4550	56	6	
	89	18	0	
2D	88	10	0	8.05 9
$^{4}P - d^{4}D$	86	101		6 69 9
	84	00	5	0.00 1
the start of	78	97	2	Change Start
	76	29	1	_
	43	572	0	
c ⁴ P _o -d ⁴ D _o	23			3.65 2
	18	902	2	
C ALL IN	16	13	1	10-20-2
c4Fo-d4So	4295	_		5.37 0
_	79	48	1	_
0	73	74	0	_
	65	32	1	_

236

Brom

Deb [139]

0.25 4

4.18 0 ______ 0.41 2 8.85 2

6.74 3 ----4.03 3 3.47 8 8.86 6 -9.20 0 0.05 2 Ξ 8.41 1 ---7.13 1 ----5.32 2 8.26 2 -0.71 7 -. 7.65 3 7.08 2 -

		Bloc [121	h]	Deb [139]				Bloch [121]	n]	
mit 4 st	4249	89	5	_			3904	83	0	Ī
c^4P_3 - d^4D_2	39	74	1	9.74 2		1011	03	97	6	l
	32	31	3	-		-	3897	53	5	
	20	81	2	-	1.00		95	08	2	
c^4P_1 - d^4D_3	19	21	2	9.21 3		-	76	89	2	
-	12	45	0	-		d4Sg-c4Pg	71	-		
c4D1-d4P1	01	-		1.35 3			65	75	1	
c^4D_2 - d^4P_1	4190	82	3	0.82 3		_	64	85	1	
-	84	68	1	-		-	63	71	2	
	81	75	3	-		_	38	42	0	
	61	17	0	-		_	28	11	2	
_	40	68	1	-		c ² D _o -d ² P _o	20	26	5	
c4Pa-d4Da	38	38	3	8.38 3			3783	61	0	
_	37	38	1	_		c4P,d4P.	83	492	2	
_	22	00	0	_			82	2922	4	
c ² Pd ² D.	16	56	9	6.65 2			79	79	0	
$c^{4}D_{-}d^{4}P_{-}$	10		-	0.00 3	4		79	82	0	
c ⁴ D-d ⁴ P	4089	78	3	9 78 8		c4Pd4P	54	00	-	
	78	14	0	0.10 0		c-12-u-11	10	77		
	74	19	0		1.000	149	42	"	.1	
	60	94	0			$1^{-5}2^{6}$	90	-		
	54	02	0			$0 - r_2 - d - D_2$	00	00	0	
_	04	00	0			No. Tor	30	98	0	
	41	54	0			-	29	04	1	
	40	04	0				24	14	0	
10 10 - CO	. 32	00	0				23	80	0	
1 1000	30	29	4	1		$c * P_1 - d * P_2$	10			
	18	06	0			1 400 1400	13	52	3	
-	11	14	0	-		b^2D_2 d^2D_2	04	03	3	
-	15	30	0	-		b^2D_3 — d^2D_3	3693	47	8	
$c^{*}P_{3}$ — $d^{*}D_{4}$	14	32	6	4.32 6		c^4P_2 — d^4P_2	88	-		
- 0	10	64	0	-		-	73	66	3	
-	10	44	0	-		b^4P_2 — d^4D_1	69	20	0	
$d^{4}S_{2} - c^{4}P_{1}$	3994	-		4.05 1		b ⁴ P ₂ -d ⁴ D ₃	60	-		
8.00	89	23	2	10 10		2	58	55	2	
-	86	75	2	-		-	51	50	3	
c ⁴ D ₂ -d ⁴ P ₃	82	-		2.80 2		$d^{4}P_{2}$ — $e^{4}P_{1}$	48	-		
-	78	60?	0	-		-	48	01?	0	
-	74	29	1	-		$c {}^{4}P_{2} - d {}^{4}P_{2}$	27	-		
-	66	65	1	-		-	25	70	1	
c ⁴ D ₃ -d ⁴ P ₃	64	100-		4.32 1		$d^{2}P_{2} - e^{2}P_{1}$	95			
-	63	25	1	-		$b^{4}P_{2}$ - $d^{4}D_{2}$	20	100		
$c^{3}P_{2}$ — $d^{2}D_{2}$	60	47	3	0.47 3		$b^{2}P_{2}$ — $d^{2}D_{2}$	18	-		
-	46	01	2	-		_	12	27	3	
-	41	05	3	-		b ⁴ P ₁ -d ⁴ D ₁	00	71	7	
	38	99	0	-			3591	31	4	
-	24	97	1				89	95	1	
c4D4-d4Pa	18	83	3	8.83 3		c 3P,-d 2P,	87	65	3	
	15	18	2	-		c 4P				
	13	36	1	-		b4P,-c4P.	87	08	2	
-	12	56?	0	_			83	66	1	
	11	51?	0				76	88	2	
and the second sec		111111					10	00	-	6

(100) (100)		Bloch [121]	Deb [139]	Asagoe [120]	Topacia and	
	3569	06 0	100 - 1 M		-	332
	68	72 3	- 11	1.015		2
b4Pa-d4Da	62	43 10	2.43 10	1.98	_	2
	56	58? 0	_			2
b4Pa-d4Da	51	08 7	1.08 7		d ² P _o -e ² D _o	2
d ⁴ P-e ⁴ P.	44	_	4.86 2			1
	40	16 6	_		d ² P ₁ -e ² D ₂	(
d ⁴ P ₂ -e ⁴ P ₂	28	83 7	8.83 7	91	1 1.00	329
e 4Pa-d4Pa	27	98 4	7.98 4	1.000	b ² D _o -d ² P _o	8
b ² D ₉ -d ² D ₃	26	03 4	6.03 4		- 3- 13	8
d ³ P _o -c ² P _o	26	-	6.00 4	1.086	-	1
	23	93 0		- 0.0	b ² D ₂ -d ² P ₁	(
	17	36 6	-112	14,90 K		1
- 1	13	01? 1	-113	1.785		1
-	12	47? 0	-		28 - 6.10	4
_	06	46 7	-	-		. 4
-	04	98? 0	-			1
_	03	20 1	-		7.1-	1
-	00	90 0	-		$b^{2}P_{2}$ — $d^{2}P_{1}$	(
	3497	24 3	-	1.075.1		319
	90	91 1	-		$d^{4}D_{2}-e^{4}P_{1}$	8
$d^{4}P_{1} - e^{4}P_{2}$	88	-	8.07 0			1
_	87	58 3	- 11	1.016	b^4P_2 — d^4P_3	1
$d^{2}P_{1}$ — $e^{2}P_{1}$	77	48 3	7.48 3		-	1
-	76	88? 0	-		b^4P_2 — d^4P_2	(
b^2P_1 — d^2D_1	74	-	4.90 4	-1473	-1.81	(
c 2P2-d 2P1	69	14 1	8.73 2	- 196	$d^{4}D_{3}-e^{4}P_{2}$	
b^2P_2 — d^2D_3	47	36 6	7.56 6	7.33	b4P1-d4P1	
c ² P ₃ -d ² P ₂	42		2.99 2		$d^{2}D_{3}$ — $e^{2}P_{2}$	L.,
-	41	70 1	-	-	$b^{2}D_{2}$ — $d^{2}P_{2}$	1
$d^{4}P_{2}$ — $e^{4}P_{2}$	34	-	4.93 1	-	d4D4-e4P3	4
${}^{2}P_{2}$ — $e^{2}D_{2}$	33	93 1	3.93 6	-	-	1
	25	25 2	-		$b^{4}P_{2}$ - $d^{4}P_{1}$	1
	24	80 2	-	-	-	
-	17	58 6	-	7.55	$d^{4}D_{2}$ — $e^{4}P_{2}$	(
-	17	17 3	-	-	$d^{2}D_{2} - e^{2}P_{1}$	309
e 4P1-d 4S2	16	37 3	6.17 3	-	$b^{4}P_{3}$ - $d^{4}P_{2}$	1
-	14	51 6	-	4.5	$d^{4}P_{3}$ — $f^{4}F_{2}$	8
-	02	42 6	11-15	2.4	$b^{2}P_{2}$ — $d^{2}D_{2}$	8
-	3397	93 3	-	7.8	$d^{2}D_{3}$ — $e^{2}D_{3}$	
	97	10 8	-	-	d 4D3-e 4P3	1
d^2P_1 — e^2P_2	85	25 5	5.32 5	5.5	d^4D_1 — e^4P_2	1
-	79	77 0	-	-		(
-	74	51? 2	- 7	-	d 4P3-f4F3	(
	74	23 2	-	-	+ 8-34	1
	71	00 1		-		1
10	70	83 1	-	-	1	l
	49	64 6		9.69		4
-	44	35 1	-	-	-	4
	39	22 0	-	-	$d^{2}P_{2}$ — $f^{2}F_{3}$	5
d2P_f2P	33	07 7	3.07 7	3.08		1

					_	
and the second		Blo	ch	Deh		Asagoe
811 1000	E S	[19	1]	[139	1	[120]
		[15	-1	[100	1	[reo]
-	3331	22	1	-		-
	29	98	1	-		1
-	28	67	2	-		
-	24	68	0	-		-
$^{2}P_{2}$ —e $^{2}D_{2}$	21	03	6	1.03	6	0.97
	15	25?	1	-		-
$^{12}P_1 - e^{2}D_2$	01	-	-	1.13	4	-
1 - 01	3297	56	0	-		
$^{2}D_{2}$ —d $^{2}P_{2}$	82	09	5	2.09	5	2.2
- 3- 32	80	40	3	-		
-	76	99	1	-		-
$^{2}D_{2}$ —d $^{2}P_{1}$	69	93	5	9.93	5	0.0
-	58	11	0	-		-
	52	54?	3	-		
6.16	49	86	3	-		-
-	49	51	0	- 51		-
-	37	90	4	-		-
-	14	52	6	-		- '
$^{2}P_{2}$ —d $^{2}P_{1}$	02	84	4	2.84	4	-
-	3198	74	6	-	-	-
⁴ D ₂ —e ⁴ P ₁	85	10	4	5.10	7	-
	75	08	8	-	-	-
$^{4}P_{2}$ — $d^{4}P_{3}$	74	-	+6 14	4.08	8	-
	73	62?	-	-	-	-
$^{4}P_{2}$ — $d^{4}P_{2}$	69	-	-	9.49	7	-
-	67	49	7	-		-
$^{4}D_{3} - e^{4}P_{2}$	62	75	6	2.74	6	-
$^{4}P_{1}$ — $d^{4}P_{1}$						
$^{2}D_{3}$ $-e^{2}P_{2}$	49	35	4	9.35	4	-
$^{2}D_{2}$ — $d^{2}P_{2}$		0.4			0	
^a D ₄ —e ⁴ P ₃	47	81	8	7.81	8	-
4D 14D	17	32	6	-	-	-
$P_2 - d^4 P_1$	16	04	D	6.04	D	-
40	11	89	0	0.00		-
$^{*}D_{2} - e^{*}P_{2}$	06	-	-	6.03	1	-
$^{-}D_{2} - e^{+}P_{1}$	3092	07		2.20	2 .	-
AD CAP	91	81	D	1.87	D	-
P3-IP	89	13	2 0	9.70	2 0	-
P2-d*D2	57	11	3	7.11	3	-
$^{+}D_{3} - e^{+}D_{3}$	76	86	1	6.86	1	-
$^{*}D_{3} - e^{*}P_{3}$	75		- 10	5.27		-
$^{*}D_{1} - e^{*}P_{2}$	14	38	10	4.38	10	4.3
AD ME	68	21	4	1.07		-
1*P ₃ —1*P ₃	64	=	-	4.27	-	_
	57	02	4	-		-
T	50	07	D	-		_
T	51	32	0	-		
	40	00	00	-		-
2D 6917	41	93	1	0.50	5	-
-P2-1-F3	36	58	0	0.56	0	
	33	02	0	_		

238

Brom

Asagoe

[120]

-

1111

-

11111111111111

I I I I

-

9.2

6.44

3.1 -8.1

3

5

3 3

4 2

2

6

3

6 6.2

		Bloch [121]	Deb [139]	Asagoe [120]			Bloc [12]	ch 1]	[
_	3025	56 2	108 - ·	-	d ⁴ P ₃ -f ⁴ D ₄	2759	11	4	9.
14Df4Pa	21		1.22 -	-	d 2D3-f2F3	53	31	1	3.
14Po-f4Fa)		05 10	0.05 10	0.7	$d^{2}P_{1}$ — $f^{2}D_{2}$	51	99	2	1.
b4P-d4S	20	65 10	0.65 10	0.7	$d^{2}P_{2}-f^{2}D_{3}$	50	60	3	0.
d4P_f4F	2993	93 8	3.93 8	4.0		49	41	2	
	91	72? 1	_	_		47	16	2	
d ² D ₂ —e ² D ₂	84		4.9 1	-	_	45	16	3	
$14P_{-}f^{4}F_{-}$	75	70 4	5.70 4	5.7	d4P,-f4D,]				
	68	95 8	_	8.94	d4P_f4D	44	79	2	4.
445f4D.	67		7.23 6	_		38	77	1	
u 02 1 02	61	07 5		1.1	$d^4D_a-f^4F_a$				
12D -02D	51	92 4	1.92 4	_	d ⁴ D,-f ⁴ F,	36	52	1	6.
1-D2-0-D2	48	47 9	-		d4Pf4D.	35	85	2	5.
4D	46	17 9	617 2	_	d4S-f4P	19	03	5	9.
149 (4D	20	16 5	6.06 5	6.9		17	51	2	
1-5 ₂ —1-D ₃	20	10 J	0.00 0	0.2		10	79	1	
	04	09 0				06	66	3	
	20	90 2		6.87		05	04	2	
T	20	01 06		0.01		04	96	3	
	19	24 1	_		12D 12F	0030	81	2	9
-	10	64 3	-	T	d-D3-1-L4	2000	15	00	0.
	07	10 5	-	-		00	45	00	
	01	92 5		-	JAD CAP	90	90	5	4
$b * P_1 - d * S_2$	01	42 0	1.42 0	-	d*D ₂ —1*F ₂	01	10	1	4.
-	00	99 5	-	-	-	91	10	0	
	2869	09 0	-		100 (00	90	12	2	
$d^2D_2 - d^2D_3$	68	-	8.19 3	-	$d^2P_2 - I^2P_1$	68		-	0.
-	65	63 3	-	-	d ⁴ D ₃ —1 ⁴ F ₄	81	57	3	
-	49	91 1	-	-	d 4D4-14F5	11	34	4	1
$d ^2P_2$ — $f ^2D_2$	43	69 2	2.69 2	-	$d^{4}D_{2}-f^{4}F_{3}$	74	89	2	4.
-	32	89 6	-			71	53	8	
	36	27 2		-		61	38?	2	
	32	69 0	-	-	-	58	65	7	
-	16	21 1	- 10		d ² D ₁ —f ³ F ₃	53	91?	2	3.
-	15	41 2	-	-	-	50	76	2	
	05	69 1	-	-		49	70	0	10
d ⁴ P ₃ -f ⁴ D ₃	04	12 3	4.12 3	-		48	31	0	
	02	62 3	-	-	- 8	39	60	3	
	02	27 3	- 9	-		38	83	0	-
	00	43 2	1 - PP	-		32	87	2	
	2793	95 1	-5	-		32	17	1	
	85	26 3				29	20	3	
1	84	17 0		-	$d^{4}P_{2}$ -f^{4}P_{1}	26	49	6	5.
-	82	73 2		-		22	31	2	
d4P2-f4D1	81	08 0	0.73 2			18	79	1	
d ⁴ D ₄ -f ⁴ F ₃	72	62 3	2.62 3	-		18	19	3	1
d4Po-f4Do	72	00 1	2.00 1	-	d ² P ₂ -f ² P ₂	16	21	3	6
	70	52 5	_	0.5	-	13	11	7	
_	69	61 2	_	-	Contras de la	12	35	0	
1.	67	86 1	-			10	93	5	
1	66	73 7		6.65		08	07	5	14
	59	89 9			d4Pa-f4Pa	06	18	6	6

		Bloch [121]	Deb [139]	Asagoe [120]	1			Blog [12]	ch []	Deb [139]
d2P_f2P	2603	15 5	3 15 4	32		and applications	9499	15	2	TT TOOT
<u>u</u> -1 ₁ -11 ₁	01	54 4	0.10 1			and a standard when	. 89	47	3	this growth
	00	54 1			1	here notes	88	29	2	1
	2597	61 0	_	_		-	85	38	3	_
_	95	94 5	_	5.9		_	82	57	3	_
d4Pf4P.	94	45 4	4.45 4	-		d4D,-f4D,	82	15	0	2.15 0
d4P,-f4P,	94	_	4.40 4	-		d ⁴ D ₃ -f ⁴ D ₄	73	18	5	3.18 5
	93	34 2	110	-		and the	71	30	1	
pur dinie	92	60 2	mil-m		1	in	71	11	0	102
d^2D_3 — f^2D_2	92	-	2.34 2		611	alm - Milli	69	04	1	-
-	90	34 3	-	-			62	35	5	-
-	89	10 6	-	9.91		-	59	46	2	-
-	88	25 3	-	-		-	53	14	1	-
_	89	96 4		-			50	39	0	2 m 2
	84	10 2		-		Patro - dana	47	22	3	
1 N	82	20 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		indias - moni	46	83	0	dat-inte
a martine	80	20 0	ALL TRANS	-		tribertal all	43	59	0	me Think
	78	95 4	_	-		and the state of the state of the	42	93	0	-
-	73	70 2	-	-		-	39	13	1	-
-	73	14 5	-	-		-	35	72	2	-
-	70	80 5	-	-		-	29	44	0	-
0.000	66	52 4	-	-			29	17	0	-
	60	15 1	0.10 0	-		And I have	22	66	0	-
$d^4P_1 - t^4P_2$	63	- 4	3.19 2			T	22	10	0	-
$d^{4}D_{4}$ — $I^{4}D_{3}$	54	02 4	1.02 4			T	10	03	2	
d * P2-1*P3	51	24 1	4.20 1				00	20	0	
Protection and	51	07 4					2208	10	4	
1.1.12200.101	16	70 9			1		2000	10	8	
An The set	40	06 9				d4Df4P	91	88	2	1.86 2
dap fap	38	68 2	8.68 2	_	0	$d^4D_4 - f^4P_4$	84	12	1	4.12 2
	37	02 4	-	-		d ² D ₂ —f ² P ₂	81	15	0	1.15 0
d4Df4D	32	-	2.43 1	-			79	45	0	
	27	03 0	_	-		_	78	70	1	_
	26	61 1	_	-		d4D2-f4P1	77	70	0	7.70 0
_	24	33 2	_	-		d^4D_3 — f^4P_3	50	26	1	0.26 1
	21	86 5	_	-		-	. 45	88	1	
d4D4-f4D4	20	27 6	0.27 6	-		-	35	35?	0	-
d ² D ₃ -f ² D ₃	16	05 3	6.05 3	-		-	30	29	0	
_	15	74 0	-	-		-	29	73	1	-
-	14	79 1	-	-		d^2D_3 — f^2P_3	26	56	1	6.56 1
d4D3-f4D3	09	66 1	9.66 1	-		-	70	74	2	
d^2D_2 — f^2D_2	04	92 3	4.92 3	-		-	13	20	1	
d^4D_2 -f ⁴ D ₁	02	-	2.74 -	-		-	09	39?	1	
-	2499	25 6	-	9.3		-	2293	41	2	
-	98	40 3	-	8.4		-	61	58	1	
-	97	42 2	-	-		-	53	26	1	1)
$ d^4D_2 - f^4D_2$	95	52 0	5.62 1	1 -			1	1+100		

¹) Siracusano [132] gibt noch: 2247.2, 2236.8, 2219.9, 2216.3, 2185.4, 2182.3, 2175.4.

239

Br IV und Br V. Die Brüder Bloch [121] geben eine Anzahl Linien an, die sie als zu höheren Ionisationsstufen als Br III zugehörig ansehen, mit der Bemerkung, diese Linien seien wahrscheinlich dem Br IV zuzuschreiben. Daß sie im allgemeinen recht haben, zeigt Deb, der unter den Linien nach Zufügung einiger eignen Messungen einige Tripletts, ein Singulett und Interkombinationen feststellen kann. Er findet ferner, daß darunter auch drei Linien von Br V seien, zu denen er noch zwei hinzufügen kann. Die erwähnten Messungen sind in der folgenden Tab. 4 aufgeführt.

Um das vorliegende Beobachtungsmaterial zu vervollständigen, sei noch die folgende Tab. 5 erwähnt, die kürzere Wellenlängen enthält, die von Vaudet [125] ebenfalls mittels Ringentladung erhalten wurden. Ferner sind darin auch einige Messungen von Turner [119] enthalten, dessen Arbeit schon weiter oben erwähnt wurde.

Alle übrigen Linien sind bisher noch nicht eingeordnet.

Zu den Linienspektren des Br sind noch einige Bemerkungen hinzuzufügen. Kimura [89, 90] hat zuerst bemerkt, daß zahlreiche Linien Feinstruktur besitzen, und hat 14 Linien mit einem Stufengitter untersucht, dessen auflösende Kraft aber nicht ganz ausreichte. Er bemerkt, das alle diese Linien zum Bogenspektrum zu gehören scheinen. Dann hat er Hori [112] zu genauerer Untersuchung veranlaßt.

Tabelle 4.

	Br 1	(V				Bloch	Deb
		Bloch	Deb	a crail		[121]	. [139]
		[121]	[139]	1 1 1 - St. 1	2540	63 3	1 121
	3261	21 1	_	³ P ₂ — ³ P ₁	29	48 4	9.48 4
	21	91 1	_	³ P ₀ — ¹ P ₁	21	-	1.84 5
	19	04 2	_	¹ P ₁ — ² P ₀	2493	50 4	3.50 4
3P_3D	3088	64 1	8.64 1	³ P ₂ — ³ D ₂	91	12 4	1.12 4
3P_3D	41	09 0	1.09 0	¹ P ₁ - ³ P ₁	71	-	1.30 1
11-121	05	32 2		³ P ₀ — ³ S ₁	53	-	3.95 3
PrVnach Dah	29983	94 1	40.00	Br V nach Deb	37	20 2	-
DI V Hach Deb	2000	0 00		-	31	82 1	-
3D 3D	12	22 0	3 33 9	³ P ₁ — ¹ S ₀	29	-	9.17 1
3P 3D	24	73 1	4.73 1	³ P ₂ — ¹ P ₁	23	95 1	3.95 1
°P ₁ —°D ₂	9807	60 0	1.10 1	-	03	29 0	-
3D 3D	49	00 0	9 69 9	-	2398	60 2	-
PrVnash Dah	6 1 00	89 1	0.00 2	$^{1}P - ^{2}P_{1}$	70	20 3	0.20 3
SP 1D	9797	60 0	7.60 9	${}^{3}P_{2}$ — ${}^{2}S_{1}$	66	37 2	6.37 2
$P_1 \rightarrow D_2$	2101	00 0	0.71 9	-	65	95 1	-
³ P ₁ — ³ D ₂	00	072 9	5.07 2	-	07	37 0	-
³ P ₂ — ³ D ₃	20	911 0	5.01 9	_	02	51? 0	
°P ₂ —1D ₂	00	07 1	0.04 2	a prostation		100	THE ATER
	00	00 0		1 1 - 1 12			
2D 2D	2697	99 0	0.10 1		Br V	T	
°P ₁ —°P ₀	20	1.	0.13 1	2D 2D 1	0000 1	04 1	0.04 1
^o P ₁ — ^o P ₁	01		1.04 4	*D ₂ -*P ₁	2983	24 1	3.24 1
-	00	07 1	-	^a D ₃ - ^a P ₂	2820	83 4	0.83 4
-	2081	217 2	-	*D ₂ -*P ₂	2//0		0.52 4
-	70	73 1	These	² S ₁ - ² P ₁	2437	20 2	7.20 2
-	61	18 2	- 1	2S2-2P3	2293	- 1	3.41 3

241

Tabelle 5. Kurze Wellenlängen.

	Vai [15	udet 25]		al com	Vau [12	idet 25]	ind	Buba	Vau [12	idet 25]	Turner [119]			Vaudet [125]	Turner [119]
2246	68	1		1472	35	1		1633	39	6	3.6 10		1405	-	5.1 0
45	15	11)		69	41	11)		30	56	0	-		03	-	3.6 .0
43	71	1		51	12	1		17	27	0	-	ani	02	22? 0	
41	37	0		50	32	1		11	33	0	-	1.0	00	-	0.8 0
38	25	2	1	49	59	0		1599	44	11)	-		1397	-	7.5 0
25	39	2^{1})	9	43	89	0	-	97	02	00	11	0.00	94	- 11	4.5 0
15	28	0	.07	39	02	0		92	84	2^{1})	-	0.00	91	- :81	1.3 0
07	93	1		30	72	0		91	32	0	-		87	31 1	-
2199	96	2		27	77?	1	1	88	39	0		1	84	72 1	4.6 8
98	09	0	6.3	23	70	2	1.53	82	28	5	2.4 8	2.0	79	16 0	10-14
92	37	0x	19	06	08	1	16	80	50	0	이 문 문	25	78	11? 1	At
90	92	0	119	04	78	1		77	77	0	90° - 61	2.6.	77	78 1	287-467
88	11	0	- 99	03	88	0	2.6	76	33	5	6.5 6	10	72	75 0	301-300
81	42	1		02	75	1		74	76	5	5.0 9		70	94 0	100-001
80	46	3		1796	37	0		47	62	0	-		68	07? 0	-
77	77	0		71	42	0		44	91	0	CUMP -		28	31 0	000_000
73	81	3	11	67	99	0	-	43	27	2			25	62 0	-
60	66	2	6.3	48	88	0	arel	42	20?	0	161	Sa	17	mi - m	7.8 6 ²)
55	13	0	100	47	07	0		40	61	4	0.8 6		16	-	6.9 5
49	30	1		38	51	2^{1})	10.51	31	75	4	1.9 7	1	10	-	0.0 5
44	02	0		37	89	1		27	46	1	1		06	47? 0	-
39	49	0		36	17	0	172	21	73	0	10 -004	133	04	89? 01)	
36	89	0		29	88	1	39.3	17	77	3	tip addin	1120	02	18? 01)	1031_1031
34	09	3	3171	28	20	0	sim	15	99?	0	-	11	1286	Sin-Aleda	6.4 1 ³)
21	73	4		25	47	0		06	88?	2	-	22.	79	ant-nab	9.7 2
19	24	3		. 20	95	11)		02	77	0	-		66		6.3 1
10	46	0		12	34?	3	02	1488	56	4	8.6 8	1000	61	-	1.8 1
2091	17	0		1693	76	0		84	1 PL	4	4.0 0	1.8%	59	_	9.4 2 ³)
83	89	4	100	86	58	1	pind	77	niel -	atrait.	7.1 2	0-	55	1420	5.9 1
73	68?	0	Sile	85	17	0	11	68	lan-	-	8.2 0	1 miles	51	n Him	1.8 4
62	51	1	25	83	63	0	0.90	66	12 -	-	6.4 0	100	49	1 10 -	9.7 0
53	66	2^{1})		81	96	0		64	45	0	3.4 0		44	-	4.0 2
50	63	0	10.00	77	93	31)		59	-	49.9	9.9 0		32	-	2.5 5
21	38	0	-110	77	09	1	10.6	57	- 10		7.0 1		P-19-10	1 HINGS &	aar fear
1942	40	31)	121	75	70	1	1 8	49	96	2	9.9 3	100	(taina)	a hereiter	in mitem
25	11	1	115	72	66	1	1.93	42	ntre		2.3 0	100	Freened	minath	to instring
23	25	2	1	71	12	21)	1	35	Lord-	-	5.8 0	ELVES.	Children I.	Mathing the	and setting
21	34	2		65	32	0		23	-	-	3.0 2			Productor 1	
13	25	0		62	70	2		16	-	-	6.5 2 '				
1898	06	1		54	48	0		14	51	0		120	12171	No. State	aspins m
89	24	1		53	20	0	1 nen	12	15?	0	and the party of		195 17	The Party	in, Ber
84	49	2		49	93	31)	301	11	29	1	1.5 1	16	(crim)	inveniero o	and man line
82	04	00		47	44	31)		10	05	0	0.3 1		monthe	and a find	atter des
76	71	0		42	32 (00		07	_	-	7.1 0	1.1		A TANK	

1) Diese Linien findet Vaudet auch bei Chlor.

²) Diese Linie findet Turner auch in Jod. Kiess und de Bruin [134] sagen, sie gehöre beiden Elementen an; sie berechnen bei Br 1317.4.

³) Findet sich auch bei Jod.

Kayser u. Konen, Spektroskopie. VIII.

Dieser findet 56 Linien mit Feinstruktur, teils aus vier, teils aus drei und teils aus zwei Linien bestehend. Er hebt hervor — was übrigens schon Ruark und Chenault [110] an den Zahlen von Kimura bemerkt hatten —, daß bei vielen von den Linien dieselbe Zerlegung auftritt; z. B. bei den dreifachen Linien sind die Abstände der Komponenten, von den stärksten Linien an gemessen:

6632:	0.000	-0.085	-0.142	-0.179
6560:	0.000	-0.084	-0.142	-0.178
6351:	0.000	-0.079	-0.133	-0.165
6149:	0.000	-0.071	-0.120	-0.148

Die gefundenen Linien sind:

4425; 4442; 4473; 4478; 4514; 4526; 4542; 4630; 4673; 4679; 4693; 4705; 4728; 4767; 4774; 4777; 4785; 4795; 4802; 4817; 4839; 4867; 4868; 4921; 4929; 4931; 4946; 4960; 4980; 5184; 5194; 5199; 5228; 5250; 5264; 5273; 5332; 5346; 5396; 5423; 5425; 5466; 5495; 5590; 5601; 5719; 5831; 5941; 6119; 6150; 6351; 6560; 6636; 6682; 6728; 7040.

Die drei letzten Wellenlängen hat Hori selbst gemessen und sagt, daß die Linien mit Feinstruktur fast ausnahmslos den Typus der Bogenlinien zeigen. Dagegen bemerken Kiess und de Bruin [146], daß nur 14 von obigen Linien in ihrer Tabelle des Bogenspektrums vorkommen. Sie selbst fügen noch folgende Linien hinzu: 8334; 8153; 7938 und versprechen eine eingehendere Untersuchung. Schüler [154] hat in einer Tabelle die Werte für bisher bekannte Kernmomente zusammengestellt und gibt für Br den Wert $\frac{3}{2}$, was auch mit der Angabe von de Bruin [144] übereinstimmt.

Der Zeemaneffekt ist nur von Kimura [89] und L. und E. Bloch und Lacroute [150] an Br-Linien untersucht worden. Kimura fand vier Linien mit Feinstruktur: 6632; 6560; 6351; 6150. Obgleich diese Linien gleiche Struktur haben (s. oben), zeigten sie recht verschiedene Zeemanaufspaltungen. Weiter untersuchte Kimura die Linien: 5590; 5332; 5304; 5238; 5182; 5165; 4767; 4743; 4720; 4679 und 4623, die alle keine normale Tripletts liefern. — Zur Feinstruktur s. ferner auch Tolansky [156]. Die Arbeit [150] ist bereits weiter oben erwähnt worden.

Um die bereits mehrfach erwähnte Verbreiterung der Br-Linien bei hohen Stromdichten und hohen Drucken zu erklären, untersuchte Asagoe [136] den Starkeffekt von Br und erhielt tatsächlich eine Verschiebung bei fast allen Bogenlinien in der erwarteten Richtung, nämlich nach Rot. Die Verschiebung war fast dem Quadrat der Feldstärke proportional. Nur bei der Linie λ 4203 Å trat Violettverschiebung ein. Bei etwa 142 KV/cm Feldstärke betrug die Verschiebung meist weniger als 1 Å und nur bei einigen kurzwelligen Linien, wie z. B. bei $\lambda\lambda$ 4392, 4037 und 3992 ergaben sich größere Aufspaltungen in zwei oder drei s- und p-Komponenten, die jedoch wegen ihrer Unschärfe nicht meßbar waren. Von den Funkenlinien hingegen zeigte keine Linie eine Andeutung des Starkeffektes.

Wenn also Asagoe schließt, die "Verschiebung" bei Erhöhung des Druckes oder der Erregungsstärke komme vom Starkeffekt, so ist das direkt widerlegt, da diese "Verschiebung" bei den Bogenlinien klein, bei den Funkenlinien groß ist.

Von der großen Anzahl der Ramaneffektuntersuchungen über Bromverbindungen sollen hier nur diejenigen über Bromwasserstoff besprochen werden; denn alle übrigen uns bisher bekannten Arbeiten befassen sich mit der Untersuchung organischer Bromverbindungen.

Salant und Sandow berichten in drei Arbeiten [147, 148, 153] über ihre Messungen von Ramanfrequenzen an flüssigem und gasförmigem Bromwasserstoff und geben folgende Werte an: $\Delta \nu$ (gasförmig) = 2558,

 $\Delta \nu$ (flüssig) = 2478;

beide Frequenzen scheinen den von Czerny [124] und Imes [82] gemessenen ultraroten BrH-Banden bei $4.4 \,\mu$ und $4.033 \,\mu$ zu entsprechen.

Das Ionisationspotential für Br I wird von Kiess und de Bruin [146] zu 11.8 Volt berechnet. Sie bemerken, daß geradlinige Interpolation zwischen Ge und Kr 12.40 ergebe. Eine ältere Angabe von Hughes und Dixon [77] lautet 10 Volt. Chandra Deb [139] gibt für Br II 19.1 Volt und für Br III 25.7 Volt. Noyes jr. [100] erhält für Br I 12.5 ± 0.5 Volt.

Röntgenspektrum.

Im Gebiet der L-Serie fand Thoraeus [117] mehrere neue Linien, die er auf etwa drei Stellen genau gemessen hat. Neumessungen in der K-Serie sind von Leide [114, 108] und Edlén [128] ausgeführt worden. Ihre Messungen stimmen auf vier Stellen und bei den stärksten Linien sogar noch in der fünften Stelle überein. Beuthe [142a] hat eine neue schwache Linie β_1 , nach Siegbahn β_5 , gemessen, die er als verbotenen Übergang mit der Frequenzsumme $Ka_1 + La_1$ deutet.

Die K-Absorptionskante wurde von Leide [114] neu bestimmt, wobei die Art des absorbierenden Mediums leider nicht näher beschrieben ist. Hierher gehört auch eine Arbeit von Hanawalt [152a], der Bromdampf, sowie gasförmige, flüssige und feste Bromverbindungen in Sekundärabsorption untersucht hat. Sekundärabsorption

Ferror I	-Serie					K	-Serie			
Übergänge n. Siegbahn	Be- zeich- nung	i	Thor. [117]	antrantia his offer		and a second	Leide [114,108]	Edlén [128]	Beuthe [142a]	
LIII-MI	Le	-	9563	K-LII	Ka.	5,1	1041.60	1041.664	nine ni	
LII-MI	y	-	9234	K-LIII	a1	10	1037.56	1037.594	unit.	
LIII-MIV. V	a1, 2	10	83571)	K-MIL III	β_1	4	930.84	930.870		
Funkenl.	a	0	83261)	K-MIV. V	β_5	-	-	_	923.6	
	a''	-	8297	K-NII III	β_2	1	918.26	918.528	_	
LII-MIV	β_1	8	81081)	S STORE STREET			and a line	19.5. 165	11,0223	
Funkenl.	β'		8086	ic edit offer and	Absorpt	tionsn	nessung vor	n Br	in point	
"	β"	-	8065	de seo mon sero			Leide [114]	-	-	
				K-Kante stark 918.09						
Reite (1-/(28))				K-Kante	alisado	stark	918.09	-		

Tabelle der Röntgenemissionslinien von Br 35.

Wellenlängen in XE, bezogen auf Kalkspat: d₁₈⁰ - 3029.45.

1) Nach Hjalmar [84; 88].

nond Zellen sond Zellen (song an	Temp.	Hauptkante in XE	⊿V in Volt	Abstände der beiden Seiten oder der Mitte der Absorptionslinien von der Hauptkante in Volt
Gasförmig	ntermenev	and the second second	where here a	en von flamantreponen en flässige
Br.	-20	918.51	0	0-6
HBr	20	918.41	1.5	
	170	-	-	
AsBr ₃	120	918.44	1.0	
Lösung		.inition	and the set of the	the derivation on a 1 2 and 1 40
NaBrO ₃	199779	918.09	6.1	0-23; 55-110; 170-216
Fest		In the second	Ha this wall	Sen teresaides base aire staa
AgBr		918.23	4.1	0-6; 23,5; 52; 93; 129
NaBr		918.04	6.9	0-9; 27,7; 60-?
NaBrO ₃	540 <u>-</u> 54	918.09	6.1	0-7; 15-23; 35; 52-110; 180-?

Sekundärabsorption bei Br nach Hanawalt [152a]

Tabelle der Energiewerte der Röntgenniveaus nach Siegbahn¹).

Rőntgenniveau	K 2)	LI	LII	LIII	MI	M11, 111	MIV, V	NI	NII, III
Optisches Symbol	$1^2S_{\frac{1}{2}}$	$2^2\mathrm{S}_{\frac{1}{2}}$	$2{}^{2}\mathrm{P}_{\frac{1}{2}}$	$2^{2}P_{\frac{3}{2}}$	$3^2S_{\frac{1}{2}}$	$3^{2}P_{\frac{1}{2},\frac{3}{2}}$	$3{}^{\mathrm{s}}\mathrm{D}_{\frac{3}{2},\frac{5}{2}}$	$4{}^2\mathrm{S}_{\frac{1}{2}}$	$4^{2}\mathrm{P}_{\frac{1}{2},\frac{3}{2}}$
$\frac{\nu}{R}$	992.6		117.8	114.3	19.1	13.6	5.4		0.5

wurde ferner von Meyer [141a] und Idei [145a] bei Bromaten, nicht aber bei Bromiden, gefunden. Meyer gibt für die Abstände dreier dunkler Linien von der Hauptkante die Werte: 2.7, 9.1 und 17.2 XE an, entsprechend 40, 120 und 241 Volt. Idei mißt dagegen Minima bei 917.0 und 912.6 XE, nebst den Stellen halben Schwärzungsanstiegs zu deren beiden Seiten: 918.1 (Hauptkante) und 916.2 bzw. 914.3 und 911.1, alles in XE.

Bandenspektra.

Es sind eine ganze Reihe von Bandenspektren des Br in Absorption, in Emission und in Fluoreszenz beschrieben worden. Aber die Angaben sind so außerordentlich verschieden, daß es auch trotz der veröffentlichten Abbildungen unmöglich ist, sich ein einigermaßen klares Bild zu machen. Man vgl. auch Bd. V und Bd. VII.

Beginnen wir mit der Absorption: Dobbie und Fox [91] untersuchen die Absorption mit so kleiner Dispersion, daß von einer Erkennung der Banden keine Rede sein kann. Ihre Beschreibung ist nicht sehr klar. Sie bringen eine bekannte Menge Brom in das Absorptionsrohr, das von 20°–1350° erhitzt wird. Bei der niedrigsten Temperatur wird das ganze Violett, Blau, Grün absorbiert bis etwa λ 5100, das durch-

¹) M. Siegbahn, Spektroskopie der Röntgenstrahlen. 2. Aufl. p. 346, Berlin 1931.

²) Das K-Niveau ist der experimentell ermittelte Wert der Absorptionskante, wonach die übrigen berechnet sind.

gelassene Licht ist orangefarbig. Bei steigender Temperatur rückt die Absorption immer weiter zu längeren Wellen und das Licht wird rot. Oberhalb 600° nimmt die Intensität des durchgehenden Lichtes ab, so daß bei 900° fast nichts mehr durchgeht. Weiter oberhalb ist die Absorption wieder geringer, bei 1200° ist das durchgehende Licht blaßgelb und bei noch höherer Temperatur nahezu weiß.

Mit dieser Angabe paßt die folgende nicht gut zusammen: wird nur $\frac{1}{8}$ so viel Br in das Rohr gebracht, so erscheint ein breites Absorptionsband, dessen Mitte bei etwa λ 4170 liegt. Dieses Band verschwindet bei etwa 600°, aber das ganze Spektralgebiet bleibt geschwächt bis zu viel höherer Temperatur.

Kimura [89] gibt ein Bild der Banden, die von etwa 5400 Å beginnend nach langen Wellen laufen und nach Rot abschattiert sind. Ausführlicher berichtet Nakamura [116]. Er benutzt Absorptionsrohre verschiedener Länge bis zu 6,5 m. Der angewandte Druck beträgt etwa 26 cm, da bei höherem Druck die Banden nicht mehr aufgelöst erscheinen. Bei geringerer Schichtdicke sind nur wenige Banden sichtbar. Bei $\lambda > 5000$ Å setzt kontinuierliche Absorption ein und bei 5133 Å tritt die erste Kante ziemlich unscharf hervor, während die folgenden Kanten schärfer aber schwächer werden, bis sie schließlich ganz verschwinden. Bei größerer Schichtdicke erscheinen die Banden in bedeutend größerer Zahl und Stärke, doch beginnen dann die erst erschienenen zusammenzufließen. Nakamura hat z. B. 38 Kanten beobachtet, die bis λ 5984 reichen. Gleichzeitig hat er bei Vergrößerung der Schichtdicke eine neue Kantenserie bei 5304 erhalten, dann eine dritte usw. Im ganzen hat er schließlich etwa 180 Kanten gezählt, die bis λ 7610 reichen und sich in 16 Serien ordnen ließen, für die er die Deslandresschen Gleichungen berechnet hat.

Seine Messungen sind in Tab. 6 enthalten.

Bei Erhitzung des Br-Gases auf 1100° treten einige neue Kanten auf; ein Teil derselben erweist sich als Fortsetzung der 6. Serie. Andere aber liegen dicht neben schon gemessenen Kanten, und zwar so, daß diese Kanten dreifach erscheinen. Er glaubt, die Erscheinung den Isotopen zuschreiben zu müssen; denn es können drei Arten von Molekülen existieren, $Br^{79} + Br^{79}$, $Br^{79} + Br^{81}$ und $Br^{81} + Br^{81}$, Lage und Intensität der drei Kanten scheinen seine Annahme zu rechtfertigen.

Ferner hat sich Kuhn [113] mit dem Absorptionsspektrum beschäftigt und einen Teil der Kanten gemessen. Er gibt 75 Kanten an. Zwischen λ 5550 und 5280 hat er keine Messungen angegeben. Seine Werte stimmen übrigens recht schlecht mit den japanischen überein. Das von ihm aufgestellte Niveauschema v/v" ist aus Tab. 7 zu ersehen. Formeln hat er nicht berechnet, sondern nur den Konvergenzpunkt der Banden ermittelt, der bei 5107 \pm 7 Å liegen soll, woraus er für die Dissoziationswärme 45.2 Kalorien errechnet.

R. T. Birge (Int. Critic. Tables Bd. V p. 409, 1929) gibt folgende Kantenformel an: $\nu (v', v'') = 16463 + (151 v' - 1.82 v'^2) - (326.6 v'' - 1.72 v''^2)$. Hays [141] mißt im Absorptionsspektrum zwischen λ 6309 und 6117 12 Kanten und 13 Einzellinien von Banden. Sie meint, es sei nur ein P- und ein R-Zweig vorhanden und kein Q-Zweig. Brown [151] macht eine vorläufige Mitteilung, daß er bis λ 9000 Banden erhalten habe. Aus seinen provisorischen Betrachtungen findet er, daß die Ordnungszahlen von Kuhn [113] nicht richtig sind und hat daher in einer weiteren

Tabelle 6. Kanten von Br2-Banden nach Nakamura [116].

n	$\lambda_{\rm vac.}$	n	λ _{vac} .	n	λ _{vac} .	n	$\lambda_{\rm vac.}$
S	erie I	15	5649.6	7	6141.0	and dial	[7410.8
0	5130.4	16	82.6	8	89.0	15	{ (18.5)
1	34.4	17	5713.6	9	6240.7	long to ma	(26.5)
2	40.1	18	51.7	10	89.4	16	95.6
3	45.2	19	88.0	11	6343.3	17	7586.0
4	52.5	20	5827.5	12	98.5	18	?
5	59.8	21	67.3	13	6454.0	in great th	field mideg
6	68.0	22	5908.6	14	6516.0	Sei	rie VII
7	77.0	23	51.7	15	76.6	0	6429.0
8	87.0	24	99.3	16	6640.9	1	92.3
9	97.8	25	6045.0	17	6705.8	2	6557.8
10	5209.5	26	96.0	10 00 10	and the second second	3	6618.5
11	22.2	27	6147.7	5	Serie V	4	84.0
12	35.9	28	99.9	0	6210.7	5	6752.8
13	50.5		and the state of the	1	58.8	6	6821.0
14	66.2	Se	rie III	2	6312.0	7	91.6
15	83.0	0	5575.8	3	62.9	8	6964.0
16	5300.8	1	5602.2	4	6416.4	and aspect	dicke estelu
17	19.8	2	28.6	5	71.2	Ser	ie VIII
18	39.9	3	59.1	6	6530.4	0	6569.0
19	61.1	4	88.8	7	89.8	1	6628.8
20	83.6	5	5721.1	8	51.0	2	6701.0
21	5407.2	6	55.3	. 9	6715.0	3	65.6
22	32.1	7	88.8	10	78.8	4	6838.4
23	58.2	8	5825.0	11	6846.7	5	6916.8
bis	32 nicht	9	62.1	12	6915.0?	6	87.0
m	eßbar	10	5901.6	and the set	they are had a	7	7065.4
32	5761?	11	41.6	S	erie VI	toke selectri	nama diang sel
33	5800?	12	82.6	0	6368.2	Se	rie IX
34	45?	.13	6026.0	1	6424.8	0	6719.8
35	88	14	- 70.5	2	80.2	1	94.3
36	5935	15	6119.5	3	6542.0	2	6867.4
37	84	16	67.7	4	6602.0	3	6946.1
in the la	an minilia	17	6218.6	5	68.0	4	7020.4
S	erie II	18	71.9	6	6731.2	5	7101.0
0	5305.5	19	6326.3	7	97.0	6	81.0
1	19.3	20	84.0	8	6868.5		and and and a second
2	35.6	21	6442.0	9	6941.7	· S	erie X
3	51.5	22	6502.0	10	7012.9	0	6821.9
4	72.0	23	65.8	11	87.4	1	6900.9
5	91.0	24	6632.0	The services	(93.0)	2	78.4
6	5411.0	Start Dispi	States dates	the state	64.4	3	7056.1
7	33.2	S	erie IV	12	{ (69.3)	4	7140.2
8	55.1	0	5848.2	17 1 28 (A	(73.0)	5	7222.0
9	78.2	1	86.4	anten A 18	(78.2)	6	7311.1
10	5504.8	2	5925.6	i in the	(7241.3)	7	99.5
11	30.7	3	66.0	13	47.4		
12	58.6	4	6007.2		(53.4)	Se	rie XI
13	86.2	5	50.6		∫ 7326.0	0	6932.6
14	5618.2	6	95.6	14	(7403.0)	1 1	7014.4
Brom

n	λ _{vac} .	n	λ _{vac} .	n	λ _{vac} .	n	$\lambda_{\rm vac.}$
2	7097.0	3	7315.5	Ser	ie XIV	Ser	ie XVI
3	7178.0	4	7407.0	0	7287.5	0	7410.5
4	7267.2	de linth y	deres mielle	1	7381.0	1	7509.0
5	7351?	Ser	ie XIII	2	7476.8	2	7610.0
Se	rie XII	0	7152.0	Sei	rie XV	shitedion 2	Stat Burds
0	7056.9	1	7240.8	0	7347.0	dit the	le monuter s
1	7140.0	2	7330.6	1	7443.8	10/01/18	rurozania V
2	7226.0	3	7424.7	2	7542.6	an.0886	6.6479 mm

v'	v''	ν	v'	v"	v		v'	v''	ν	-	v'	v''	ν
10	0	17799	34	0	19502		8	2	16910		3	4	15624
11	0	899	35	0	515		9	2	17032		4	4	763
ants	16.1	Set me	36	0	529	a ist	10	2	153	dw it	5	4	16896
24	0	18998	37	0	540			0	15050		6	4	027
'25	0	19053					1	0	10000		7	4	154
26	0	104	6	1	16981	102	2	3	796	212-83	8	4	279
27	0	146	7	1	17106		3	3	936	1000	9	4	399
28	0	193	8	1	231		4	3	16076		10	4	515
29	0	234	9	1	358		D	3	212			121	
30	0	274	10	1	474	199	6	3	343	102 10	0	5	14877
31	0	308	11	1	573	2. Calif	7	3	471	stran	1	5	15029
32	0	346	12	1	671		8	3	595	dis 1	2	5	168
33	0	369	13	1	765		9	3	714		3	5	314
34	0	402	14	1	852		10	3	831		4	5	451
35	0	426		10 million	answer 6		11	3	944	1.127	5	5	587
36	0	450	5	2	16528	120	0	4	15184	1000	6	5	716
87	0	469	6	2	661	12 1	1	4	' 334	dada	7	5	839
38	0	488	7	2	787		2	4	480		8	5	964

Tabelle 7. Absorptionskanten des Broms nach Kuhn [113].

Arbeit [152] die Numerierung des v' auf Grund von Isotopiebeobachtungen um vier Einheiten erhöht. Er gibt ferner folgende Kantenformel:

 $v(v', v'') = 15831.2 + (162.81 v' - 1.679 v'^2 - 0.0087 v'^3) - (322.71 v'' - 1.150 v''^2)$

und für ein weiteres schwaches Absorptionsbandensystem zwischen λ 6400 und 7200:

 ν (v', v'') = 14736.8 + (112.29 v' - 3.395 v'^2) - (322.71 v'' - 1.150 v''^2).

Daß Brom auch in Emission ein Bandenspektrum besitzen müsse, welches dem Absorptionsspektrum entspreche, hatten schon Plücker und Hittorf vermutet, aber nicht gefunden. Eder und Valenta [53] erhielten zuerst Spuren dieses Spektrums im Geißlerrohr zwischen λ 5800 und λ 5400. Sie arbeiteten mit so großer Dispersion, daß ihre Aufnahmen zu lichtschwach sind, um eine einwandfreie Messung zu gestatten. Auf den von ihnen veröffentlichten Photographien sieht man nur eine Menge dicht gedrängter feiner Linien, die Kanten nicht deutlich erkennen lassen, eine bei dieser Art von Spektren wohlbekannte Erscheinung. Eder und Valenta messen einige Dutzend Linien, wobei in der Regel zwei oder drei auf eine Ångströmeinheit kommen. Vorher hatte Hasselberg [29] bereits das Absorptionsspektrum mit gleicher Dispersion gemessen. Es lag daher nahe, die beiden Spektren zu vergleichen, was infolge der dicht beieinander liegenden Linien und den ziemlich ungenauen Messungen zur Feststellung scheinbarer großer Ähnlichkeit führte. Daß das Emissionsspektrum und das Absorptionsspektrum des Broms in Wirklichkeit jedoch völlig verschieden sind, zeigte zuerst Kimura [89], der zwei Photographien nebeneinander stellt, die mit kleiner Dispersion aufgenommen deutlich die Kanten zeigen. Nakamura [116] geht näher darauf ein. Er mißt die Kanten in Emission zwischen λ 6479 und 5330 und leitet folgende Formel dafür ab:

$$v = 18767.1 - 175.9$$
 n für $n = 0$ bis $n = 19$.

Für das Absorptionsspektrum hat er 16 Serien und 16 Formeln aufgestellt, von denen die erste lautet:

$$\nu = 19490.3 - 13.96 \text{ n} - 1.513 \text{ n}^2 - 0.00038 \text{ n}^3.$$

Bei den folgenden wird das erste Glied kleiner, und das zweite größer. Die 16. Formel heißt: v = 13494.5 - 177.0 n.

Auch hieraus sieht man, daß die Formel der Emissionsbanden zu keiner der Absorptionsserien passen kann.

Noch genauer untersuchen Ushida und Ota [134] das Emissionsspektrum. Sie messen 81 Kanten zwischen 6604 und 5100, die sie unter modernen Gesichtspunkten in zwei Serien einordnen und dafür Formeln berechnen. Ihre Werte sind neben denen Nakamuras in Tab. 8 enthalten. Es zeigt sich, daß beide Serien vom gleichen Anfangsniveau ausgehen. Da das Spektrum nicht die Umkehrung des Absorptionsspektrums ist, folgern diese Autoren, daß es nicht vom neutralen Molekül herrührt.

Es ist kaum zweifelhaft, daß Eder und Valenta mindestens einen Teil dieses Spektrums beobachtet haben. Dagegen ist das von Fowler und Strutt [59] beschriebene Spektrum offenbar wieder etwas anderes. Das Licht, das beim Zusammenkommen von Brom und aktivem Stickstoff entsteht, zeigt ein symmetrisches Band mit unscharfen Rändern von 2930—2890 und zwischen 6070 und 5875 acht schmale Bänder im Abstande von je etwa 28 Å. Die Verfasser sagen selbst, daß es nicht die Banden von Eder und Valenta seien; ebensowenig entsprechen sie einer Umkehrung eines Stückes des Absorptionsspektrums. Es liegt hier also ein neues drittes Spektrum des Broms vor, wenn es nicht einer Verbindung angehört (HgBr?, man vgl. Jod).

Siracusano [132] erwähnt, er habe das erwähnte Band 2930-2890 bei Ringentladung beobachtet.

Ludlam und West [104] erregen das Emissionsspektrum mittels Teslaentladungen in Quarzröhren. Sie benutzen jedoch geringe Dispersion (Quarzspektrograph) und erhalten außer einigen ungenau gemessenen Emissionslinien zwei kontinuierliche Banden mit scharfer langwelliger Grenze bei 370 bzw. 295 $\mu\mu$.

Filippov [129] bestrahlt JBr-Dampf mit Licht, das kurzwelliger ist als 2000 Å, und beobachtet eine violette Emission, deren spektrale Zerlegung ein kompliziertes Bandenspektrum liefert, worüber noch nichts Genaues bekannt ist.

[134]		Syst	em	T	[115]		[134]	notesta machad	Syst	em	I	[115]
λ	n'	n‴	n'	n''	λ	1100	2	n'	n''	n'	n''	λ
5100.7	15	1	-	-	_		6007.6	-	-	6	1	-
5134.2	12	0	-		-		6013.1	2	3	-	-	-
5142.4	14	1	-		-		6021.8	-	-	-	-	-
5168.8	1944	1	2-20	-	annampika	No.	6027.8	1100	10-110	8	2	Charles and
5178.8	11	0	-	-	hine n alb	1111	6068.2	5	5			6069.0
5230.7	12	1	-	-	1	1.000	6074.6	3	4	-	-	- in
5266.8	-	-	-	-	-		6083.1	1	3	7	2	
5277.1	11	1	-	-	-		6116.2	112	-	-		-
5285.5	13 .	2	-	-			6127.2	-	-		_	and the second
5320.9	-	-	-	-	1997 - 1991		6133.1	6	6	-	-	6135.0
5324.9	10	1	-	1 TT	12. 7. 10		6137.9	4	5	6	2	dis - de
5328.6	-	-	-	-	5330.0		6144.8	2	4	-	-	-
5373.6	9	1	-	-	-		6181.8		-		-	-
5377.0	-		-	-		161	6194.4		1	5	2	The state
5379.4	11	2	-	-	5379.0	The state	6200.6	5	6	-+	-	6198.0
5382.6	-	-		-			6207.8	3	5	-	-	-
5428.6	10	2	-	-	5428.0	160	6217.0	1	4	7	3	-
5463.9	-	-	-	-			6251.5	-	-	4	.2	
5476.5	7	1	-	-	14000	22	6260.0		mol	_	10	in and the second
5480.0	9	2	-	-	5480.5		6268.2	-	-	-	-	6271.5
5529.2	6	1	-			1999	6273.7	-	-	6	3	A Dected
5532.4	8	2	-	-	5535.5	3.01	6282.0	2	5	1	-	1314 44
5586.1	7	2	-	-	5589.0	243	6290.1	0	4	-	-	
5642.2	6	2	-	-	-		6310.6		12	3	2	TURNIT RUSS
5644.7	8	3	-	-	5644.0		6315.4		-	-	-	_
5661.1	-	-	-	-	-	-	6332.8		-	5	3	6338.5
5684.7	-	_	10	0	-	1.01	6357.5	1	5	-	-	
5699.9	7	3	-	-	5701.0	100	6372.1	-	-	2	2	Same in
5731.6	-	-	9	0	-		6392.8	-	-	4	3	-
5758.3	6	3		-	5760.0		6403.0	-	-		-	6412.5
5804.5		11-271	10	1	1917 <u>-</u> 1		6413.7	1000	-	6	4	194202749
5819.7	5	3			5820.5	10	6421.2	2	6		14	all the all
5852.1	-	-	9	1	-		6435.9	-	-	1	2	an to TH
5880.6	6	4	-	-	5881.5		6455.1	-	-	3	3	-
5883.1	4	3	-		The second	- 20	6475.6	-	-	5	4	6479.5
5905.0	-		8	1	Congen real	College	6499.4	-		0	2	BIT PLEASE
5924.3	-	-	10	2	and the state of the state of the	1	6519.7	-	-	2	3	N#141 88
5940.7	5	4	-	-	-		6540.7		-	4	4	
5945.7	3	3	-	-	5943.0		6579.0	0	6		-	_
5975.8	(92033)		9	2	1 inditure and	1920	6604.1	-	_	3	4	and the lease
6004.6	4	4	-	-	6005.5	(INC)	ndhaon)	(Digital)	(separate	Dell'en	risd (1007telein

Daß Brom fluoresziert, hat zuerst Wood [56] bemerkt. Mit dem Fluoreszenzspektrum beschäftigt sich Daure [111]. Er findet, daß es kontinuierlich ist und von λ 5000 bis ins Rote reiche. Dagegen behaupten die Brüder Bloch [122], sie hätten kannelierte, nach Rot abschattierte Banden zwischen λ 6400 und 5100 beobachtet, wovon sie etwa 25 Kanten hätten messen können; sie geben aber weiter nichts darüber an, als daß der Abstand der Banden in der Gegend der D-Linien etwa 55 Å betrage, und daß sie diese Emissionsbanden weder mit denjenigen von Eder und Valenta noch mit den Absorptionsbanden von Hasselberg hätten identifizieren können. Auch die von Fowler und Strutt beobachteten Banden sind nicht hiermit identisch nach den Angaben der Brüder Bloch. Diese Angaben sind immerhin recht auffallend; denn Eder und Valenta haben überhaupt keine Kanten, sondern nur Linien gemessen; aus Hasselbergs Zeichnung kann man zwar für einige Kanten die Wellenlängen ablesen, aber im allgemeinen nicht; wie kann man da überhaupt vergleichen? — Doch ist es immerhin möglich, daß wieder ein neues Spektrum vorliegt.

Emich [73] hatte erneut gefunden, daß Br im Quarzrohr erhitzt leuchte. Kondratjew [131] gibt an, das Spektrum des Lichtes falle mit dem Absorptionsspektrum zusammen.

Bromhydrid. Neuere Arbeiten über die ultraroten Absorptionsbanden von BrH sind von Kemble [94], Bell [102], Mohler [109] und Czerny [123, 124] angefertigt worden.

Bell [102] ermittelt u. a. Kernabstand, Oszillationsfrequenz und die Bewegungsgleichung sowie das Kraftgesetz für die Oszillation in der Nähe der Gleichgewichtslage. Kemble [94] erhält als Wert für die Ionisierungsspannung des BrH-Moleküls 12 Volt, während Mohler [109] 13.1 Volt angibt. Czerny [123] hat folgende Absorptionsmaxima von HBr-Dampf im Ultraroten gemessen:

 λ in μ 120.44; 99.80; 86.01; 60.40; 55.05; 50.53; 46.66 und 43.50.

In einer weiteren Arbeit [124] teilt er folgende Formeln für das ultrarote Rotationsschwingungsspektrum des HBr mit:

> $v \text{ osz.} = 2559.151 + 16.4788 \text{ m} - 0.23044 \text{ m}^2 - 0.001457 \text{ m}^3$ $v \text{rot.} = 16.7092 \text{ m} - 0.001457 \text{ m}^3.$

Weizel, Wolff und Binkele [149] finden in einer Entladung in Bromwasserstoff ein kontinuierliches Spektrum, das vom Grün nach kurzen Wellen in der Intensität anwächst, im nahen Ultraviolett einige flache Maxima besitzt und unterhalb 2500 Å allmählich abklingt. Das Kontinuum wird als Dissoziationsspektrum von HBr oder HBr⁺ zu deuten sein.

Deslandres [107] versucht, die Rotationsschwingungsbande von HBr formelmäßig darzustellen, was ihm jedoch nur unter gewissen Annahmen gelingt.

Mackay [105 und 106] hat die Ionisierungsspannung von HBr zu 13,2 Volt bestimmt.

Tingey und Gerke [118] erhalten gelegentlich einer Untersuchung des ultravioletten Absorptionsspektrums von Br-Gas mittels Wasserstoffröhre als kontinuierliche Lichtquelle ein kontinuierliches Spektrum von HBr, das sich von 6240Å bis ins Ultraviolett erstreckt und auf der Dissoziation der HBr-Moleküle beruht. Dieses Kontinuum ist offenbar dasselbe, welches Weizel, Wolff und Binkele [149] genauer untersucht haben (s. oben).

Die zahlreichen Angaben über die kontinuierlichen Spektren des Broms sowohl in Absorption als auch in Emission sind zum Teil widersprechend. Eder und Valenta [35] beobachten in Emission und schreiben, der kontinuierliche Grund beginne bei etwa 4300 Å deutlich zu werden, wachse bis 3700 und gehe bis weit ins Ultraviolett. Nach langen Wellen scheine zwischen 4300 und 4900 ein Minimum zu liegen, dann aber das Kontinuum wieder stärker zu werden. Eine Illustration hierzu liefert die sehr schöne Photographie, die in großem Maßstabe das Spektrum in einzelnen Streifen wiedergibt. Ein solcher Streifen reicht von λ 4400 bis λ 5250; hier sieht man, daß bei etwa 2 4850 der kontinuierliche Grund beginnt, nach Rot hin rasch wächst bis zum Ende des Streifens, wo er maximale Stärke hat. Aber auf dem nächsten Streifen, λ 5150 bis λ 5950 ist von dem kontinuierlichen Grund nichts zu sehen. - Eder und Valenta sagen übrigens, der kontinuierliche Grund scheine unterhalb 8 mm Druck und über 40 mm zu verblassen. Kiess und de Bruin [146] sagen, zugleich mit dem Bogenspektrum trete kontinuierlicher Grund auf, 2 3600 bis λ 3500, Maximum bei λ 3550; daran schließe sich nach Violett ein viel schwächerer Streifen mit einem Maximum bei 2 3250. Diese Maxima fallen mit den Grenzen der ²P- und der ⁴P-Serien zusammen, so daß sie als Rekombinationsleuchten gedeutet werden können und mithin zum atomaren Brom gehören. - Urev und Bates [142] finden, daß Flammen von H, O, Br kontinuierlichen Grund geben, der von Rot bis etwa 3400 Å reicht, und von dem sie annehmen, daß er von Rekombinationen von Atomen und Ionen herrührt. Gleichzeitig beobachten sie sehr diffuse Banden zwischen λ 4675 und λ 4250 und deuten auch die Bande bei λ 2930 als Rekombinationsbande, die zuerst von Ludlam und West [104] bemerkt wurde. Dazu s. auch Gerlach und Gromann (Zs. f. Phys. 18 p. 239-248, 1923), die diese Bande nebst einer zweiten bei 4200 Å besprechen. Mit steigender Temperatur wird die erste stärker und die zweite schwächer. Filippov [129] erhält die Bande auch bei Bestrahlung von JBr-Dampf und durch Teslaströme. Dabei tritt ein kompliziertes Bandenspektrum auf mit Banden bei 2915; 2935; 2960 usw. bis 4495, dann 4675 und 4850. Zusatz von N verändert das Spektrum stark.

Über die kontinuierlichen Spektren in Absorption finden sich neuere Angaben bei Narayan und Gunnayya [99], Cordes und Sponer [145] und Bowis [103].

Narayan und Gunnayya [99] untersuchen die Absorption von Br-Dampf in einem 20-25 cm langen Rohr mittels Sonne und Eisenbogen als kontinuierliche Lichtquellen in Abhängigkeit von Temperatur und Druck. Zum Vergleich haben sie auch das Emissionsspektrum im Geißlerrohr aufgenommen und gefunden, daß Emissionsspektrum und unangeregtes Absorptionsspektrum in keiner Weise komplementär sind, wie das ja auch in den oben erwähnten Arbeiten [89, 35, 116 und 134] bereits festgestellt wurde.

Cordes und Sponer [145] bemerken bei 0.08 mm Druck eine von kurzen Wellenlängen kommende kontinuierliche Absorption bis λ 1580 Å und bei 1675, 1671 und 1685 Å diffuse Banden, die sehr schlecht meßbar sind. Bei 1,1 mm Druck erscheint nach ihren Angaben auf der langwelligen Seite eine vierte Bande bei 1697 Å, die wahrscheinlich nach Violett abschattiert ist. Mit steigendem Druck rückt die Absorptionsgrenze nach längeren Wellen, bei 1.6 Atm. ist sie bis 2700 Å vorgedrungen. Sie vermuten, daß das Kontinuum durch Dissoziation des Br-Moleküls in ein normales und ein Bromatom im 2²P₁-Zustand hervorgebracht wird. Bowis [103] ermittelt

Brom

die Absorptionskoeffizienten des flüssigen Broms im Spektralbereich λ 5400 bis λ 3800 und findet das Maximum der Absorption bei λ 4170. — Sleator [155] findet eine Methylbromidbande bei 16 μ bei 20 cm Druck und 12 cm Schichtdicke, die etwa 50 % im Maximum absorbiert. Diese Bande entspricht übrigens den von Cleeton und Dufford (Phys. Rev. (2)37 p. 362—373, 1931), sowie von Dadieu und Kohlrausch (Wien. Ber. 139 p. 77—100, 1930 und p. 165—180, 1930) gemessenen Ramanfrequenzen.

Wegen seiner Durchlässigkeit für ultraviolettes Licht sind Filter aus passend abgeglichenen Schichten von Bromdampf häufig als Ultraviolettfilter empfohlen und benutzt worden. Man vgl. auch Bd. VII.

Abgeschlossen am 8. 1. 1932.

252

Kohlenstoff (C = 12.00; Z = 6). Isotope 13 und 12.

Literatur.

Nachtrag zu Band VII1.

[278] R. Komp, Die grüne Kohlenbande 5635 Å. Zs. f. wiss. Photogr. 10 p. 117-135 (1911).
[279] J. Meunier, Sur les spectres de combustion des hydrocarbures et de différents métaux.
C. R. 152 p. 1760-1762 (1911).

[280] La Rosa, Sullo spettro della luce che accompagna il riscaldamento elettrico di un dicarbone. N. Cim. (5) 20 p. 341-353 (1911). - Ann. d. Phys. (4) 34 p. 222-234 (1911).

[281] P. Wolter, Über die ultravioletten Banden des Kohlenoxydspektrums. Zs. wiss. Photogr. 9 p. 361-387 (1911).

[282] N. Bjerrum, Über die ultraroten Absorptionsspektren der Gase. Nernst-Festschrift p. 90-98 (1912).

[284] W. G. Cady, Über einige Erscheinungen an der Anode bei Gasentladungen. Phys. Zs. 14 p. 296-302 (1913).

[285] V. Henri et M. Landau, Etude de l'absorption des rayons ultraviolets par l'acétylène. C. R. 156 p. 697-699 (1913).

[286] F. Hiller, Über den Innenkegel gespaltener Kohlenwasserstoff-Flammen. Zs. phys. Chem. 81 p. 591-625 (1913).

[287] C. Martin, A band spectrum attributed to carbon monosulphide. Proc. Roy. Soc. A. 89 p. 127-132 (1913).

[288] H. Schmidt, Über Emission und Absorption erhitzter Kohlensäure. Ann. Phys. (4) 42 p. 415-459 (1913).

[289] J. Stark, W. Steubing, C. J. Enklaar und P. Lipp, Die ultravioletten Absorptionsbanden der wechselseitigen Bindung von Kohlenstoffatomen. I. Methodik, Äthylenbanden. Jahrb. Radioakt. 10 p. 139-171 (1913).

[290] J. Stark und P. Lipp, Die ultravioletten Absorptionsbanden der wechselseitigen Bindung von Kohlenstoffatomen. II. Acetylen-Banden. Jahrb. Radioakt. 10 p. 175-178 (1913).

[291] J. Stark und P. Levy, Die ultravioletten Absorptionsbanden der wechselseitigen Bindung von Kohlenstoffatomen. III. Benzolbindung. Jahrb. Radioakt. **10** p. 179–188 (1913).

[293] R. Brunetti, Lo spettro della scarica oscillatoria in vari gas. N. Cim. (6) 7 p. 390-410 (1914).

[294] N. Bubnoff, Über den Innenkegel gespaltener Kohlenwasserstoff-Flammen. Zs. phys. Chem. 88 p. 641-670 (1914).

[295] W. M. Watts, On the spectra given by carbon and some of its compounds and in particular the "Swan"-spectrum. Phil. Mag. (6) 28 p. 117-128 (1914).

[296] C. Statescu, On the dispersion of carbon dioxide in the infrared region of the spectrum. Phil. Mag. (6) **30** p. 737-743 (1915).

[297] G. Wendt und R. A. Wetzel, Beobachtungen über den Effekt des elektrischen Feldes auf die Tripletserien des Quecksilbers und die Tripletserien des Aluminiums. Ann. d. Phys. (4) 50 p. 419-432 (1916).

[298] H. Kauffmann, Über die Fluoreszenz von Cyanverbindungen. Chem. Ber. 50 p. 1614 bis 1623 (1917).

[300] I. M. Pauly, The absorption spectrum of carbon disulphide vapour. Astrophys. J. 50 p. 155-157 (1919).

[301] R. A. Millikan, The extension of the ultraviolet spectrum. Astrophys. J. 52 p. 47-64 (1920).

[302] L. et E. Bloch, Spectres d'étincelle dans l'ultraviolet extrême. J. de phys. et le Rad. (6)
2 p. 229-257 (1921).

[303] R. T. Birge, The effect of temperature on the 3883 CN band. Phys. Rev. (2) 18 p. 319-321 (1921).

[304] R. T. Birge, The relativity shift of spectrum lines. Science N. S. 53 p. 368-372 (1921).

[305] E. Gehrcke und E. C. Glaser, Über die Feinstruktur der Bandenspektren. Ann. Phys.
 (4) 65 p. 605-609 (1921).

[306] G. Holst and E. Oosterhuis, The so-called cyanogen-bands. Proc. Amst. 23 p. 727-728 (1921).

[307] E. Hulthén, Sur les combinaisons dans les spectres de bandes. C. R. **173** p. 524-526 (1921).

[308] A. Kratzer, Die Termdarstellung der Cyanbanden. Phys. Zs. 22 p. 552-555 (1921).

[309] E. H. Kurth, Soft X-rays of characteristic type. Phys. Rev. (2) 17 p. 528-529 (1921),
 18 p. 99-100 (1921).

[310] E. H. Kurth, The extension of the X-ray spectrum to the ultraviolet. Phys. Rev. (2) 18 p. 461-476 (1921).

[311] J. C. McLennan and P. A. Petrie, On the spectra of helium, hydrogen and carbon in the extreme ultraviolet. Trans. Roy. Soc. Canada (3) 15 p. 15-25 (1921).

[312] F. L. Mohler and P. D. Foote, Characteristic soft X-rays from arcs in gases and vapors. Bull. Bur. Stand. 17 p. 471-496 (1921). - J. opt. Soc. 5 p. 328-334 (1921).

[313] O. W. Richardson and C. B. Bazzoni, The excitation of soft characteristic X-rays. Phil. Mag. (6) 42 p. 1005-1019 (1921).

Literatur ab 1922 (2. Fortsetzung).

[314] E. F. Barker, Carbon dioxide band spectra in the near infra-red. Phys. Rev. (2) 19 p. 242 (1922).

[315] R. T. Birge, The quantum theory of band spectra and its application to the determination of temperature. Astrophys. J. 55 p. 273-290 (1922).

[316] L. et E. Bloch, Sur les spectres d'étincelles dans l'eau. C. R. 174 p. 1456-1457 (1922).

[317] M. Duffieux, Sur la masse des particules qui émettent le spectre de l'oxyde de carbone.C. R. 175 p. 159—161 (1922).

[318] J. Holtsmark, Über die charakteristische Röntgenstrahlung von Kohle und Bor. Phys. Zs. 23 p. 252-255 (1922).

[319] A. L. Hughes, Characteristic X-rays from boron and carbon. Phil. Mag. (6) 43 p. 145-161 (1922).

[320] E. Hulthén, Über das Kombinationsprinzip und einige neue Bandentypen. Zs. f. Phys. 11 p. 284—293 (1922).

[321] A. Kratzer, Die Gesetzmäßigkeiten der Bandensysteme. Ann. der Phys. (4) 67 p. 127-153 (1922).

[322] A. Kratzer, Störungen und Kombinationsprinzip im System der violetten Cyanbanden. Sitzber. Bayr. Akad. 1922 p. 107—118.

[323] J. C. Mc Lennan, Note on vacuum grating spectroscopy. Proc. Roy. Soc. A. 98 p. 114-123 (1922).

[325] F. L. Mohler and P. D. Foote, The beginning of the K and L series of X-rays. Phys. Rev. (2) **19** p. 434-435 (1922).

[326] F. L. Mohler and P. D. Foote, Characteristic soft X-rays from arcs in gases and vapors. Bull. Bur. Stand. 17 p. 471-496 (1922).

[327] H. Nagaoka, The band spectra and the electronic configuration of nitrogen and carbon monoxide molecules, Jap. J. Phys. 1 p. 49-57 (1922). - Sc. Pap. Inst. Phys. Chem. Res. Tokyo 1 p. 125-134 (1922). [328] J. Okubo, On the structure of the second cyanogen band. Sc. Rep. Tôhoku Univ. 2 p. 55-86 (1922). Jap. J. Phys. 1 p. 28 (1922). Abstr.

[329] Cl. Schäfer und M. Thomas, Oberschwingungen in ultraroten Absorptionsspektren. Zs. f. Phys. 12 p. 330-341 (1922).

[330] F. Baldet, Comparaison de plusieurs radiations... C. R. 177 p. 1205-1207 (1923).

[331] F. Baldet, Sur les spectres de la décharge thermionique dans l'oxyde de carbone.
 C. R. 178 p. 1525-1527 (1923).

[332] R. T. Birge, The 3883 A. CN band in the solar spectrum. Phys. Rev. (2) 21 p. 712 (1923).

[333] R. T. Birge, The band spectrum of nitrogen and its theoretical interpretation. Phys. Rev. (2) 23 p. 294-295 (1923).

 [334] Lecoq de Boisbaudran et A. de Gramont, Analyse spectrale. Paris, Hermann (1923).
 [335] G. B. Bonino, Spectrochem. Untersuchungen im Ultrarot. III. Über die Absorption in wäßrigen Lösungen. Gazz. chim. ital. 53 p. 583-590 (1923). - Referat Phys. Ber. 4 p. 1624 (1923).

[336] I. P. Cooley, The infra-red band spectrum of methane. Phys. Rev. (2) 21 p. 376-377 (1923).

[337] S. Datta, The effect of a probable electric field on the bands of nitrogen. Astrophys. J. 57 p. 114-120 (1923).

[338] R. Fortrat, Sur la bande 3872 du spectre de Swan, sa modification par le champ magnétique. Ann. de Phys. (9) **19** p. 81-92 (1923).

[339] J. Holtsmark, Über die charakteristische Röntgenstrahlung der ersten Elemente. Phys. Zs. 24 p. 225-230 (1923).

[340] J. J. Hopfield and S. W. Leifson, Wave-length standards in the extreme ultraviolet. Astrophys. J. 58 p. 59-63 (1923).

[341] E. Hulthén, Über das Bandenspektrum des Kohlenoxyds. Ann. d. Phys. (4) 71 p. 41-49 (1923).

[342] E. Hulthén, Über die Kombinationsbeziehungen unter den Bandenspektra. Diss. Lund 61 pp. (1923).

[343] R. O. Hutchinson, Arc and spark spectra of aluminium, zinc and carbon in the extreme ultraviolet. Astrophys. J. 58 p. 280-293 (1923).

[344] A. Kratzer, Die Feinstruktur einer Klasse von Bandenspektren. Ann. d. Phys. 71 p. 72-103 (1923).

[345] J. C. McLennan and M. L. Clark, On the excitation of characteristic X-rays from light elements. Proc. Roy. Soc. A. 102 p. 389-410 (1923).

[346] T. R. Merton and R. C. Johnson, On spectra associated with carbon. Proc. Roy. Soc. A. 103 p. 383-396 (1923).

[347] H. Nagaoka, The band spectra and the electronic configuration of nitrogen and carbon monoxide molecules. Sc. Pap. Inst. Phys. Chem. Res. 1 p. 125-134 (1923).

[348] J. Ôkubo, The absorption of near infra-red radiation by carbon dioxide. Sc. Rep. Tôhoku Univ. **12** p. 39-43 (1923).

[349] St. Procopiu, Sur les spectres d'arc des métaux dans divers milieux et dans le vide.C. R. 176 p. 385-388 (1923).

[350] St. Procopiu, Sur l'aspect des raies de flamme d'arc et d'étincelle dans les spectres d'arc des métaux dans le vide. C. R. **176** p. 504-507 (1923).

[351] H. M. Randall, Report on the fine structure of infrared absorption bands. J. opt. Soc. 7 p. 45-57 (1923).

[352] Lord Rayleigh, Spectrum of active nitrogen as affected by admixture of the inert gases. With a note on the origin of the cyanogen spectrum. Proc. Roy. Soc. A. 102 p. 453-460 (1923).

[353] R. A. Sawyer and A. L. Becker, The explosion spectra of alcaline earth metals. Astrophys. J. 57 p. 98-113 (1923).

[354] W. W. Shaver, Remark on the "äußerste ultraviolette Spektrum des Kohlenstoff-Bogens". Trans. Canada (3) 17 III. p. 131—135 (1923).

[355] F. Simeon, The carbon arc spectrum in the extreme ultraviolet. Proc. Roy. Soc. A. 102 p. 484-496 (1923). A. 104 p. 368-375 (1923).

[356] Cl. Schäfer und M. Thomas, Oberschwingungen in ultraroten Absorptionsspektren. Zs. f. Phys. 12 p. 330-341 (1923).

[357] M. Schwann, Bau des Cyanspektrums. Diss. Bonn (1923).

[358] M. Toussaint, Struktur- und Intensitätsänderungen im Bandenspektrum durch molekulare Einwirkung, Zs. f. Phys. **19** p. 271–300 (1923).

[360] E. F. Barker, Some molecular spectra of hydrogen cyanide. Phys. Rev. (2) 23 p. 200-204 (1924).

[361] E. F. Barker, Molecular spectra and half quanta. Astrophys. J. 58 p. 201-208 (1924).

[362] R. T. Birge, The 3883 cyanogen band in the solar spectrum. Astrophys. J. 59 p. 45-60 (1924).

[363] G. Bruchat et M. Pauthenier, Sur l'absorption des rayons ultraviolets par le sulfure de carbone. C. R. **179** p. 153-155 (1924).

[364] R. Fortrat, Une nouvelle bande des carbures d'hydrogène. C. R. 178 p. 1272-1275 (1924).

[365] A. Fowler, The series spectrum of ionised carbon (C II). Proc. Roy. Soc. A. 105 p. 299-311 (1924).

[366] E. Freundlich und E. Hochheim, Über den Ursprung der sog. Cyanbande bei 3883 Å. Zs. f. Phys. 26 p. 102-105 (1924).

[367] W. Jevons, On the band spectra of silicon oxide and chloride and chloride of carbon, boron and aluminium. Proc. Roy. Soc. A. 106 p. 174-184 (1924).

[368] W. Jevons, On the origin of certain spectral lines hitherto attributed to oxygen. Phil. Mag. (6) 47 p. 586-590 (1924).

[369] R. C. Johnson and W. H. Cameron, The effect of argon on certain spectra. Proc. Rov. Soc. A. 106 p. 195-215 (1924).

[370] A. Kratzer, Die Terme der (C + H) Banden. Zs. f. Phys. 23 p. 298-332 (1924).

[371] R. J. Lang, On the ultra-violet spark-spectra of some of the elements. Phil. Trans. A. 224 p. 371-419 (1924).

[372] M. Levi, On the characteristic X-rays from light elements. Trans. Canada (3) 18 p. 103-109 (1924).

[373] E. F. Lowry, The infrared absorption spectrum of carbon monoxide. J. opt. Soc. 8 p. 647-658 (1924).

[374] P. J. Lukirsky, Über weiche Röntgenstrahlen. Zs. f. Phys. 22 p. 351-367 (1924).

[375] P. J. Lukirsky, On soft X-rays from carbon. Phil. Mag. (6) 47 p. 466-470 (1924).

[376] C. A. Mackay, Some new measurements of the ionisation potentials of multiatomic gases. Phys. Rev. (2) 23 p. 553 (1924).

[377] C. A. Mackay, Ionising potentials of multiatomic gases. Phys. Rev. (2) 24 p. 319-329 (1924).

[378] R. A. Millikan, The fine structure of nitrogen, oxygen and fluorine lines in the extreme ultra-violet. Phil. Mag. (6) **48** p. 259-264 (1924).

[379] R. A. Millikan and J. S. Bowen, Extreme ultraviolet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[380] R. A. Millikan and J. S. Bowen, The assignment of lines and term values in beryllium II and carbon IV. Nat. **114** p. 380 (1924).

[381] R. S. Mulliken, Electronic states of the CN molecule. Nat. 114 p. 858-859 (1924).

[382] St. Procopiu, Sur les spectres de l'arc entre métaux dans différents milieux et dans le vide. Ann. de Phys. (6) 1 89-133 (1924).

[383] F. Baldet, Sur les spectres de la décharge thermionique dans l'oxyde de carbon. C. R. **178** p. 1525-1527 (1925).

[384] F. Baldet, Sur le spectre de l'oxyde de carbon à très basse pression, dit spectre des queues de comète. C. R. **180** p. 271-273 (1925).

[385] F. Baldet, Sur le troisième groupe négatif du carbone, dit spectre des queues de comète. Extension du côté rouge et structure des bandes. C. R. **180** p. 820-822 (1925).

[386] F. Baldet, Influence de la pression sur les spectres de bandes du carbone dans l'ampoule thermoélectrique. Conséquence pour la théorie des comètes. C. R. **180** p. 1201—1203 (1925).

[387] F. Baldet, Sur la présence du spectre rouge du cyanogène dans la comète Daniel (1807 d).C. R. 181 p. 331-333 (1925).

[388] F. Baldet, Recherches sur les spectres des comètes et de l'oxyde de carbone. J. de phys. et le Rad. (6) 6 p. 70-72 (1925).

[389] R. T. Birge, The band spectra associated with carbon. Nat. 116 p. 170-171 (1925).

[390] R. T. Birge, Further spectra associated with carbon. Nat. 116 p. 207 (1925).

[391] C. M. Blackburn, An application of the quantum theory of band spectra to the first negative Deslandres group of carbon. Proc. Nat. Acad. **11** p. 28-34 (1925).

[392] G. B. Bonino, Untersuchungen über die Spektrochemie im Ultrarot. IX. Über den Ursprung der fälschlicherweise den Gruppen CH_a und CH_2 zugeschriebenen Absorptionsbanden. Gazz. chim. ital. **55** p. 576—582 (1925). — Ref. Phys. Ber. **7** p. 343—344 (1926).

[393] J. S. Bowen and R. A. Millikan, Relation of P P' groups in atoms of the same electronic structure. Phys. Rev. (2) 26 p. 150-164 (1925).

[394] J. S. Bowen and R. A. Millikan, Series spectra of two-valence electron atoms of boron (BII) and carbon (C III). Phys. Rev. (2) **26** p. 310-318 (1925).

[395] G. Bruhat et M. Pauthenier, Sur l'absorption des rayons ultraviolets par le sulfure de carbone. C. R. 179 p. 153-158 (1924).

[396] G. Bruhat et M. Pauthenier, Etude théorique de la bande 320 du sulfure de carbone. C. R. 181 p. 104-105 (1925).

[397] S. Chapman and A. E. Sudlam, A note on the vibration of the CO₃-ion. Phil. Mag. (6) 50 p. 822-824 (1925).

[398] J. P. Cooley, The infra-red absorption bands of methane. Astrophys. J. 62 p. 73-104 (1925).

[399] D. M. Dennison, Molecular structure of methane. Phys. Rev. (2) 25 p. 108-109 (1925).

[400] D. M. Dennison, The molecular structure and infra-red spectrum of methane. Astrophys. J. 62 p. 84-104 (1925).

[401] H. Deslandres, Recherches complémentaires sur la structure et la distribution des spectres de bandes. C. R. 181 p. 387-392 (1925). - C. R. 180 p. 1454-1460 (1925).

[402] G. H. Dieke, Over de Detailstructuur van de Cyaanbanden. Physica 5 p. 178-183 (1925).

[403] H. B. Dixon and W. F. Higgins, On the phosphorescent flame of carbon disulphide. Mem. and Proc. Manchester Soc. 69 p. 19-23 (1925).

[404] M. Duffieux, Sur l'origine de quelques spectres de bandes. Ann. de Phys. (10) 4 p. 249-318 (1925). J. de Phys. et le Rad. (6) 6 p. 93-94 (1925).

[405] J. W. Ellis, Emission and absorption bands of carbon dioxide in the infrared. Phys. Rev. (2) 26 p. 469-474 (1925).

[406] R. C. Johnson, Further spectra associated with carbon. Proc. Roy. Soc. A. 108 p. 343-355 (1925).

[407] R. C. Johnson, The band spectra associated with carbon. Nat. 116 p. 539-540 (1925).

[408] R. J. Lang and S. Smith, Doublet separation in CII and Si IV. Nat. 116 p. 244 (1925).

[409] H. B. Lemon, The comet tail spectrum and Deslandres first negative group. Proc. Nat. Acad. 11 p. 41-43 (1925).

[410] H. B. Lemon and C. M. Blackburn, A three dimensional method of representing quantum transition in band spectra. Astrophys. J. 62 p. 61-64 (1925).

[411] J. C. Mc Lennan, H. G. Smith and C. S. Peters, The infra-red spectra of certain elements. Trans Canada (3) 19 III. p. 39-56 (1925).

[412] R. Mecke, Bandenspektra. Phys. Zs. 26 p. 217-237 (1925).

[413] R. Mecke, Zum Nachweis des Verschiebungssatzes bei Bandenspektren. Naturw. 13 p. 688 (1925).

[415] S. Nakamura and Y. Fujioka, On the behaviour of some spark lines of carbon in an electric field. Sc. Pap. Inst. Phys. Chem. Res. **3** p. 155—162 (1925).

[416] S. v. Orlow, The series of carbon monoxide in the spectrum of comet 1908 III (Morehouse). Astron. Nachr. 225 p. 397-400 (1925).

Kayser u. Konen, Spektroskopie. VIII.

[417] R. A. Sawyer and E. Martin, The vacuum spark spectrum of carbon 2200-2600 Å. Phys. Rev. (2) 25 p. 110 (1925).

[418] E. Schmidt, Über ein Absorptionsspektrum des Luftsauerstoffs im äußersten Ultraviolett. Zs. f. Phys. **31** p. 475-487 (1925).

[419] W. Steubing, Neue Untersuchungen im magnetischen Feld. Phys. Zs. 26 p. 915-918 (1925).

[420] P. A. Taylor, A note on the vibration of the CO₃-group. Phil. Mag. (6) 50 p. 1158-1160 (1925).

[421] F. R. Weston, The flame spectra of carbon monoxide and water gas. Part I. Proc. Roy. Soc. A, 109 p. 176-186 (1925). Part II. Proc. Roy. Soc. A. 109 p. 523-526 (1925).

[422] R. T. Birge, The energy levels of the carbon monoxide molecule. Nat. 117 p. 229-230 (1926).

[423] R. T. Birge, The band spectra of carbon monoxide. Phys. Rev. (2) 28 p. 1157-1189 (1926).

[424] R. T. Birge, The structure of molecules. Nat. 117 p. 300-302 (1926).

[425] R. T. Birge and H. Sponer, The heat of dissociation of CO, CO⁺ and NO. Phys. Rev. (2) 27 p. 641 (1926).

[426] R. T. Birge and H. Sponer, The heat of dissociation of non-polar molecules. Phys. Rev.(2) 28 p. 259-283 (1926).

[427] J. S. Bowen and S. B. Ingram, Wave-length standards in the extreme ultra-violet spectra of carbon, nitrogen, oxygen and aluminium. Phys. Rev. (2) 28 p. 444-448 (1926).

[428] W. H. B. Cameron, The production of some spectra of carbon, oxygen and nitrogen in the presence of neon. Phil. Mag. (7) 1 p. 405-417 (1926).

[429] N. S. Capper and J. K. March, The absorption spectra of condensed nuclear hydrocarbons. J. chem. Soc. 128 p. 724-730 (1926).

[430] K. T. Compton and C. H. Thomas, Soft X-rays: improvements in technique and new results for C, Cu and W. Phys. Rev. (2) 28 p. 601-612 (1926).

[431] E. Condon, A theory of intensity distribution in band systems. Phys. Rev. (2) 28 p. 1182-1201 (1926).

[432] A. Dauvillier, Extension du spectre des rayons Röntgen vers l'ultraviolet. Spectre K du carbone. C. R. 182 p. 1083—1085 (1926).

[433] W. T. David, S. G. Richardson und W. Davies, Der Einfluß ultraroter Strahlung auf die Verbrennung von Gasgemischen, die Stickstoff enthalten. Proc. Leeds Philos. Literary Soc. Scient. Sect. **1** p. 37-39 (1926).

[434] D. M. Dennison, On the analysis of certain molecular spectra. Phil. Mag. (7) 1 p. 195-218 (1926).

[435] D. M. Dennison, Bemerkung zur Arbeit von C. Schäfer und B. Philipps: Das Absorptionsspekrum der Kohlensäure und die Gestalt der CO₂-Molekel. Zs. f. Phys. **38** p. 137-140 (1926).

[436] F. C. Mc Donald, Spectroscopic investigation of acetylene, methane and ethylene. Phys. Rev. (2) 27 p. 246 (1926).

[437] O. S. Duffendack and G. W. Fox, Radiating potentials of the band systems of carbon monoxide. Science (N. S.) 64 p. 277-278 (1926).

[438] O. S. Duffendack and G. W. Fox, Energy levels of the carbon monoxide molecule. Nat. 118 p. 12-13 (1926).

[439] D. C. Duncan, CO bands. Science (N. S.) 63 p. 382-383 (1926).

[440] J. W. Ellis, The molecular spectrum of carbon dioxide. Nat. 118 p. 82-83 (1926).

[441] H. J. Emeléus, The spectra of the phosphorescent flames of carbon disulphide and ether. J. Chem. Soc. 1926, p. 2948-2951.

[442] M. Eppley, The spark between carbon rods impregnated with a mixture of oxides of molybdenum, titanum and vanadium as the source of a closely spaced line spectrum in the visible region. J. Frankl. Inst. **201** p. 333-335 (1926).

[443] A. Fowler, The analysis of line spectra. Nat. 118 p. 593-596 (1926).

[444] A. S. Ganesan, The "H and K" bands of carbon. Nat. 118 p. 842 (1926).

[445] W. E. Garner, C. H. Johnson and S. W. Saunders, Infra-red emission from gaseous explosions. Nat. 117 p. 790-791 (1926).

[446] V. Guillemin, Zur Molekülstruktur des Methan. Ann. d. Phys. (4) 81 p. 174-204 (1926).

[447] V. Henri and S. A. Schou, A new type of absorption spectrum: Double rotational quantification in formaldehyd. Nat. **118** p. 225 (1926).

[448] F. Holweck, Potentiels critiques K des atomes légers. C. R. 182 p. 779-781 (1926).

[449] F. Holweck, Spectrométrie de la série K des éléments légers... C. R. 183 p. 48-51 (1926).

[450] F. Holweck, La spectroscopie des radiations intermédiaires entre la lumière et les rayons X. J. de Phys. et le Rad. (6) 7 p. 37-38 (1926).

[451] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 59-78 (1926).

[452] O. Jassé, Sur la structure des bandes 4511 et 4132 du spectre de l'oxyde de carbone.
C. R. 182 p. 692-694 (1926).

[453] O. Jassé, Étude des bandes 4511 et 4123 du spectre de l'oxyde de carbone. Rev. d'Opt. 5 p. 450-461 (1926).

[454] W. Jevons, The more refrangible band spectrum of cyanogen as developed in active nitrogen. Proc. Roy. Soc. A. 112 p. 407-441 (1926).

[455] R. C. Johnson and H. G. Jenkins, Note on some observations of the nitrogen afterglow spectra. Phil. Mag. (7) 2 p. 621-632 (1926).

[457] R. C. Johnson, Energy levels of the carbon monoxide molecule. Nat. 118 p. 50 (1926).

[458] R. J. Lang and S. Smith, Greater dispersion in the extreme ultraviolet. J. opt. Soc. Amer. 12 p. 523-528 (1926).

[459] S. W. Leifson, Absorption spectra of some gases and vapours in the Schumann region. Astrophys. J. 63 p. 73-89 (1926).

[460] J. C. McLennan and A. B. McLay, On the structure of the arc spectrum of germanium with a note on that of carbon. Trans. Canada (3) 20 p. 355-363 (1926).

[461] J.J. Hopfield and G. H. Dieke, PP' group in the elements SI to K IV. Phys. Rev. (2) 27 p. 638-639 (1926).

[462] R. Mecke, Die Dublettaufspaltungen bei einigen Bandenspektren. Verh. d. D. Phys. Ges. (3) 7 p. 18 (1926).

[463] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules... Phys. Rev. (2) 28 p. 481-506, 1202-1222 (1926).

[464] O. W. Richardson and F. C. Chalklin, The excitation of soft X-rays. Proc. Roy. Soc. A. 110 p. 247-282 (1926).

[465] R. Rudy, Regularities in the arc spectrum of carbon (C^-) and (K^+) . J. Frankl. Inst. 202 p. 659-660 (1926).

[466] R. Sewig, Intensitätsmessungen in Bandenspektren. Zs. f. Phys. 35 p. 511-523 (1926).

[467] J. D. Shea and R. T. Birge, Molecular constants determined from the Swan bands. Phys. Rev. (2) 27 p. 245-246 (1926).

[468] St. Smith and R. J. Lang, Standard wave-lengths for use in the extreme ultra-violet. Phys. Rev. (2) 28 p. 36-45 (1926).

[469] Cl. Schäfer und B. Philipps, Das Trägheitsmoment der CO-Molekel. Zs. f. Phys. 36 p. 399 (1926).

[470] Cl. Schäfer und B. Philipps, Das Absorptionsspektrum der Kohlensäure und die Gestalt der CO₂-Molekel. Zs. f. Phys. **36** p. 641-656 (1926).

[471] M. Wimmer, Über die Beeinflussung der ultraroten Kohlensäurebanden durch fremde Gase... Ann. d. Phys. (4) 81 p. 1091-1112 (1926).

[472] K. L. Wolf, Über den Niedervoltvakuumbogen und über die Kohlelinie 4267. Zs. f. Phys. 39 p. 883-885 (1926). [473] J. H. de Boer und A. E. van Arkel, Molekülmodelle für Methan und andere Verbindungen vom Typus XY_4 . Zs. f. Phys. 41 p. 27—37 (1927).

[474] W. A. Bone and D. M. Newitt, Gaseous combustion at high pressures. Part VII. A spectrographic investigation of the ultra-violet radiation from carbonic oxide-oxygen explosions. Proc. Roy. Soc. A. 115 p. 41-58 (1927).

[475] J. S. Bowen, Series spectra of boron, carbon, nitrogen, oxygen and fluorine. Phys. Rev. (2) 29 p. 231-247 (1927).

[476] A. Dauvillier, La spectrographie des rayons X de grande longueur d'onde, séries N et O, et jonction avec l'ultraviolet extrême. J. de Phys. et le Rad. (6) 8 p. 1-12 (1927).

[477] A. Dauvillier et J. Soltan, Recherches spectrographiques dans le domaine intermédiaire. J. de Phys. et le Rad. (6) 8 p. 484-494 (1927).

[478] F. C. McDonald, An investigation of some hydrocarbon bands. Phys. Rev. (2) 29 p. 212 (1927).

[479] O. S. Duffendack and G. W. Fox, The excitation of the spectra of carbon monoxide by electric impacts. Astrophys. J. 65 p. 214-237 (1927).

[480] J. W. Ellis, New infra-red absorption bands of methane. Proc. Nat. Acad. 13 p. 202-207 (1927).

[481] J. W. Ellis, New infra-red absorption bands in methane. Phys. Rev. (2) 29 p. 750 (1927).

[482] G. W. Fox, O. S. Duffendack and E. F. Barker, The spectrum of CO₂. Proc. Nat. Acad. **13** p. 302-307 (1927).

[483] G. W. Fox, O. S. Duffendack and E. F. Barker, The excitation of the spectrum of CO₂. Phys. Rev. (2) 29 p. 921-922 (1927).

[484] S. Friberg, Über die Dispersion des Lichtes in gasförmigen Körpern innerhalb des ultravioletten Spektrums. Zs. f. Phys. 41 p. 378-384 (1927).

[485] W. E. Garner and C. H. Johnson, The effect of water on the infra-red emission from the flame... Phil. Mag. (7) 3 p. 97-110 (1927).

[486] A. D. Hepburn, Carbon monoxide band excitation potentials. Phys. Rev. (2) 29 p. 212 (1927).

[487] J. B. Hoag, Wave-lengths of carbon, oxygen and nitrogen in the extreme ultra-violet... Astrophys. J. 66 p. 225-232 (1927).

[488] J. J. Hopfield, Absorption spectra in the extreme ultra-violet. Phys. Rev. (2) 29 p. 356 (1927) Abstr.

[489] J. J. Hopfield and R. T. Birge, Ultra-violet absorption and emission spectra of carbon monoxide. Phys. Rev. (2) 29 p. 922 (1927). Abstr.

[491] E. Hulthén, Feinstruktur und Elektronenterme einiger Bandenspektren. Zs. f. Phys. 45 p. 331-336 (1927).

[492] F. L. Hunt, X-rays of long wave-length from a ruled grating. Phys. Rev. (2) 29 p. 919 (1927).

[493] F. L. Hunt, X-rays of long wave-length from a ruled grating. Phys. Rev. (2) 30 p. 227 --231 (1927.

[494] R. C. Johnson, The structure and origin of the Swan band spectrum of carbon. Phil. Trans. A. 226 p. 157-230 (1927).

[495] G. W. Kellner, Die Grundterme des einfach ionisierten Lithiums nach der Schrödingerschen Theorie. Zs. f. Phys. 44 p. 110-112 (1927).

[496] E. C. Kemble, R. S. Mulliken and F. H. Crawford, The Zeeman effect in the Angström CO bands. Phys. Rev. (2) **30** p. 438-457 (1927).

[497] L. B. Loeb and L. du Sault, Mobilities of ions in acetylene hydrogen mixtures. Proc. Nat. Acad. 13 p. 511-516 (1927).

[498] C. F. Meyer and A. Levin, The infra-red absorption spectra of acetylene (C_2H_2) , ethylene (C_2H_4) and ethane (C_2H_6) . Phys. Rev. (2) 29 p. 923 (1927).

[499] C. F. Meyer and A. Levin, The infra-red absorption spectra of acetylene (C_2H_2), ethylene (C_2H_4) and ethane (C_2H_6). Proc. Nat. Acad. **13** p. 298—302 (1927).

[500] C. Mihul, Sur la structure du spectre du second ordre du carbone (C II). C. R. 184 p. 1648—1649 (1927).

[501] C. Mihul, Sur les spectres de l'oxygène et du carbone. J. de Phys. et le Rad. (6) 8 p. 39-40 (1927).

[502] F. L. Mohler and P. D. Foote, Electron collisions in carbon monoxide. Phys. Rev. (2) 29 p. 141-142 (1927).

[503] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules. III. Intensity relations. Phys. Rev. (2) 29 p. 391-412 (1927).

[504] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules. IV. Second positive nitrogen and Swan bands; alternating intensities. Phys. Rev. (2) 29 p. 637—649 (1927).

[505] R. S. Mulliken, Band structure and intensities, atomic and molecular electronic states in diatomic hydrides. Phys. Rev. (2) **29** p. 921 (1927).

[506] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules. V. Bands of the violet CN (²S - ²S) type. Phys. Rev. (2) **30** p. 138-149 (1927).

[507] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules, VI. Theory of intensity relation for case 6 doublet states. Interpretation of CH bands 3900 and 4300 Å. Phys. Rev. (2) **30** p. 785-811 (1927).

[508] H. Nagaoka, D. Nukigama and T. Futagami, Instantaneous spectrograms of carbon, silicon, tin, lead, and cerium. Proc. Imp. Acad. Tokyo 3 p. 392-397 (1927).

[509] T. H. Osgood, X-ray spectra of long wave-length. Phys. Rev. (2) 30 p. 567-573 (1927).

[510] J. W. Ryde, The spectrum of carbon arcs in air at high current densities. Proc. Roy-Soc. A. 117 p. 164-182 (1927).

[511] J. D. Shea, The structure of the Swan bands. Phys. Rev. (2) 30 p. 825-843 (1927).

[512] H. Sponer, Die Absorptionsbanden des Stickstoffs. Zs. f. Phys. 41 p. 611-618 (1927).

[513] Cl. Schäfer, Zur Frage nach der Gestalt der CO₂-Molekel. Phys. Zs. 28 p. 667 (1927).

[514] J. Thibaud, Jonction spectrographique du domaine des rayons X à l'ultraviolet à l'aide de réseaux lignés. C. R. 185 p. 62-64 (1927).

[515] J. Thibaud et A. Soltan, Mesures spectrographiques dans le domaine intermédiaire (séries K, L, M, N). C. R. 185 p. 642—644 (1927).

[516] J. Thibaud, Spectrographe à réseau ligné pour rayons X de grande longueur d'onde. J. de Phys. et le Rad. (6) 8 p. 447-450 (1927).

[517] K. L. Wolf, Die Gestalt der Kohlensäuremolekel. Zs. f. phys. Chem. 131. p 90-96 (1927).

[518] C. R. Bailey and K. H. Li, Infra-red emission of carbon dioxide. Nat. 121 p. 941 (1928).

[519] J. S. Bowen, The origin of the nebular lines and the structure of the planetary nebulae. Astrophys. J. 67 p. 1—15 (1928).

[520] E. Brüche und W. Littwin, Ähnliche Eigenschaften und ähnliche Radiometerkurven von N₂, CO und CO₂-N₂. Zs. f. Phys **52** p. 334-335 (1928).

[521] P. Daure, Sur les radiations secondaires observées dans la diffusion moléculaire de la lumière (effet Raman). C. R. **187** p. 940—941 (1928).

[522] W. Elert, Über das Schwingungs- und Rotationsspektrum einer Molekel vom Typus CH₄. Zs. f. Phys. **51** p. 6—33 (1928).

[523] J. W. Ellis, Heats of linkage of C-H bonds from vibration spectra. Phys. Rev. (2) 32 p. 324 (1928).

[524] A. Fowler and E. W. H. Selwyn, The arc spectrum of carbon. Proc. Roy. Soc. A. 118 p. 34-51 (1928).

[525] A. Fowler and E. W. H. Selwyn, Further investigations of the spectrum of singly ionised carbon (C II). Proc. Roy. Soc. A. 120 p. 312-326 (1928).

[527] W. E. Garner and F. Roffey, The radiation from explosions of carbon monoxide and oxygen to which hydrogen has been added. Nat. **121** p. 56-57 (1928).

[528] G. Herzberg, Resonanz-Fluoreszenz des Cyans. Naturw. 16 p. 464-465 (1928).

[529] G. Herzberg, Ein neues Bandenspektrum des CO. Naturw. 16 p. 1027-1028 (1928).

[530] G. Herzberg, Über das Bandenspektrum des CO. Zs. f. Phys. 52 p. 815-845 (1928).

[531] T. R. Hogness and R. W. Harkness, The ionization of carbon monoxide by controlled electron impact. Phys. Rev. (2) 32 p. 936-941 (1928).

[532] F. A. Jenkins, Extension of the violet CN band system to include the CN tail bands. Phys. Rev. (2) 31 p. 539-558 (1928). - Phys. Rev. (2) 31 p. 153 (1928).

[533] W. Jevons, The ultraviolet band system of carbon monosulphide... Proc. Roy. Soc. A. 117 p. 351-375 (1928).

[535] H. P. Knauss, Band spectra in the extreme ultraviolet excited by active nitrogen. Phys Rev. (2) 32 p. 417-426 (1928).

[536] A. Levin and C. F. Meyer, The absorption spectra of acetylene, ethylene and ethane. J. Opt. Soc. Amer. 16 p. 137-164 (1928).

[537] F. A. Lindemann, T. C. Keely and N. R. Hall, Frequency change in scattered light-Nat. 122 p. 921 (1928).

[538] J. C. Morris, Ionizing potentials of methane, ethane, ethylene and acetylene. Phys. Rev. (2) 32 p. 456-458 (1928).

[539] J. C. Morris, Comparison of measurements of critical potentials of mercury vapor. Phys. Rev. 32 p. 437-458 (1928).

[540] J. K. Morse, The molecular structure of methane. Proc. Nat. Acad. 14 p. 166-171 (1928).
 [541] J. K. Morse, The structure of acetylene. Proc. Nat. Acad. 14 p. 645-648 (1928).

[542] H. Petterson, Luminous discharge in gases at low pressures. Nat. 123 p. 978-979 (1928).

[543] W. E. Pretty, The Swan band spectrum of carbon. Proc. Phys. Soc. Lond. 40 p. 71-78 (1928).

[544] P. Pringsheim und B. Rosen, Über den Ramaneffekt. Zs. f. Phys. 50 p. 741-755 (1928).

[545] O. W. Richardson and F. C. Chalklin, The excitation of soft X-rays. Proc. Roy. Soc. A. 119 p. 60-82 (1928).

[546] M. N. Saha and P. R. Kichlu, Extension of the irregular doublet law. Nat. 121 p. 244 --245 (1928).

[547] H. Shapley, Note on cyanogen absorption, stellar comets and the masses of stars. Naturw. **16** p. 596 (1928).

[548] M. Söderman, Die K-Strahlen der leichtesten Elemente. Zs. f. Phys. 52 p. 725-807 (1928).

[549] J. Thibaud, Discontinuité d'absorption dans la domaine intermédiaire (bande K du carbone). C. R. 186 p. 308—309 (1928).

[550] J. Thibaud, Beugung der Röntgenstrahlen durch Liniengitter. Spektrographie des Zwischengebietes. Phys. Zs. 29 p. 241-261 (1928).

[551] J. Thibaud, Diffraction des rayons X par les résaux lignés. Spectrographie du domaine intermédiaire. J. de Phys. et le Rad. (6) **9** p. 10-12 (1928).

[552] J. Thibaud, Soft X-rays emission and absorption spectra with tangential grating. Nat. 121 p. 321-322 (1928).

[553] L. A. Turner, Ionizing potentials and far ultraviolet lines of light atoms. Phys. Rev. (2) 32 p. 727-736 (1928).

[554] B. H. Weatherby, A determination of the wave-length of the K line of carbon. Phys. Rev. (2) 32 p. 707-711 (1928).

[555] R. W. Wood, The Raman spectra of scattered radiation. Phil. Mag. (7) 6 p. 1282-1283 (1928).

[556] R. K. Asundi, The third positive carbon and associated bands. Proc. Roy. Soc. A. 124 p. 277-298 (1929).

[557] R. K. Asundi, A new band spectrum of carbon monoxide. Nat. 123 p. 47-48 (1929).

[558] R. K. Asundi and J. W. Ryde, Vibrational quantum analysis of red cyanogen bands. Nat. 124 p. 57 (1929).

[559] C. R. Bailey, The Raman and infra-red spectra of carbon dioxide. Nat. 123 p. 410 (1929).

[560] C. R. Bailey and K. H. Sils, The infrared emission spectra of the separated zones in the methane and Bunsen flames. Trans. Faraday Soc. 25 p. 32-36 (1929).

[561] C. B. Bazzoni, L. J. Faust and B. B. Weatherby, The fine structure and satellites of the K-alpha lines of the light elements. Phys. Rev. (2) 33 p. 1101 (1929).

[562] C. B. Bazzoni, L. J. Faust and B. B. Weatherby, Densitometric measurements of the K line of carbon. Nat. 123 p. 717 (1929).

[563] R. T. Birge, Recent work on isotopes in band spectra. Trans. Faraday Soc. 25 p. 718-725 (1929).

[564] R. T. Birge, The determination of heats of dissociation by means of band spectra. Trans. Faraday Soc. 25 p. 707-716 (1929).

[565] R. T. Birge, Further evidence of the isotope mass 13. Nat. 124 p. 182—183 (1929). — Phys. Rev. (2) 34 p. 379 (1929).

[566] J. S. Bowen, Additional lines in the spectra of C II and N II. Phys. Rev. (2) 34 p. 534 --536 (1929).

[567] J. S. Bowen, Low energy states in C II and N II. Phys. Rev. (2) 34 p. 540 (1929).

[568] H. T. Byck, On a resonance-fluorescence phenomenon in the cyanogen spectrum. Phys. Rev. (2) 34 p. 453-456 (1929).

[569] W. W. Coblentz and R. Stair, The infra-red absorption spectrum of carbon tetrachloride as related to the Raman spectrum of scattered radiation. Phys. Rev. (2) **33** p. 1092 (1929).

[570] D. Coster, J. Nitta and W. J. Thyssen, The Raman effect for X-rays. Nat. 124 p. 230 (1929).

[571] F. H. Crawford, Zeeman effect in the Angström CO bands. Phys. Rev. (2) 33 p. 341-354 (1929).

[572] H. Crew, On the influence of a hydrogen atmosphere upon the arc spectra of certain metals. Phil. Mag. (7) 7 p. 312-316 (1929).

[573] A. Dadieu und K. W. F. Kohlrausch, Studien zum Ramaneffekt I. Das Ramanspektrum organischer Substanzen. Wiener Anz. 138 (2a) p. 41-61 (1929).

[574] A. Dadieu und K. W. F. Kohlrausch, Studien zum Ramaneffekt II. Das Ramanspektrum organischer Substanzen. (Benzolderivate.) Wiener Anz. **138** p. 335-351 (1929).

[575] P. Daure, Étude photométrique de l'effet Raman. C. R. 188 p. 1605-1606 (1929).

[576] L. H. Dawson and J. Kaplan, The comet tail bands. Phys. Rev. (2) 34 p. 379-380 (1929).

[577] R. G. Dickingson, R. T. Dillon und F. Rasetti, Raman spectra of polyatomic gases. Phys. Rev. (2) 34 p. 582-589 (1929).

[578] O. S. Duffendack and H. L. Smith, Simultaneous ionization and excitation ... Phys. Rev. (2) 34 p. 68-80 (1929).

[579] J. F. Duncan, An experimental study of certain electronic bands of CO₂. Phys. Rev. (2) 34 p. 1148-1153 (1929).

[580] L. Dunoyer, Remarques sur le rayonnement ultraviolet de quelques gaz. J. de Phys. et le Rad. (6) **10** p. 100-101 (1929).

[581] A. S. Gavesan and S. Venkateswaran, A memoir on the Raman effect in liquids. Indian J. of Phys. 4 p. 195-280 (1929).

[582] W. E. Garner and F. Roffey, Effect of the addition of hydrogen and water on the radiation emitted from the carbon monoxide flame. J. chem. Soc. (1929) p. 1123-1140.

[583] A. S. Gavesan and S. Venkateswaran, The Raman effect in carbon disulphide. Nat. **124** p. 57 (1929).

[584] P. N. Gosh and P. C. Mahanti, Raman effect in carbon dioxide. Nat. 124 p. 92-93 (1929).

[585] P. N. Gosh and P. C. Mahanti, Raman effect in gases and liquids. Nat. 124 p. 230 (1929)

[586] G. Harig, Über die Absorption ultravioletten Lichtes durch flüssiges Kohlenoxyd. Phys. Zs. **30** p. 8-20 (1929).

[587] W. Heitler und G. Herzberg, Eine spektroskopische Bestätigung der quantenmechanischen Theorie der homöopolaren Bindung. Zs. f. Phys. **53** p. 52-56 (1929).

[588] G. Herzberg, Über die Bandenspektren von CO nach Versuchen mit der elektrodenlosen Ringentladung (mit einem Anhang über die Swan- und Cyanbanden). Zs. f. Phys. 52 p. 815-845 (1929).

[589] T. R. Hogness and R. W. Harkness, Ionization of carbon monoxide by controlled electron impact interpreted by the mass spectrograph. Phys. Rev. **32** p. 936—942 (1929).

[590] T. Hori, Über die Struktur der CH-Bande 3143 Λ. und einer neuen NH-Bande 2530Å. Mem. Ryojun. Coll. of Engineering 2 p. 259—270 (1929).

[591] T. Hori, The CH-band at 3143 and a new NH-band at 2539. Nat. 124 p. 480 (1929).

[592] C. E. Howe, A preliminary report on the measurement of the K line of carbon. Proc. Nat. Acad. 15 p. 251-253 (1929).

[593] S. B. Ingram, Classification of the arc spectra of nitrogen and carbon. Phys. Rev. (2)
 34 p. 421-430 (1929). - Phys. Rev. (2) 33 p. 1092 (1929). Abstr.

[594] F. A. Jenkins, The absorption spectrum of CS₂ in the near ultraviolet. Astrophys. J. **70** p. 191-193 (1929).

[595] D. S. Jog, The spectrum of carbon. Indian J. of Phys. **3** p. 451—461 (1929). — Nat. **123** p. 318 (1929).

[596] R. C. Johnson and R. K. Asundi, The Structure of the high pressure carbon bands and the Swan System. Proc. Roy. Soc. A. 124 p. 668-688 (1929).

[597] R. C. Johnson and R. K. Asundi, A new band system of carbon monoxide (3¹S-2¹P) with remarks on the Ångström bands. Proc. Roy. Soc. A. 123 p. 560-574 (1929).

[598] R. C. Johnson, The detailed electronic structure of diatomic molecules, with special reference to CO. Trans. Faraday Soc. 25 p. 649-668 (1929).

[599] A. S. King and R. T. Birge, An isotope of carbon. Nat. 124 p. 127 (1929).

[600] R. M. Langer, Incoherent scattering. Nat. 123 p. 345 (1929).

[601] H. H. Marvin, Combination bands in the infra-red spectra of CCl₄ and SiCl₄. Phys. Rev.
 (2) 34 p. 453-456 (1929).

[602] J. C. McLennan, H. D. Smith and J. O. Wilhelm, Note on the Raman effect with liquid methane. Trans. Roy. Soc. Canada (3) 23 p. 279-282 (1929).

[603] A. C. Menzies, The polarisation of Raman lines. Phil. Mag. (7) 8 p. 504-515 (1929).

[604] R. Minkowski, Die paramagnetische Drehung der Polarisationsebene in der Nähe von Absorptionslinien. Naturw. 17 p. 567—568 (1929).

[605] M. Neunhoeffer, Ultrarote Emissionsbanden bei hoher Dispersion. Ann. d. Phys. (5) 2 p. 334—349 (1929).

[606] A. A. Newbold, The spectrum emitted by a carbon plate under bombardement. Phil. Mag. (7) 7 p. 706-719 (1929).

[607] T. H. Osgood, Spectroscopy of soft X-rays. Rev. Mod. Phys. 1 p. 228-240 (1929).

[608] L. S. Ornstein und J. Rekveld, Prüfung des Maxwell-Boltzmann'schen Gesetzes durch Intensitätsmessungen im Ramaneffekt von Tetrachlorkohlenstoff. Zs. f. Phys. **57** p. 539—544 (1929).

[609] A. Petrikaln und J. Hochberg, Über den Raman-Effekt. Zs. f. phys. Chem. B. 3 p. 217-229 (1929).

[610] E. Pietsch und G. M. Schwab, Kritische Potentiale der CH_4 -Molekel. Bemerkung zu der Arbeit von Hogness und Harkness. Zs. f. Phys. **55** p. 231–234 (1929).

[611] C. V. Raman and K. S. Krishnam, The production of new radiation by light scattering. Proc. Roy. Soc. A. 122 p. 23-35 (1929).

[612] F. Rasetti, On the Raman Effect in diatomic gases. Proc. Nat. Acad. Amer. 15 p. 234-237 (1929).

[613] F. Rasetti, Raman effect in gases. Nat. 123 p. 205 (1929).

[614] F. Rasetti, Selection rules in the Raman effect. Nat. 123 p. 757-759 (1929).

[615] F. J. S. Rawlins, The form of the molecule of carbon dioxide. Trans. Faraday Soc. 25 p. 925-929 (1929).

[616] J. E. Rosenthal and F. A. Jenkins, Perturbations in band spectra. Proc. Nat. Acad. 15 p. 381-387 u. 896-902 (1929).

[617] E. W. H. Selwyn, Arc spectra in the region 1600-2100 Å. Proc. Phys. Soc. Lond. 41 p. 392-403 (1929).

[618] C. F. Snow and E. K. Rideal, Infra-red investigations of molecular structure. Part III. The molecule of carbon monoxide. Proc. Roy. Soc. A. 125 p. 462-483 (1929).

[619] M. Söderman, Die K-Strahlung der leichtesten Elemente (Al bis Be). Zs. f. Phys. 52 p. 795-807 (1929).

[620] Cl. Schäfer, Die Eigenschwingungen der CO3-Gruppe. Zs. f. Phys. 54 p. 676-679 (1929).

[621] Cl. Schäfer, F. Matossi und H. Aderhold, Zum Ramaneffekt an Kristallen. Phys. Zs. 30 p. 581-585 (1929).

[622] V. Thorsen, Intensitätsmessungen im Kohlebogen. Strahlentherapie 34 p. 46-54 (1929).

[623] L. A. Turner, Molecular binding and low ⁵S terms of N⁺ and C. Proc. Nat. Acad. 15 p. 526-528 (1929).

[624] D. S. Villars, The heats of dissociation of the molecules CH, NH, OH and HF. J. Amer. Chem. Soc. 51 p. 2374-2377 (1929).

[625] E. D. Wilson, The absorption spectrum of CS₂ in the near ultra-violet. Astrophys. J. 69 p. 34—42 (1929).

[626] R. W. Wood, Spectra of high-frequency discharge in O₂ and CO. Phil. Mag. (7) 8 p. 207 -210 (1929).

[627] R. K. Asundi, A search of new bands in the near infra-red spectra of CN, N_2^+ and BeF. Indian J. of Phys. 4 p. 367–384 (1930).

[628] R. M. Badger, The absorption of acetylene and ethylene in the near infrared. Phys. Rev. (2) 35 p. 1433 (1930).

[629] C. R. Bailey, A. B. D. Cassie and W. R. Angus, Infra-red absorption spectrum of sulphur dioxide. Nat. **126** p. 59 (1930). Phys. Rev. (2) **35** p. 1126 (1930).

[630] C. R. Bailey and A. B. D. Cassie, Raman displacements and the infrared absorption bands of carbon disulphide. Nat. **126** p. 350 (1930).

[631] S. Bhagavantam, Raman spectra of some elements and simple compounds. Indian J. of Phys. 5 p. 35-48 (1930).

[632] S. Bhagavantam, Raman effect and molecular structure. Polarisation of the lines in Raman spectra. Indian J. of Phys. 5 p. 59-71, 73-95 (1930).

[633] S. Bhagavantam, Raman spectra of some triatomic molecules. Nat. 126 p. 995 (1930).

[634] S. Bhagavantam, The Raman spectra of some organic halogen compounds. Proc. Roy. Soc. A. 127 p. 360-373 (1930).

[635] W. Braunbek, Berechnung der Röntgen-K-Terme der leichtesten Elemente... Zs. f. Phys. 63 p. 154-167 (1930).

[636] W. H. I. Childs und R. Mecke, Das Rotationsspektrum des Acetylens. II. Zs. f. Phys. 64 p. 162-172 (1930).

[637] W. M. Dabadghao, Raman spectra under high dispersion. Indian J. of Phys. 5 p. 207-217 (1930).

[638] A. Dadieu, Studien zum Ramaneffekt XI. Das Ramanspektrum organischer Substanzen (Cyanverbindungen). Wiener Anz. **139** p. 629-657 (1930).

[639] D. M. Dennison and S. B. Ingram, A new band in the absorption spectrum of methane gas. Phys. Rev. (2) **36** p. 1451-1459 (1930).

[640] G. H. Dieke und W. Lochte-Holtgreven, Über einige Banden des Kohlenstoffmoleküls. Zs. f. Phys. 62 p. 767-794 (1930).

[641] B. Edlén und A. Ericson, Lithiumähnliche Spektren von Kohlenstoff, Stickstoff und Sauerstoff. C IV, N V, O VI. Zs. f. Phys. 64 p. 64-74 (1930).

[642] B. Edlén und A. Ericson, Sur le spectre d'étincelle condensée dans l'ultraviolet extrême jusqu'à 88 Å. C. R. **190** p. 116—118 (1930).

[643] B. Edlén und J. Stenman, C IV-Linien im sichtbaren und nahen ultravioletten Spektralgebiet. Das Termsystem von C IV. Zs. f. Phys. 66 p. 328-338 (1930).

[644] E. Ekefors, Spektren im extremen Ultraviolett. Phys. Zs. 31 p. 737-738 (1930).

[645] J. W. Ellis, Doublets in the vibration spectrum of cyclohexan. Phys. Rev. (2) 35 p. 437-438 (1930).

[646] A. Ericson und B. Edlén, Serienspektren der leichtesten Elemente im extremen Ultraviolett. Zs. f. Phys. **59** p. 656-679 (1930).

[647] R. R. Estey, New measurements in the fourth positive CO bands. Phys. Rev. (2) 35 p. 309-314 (1930).

[648] L. Y. Faust, Fine structure of the K-radiation of the lighter elements. Phys. Rev. (2) **36** p. 161-172 (1930).

[649] K. Hedfeld und R. Mecke, Das Rotationsschwingungsspektrum des Acetylens I. Bandenanalyse. Zs. f. Phys. 64 p. 151-161 (1930).

[650] L. B. Hendrick and G. W. Fox, New measurements in the fourth positive bands o carbon monoxide. Phys. Rev. (2) 35 p. 1033-1037 (1930).

[651] V. Henri, Nouvelles recherches sur les isotopes au moyen des spectres de bandes. J. de Phys. et le Rad. (7) 1 p. 9-10 (1930).

[652] V. Henri and O. R. Howell, The structure and activation of the phosgen molecule. Part I. General introduction, predissociation of molecules. Proc. Roy. Soc. A. 128 p. 178-189 (1930).

[653] V. Henri and O. R. Howell, The structure and activation of the phosgen molecule. Part II. The Raman spectra of phosgen. Proc. Roy. Soc. A. 128 p. 190—191 (1930).

[654] V. Henri and O. R. Howell, The structure and activation of the phosgen molecule Part III. A study of the ultra-violet absorption spectrum of phosgen vapour. Proc. Roy. Soc. A. 128 p. 192-214 (1930).

[655] G. Herzberg, A new system probably due to a molecule CP. Nat. 126 p. 131-132 (1930).

[656] J. J. Hopfield, Ionisation potential of carbon. Phys. Rev. (2) 35 p. 1586-1587 (1930).

[657] T. Hori, Über die Struktur der CH-Bande 3143 und einer neuen NH-Bande 2530 Å. Zs. f. Phys. 59 p. 91-101 (1930).

[658] J. M. McInnes und J. C. Boyce, Tabelle der Wellenlängen von Gasentladungen im äußersten Ultravioletten. Naturw. 18 p. 719 (1930).

[659] R. C. Johnson, Some bands of the carbon molecule. Nat. 125 p. 89-90 (1930).

[660] H. Kallmann und B. Rosen, Über die Ionisationsspannung von CN und C₂-Molekülen Zs. f. Phys. **61** p. 332—337 (1930).

[661] J. Kaplan, A new system of bands in carbon monoxide. Phys. Rev. (2) 35 p. 1298 (1930).

[662] A. S. King and R. T. Birge, Evidence from band spectra of the existence of a carbon. isotope of mass 13. Astrophys. J. **72** p. 19-40 (1930).

[663] A. S. King and R. T. Birge, The carbon isotope, mass 13. Phys. Rev. (2) 35 p. 133 (1930).

[664] H. P. Knauss and J. C. Cotton, Intensity changes of Cameron bands in the electrodeless discharge. Phys. Rev. (2) 36 p. 1099 (1930).

[665] V. Kondratjew, Die Träger einiger Flammenspektren. Zs. f. Phys. 63 p. 322-333 (1930).

[666] H. Kopfermann und H. Schweitzer, Über ein Bandensystem des zweiatomigen Kohlendampfes. Zs. f. Phys. 61 p. 87-94 (1930).

[667] P. Krishnamurti, Raman spectrum and infra-red absorption of sulphur. Indian J. of Phys. 5 p. 105-112 (1930).

[668] P. Krishnamurti, Raman spectra of inorganic crystals. Part II. Some hydroxides, cyanides, sulphocyanides. Indian J. of Phys. 5 p. 651-662 (1930).

[669] T. H. Laby and R. Bingham, The wave-length of X-rays. Nat. 126 p. 915-916 (1930).

[670] R. M. Langer and W. F. Meggers, Light scattering in liquids. Bur. of Stand. J. of Res. 4 p. 711-735 (1930).

[671] W. Lochte-Holtgreven, Temperaturbestimmung in Entladungsröhren aus Intensitätsmessungen in Bandenspektren. Zs. f. Phys. **64** p. 443-451 (1930).

[672] K. Majumdar, On the method of horizontal comparison in the location of spectra of elements. II. Indian J. of Phys. 4 p. 359-365 (1930).

[673] L. R. Maxwell, The comet tail bands of carbon monoxide. J. Frankl. Inst. 210 p. 427-436 (1930). — Phys. Rev. (2) 35 p. 605 (1930). [674] R. Mecke, Das Rotationsschwingungsspektrum des Acetylens III. Zs. f. Phys. 64 p. 173-185 (1930).

[675] R. Mecke und K. Hedfeld, Über die Struktur des Acetylens auf Grund spektroskopischer Untersuchungen. Zs. f. Elektrochem. **36** p. 803 (1930).

[676] R. Mecke, The heat of dissociation of oxygen and of the C-H band. Nat. 125 p. 526-527 (1930).

[677] A. Müller, Über die Untersuchung ultraroter Absorptionsspektren und einige technische Anwendungen. Verh. d. D. Phys. Ges. (3) **11** p. 26 (1930).

[678] R. S. Mulliken, Interpretation of band spectra Parts I, IIa, IIb. Rev. Mod. Phys. 2 p. 60-115 (1930).

[679] F. Paschen und G. Kruger, Das Bogenspektrum des Kohlenstoffs C I. Ann. d. Phys. (5) 7 p. 1-8 (1930).

[680] A. Petrikaln und J. Hochberg, Über den Ramaneffekt der Cyangruppe. Zs. f. phys. Chem. B. 8 p. 440-444 (1930).

[681] G. Placzeck, Über den Ramaneffekt beim kritischen Punkt. Proc. Amsterdam 33 p. 832-840 (1930).

[682] B. B. Ray, Scattering of X-rays by bound electrons. Nat. 125 p. 856 (1930).

[683] B. B. Ray, Teilabsorption von Röntgenstrahlen. Zs. f. Phys. 66 p. 261-269 (1930).

[684] N. B. Reynolds and Y. W. Williams, The molecular scattering of light from certain organic liquids. J. Frankl. Inst. 210 p. 41-54 (1930).

[685] M. Siegbahn und T. Magnusson, Zur Spektroskopie der ultraweichen Röntgenstrahlen I. Zs. f. Phys. 62 p. 435-456 (1930).

[686] H. O. Smyth and E. C. G. Stuckelberg, The ionization of carbon dioxide by electron impact. Phys. Rev. (2) 36 p. 472-477 (1930).

[687] M. Söderman, Die Struktur der K-Strahlung im ultraweichen Röntgengebiet. Zs. f. Phys. 65 p. 656-661 (1930).

[688] M. Söderman, Structure of K-radiation from C, B, Be. Phys. Rev. (2) 36 p. 1414-1415 (1930).

[689] M. Söderman, Some precision measurements in the soft X-ray region. Phil. Mag. (7) **10** p. 600-616 (1930).

[690] Cl. Schäfer, Ramaneffekt und ultrarotes Spektrum von CCl₄ und SiCl₄. Zs. f. Phys. 60 586-594 (1930).

[691] B. Trumpy, Ramaneffekt und Konstitution der Moleküle. III. Die Grundfrequenzen der Moleküle vom Typus XY₄. (Gemischte Halogenide.) Zs. f. Phys. **66** p. 790-806 (1930).

[692] R. M. Badger and I. L. Binder, Absorption bands of hydrogen cyanide gas in the near infrared. Phys. Rev. (2) 37 p. 800-808 (1931).

[693] R. M. Badger and I. L. Binder, Absorption band in ethylene gas in the near infrared. Phys. Rev. (2) 38 p. 1442-1446 (1931).

[694] R. Bär, Über die Polarisation der Ramanlinien von Tetrachlorkohlenstoff, Benzol und Schwefelkohlenstoff. Helv. Phys. Acta 4 p. 130-135 (1931). Naturw. 19 p. 463 (1931).

[695] C. R. Baily and A. B. D. Cassie, Infra-red absorption spectrum of carbonyl sulphide. Nat. 128 p. 637 (1931).

[696] C. R. Bailey and A. B. D. Cassie, Investigations in the infra-red region of the spectrum. Part III. The absorption spectrum of carbon disulphide. Proc. Roy. Soc. A. 132 p. 236-251 (1931).

[697] K. Bechert, Bemerkungen zur Struktur der Spektren der "stripped atoms". Zs. f. Phys. 69 p. 735-741 (1931).

[698] O. Berg und W. Ernst, Zur Frage der Teilabsorption von Röntgenstrahlen. Naturw. 19 p. 401 (1931).

[699] S. Bhagavantam, Raman spectra of gases. Nat. 127 p. 817-818 (1931).

[700] R. T. Birge, Mass defects of C¹³, O¹⁸, N¹⁵ from band spectra and the relativity relation of mass and energy. Phys. Rev. (2) **37** p. 841-842 (1931).

[701] N. T. Bobrovnikoff, The Raffety bands in comets. Astrophys. J. 73 p. 61-76 (1931).

[702] G. B. Bonino e L. Brüll, Spettro Raman e costituzione chimica in alcuni cloretileni. Lincei Rend. (6) 13 p. 275-281 (1931).

[703] J. S. Bowen, The spectrum of doubly ionized carbon C III. Phys. Rev. (2) 38 p. 128-132 (1931).

[704] F. S. Brackett and U. Liddel, Infrared absorption bands of hydrogen cyanides in gas and liquid. Phys. Rev. (2) 38 p. 582 (1931).

[705] A. B. D. Cassie and C. R. Baily, The absorption spectrum of carbon disulphide. Proc. Roy. Soc. A. 132 p. 236-271 (1931).

[707] J. M. Cork, Changement de longueur d'onde des rayons X traversant un milieu absorbant (observé dans la direction de transmission). C. R. **192** p. 153—155 (1931).

[708] A. K. Datta and M. N. Saha, Absorption spectra of saturated chlorides of multivalent elements. Nat. 127 p. 625-626 (1931).

[709] D. M. Dennison and N. Wright, A new long wave-length absorption band of CS₂. Phys. Rev. (2) 38 p. 2077 (1931).

[710] H. Deslandres, Relations simples du spectre moléculaire avec la structure de la molécule.
C. R. 192 p. 1417-1421, 1606-1610 (1931).

[711] R. T. Dufford, Raman spectra and a slight asymmetry of the carbon and nitrogen atoms. Phys. Rev. (2) **37** p. 1013 (1931).

[712] B. Edlén, Vacuum spark spectra to 40 Å. The spectra of Be III, Be IV, B IV, B V and C V. Nat. **127** p. 405-406 (1931).

[713] B. Edlén, Singlets of the two electron spectra B II, C III, N IV and O V. Nat. 127 p. 744 (1931).

[714] B. Edlén, Das zweite Funkenspektrum der Kohle, C III. Zs. f. Phys. 72 p. 559-568 (1931).

[715] F. Fermi, Über den Ramaneffekt des Kohlendioxyds. Zs. f. Phys. 71 p. 250-259 (1931).

[716] A. Fowler and W. M. Vaidya, The spectrum of the flame of carbon disulphide. Proc. Roy. Soc. A. 132 p. 310-330 (1931).

[717] C. W. Gartlein and R. C. Gibbs, Production of second and third spark spectra in a hollow cathode lamp. Phys. Rev. (2) 38 p. 1907 (1931).

[718] J. Gilles, Sur la dispersion d'énergie intérieure aux termes quadruples et triples 3³ P, 3 p P, 3 p D dans les spectres des éléments C, N, O, F à différents degrés d'ionisation. C. R. 192 p. 350-352 (1931).

[719] H. Grenat, Identification du spectre de Raffety. C. R. 192 p. 1553-1555 (1931).

[720] W. Hanle, Über eine Anomalie bei der Polarisation der Ramanstrahlung. Naturw. 19 p. 375 (1931).

[721] G. Herzberg, Ultraviolet absorption spectra of acetylene and formaldehyde. Trans. Faraday Soc. 27 p. 378-384 (1931).

[722] J. H. Hibben, The Raman spectra of formaldehyde, trioxymethylene, ethylene, glycol and of some viscous liquids. J. Amer. Chem. Soc. 53 p. 2418-2419 (1931).

[723] M. E. High and M. L. Pool, Removal of continuous background from Raman spectrum of carbon tetrachloride. Phys. Rev. (2) 38 p. 374-375 (1931).

[724] W. V. Houston and C. M. Lewis, The rotational Raman effect in carbon dioxide. Phys. Rev. (2) 37 p. 227 (1931).

[725] W. V. Houston and C. M. Lewis, Rotational Raman spectrum of CO₂. Proc. Nat. Acad. 17 p. 229-231 (1931).

[726] M. Kaerynska, Über die selektive Anregung der OH-Bande beim Luftnachleuchten und über das Nachleuchten des Kohlendioxyds. C. R. Soc. Pol. de phys. **5** p. 261-266 (1931).

[727] J. Kaplan, Repulsive energy levels in band spectra. Phys. Rev. (2) **37** p. 1406-1412 (1931).

[728] G. B. Kistiakowsky, On the ultraviolet absorption spectrum of acetylene. Phys. Rev.
 (2) 37 p. 276-278 (1931).

[729] H. P. Knauss, CO bands in the region 2220 to 3300 Å. Phys. Rev. (2) 37 p. 471-472 (1931).

[730] H. P. Knauss and J. C. Cotton, Ultraviolet bands of CO in the electrodeless ring discharge. Phys. Rev. (2) 38 p. 1190-1194 (1931).

[731] A. Langseth, Feinstruktur von Ramanbanden. I. Die Struktur der Ramanbanden des Tetrachlorkohlenstoffs und die Symmetrie des tetravalenten Kohlenstoffatoms. Zs. f. Phys. 72 p. 350-368 (1931).

[732] G. A. Lindsay, Raman lines in X-ray spectra. Nat. 127 p. 305 (1931).

[733] W. Lochte-Holtgreven, Rotationstemperatur von Bandenspektren in Entladungsröhren. II. Zs. f. Phys. 67 p. 590-600 (1931).

[734] P. E. Martin and E. F. Barker, The fundamental vibration bands of CO₂. Phys. Rev.
 (2) 37 p. 1708-1709 (1931).

[735] L. A. Matheson, Intensity of infrared absorption bands. Phys. Rev. (2) 37 p. 1708 (1931).

[736] R. Mecke, Einige Ergebnisse der photographischen Ultrarotspektroskopie. Zs. wiss. Photogr. 30 p. 77-84 (1931).

[737] B. B. Mooney and H. D. Reid, Ultra-violet absorption spectra of cyanogen halides. Nat. 128 p. 271-272 (1931).

[738] R. S. Mulliken, The red CN bands. Phys. Rev. (2) 38 p. 1075-1077 (1931).

[739] R. S. Mulliken, Interpretation of band spectra. Part IIc. Empirical band types. Rev. Mod. Phys. 3 p. 89-155 (1931).

[740] H. Neufeldt, Struktur von Absorptionskanten leichter Elemente gemessen mit dem Elektronenzählrohr. Zs. f. Phys. 68 p. 659-674 (1931).

[741] H. H. Nielsen and J. R. Patty, Infrared absorption bands in formaldehyde vapor. Phys. Rev. (2) 37 p. 1708 (1931).

[742] L. S. Ornstein and H. Brinkmann, Temperature determination from band spectra. I. Vibrational energy distribution and vibrational transition probalities in the cyanogen ${}^{2}\Sigma_{-}{}^{2}\Sigma_{-}$ bandsystem. Proc. Amsterdam 34 p. 33-41 (1931).

[743] L. S. Ornstein and H. Brinkmann, Temperature determination from bandspectra. II. Rotational energy distribution in the cyanogen and AlO-bands and temperature distribution in the arc. Proc. Amsterdam **34** p. 498-504 (1931).

[744] J. R. Patty and H. H. Nielsen, Infrared absorption of formaldehyde vapor. Phys. Rev. (2) 37 p. 472 (1931).

[745] G. Placzek, Intensität und Polarisation der Ramanschen Streustrahlung mehratomiger Moleküle. Zs. f. Phys. **70** p. 84—103 (1931).

[746] G. Placzek und W. R. van Wijk, Polarisationsmessungen am Ramaneffekt von Flüssigkeiten. Zs. f. Phys. 67 p. 582-589 (1931).

[747] J. A. Prins, Beiträge zur Plangitterspektroskopie der ultraweichen Röntgenstrahlen. Zs. f. Phys. 69 p. 618-636 (1931).

[748] E. Rudberg, The K-lines of the light elements. Remark on a paper by M. Söderman. Phil. Mag. (7) 11 p. 1248-1250 (1931).

[749] E. Rudberg, Soft X-rays and secondary electrons. Stockholm, Handlingar (3) 7 p. 145 (1931).

[750] W. W. Sleator, New absorption bands of ammonia methylbromide, methyliodide and carbon dioxide in the infrared spectrum. Phys. Rev. (2) **38** p. 147-151 (1931).

[751] S. C. Sirkar, The influence of exciting frequency on the intensities of lines in Raman spectra. Indian J. of Phys. 6 p. 133-146 (1931).

[752] H. D. Smyth and T. C. Chow, Regularities in an emission spectrum of CO₂. Phys. Rev. (2) 37 p. 1023 (1931).

[753] H. D. Smyth and T. C. Chow, A further study of the emission spectrum of CO₂. Phys. Rev. (2) **37** p. 1710 (1931).

[754] H. D. Smyth, Emission spectrum of carbon dioxide. Phys. Rev. (2) 38 p. 2000-2015 (1931).

[755] B. Svensson, Beiträge zu den Versuchen den Starkeffekt in Bandenspektren experimentell nachzuweisen. Zs. f. Phys. **71** p. 450-453 (1931).

[756] H. Schüler, Hyperfeinstrukturen und Kernmoment. Phys. Zs. 32 p. 667-670 (1931).

[757] J. Strong, Investigations in the spectral region between 20 and 40 μ . Phys. Rev. (2) 37 p. 1565-1572 (1931).

[758] E. Teller und L. Tisra, Zur Deutung des ultraroten Spektrums mehratomiger Moleküle. Zs. f. Phys. **73** p. 791-813 (1931).

[759] M. Trautz und A. v. Dechend, Über die Lichtbrechung in H₂, O₂ und CO₂ und ihren Temperaturkoeffizienten. Zs. f. techn. Phys. **12** p. 243-249 (1931).

[760] W. W. Watson and E. Parker, Vibrational quantum analysis of the ultraviolet SO₂ and CS₂ absorption. Phys. Rev. (2) **37** p. 1013 (1931), Abstr.

[761] R. V. Zumstein and D. S. Marston, Wave-length standards in the spectra of carbon and tin in the Schumann region. Phys. Rev. (2) 38 p. 305-309 (1931).

[762] A. Dadieu und K. W. F. Kohlrausch, Ramaneffekt und Molekülbau einiger einfacher organischer Substanzen. Phys. Zs. 33 p. 165-172 (1932).

[763] F. A. Jenkins, Y. K. Roots and R. S. Mulliken, Red CN band system. Phys. Rev. (2) 39 p. 16-42 (1932).

[764] J. S. Moorhead, Near infrared absorption spectrum of methane. Phys. Rev. (2) 39 p. 83-89 (1932).

[765] R. S. Mulliken, Interpretation of band spectra, Part III. Rev. Mod. Phys. 4 p. 1-86 (1932).

[766] E. O. Salant, Isotope effects in polyatomic molecules. Phys. Rev. (2) 39 p. 161-162 (1932).

[767] H. D. Smyth, Spectrum of carbon dioxide II. Electron levels. Phys. Rev. (2) 39 p. 380-382 (1932).

[768] P. Swings and O. Struve, Bands of CH and CN in stellar spectra. Phys. Rev. (2) 39 p. 142--151 (1932).

[769] F. J. Lauer, Spektroskopische Vorgänge in Explosionszonen von Methan und anderen Kohlenwasserstoffen (im Druck) (1932).

1. Linienspektra.

Bis zum Jahre 1921 waren nur zwei sichere und vielleicht ein Dutzend unsichere Linien des C-Spektrums zu verzeichnen. Seitdem sind mehrere hundert Linien bekannt, die sogar meist bei C I, C II, C III, C IV eingeordnet sind. Den Anstoß zu diesem gewaltigen Fortschritt verdankt man Millikan und seinen Mitarbeitern, namentlich Bowen. Es zeigte sich, daß vornehmlich bei den leichtesten Elementen der Schlüssel in den ganz kurzen Wellenlängen liegt. Den Weg zu ihnen hatte Schumann angebahnt, Lyman ihn verfolgt, dann Millikan in den Jahren 1920 und 1921 ihn erheblich fortgesetzt [267, 272, 277], ebenso andere, bis neuestens Ericson und Edlén [641, 642, 643, 646, 712, 713, 714] ihn zum heutigen Ende geführt haben. Zwar hatte schon vor Millikan Wolf [226] einen kleinen Vorstoß in dies Gebiet gemacht, hatte aber bis 2 1653 nur 7 Linien bei C angegeben, unter denen noch 2 falsche sind, und McLennan hatte nach einer ersten unsichere Ergebnisse liefernden Arbeit [264] eine zweite [265] geliefert, die bis 2 1464 reicht, 11 Linien enthält, darunter 2 falsche, aber nach der ersten Arbeit kaum Vertrauen erwecken konnte. Dann brachte Millikan [272] etwa 100 Linien, die bis 2 360 reichen, und durch die große Zuverlässigkeit, mit der fremde Linien eliminiert sind, ausgezeichnet sind.

Nun setzt eine rege Tätigkeit ein; zahlreiche Beobachter haben entweder das ganze Spektrum durchmessen, oder einzelne Liniengruppen, haben entweder größere Genauigkeit zu erreichen gesucht oder die Einordnung in die verschiedenen Ionisations-

stufen. Es seien hier genannt: Simeon [355], Hopfield und Leifson [340], Hutchinson [343], Merton und Johnson [346], Fowler [365], Lang [371], Millikan und Bowen [379, 393, 394], Johnson [406], Bowen und Ingram [427], Hopfield und Dieke [461], Smith und Laird [468], Bowen [475, 566], Hoag [487], Ryde [510], Jog [595], Fowler und Selwyn [524, 525], Ingram [593], Edlén und Ericson [641—644, 646, 712—714], Paschen und Kruger [679]. Der Inhalt dieser Arbeiten wird an den betreffenden Stellen näher angegeben.

CI. Merton und Johnson [346] gelang zuerst die Auffindung einer größeren Anzahl von Linien, die zu CI gehören. In ein weites Geißlerrohr wird neben He von 20 mm Druck eine Spur von CO gebracht, dann O und H soviel wie möglich beseitigt. Mit schwacher Entladung ohne Kondensator tritt dann das Bandenspektrum der Kometenschweife (siehe weiter unten) kräftig auf. Schaltet man nun Kondensator und Funkenstrecke ein, so verschwinden diese Banden, dafür treten Banden und Linien von He auf und neue bisher nicht bekannte Linien. Sie werden als Linien von C gedeutet. Da aber die schon bekannten Funkenlinien von C II ganz fehlen oder nur gelegentlich schwach auftreten, halten sie jene für Linien von C I. Die Messungen erstrecken sich über das Gebiet von λ 7116 bis λ 4212. Etwas später ergänzt Johnson [406] diese Untersuchung, indem er genauer zu messen sucht und die Messung bis λ 2354 ausdehnt. Zu diesen Linien, die sich in der unten folgenden Tabelle finden, ist also zu bemerken, daß sie nicht absolut sicher zu C I gehören, soweit sie nicht später eingeordnet worden sind.

Einen anderen Weg zur Erzeugung von C I findet Ryde [510]: verwendet man Kohlebogen mit sehr starken Strömen — er geht bis zu 250 Amp. —, so entsteht eine große Flamme zwischen den Kohlen, welche die Linien von N I, O I, Ar I und Kohlelinien zeigt — namentlich am negativen Pol —, welche im wesentlichen identisch sind mit denen von Merton und Johnson, also zu C I gehören. Das Spektrum ist noch freier von Funkenlinien, als das Mertonsche. Die Linien sollen zum Teil sehr stark nach Rot verschoben sein, bei N bis zu 2 A. Mit Vollkohlen erhält man bei diesen starken Strömen einen sehr unstetigen Bogen, aber er brennt ruhig, wenn man als Kathode eine mit CaF₂ gefüllte nimmt. — Ryde mißt zwischen λ 6828 und λ 1931; die Wellenlängen sind wegen der möglichen Verschiebungen nicht sehr sicher. Er gibt neben einer Tabelle, die seine Messungen mit denen von Merton und Johnson vergleicht, eine andere mit Linien unbekannten Ursprungs, in der noch mehrere Kohlelinien stecken mögen. Sie ist aber hier nicht abgedruckt.

Bowen [475] macht den Anfang mit einer Ordnung des Spektrums, indem er im Schumanngebiet 3 enge Tripletts herausfindet. Ihm folgen mit der ersten eingehenden Untersuchung des ganzen Spektrums Fowler und Selwyn [524]. Sie machen eigene Beobachtungen mit beiden genannten Methoden und auch mit Geißlerröhren, die mit CO_2 von 20 mm Druck gefüllt sind. Sie dehnen auch das Spektrum bis ins Ultrarot aus, bis λ 10119, verwenden aber vielfach fremde Messungen, die genauer sind, von Merton und Johnson und im Schumanngebiet von Bowen und Millikan, welche durch eigene ergänzt werden. Sie finden noch Tripletts, Singuletts und Multipletts, geben eine Liste von Termen, eine andere von unbekannten Linien. Im ganzen sind etwa 30 Linien eingeordnet, aber das Spektrum ist noch weit entfernt davon, gut bekannt zu sein. Eine Vergleichung zwischen C I, N II, O III beschließt die Arbeit.

Sawyer und Martin [417] untersuchen das Spektrum des Vakuumbogens zwischen λ 2200 und λ 6600. Das Spektrum zeigt mit wenigen Ausnahmen die von Eder und Valenta im Kohlefunken erhaltenen Linien, ungefähr 25. Die von Fowler als C⁺ bezeichneten Linien erscheinen stark. Einige neue Linien werden als Dubletts gemessen.

Rudy [465] teilt einige Kombinationen von Triplett und Singulettermen von CI mit.

Einen weiteren Fortschritt bringt Ingram [593]. Auch er benutzt die Bogenflamme hoher Stromstärke (125 Amp.), da sie besonders günstig für lange Wellen ist, mißt mit Thermosäule und Gitter zwischen λ 9060 und λ 14777. Er meint seine Fehlergrenze betrage etwa 2,0 A. Er kann neue Terme feststellen, eine ganze Anzahl Linien einordnen, Fowler und Selwyns Ordnung bestätigen.

Als letzter ist Jog [595] zu nennen; auch er benutzt die Bogenflamme, mißt von λ 2390 bis λ 1931, merkwürdiger Weise nach Rowlandschen Normalen, wodurch seine Zahlen von vornherein ungenau werden. Er findet in der Flamme keine Linien von C IV, C III, C II (bis auf λ 2837), es muß also ein reines Bogenspektrum sein. Von seinen Linien klassifiziert er 16 als Kombinationen und 11 von anderen gemessene.

Hopfield [656] teilt mit, daß er bei kurzen Wellenlängen das Spektrum von C 1 wesentlich habe bereichnern können, indem er drei Serien von Multipletts gefunden habe, die an gleicher Stelle auslaufen, etwa λ 1100. Er gibt auch einige provisorische Zahlen, die aber hier nicht aufgenommen worden sind. Zu gleicher Zeit haben Paschen und Kruger [679] diese Serien in viel genauerer Weise untersucht. Sie erzeugen das Spektrum mit Hohlkathode aus Kohle oder Wolfram, durch welche He durchströmt. Die zahlreichen Tripletts gestatten eine Bestimmung der Grundterme und eine Verbesserung einiger der Terme von Fowler und Selwyn [524], so daß der Gewinn für das Spektrum von CI sehr wesentlich ist.

Im Bereiche von $\lambda 2000 - \lambda 1500$ wurden von Zumstein und Marston [761] neun starke Linien von C I auf 0,02 Å genau gemessen durch direkten Vergleich mit dem Eisenspektrum. Sie können als Vergleichsnormalen benutzt werden. Ihre Wellenlängen sind 1930.93 (10), 1658.12 (2), 1657.90 (2), 1657.37 (2), 1656.97 (4), 1656.27 (2), 1561.39 (10), 1560.69 (8), 1560.30 (5).

Durch alle diese Arbeiten sind im Spektrum des C I nahezu 200 Linien eingeordnet, Singuletts, Tripletts, Multipletts, Kombinationen gefunden worden; es fehlt aber, namentlich für mittlere Wellenlängen, sehr viel. Alle diese Messungen sind in der folgenden Tabelle 1 vereinigt; aber es mögen in ihnen manche falsche Linien stecken, andererseits in den Tabellen unbekannter Linien von Johnson und Fowler richtige C I Linien enthalten sein. — Die eingeordneten Linien sind durch die abgekürzten Namen des Einordners bezeichnet; dabei bedeutet B = Bowen, F = Fowler und Selwyn, I = Ingram, P = Paschen und Kruger. Tabelle 1 a gibt das Termsystem von C I nach [679].

CII. Den ersten Beitrag zu einer Einordnung von Linien in CII geben Hopfield und Dieke [461]. Sie suchen bei den elektrisch sich entsprechenden Atomen S I, C II, A III, K IV eine PP'-Gruppe heraus und geben für die entsprechenden 6 Linien von C II die Schwingungszahlen an, welche wir für die Tabelle in Wellenlängen umgerechnet haben. Dann folgt Fowler [365], dem einige Paare unter den schon ge-

Tabelle 1. C I.

Е	Kombinationen		Fowler u. Selwyn [524]	Ingram [593]	Merton u. Johnson [346]	Johnson [406]	Ryde [510]
J	¹) 3p ³ P ₂ -4 s ³ P ₂	14779	_	9.8 10	1111		_
J	$3p^{3}P_{2}$ -3d ³ D ₂	441	_	1.1 60	-	-	-
J	$3p^{3}P_{2}$ - $3d^{3}D_{3}$	418	_	8.2 900	• _	-	-
J	$3p^{3}P_{1} - 3d^{3}D_{2}$	399	-	9.6 300	-	-	-
J	$s p^{3} D_2 - 3 p^3 P_1$	13742	-	2.3 5	-	-	-
J	$s p^{33}D_3 - 3 p^3P_2$	696	-	6.5 10	-	-	-
J	$3p^{3}S_{1} - 4s^{3}P_{1}$	557	-	7.5 60	-	-	-
J	$3p^{3}S_{1}$ — $4s^{3}P_{2}$	500	-98	0.2 100	10000	-	-
J	$3p^{3}P_{2}$ — $3d^{3}P_{2}$	12614	-11	4.8 200			-
J	$3p^{3}P_{2}$ $3d^{3}P_{1}$	602	T-10	2.6 40	-	-	-
J	$3p^{3}P_{1}$ $3d^{3}P_{2}$	582		2.3 40	- 11	-	-
J	3p ³ P ₁ -3d ³ P ₁	565	1	5.0 30	1.		_
J	$3p^{3}P_{1} - 3d^{3}P_{0}$	000		0.0 00			
J	$3p^{3}P_{0}$ -3d ³ P_{1}	551	-	1.0 50		-	-
J	$4 s^{3}D_{3}$ - $4 s^{3}P_{2}$		199 6 4				
J	$4p^{3}D_{1} - 4s^{3}P_{0}?$	11894	-	4.9 200	-	-	-
J	$4 s^3 D_2 - 4 s^3 P_1$	000		0.0 15		ine is	1 1
J	$3p^3D_1 - 4s^3P_1$	863	-	3.0 15	-	-	-
J	$3p^3D_2 - 4s^3P_2$	849	-	9.3 10	-	-	-
J	$3p^{\circ}D_{3}$ - $3d^{\circ}F_{3}$?	801	-	1.8 10	-	-	-
J	$3p^{\circ}D_3 - 3d^{\circ}F_4?$	754	-	4.0 600	-	0-0	-
J	$3p^{\circ}D_2 - 3d^{\circ}\Gamma_3$	747		7.5 200			1 69
J	$3p^{*}D_{1}$ — $3d^{*}\Gamma_{2}f$ $2n^{3}S$ $2d^{3}D$	667		7.1 100	Stat		1 2 4
J	$3p^{*}S_{1}$ - $3d^{*}P_{2}$ $3n^{3}S_{2}$ - $3d^{3}P$	656		6.0 200	Conna 1		
J	$3p^{3}S_{1}$ $3d^{3}P$	659		2.5 100	1 June	and the second	
T	$3p^{-}S_{1} - 3n^{3}D^{-2}$	10758		8.9 19	antas as		
T	$3 s^{3}P - 3 n^{3}D$	799		9.2. 125			
T	$3s^3P_2 - 3p^3D_2$	707		7.5 100			
J	$3s^{3}P_{2}$ $3n^{3}D_{2}$	690		0.5 600	_		
	$3s^{3}P_{2}$ - $3n^{3}D_{1}$	000					
J	3 s ³ P3p ³ D.	683	-	3.0 500	-	-	-
F	3 s ¹ P,-3p ¹ P,?	119	_	1.221_000	-	-	-
F, J	3 s ³ P ₂ -3p ³ S ₁ ?	9661	-	57.5 250	100-10	-	-
F, J	3 s ³ P ₂ -3p ³ S ₁ ?	23	-	20.4 125	-	_	
J	3 s ³ P ₀ -3p ³ S ₁	02	-	2.8 60	-	-	_
F	$3p^1D_2$ -3d ¹ P ₁	07	-	12	-	- '	
F, J	$3 s^{3}P_{1} - 3 p^{3}P_{1}$	9111	4 2	1.0 150	-	-	-
F, J	$3 s^{3}P_{2}$ - $3 p^{3}P_{2}$	9094	5 5	4.7 500		-	-
F, J	3 s ³ P ₁ -3p ³ P ₀	88	5 1	8.4 200	-	-	-
F, J	$3 s^{3}P_{1} - 3 p^{3}P_{1}$	78	1 1	7.8 150	-	-	-
FI	$\int 3 s^{3}P_{1} - 3p^{3}P_{2}$	61	8 4	0.6 350			
1,0	$[3 s^{3}P_{0} - 3p^{3}P_{1}]$	UI	0 4	0.0 000			
F	$3p^{1}D_{2}$ - $3d^{1}D_{2}$?	8336	4 5		-	-	-
	-	7116		-	6.1 0	-	-
		6828	-		8.5 0	-	8.6 2u
-		6587		_	7.6 4	7.75 4	-

¹) Die Intensitäten bei Ingram sind Galvanometerausschläge.

Kayser u. Konen, Spektroskopie. VIII.

Е	Kombinationen	2	Fowler und Selwyn	Merton u. Johnson	Johnson	Ryde
	The second of the second second	Teles	[524]	[346]	[406]	[510]
0.000	allorens Linds Plan	6583	_	ADV LOTIN	3.02? 1	2.8? 0
(and the		77	_	7.8? 4	8.16? 0	7.3? 0
1	- SECTI - In shinks	5554	0000-000	4.7 0	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	_
	_	45	_	5.4 0	Tehn _ that	
1	-	40	-	0.2 0	Phi - Cas	_ 1
	-	12	-	2.7 0	_	_
	and our the star star star	01	-	1.0 0	_	_
	Thomas and the	5469	_	9.2 0	1 1- 10	and Freedom
F	$3 s^{1}P_{1} - 4p^{1}D_{2}$	5380	242 8	0.25 8	0.242 8	0.55 9
F	$3 s^{1}P_{1} - 4p^{1}S_{0}$	5052	122 6	2.08 6	2.122 6	2.30 15
F	$3 s^{3}P_{2}$ -4p ³ D ₃	41	66 3	1.66 3	1968-9968	1.61 1
F	$3 s^{3}P_{1} - 4p^{3}D_{2}$	39	05 3	9.0 3	9.05 3	9.09 2n
F	$3 s^{3}P_{0} - 4 p^{3}D_{1}$	35	75 0	5.65 0	5.75 0	-
Chief Tal		23	_	3.9 1	3.79 1	3.71 1u
F	$3 s^{1}P_{1} - 4 p^{1}P_{0}$	4932	00 5	1.99 5	2.00 5	2.22 5
		10	-	0.4 0	100-10-1	-
	-	4879		9.8 0	9.86 0	0.0 OU
-	-	47	-	7.78 0	7.78 0	-
F	$3 s^{3}P_{2} - 4 p^{3}S_{1}$	4826	73 1	6.73 0	6.73 0	6.89 1
F	$3 s^{3}P_{1} - 4 p^{3}S_{1}$	17	33 1	7.32 1	7.83 1	7.32 1
F	$3 s^{3}P_{0} - 4 p^{3}S_{1}$	12	84 1	1 20/10 - 20/10	17.34 134C	
	-	06		6.05 1	5.95 1	fehlt
F	$3 s^{3}P_{2} - 4 p^{3}P_{1}$	4775	87 3	5.87 3	5.87 3	5.98 4
F	$3 s^{3}P_{2} - 4 p^{3}P_{2}$	71	72 4	1.71 4	1.72 4	1.72 10
F	$3 s^{3}P_{1} - 4 p^{3}P_{0}$	70	00 2	9.99 2	0.00 2	0.15 4
F	$3 s^{3}P_{1} - 4 p^{3}P_{1}$	66	62 2	6.7 2	6.62 2	6.60 3
F	$3 s^{3}P_{1} - 4 p^{3}P_{2}$	62	41 4	240 4	941 4	9.37 8
	$[3 s^{3}P_{0} - 4p^{3}P_{1}]$		Citera velli			2.01 0
	He fan Ti won C i	58	-	-	8.78 2	fehlt
	Property and the second second	57	-	No.	7.59 1	fehlt
	-	4371	-	1.35 4	1.33 4	1.44 4
	-	52	-	-	2.1 1	2.01 0
		48		-	8.07 4	8.09 0
	A CLARK TO ASSAULT	12	a train of	2.5 3	2.4 3	-
	al Completion Station	04	on Sinterla	4.0 2	3.8 1	verdeckt
	in her the three Wall	1007	A TON	1.7 0	-	-
		4297	-	7.9 0	-	-
	_	94	_	4.7 0	_	-
	-	94	-	4.4 0		
	A CONTRACTOR STREET, NO	92		2.3 0		020
	A Strangenter below	87		7.0 0		
	A Thermon The	69		9.03 2	8.99 2	1
	A REAL PROPERTY AND	36	-	1.05	6.0 2u	
		31	-	1.35 1	0.00	1.40 0
		28	_	0.33 1	8.28 1	verdeckt
		10	-	0.71 1	200	-
		12		2.93 1	2.90 1	-
		112	-	2.34 1	2.36 1	
		4100		and the second second second	0.4 10	-
		4072	-	-	2.6 Ou	-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	Kombinationen	2	Fowler u. Selwyn [524]	Johnso [406]	on]	Ryde [510]	Paschen [679] λ vac	Jog [595]
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	4065		5.1	2	fehlt	_	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	NILS-		64	-	4.2	1	fehlt	-	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	-	3942	-	2.4	0	- 1	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5		30	-	0.2	2	120 -	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La fist	-	04	-	4.4	2u	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	3757	-	7.1	3	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.0	-	53	-	3.5	1u		-	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000	-	29	-	9.6	2	fehlt	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.026	* -	3607	-	7.0	1u	fehlt	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000	-	04	-	4.1	1u	fehlt	-	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1218 2	-	3592	-	2.6	1	fehlt	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32-	-	49	-	9.0	0	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	3491	-	1.45?	3	1.86? 2	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.32	-	89	-	9.3?	2	-	-	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	3383	-	3.8	Ou		-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1993	-	70	-	0.5	4	fehlt	-	-
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	22	-	2.4	0	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	18	-	8.0	0	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	-	4.3	0	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 9.k	-	3158	-	8.6	2	verdeckt	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	-	2947	-	7.4	1	verdeckt	-	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 1. 1. 1.	-	30	-	7		-	-	0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	-	24	-	-		-	-	4.7?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		09	-	-		-	-	9.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 2	-	2892	-	-		-	-	2.6?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	81		-		-	1	1.5?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	51	-	-		-		1.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	125	-	00	-				-	0.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.12	-	2794	-	-		-	-	4.7
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	199	-	08	-	-		-	-	8.9
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	2699		-		-	-	9.9
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	88	-			-	-	8.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	76	-	-	0		-	6.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	61	-	1.7	Ou		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1448	-	60	-	0.3?	T	verdeckt	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	29	-			T	-	9.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	2098	-	-		T		8.37
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	0-10 0-20	90	-	-			0.05 1	0.97
$ \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$	P	2p18 -3s°P1	83	-	2.9	2	2.94 3	5.05 1	2.3
$ \begin{bmatrix} - & 28 & - & - & - & - & 8.97 \\ - & 23 & - & - & - & - & 3.37 \\ - & 15 & - & 5.15 & 1 & \text{fehlt} & - & 4.0 \\ - & 2498 & - & - & - & - & 7.7 \\ - & 2498 & - & - & - & - & 8.37 \\ P & 2p^{1}S_{-3s^{1}P_{0}} \end{bmatrix} \begin{bmatrix} 78 & 525 & 10 & 8.525 & 10 & 8.50 & 100 & 9.322 & 10 & 9.8 \\ - & 39 & - & 9.6 & 0 & - & - & - \\ - & 35 & - & - & - & - & 5.57 \\ - & 13 & - & 3.9 & 0 & - & - & - & - \end{bmatrix} $		-	07	-	1.0	0	-	_	0.00
$ \begin{bmatrix} - & 23 & - & - & - & - & - & 3.37 \\ - & 15 & - & 5.15 & 1 & \text{fehlt} & - & 4.0 \\ \hline 1\bar{S}_0 - {}^3\bar{P}_1 & 07 & - & - & - & - & 7.7 \\ - & 2498 & - & - & - & - & 8.37 \\ \hline P & 2p^{1}S - 3s^{1}P \\ F & 3p^{1}S_0 - 3s^{1}P_0 \end{bmatrix} \begin{bmatrix} 78 & 525 & 10 & 8.525 & 10 & 8.50 & 100 & 9.322 & 10 & 9.8 \\ - & 39 & - & 9.6 & 0 & - & - & - \\ - & 35 & - & - & - & - & 5.57 \\ - & 13 & - & 3.9 & 0 & - & - & - \\ \end{bmatrix} $		-	28	-	-		T		0.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			23	-	5.15		fablt	-	0.07
$ \begin{bmatrix} 30g \\ -30g $	T	12 30	10	-	0.15	T	Tenit	-	4.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Jog	-50°P1	07	-			T	-	0.00
$ \begin{bmatrix} \mathbf{P} & 2\mathbf{p} \cdot \mathbf{S} & -3 \cdot \mathbf{F} \\ \mathbf{F} & 3\mathbf{p}^{1}\mathbf{S}_{0} - 3\mathbf{s}^{1}\mathbf{P}_{0} \end{bmatrix} \begin{bmatrix} 78 & 525 & 10 \\ & 39 \\ & 35 \\ & & 9.6 & 0 \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & &$	n	0n16 2.1D)	2498	-			N. TI		0.37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P	2p*5-3s*P	78	525 10	8.525	10	8.50 100	9.322 10	9.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T.	op-50-58-10 J	20		9.0	0			
			85		0.0	0			5.52
		and the second	13		39	0			0.01
	1		1 10		1 0.0	0		18*	1

Е	Kombinationen		Fowler u. Selwyn [524]	Johnson [406]	Ryde [510]	Paschen [679]	Jog [595]
	_	2354	-	4.12 1	-		4.6
-		22		- 11	+		2.5?
-		12	1000		100 +	-	2.9
	-	2217			+ 1	-	7.4
1	-	11		- 0	+	-	1.6
	-	08			+ 828	-	8.4
		2190	-	-		-	0.5?
12728		48	_		T	-	8.8?
		20	_		T		0.0?
		2047			L. T		1.0
		20			T		85
Iog	1p_3p	97			In I		7.4
30g		94			I I		4.4
Jog	1p3D.	23			4		3.0
005	-	21			_	_	1.7?
	-	20	-		1		0.0?
Jog	3P2-3D3	16	-	_	+		6.3
		15	12	- 1	+	-	5.3
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	14	-		ALL - 1.5		4.0
		12	-		100 - 1	-	2.8
		11					1.6
		10		- 1	+ 1		0.4
Jog	³ P ₂ ³ D ₂	09			+		9.3
Jog	³ P ₁ — ³ D ₂	07	-				7.7
	-	06			A		6.4
Jog	^a P ₂ -D ₁	05	-		T		5.2
Tee	30 30	03			T		3.9
Jog	$P_0 - D_1$	02			T		2.0
r Ior	1p_3p	1993			and the second	3.65 9	2.0
Tog	3p_3p	79			L.		9.6
Jog	3p3p	77			- 1 P		7.8
Jog	3P_3P	75	-	!	-		5.6
Jog	3P,_3P,	73			-		3.9
Jog	3P3P.	73	-	_	2 4		3.0
Jog	$^{1}\overline{\mathrm{D}}_{2}$ — $^{3}\overline{\mathrm{P}}_{2}$	48	-		1000 -	-	8.2
Jog	$^{1}\overline{\mathrm{D}}_{2}$ $^{3}\overline{\mathrm{P}}_{2}$	46	-		-		6.6
P, F	$2p^{1}D - 3s^{1}F$ $2n^{1}D - 4s^{1}P$	31	0.27 20	-	0.6 30	0.930 10	_1)
Jog	15_3p	1826	_	- 1	4	_	6.0
Jog	$1\overline{S}_{-}1\overline{P}_{-}$	13		_	-		3.7
P	$2p^{1}S_{(2p)^{31}P}$	1765	_		1	5.4 0	5.1
Р	2p1S-3d1P	64	-		4	4.0 0	
	(2p1S-4s1P)			and the		10 0	
P, F	{2p1S-3d1P1}	51	-	Bowen	TIN	1.9 8	
Jog	${}^{1}S_{0}$ -3 ${}^{3}S_{1}$	21		[475]	+12		1.5
В	$2^{3}P_{2}$ — $3s^{3}P_{1}$	1658	13 2	8.13 2	+	8.13	
В	3p ³ P ₁ -3s ³ P ₀	57	92 2	7.92 2	T	7.92	-
B	$2p^{3}P_{1}$ — $3s^{3}P_{1}$	57	73 2	7.37 2	- 1	7.73	-

276

E.	Kombination		Fowler u. Selwyn [524]	Bowen [475]	Paschen [679]	Jog [595]
в	2p3P3s3P.	1657	01 3	7.01 3	7.01	-
В	2p3P1-3s3P2	56	27 2	6.27 2	6.27	-
В	2p1S-5s1P	03	10 3		2.984 5	-
В	$2p^{3}P_{2}$ — $2p^{3}D_{3}$	1561	381 5	1.381 5	1.381	
B	2p3P1-2p3D2	60	660 4	0.660 4	0.660	-
P	$2p^{3}P_{0}-2p^{1}D_{1}$	60	267 3	0.267 3	0.267	-
P	2p1S-6s1P1	42		S 1 - 1 1 1	2.202 2	-
P	2p1S-7s1P	10	19-11-11	- 0	$0.924 \frac{1}{2}$	-
Jog	¹ D ₂ - ¹ P ₁	01	- 10 - BRO	1 00- 00 1	1994-193	1.9
P	2p ¹ D-3d ¹ F	1481	- (A -)7 (A)		1.771 7	-
P	2p1D-4s3P1	72	-		2.3 0	-
P	2p ¹ D-(2p) ³¹ D	70			0.20 0	-
P, Jog	$2p^{1}D$ — $(2p)^{31}P_{1}$	68			8.5 0	8.5
P	2p ¹ D-3d ¹ P	67	-	- 10	7.450 3	-
P, F	$2p^{1}D$ — $3d^{1}D$	63	43 5	- 75	3.328 6	-
P, F	2p ¹ D-4s ¹ P	59	15 3		9.054 2	-
F	$2p^{1}D_{2}-4d^{1}P_{1}?$	54	34 1			-
Jog	¹ D ₃ — ¹ D ₂	32	1 - C - C - 1			2.6
P	2p ¹ D-4d ¹ F	1364		- 2	4.140 6	-
Р	$2p^{1}D-4d^{3}F_{2}$	59			9.329 2	-
Р	$2p^{1}D$ — $4d^{3}F_{3}$	59			9.131 1	-
P	2p ¹ D-4d ¹ P	57			7.058 3	-
Р	2p ¹ D-4d ¹ D	55	-		5.825 6	-
B	$2p^{3}P_{2}$ — $2p^{1}P$	29	583 4	9.583 4	9.583	-
B	2p ³ P ₁ -2p' ³ P	29	100 4	9.100 4	9.100	-
B	$2p^{3}P_{0}-2p^{1}P$	28	839 3	8.839 3	8.839	-
Jog	³ P ₁ -1P ₁	22		The Play	-	2.6
P	2p ¹ D-5d ¹ F	15		-	5.903 4	
P	2p ¹ D-5X	13	-	-	3.471 6	-
P	2p1D-5d3F2?	12		-	2.261 2	-
P	2p ¹ D-5d ¹ P	11			1.985 2	-
P	2p ¹ D—5d ¹ D	11		1 1 1 1 T 1 1 1 1 1	1.374 8	-
P	2p ¹ D—6s ¹ P	10	-	T	0.646 4	0.7
1. 100	^a P ₁ —X	1296		-	1 200 1	0.1
P	2p ¹ D-6d ¹ F	91	-	-	1.380 1	-
P	2p ¹ D-6X	89	The state of the		9.980 0	AR
P	2p ¹ D—5d ¹ P	88		T	0.000 2	
P	2p ¹ D-6d ¹ D	88	- 725 T	THE TONY	0.440 0	a start and
P.	2p ¹ D—7s ¹ P	88		Palsen The Part	0.000 1	States and
P	$2p^{3}P_{2}-4s^{3}P_{1}$	80			0.892 4	and the second
P	$2p^{3}P_{1}-4s^{3}P_{0}$	80	-	-	0.040 2	
P	$2p^{3}P_{2}$ - $4s^{3}P_{2}$	80	_	-	0.555 6	
Р	$2p^{3}P_{0}$ — $4s^{3}P_{1}$	80	al allowing	-	0.104 2	_
P	$2p^{3}P_{1} - 4s^{3}P_{2}$	79	-	-	9.000 0	
P	$2p^{3}P_{2}$ —(2p) ³¹ D	79	TON TRAINING	ALT TRANSPORT	7 766 9	
P	$2p^2P_3$ -3d ³ D ₂	17			7.617 10	
P, F	$2p^{3}P_{2}$ — $3d^{3}D_{3}$	11	04 3	Trail Prest	7.017 10	
P, F	2p ³ P ₁ -3d ³ D ₂	11	20 2	State The second	7 154 9	A DECEN
P	2p ^a P ₀ -3d ^a D ₁	11	T	100 - 11004	5.021 5	
P	$2p^{1}D_{9}-7d^{1}D$	1 10	+		0.021 0	1

Е	Kombinationen		Fowleru. Selwyn [468]	Paschen [679]	Jog [595]		Е	Kombinationen		Pasch [679	en]
P	2p ¹ D ₂ -8s ¹ P	1274	-	4.880 2	-	139	P	$2p^{3}P_{1}-6s^{3}P_{2}$	1158	8.398	2
F	3D 3S 2)	79	-	4.151 0	0.0		P	$2p^{o}P_{2}$ — $5d^{o}D_{2}J$	50	9 107	0
Jog	$(2n1D_8X)$	14		-	2.0	1	P	$2p^{3}P_{2}$ — $5d^{3}D_{3}$	59	8.017	0 7
P, Jog	3P_1D	67	-	7.633 1	8.6		P	$2p^{3}P_{1}$ $-5d^{3}D_{2}$	57	7.895	3
	$2n^{1}D$ $8d^{1}D$	66		6 449 3	_		P	$2p^{3}p_{-5}d^{1}p_{1}$	57	7.891	2
F.P	2p ³ P-3d ³ P	61	57 2	1.586 8	_		P	$2n^{3}P_{-}5d^{1}D$	57	7.333	1
P	2p ³ P,-3d ³ P.	61		1.146 7	1		P	2p ³ P ₂ -5d ³ P ₂	56	6.619	5
F, P	2p3P,-3d3P,	60	99 1	0.993 6	-		P	2p3P5d3P.?	56	6.502	1
F, P	2p ³ P ₀ -3d ³ P ₁	60	75 0	0.745 4	-		P	2p3P1-5d3P1	56	6.059	2
P	2p1D-3d1D	60	_	0.670 2	-		P	2p3P0-5d3P1	55	5.839	1
	0 - 000	59	- 1	9.546 3	-		P	2p3P2-6d1F?	41	1.705	1
Р	2p ¹ D—10 X	57	-	7.218 2	-		P	2p ³ P ₁ -7s ³ P ₁	40	0.688	3
Р	2p1D-11X	53	<u> </u>	$3.880 \ 1\frac{1}{2}$	-		P	$2p^{3}P_{2} - 7s^{3}P_{2}$	40	0.391	1
P	2p ¹ D—11d ¹ D	53		3.538 1	-	56	Р	$2p^{3}P_{1} - 7s^{3}P_{2}$	40	0.070	1
Р	$2p^{3}P_{1}$ — $4d^{1}F$?	1197		7.812 ¹ / ₂ u	-	10.1	P	$2p^{3}P_{2}-6d^{3}D_{3}$	39	9.894	7
Р	$2p^{3}P_{2}$ — $5s^{3}P_{1}$	94	-	4.656 5	-		Р	$2p^{3}P_{1}$ — $6d^{3}D_{2}$	39	9.794	6
Р	$2p^{3}P_{1} - 5s^{3}P_{0}$	94	-	4.494 7	-		Р	$2p^{3}P_{2}$ — $6d^{3}P_{2}$	39	9.142	2
Р	$2p^{3}P_{1} - 5s^{3}P_{1}$	94	-	4.291 2	-	100	Р	$2p^{3}P_{2}-6d^{3}P_{1}$	39	9.037	1
Р	$2p^{3}P_{2}$ — $5s^{3}P_{2}$	94		4.094 5	-		Р	$2p^{3}P_{1}$ — $6d^{3}P_{1}$	38	8.625	1
P	$2p^{3}P_{0}$ -5s ⁴ P ₁	94		4.027 5		101	P	$2p^{3}P_{0}-6d^{3}P_{1}$	38	8.506	1 2
Р	$2p^{3}P_{1}$ — $5s^{3}P_{2}$	93	-	3.738 4	-		Р	$2p^{3}P_{1} - 8s^{3}P_{1}$	29	9.927	1
Р	$2p^{3}P_{2}$ -4d ³ D ₂	93		3.460 3	-		P	$2p^{3}P_{2}$ — $8s^{3}P_{2}$	29	9.626	1
Р	$2p^{3}P_{2}$ — $4d^{3}D_{3}$	93	-	3.284 10	-		Р	$2 p^{3}P_{2}$ — $7 d^{3}D_{3}$	29	9.161	6
Р	$2p^{3}P_{1}$ — $4d^{3}D_{2}$	93	(10 44)	3.005 8	-		P	$2p^{3}P_{2}$ — $7d^{3}P_{2}$	28	8.748	1
Р	$2p^{3}P_{0}$ -4d ³ D ₁	92	-	2.923 2	-		P	$2p^{3}P_{1} - 7d^{3}P_{1}$	28	8.277	1 2
Р	$2p^{3}P_{1}$ -4d ¹ P?	92	-	2.480 2	-		P	$2p^{3}P_{1} - 9s^{3}P_{1}$	23	3.154	12
P	$2p^{3}P_{2}$ — $4d^{1}D$	91	-	1.855 1	-		P	$2p^{3}P_{2}$ — $9s^{3}P_{2}$	22	2.776	1
P	$2p^{3}P_{2}$ — $4d^{3}P_{2}$	89	-	9.660 6	-		Р	$2p^{3}P_{2}$ — $8d^{3}D_{3}$	22	2.325	4
P	$2p^{3}P_{2}$ -4d ³ P ₁	89	-	9.556 4	-		P	2p ³ P ₂ -8d ³ P ₂	22	2.179	1
P	$2p^{3}P_{1}$ $-4d^{3}P_{1}$	89	-	9.074 3	-		P	2p ^s P ₂ -10s ^s P ₂	18	8.153	1010
P	$2p^{3}P_{0}$ $-4d^{3}P_{1}$	88		8.935 1	-		P	2p ^s P ₂ -9d ^s D ₃	17	7.706	3
P	2p ³ P ₁ -6s ³ P ₁	59	-	9.004 5	-		P	2p ³ P ₂ -10d ³ D ₃	14	4.414	2
P	$2p^{3}P_{2}-6s^{3}P_{2}$	58	-	8.729 3	-		P	$2p^{3}P_{2}$ —11d $^{3}D_{3}$	12	2.051	10

¹) Diese Linie haben Bowen u. Millikan [394] irrtümlich als C III geführt. Sie geben: 1930.98; Bowen u. Ingram [427] geben 1931.029, aber das ist zweifellos zu hoch; Selwyn [617] gibt 1930.95, ebenso andere.

²) Jog bezeichnet diese und die folgenden Linien seiner Tabelle als "already obtained". Die Bedeutung ist unverständlich, da seine Linie sonst nicht gemessen sind.

Tabelle 1a.

Termsystem von C I [679].

$(2s)^{2}(2p)^{2} \begin{cases} 2p^{3}P_{2} - 2p^{3}P_{1} - 2p^{3}P_{$	- 90836 2 p ¹ D ₂ 80686 - 90863.5 - 90878.3	$2{\rm p^1S_0}-69231$
--	---	-----------------------

278

		n - 2	4	5	6	7	8	9	10			
	(3P.	30486.9	19739 4	7091.8	4536.0	3148.2	2311.2	1771.0	1402.8			
	3p.	30527.0	12762.8	7130.8	4579.7	3197.1	2362.2	1828.5				
(2s) ² 2pns	3P	30547.0	12777.9	7146.0		_	_	- 1	-			
	1P.	28898.0	12149.2	6846.2	4388.2	3049.0	2241.0	-				
							THE REAL PROPERTY.	Mp. Bang				
		n — 8	3	4			n — 3	1	4			
	∫ ³ D ₃		1. 11 1.	10657.7	12.00	${}^{8}P_{2}$	19494.2	9	536			
	³ D ₂	-	100	10687.2		³ P ₁	19514.6	9	554			
(2s) ² 2pnp	{ 3D1	-		10695.5		³ P ₀	19527.1	9	568.5			
Fowlers Wert	te ¹ D ₂	2278	0	10317		¹ P ₁	19018	8	628?			
umgerechnet [³ S ₁		2013	19	9774.7		¹ S ₀	-	9	110			
	18 1	01 4	1 5	1 0	1 7	1 9	1 0	1 10	1 11			
	n —	5 0 7099	7 1199	9 9108	6 9974	7 1785 1	1967 0	1102.8	912.1			
1.0	^o D ₃ 1250	1.9 7044	9 4509	2 3100,	3	1 1100.0	1001.0	1102.0	-			
0.01 8	*D ₂ 1257 3D 1957	9.2 7044.	6 4509	0120.	0 _		PART :	10-2-6	_			
	3P 1157	0.0 6778	4 4377	1 3056	6 9949	2 1723.	7 _		12			
	3P. 1156	0.5 6768	3 4361	9 3040	2232	8 -		_	-			
(2s)32nnd	3F.2 -	- 7120.	2 4481.	7 _	_		-	-	-			
(25) 2 1 1 4	3F.? -	- 7109.	7 -	-		-	-	-	-			
	1F. ?1319	8.6 7379.	7 4692	3249.	5 -		-	-	-			
	¹ P, 1254	1 6996.	6 4466	3084.	4 -	-	-	-	-			
	1D, 1234	8 6930	4430	3073	2256	1725	1363	(1103)	911			
141 536	X1) -		4551.	8 3165.	6 2334	1799	(1410)	4145	934			
$2s(2p)^{3}$	$1D_2 - 12$	2665 ¹ P	1 - 12587		$^{\circ}D_2 - 26792 ^{\circ}P_2, 1 - 10626$							
	Zuordnung fraglich					nach Fowler.						

messenen Linien aufgefallen sind. Er untersucht die C-Spektra auf alle mögliche Weise: in Geißlerröhren mit CO_2 und Kohlenwasserstoffen, im Funken zwischen Graphitelektroden in Luft und Wasserstoff, in Vakuumbogen, photographiert mit Gitter- und Prismenapparaten, und es gelingt ihm eine Haupt- und 2 Nebenserien von Paaren festzustellen, die sich durch Formeln mit 4 N darstellen lassen. Dadurch ist die Zugehörigkeit zu CII erwiesen. — Dann gibt Bowen [475] eine lange Liste von Paaren und ein Quartett in der Schumanngegend, welche er später [566] noch ergänzt. Auch Mihul [500] liefert 3 Quartette. Endlich kommen Fowler und Selwyn [525] auf das Spektrum zurück. Sie benutzen jetzt auch den Vakuumfunken (hot spark), finden aber, daß der Funke in Wasserstoffatmosphäre ebenso gute Resultate gibt.

Es sind damit zwischen den Grenzen λ 7263 und λ 533 etwa 125 Linien in das Spektrum eingeordnet, während noch an 50 Linien übrig bleiben, die für C II zu halten sind, die aber nicht eingeordnet sind.

Alle diese Angaben sind in Tab. 2 vereinigt²). Tab. 2a gibt die Termwerte von C II nach [525]. Edlén und Stenman [643] geben an, sie hätten noch 30 Linien eingeordnet.

¹⁾ Vielleicht zu ¹F₃ gehörig, sehr starke Linien mit 2p¹D₂.

²) Es ist zu bemerken, daß Lang und Smith [408, 458], die mit großer Dispersion arbeiten, sagen, bei dem Paar 1335/34 betrage $\Delta \nu$ 65.65, bei dem Paar 1037/36 aber 62.6. Sie könnten also unmöglich zur gleichen Ionisationsstufe (C II) gehören.

	Kombination		For u.Se [5	wler lwyn 25]	Mihul [500]	Е	Kombination		Fo	wler u. elwyn [525]	Mihu [500	n1)]
F	$3p^{2}P_{2}$ -3d ² D ₃	7236	19	8u	-	F	$3d^2D_0-4p^2P_1$	5891	65	3		_
F.	$3p^{2}P_{1}$ -3d ² D ₂	31	12	6u	-	F	$3d^{2}D_{3}-4p^{2}P_{3}$	89	97	5		
	-	7139	68	00	-	F	3p' 4D,-3d' 4P.	56	09	2		
F	3p' 4D4-3d' 4F4	33	52	0	-	F	3p' 4D3d' 4P.	43	77	0		
F	3p' 4D3-3d' 4F3	25	49	0	-	F	3p' 4D3d' 4P.	36	31	1		
F	3p' 4D4-3d' 4F5	10	10			F	3p' 4D3d' 4P.	27	80	1		
1	3p' 4D2-3d' 4F2	19	40	2	-	F	3p' 4D3d' 4P.	23	13	õ	mil	
F	3p' 4D3-3d' 4F4	15	13	2	-	F	3p' 4D,-3d' 4P,	17	87	0		
D	$3p' {}^{4}D_{2} - 3d' {}^{4}F_{3}$	10	00		1.0	F.M	3s' 4P3p' 4S_	5662	51	4	2.49	3
r	3p' 4D1-3d' 4F2	12	36	1	-	FM	3s' 4P3p' 4S	48	08	3	8.11	0
F	3p' 4S2-3d' 4P3	7063	4	1u	-	FM	3s' 4P3p' 4S.	. 40	50	2	0.55	1
F	3p' 4S2-3d' 4P3	52	9	lu	_	F	3d' 4D,-4p' 4D.	5478	6	õ	0.00	1
F	3p'4S2-3d'4P1	45	8	Ou	_		3d'4F4n'4D. 1	5272	56	1		
F	3s' 4P3-3p' 4D2	6812	19	0	_		3d'4F-4p'4D	0212	00	1		
F,M	3s' 4P3-3p' 4D3	00	50	3	0.38 0	F	3d'4F-4p'4D.	59	62	3		
F	3s' 4Pa-3p' 4D1	6798	04	1	_		3d'4F-4n'4D.	57	36	9		
FM	3s' 4P3p' 4D.	91	30	3	1.34 0	P	3d' 4F-4n' 4D	53	55	1		
FM	3s' 4P,-3p' 4D,	87	09	2	7.12 0	F	$3d' {}^{4}F_{-} - 4p' {}^{4}D_{-}$	49	42	0		
FM	3s' 4P3p' 4D.	83	75	6	4.51 3	FM	3s'4P_3p'4P	5151	08	242	1 02	0
FM	3s' 4P,-3p' 4D.	80	27	2	0.47 1	FM	3s'4P = 3p'4P	45	16	5 Sur	5.19	0 5
FM	3s' 4P3p' 4D_	79	74	4	9.91 1	FM	3s' 4P - 3n' 4P	40	10	0	0.12	0
F	3p' 4D,-3d' 4D.	54	75	0		FM	3e'4P _ 3p'4P	20	90	1	0.40	0
F	3p' 4D,-3d' 4D,	50	22	2	_	FM	3e'4P3n'4P	. 00	00	0	7.01	1
F	3p' 4D3d' 4D_	42	05	0	_	FM	3e' 4P3n' 4P	22	20	0	0.21	0
F	3p' 4D,-3d' 4D,	38	36	1	_	FM	3e'4P = 3n'4P	20	20	2	0.20	0
-	3p' 4D,-3d' 4D, 1					1	05 11-0p 12	5191	60	0	2.90	0
E	3p' 4D3d' 4D.	33	56	0	-	1000	nex margina in	10	55	1		
F	3p' 4D3d' 4D_	30	79	0		1.7		10	07	1	1000	
	3p' 4D3d' 4D_1				anna i La	1 1	in Parileto avolutio	1961	90	1		
F	3p' 4D,-3d' 4D,	26	84	0	-		and and and and	4004	90	1	-	
		21	67	0	_		_	4010	50	207	-	
		07	00	0		1		11++	02	2	-	
F	3s2S3n2P.	6582	85	8	2)	100	ACTION AND AND AND	10	20	2	10.000	
F	$3s^2S_{-}3n^2P_{-}$	78	03	10	2)	- Charles	alta mini K. J	10	00	1	-	
		6949	00	10			mond all domin	4374	28	2	-	
	the set of the set	6115	91	0	_			12	49	1	-	
		60110	50	0	-	F	9.19D 469E	4007	09	$(1^{2})^{3})^{3}$	-	
		2003	60	0		F	2 J 2D 469E	4207	27	101)*)*)	-	
	a manage and a state	05	97	0		r	5d-D2-41-L3	107	02	8.)	-	
F	3d'4P-4n'48	5910	60	0	-		uter methodological	4074	89	1	-	
F	3d'4P _4p'49	14	00	0	Income		CITA	74	03	2	-	
F	$3d'_{4}P = 4p'_{4}S_{1}$	07	90	1	-		0117	10	30	3	-	
1	ou 13-46 -01	07	50	T		1 1	C II?	68	97	8	-	

¹) Diese Linien haben auch Merton u. Johnson [346]; sie geben: 6577.8 (4), 4371.35 (4), 4267.1 (2), 3920.69 (8), 3919.00 (7). — ²) Johnson [406] gibt für diese Linien: 6583.02 (1), 6578.16 (4), 4371.33 (4), 3920.77 (9), 3919.06 (8), 2992.6 (2), 2837.60 (9), 2836.71 (10), 2747.31 (3), 2746.50 (2). — ³) Diese Linien hat auch Ryde [510]. — ⁴) Wolf [472] mißt diese Linien: 4267.261 u. 4267.031 ± 0.1. Nach Bowen [519] kommt diese Linie in den Nebeln vor.

	Kombination		Fow Sel [5	ler u. wyn 25]			Kombination	160	Fowler u. Selwyn [525]	Hopfield u. Dieke[461]	Bowen [475, 566]
F	3p'4S_4s'4P	4021	13	0			4	2595	07 1u	-	-
F	3p'4S_4s'4P	17	27	1			-	92	00 2u	-	-
F	3p'4S4s'4P3	09	90	2		F	3d2D32-6f2F43	74	86 1u	-	-
	-	3980	35	2		F	2p' ² P ₂ -2p ^{3 2} D ₃	12	03 8	-	-
	-	52	08	1		F	$2 p'^2 P_2 - 2 p^{32} D_2$	11	71 4	-	-
F	$2p^{2}P_{2}-2s^{2}S_{1}$	20	677	$8^{1})^{2})$		F	$2p'^{2}P_{1}$ — $2p^{32}D_{2}$	09	11 7	-	-
F	$2p^{2}P_{1} - 2s^{2}S_{1}$	18	977	$(6^1)^2)$		F	$3p^{2}P_{2}-5s^{2}S_{1}$	2402	40 2	-	-
	8	3889	18	1		F	$3p^{2}P_{1} - 5s^{2}S_{1}$	01	77 1		-
	_	85	99	0				2191	37 2	-	-
		76	670	1			-	77	66 1	-	
	-	76	409	2		F	$3s^2S_1 - 4p^2P_1$	74	14 1	-	
		76	188	4		F	$3s^2S_1 - 4p^2P_2$	73	86 2	-	
	-	76	051	1				63	60 5	-	-
F	(3p'4D3-4s'4P2)	2500	87	0		F	$3p^{2}P_{2}$ — $5d^{2}D_{32}$	37	93 2	-	-
1	3p'4D2-4s'4P1	0000	01	-		F	$3p^{2}P_{1}-5d^{2}D_{2}$	37	45 1	-	140-1
F	3p'4D4-4s'4P3	89	67	4	1		-	1988	05? 1		- 4)
F	3p'4D1-4s'4P1	88	92	1		F	$2p'^{2}D_{2}$ - $3p^{2}P_{1}$	1760	85 2	-	0.85 1
F	$3p'^{4}D_{2}-4s'^{4}P_{2}$	87	68	2	120	F	$2p'^{2}D_{3}$ - $3p^{2}P_{2}$	60	44 3	-	0.44 2
F	$3p'^4D_1 - 4s'^4P_2$	85	83	2	5.	F	$2p^{2}P_{2}-2p'^{2}D_{3}$	1335	703 10	-	5.705 10
F	3p'4D ₃ -4s'4P ₃	84	98	1	1	F	$2p^{2}P_{1}$ — $2p'^{2}D_{2}$	34	541 10	-	4.539 10
	-	3361	75	1		F	$2 p' {}^{2}D_{32} - 2 p^{3} {}^{2}D_{32}$	23	96 7	-	-
	-	61	09	2		F	$2 p' {}^{2}D_{32} - 4 p {}^{2}P_{21}$	1141	61 2	-	1.61 2
	ACCORDED 2005	3167	95	3	1		-	1079		9.10	- 1
	1. C.	65	51	4			-	75	-	5.33	-
F	$3d^2D_3 - 5f^2F_{43}$	2992	63	$(4^2)^3)$			-	71	-0.0	1.75	1.8-1
	-	67	91	3				71	- 2.30	1.16	-
	-	67	31	2			-	68	- 2.12	8.09	-
	-	2885	47	2u			Torres 1	63	-	3.88	
F	$2p'^{2}S_{1} - 2p^{2}P_{1}$	37	602	$(8^2)^3)$	12	F	$2p^{2}P_{2}-2p'^{2}S_{1}$	37	021 7	-	7.021 6
F	$2p'^{2}S_{1}-2p^{2}P_{2}$	36	710	$(10^2)^3)$		F	$2p^{2}P_{1}-2p'^{2}S_{1}$	36	336 5	-	6.336 6
		01	36	2u		F	$2p'^4P_3 - 2p^{34}S_2$	10	382 3	-	0.382 6
F	3p'4S2-4d'4P3	2767	75	2	1	F	$2p'^4P_2$ - $2p^{34}S_2$	10	090 3	-	0.696 6
F	$3p'^{4}S_{2}-4d'^{4}P_{2}$	66	18	1	17	F	$2p'^4P_1 - 2p^{34}S_2$	09	870 5	-	9.870 5
F	$3p'^{4}S_{2}-4d'^{4}P_{1}$	65	27	0	1.1	F	$2p^{2}P_{2}-2p'^{2}P_{1}$	904	472 2	-	4.472 7%)
F	$2p^{2}P_{2}$ — $2d^{2}D_{1}$	47	31	6^{2})	1	F	$2p^{2}P_{2}-2p'^{2}P_{2}$	904	133 2	-	4.133 8
F	$2p^{2}P_{1}$ -2d ² D ₂	46	50	4^{2})		F	$2p^{2}P_{1}-2p'^{2}P_{1}$	903	960 2	-	3.960 8
	-	25	90	1		F	$2p^{2}P_{1}-2p'^{2}P_{2}$	903	620 2	-	3.620 7
	-	25	29	1		F	$2p^{2}P_{2}$ -3s^{2}S_{1}	858	561 1	-	8.561 6
	-	24	87	0		F	$2p^{2}P_{1}$ — $3s^{2}S_{1}$	858	088 0	100	8.088 5
	-	2641	44	3		B	b ⁴ P ₂ , 3-3s ⁴ P ₁ , 2	806	-	-	6.862 4
	-	40	93	1		B	b ⁴ P ₁ , 3-3s ⁴ P ₂ , 3	06	-	-	6.570 5
	-	40	58	2		B	$b^{4}P_{2}$ -3s^{4}P_{3}	06	-	-	6.400 5

¹) Diese Linien haben auch Merton u. Johnson [346]; sie geben: 6577.8 (4), 4371.35 (4), 4267,1 (2), 3920.69 (8), 3919.00 (7).

²) Johnson [406] gibt für diese Linien: 6583.02 (1), 6578.16 (4), 4371.33 (4), 3920.77 (9), 3919.06 (8), 2992,6 (2), 2837.60 (9), 2836.71 (10), 2747.31 (3), 2746.50 (2).

³) Diese Linien hat auch Ryde [510]. — ⁴) Von hier an λ vac.

⁵) Bowen u. Millikan [393] messen die 4 Linien: 904.48, 904.17, 903.98, 903.63.

	Kombination		Fowle Selw [52	er u. Tyn 5]	Hopfield u. Dieke [461]	,Bowe [475, 5	n 66]
F	$2p^{2}P_{2}$ 3d ² D ₃	687	351	5		7.351	5
F	$2 p^2 P_1 - 3 d^2 D_2$	87	053	5	-	7.053	5
В	$b^{4}P$ -3 $d^{4}D$	51	-			1.36	4
В	b4P2, 3, 3-3d4P3, 2, 3	41	-		-	1.84	3
В	b4P1, 1, 2-3d4P1, 2, 1	41	-		-	1.62	2
F	$2p^{2}P_{21}$ — $4s^{2}S_{1}$	36	2	2		1.11 A2	
F	$2p^{2}P_{2}$ -4d ² D ₃	595	02	2	-	5.02	2
F	$2p^{2}P_{1}$ — $4d^{2}D_{2}$	94	79	2	(4.79	2
F	$2p^{2}P_{21}$ — $5d^{2}D_{32}$	60	5	2	-	-	
F	$2 p {}^{2}P_{21} - 6 d {}^{2}D_{32}$	43	4	1	-	-	
F	$2 p {}^{2}P_{21}$ — $7 d {}^{2}D_{32}$	33	5	1	-	-	

Tabelle 2a. Terme von C II [525].

$\begin{array}{cccccccc} 2p\ ^{2}P_{1} & 196659 \\ \ ^{2}P_{2} & 196595 \\ 3p\ ^{2}P_{1} & 64934.32 \\ \ ^{2}P_{2} & 64923.19 \\ 4p\ ^{2}P_{1} & 34140.30 \\ \ ^{2}P_{2} & 34134.38 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 3d^2D_2 & 51109.01 \\ &^2D_3 & 51107.56 \\ 4d^2D_2 & 28535.08 \\ &^2D_3 & 28534.67 \\ 5d^2D_3 & 18164.2 \\ 6d^2D_{23} & [12558] \\ 7d^2D_{23} & [9193] \end{array}$	$\begin{array}{cccccccc} 4f^2F'_{34} & 27679.95 \\ 5f^2F'_{34} & 17702.54 \\ 6f^2F_{34} & 12282.80 \\ & $
2p' ⁴ P ₁ 145170 —	$^{2}S_{1}$ 100164.9 —	${}^{2}P_{1}$ 86033.9 ${}^{2}P_{2}$ 85992.7	${}^{2}D_{3}$ 121728.1 ${}^{2}D_{2}$ 121726.9
3s' ⁴ P ₁ 82850.00		-1	en and rank
$^{4}P_{2}$ 82781.27	-		-
3p' 4S ₂ 65126.01	⁴ P ₁ 63389.68	⁴ D ₁ 68120.20	
-	⁴ P ₂ 63373.38	⁴ D ₂ 68105.50	_
_	⁴ P ₃ 63350.95	⁴ D ₃ 68080.49	
-	-	${}^{4}D_{3}$ 68044.22	-
4d' 4P. 50972.7	4D, 53258.5	4F. 54063.9	
⁴ P. 50951.2	⁴ D _a 53252.9	4F. 54049.6	1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
⁴ P, 50937.0	⁴ D ₂ 53244.2	⁴ F, 54030.0	and the seal
	⁴ D ₄ 53233.9	⁴ F ₅ 54002.4	
4s' ⁴ P ₁ 40264.44	a and the states that		_
⁴ P ₂ 40240.42	_	_	
⁴ P ₃ 40194.34	-	-	
4p' ⁴ S ₂ 34049.1	⁴ P [33100]	⁴ D ₁ 35056.4	-
-		⁴ D ₂ 35042.1	-
-	-	⁴ D ₃ 35020.1	-
-	-	$^{4}D_{4}$ 34986.7	-
4 d' 4P ₃ 29006.23	_		
⁴ P ₂ 28985.73	-	-	-
⁴ P ₁ 28973.83	-	-	
2n348 \ 46200	2P [95500]	2D 46196 9	
		² D, 46191.1	
		1.5 1010111	and where a little set of the little set

282
Tabelle 3. C III.

Kombination		Edlén [714]	Bowen u. Millikan [394]	Bowen [703]
2s 2d ¹ D-2p 3d ¹ D	5827	2 0		-
(B) 2s 3p ¹ P—2s 3d ¹ D	5695	8 5	-	7.6 4
$2p 3s^{3}P_{2}$ — $2p 3p^{3}S_{1}$	5272	6 2	-	-
³ P ₁ ³ S ₁	53	6 1	-	
41D-51P1	49	7 0	-	-
³ P ₀ - ³ S ₁	44	7 0	-	-
$2p 3s^{3}P_{2}$ — $2p 3p^{3}P_{1}$	4673	91 4	201-2 -04	17 A 22 (+++
${}^{3}P_{2} - {}^{3}P_{2}$	65	90 5	E C	-
³ P ₁ ³ P ₀	. 63	53 3	-	
(B) 2s 3s ³ S2s 3p ³ P ₀	51	35 8	2.65 1	2.65 1
(B) $2s 3s^3S - 2s 3p^3P_1$	50	16 9	1.46 2	1.46 2
(B) 2s 3s ³ S—2s 3p ³ P ₂	47	40 10	8.70 3	8.70 31)
	4593	47 10		-
A BERGER - Present	16	69 3d	A STATE OF	
and an approximation of the	4588	24 1		1.5 1.5
2 Ontonia alegatication of the	65	14 30	T	
0= 2=1D 0= 2=1D	95	70 7		and the second second
2p 3s ⁴ P-2p 3p ⁴ P	4947	56 1		
2p 3p-10-2s 5p-P	4187	05 10	20.00 - 100	-
4-1-0-0 9n 2n3D - 9a 543F	4162	80 4	11110 - 1121	-
3D_3F	56	50 3	anne - m	-
³ D ₂ - ³ F ₃	52	43 2	_	-
41P-51D	22	05 3	19901 19	
4°F,-5°G,	4070	43 8	Then a start	Salar-S
³ F ₂ - ³ G,	68	94 7	14768 ITT	
³ F ₂ -3G ₃	67	87 6	Trate - Ha	-
2s 4d ¹ D-2p 3d ¹ P	56	06 4		-
$4^{3}D_{3}-5^{3}F_{4}$	3889	08 3	12 m + 194	
³ D ₂ ³ F ₃	85	86 2		-
³ D ₁ ³ F ₂	83	68 1		-
4 1114 m - 14	3703	52 0	-	-
4 ³ P—5 ³ D	3609	40 5d		-
$2s 4s^{3}S_{1}$ — $2p 3 d^{3}P_{2}$	3262	23 1	-	-
³ S ₁ — ³ P ₁	59	44 0	-	-
³ S ₁ — ³ P ₀	57	90 0	14-1-1	-
41S-51P	3170	16 1d	-	
2s 3d ¹ P-2p 3s ¹ P	2982	22 4		
	2874	69 1d		100
2p 3s ¹ P-2p 3p ¹ S	49	90 1d		
4 ⁴ F6 ⁴ G	2///	11 11		
4°r ₄ —6°G ₅	9616	66 1		
$2s 3d^{\circ}D_1 - 2p 3s^{\circ}P_0$	14	50 2	The state is	_
3D 3P	14	02 3		_
43P_63D	2480	76 0d		_
11-01			A CONTRACTOR AND A	

¹) Bowen [519] gibt λ 4649,2. Diese Linie kommt in den Nebeln vor.

Kombination		Edlén [714]	Bowen u. Millikan [394]	Bowen [703]
(B) 2s 2p ¹ P—2p 2p ¹ D	2296	89 15	7.59 10	7.59 10
	30	-	0.98 7	
$3^{1}D-4^{1}F$	2162	96 4		
$3^{3}D-4^{3}P$	2092	7 0d		_ 1)
$4^{3}P_{2}$ $4^{3}S_{1}$	10	76 1	-	_
³ P ₁ — ³ S ₁	10	25 0	-	-
		λ vac.	34.1.92	1.1.1.1
(B) 2s 3d ³ D—2s 4f ³ F	1923	34 1	3.3 d	3.33 3 2)
³ D ₂ ³ F ₃	23	18 2	1	
(B) 2s 3d ³ D—2s 4f ³ F	23	01 2	1 100	2.98 4
2s 3d ¹ D-2p 3d ¹ F	1779	12 0	Stat _ Ma	
2s 2p ¹ P-2p 3p ¹ D	1645	06 1	al fait - and the	CAR (ALL
3 P ₀ -4 ³ D ₁	20	67 1	1991-22-105	
(B) $2s 3p^{3}P_{2}$ — $2s 4d^{3}D$	20	33 1	_	0.62 4
(B) 2s 3p ³ P _{1,0} —2s 4d ³ D	20	05 2		9.98 4
2s 3s ¹ S-2p 3s ¹ P	1591	48 1	_	_ 14
(B) 2s 3s ³ S—2p 3s ³ P ₀	77	90 0		7.95 2
(B) 2s 3s ³ S—2p 3s ³ P ₁	77	28 0	_	7.28 2
(B) 2s 3s ³ S—2p 3s ³ P ₂	76	49 1	1946-194	6.48 3
(B) 2s 3p ¹ P—2s 4d ¹ D	31	85 0	97-12-11-1	1.74 2
(B) 2s 3p ³ P—2p 3p ³ S	1480			0.03 1
(B) 2s 3d ³ D—2p 3d ³ D ₃	78	19 0	1999 (CP	8.21 2
(B) 2s 3d ³ D-2p 3d ³ D _{2, 1}	77	68 1		7.70 3
(B) 2s 3p ³ P _{2, 1} —2p 3p ³ P _{1, 0}	28	55 0		8.56 2
(B) $2s 3p^{3}P_{1,0}$ — $2p 3p^{3}P_{1}$	28	18 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8.23 2
(B) 2s 3p ³ P _{1, 2} —2p 3p ³ P ₂	27	85 1	12-11	7.89 4
(B) 2s 3d ³ D—2p 3d ³ P	26	45 1		6.50 4
(B) 2p 2p ¹ S—2s 3p ¹ P	1308			8.75 2
$3^{3}D-5^{3}F$	1296 .	34 0	SILE	_
(B) 2s 2p ¹ P—2p 2p ¹ S	47	373 8		7.391 6
(B) $2s 2p^{3}P_{2}$ — $2p 2p^{3}P_{1}$	1176	348 7	6.40	6.359 9
(B) $2s 2p^{3}P_{1}$ — $2p 2p^{3}P_{0}$	75	972 6	6.03	5.988 8
(B) $2s 2p^{3}P_{2}$ — $2p 2p^{3}P_{2}$	75	700 8	5.72	5.711 9
(B) $2s 2p^{3}P_{1}$ — $2p 2p^{3}P_{1}$	75	577 5	5.63	5.577 3
(B) $2s 2p^{3}P_{0}$ — $2p 2p^{3}P_{1}$	75	246 6	5.31	5.261 8
(B) $2s 2p^{3}P_{1}$ — $2p 2p^{3}P_{2}$	74	926 7	4.96	4.922 9
(B) 2s 2s ¹ S—2s 2p ¹ P	977	026 10	7.02	7.031 10
(B) 2p 2p ¹ D—2s 3p ¹ P	884	516 4	112211	4.52 2
(B) 2p 2p ³ P ₂ -3s 3p ³ P ₂	818	-	5 25 -2 -311	8.18 0
2p 2p ¹ S-2p 3s ¹ P	784	41 0	_	_
21P-31S	690	526 4	191- 31%	
(B) 2p 2p ³ P _{2,1} —2p 3s ³ P _{2,1,0}	609	283 3		0.29 4

¹) Von Fowler u. Selwyn [525] werden noch folgende Linien gegeben. λ_{Luft} : 2092.40 (4)?, 2016.92 (1d?)?, 2010.18 (5)?, 2009.67 (4)?, λ_{vac} : 1979.79 (3)?, 1979.35 (4)?, 1923.52 (4d?), 1923.13(5), 1894.49 (2).

²) Bowen und Millikan geben hier eine Linie λ 1931, die aber nach Ryde [510] und nach Fowler u. Selwyn [524] zu CI gehört. Dafür gibt Fowler [525]: λ 1923.52 (4d?) und λ 1923.13 (3) als C III.

Kohlenstoff

Kombination		Edlén [714]	Ericson u. Edlén [646]	Bowen [703]
(B) $2p 2p^{3}P_{10}$ — $2p 3s^{3}P_{21}$	609	l' _	_	9.00 3
$2p 2p^{3}P_{2}$ — $2p 3s^{3}P_{1}$ $^{3}P_{2}$ — $^{3}P_{2}$	585	644 3u		
³ P ₁ - ³ P ₁	585	488 2		_
$\left \begin{array}{c} {}^{3}P_{2} - {}^{3}P_{2} \\ {}^{3}P_{0} - {}^{3}P_{1} \end{array} \right $	585	427 4	-	14/10
³ P ₁ -3P ₂	. 585	261 3	916 - AM	_
(B) 2s 2p ¹ P-2s 3d ¹ D	574	279 7	4.266	4.287 5
2p 2p ¹ D-2s 4p ¹ P	566	496 2		-
2p 2p ¹ D-2s 4f ¹ F	565	533. 3	44.8	
(B) 2s 2p ³ P ₂ —2s 3s ³ S	538	312 9	8.306	8.318 7
(B) 2s 2p ³ P _{1,0} —2s 3s ³ S	538	148 8	8.148	8.108 7
³ P ₀ — ³ S ₁	538	079 7	- 10	— ¹)
2p 2p ¹ D-2p 3d ¹ F	535	293 4	0161 116	
2p 2p ¹ D-3p 3d ¹ D	511	527 5	1.501	-
$-2p 2p^{3}P_{2}$ - $2p 3d^{3}D_{3}$	499	532 4	9.515	- 2
(B) 2p 2p ³ P—2p 3d ³ D	499	449 4	0.0012-003	9.493 5
(B) 2p 2p ³ P-2p 3d ³ P	493	577 3		3.49 4
$3P_1 - 3P_0$ $3P_0 - 3P_1$	493	353 2		-
2p 2p ¹ D-2p 3d ¹ P	492	652 3	19901 - 1978	-
21P-41S	477	63 1	1.	
2s 2p ¹ P-2p 3p ¹ D	460	053 4	192mil	
(B) 2s 2p ³ P ₂ -2s 3d ³ D	459	633 10	9.600	9.643 71)
(B) 2s 2p ³ P _{1.0} —2s 3d ³ D	459	521 9	9.472	9.532 7
³ P ₀ — ³ D ₁	459	465 8	10 1 mai 200	_
(B) 2s 2p ¹ P—2s 4d ¹ D	450	732 5	10-10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	0.74 3
2s 2p ¹ P-2p 3p ¹ P	433	337 4	1990 - 199	_
2p 2p ¹ D-2p 4d ¹ F	416	76 1		-
2s 2p ¹ P-2p 3p ¹ S	411	95	1964	- 22
(B) 2s 2p ¹ P-2s 5d ¹ D	409	334 3		9.30 2
(B) 2p 2p ³ P-2p 4d ³ D	399	670 3d	9.69	9.71 3
(B) 2p 2p ³ P—2p 4d ³ P	397	amile <u>sur</u> ara	1000 <u>- 10</u> 100	7.85 0
$2^{1}P-6^{1}D$	390	06 1	zacest_cine [proprint [3402
(B) 2s 2p ³ P—2s 4s ³ S	389	098 3	9.09	9.05 5
${}^{3}P_{1} - {}^{3}S_{1}$ ${}^{3}P_{0} - {}^{3}S_{1}$	389	005 3	8.96	rtebien 1550
(B) 2s 2s ¹ S—2s 3p ¹ P	386	203 6	6.20	6.20 5
2 P-71D	379	25 0d	the second second	Company Davis
2p 2p ¹ D-3p 5d ¹ F	879	06 0	mix sidunce	stand
(B) 2s 2p ³ P-2s 4d ³ D	371	743 4	1.727	1.73 5
$^{3}P_{1}$ $-^{3}D_{2}$	371	691 4	diamon my	and the state
(B) $2s 2p^{3}P - 2n 3p^{3}D$	369	415 3d	A CONCEPTION	9.40 2
(B) $2p 2p^{3}P - 2p 5d^{3}D$	366	177 24	L) my for	6.15 1
(B) $2s 2n^3P - 2n 3n^3S$	363	864 3	man	3.81 2
³ P.— ³ S.)	000		11 15 15	A DOWN
¹ ¹ ³ P ₀ - ³ S ₁	363	783 3	land the tree	-

¹) Millikan u. Bowen [394] geben 538.4 und 459.7.

Kohlenstoff

Kombination	Kombination		Ericson u. Edlén [646]	Bowen [703]	
$2s 2p^{3}P_{2}$ -2p $3p^{3}P_{1}$	360	672 1	19743	9999 -7 97	
$\begin{array}{c} {}^{3}P_{1} - {}^{3}P_{0} \\ {}^{3}P_{2} - {}^{3}P_{2} \\ {}^{3}P_{-} - {}^{3}P_{-} \end{array}$	360	623 3	0.623	0.59 4	
(B) $2s 2p^{3}P - 2p 3p^{3}P$	360	561 2	1		
$2s 2p^{1}P - 2p 4p^{1}D$	358	78 1	1 1 1 1 1 1 1	1.1	
$2s 2p^1P$ — $2p 4p^1P$	352	98 1			
2p 2p ³ P-2p 6d ³ D	350	31 1d	mains in the	-	
2 ³ P5 ³ S.	347	82 1	want _ walk		
³ P ₀ , ³ S ₁	347	76 1	3432 - 034	_	
2 ³ P ₉ -5 ³ D	341	242 3)	Des a la serie		
(B) 2s 2p ³ P-2s 5d ³ D	341	163 2	1.200	1.14 3	
23P-63S	330	68 1d	_	_	
(B) 2s 2p ³ P-2p 6d ³ D	327	154 4d	1000-000	7.12 1	
2s 2p ¹ P-2p 5p ¹ P	325	55 0d	010-010		
2s 2s ¹ S-2p 3s ¹ P ₂	322	575 4	2.561	_	
(B) 2p 2p ³ P-2s 7 d ³ D	319	30 2d		9.24 0	
23P-83D	314	40 1d	12.00 - 00	_	
$2^{1}S-4^{1}P$	310	178 4	1 1 1 1 1 1 1	_	
2s 2p ³ P-2p 4p ³ D	303	439 3u	-		
2s 2p ³ P-2p 4p ³ P	301	251 3u	1700 mm - 194	_	
21S -51P	291	330 3		0.00	
2s 2p ³ P-2p 5p ³ D	281	39 1	_		
2s 2p ³ P-2p 5p ³ P	280	52 1d	000-0-00	eld market	
21S-61P	280	03 2		_	
21S_71P	274	06 1d	_	_	
2s 2p ³ P-2p 6p ³ D	271	02 0	12/16	11111	
2s 2p ³ P-2p 6p ³ P	270	61 0	Trat	_	
21S-81P	270	33 0d	101	_	
2s 2s ¹ S-2p 4s ¹ P	263	83 0d	R	-	

C III. Auch dies Spektrum ist allmählich aufgeklärt worden. Bowen und Millikan [394] bringen zuerst eine Liste von 13 eingeordneten Linien, zwischen λ 4652 und λ 459. Daran schließen sich Angaben von Ericson und Edlén [641, 646], welche zwischen λ 574 und λ 322 weitere 13 Linien einordnen. Dazu kommen noch 9 Linien, welche Fowler [525] als C III gemessen, aber nicht eingeordnet hat. — Bowen und Ingram [427] finden, daß das Multiplett bei λ 1175 in Wahrheit aus 6 Linien besteht, was eine schöne Photographie von Ekefors [644] bestätigt. In einer weiteren Arbeit gibt Bowen [703] die Klassifikation von 54 Linien von C III. Eine große Zahl dieser Linien rühren von Termübergängen her, bei welchen beide Valenzelektroden angeregt sind. Das Ionisationspotential, das aus dieser Klassifikation errechnet wird, beträgt 47,7 Volt. Auch von C II werden einige Kombonationen angegeben. Die Analyse sichert die relative Lage der Singuletts und Tripletts in C III und der Dubletts und Quartetts in C II.

Mihul [501] findet vom ionisierten C III das schon bekannte Triplett $\lambda\lambda$ 4649 — 4651—4653 und eine ³D³D'-Kombination bei λ 5145.12; 5133.25; 5151.03; 5139.12;

5132.90; 5143.43; 5137.21, die mit einer starken, in einigen Wolf-Rayet-Sternen festgehaltenen Liniengruppe unbekannten Ursprungs identisch sein soll.

Nachdem Edlén und Stenman [643] mitgeteilt, sie hätten noch über 50 Linien eingeordnet, gibt Edlén [714] ein langes Verzeichnis von Tripletts, Singuletts — für sie siehe auch [713] — und nicht eingeordneten Linien, so daß das ganze Spektrum jetzt etwa 150 Linien enthält. Tabelle 3 a gibt die Termwerte von C III nach [714].

	Tabelle 3:	a. Normale Trij	pletterme von C	III [714].	
3°S	147999.0	4 ³ P	68415	53D	40717
™ 4 ³ S	76755.2			6°D	28117
5°S	46259.9	5°G	39634.3	73D	20608
63S	31386	63G	27523.4	83D	15727
23P0	333844.6	83D1	116203.2	$4^{3}F_{2}$	64210.3
23P1	333820.9	$3^{3}D_{2}$	116200.4	$4^{3}F_{3}$	64203.8
$2^{3}P_{2}$	333764.9	$3^{3}D_{3}$	116197.3	$4^{3}F_{4}$	64194.8
33P0	126505.9	$4^{3}D_{1}$	64803.0	5^3F_2	39061.5
33P1	126500.4	$4^{3}D_{2}$	64784.6	5^3F_3	39057.6
$3^{3}P_{2}$	126487.6	$4^{3}D_{3}$	64761.1	$5^{3}F_{4}$	39055.3
	Ver	schobene Triplet	terme in C III	[714].	
2p 2p Po	248784.9	2p 4p P	1844	2p 3d P0	46069.4
P1	248756.0	D	4237	P ₁	46083.9
P_2	248709.2	and and		P_2	46110.2
	1	2p 5p P	22688	0. 24 D	19540 7
2p 3p S ₁	58934.2	D	21586	2p 3d D ₁₂ D ₃	48524.7
2p 3p Po	56526.6	2p 6p P	35743	$2p 3d F_2$	52827.8
P ₁	56505.5	D	35184	Fa	52800.1
P_2	56468.8			F_4	52765.2
		2p 3s P0	77997.9	0- 110	1479
2p 3p D1	63137.0	P ₁	77963.6	2p 4d D	1473
D_2	63109.5	P ₂	77894.9	2p 5d D	24359
D_3	63070.8			2n 6d D	36728
				ap ou p	00120
	Ne	ormale Singulette	erme in C III [(14].	
$2^{1}S$	386159.7	5 ¹ P	42904.0	61D	27437.5
$3^{1}S$	138991.2	61P	29055.1	71D	20130
$4^{1}S$	74439.0	71P	21276	1	
		81P	16242	41F	63458.1
$2^{1}P$	283808.3				
31P	127228.4	31D	109676.5	51G	39581.7
41P	63762.2	41D	61947.7	61G	27470.3
		51D	39509.3		
	Vers	schobene Singule	tterme in C III	[714].	
2p2pS	203639.8	2p 4p P	506	2p 3d P	37300.2
D	240284.6	D	5047	D	44791.5
2p 3p 8	41065.5	2p 5p P	23364	F	53470.0
P	53043.0	2p 3s P	76154.2	2p 4d F	338
D	66440.3	2p4s P	7128	2p 5d F	23526

C IV und C V. Für diese Spektren sind nur die allerersten Anfänge bekannt. Für C IV geben Bowen und Millikan [380] 4 Linien, Edlén und Ericson [641, 646] deren 21. Edlén und Stenman [643] fügen noch eine Anzahl Linien bei längeren Wellen hinzu. Für C V endlich gibt Kellner [495] den Grundterm und Edlén [712] eine Linie: $\lambda = 40.28$. Tabelle 4 a gibt das Termsystem von C IV nach [643].

ER.		Edlé Sten [6	n u. mann 43]				Millikan u. Bowen [380]	Edle u. Eri [641,	én cson 646]
32S1-32P1	5812	14	3	1100	22S-22P1	1550	84 4	0.774	4 ¹)
32S1-32Pa	01	51	4		22S-22Pa	48	26 4	8.189	51)
52G-62H	4658	64	5	1.02736	22D-42F	1168	10200	8.84	1
5 ² P-6 ² D	4441	65	1	1.000	22Pg-32S	419	8 1	9.724	7
42Pa-52S1	2698	77	3	10.50.50	22P1-32S	419	1.197-0	9.520	6
$4^{2}P_{1} - 5^{2}S_{1}$	97	82	2		22Pa-32D	384	4 2	4.174	10
42D-52P	2595	15	2	0.039	22P1-32D	384	1 100000	4.020	8
42F-52G	29	97	10	18383	22S-32P	312	1000000	2.426	8
42D-52F	24	40	8	1.000	$2^{2}P-4^{2}S$	296	1.58144	6.930	2
4ºPa-5ºDa, a	2405	20	4		$2^{2}P_{a}-4^{2}D$	289		9.226	4
42P1-52Da	04	48	3		$2^{2}P_{4}-4^{2}D$.289	-	9.125	3
		17			$2^{2}P-5^{2}S$	262	_	2.62	1
				1.185	$2^{2}P_{5^{2}D}$	259		9.520	3
	a his				$2^{2}P-6^{2}S$	247	and the second	7.33	0
	mein	10		1100	2 ² P-6 ² D	245		5.78	1
					$2^{2}S-4^{2}P$	244		4.912	5
	120				$2^{2}P_{9^{2}D}$	230	- 1	0.53	0
	160	12			$2^{2}S-5^{2}P$	222	_	2.805	2
				1 Activ	22S-62P	212		2.44	1
	1			1.500	22S-72P	206	-	6.67	0
				1.11	22S-82P	203	-	3.04	

Tabelle 4. CIV.

Tabelle 4a. Termsystem von C IV [643].

n	2	3	4	5	6
2S1/	520187.2	217339.7	118869.8	74805.5	[51390.7]
² P _{1/2}	455703.3	200139.1	111861.5	1 71818.9	[49396.8]
2Pa/.	455596.6	200107.6	111848.4	J 11010.0	[40000.0]
2Da/, 5/,	als (rents	195298.6	109835.9	[70284.8]	48806.0
2Fs/ 7/	hit on Landia	and by- safeth	109743.7	[70234.5]	48773.3
2G7/. 9/			-	70229.4	48770.3
2Ho/ 11/	-	_		-	48769.9
16 R _c /n ²	438928.8	195079.4	109732.2	70228.6	48769.9

Mit den eingeordneten oder wenigstens bestimmten Ionisationsstufen zugeschriebenen Linien ist aber noch lange nicht das gesamte Beobachtungsmaterial erschöpft. Namentlich der kurzwellige Teil, das Schumanngebiet, enthält noch zahlreiche Linien. Alle diese Messungen von Simeon, Millikan, Hutchinson, Lang usw.

¹⁾ λ von Bowen u. Ingram [427]

	and and do not
l'abelle d. U Kurze Wellenia	ngen.

		Simeon	Millikan	Hut- chin-	Lang	Hop- field u.	Bowen u.	Smith u.	Hoag	Bowen	Edlén u. Eric-
		19551	[970]	son	[971]	Leifson	Ingram	Laird	[407]	[475]	son
-		[300]	[5(3]	[343]	[3/1]	[540]	[427]	[468]	[487]	[475]	[641]
II	2512	44 3	-	-	-	-	-	-	-	-	- 1
II	09	47 2		-	-	-	-	-	-	-	-
I	2479	05 4	-	-	-	-	-	-	-	-	-
III	2297	14 2	-	7.60 5	-	-	-	-	-	7.59 10	-
	2026	-	6.1 1	-	-	-	-	-	-	-	-
1?	1993	-	3.0	-	-	-	-	-	-	-	-
I	30	61 5	1.1 7	0.8 6	-	-	1.027 4	-	-	0.88 7	-
	10	-	0.2 0	-	-	-		-	-	-	1)
	1859	-	-	0.7 4	9.0 1	-	1.57	-	-	TA	-
I	13	-	-	-	3.8	-		-	-	100	-
	07	7? 1	-	-	-	-	INTO:	-	-		-
II	1760	6 2	-	-	0.3 2	-	-	-	-	0.85 1 0.44 2	-
Ι	51	8 2	2.3 2	2.1 1	2.1 1		-	-	-	-	-
	1694	-	-	-	4.4 1	-	-	-	-	-	-
I	57	86 8	7.6 5	7.4 6	7.4 3	-	14	-	8.02 2	8.13 2 7.92 1	_
Ι	57	20 8			_	-	-	-	7.19 4	7.37 2	_
Ι	56	81 8	_	-		-	-	-	-	7.01 3	_
I	56	12 8		-	-	-	1-		6.27 2	6.27 2	_
	24	-	4.3? 1	4.1 0	-	-	-	-	3.83? 1	-	-
1	15	-	5.6 1	-	-	-	-	-	4.47? 4	-	-
	1590	-	· _	-	0.9	-	-	-	_	-	-
	77	-	7.6 1	-	7.6	-	-	-	-	-	-
I	61	32 9	1.3 5	1.2 6	1.3 30	-	1.378 3	1.46	1.381 5	1.381	-
I	60	67 9	-	-	-	-	0.660 3	0.71	0.463 4	0.660	-10
I	60	16 9	-	-		-	$0.257\ 2$	0.33	-	0.267	
IV	50	8 2	0.9 3	1.1 3	0.9	-	0.744 4	0.80	0.774 5	- 0	0.7
IV	48	3 3	8.8 4	8.5 3	7.9 30	-	8.189 5	8.22	8.185 6	-	8.1
	32		3.1 0	-	2.2 1		-	-	-	-	-
1.1	1491	-	-	-	1.5? 1	-	-	-		-	-
	81	7 3	2.1 1	2.2 1	-	-	-	-	-	- 8	-
1?	67	4 2	-	-		-	-	-			-
I	63	3 4	3.7 2	3.7 3	3.4? 1	-	-	-	3.67 1	-	-
	59	1 2	-	-	9.0 1	-	-	-	-	-	-
1	31	6 2	2.2 1	2.2 2	1.8? 1	-			1.8 2	-	-10
	26	-	6.9 1	-	6.5 1	-	-	-	-	-	-
	1415		-	-	0.0 1	T	-	-	T	-	-
	1379	-	-	-	9.07 3	-	-		-	-	-
1	69	1915	200.25	-	9.1? 1	S TO	-	T	1 1 1	1	TI
	62		2.6 Ca ? 5	2.8 2	012 1	-	-		- 1		-
TT	00	00 10	5.0 15	55.0	5.9 00	5.05	5 709 5	5.70	5 705 10	-	-
II	30	00 10	5.0 15	0.0 8	5.5 60	0.70	0.103 0	0.70	0.705 10	5.705 10	-
11	34	44 10	-	UNTER D		4.07	4.041 0	4.01	4.539 10	4.539 10	-

¹) Hier liegt nach Fowler und Selwyn [525] eine Doppellinie 1923.52 (4d?), 1923.13 (5), die zu C III gehört.

Kayser u. Konen, Spektroskopie. VIII.

		Simeon	Millikan	Hut- chin-	Lang	Hop- field u.	Bowen u.	Smith u.	Hoag	Bowen	Edlén u. Eric-
		[315]	[379]	son [343]	[371]	Leifson [340]	Ingram [427]	Laird [468]	[487]	[475]	son [641]
I	29	60 8	-	9.7 4	9.2 10	-	10-10	9.60	9.204 3		-
I	29	07 8	-	7.3 0	-	-		9.12	-	-	-
	23	79 7	3.7 7	4.3 5	3.1 30	3.86	-	3.93	3.84 4	-	-
1?	22		2.3 2	1.8 0	-	-	-	-	-	-	-
	11	-	-	-	1.0	-	-	-	-	-	-
	09	1 2	10.5 1	-	8.5 1	-	-	-	-	-	-
	02	-	-	3.1 3	2.4 1	-	-	-	-		-
	1298	8 1	9.2? 3	-	-	-	-	-	-	-	-
1?	96	-	6.8 2	-	6.6 1	-	-	-	-	-	-
1.1	94	-	4.9? 2	-	-	-	-	-	-	-	T
	80	3 2		0.9 3	0.4? 1	-	-	-	-	-	-
11	77	32 4	8.7 5	7.9 4	7.0? 2	7.19	1001 0	-	-	-	-
	74	3 2	-	2.9 0	4.0 1	T	4.391 2	-	-	-	-
1	68	-	-	8.6 0	8.9 1	-	-				-
	64	6 1		5.2 0	4.2? 1	-			-	-	-
1	61	21 3	2.4 0	1.8 4	1.1	-	T		-		T
1	60	48 3			7 4 90	-		7.07	7 901		
	47	2 3	1.0 1	1.9 0	1.4 30		100	1.01	1.591	-	-
	30	100	0.2 2	0.7 0	11 1	T	-		-	a net de	T
	21	01 0	-		1.1 1	T	A TON				T
	09	94 2	0020	e 0 1	0.0r 1 85 1	T	T			Tim	T
	1100	4 1	0.07 0	0.0 1	0.0 1		0.0		18.6	T	T
	1192	4 1	11 0	11 0	11 1	T			1.		T
	09	4 1	4.1 0	4.1 4	4.4 1		101			1	M.F.
	00	2 1		01.9				-	0.5		T
	30	01 1	Sec. Ch	0.1 2	St. E.	The	16 259 2	16.26	2.5	(6.40 A	Tri
III	76	08 7		6.0 8	-	-	5.988 3	15.98	-	6.03 4	-
III	75	56 7	5.6 15	-	5.7 50	-	5.711 4 5.577 2	5.66	5.644 10	5.72 5 5.31 4	-
ш	74	74 7	-	-	-	-	5.261 3 4.922 3	5.25 4.92	-	4.96 4	-
IV	68	-	-	-	-	-	-	-	-	_	8.84 1
	48		-	6.4 0	8.7 1	-	-	-	-	-	-
II	41	-	1.5 4	2.3 5	1.7 1	-	-	-	1.61 1	1.61 2	-
	37	_	7.4 3	9.8 3	8.0? 1	-	-	-	-	[7.021 6	-
	1001		96 9	1.1	18 1	-		3.2.17		10.000 0	
	70		2.0 0		0.0 1			_			
	10			165 5	0.0 1		The s	_			N.T.
	66	3 1	6.0 8	4.0 0	6.2 10	-				-	-
II	36	84 5	6.7 12	7.2 8	6.8 5	7.03	7.018 2	7.03	-	7.021 6	-
II	36	22 5	-	-	-	6.33	6.339 2	6.33	-	6.336 7	-
	22	-	2.8 1	-	-	-	-	-	-	-	-
	14	-	-	-	4.2? 1	-	-	-	-	-	-
IT	10	09 4	0.2 10	0.7 7	0.3 50	_	0.383 1	0.38	_	0.382 6	-
							10.095 1	10.08	101mg og	10.090 6	CSW.
	09	-	-	-	-	-	9.863 1	-	-	9.870 5	-
III	976	7 8	7.1 12	7.4 3	7.0 50	-	7.031 5	-		7.02 12	

		Simeon [355]	Millikan [379]	Hut- chinson [343]	Lang [371]	Smith u. Laird [468]	Hoag	Bowen
				[0.0]	[out]	[[aoo]	[aci]	Fatol
6.00%	966	-	6.6 0	1. 411		-	-	12
	60	-	0.6 0	-		-	<u> </u>	_
	54	-	4.4 0	-	-	_		-
	45	0 5	5.6 4	6.1 2	5.6 1	-	_	-
-	37	3 1	6.4 1	-	7.3 1	-	_	The second
	19	-	-	-	9.3 1	-	-	-
	. 15			-	5.8N?1	- 1	-	
Species		1. Sim Ten	in the second	In an Ten	14. J. 1984	[4.47	no los a	4.472 7
п	03	7 8	4.1.10	45 8	4.0 50	4.17	1040 15	4.133 8
**	00		4.1 10	4.0 0	4.0 50	3	4.040 10	3.960 8
			freed to be	1		3.62		3.620 7
	884	2 1	4.8 1		4.7 1	-	4.60 2	
	69	-	-	-	9.4 1	-	-	
	66	4 1	-		-	-	-	-
loning	64	5 1	-	-	-	-	-	-
п	58	2 7	8.5 5	_	8.4 40	_	10	J8.561 6
			0.00					8.088 5
	48	5 2	8.4 0	-	8.4 1	-	-	-
	43	-		-	3.9 1	-	-	-
1	40	6? 1	-	-	-	-	-	the the sure
1. 3	34	0? 1	-	-	2-	-	-	
	32	8?. 1		-	-	-	-	-
	25	0 1	-	-	-	-	-	-
	23	-	_	-	3.3 1	-	-	
	15	-		-	5.8 1	-	-	-
II	09	6 3	0.0 5	0.2 3	9.9 8	-	9.67?	-
11	700	2 4	6.7 6	7.1 0	6.5 30		6.58?	-
der er	199	6 2	9.4 0	0.2 4	9.87 2	-	9.71?	-
distant.	94	-	05 1		4.5 1	-		-
	00		0.0 1		100 1	-	6.47?	—
	04 65	52 1	5.4.2	-	4.27 1	-	-	-
	64	07 I	0.47	_	192 1	-	-	-
	47	11 1	4.1 1	and the second	77121	to a Thomas		The second second
Saure	43		36.0			199. 44		-
lante	40	72 1	0.0 0					T
	26		_		6.5 1	1		T
	21	_	_	_	1.72 1			T
	10	7 1	1.0 0	1.6 0	1.0 1			T
	02	6 1		4.6 0	2.9 1		120	
PLAN P	00	6 1	_	99.3 0	0.0 1	_		1 1 1 1 1 1
100	690	3 1	_	_	0.5 1	_		
II	87	1 7	7.3 8	7.1 8	7.2 30	-		7.851.5
	87	_	-	_	_	_	-	7.053 5
	83	5 1		_	3.0 1			1.000 0
	80	6 1		-	0.8 1	-	-	
	78	_	_		8.3 1	_		_
1500	75	-	-	_	5.0 1		_	_
land)	71	-	-	-	1.3N?1	-	-	_
							19*	

		Simeon	Millikan	Hut-	Lang	Hoag	Edlén u.
		[255]	[270]	chinson	[971]	[487]	Ericson
	a deale	[999]	[213]	[343]	[011]	[401]	[641]
	661	_	1.5 0	-	1.5 1	-	-
II	51	3 5	1.5 6	1.9 6	1.8 10	-	-
	44	-		-	4.90?1	-	-
II	41	8 3	1.8 5	2.3 4	1.6 3	-	-
	39	-	4-65	-	9.0 1		
II	36	2 2	6.3 3	6.8 2	6.2 1	7 8	-
	33	7 1	-	-	-	-	E
09	17	0 1	7.7 1	-	8.0 1	-	
	09	1 1	9.5? 1	-	9.3? 1	-	-
	05	8 1	-	-	-	-	-
	00	3 1	-		0.3? 1	(5.02 2	
п	594	9 4	5.1 5	5.5 5	5.1 8	4.79 2	-
	85	5 1	5.7 3		D.7 D		188
-	77	-			1.4 1	-	
III	74	.8 2	4.0 6	4.9 2	4.4 20	-	
- 22	64	8 2	4.7 3	0.2 1	0.0 2	1	T
	62	4 1	-	2.0 1	2.87 1	-	
11	60	5 2	0.5 3	-	0.5 2	-	_
-	58	0 1	00.0	01.0	00 0		
	49	6 2	9.6 2	0.1 0	9.0 2		
	43	4 1	3.0 2	4.0 0	0.4 2	17/0	
III	38	3 8	8.4 (9.8 2	0.0 00	-	1
III?	37	-	00 0	-	1.1 I 2.0 1		
11	33	9 1	0.0 2	-	0.4 1		
	530	-	7.0 1		7.02 1		
TITO	10	-	17 1		20 1		10
III	12	7 1	97 4	0.204	99 9		9.515
111	400		87 1		38 1		0.010
III	50	5 9	97 6	01 1	0.1 20		f9.600 8
m	50	9 1	0.9 1	U.1 1	11 1		19.472 8
IV	90	32 1	98 1		01 1	_	J9.724 7
11	17	02 1	-		-		19.520 6
	16	2 1	_	_	_	_	_
	04			_	4.3 3	_	_
	00	_	_	_	0.0 3		10.00
III	389	_	_	-	9.5 1	-	19.09 4
	000	21.31.61		121 77 8		-11	[8.96 4
III	86	1 2	6.4 4	-	5.9 1	-	6.203
IV	84	-	4.4 4	-	4.0 1		4.174 10
IV	84	-	-	-	-	-	4.020 8
	82	1 1	-		-	-	-
1	82	1 1	0120	-	01 0		1 707 7
III	71	5 1	2.172	-	2.1 2	-	1.727 7
III	61	-	0.5 0	_	1.1 1		1 900 5
III	41	-	_	-			9.561.9
III	10		Ten		97 1	121 100	2.001 0
IV	200				2.1 I		6.920 9
IV	200						9.996 4
IV	80		in second		1.03.5.5.	-	9 125 3
1 11	00						0.120 0

sind in der vorhergehenden Tabelle 5 zusammengestellt worden. Bei Linien, die schon irgendwie eingeordnet sind, ist die Ionisationsstufe in der ersten Kolonne bemerkt.

Zu den Linienspektren des C sind noch folgende Einzelheiten zu erwähnen:

Newbold [606] bombardiert eine Kohleplatte mit Elektronen, untersucht die Ausstrahlung auf elektrischem Wege und findet alle die kurzwelligen Linien von Millikan und Bowen in den Knicken seiner Kurven.

Bechert [697] diskutiert die von Goudsmit für die Termaufspaltung der Multipletts angegebenen Formeln, wenn sie auf die PP'-Gruppen der C⁺ ähnlichen Spektren angewandt werden.

McLennan und McLay [460] finden Anzeichen dafür, daß die Struktur der Spektra von C den Bogenspektren von den in derselben Kolumne des periodischen Systems stehenden Elementen von Si I, Ge I, Sn I und Pb I analog sind.

Saha und Kichlu [546] berichten über eine Erweiterung des von G. Hertz entdeckten Gesetzes der irregulären Dubletts, das zuerst für Röntgenstrahlen gefunden und von Millikan und Bowen ins Sichtbare ausgedehnt wurde. Wenn man die Spektren einer Gruppe von aufeinanderfolgenden Elementen, die durch sukzessive Ionisation auf dieselbe Elektronenstruktur reduziert sind (C, N⁺, O⁺⁺, Fe⁺⁺⁺, Ne⁺⁺⁺⁺) vergleicht, so bilden die Frequenzen entsprechender Linien, bei denen die Hauptquantenzahl ungeändert bleibt, eine arithmetische Reihe. Man kann diese Regel zur Vorausbestimmung der Spektren benutzen, z. B. in der oben gegebenen Reihe zur Bestimmung des C. Man findet dann im C-Spektrum, daß die Linien L₂(M₁ \rightarrow M₂) und L₂(M₂ \rightarrow M₃) oberhalb 8000 Å liegen müssen.

Die in Indian Journal of Physics 4, 359–365 (1930) beschriebene Methode der "Horizontalcomparison", die es ermöglicht, das Spektrum eines unklassifizierten Elementes einzureihen, wird von Majum dar [672] auf die Übergänge $M_2 \leftarrow M_3$, $N_2 \leftarrow N_3$ des C⁺ angewandt.

Gilles [718] untersucht die Termwerte homologer Reihen der Ionen der Elemente der ersten großen Periode auf Gesetzmäßigkeiten und findet quantitative Beziehungen nicht nur in den Differenzen von Termen gleicher Multiplizität, sondern auch solcher verschiedener Multiplizität. Solche Beziehungen lassen sich finden zwischen Quartett und Triplettermen der Konfigurationen $1 s^2 2s^2 2p 3p$ bis $1 s^2 2s^2 2p^5 3p$. Zwischen analogen Termen lassen sich Differenzen erkennen, welche ganze Vielfache von 80 zu sein scheinen. Ähnliche Beziehungen finden sich anscheinend auch in den verschiedenen Ionisationsarbeiten eines Elementes.

Eine Berichtigung zu der von Schniederjost (Zs. f. wiss. Photogr. 2, p. 283 [1904]) veröffentlichten Arbeit gibt Jevons [368]. Von den im Ultravioletten als Bogenlinien des Sauerstoffs gedeuteten Linien kann Jevons nur λ 2883.93 als wahre Sauerstofflinie identifizieren. Von den übrigen 24 Linien sind 21 Bandenkanten des Kohlenstoffs, von denen die meisten der ersten negativen Gruppe, zwei jedoch der ersten positiven Gruppe angehören. Kohlenstoff tritt im Entladungsrohre leicht als Verunreinigung auf, so daß schwache Banden leicht mit diffusen Linien verwechselt werden können.

Cameron [428] untersucht den Einfluß von Edelgasbeimischungen auf einzelne Banden u. Linienspektra. Kohlebogenlinien sind in einem Gemisch mit Helium vorhanden, nicht dagegen in einem Gemisch mit Neon und Argon. Einige Funkenlinien

sind aber sowohl in Helium als auch in Neon vorhanden, was um so verwunderlicher ist, als Saunders für das erste Ionisationspotential des neutralen Atoms 7 bis 8 Volt angibt, also Bogenlinien in allen drei Gasen auftreten müßten. Die Erscheinung läßt sich nur zum Teil erklären, und zwar nimmt Cameron an, daß bei der Entstehung solcher Spektren ein Edelgas derart mitwirkt, daß durch seine Fähigkeit, selbst Anregungsenergie aufzunehmen, die Energie beschränkt wird, die zur Anregung notwendig ist.

Eine genaue Untersuchung der Kohlelinie λ 4267 führt Wolf [472] durch. In einem Kohlerohrwiderstandsofen nach King wird zwischen den Enden des in seinem mittleren Teile durchgebrannten Heizrohres ein Vakuumbogen erzeugt, der sich bei einer bis zu etwa 15 cm wachsenden Länge etwa eine halbe bis eine Stunde aufrecht erhalten läßt. Die Spannung wird dabei allmählich von 15 bis 20 Volt gesteigert, wobei der Strom von 450 auf 900 Ampere zunimmt. Die Aufnahmen zeigen die Kohlelinie λ 4267 doppelt bei völliger Trennung der Einzelkomponenten. Die Wellenlängen der Einzellinien sind $\lambda = 4267.261 \pm 0.010$ und λ 4267.031 \pm 0.010. Die langwellige Komponente ist mehr als doppelt so intensiv wie die kurzwellige.

Röntgenspektrum.

Ungefähr gleichzeitig mit der Herausgabe des vorhergehenden Bandes begannen die Untersuchungen über das Röntgenspektrum von Kohlenstoff, wobei man anfänglich auf indirekte Methoden angewiesen war.

Hierfür kommt in Betracht die Bestimmung von "kritischen Potentialen". Diese Methode beruht auf der Feststellung von mehr oder weniger ausgeprägten Knicken, welche die Kurve des Gesamtphotoelektronenstroms als Funktion der Röhrenspannung aufweist, wenn eine Anregungsspannung überschritten wird. In Wellenlängen ausgedrückt entspricht sie somit einer Absorptionskante. Während diese Methode bei schwereren Elementen oft sehr widersprechende Ergebnisse liefert, zeigt sich bei den leichteren Elementen eine leidliche Übereinstimmung mit denen neuerer Methoden.

Es folgen die Angaben der verschiedenen Autoren nebst den sich gemäß der Gleichung

$$\lambda = \frac{12345}{\mathrm{V}} \,\mathrm{\AA}$$

ergebenden Wellenlängen.

rabene 1. ministile i otentuale.	Tabelle	1.	Kritische	Potentiale
----------------------------------	---------	----	-----------	------------

serves des in Ultravioletion e	К		1	
Autor	te V	λ	V	λ
Kurth [309, 310]	289	42.6	32.9; 75.0	375; 165
Mohler und Foote [312, 325, 326].	272	45.4		South Thomas
Richardson und Bazzoni [313]	286	43.4	pure pure	Monte-adok
Hughes [319]	215	57.5	34.5; 74.0	358; 167
Holtsmark [318]	285-290	42.9	and the set of	-
Levi [372]	293.0	42	35.0; 23	352; 540
Richardson und Chalklin [464]	292.8	42.2	39.5	312.5
Lukirski [374, 375]	288	42.9	35	352

Ferner machen McLennan und Clark [345], Mohler und Foote [312, 325, 326], Richardson und Chalklin [545], Compton und Thomas [430] Angaben, die jedoch keine rechte Deutung zulassen und darum hier nicht aufgeführt werden sollen.

Als zweite indirekte Methode mag die Bestimmung von "Absorptionsdiskontinuitäten", ebenfalls als Funktion der Spannung gelten, die das Füllgas einer Ionisationskammer aufweist; eine Methode, die genauere Ergebnisse liefert. Auf diesem Wege fand Holweck [448-450] (siehe auch Holweck, De la lumière aux rayons X, Presses universitaires) 280.5 V, entsprechend 44.0 A.

Eine indirekte Linienmessung ist durch Bestimmung der Geschwindigkeit der Photoelektronen möglich. Lukirski [375] wendet dafür die Methode des verzögernden Gegenfeldes im Kugelkondensator an und findet Ka zu 48.9Å, sowie in Übereinstimmung mit den Millikanschen Messungen nicht aufgelöste Linien der L-Reihe bei über 400Å aus den benötigten Gegenspannungen von 252 bzw. < 30 V.

Nach der gleichen Methode findet Rudberg [748, 749] für Ka: 265 Volt, nach magnetischer Geschwindigkeitsmessung 277 ± 10 Volt, entsprechend 46.1 bzw. 44.6 Å.

Eine direkte Messung wurde zuerst von Dauvillier [432] ausgeführt, er fand Ka: 45.5 Å, indem er als Kristallgitter Melissinsäure auf Blei benutzte.

Gegenüber diesen älteren Methoden gestattet die von Compton und Thibaud eingeführte Benutzung von Strichgittern bei streifender Inzidenz eine wesentlich höhere Genauigkeit zu erzielen. Thibaud faßt seine z. T. mit Soltan ausgeführten Arbeiten auf diesem Gebiete [549, 514, 515, 516] in [550] zusammen. Osgood [509] erhielt Spektren mittels eines Konkavgitters, doch ist die in diesem Gebiet zu erreichende Genauigkeit wesentlich geringer als bei längeren Wellen, weswegen alle übrigen Messungen mit Plangittern ausgeführt wurden.

Bazzoni, Faust und Weatherby [561, 562] geben an, eine Feinstruktur der Ka-Linie gefunden zu haben. Faust [648] photometriert die Platten dieser Autoren und deutet die Zacken der Kurve als neun Komponenten der Wellenlängen: 42.7, 43.2, 44.0, 44.7, 45.3, 46.2, 46.6, 47.2 und 47.7 Å. Dabei liegt das Maximum für die Spannungen 1500 und 2500 Volt bei 45.3 bzw. 44.0 Å.

Diese Struktur wurde jedoch von Siegbahn und Magnusson [685] sowie Söderman [619] nicht aufgefunden und durch Gitterfehler erklärt [688]. Prins [747] gibt in seinen Arbeiten, die er an Kristallmessungen anschließt¹), jedoch eine gewisse Unsymmetrie der Photometerkurven an: Steiler Anstieg bei 43.5 Å, langsamerer Anstieg bei 44.5 Å, Maximum und Schwerpunkt bei 44.65 Å und dann langsamer Abfall bis 46.5 bzw. 47.5 Å bei stärkerer Intensität. Er hält diese Struktur für reell und möglicherweise durch die Lage der Absorptionskante bedingt. Vgl. hierzu die ff. Bemerkung zur Arbeit von Neufeldt.

Laby und Bingham [669] schlagen vor, die klassische Rowlandsche Methode der Koinzidenzen verschiedener Ordnungen auch auf dieses Gebiet anzuwenden. Es gelang ihnen, die Kohlenstofflinie bis zur achtzehnten Ordnung zu photographieren, entsprechend 810 Å, wodurch ohne die schwierig auszuführenden Messungen kleiner Winkel eine größere Genauigkeit möglich erscheint. Jedoch wird in der genannten Arbeit nur C Ka relativ zu Cu La bestimmt.

¹) Z. B. CuLa: 13.30 Å, AlKa: 8.323 Å, ohne Angabe des Autors.

Wegen der K β -Linie, die Neufeldt [740] gefunden zu haben glaubt, siehe weiter unten.

Thibaud [549] hat auch das Absorptionsspektrum photographiert, das die Fettdämpfe seiner Apparatur liefern. Er gibt für die K-Kante den Wert 43.5 Å an, wobei sich an der kurzwelligen Seite eine weiße Linie finde.

Vor allem ist hier die Arbeit von Neufeldt [740] zu nennen, der die durch ein Strichgitter zerlegte Strahlung mit einem Elektronenzählrohr untersucht. Diese Methode gestattet neben der Wellenlänge auch quantitativ den Absorptionskoeffizienten zu bestimmen. Er findet eine stark ausgeprägte Feinstruktur der Kohlenstoffkante, die hier aufgeführt werden soll. Als Absorber diente Zelluloid.

Bills and an galaning baselik with (PAR) selfs	Spannung Volt	λ[Å]	Differenz Volt
Hauptkante	283.8	43.5	1-11
Feinstrukturkante I	308.1	40.1	24.3 ± 0.5
II	318.9	38.8	35.1 ± 0.5
III	363.0	34.0	79.2 ± 0.5

883 1			
11.01	10 m l	1.00	- 63
1.21.3	C14-1	164	- 27
		4.0	-

Doch gibt Geiger³) an, daß er die Kurven nicht habe reproduzieren können (Zusatz bei der Korrektur).

Diese Feinstruktur dürfte auch die Erklärung dafür bieten, daß die von Neufeldt aufgenommene Intensitätskurve der K*a*-Linie eine "Komponente" bei 41.8 Å zeigt, die er für die K β -Linie hält. In Wirklichkeit fällt diese Stelle genau mit dem aus der Absorptionskurve hervorgehenden ersten Absorptionsminimum, der zwischenliegende Sattel dagegen mit dem ersten Absorptionsmaximum zusammen, das er an anderer Stelle für die als Fenster des Zählrohrs dienende Zelluloidfolie ermittelt hat. Sein Befund dürfte daher zum mindesten keinen Beweis für die Existenz der K β -Linie darstellen, sondern eher eine Art Selbstumkehr wie im optischen Gebiet, wie auch schon Prins [747] zur Erklärung seiner Linienstruktur vermutet.

Die Messungen für die Ka-Linie sind in folgender Tabelle zusammengefaßt:

Autor	λ [Å]
Thibaud [550]	44.9 ± 0.3
Hunt [492], [493]	45.8
Osgood [509]	43.96
Weatherby [554]	45.4 ± 0.2
Söderman [619]	44.70 ± 0.09
Howe [592]	44.60 ± 0.04
Osgood [509]	44.52 ± 0.05
Bazzoni, Faust u. Weatherby [561, 562]	44.2 Komp.: 42.0, 45.4, 46.15
Söderman [688]	44.54 ± 0.04 Breite 1 Å.
Laby und Bingham [669]	44.7 - 44.81)
Prins [747]	$44.65 \pm 0.1^{\circ}$

¹) Relativ zu Cu La: 13.32 Å. ²) Relativ zu Kristallmessungen, siehe oben.

³) Zs. f. Phys. 76, p. 420 (1932).

Ray [682, 683] glaubte eine dem Ramaneffekt analoge Erscheinung gefunden zu haben. Seine Ergebnisse wurden jedoch von anderen Autoren wie Coster, Nitta und Thyssen [570], Cork [706, 707], Lindsay [732], Berg und Ernst [698] und anderen nicht wieder aufgefunden und beruhen wahrscheinlich auf methodischen Fehlern Rays.

Die zahlreichen, besonders an Graphit und organischen Verbindungen ausgeführten Beobachtungen über den Comptoneffekt gehören nicht in den Rahmen dieses Buches.

2. Bandenspektren.

Die Bandenspektren des Kohlenstoffs und seiner Verbindungen umfassen ein ungeheures Gebiet, das eingehend behandelt einen ganzen Band für sich füllen würde. Offenbar ist hier der Zusammenhang mit der gesamten Chemie der Kohlenstoffverbindungen. Es sollen daher auch hier wie schon in den früheren Bänden V und VII dieses Handbuches, nur diejenigen Bandenspektren der einfachsten Kohlenstoffverbindungen aufgenommen und besprochen werden, die einigermaßen gründlich spektroskopisch untersucht sind. Es sind das in erster Linie die Bandenspektren der Moleküle C_2 , CO, CO⁺, CO₂, CN, CCl⁴, CS, CS₂, CH, H₂C₂; CH₄ und C₂H₄.

Am Schluß geben wir noch eine Zusammenstellung der wichtigsten Arbeiten über das C_6H_6 -Spektrum, da dieses Spektrum in letzter Zeit außerordentlich an Interesse gewonnen hat und wohl bald aufgeklärt sein wird. Für solche Untersuchungen mag diese Zusammenstellung von Vorteil sein.

Wir geben zunächst eine Übersicht der hier besprochenen Banden-Spektren, so daß eine Orientierung leicht möglich ist.

Zusammenstellung der im folgenden besprochenen Banden.

									Seite	
I. Die Banden des C2-Moleküls									. 298	
1. Das Singulett-System									. 298	
2. Sie Swan-Banden									. 299	
3. Die Hochdruckbanden Fowlers									301	
II. Die Banden des CO-Moleküls								in	302	
1. 4. positive Gruppe von Deslandres					••••				202	
2 Die Cameron-Banden	• •		• •	•		• •			. 000	
3 Die 3-A-Bandon		• •	• •		• • •	• •	•	•	. 300	
4 Die Kaplan Banden	• • •	• •	• •			• •	•	*	. 307	
5 Die 5 D Danden	• • •	• •	• •	•	• • •	• •		*	. 308	
5. Die 5-B-Banden	• • •	• •	• •	• • •	• • •	• •	•	*	. 308	
6. 3. positive Gruppe	• • •		• •			• •			. 309	
7. Die Merton-Johnson- oder Triplett-Banden									. 309	
8. Die Banden von Asundi									. 311	
9. Die Herzberg-Banden									. 312	
10. Die Angström-Banden									. 313	
III. Die Banden des CO+-Moleküls									. 316	
1. Das Kometenschwanzspektrum									. 316	
2. 1. negative Gruppe von Deslandres									319	
3. Die Baldet-Johnson- oder Kombinations-Banden								•	990	
IV. Das Bandensnektrum des CO. Moleküle		18.				1	•	•	201	
1 2 norstive Gruppe von Deslandres		• •	• •		• • •	• •	*	•	. 021	
2. Des CO Absorptionenalisment I if	• •	• •	• •	•	• • •	• •	•	•	. 321	
2. Das CO ₂ -Absorptionsspektrum von Leifson	• • •	• •	• •	• •		• •	•	•	. 323	
3. Das ultrarote Absorptionsspektrum des CO_2									. 323	

V.	Die Banden des CN-Moleküls .					 														•	323
	1. Die violetten Cyan-Banden .		•			 										•	•				324
	2. Die roten Cyan-Banden					 		•	• •	 •	•	•	•	•	•	•	•	•	•	•	326
	3. Die Banden von Raffety					 		•			•	•				•			•	•	327
	4. Die Banden von Cyanwasserst	tof	ŧ.			 															327
	5. Halogencyanid					 															329
VI.	Die Banden des CCl4-Moleküls .			1.	2	 															329
VII.	Die Banden des CS-Moleküls					 				 						•					331
VIII.	Die Banden des CS2-Moleküls.					 															332
IX.	Die Banden des CH-Moleküls.					 				 											333
Χ.	Die Banden des Azetylens																				335
XI.	Die Banden des Äthylens und d	les	Ät	ha	ns																336
XII.	Die Banden des Methans									 				•,							337

I. Die Banden des Kohlenstoff-Moleküls C2.

Bisher sind 3 Bandenspektren des C2-Moleküls sicher bekannt geworden.

1. Das Singulettsystem (Banden von Deslandres).

2. Die Swanbanden (Deslandres 1. pos. Gruppe).

3. Die Hochdruckbanden Fowlers.

Das Singulett-System:

Im Jahre 1905 beobachteten Deslandres und d'Azambuja (C.R. 140 p. 917) in CO und CO₂ bei höherem Druck eine Anzahl Banden, die mit den Swanbanden zusammen auftraten. Die folgenden Wellenlängen für die Bandenkanten finden sich in der Arbeit: 4680.62?, 4372.57?, 4102.47 (5), 3852.26 (8), 3607.44 (6), 3593.43 (4), 3587.83 (6), 3399.87 (1), 3398.20 (4). Eine weitere Untersuchung über dieses Spektrum ileferte dann Raffety [255] mit der Angabe neuer Kanten bei 4102.5, 4068.0, 3854.0 und 3827.5? Å. Dieke und Lochte-Holtgreven [640] untersuchen das Spektrum bei kondensierter Entladung durch strömendes Azetylen sehr genau. An der Gaseintrittsstelle bildet sich schnell ein schwarzer Niederschlag, dann folgt eine Stelle mit intensiv grünem Leuchten, die Swanbanden und die Banden des Singulettsystems liefert. Die Aufnahmen werden am Gitter ausgeführt mit einer relativen Genauigkeit von einigen Tausendstel und einer absoluten Genauigkeit von einem Hundertstel Å. Es werden 4 Gruppen bei 4102, 3852, 3607, 3396 Å gefunden. Die Verfasser geben das folgende Kantenschema:

v' v''	0	1	2	3	4
0	3852.1 (10)	4102.3 (9)	-	anbast yn dar	BR HIL
1	3607.3 (8)	3825.6 (5)	4062.0 (6)	Andrea - mönnten	n)
2	3399.8 (5)	3592.9 (7)		4041.9 (4)	4026.9 (1)
. 8		3398.1 (5)	3587.6 (5)	line - series	and and the

Auf Feinstruktur wird die (0,0)-Bande 3852 untersucht, in der aber auch die schwächere Bande (1,1) bei 3825 enthalten ist. Es wird ein P- und R-Zweig gefunden, deren Linien abwechselnd nach Rot und Violett verschoben sind. Von einem Q-Zweig sind nur die ersten 3 oder 4 Glieder vorhanden. In der Nähe der Nullinie

fallen 3 Linien aus. Die Verfasser berechnen das Trägheitsmoment für den Anfangsund Endzustand zu 15.62 und $17.22 \times 10^{-40} \text{ gr} \cdot \text{cm}^2$.

Fast gleichzeitig mit der Arbeit [640] erschien eine Untersuchung von Kopfermann und Schweitzer [666], die die Banden im Vakuumkohlebogen aufgenommen haben. Die Feinstruktur der Banden 4102, 3852 und 3607 Å wurde untersucht. Zwei R- und P-Zweige werden gefunden. Die Ergebnisse stimmen mit [640] überein. Johnson [659] ordnet die Banden in ein Kantenschema ein, das mit dem obigen übereinstimmt. Er erhält die Banden gut in einem Geißlerrohr mit Kohle-Elektroden bei einem Zusatz von 30-40 mm Ar und etwas H. Es sind das dieselben Bedingungen, die Johnson für die Swan-Banden angibt. Die Kanten dieses ${}^{1}\Pi^{+} \rightarrow {}^{1}\Pi$ -Systems werden durch die Formel

$$v = 25952 + (1789.14 \text{ v}' - 23.0 \text{ v}'^2 - 4.16 \text{ v}'^3) - (1594.8 \text{ v} - 12.7 \text{ v}^2)$$

dargestellt.

Jede Teilbande des Singulett-Systems besteht also aus je zwei P-, Q- und R-Zweigen, bei denen jede zweite Linie fehlt. Dies gibt uns die Bestätigung dafür, daß es sich hier nur um ein symmetrisches Molekül ohne Kernspin handeln kann.

Angaben über die Rotationsstruktur der (0,0) Bande finden sich bei Dieke und Lochte-Holtgreven [640].

Die Swan-Banden:

Die Swan-Banden sind wohl die ersten Banden, die überhaupt beobachtet worden sind, denn sie werden schon von Wollaston 1802 im Kerzenlicht erwähnt. Eine genauere Beschreibung findet sich aber erst bei Swan im Jahre 1857. Es gibt kaum ein Bandenspektrum, über dessen Träger so viel diskutiert worden ist, wie beim Swan-Bandenspektrum. Die ältere Geschichte dieses Spektrums findet sich in Band V, p. 198ff. und Band VII p. 139ff. Der Streit drehte sich in erster Linie um die Frage, ob der Träger des Spektrums das CH- oder CC-Molekül sei. Liveing und Dewar vertraten anfangs in zahlreichen Arbeiten die Ansicht, daß das CH-Molekül der Träger des Spektrums sei. Sie gelangten aber schließlich (Proc. Roy. Soc. A. 34 p. 418 [1882]) zu der Überzeugung, daß die Banden dem C2 zuzuschreiben seien. Die Autorität von Liveing und Dewar und die allgemeine Zuverlässigkeit ihrer Angaben scheint bewirkt zu haben, daß für die nächste Zeit ihre Auffassung allgemein angenommen wurde. Aber 1902 kam Smithells und dann Baly zu der Ansicht, daß die Swan-Banden dem CO zugeordnet werden müßten. Indessen konnten sie damit nicht durchdringen. Neuerdings ist Johnson wieder auf CH zurückgekommen. Er ging dabei von folgenden Beobachtungen aus: In einem Geißlerrohr mit Kohleelektroden und Argon-Füllung sieht man keine Spur der Swan-Banden. Sobald etwas H zugeführt wird, erscheinen sie kräftig, verschwinden aber, sobald das H wieder entfernt wird. So schloß Johnson auf einen Träger des Spektrums, der C und H enthalten mußte. Der Bau des Spektrums bewies jedoch, daß das emittierende Molekül nur aus zwei gleichen Atomen oder Atomgruppen bestehen, also nicht CH sein kann. So führte diese Überlegung Johnson auf das HC = CH, Acetylen. Gegen diese Deutung trat zuerst Pretty [543] auf, der die Swanbanden in Röhren erhielt, in denen sicher keine Spur von H vorhanden war, wie das Fehlen der Balmerlinien und der CH-Banden bewies. Er gab dann auch

eine befriedigende Erklärung des Versuches von Johnson. In einem Geißlerrohr mit Argonfüllung und Kohleelektroden entsteht durch die Entladung kein Kohlendampf. Fügt man aber Wasserstoff hinzu, so bildet sich an den Elektroden ein Kohlenwasserstoff, der das Rohr erfüllt und durch die Entladung in H_2 und C_2 zersetzt wird. Die hierbei entstehenden Moleküle können dann das Swanspektrum emittieren.

Heute läßt sich die Entscheidung über den Träger eines Bandenspektrums sicher aus der Bandenanalyse treffen. Die Zuordnung des Swanspektrums zum C₂ kann heute als unbedingt sicher gelten (Mulliken [504-507], Hedfeld u. Mecke [649], Johnson und Asundi [596]).

Eine eingehende Untersuchung der Banden ist von Johnson [494] vorgenommen worden. Er hebt hervor, daß das im Kohlebogen erhaltene Spektrum von den Geißlerrohrspektren wesentlich verschieden sei. Johnson gibt eine Tabelle mit mehreren Tausend Linien des Swanspektrums. Als Meßgenauigkeit wird von ihm 0.002 Å angegeben. Die absolute Genauigkeit würde dann also etwa 0.01 Å sein. Das Kantenschema nach Johnson [494] sei im folgenden mitgeteilt:

v'	v''=0	1	2	.3	4	5	6	7
0	5165.22	5635.53	6191.21	-	_	1000 10	A CONTRACT	1-01-000
1	4737.08	5129.34	5585.49	6122.07	-	-	-	-
2	4382.48	4715.23	5097.66	5540.68	6059.68	6677.31	-	-
3	-	4371.43	4697.60	-	5501.91	6004.88	6599.25	_
4	-	-	4365.16	4684.78	-	5470.28	5958.7	6533.68
5	-	-	-	-	4678.59	-	-	5923.42

Als Nullinien-Formel gibt Johnson [494]

 $\nu = 19379.2 + v'(1773.42 - 19.35 v') - v'(1629.88 - 11.67 v').$

Durch ein graphisches Verfahren bestimmt Johnson das Trägheitsmoment im Anfangs- und Endzustand zu 16.236 und 17.410 $\times 10^{-40}$ gr cm², wobei die Kernabstände 1.230 und 1.274 Å betragen.

Eine zweite ausführliche Untersuchung dieses Spektrums stammt von Shea [511]. Er behandelt die Banden 5165 (0,0), 5635 (0,1), 4737 (1,0), 5129 (1,1) und 5585 (1.2). Er gibt ein etwas anderes Kantenschema, das mit Mecke [412] und Birge [662] übereinstimmt und daher hier auch noch angeführt werden soll:

v'	v''=0	1	2	3	4	5	6	7
0	5165	5635	6188	ap Lieda	ten diese	nia <u>Lo</u> ner	nithinin	e ne <u>m</u> inite
1	4737	5129	5585	6126	fin-me	mh mair	100-000	1034-161
2	4382	4715	5101	5541	6052	-	-	-
3	-	4371	4697	-	5502	5999	-	-
4	-	-	4365	4684	-	5473	_	-
5	_	-	_	_	4673	-	5442	an the second
6		_		mp d	Mi Loni	4666	-	5423
7	man-das P	Si - ing	Con-	10-00	A PT-	inter Handle	4663	-

Die Analyse des Spektrums zeigt bei den verschiedenen Autoren mannigfache Verschiedenheiten. Es muß dafür auf die Originalarbeiten verwiesen werden: Leinen [172], Thiele [137], Heurlinger [260], Kopfermann und Schweitzer [666].

Die Analyse der Feinstruktur des Spektrums zeigt für jede Bande 2 P- und R-Zweige, da wir einen ${}^{3}\Pi^{*} \rightarrow {}^{3}\Pi$ -Übergang vor uns haben und die Q-Zweige wegen ihrer geringen Intensität nicht beobachtet wurden.

Shea findet bei seiner Analyse 3 R- und 2 P-Zweige, die abwechselnde Rot- und Violettverschiebungen zeigen. Die Swanbanden entsprechen einem ${}^{3}\Pi^{*} \rightarrow {}^{3}\Pi$ - Übergang.

Über den Einfluß von Edelgasen auf das Auftreten der Swanbanden in Geißlerröhren mit CO liegen Angaben von Merton und Johnson [346] für He, von Johnson und Cameron [369] für Ar, von Cameron [428] für Ne vor. Im allgemeinen werden die Swanbanden verstärkt oder erscheinen, wo sie ohne Edelgaszusatz ganz fehlen.

Kopfermann und Schweitzer [666] geben an, sie hätten noch ein 4. Bandensystem des C₂ gefunden, geben aber keine Messungen an.

Hori [451] erhält bei Explosionen die Swanbanden umgekehrt.

Isotopieeffekt wurde von King und Birge [662, 663] an den Swanbanden untersucht und dabei ein Kohlenstoffisotop C¹³ gefunden. Die Bande bei 4737 zeigt eine Vorbande, die um etwa 7,5 Å nach rot verschoben ist. Genaue Messungen zeigten, daß dies einem Molekül C¹² C¹³ entspricht.

Die Hochdruckbanden Fowlers.

Fowler [204] fand, daß in Geißlerröhren mit CO von etwa 100 mm Druck ein neues Bandensystem auftritt (s. Band VII p. 143). Die nach Violett abschattierten Banden haben Kanten bei

Fowler und Strutt fanden die beiden ersten Paare auch bei Einwirkung von aktivem Stickstoff auf sorgfältig getrocknetes Cy, so daß sie schon vermuteten, daß die gefundenen Banden nicht zu CO sondern zu C₂ gehörten. Johnson und Asundi [597] haben diese Annahme nun bestätigt. Außerdem wurden die Banden von Merton und Johnson [346] aufgenommen in Geißlerröhren mit CO von 5 mm Druck. In der Kapillare waren bei kondensierter Entladung die Swanbanden und die Hochdruckbanden zusammen sichtbar, aber an der Übergangsstelle vom engen zum weiten Rohr traten die Hochdruckbanden hervor. Johnson und Asundi erzeugen das Spektrum in langen weiten Rohren mit CO von 20—40 mm Druck mit Kohleelektroden und kondensierter Entladung. Die Anwesenheit von H, H₂O und CO₂ verhindert das Auftreten der Banden. Die Aufnahmen wurden mit einem 6 m Gitter ausgeführt. Sie finden dabei folgende nach Violett abschattierte Banden:

v'	' = 0	1	2	3	4	5	6	7	8	9	10	11
I	3419 1	3619.5 1		4093 2	4368.82 7	4680.17 15	11	5434.93 5	5899.27 10	6442.27 8	7083.2 6	7852.5 4

Kantenformel: $\nu = 29212 - (1627 v'' - 11.7 v''^2)$. Ein Vergleich mit der Formel der Swanbanden ergibt denselben Endzustand und beweist somit eindeutig die Zugehörigkeit des Spektrums zu C₂.

Die Feinstruktur der Banden wird untersucht bei v'' = 4, 5, 8 und 9. Die Banden besitzen nur P- und R-Zweige und sind den Swanbanden sehr ähnlich.

Die Hochdruckbanden entsprechen ebenfalls einem ${}^{3}\Pi^{**} \rightarrow {}^{3}\Pi$ -Übergang.

II. Die Bandenspektren des CO-Moleküls.

Von den 16 bisher bekannt gewordenen Bandenspektren des CO-Moleküls sollen hier nur 10 besprochen werden, da von den übrigen nur allzu spärliches Material vorliegt.

In der weiter unten folgenden Zusammenstellung der Banden sollen diese Banden aber mitaufgeführt werden.

Einige Arbeiten, die sich mit mehreren Bandenspektren des CO zusammenfassend beschäftigen, sollen hier zusammengestellt werden: Birge [389, 390, 422, 423, 425], Duffendack und Fox [438, 479], Herzberg [529, 530], Johnson [406, 456, 457, 598], Kratzer [370], Mulliken [463, 765], Mohler und Foote [502].

Wir lassen nun eine erste Tabelle nach Johnson [598] folgen, die die wichtigsten Daten der CO-Spektren zusammenstellt.

Term	Termwert	Type	ω_0	Übergang	Name
X	0	15	2155		Bust Chine and State
a	48530	⁵ <i>П</i> ₁	1726	a — X	Cameron-Banden
a' .	58927	⁵ <i>S</i> ?	1155	a' — a	Asundi-Banden
d	64060	511	1105	d — a	Triplett-Banden
b	83825	5 <u>5</u>	?	b — a	3. positive Gruppe
b	86038	54?	?	b' a	5-B-Banden
с	92093	⁵∏ _i	5	c — a	3-A-Banden
A	64765	1∏	1502	A-X	4. positive Gruppe
B	86929	15	2132	B-A	Angström-Banden
C	91923	15	?	C – A	Herzberg-Banden
E	92923	15?	(2134)	Salation - Capital Int	
F	99730	1∏?	1916	State - month	States (1997) - States
G	105266	?	?		

Es folgt nun eine Liste der 16 CO-Banden nach Johnson [598].

Man findet bei diesem auch eine graphische Darstellung der einzelnen Übergänge, die hier nur durch die üblichen großen und kleinen Buchstaben bezeichnet werden können. Außerdem ist hier noch die Kaplan-Bande e—a als 17te hinzugefügt.

1.	Absorptionsbanden	von	Hopfield-Birge							$\mathbf{G} \leftarrow \mathbf{X}$
2.	"	,,	,,							$\mathbf{F} \leftarrow \mathbf{X}$
3.	11	,,	"	•						$\mathbf{E} \leftarrow \mathbf{X}$
4.	"	,,	**							$\mathbf{C} \leftarrow \mathbf{X}$
б.	"	,,	"							$\mathbf{B} \leftarrow \mathbf{X}$

6.*	4. positive Gruppe																		•							$A \rightleftharpoons C$	X	
7.	Absorptionsbanden	vo	n	H	op	fi	el	d-	B	ir	ge			•				•	•			•	•			$b \rightleftharpoons d$	Х	
8.	,,	,,					,,	,									•						•			a' ← .	X	
9.*	Cameron-Banden					•													•							$a \rightleftharpoons $	Х	
10.*	3-A-Banden							•				•	•			•	•	•				•			•	$c \rightarrow$	a	
11.*	Kaplan-Banden .							•				•	•	•	•		•	•	•		•	•	•	•	•	е →	a	
12.*	5-B-Banden								•					•		•					•		•			$b' \rightarrow$	a	
13.*	3. positive Gruppe					•		•		•		•		•				•		•	•		•	•		$b \rightarrow$	a	
14.*	Merton-Johnson	T	ri	pl	et	t-:	Ba	ın	de	en		•		•	•	•	•	•	•	•	•	•	•		•	$d \rightarrow$	a	
15.*	Asundi-Banden .															•		•			•	•		•		$a' \rightarrow$	a	
16.*	Herzberg-Banden		•		•					•		•	•		•	•	•	•					•		•	$C \rightarrow$	A	
17.*	Ångström-Banden		•					•	•			•		•	•	•	•	•	•	•	•	•	•	•	٠	$B \rightarrow$	A	

* Diese 10 Banden werden also im folgenden behandelt, den Anfang macht Nr. 6.

1. (Nr. 6 der Liste) 4. positive Gruppe von Deslandres.

Deslandres [111] (C. R. 106 p. 842 [1888]) hat eine Reihe nach Rot abschattierter Banden gemessen und als 4. positive Gruppe bezeichnet. Er hielt sie für Banden des Kohlenstoffmoleküls und teilte sie in 5 Serien ein. Dann hat Lyman [193] eine Serie von Banden im Schumann-Gebiet erhalten, zwischen 2068 und 1535 Å. Die beiden ersten Banden 2068.4 und 2047.0 waren offenbar identisch mit den beiden letzten Banden von Deslandres, 2068.8 und 2045.6, und Lyman zeigte, daß man die von ihm gefundenen Banden auch in die 5 Serien von Deslandres zerlegen könne. Das Bandensystem war damit also bis 1630 ausgedehnt, während die Einordnung der folgenden Kanten unsicher blieb. Spätere Messungen von Hof [248] sollen hier wegen ihrer Ungenauigkeit nicht berücksichtigt werden. Bair [270] (Bd.VII) untersuchte das Gebiet von 2262—1946 und stellte damit eine gute Verbindung der Messungen von Deslandres und Lyman her. Endlich hat Duncan (Astrophys. J. 62 p. 155 [1925]) einige Linien erhalten, sie aber für eine neue N-Serie gehalten, was von Birge richtiggestellt wurde.

Erst durch die Arbeiten Leifsons [459] wurde der Träger dieses Spektrums endgültig festgestellt. Leifson erhielt die Banden in Absorption durch kaltes CO und zwar eine ganze Anzahl der Lymanschen Banden zwischen 1511 und 1345 Å. Einige weitere Linien gingen noch bis 1264 Å.

Birge hat das Spektrum völlig gedeutet, soweit genaue Messungen vorhanden waren. Er benutzt für das Spektrum bis 2000 Å die Messungen von Deslandres um 1 Å vergrößert, weil er glaubte, diese Messungen seien um diesen Betrag zu klein. Herzberg [530] stellte diesen Irrtum richtig. Unter 2000 Å wurden natürlich die Messungen Lymans genommen. Es gelang, etwa 150 Kanten in ein Kantenschema einzuordnen und eine Formel für diese Kanten zu finden.

Weitere Messungen wurden von Estay [647] vorgenommen (2799 — 1970 Å), ferner von Hendrick und Fox [650] (2173 — 1280 Å). In der letzteren Arbeit findet sich auch eine Reproduktion einer Aufnahme.

In der nun folgenden Tabelle sind diese Messungen zusammengestellt. In der letzten Spalte ist die Einordnung nach Birge und Estay enthalten.

5

Tabelle der Kanten der 4. positiven Gruppe.

I	Birge (Deslandres) [423]	Estey [647]	Bair [270]	v'—v'' [423]		I [423]	Birge [423]	Estey [647]	Bair [270]	Hend- rick [650]	v'—v'' [423]
9 ¹)	2799	99.7	-	9-22		. 8	2196.9	96.8	96.9	-	6-14
81)	85	85.4	-	4-18		6	95.0	-	-	-	2-11
61)	42	42.6		11-23	1	2	89.1	-	89.3	-	9-16
4 ¹)	40	40.0	-	7-20	08	-	88.0	-	88.0	-	-
41)	12	12.1	-	$6-15^{2}$)		8	73.3	73.0	73.5	73.8	5-139)
6 ¹)	2698	98.3	-	13-24		8	62.6	-	-	-	8-15
31)	84	84.0	-	5-18		8	50.9	50.2	50.4	50.9	4-12
51)	80	80.8	-	9-21	200	6	37.5	37.0		38.1	7-14
41)	62	62.9	-	12-23		2	28.8	28.3	28.4	29.1	3-11
4 ¹)	61	61.5	-	15-25		2	13.7	13.1	12.8	-	6-13
4 ¹)	59	59.6	-	4-17	1	2	07.1	07.2	07.7	07.9	$2-10^{10}$)
4	30.5	30.0	-	11-22	0	8	2090.3	89.9	89.4	90.5	5-12
6	00	98.3	-	10-21	21.	-	86	86.9	-		1-9
1	2594	94.5	-	16-25	12	8	68.4	67.6	-	67.3	4-11
4	69.2	67.8		$9-20^{3}$)	San	8	47.0	46.3	-	46.1	3-10
2	57.8	56.0	-	12-22	6	-	42	-	-	-	-
4	39.7	38.6	-	8-19		4	35.1	-	-	34.9	6-12
4	25.1	-	-	11-21		1	31.7	18 <u>77</u> 1890	p-4	31.9	9-14?
-	21	21.8	-	14-23	6.1	7	26.4	25.8		26.3	2-9
6	11.8	09.9	-	7-18	mid	8	12.6	11.8		12.4	5-11
4	2493.7	92.9	-	10-20	ant	5	07.2	05.8	-	06.4	1-8
4	85.2	83.8	-	6-17		1	1991.0	90.8 vac.	-	90.8	4-10
4	64.3	63.2	-	9-19		8	70.1	70.0 vac.	-	70.0	3-9
2	59.8	58.0	-	5-16	10.3	5	53.0	-	-	-	
8	36.0	33.9	1	8-184)	9.0	5	51.7	1000 (19)	-	- 1	in the second
6	26.0	24.1		11-21	11.6	4	50.4	- nat	+	50.0	2-8
8	08.4	07.6	-	7-17	1111	2	33.6	Tombs	-	-	5-10?
6	2395.0	94.2	-	10-19		6	31.5	-	-	30.6	1-7
-	93	93.1	-	13-21		7	18.2	-	-	18.0	4-9
8	82.5	81.6		6-16		1	14.0	-	-	12.8	0- 6?11)
6	65.8	65.5	-	9-18	ult	10	1898.0	-	-	97.8	3-8
4	57.3	56.5	-	5-15	-	6	91.2	-	-	-	6-10
6	38.7	37.9	-	8-17		10d	78.5	-	-	79.2	2-7
2	33.5	32.5	-	4-145)		3	70.3	-	-	-	5-9
8	12.4	11.5	Tel	7-16	119	10d	59.6	Things	100	59.3	1-6
4	10.7	-	-	3-13	100	4	49.4	2 Tank at	-	50.1	4-8
2	02.7	_	-	10-18		2	46.7	-	-	-	7-10
8	2287.2	86.1	-	$6-15^{6}$		8	41.3	-	-	41.3	0- 5
4	74.5	73.9	-	9-177)		1	37.2	-	-	- 1	- 1912
6	72.0	72.3	-	12-19		9	30.1		-	29.9	8-7
4	62.6	61.7	62.6	5-14		-		new la	1	27.6	-
4	47.7	47.2	47.5	8-16		7	25.7		-	-	6-9
4	38.8	38.3	38.6	4-13	1946	10d	11.0	-	- 1	10.8	2-6
8	21.7	21.5	22.1	7-15		8	04.9	timore d	-	04.9	5- 8
6	16.3	15.8	16.3	$3-12^{8}$	115	2	01.9	off labo	-	1.000	enter dens
1	09.9	-	-	- 1		10d	1792.6	-	-	92.4	1-5
1) 6)	Nach [647]. 22—12.	2 7) 12—19) 10—2 9.	2? ⁸) 10—1	з 7.) 5—1' 9)	7? 1—10.	4) 4- 10)	-15? 9—15		⁵) 11—19. ¹¹) 7—113

I [423]	Birge [423]	Hend- rick [650]	Leif- son [459]	Spo- ner [512]	v'—v'' [423]		I [423]	Birge [423]	Hend- rick [650]	Leif- son [459]	Spo- ner [512]	v'—v' [423]
6	1785.1	84.9	-	-	4-7		2	1480.9	80.2	1		5-2
8d	74.9	72.9	-	-	0-4		2	78.0	1	80.2	77.2	2-0
7	47.3	47.1	-	-	2-5		2	75.4	-	10-1		12-6
3	43.5	43.5	1	1-1-1	5-7	plus.	1	73.0	D mail	-	11-1	14-7
8d	29.5	29.5	-		1-4	1	3	63.7	63.4	-	-	4-1
6	23.9	23.7	-	-	4-6		3	52.4	52.2	-		6-2
7	12.2	12.2	-	-	0-3		1	47.0	-	50.3	47.2	3-0
6	05.3	04.8	-	-	3-5		1	43.7	1.20		_	8-3
1	1698.8	-	-	-	1007 100	1110	1	38.7	Distant.	da <u>so</u> t/	-	N MIL
1	88.5	-	-	-	2-4?	200	2	35.6	35.3			5-1
1	85.3	84.9	-	-	5-6		3	26.1	25.8	-	-	7-2
6	69.9	69.7		-	1-3	D	2	19.0	-	21.9	18.9	4-0
1	66.7	-	-	-	4-5		1	. 14.0	-	-	-	11-4
4	53.3	-	-	-	0-2		1	11.4	-	_	1-011	13-5
5	48.2	47.8	-		$3-4^{1}$)	10 to	2	09.0	08.8	1011	0000	6-1
6	. 30.3	ans <u>X</u> -1		and and	$2-3^{2}$)		1	05.5	(malanti	1-1-1	-	
3	29.6	29.6	-		10-40	1015	1	04.0	-	-	-	1 . 1 · · ·
1	23.4		-	-	10-8?		2	01.1	01.1	-	-	8-2
2	15.1	-	-	-	$7-6^{3}$)		2	1395.7	-	-	_	10-3
3	11.7	11.5	-	-	4-4		1	92.2	-	94.7	92.3	5-0
1	03.3	_	-		9-7?	1000	1	86.4		-	100	
3	1597.4	97.4	10000	1-11	0-1	1723	1	84.4	84.0	1		7-1
1	96.1	95.8	-		$6-5^{4}$	1.16	1	78.1	78.0		-	9-2
4	76.5	76.8	-	-	$2-2^{5}$		2	74.1	73.7	-		11-3
5	59.3	59.6	-	-	$1-1^{6}$)		2	71.8	_	-	-	13-4
3	45.1	45.3	45.6	44.2	$0 - 0^{7}$		1	68.0	-	69.0	67.4	6-0
5	42.2	42.4	-	-	3-2	-	2	61.3	63.3	_	nth in	8-1
2	34.2	-	-		8-5		2	56.1	56.0	1-1	101 19	10-2
3	27.6			-	5-3	-	1	53.6	-	-	6504	12-3
2	26.0	25.7	-	-	$2-1^{8}$)		1	43.0		45.2	1	7-0
1	20.4	-	-	-	12-7		1	39.0	-	-		9-1
3	15.7	15.7	-	-	7-4		1	35.0	-	-		11-2
2 .	10.7	10.4	11.7	09.4	$1-0^{9})$				16.0	23.2		8-0
2	06.8	-	-	-	9-5				1299.3	02.3		9-0
3	1497.8	-		-	6-3				80.5	83.0		10-0
3	93.8	92.6	-	-	3-1				-	64.6	1000	11-0
2	88.0	-	-	-	8-4							

Die Kantenformel nach Birge [423] lautet:

 $\nu = 64737 + (1497.28 \text{ v}' - 17.24 \text{ v}'^2) - (2149.74 \text{ v}'' - 12.703 \text{ v}''^2).$

Estey [647] gibt eine andere Kantenformel

 $\nu = 64729.60 + (1497.63 \text{ v}' - 17.24 \text{ v}'^2) - (2149.74 \text{ v}' - 12.703 \text{ v}''^2).$

Das Endniveau stimmt offenbar mit dem der Banden von Cameron überein und entspricht dem normalen Zustand des nichtangeregten CO-Moleküls.

¹) 6—6?	²) 5—5.	³) 1-2?	4) 3-3?	5) 5-4?	6) 4-3.
7) 6-4.	⁸) 10-6?	⁹) 4-2.	10) 13-6.	11) 9-3.	12) 12-4.
Kayser u. K	onen, Spektroskopie.	VIII.		20	

Birge [423] bespricht noch die Intensitätsverteilung in den Banden, ebenso wie Condon [431]. Die von Leifson [459] gemessenen Absorptionsbanden entsprechen den Kanten 1—0 bis 11—0. Sie sind im allgemeinen um etwa 1.3 Å größer als die Zahlen von Lyman, weil bei ihm die Messung sich auf den Mittelwert der beiden Kanten jeder Bande bezieht. Die Feinstruktur ist noch unbekannt, doch gibt Estey an, jede Bande habe einen P-, Q- und R-Zweig.

Von anderen Arbeiten über dieses Bandenspektrum seien noch erwähnt: Duffendack und Fox [479] erregen durch Elektronenstoß die verschiedenen CO-Spektren und finden, daß 8 Volt für dieses Spektrum erforderlich seien.

Knauß [535] bringt CO mit nachleuchtendem Stickstoff zusammen und findet so eine ganze Anzahl Banden der 4. positiven Gruppe zwischen 2194 und 1410 Å, aber keine Banden der 3. positiven Gruppe.

2. (Nr. 9 der Liste) Die Cameron-Banden.

Cameron [428] erhielt in weiten Röhren mit Kohleelektroden, die neben einer Spur CO namentlich Ne enthielten, mit nichtkondensierter Entladung neue Banden, die man Cameron-Banden genannt hat. Auch bei geringem Ar-Zusatz waren die Banden schwach sichtbar. Die Banden sind nach Rot abschattiert und haben je 5 Kanten. Cameron hat 12 Banden gemessen; weitere waren wohl noch sichtbar, aber nicht meßbar, weil sie zu lichtschwach und durch andere Banden gestört waren.

Johnson [456] gab zuerst an, diese Banden hätten dasselbe Endniveau, wie die Banden der 4. positiven Gruppe, gehörten also auch zum neutralen CO-Molekül. Theoretische Betrachtungen dazu stellen Mulliken und Birge an, diese werden von Johnson [457] mitgeteilt. Johnson bespricht auch den Zusammenhang mit der 3. positiven Gruppe und ist der Ansicht, daß das Endniveau der 3. Gruppe mit dem Anfangsniveau der Cameron-Banden zusammenfalle. Siehe dazu Birge [423], der auch eine Formel für die Kanten dieser Banden angibt, die aber aus den Daten für die 3. und 4. positive Gruppe abgeleitet ist, da die Cameron-Banden nur unvollständig bekannt sind. Die Serie v'' = 0 fehlt bisher noch ganz und v'' = 1 ist noch nicht ausgemessen. Die Formel lautet:

$$v = K + (1724.78 v' - 14.47 v'^2) - (2149.74 v'' - 12.70 v''^2),$$

wobei K = 48529.9, 48492.4, 48473.6, 48455.6 und 48426.3 ist. Herzberg gibt für diese Banden das folgende Kantenschema:

v'	v" = 2	3	4 :	5	6	7	8
0	2257.7	2369.0	2491.0	- 121 -	PRINT MARK		-
1		2277.0	2388.8	2510.9	- Sur Andre	-	The Lat
2			_	2409.2	2531.9	-	-
3		8 8 18	11.1	-	2430.3	2553.3	-
4				-	-	2451.8	2575.3

Kantenschema der Cameron-Banden nach [530].

Hopfield [489] teilt mit, er habe in Absorption bei kaltem CO die Banden 0-0 bis 0-4 gefunden, gibt aber keine Messungen. Die Messungen von Cameron [428] sind die folgenden: Kohlenstoff Cameron-Banden nach [428]

2257.7 (0)	2277.0 (0)	2369.0.00	2388 8 (1)	9404 9 (1)
59.5 (0)	78.5 (0)	71.2 (0)	91.1 (1)	11 4 (1)
60.3 (0)	79.6 (0)	72.2 (1)	92.1 (2)	12.5(2)
61.2 (0)	80.5 (0)	73.3 (1)	93.1 (2)	13,5 (2)
		75.0 (0)	94.8 (1)	15.3 (1)
2430.3 (0)	2451.8 (0)		2510.9 (0)	2531.9 (0)
32.4 (0)	53.9 (1)	2492.9 (1)	13.7 (1)	34.5 (1)
33.4 (1)	55.0 (2)	94.4 (1)	14.9 (2)	35.6 (2)
34.5 (1)	56.0 (2)	95.7 (1)	16.2 (2)	36.7 -
36.2 (0)	57.8 (1)	97,5 (1)	17.8 (1)	38,6 (1)
	2553.2 (0)		2575.3 (0)	10-12-11 -11-1
	55.9 (1)		77.7 (3)	
	57.1 (2)		79.1 (2)	
	58.2 (2)		80.2 (2)	
	60.2 (1) -		82.2 (1)	

Als Wert für das Anregungspotential findet Johnson [456] 6.0 Volt. Knauß und Cotton [664] finden, daß die Banden bei der Ringentladung nur bei sehr starker Anregung auftreten. Sie besprechen die veränderte Intensitätsverteilung und geben an, dabei die Bande (0,1) erhalten zu haben. Der Vollständigkeit halber soll hier auch noch die Kantenformel Johnsons [456] angegeben werden:

 $v = K + (1728.8 v' - 14.6 v'^2) - (2151.7 v'' - 12.7 v''^2),$

wobei K = 48534.3, 48496.5, 48478.2, 48461.0 und 48431.2 ist.

Das Kantenschema von Johnson [456] stimmt mit dem von Birge, das oben angeführt ist, überein.

Die Cameron-Banden, die den Endzustand der 3. positiven Gruppe als Anfangszustand und den Anfangszustand der 4. positiven Gruppe als Endzustand haben, sind nach Rot abschattiert, was anzeigt, daß das Trägheitsmoment kleiner als dieser Wert wird. Das allgemein angenommene Trägheitsmoment für die Cameron-Banden ist 14.9×10^{-40} gv cm².

3. (Nr. 10 der Liste) Die 3-A-Banden.

Die 3-A-Banden wurden zuerst von Asundi [556] gefunden und als selbständige Bandengruppe behandelt. Die Banden haben nach [556] fünffache Kanten und sind sehr lichtschwach. Daher werden sehr lange Belichtungszeiten erforderlich. Da die Banden im Gebiet von 2295—2711Å liegen, wird bei der (0,0) Bande die Luftabsorption schon merklich, so daß 30 Stunden Belichtung erforderlich war. Die 5. Kante hat die Intensität 5 während die 1. eine Intensität 2 hat. Daher erscheinen die Banden bei geringer Dispersion doppelkantig [479]. Die Elektronenterm-Aufspaltung zwischen den Köpfen der (0,0)-Bande ist 70ν mit der Tendenz, ebenso wie bei der 3. positiven Gruppe, nach höheren Schwingungszuständen abzunehmen. Die (0,4)-Banden zeigen eine Elektronenterm-Aufspaltung von 65ν . Die Analyse der Grobstruktur der 3-A-Bande folgt in der nächsten Tabelle nach [556]:

	v'' = 0	1	2	3	4
	(2295.9 (0)	2380.75 (2)	2489.94 (2)	2596.93 (2)	2711.40 (2)
in white the		88.95 (1)	89.07 (0)	95.94 (1)	10.25 (2)
$\mathbf{v}' = 0$		88.51 (1)	88.69 (0)	-	-
	-	86.95 (2)	87,11(1)	93.84 (0)	08.09 (0)
are mentally	2292.22 (3)	85.89 (5)	85.81 (5)	92.56 (5)	06.59 (5)

Die Kantenformel für die 3-A-Banden lautet nach [556]

$$v = v_0 - (1726.5 v'' - 14.4 v''^2).$$

Der Endzustand der 3-A-Banden ist mit dem der 3. positiven Gruppe identisch; während die Elektronenterm-Aufspaltung für die 3-A-Banden 69.9ν ist, ist sie für die (0,0)-Bande der 3. positiven Gruppe 102.5ν . Es ergibt sich also ein Unterschied von 32.6ν , der so erklärt werden kann, daß die 3-A-Banden einem ${}^{5}\Pi \rightarrow {}^{5}\Pi$ -Übergang zugeordnet werden.

4. (Nr. 11 der Liste) Kaplan-Banden.

Kaplan [661] berichtet über ein neues von ihm gefundenes Bandensystem. Er findet Kanten bei 2518, 2630 und 2750 Å. Daß diese Banden unter normalen Anregungsbedingungen nicht erscheinen, beweist, daß sie ein höheres Ausgangsniveau haben müssen, ein metastabiles Quintett-, Triplett- oder Singulett-Niveau. Die Cameron-Banden konnten unter den angewendeten Versuchsbedingungen nicht angeregt werden. Dies zeigt zusammen mit der Tatsache, daß die Cameron-Banden auch bei den besten Anregungsbedingungen nur sehr schwach kommen, daß Interkombinationen äußerst unwahrscheinlich sind. As und i deutet diese Banden als Quintettbanden, während Mulliken und Birge sie als Triplettbanden gedeutet haben.

5. (Nr. 12 der Liste) Die 5-B-Banden.

Nach Asundi [556] sind die 5-B-Banden nach Violett abschattiert und intensiver als die 3-A-Banden. Sie haben ebenfalls 5 fache Kanten, von denen aber die eine oder die andere fehlt, weil sie mit anderen Linien zusammenfallen und deshalb nicht gemessen werden können. Außerhalb der 3. Kante der (0,0)-Bande, die zuerst gefunden wurde, gibt es eine doppelkantige Bande, die wahrscheinlich dem CO_2 zuzuschreiben ist. Sie ist nach Rot abschattiert. Es ist leicht möglich, daß die ersten beiden Kanten der 5-B-Banden durch diese CO_2 -Banden verdeckt sind. Die folgende Tabelle gibt eine vorläufige Analyse nach [556]:

th all.	v" = 0	1	2	3	4	5
v' = 0	2661.87 (8) 60.42 (8) 58.80 (6)	2793.07 (6) 2789.11 (6) 87.37 (8) 85.80 (6)	2930.76 (3) 29.25 (3) 24.86 (2)	8079.90 (8) 78.40 (2) 75.73 (4) 73.49 (6)	3242.14 (8) 40.69 (6) 37.74 (6) 35.18 (8)	3419.17 (6) 17.49 (6) 14.65 (4) 11.52 (3)

Die Kantenformel lautet: $v = v_0 - (1726.5 \text{ v}'' - 14.4 \text{ v}''^2)$. Die Elektronentermaufspaltung der 1.—4. Kante ist etwa 67 v (3. positive Gruppe 68.3). Der Endzustand

der 5-B-Banden ist mit dem der 3. positiven Gruppe identisch. Hieraus wird für den oberen Zustand ein Δ - oder Σ -Zustand wahrscheinlich. Man kann diese 5-B-Bande als v' = 1 Folge der 3. positiven Gruppe auffassen. Obwohl Asundi [556] die Feinstruktur der 3. positiven Gruppe nicht untersucht hat, neigt er wegen des verschiedenen Gesamtbildes der Feinstrukturen der 3. positiven Gruppe und der 5-B-Banden zu der Ansicht, daß die 5-B-Banden selbst ein neues System bilden.

6. (Nr. 13 der Liste) Die 3. positive Gruppe.

Die älteren Messungen an dieser Bandengruppe stammen von Deslandres [111], Wolter [281], Birge [389], Duffendack und Fox [438] und von Asundi [556]. Die Bezeichnung 3. positive Gruppe stammt von Deslandres [111].

Die Banden der 3. positiven Gruppe sollen hier nach Asundi [556] besprochen werden. Sie liegen im Gebiet von 2825 bis 3493 Å und haben nur eine v"-Folge. Die Banden sind fünfkantig, die Elektronenterm-Aufspaltung beträgt 102.5ν für die (0, 0)-Bande. Die Elektronenterm-Aufspaltung wird mit größeren Schwingungszuständen kleiner, so daß sich für die (0,4)-Bande der Wert 91ν ergibt. Die Banden sind sehr lichtstark und, abgesehen von der komplexen Struktur der vielen Kanten, ebensogut aufzulösen wie die Angström-Banden. Die Feinstruktur ist bei den (0,0)- und (0,1)-Banden untersucht. Das Kantenschema von Asundi soll nun folgen:

	v'' = 0	1	2	3	4
d Junnah	2833.08 (7)	2977.38 (7)	3134.35 (7)	3305.66 (7)	3493.31 (5)
Witerster manife	30.15 (10)	74.49 (10)	31.47 (10)	02.76 (8)	90.44 (4)
$\mathbf{v}' = 0$	28.73 (9)	72.86 (9)	29.51 (9)	00.51 (6)	87.73 (9)
new dia 11	27.28 (8)	71.16 (5)	27.68 (5)	3298.43 (5)	85.36 (3)
	24.86 (8)	68.57 (7)	24.94 (7)	95.52 (5)	82.23 (5)

Die Banden (0,0) und (0,1) haben je 5 P-, Q- und R-Zweige. Jede Bande hat 5 Teilbanden ${}^{5}\Pi_{1}, {}^{5}\Pi_{2}, {}^{5}\Pi_{3}$ usw., jede dieser Teilbanden einen P-, Q- und R-Zweig. Die Intensitätsverteilung ist Q > P > R, was einen $\Sigma \to \Pi$ -Übergang anzeigt (s. [507]). A sun di [556] gibt eine Tabelle aller 15 Zweige und die Ausgangstermdifferenzen jeder der beiden analysierten Banden. Die Kantenformel wird zu

$$v = v_0 - (1726.5 \text{ v}'' - 14.4 \text{ v}''^2)$$

angegeben.

Molekülkonstanten 1	nach	[556]:
---------------------	------	--------

Anfangszustand	Endzustand
$\begin{array}{l} B_0{}'=2.243\\ I_0{}'=12.33\times 10^{-40}{\rm gcm^2}\\ r_0{}'=1.10\times 10^{-8}{\rm cm} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

7. (Nr. 14 der Liste) Die Merton-Johnson- oder Triplett-Banden.

Wenn ein für die Emission der Kometenschwanzbanden geeignetes Entladungsrohr so verwendet wird, daß noch etwas Wasserstoff hinzugefügt werden kann, so verschwin-

den die Kometenschwanzbanden vollständig und an ihrer Stelle erscheint ein wohl definiertes Triplettbandenspektrum, das nach Rot abschattiert ist. Außerdem finden sich noch Andeutungen des Swan- und Ångström-Bandenspektrums. Die dritte Bande jedes Tripletts hat eine Doppelkante. In der folgenden Tabelle geben wir die Messungen nach [346]:

6464.6]	5554.1	4996.9
6433.1 (10)	5532.5	4979.0
6403.8 (10)	5509.7	4960.5
6399.0	5507.1	4958.2]
		4949.8
6348.7	5428.3	4935.5
-	5414.5	4920.0 (2)
6319.8		4917.1
6037.0	5402.5	4000 F]
		4823.0
6989 1]	5351.8]	4806.7 { (8)
0000.1	5330.5	_
0040.1 { (1)	5309 5 (5)	4787.3 J
0010.0	5907.9	4764.8]
0319.0 J	0001.2)	4747.5
		- { (0)
6037.0]	5258.3	4729.1
6010.5 (8)	5238.4 (5)	
- ((0)	- [(0)	4602.6
5980.7	5215.3	*c 4586.4 { (7)
		*c 4572.2
5836.9	5140.3	4569.2 J
5812.1	5128.1	4556.8
5780.9	71.45.01 - 22.05 (5)	4541.3 (5)
5777.1	5116.2	4526.2
		4524.7
5670.5]	5070.9]	4454.5]
5647.6 (0)	5052.7	4445.5
5626.0 (6)	5033.8 (8)	4438.0 (1)
*c 5621.7	5031.7	4436.4
	the second se	

*c = fallen mit anderen Banden zusammen.

Als Kantenformel finden Merton und Johnson [346]:

$$\begin{split} \nu &= K - 9.5665 \left(m + \frac{1}{2}\right)^2. \\ K &= A_{1, 2, 3', 3} \text{ bzw. } B_{1, 2, 3', 3}. \\ A_1 &= 47095, \ A_2 &= 47169, \ A_3' = 47243, \ A_3 &= 47252 \\ B_1 &= 45380, \ B_2 &= 45453, \ B_3' &= 45527, \ B_3 &= 45536. \end{split}$$

Die in der obigen Tabelle in Klammern angegebenen Werte sind die m in der Formel. Die Verfasser geben in ihrer Tabelle noch eine ganze Reihe anderer Zahlen,

deren Bedeutung, ob Banden- oder Linienhäufung, nicht ganz klar ist, und die hier deshalb nicht angeführt werden.

Mecke rechnet im Handbuch der Physik Geiger-Scheel Bd. 21 p. 547 (1930) die Triplettbanden zu C_2 ohne Angabe der Gründe. Er gibt als Formel

$$v = \begin{cases} 15540\\ 15632 \end{cases} + (1105 \text{ v}' - 9.8 \text{ v}'^2) - 1714 \text{ v}''.$$

Die gleiche Formel gibt Birge an (Bull. Nat. Res. Council, Nr 57 p. 231), aber er vermutet als Träger der Banden CH?

Merton und Johnson [346] deuten die Banden als zu einem ${}^{3,5}\Pi \rightarrow {}^{3,5}\Pi$ -Übergang gehörig.

8. (Nr. 15 der Liste) Die Banden von "Asundi".

Bei Gelegenheit der schon oben erwähnten Untersuchung über die 3-A- und 5-B-Banden findet Asundi [556] eine neue nach Rot abschattierte Bandengruppe, die weit ins Ultrarot reicht, und daher nur mit geringer Dispersion und Genauigkeit zu messen ist. Es werden nur die beiden ersten Kanten der kompliziert gebauten Bandengruppe gemessen. Einige Kanten fallen scheinbar mit dem Triplettsystem von Merton und Johnson zusammen, das bei Asundi aber nur sehr lichtschwach war. Da beide Systeme sich teilweise überdecken, ist eine Einordnung unterhalb 5700 Å noch nicht möglich. Asundi [556] gibt unter der Voraussetzung daß die erste bei 8592 beobachtete Bande die (1,0)-Bande ist, das folgende Kantenschema, in dem die beiden gemessenen Kanten jeder Bande enthalten sind.

v'	$\mathbf{v}^{\prime\prime}=0$	1	2	3
1	8592	_		_
	-			_
2	7833.9		_	_
3136410	7888.0	and an other states of	had an a start and a start of the start of t	tan ann <u>A</u> leis an
3	7210.4	8222.5	wight in day So	inden Leven uit
nd no/	7257.0	8281.0	a Birre-Bills de	iner Mitteribrane vo
4	6685.7	7552.5		D. Mall-A.H. ha
	6726.3	7598.0	-	_
5	6244.0	6890.2	_	
els rede	6275.0	int' dalla <u>m</u> ericiatione	A	om normiolo .
6	5861.0	6513.5	7314.0	siving all and
	5889.0	6551.0	7359.0	mineral - Carbon
7	_	6105.2	6804.0	
		_	6841.5	
8	and a second second second	5749.1	6366.9	7116.5
Contraint,		5775.9	_	_heitieds

Kantenschema der Asundi-Banden nach [556]:

Asundi gibt [556] folgende Kantenformel:

 $\nu = 10491 + (1154.4 \text{ v}' - 9.5 \text{ v}'^2) - (1721.5 \text{ v}'' - 13.7 \text{ v}''^2).$

Aus dieser Formel ergibt sich, daß auch diese Bande als Endniveau dasjenige der 3. positiven Gruppe hat. Über das Ausgangsniveau lassen sich ebenfalls Angaben machen. Hopfield und Birge [489] fanden als CO-Niveau 58927. Nimmt man an, daß ein Übergang von diesem zum Endniveau der 3. positiven Gruppe 48438 cm⁻¹ existiert, so erhält man Banden nach der Formel

$$\nu = 10489 + (1155 v' - 9 v'^2) - (1726.5 v'' - 14.4 v''^2),$$

was bei der geringen Meßgenauigkeit mit der obigen Formel übereinstimmen dürfte. Ähnliche Angaben bei Estey [647].

9. (Nr. 16 der Liste) Die "Herzberg"-Banden.

Herzberg fand bei der Untersuchung von CO in der elektrodenlosen Ringentladung [529] von den Ångström-Banden nur die Gruppe a, Gruppe b höchstens angedeutet, dafür aber dicht neben den b-Banden eine neue Bandengruppe, die sich als Herzberg-Banden in der späteren Literatur genannt finden. Herzberg gibt für seine Banden folgendes Kantenschema:

v'—v''	2	Int.
0-0	3680.9	4
0-1	3893.1	7
0-2	4124.8	7
0-3	4300.3	7
0-4	4661.3	5
0-5	4972.8	2
0-6	5318.4	1
0-7	5705.9	0

Die Kantenformel lautet bei Herzberg [529]:

 $v = 27160.6 - (1497.3 v'' - 17.2 v''^2).$

Man sieht, daß der Endzustand der der Ångström-Banden ist. Aber die Herzberg-Banden lassen sich nicht in das Schema der Ångström-Banden einordnen. Nach einer Mitteilung von Birge fällt der Anfangszustand zusammen mit einem von ihm und Hopfield [489] gefundenen Elektronenterm, der wahrscheinlich 91923 cm⁻¹ entspreche.

Johnson und Asundi [597] beschäftigen sich mit diesen Banden, geben aber nur die ersten vier Glieder an. Sie untersuchen die Feinstruktur der (0,1), (0,2)und (0,3)-Banden. Jede Bande hat danach einen P-, Q- und R-Zweig, Sie ordnen die Banden einem ${}^{1}\Sigma \rightarrow {}^{1}\Pi$ -Übergang zu. Auch Duffendack und Fox [479] haben die 3 ersten Glieder der Gruppe beobachtet. Die Banden sind nach Violett abschattiert.

10. (Nr. 17 der Liste) Die "Ångström"-Banden.

Zu diesem nach Violett abschattierten Banden lieferten McLennan, Smith und Peters [411] neue Messungen. Da die Verfasser ein Prisma verwenden und bei 9000 Å eine Dispersion von 150 Å pro mm, bei 6000 eine solche von 70 Å pro mm haben, sind die Messungen wohl sehr ungenau. Die Autoren teilen ihre Banden in Gruppen, die sie mit I, Π_a , Π_b und Π_c bezeichnen. Die Gruppe I enthält nur die drei ersten von Ångström und Thalén gemessenen und mit a bezeichneten Kanten. Es folgen die Messungen nach [411]:

		and the second se					
7888 (1) II _c	7208 (3) II _b	6882 (0) II _e	6512 (5) II _a	5889.0	(2)	IIa
38 (1) II _c	7158 (0) II _c	41 (2) II _b	6397 (3) II _a	61	(2d)	IIa
7600 (2) II _c	34 (1) II _c	20 (2) II _b	67 (4) II _a	5775.9	(1)	IIa
7574 (1) II _c	17 (0) II _c	04 (2) II _b	6275 (3) II _a	61	(0)	IIa
53 (2) II _c	7060 (1) II _c	6725 (2) II _a	56 (3) II _a	48	(2)	IIa
7359 (0) II _e	39 (0) II _c	04 (1) II _a	44 (4) II _a	5687	(1)	IIa
37 (1) II _e	29 (3) II _b	6685 (3) II _a	6136 (2) IIa	68	(2)	II.
14 (1) II _c	07 (0) II _b	49 (0) II _b	20 (2) IIa	59	(3)	II.
7257 (1) II _b	6988 (2) II _b	6620 (9) I	04 (3) IIa	5609	(7)	I
46 (2) I	84 (0) II _a	6549 (3) II _a	6080 (7) I			
29 (2) II _b	-	30 (2) II _a	5980 (2) II _a	10000		

Die drei von Ångström und Thalén gemessenen Kanten sind in der Tabelle [411] enthalten. Es ist im Zusammenhang mit der Angabe, daß die Banden nach Rot abschattiert seien, sehr auffällig, daß diese starken Kanten (mit I bezeichnet) bei Mc Lennan usw. [411] fehlen.

Die erste eingehende Behandlung hat das Spektrum durch Hulthén [341, 342] erfahren. Er wendet die Kombinationsbeziehungen auf eine größere Anzahl der von Ångström und Thalén mit a bezeichneten Banden und auf eine der b-Banden an und kann zeigen, daß 1. jede Bande aus P-, Q- und R-Serien besteht, 2. alle Banden den gleichen Endzustand haben und 3. das Anfangsniveau der b-Banden um 2180 cm⁻¹ höher als das der a-Banden liegt. Die Bande 4511, die auch zur Gruppe a gerechnet wurde, hat einen anderen Bau. Die Gruppen a und b lassen sich durch die Formeln

$$\begin{split} \nu &= 22154.6 - \mathrm{v'} \; (1487.05 - 14.85 \; \mathrm{v'}) \\ \nu &= 24235.4 - \mathrm{v'} \; (1487.05 - 14.85 \; \mathrm{v'}) \end{split}$$

darstellen.

Birge [423] vergleicht die nach seiner Formel

$$v = 22156.6 + (2158 v' + 76 v'^2) - (1497.28 v'' - 17.2 v^2)$$

berechneten Kanten mit den Messungen von Loos [157], Hulthén [341], McLennan, Smith und Peters [411], Jassé [452], Watts [174] und Ångström und Thalén [60]. In der nachfolgenden Tabelle, die als Grundlage für die Einordnung von Birge (s. übernächste Tabelle) diente, sollen diese Messungen und Berechnungen nach Birge mitgeteilt werden.

λ in Å. berechnet	ν berechn.	Loos [157]	Hulthén [341]	McLennan [411]	Jassé [452]	Watts [174]	Ångström u. Thalen [60]	Int.
4512.6	22156.6	+ 5.8	-	-	+ 6.2	+ 6.2	+ 8.7	4
4835.0	20676.6	-1.0	-1.3	-		-0.7	+ 1.0	4
5198.5	19231.0	+ 1.2	+ 1.2	-	-	+1.2	+ 0.7	5
5610.1	17819.9	+ 0.3	+ 0.0	+ 3.6	-	+ 0.2	+ 4.3	5
6079.8	16443.3	-	-	-1.9	-	+2.8	+ 1.4	4
6620.2	15101.2	-	-	-0.3	_	_	- 7.2	3
7247.1	13793.6	-	-	+ 3.3				-
4124.7	24237.6	+ 8.2	-	-	+ 6.4	+8.6	- 44.8	3
4392.9	22757.6	-0.5	-1.1	-	-	-0.5	- 12.4	3
4690.9	21312.0	-	-	-	-		- 33.7	2
5023.5	19900.9	-	-		-		+28.6	2
5396.8	18524.3	-	-		-	-	- 6.8	3
5818.4	17182.2			-	-	-	+ 0.2	3
6298.6	15874.6	-	-		-		- 5.2	2
3820.9	26164.6*	-	-		-	-	-	-
4050.0	24684.6*	-	_	-		-	-	
4301.9	23239.0	and Taken	-			_	+ 3.3	1
4580.0	21827.9	1.1.1.1.1.1	-	0	-		- 6.1	1
4888.3	20451.3*	-	-	-	-	-	-	-
5231.6	19109.2*				PP	-	-	-11
5615.9	17801.6*	-	-			-	-	-

Angström-Banden des CO nach Birge [423].

* Diese Kanten sind also bisher noch nicht beobachtet.

Ein Kantenschema der a- und b-Banden stellt Birge [423] auf.

v'	v" = 0	1	2	3	4	5	6	and han
0	4512.6	4835.0	5198.5	5610.1	6079.8	6620.2	7247.1	a-Banden
1	4124.7*	4392.9	4690.9	5023.5	5396.8	5818.4	6298.6	b-Banden
3	(3820.9)	(4050.0)	4301.9	4580.0	(4888.3)	(5231.6)	(5615.9)	

Kantenschema der Ängström-Banden nach [423].

* Herzberg [529] gibt für diese Kante 4123.4 Å. an, Duffendack und Fox [479] 4126.4

Die eingeklammerten Banden für v' = 3 sind sehr zweifelhaft, da sie bisher noch nicht gemessen sind. Nur die beiden Kanten 4301.9 und 4580.0 Å wurden von Ång-ström und Thalén gemessen.

Die Banden 5610, 5198 und 4835 haben denselben Anfangszustand des Moleküls gemeinsam. Aus den Nullinien dieser 3 Banden kann das Kernschwingungsspektrum des Systems als

$$\nu = 20682.4 - 1457.35 \text{ p} + 15.84 \text{ p}^2$$

dargestellt werden.

In der schon mehrfach angeführten Arbeit von Birge [423], die zum erstenmal Ordnung unter den zahlreichen Banden schafft, bespricht er ausführlich sowohl die

anderen zu CO gehörenden Bandensysteme, als auch das System von Ångström und Thalén. Birge hat auch zuerst den Beweis dafür geliefert, daß diese Banden wirklich zu CO gehören, und zwar auf folgendem Wege: Deslandres hatte eine Gruppe von Banden gemessen, die er als 4. positive Gruppe des Kohlenstoffs bezeichnete, und Lyman [193] hatte eine Reihe von Banden im Schumann-Gebiet gefunden, die er 5. positive Gruppe nannte. Birge [422] fand bei einer Analyse dieser Banden, daß sie zusammengehören. Er fand weiter, daß die Serie v'' = 0 dieser Banden sich bei Leifson [459] in Absorption durch kaltes CO findet, und damit war der Träger dieser Banden (4. und 5. positive Gruppe) als CO erwiesen. Gleichzeitig fand sich, daß das obere Niveau dieser Gruppe gleich dem unteren Niveau der Ångström-Banden ist, und damit war auch für die Ångström-Banden der Beweis geliefert, daß nur das CO der Träger des Spektrums sein kann.

Birge bespricht auch die beiden von Hulthén als nicht zu diesem Spektrum gehörig bezeichneten Banden λ 4512 und 4124 als zu den Ångström-Banden gehörig. Er findet das bestätigt durch die neueren Messungen von Jassé [452].

Johnson und Asundi [597] nehmen in ihr Kantenschema nur 8, allerdings absolut sicher gemessene, Linien auf und deuten die Banden als einen ${}^{1}\Sigma \rightarrow {}^{1}\Pi$ -Übergang. Rosenthal und Jenkins machen [616] Angaben über die Bande 4512.

Elektronenzustand	Schwingungszustand	10 ⁻⁴⁰ g cm ²	r (Å)
2 1 <i>1</i> 1	0	17.343	1.2384
2 ¹∏	1	17.463	1.2427
2 ¹ II	2	17.898	1.2589
2 ¹ II	3	18.119	1.2658
2 ¹ II	4	18.310	1.2724
2 ¹ II	5	18.615	1.2832
2 ¹ <i>S</i>	0	14.2547	1.1228
3 1 <u>S</u>	0	14.234	1.1220

Johnson und Asundi geben [597] die folgende Tabelle der Molekülkonstanten:

Duffendack und Fox [479] finden für die Ionisierungsspannung 10.7 Volt.

Eine sehr wichtige Arbeit von Kemble, Mulliken und Crawford [496] beschäftigt sich eingehend mit dem Zeeman-Effekt der CO-Spektren. (Ältere Messungen finden sich bei Deslandres und Fortrat Bd VII p. 146). In dieser Arbeit wird die Theorie bestätigt, daß die Gesamtzahl der äquidistanten Komponenten durch 2 J + 1, die Gesamtbreite der Aufspaltung durch $\Delta v = \frac{2\Delta v_n}{J+1}$ dargestellt wird, wobei Δv_n die normale Zeeman-Aufspaltung ist. Auch die erwarteten Intensitäten der einzelnen Komponenten werden in dieser Arbeit berechnet und an den CO-Banden bestätigt. Analysiert werden die Banden 5610 (0,3), 5198 (0,2) und 4835 (0,1)Å. Die Zeeman-Typen für P (1) und Q (1) bestehen aus symmetrischen Tripletts mit der Aufspaltung $0.95 \Delta v_n$. Die Linien M > 2 sind nur teilweise aufgelöst, zeigen aber charakteristische Eigenschaften, die sich mit der Theorie decken.

Die höheren Q-Linien bilden in der parallelen Polarisationsrichtung Dubletts und in der senkrechten verbreiterte Singuletts. Bei den P- und R-Zweigen ist das Umgekehrte der Fall. Weitere Einzelheiten müssen in der Originalarbeit nachgelesen werden. Die Analyse dieser Banden beweist die Richtigkeit der Zuordnung dieser CO-Banden zu einer ${}^{1}\Sigma \rightarrow {}^{1}\Pi$ -Kombination.

III. Die Banden des ionisierten Kohlenoxyds CO+.

Drei Bandenspektren vom CO⁺ sind bisher bekannt geworden:

- 1. Das Kometenschwanz-Spektrum.
- 2. Die erste negative Kohlegruppe.
- 3. Die Baldet-Johnsonschen Kombinationsbanden.

1. Das Kometenschwanz-Spektrum.

Fowler [190] fand, wie schon in Bd VII p. 142 mitgeteilt wurde, das zuerst in Kometenschweifen beobachtete Spektrum in Geißlerrohren mit sehr geringem Druck von wenigen Zehntel Millimeter. Das Spektrum ist seither wiederholt untersucht worden. Merton und Johnson [346] erhielten das Spektrum sehr lichtstark, durch Zusatz von CO-Spuren zu He von 20—30 mm Druck. In gleicher Weise untersuchte es Johnson [406] und fügte noch eine Reihe Banden nach kurzen Wellenlängen hinzu. Dann hat Baldet [384] die Banden gemessen, und endlich beschäftigt sich Herzberg [530] eingehend mit ihnen. Die Zahl der Gruppen wurde von Johnson etwa verdreifacht. Jede Gruppe besteht aus zwei Banden, die nach Rot abschattiert sind, deren jede 2 Kanten hat. Während Johnson nur eine empirische Formel gibt, die Banden in drei Gruppen teilt — es handelt sich um v'' = 0, 1, 2 —, stellt Herzberg eine Kantenformel auf, die im folgenden mitgeteilt werden soll:

 $\nu = \frac{15716.5}{15591.5} + (1626.56 \text{ v}' - 13.30 \text{ v}'^2) - (2198.6 \text{ v}'' - 15.00 \text{ v}''^2).$

Die beiden Zahlen für ν gelten für die 2. und 4. Kante jeder Bande, von kurzen Wellen an gerechnet. Birge [389] gibt für die Kanten kürzester Wellenlängen die Formel

 $v = 20485.4 + (1550.46 \text{ v}' - 14.07 \text{ v}'^2 + 0.043 \text{ v}'^3) - (2198.6 \text{ v}'' - 15.00 \text{ v}''^2).$

Mecke bringt (Phys. Z. 28 p. 514 [1927]), eine abweichende Einordnung, die die Bande 4883.9 als (0,0)-Bande hat, während Herzberg von der Bande 6361 ausgeht, wobei allerdings zweifelhaft bleibt, ob dies wirklich die Gruppe größter Wellenlänge ist. Durch die Einordnung von Mecke müßten die ersten 4 Banden von Baldet fortfallen. Die Kantenformel von Mecke weicht etwas von der obigen ab.

Über die Feinstruktur der Banden ist bisher noch nichts Endgültiges festgestellt, obwohl Baldet [385] und Blackburn [391] eine solche untersucht haben. Die obigen Kantenformeln beweisen, daß das Endniveau mit dem der 1. negativen Gruppe identisch ist.

Nach Cameron [428] erscheinen die Banden mit einem Heliumzusatz besonders stark, dagegen schwächer mit Ne, gar nicht mit Ar.

Duffendack und Smith [578] geben Messungen der Banden und ein Kantenschema, bei dem die Bande 4879 als (0, 0)-Bande genommen ist.

Die folgende Tabelle enthält die vorliegenden Hauptmessungen und die Einordnung durch Herzberg.

v'—v''	Herzberg [530]	Johnson [346 (406)]	Fowler [204]	Komet [206]	Duffendack [578]
Rach Karten	-		Lander _ Die b	7027.4	_
	-		-	6848.4	
00	6412] 1	pi na dala		bards - march	ell'an - Ste
	6361 J ²	1. P (277)	home - aler a	-	Same Bar
3-2	6245	6245.9 10	-	6254.5	-
	0-0	6239.1]	TANK	12.0121	-
	6196.4	6196.5 7		-	-
	-	6190.0		-	6189.06 (3)
2-1	6021	Ist van Dugb	10.07 - 52.00	6020	*(0, 2)
	5976] -	herrichten v	A STATE OF STATE	In yET WILL	in the second
5-3	5905.7	-	in the state of the state of the		
1.0	0802.3		-	That	5856.3 (0)
1-0	5780	_		T	+(2, 3)
1.9	5698.6	5609 1)		T	_
4-2	8	94.11 2			
	58.1	58.61		Section Provide	
	-	53.0	· _	deployee.	5659 75
3-1	5504.5	5504.71	5510	5562.7	*(1 9)
And the second second	2	00.3 10			(1, 2)
	5466.7	5466.8	5473	5482.2	
		61.9 7	_		5460.63
6-3	5430.5	-	-	_	*(0, 1)
	5393.9	-			_
2-0	5321] ,	bin der Bank	h the has been	-	incom_ non
10.41	5286 1 2	0	-	-1.5078	
5-2	5248	PERSONAL PROPERTY IN	-	5257.9	
	5214 / 2		-	- 2000	-
4-1	5075.9	5075.9	5078	5106.7	-
19.05	2	72.3	-	-	-0.
	43.7	43.8 5	-	-	-
		39.7]	-	1000	5039.03
3-0	4914.0	4914.0 6	-	4986.7	*(1, 1)
a summer of	1002.0	10.0	-	T	Tan
and the second	4000.0	80.01 3		T	4870 70
1000		00.0]			*(0, 0)
6_9	4869.0)			4879.0	(0, 0)
0-2	4839.6			4846.1	
5-1	4714.5)	_	4715.0	4721.9	
	4686.8 6	4687.01	4688.5	4695.3	
	_	84.3 1		_	4682.20
8-3	-1.	_			*(2, 1)
Y SHE	4668.0	_	-		_
4-0	4568.7	4569.6	4570.5	4575.8	-
10	8	66.2 7	-	- 3210	
The state of the s	4542.6	4542.9	4545.4	4549.2	-
Friday Contractor	-	39.9 4	_	- 100	4539.4
a state of the	-	-	-		*(1, 0)

Tabelle der Kanten der Kometenschwanzbanden.

v'—v''	Herzberg [530]	Johnson [346 (406)]	Fowler [204]	Komet [206]	Duffendack [578]
7—2	-] =	_	_	_	
	4521.0	- India	a ter - a talea	4522.7	_
6-1	4406.2	-	-	4411.9	_
	4381.4	_			
9-3	-1.		-	4387.7	-
	4381.4	Man-	Card and	4373	-
5-0	4273.9)	4274.3	4276.0	4279.0	-
	10	72.1		- 9519	-
	4251.3	52.5	4253.2	4256.9	-
	_]	49.1	-		4248.66
8-2	-1.	-	1 2 Di	4236.3	*(2, 0)
	4246.2	-	Carl - trendros		-
10-3	4153.8	4139.0 2	-	4143.7	-
	32.5	-	-	-	-
7—1	4140.4	4123.2 2	-	4114.0	
	19.4	-		and the second	4116.69
6—0	4019.8	4020.3 7	4020.4	4023.3	*(4, 1)
		18.1 7		here -	h Ha-hara
	3999.5	3999.9 5	4001.3	4003.4	-
		97.8 3	-	3990.6	3997.43
8—1	3909.9	-		3907.6	*(3, 0)
	3890.5		1000 + 1000 H	3898.2	
7—0	3797.4	3798.0 6	-	-	ing in- Roles
	0	96.2 6	ware the soll		-
	79.5	79.8 4	3781.0	3782.6	-
	_	78.2 2		+ 1980.	3777.86
9-1	3707.1	-	3707.5	3701	*(4, 0)
	3689.8	-	3693.0	3687	-
8-0	3602.3	3600.9 4	3602.0	3611	-
	3585.7	3585.9 2	3587.0	3586	3584.20
10—1	3527.0	-	-	3530	*(5, 0)
	11.7	-	-	3519	-
	-		-	3508	hang -te die
9—0	3429.2 5	3429.6 1	3429.0	3446	-
		28.1 1	- 19	3436	-
	14.6)	-	3415.0	-	3413.14
11—1	3367.0	-	-	3385	*(6, 0)
	52.9	-	-	3357	-
13 - 2	3315.5				
	02.1		and a the same	3294	The strain
10—0	3275.2	-	The	3269	-
	61.6	-	T	- 0.00	-
12-1	3223.5	-	-		-
11 0	10.7] =	-	-	T	-
14-2	3181.3			- post	-
11 0	69.1		A The second	a light the second	
11-0	3136.8	T (1) (1)		1	-
10 1	24.5	-	-	-	and all allow
13-1	0094.0	_	Trans.	_	_
	02.1				
In der ersten Spalte der vorstehenden Tabelle findet sich also die Einordnung nach Herzberg [530], in der nächsten 2. Spalte die Messungen Herzbergs [530] (oder die abgerundeten Zahlen von Baldet) für die 4. und 2. Kante jeder Banden-Gruppe von Violett aus gezählt. Die 3. Spalte enthält die Messungen Johnsons für alle 4 Kanten [346], soweit sie gefunden wurden. Die beiden dann folgenden Spalten geben die ersten Messungen Fowlers [204] und die Messungen im Kometenspektrum von de la Baume-Pluvinel und Baldet [206]. Die letzte Spalte enthält die Messungen von Duffendack und Fox [578], wobei unter der Linie die abweichende Einordnung dieser Autoren durch *(0, 1) angedeutet usw. zugefügt ist.

2. Die erste negative Gruppe von Deslandres.

Diese Banden sind zuerst von Deslandres [159] (C.R. 137 p. 457 [1903]) bei sehr geringem Druck im Kathodenlicht gefunden worden. Er teilte sie in 4 Serien ein und war der Ansicht, auch diese Banden hätten das C₂-Molekül zum Träger. Nachdem die Kometenschwanzbanden aufgefunden waren, hat wohl zuerst Lemon [409] ausgesprochen, daß diese und die Banden der ersten negativen Gruppe den gleichen Endzustand haben, aber nichts mit Deslandres 2. negativer Gruppe zu tun haben. Dasselbe meinte Blackburn [391], und Birge [422] bestätigte es entschieden.

Johnson machte als erster neue Messungen, wobei er diejenigen von Deslandres nach kurzen und langen Wellenlängen hin vervollständigte. Er erhielt das Spektrum bei Zusatz von CO zu He unter den gleichen Bedingungen, bei welchen das Kometenschwanzspektrum oder mit kondensierter Entladung die Linien des CI auftreten. Die Banden sind nach Rot abschattiert, bis auf zwei: 2895.5 und 2882.25.

Die Einordnung der Banden verdanken wir Johnson und Blackburn [391]. Im folgenden soll das Kantenschema der Banden nach den beiden Verfassern gegeben werden.

A CARLE LINE		TI		ann foorl.	
	v' = 0	1	2	3	4
v'' = 0	2189.8 (2)	2112.9 (1)	_		_
1	2299.55 (8)	2214.3 (1)	2137.0 (1)	_	_
2	2419.4 (10)	2325.05 (7)	2239.6 (0)	2163.7 (0)	
3	2550.35 (10)	2445.8 (10)	2352.45 (4)	2268.3 (1)	_
4	2693.9 (2)	2577.75 (10)	2474.2 (10)	2381.6 (1)	2296.85 (1)
5	bundLaneis	2722.3 (7)	2607.2 (9)	2504.55 (10)	_ (1)
6	Long T - Long	2882.25 (2)	2752.9 (6)	2638.75 (8)	2534.8 (1)
7	-	-	2913.25 (1)	2785.8 (5)	2672.35 (7)
8		_	_	2947.55 (1)	2820.85 (5)
9	1 -	_	-	-	2984.15 (2)
ned grabbers	v' = 5	6	7	8	9
v" = 8	2707.95 (3)	_	_	_	
9	2858.05 (4)	2745.4 (1)		_	
10	3022.95 (2)	2897.15 (3)	-		and the part
11		3064.05 (3)	2938.55 (1)	CCI NEODATO	a liomps
12	The second second second		3107.45 (2)	2984.15 (2)	2874.5 (0)
13			-	3152.7 (1)	-

Kantenschema der 1. negativen Gruppe nach Johnson [406] und Blackburn [391].

Auch Herzberg [530] hat diese Banden gemessen und ist nach seiner Angabe in guter Übereinstimmung mit Johnson bis auf die Bande 2534.8, die er zu 2536.7 angibt. Die Banden 2897.2, 2895.5, 2883.6 und 2882.3 sind bei Johnson schwach, während sie bei Deslandres [159], Herzberg [530] und Ganesan [444] zu den lichtstärksten gehören. Herzberg und Ganesan meinen, daß diese Banden nicht zu diesem Bandensystem gehören. Besondere Schwierigkeiten bei der Einordnung haben die beiden Banden 2896 und 2883 gemacht. Fowler hat ihnen den Namen "H und K"-Banden gegeben. Petterson meint [542] sie könnten zum CO, gehören. Jevons [368] bemerkt, daß eine Anzahl von Linien, die seinerzeit Schniederjost als Linien des O I angegeben hat, nichts anderes als Kanten des CO-Spektrums sind und zur 1. negativen Gruppe gehören. Er leitet auch eine empirische Kantenformel ab. Die Arbeit von Blackburn [391], aus der schon das obige Kantenschema mitgeteilt wurde, ist mit sehr großer Dispersion durchgeführt. Er benutzt zur Erzeugung des Spektrums die Methode von Lemon [409]: Durch eine weite lange Röhre wird He von 20 mm Druck immer wieder durchgepumpt und über aktiver Kohle gereinigt. Dann zeigt sich je nach der Stromdichte entweder das Kometenschwanzspektrum oder die 1. negative Gruppe. Wenn man das Rohr aber mit einer Flamme erhitzt, ändert sich die Farbe der Entladung von Rot in Blau, die genannten Banden verschwinden und dafür erscheinen die Ångström- und die Triplett-Banden. Die Banden sind so lichtstark, daß sie am großen Gitter untersucht werden können und ihre Struktur wenigstens annähernd geklärt werden kann, wenn auch eine Reihe Kanten unaufgelöst bleiben. Blackburn findet, daß die Banden sehr einfach sind, nur je einen P- und R-Zweig haben, während ein Q-Zweig völlig fehlt. Auch er hält einige der Banden von Deslandres für nicht zum System gehörig, findet einige neu und stellt ein Kantenschema auf, das in dem obigen enthalten ist. Seine Kantenformel lautet:

 $v = 45637.3 + 1701.09 v' - 25.65 v'^2 - (2199.12 v'' - 15.47 v''^2).$

Als Trägheitsmoment für Anfangs- und Endzustand berechnet er 8.07 und 6.78 \times 10^{-40} g cm.

Weitere Formeln für die Kanten der Banden finden sich bei Mecke [412], Birge [389], die aber erheblich voneinander abweichen. Es sei daher hier noch die Nullinien-Formel von Birge, Int. Crit. Tables V p. 409 (1929) angegeben.

 $v = 45637.7 + (1697.8 v' - 24.33 v'^2) - (2197.03 v'' - 15.17 v''^2).$

3. Die Baldet-Johnson- oder Kombinations-Banden.

Zusammen mit den Kometenschwanzbanden treten andere Banden ähnlich gebaut auf. Die Gruppen bestehen auch hier aus zwei Banden, deren jede 2 Kanten hat. Die Banden sind aber nach Violett abschattiert.

Baldet [359] hat zuerst einige derselben beobachtet. Dann hat Johnson [406] weitere gefunden, endlich haben Duffendack und Smith [578] noch 2 nach größeren Wellenlängen hinzugefügt. Die Banden heißen auch Kombinationsbanden, da sie nach Birge [422] eine Kombination zwischen dem Anfangsniveau der ersten negativen und der Kometenschwanzbanden bilden.

Sowohl Herzberg [530] als auch Duffendack und Smith [578] geben ein Kantenschema, von denen wir das letztere mitteilen wollen. Das Kantenschema ist für die erste Kante von Rot her aufgestellt.

v' v''	0	1	2	3
0	3978.29 (7)	4236.36 (5)	4524.89 (3)	
1.	3729.88 (5)	-	4205.74 (1)	4485.00 (1)
2	3515.8	the rest of the second second		
3	3331.9	oldetan 20140.00	a wahredwinten	cht. Sin geben a

Das Kantenschema ist also noch sehr lückenhaft und die Annahme, daß die Bande 3978 die (0.0)-Bande sei, ist noch unsicher, da Herzberg sie vorläufig als (0.3)-Bande einordnen möchte.

Eine Kantenformel für dieses Bandenspektrum gibt Mecke (Handb. d. Phys. 21 p. 544 [1930]).

 $\nu = \frac{25285}{25158} + (1697.8 \text{ v}' - 26.33 \text{ v}'^2) - (1550.5 \text{ v}'' - 14.07 \text{ v}''^2).$

In den drei zuletzt behandelten Bandenspektren des CO⁺ sind von den verschiedenen Beobachtern einzelne Banden nicht beobachtet worden, andere Banden werden von ihnen bezweifelt. Es würde zu weit führen alle diese Einzelheiten hier anzuführen. Da die Spektren des CO⁺ noch ungenügend bekannt sind, muß auf die Originalarbeiten verwiesen werden.

IV. Das Bandenspektrum des CO₂.

Das Bandenspektrum des CO₂-Moleküls und die Struktur des Moleküls sind heute gut bekannt. Im Zusammenhang mit Ramanspektren, Ultrarotspektren lassen sich aus den Bandenspektren des sichtbaren Gebietes alle erforderlichen Angaben über Struktur, Größe und Trägheitsmoment des CO₂-Moleküls mit Sicherheit machen.

1. Die zweite negative Gruppe von Deslandres.

Hof gibt [248] an, daß diese Banden ausschließlich in strömendem CO_2 an der Kathode auftreten, bei abgestelltem Gasstrom aber sofort verschwinden und durch die erste negative Gruppe von CO ersetzt werden. Dasselbe bemerkt Bair [270]. Deslandres und Hof finden bei ihren Messungen folgende rotabschattierte Banden:

Deslandres	Hof	Deslandres	Hof
3852.9 (8)	3852 (3)	3503.6 (8)	3502 (4)
49.5 (8)	49 (3)	3377.9 (7)	3377 (4)
3674.9 (8)	3675 (4)	75.4 (6)	75 (4)
71.0 (8)	71 (4)	72.8 (6)	72 (4)
63.0 (8)	63 (4)	3270.5 (8)	3270 (3)
3511.5 (9)	3511 (4)	54.6 (4)	54 (3)
06.8 (7)	06 (4)	51.0 (2)	51 (3)
03.6 (8)	02 (4)	49.4 (2)	49 (1)

Hof findet außerdem noch die Banden 3159.9 und 3153.2. Fox, Duffendack und Barker [482] haben ganz ähnliche Untersuchungen gemacht. Auch sie geben an, Kayser u. Konen, Spektroskopie, VIII. 21

daß die Farbe der Entladung violett ist, solange das Gas strömt, aber beim Absperren in Blau umschlägt. Sie erhalten ein Spektrum mit vielen Bandengruppen, welche ebenso wie die Einzelbanden nach Rot abschattiert sind. Es sei ein Gemisch verschiedener Bandensysteme. Die Banden reichen von 5000—2800 Å; eine große Anzahl der Kanten werden gemessen. Eine Aufklärung der Struktur des Spektrums finden sie nicht. Sie geben an, wahrscheinlich bildeten 3027.0, 3132.0, 3246.9, 3370.0, 3503.2 und 3647.8 eine Serie. Daneben erwähnen sie zwei sehr starke Gruppen bei 2881 und 2895, die nach ihrer Meinung nicht zum CO_2 gehören.

	_				
2849.5	4	2988.6	2	3264.6	9
56.4	5	90.3	2	69.9	10
62.5	6	3005.3	3	80.5	3
74.3	7	07.3	3	83.3	4
77.2	5	17.8	2	84.3	8
78.2	5	19.6	0	85.3	3
80.7	6	22.6	1	87.7	3
82.1	10	27.0	3	92.6	4
82.6	9	34.2	6	3301.1	4
83.1	10	43.9	5	70.0	10
90.4	7	48.6	6	72.5	5
95.4	10	58.3	5	75.2	3
95.9	9	63.5	5	77.5	10
96.4	10	67.7	5	82.2	5
907.5	0	72.1	4	86.2	3
10.2	0	90.0	5	88.9	7
16.3	0	3132.9	8	94.5	7
19.1	0	34.6	8	3396.9	3
24.8	1	35.7	6	99.4	4
25.2	1	36.7	9	99.9	3
28.3	1	39.2	9	3400.9	3
29.4	1	42.4	5	02.2	1
33.1	3	49.5	6	04.3	1
35.7	3	50.7	6	13.3	3
45.2	2	55.2	9	26.6	3
49.4	4	64.9	5	43.5	2
56.8	0	70.1	7	64.5	0
58.7	2	74.3	5	71.0	0
61.8	2	3246.9	10	3503.2	7
63.8	5	53.9	10	10.8	9

Tabelle der Kanten des CO₂-Spektrums nach [482].

Fox, Duffendack und Barker [482] geben außer der Tabelle auch eine Reproduktion ihrer Aufnahmen.

Duncan [579] untersucht die beiden Banden 2881 und 2895 näher. Obwohl er die 2. Ordnung eines großen Gitters benutzt (Expositionszeit 100 Stunden), erhält er keine genügende Auflösung der Banden. Es wurde schon oben erwähnt, daß diese beiden Banden, die von Fowler "H und K"-Banden genannt wurden, von Petterson [542] als zum CO_2 gehörig vermutet wurden. Duffendack und Smith [578] bekommen die Deslandresschen Banden, deren Identität mit den ihrigen sie aber nicht

322

bemerkt haben, auch in Gemischen von CO und O_2 mit He oder Ne, nicht mit Ar. Sie vermuten, daß der Träger des Spektrums das $(CO_2)^+$ sei. Das Anregungspotential müsse zwischen 15.4 und 21.5 Volt liegen. Mackay [377] erhält als Ionisationspotential von CO₂ aus Knicken in den Volt-Ampère-Kurven 14.3 Volt, was aber unsicher erscheint, da es mit den Werten des CO identisch ist. Smyth und Stueckelberg [686] geben aber auch diesen Wert an.

2. Das CO2-Spektrum von Leifson.

Das zuerst dem CO_2 sicher zugeordnete Bandenspektrum wurde von Leifson [459] gefunden. Er erhielt es durch Absorption von kaltem CO_2 . Bei 760 mm Hg beginnt die Endabsorption des Gases bei 1712. Die von ihm gefundenen Banden sind nach Rot abschattiert. Wegen der Anwesenheit zahlreicher fremder Linien ließen sich nur wenige Kanten messen: 1692, 1675, 1660 und 1647.

Smyth [755] versuchte vergeblich diese Banden auch in Emission zu bekommen.

3. Das ultrarote Absorptions- und Emissionsspektrum des CO2.

Messungen über das ultrarote Spektrum des CO₂ sind auch neuerdings von sehr vielen Forschern durchgeführt worden. Es sollen hier die einzelnen Arbeiten zusammengestellt werden: Ellis [405], Barker [314], Schaefer und Philips [471], Wolf [517], Eucken (Zs. f. Phys. **37** p. 714 [1926]), Mecke (Handb. d. Phys. **21** p. 555 [1929]) Rawlins [615], Mecke [674], Wimmer [471] und Harig [586].

Die Ultrarotmessungen haben zusammen mit den Messungen des Raman-Spektrums Klarheit über die Gestalt des CO₂-Moleküls geschaffen. In der Monographie über "Das ultrarote Spektrum" von Cl. Schaefer findet sich eine ganz ausführliche Diskussion dieser Ergebnisse, so daß wir uns hier mit dem Hinweis begnügen können.

Auf die Emissionsmessungen an erhitztem CO_2 und die Flammenspektra von CO_2 liefernden Flammen, Explosionen und Verbrennungsgasen in Rohren, wird an dieser Stelle ebenfalls hingewiesen; das gleiche gilt von den Reflexionsspektren von Kristallen.

V. Das Cyanspektrum CN.

Der alte Streit über den Ursprung der sogenannten Cyanbanden, der zuletzt durch Runge und Grotrian [246] wieder belebt worden war, ist jetzt endgültig zugunsten des CN entschieden. Heurlinger [271] und Kratzer [274] glaubten, die roten Cyanbanden und die positiven Stickstoffgruppen hätten eine Serienkonstante gemeinsam. Doch diese Meinung hat sich nicht bestätigt; denn die betreffende Konstante ist später bei Cyan zu 1728 und bei N zu etwa 1450 ermittelt worden, wie aus den Arbeiten von Mecke [412], Birge [362] und Mulliken [381, 463] zu ersehen ist. Auch sonst sind noch mehrere Arbeiten erschienen, die sehr entschieden als den Träger der Banden das CN-Molekül bezeichnen, z. B. Lord Rayleigh [329], Freundlich und Hochheim [366] und Duffieux [404], während die hier noch zitierten Arbeiten von Ôkubo [328] und Holst und Osterhuis [306] keineswegs einen Fortschritt bedeuten.

323

21*

1. Die violetten Cyanbanden.

Sie bilden ein ausgesprochenes Gruppenspektrum, bestehend aus den Gruppen $\Delta v = v' - v'' = 0$ bei λ 3883, $\Delta v = +1$ bei λ 3590, $\Delta v = -1$ bei λ 4216 usw., nebst den dabei auftretenden sogenannten "tail"-Banden. Die folgenden Tabellen enthalten das Nullinienschema der violetten Cyanbanden (Tab. 1) und der "tail"-Banden (Tab. 2).

v' v"	0	1	2	3	4	5	6	7
0	25798	23755	21740	by all	LITLON.	page 2 sel	miserial	in the state
1	27921	25879	23863	21873	in march	ingen der	1 3-198	Gud-Inf
2	30004	27962	25946	23956	21993	000-00		-
3	_	-	27989	26000	24037	22101	-	-
4	1940 UN 010	_	-	and Train	26040	24104	22194	22212
5	-	-	-	-	-	-	[24082] [] Kante	

Tabelle 1 der Nullinien der violetten Cyanbanden.

Tabelle 2 (tail-Banden) (Nullinien).

v' v''	8	9	10	11	12	13	14	15
8	8 L 4		_		_		Tarra	-
9	27477		and the second	Prost in			and the second	-
10	0 00 7	27275	25673	U.S. TRUE	a and a	1 as These	unib m ant?	TRUTE
11	nolf_milt	29080	27040	25498	bb (Easter)	aib-mdia	tielland it a	and the part of the
12	Sun-ing	lini 2 d ahi	28818	Sato8 3	25288	Speritaria	nion er ilu'i	bei-Dis
13				28524	-	25049	T ANTIN	Salar Said
14	-	_	_	-	-		24779	-
15	-					-		24484

Die Formeldarstellung der violetten Cyanbanden lautet:

 $v(v', v'') = 25797.77 + (2143.88 v' - 20.25 v'^2) - (2055.64 v'' - 13.25 v''^2).$

An Neumessungen liegt nur eine der dritten Gruppe 4216 von Mörikofer (Diss. Basel 1925) vor: 4215.98; 4197.09; 4180.87; 4167.64; 4158.06; 4151.31 A.

Die Erscheinung der Schwänze (tails) dieser Banden wurde zuerst 1897 von King beobachtet und von ihm stammt die Bezeichnung. Mehrere Untersuchungen bewiesen, daß diese tails zweifellos mit den Cyanbanden zahlenmäßig zusammenhängen, ohne daß es jedoch klar wurde, wie der Zusammenhang war. Das ist erst durch Mulliken geklärt worden. Es ist bekannt, daß ein Zweig einer Bande nach einer gewissen Anzahl von Gliedern umkehren und dadurch eine Kante bilden kann. Ferner hängt es natürlich ganz von der Größe und den Vorzeichen der Serienkonstanten ab, ob dies eintritt oder nicht. Da die Kanten bekanntlich auch solche Serien bilden, muß auch der Fall eintreten können, daß die Kanten wieder zurücklaufen. Für CN ergibt sich aus den Konstanten der obigen Formel, daß diese Umkehr der Kanten bei denjenigen Gliedern eintreten muß, die in der Fortsetzung der Diagonalen v' — v'' = 0, = + 1, = -1,

= -2 liegen. Die Theorie zeigt weiter, daß gleichzeitig die Richtung der Abschattierung sich umkehren muß. So entstehen die Schwanzbanden. Diese Möglichkeit der Deutung hat Mulliken zu Jevons [454] geäußert. Dieser untersucht namentlich den Unterschied der Cyanbanden bei verschiedenen Anregungsmethoden, im Bogen und beim Zusammentreffen von C mit HCl und aktivem N, wobei die tail-Banden besonders intensiv auftreten, wie Strutt und Fowler [218] fanden. Ferner haben Johnson und Jenkins [455] die Schwänze der Cyanbanden gemessen und Jenkins [532] hat die Frage der tail-Banden endgültig geklärt.

Die Rotationsstruktur der violetten Cyanbanden wurde von Kratzer [321, 344] gedeutet. Sie bestehen aus je zwei P- und R-Zweigen, wie es einem ${}^{2}\Sigma \rightarrow {}^{2}\Sigma$ -Übergang entspricht.

Von den übrigen in der Literaturübersicht genannten Arbeiten soll nur ganz kurz berichtet werden. Sie sind zum großen Teil theoretischen Inhaltes, wobei die Cyanbanden nur als Paradigma benutzt werden.

Wegen des Auftretens der violetten Cyanbanden in dem Spektrum der Gestirne. der leichten Erregbarkeit im elektrischen Kohlebogen, der Schärfe der Bandenlinien und der Unbeeinflußbarkeit durch magnetische und elektrische Felder sind sie sehr oft benutzt worden, um relativistische Verschiebungen gemäß der Einsteinschen Theorie zu bestimmen. Hier sei nur an die Arbeiten von Grebe und Bachem (Verh. d. D. phys. Ges. 21 p. 454 [1919]; Zs. f. Phys. 1 p. 51 [1920]; Zs. f. Phys. 4 p. 105 [1921]) und Birge [304, 562] erinnert, an die zahlreiche Andere angeknüpft haben. Birge [303] untersucht ferner die Intensitätsverteilung, die Lage des Maximums in Aufnahmen von verschiedenen Lichtquellen und benutzt dies [315] zur Temperaturbestimmung der Lichtquelle. In ähnlicher Weise bestimmen Ornstein und Brinkman [443, 742] aus der Verteilung der Rotations- und Kernschwingungsenergie im Cyanbandenspektrum die Temperatur des Lichtbogens. Ältere Intensitätsmessungen sind von Sewig [664] gemacht worden, der bereits eine Verlagerung des Maximums mit der Veränderung der Anregungstemperatur feststellen konnte. Newman [Phil. Mag. (7) 7 p. 1085-1901 (1929)] stellt qualitative Spektraluntersuchungen an einer Dreielektroden-Bogenentladung an mit dem Ziele, den Einfluß kleiner Verunreinigungen und Beimischungen zu studieren. Datta [337] beobachtet die CN-Bande 3883 in einem mit Luft und Bromdampf gefüllten Entladungsrohre, wo sie weder verwaschen erscheint noch eine sichtbare Verbreiterung zeigt. Shapley [547] photographiert die Cyanbanden sogar in Sternen mit mehr als 15000° Oberflächentemperatur. Herzberg [588] und Byck [568] beobachten das Nachleuchten bestimmter Cyanbandenlinien in elektrischer Ringentladung. Doch während Herzberg dieses Nachleuchten auf eine Resonanzfluoreszenz zurückführt, vermutet Byck, daß es sich dabei um irgendeine Anregung durch Zusammenstoß mit angeregten Molekülen handelt. Kratzer [321, 322], Mulliken [381, 506], Birge [424] und Dieke [402] liefern theoretische Beiträge zur Deutung des CN-Moleküls. Hori [451] findet bei Explosionen die Gruppe 4216 umgekehrt. Toussaint [358] bespricht den Einfluß von Ar und J auf die Intensitätsverteilung in den CN-Banden. Rosenthal und Jenkins [616] studieren die Störungen an den violetten Cyanbanden. Torsen [622] untersucht die Strom- und Spannungsabhängigkeit der Intensität der Cyanbanden λ 4216, 3883 und 3590.

2. Die roten Cyanbanden.

Da diese Banden in einem der Photographie nur schwer zugänglichen Spektralbereich liegen und nicht so leicht zu messen und zu deuten sind wie die violetten, sind sie weniger gut untersucht als diese. Zu den auf Seite 136 und 137 Bd. VII bereits angeführten Messungen von Fowler und Shaw [216] ist als Nachtrag nur eine Kantenformel von Mecke [412] hinzuzufügen: $\nu = 14430 + n'(1728.5 - 13.5 n') - n''(2056.0 - 13.25 n'')$. Aus der Formel ersieht man, daß das Endniveau der roten Cyanbanden mit dem der violetten identisch ist.

Dann haben Asundi und Ryde [558] diese Banden sowohl im Starkstrombogen als auch bei Anregung mit aktivem Stickstoff gemessen. Sie sind bis zu längeren Wellen gelangt und konnten folgendes Kantenschema in Schwingungszahlen aufstellen:

V' V''	0	10	2	3	4
0	10937 a		Lair a	in some till a black	New Jones
1	12697 a	10654b	-		The state
2	14432	12393 a	Hourser raymas	and morningare	er untrout in
3 0 0	16143	14099	12086a	n indr <u>ac</u> tinilm	nd der_Unbee
4	der Minterein	15788	15430	11782a	enttzt-worder
5	und that	der Gruby m	13769	13439	11480a

a bedeutet, daß diese neuen Banden im Bogen und im aktiven N auftreten, b, daß sie nur im Bogen gefunden wurden.

Ob 10937 wirklich die Kante des (0.0)-Bandes ist, bleibt zweifelhaft. Siehe auch [627]. Die Formel für die Kanten lautet:

$CN_{rot}: \nu(\mathbf{v}', \mathbf{v}'') = 10937 + (1782 \ \mathbf{v}' - 13.5 \ \mathbf{v}'^2) - (2055 \ \mathbf{v}'' - 13.3 \ \mathbf{v}''^2).$

Die Schwingungsquantenzahl v' muß dabei jedoch vielleicht noch erhöht werden. Die roten Cyanbanden werden durch einen ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -Übergang hervorgebracht, der den α -Banden des BO entspricht. Ihre Rotationsstruktur ist von Rosenthal und Jenkins [616] näher untersucht worden und scheint der der BO-Banden ebenfalls zu entsprechen. As und i [627] hat nach Kombinationsbanden zwischen dem ${}^{2}\Sigma$ und dem ${}^{2}\Pi$ -Term gesucht, die er analog den Kombinationsbanden des BO vermutet, aber nicht gefunden hat.

Bei Dissoziation der Cyanterme geht der Grundterm in ein normales N-Atom und ein angeregtes C-Atom im ⁵S-Zustand über, während die höheren ² Π - und ² Σ -Terme normale N- und C-Atome liefern, was Herzberg [530] und Heitler und Herzberg [587] dadurch zeigen, daß sie die Dissoziationswärmen der Terme aus der Schwingungsstruktur ermitteln¹).

¹) Während des Druckes erschien eine neue Arbeit über die roten Cyanbanden von Jenkins, Roots und Mulliken (Phys. Rev. (2) 39 p. 16-41, 1932), die eine sehr eingehende Analyse der Rotationsstruktur von sieben Banden dieses Systems bringt, die darin auftretenden "Störungen" analog den im violetten System von Rosenthal und Jenkins gedeuteten findet und durch Messung 17 weiterer Bandenköpfe die Einordnung von Asundi und Ryde bestätigt. Die Kantenformel lautet:

 $v = 11043.20 + 1788.66 (v' + \frac{1}{2}) - 12.883 (v' + \frac{1}{2})^2 - 2068.79 (v'' + \frac{1}{2}) + 13.146 (v'' + \frac{1}{2})^2.$

3. Die Banden von Raffety.

Auf Seite 145 Band VII ist mitgeteilt, daß Raffety [255] im Mékerbrenner eine Reihe von Banden findet, die eine nach Rot abschattierte Gruppe bilden. Er scheint anzunehmen, daß sie zum CH-Molekül gehören, was wir bezweifelten. Inzwischen hat Baldet [296] und [384—386] im Kometenkern und im Brenner dieselben Banden gefunden. Seine Zahlen sind in den untenstehenden Tabellen enthalten. In neuester Zeit erklärt Bobrownikoff [701] dieselben Banden als Cyanbanden. Er stellt eine empirische Formel auf und macht die Annahme, daß sie das Endniveau mit den Cyanbanden gemeinsam haben. Das bekannte Endniveau setzt er in seine Formel ein und erhält folgende Kantenformel:

 $\nu = 24335 + (2126.6 \text{ n}' - 13.85 \text{ n}'^2) - (2055.6 \text{ n}'' - 13.75 \text{ n}''^2).$

Einige von den nach dieser Formel berechneten Kanten stimmen tatsächlich mit den Raffety- und Kometenbanden überein.

Baldet: Mékerb Komete	renner: en:	::	4110 4109	4095 4099	4085 4086	4075 4073	4067 40 4066 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4043 4042
Mékerb Komete	renner: m:	::	4039 4039	4035 4032	4026	4019	4013 40	002 3992	3987
Bobrownikoff:	Raffety: Kometen: Berechnet:	4107 4109 4107	7.3 9.1 7.3	4095.0 4099.6 4095.2	4083.5 4085.8 4083.5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4067	4059.7	4052.9
rack (Alter 2009) deta filto Grena	Raffety: Komet: Berechnet:	4047	7.5	4043.5	4039.9	4037.3 4039.3 4037.3	4031.5	4025.2	

Baldet und Bobrownikoff geben folgende Werte:

Es unterliegt wohl keinem Zweifel, namentlich nach den Zahlen von Baldet, daß die Raffety-Banden im Kometenkern vorkommen, aber der Versuch, sie als Cyanbanden zu berechnen, ist höchst problematisch.

4. Cyanwasserstoff.

Badger und Binder [692] photographieren Absorptionsbanden von HCN im Gebiet von 7000 bis 9200 Å mit infrarotsensibilisierten Platten und erhalten 2 Banden bei λ 7918 und λ 8563, deren jede aus einem P-Zweig und einem R-Zweig besteht. Die Analyse ergibt ein Trägheitsmoment J = 18.79 \times 10⁻⁴⁰ g · cm². Die beiden neu gefundenen und analysierten CNH-Banden lassen sich mit den fünf weiteren bereits von Burmeister [229] und Barker [360] gemessenen auf die drei Grundfrequenzen ϑ = 710 cm⁻¹, r_1 = 3290 cm⁻¹, r_2 = 2090 cm⁻¹ zurückführen. Das führt dazu, das HCN-Molekül als linear anzunehmen und zwar entsprechend der Formel H — C = N. Die von Badger und Binder [692] angegebenen Molekülkonstanten sind folgende:

λ	ν ₀	B"	B'-B''	J‴
7911.9	12635.8	1.472	0.044	18.79×10^{-40}
8563.3	11674.5	1.480	0.042	18.69×10^{-40}

und die gemessenen Bandenlinien:

Crean	hudridhan	do hoi	2 1	7010
Cyan	nyunuban	ue per	1.	1012

ONTO	Dand	a ba	200 1000	05.00
UNE	- <u>Banc</u>	le be	1 1	8003
Sec. 6 . 6.			a	~~~~~

	R-Zweig	P-Zweig	a state		R-Zweig	P-Zweig
J	2	2	e mali ge	J	2	2
0	7910.4	- (20 <u>50</u> 2) -	- a 08.8	0	8561.5?	
1	08.3	7913.8	alondon'	1	59.3	8565.4??
2	06.5	15.5		2	57.2	68.0
3	04.9	17.4		3	55.4	70.1
4	03.3	19.5		4	53.3	72.3
5	01.8	21.8	neostor m	5	51.7	74.9
6	00.4	23.8		6	50.1	77.5
7	7898.9	25.9	1 3000	7	48.2	79.8
8	97.7	28.0	a l nora l	8	46.6	82.6
9	96.4	30.4		9	45.1	85.1
10	95.5	32.7	1 4085 1 40	10	43.6?	88.0
11	94.0	35.2	19 P-19704 1	11	42.1?	90.6
12	92.9	37.5	-	12	40.8?	93.5
13	91.9	40.1	10.000	13	39.5?	96.4
14	90.8	42.7	a 1010a ina	14	A Distance	99.8
15	90.0	45.4	Benit side	15	Bernetiseet : 41	8602.7
- 16	88.8	48.0		16	-	05.3
17	88.1	50.8	12 12 12 12 10 10	17	Mart Company	08.8
18	-	53.6	TRACK IN	18	Komm 15.2	11.7
19	COL.	56.3	1111	19	Disserving_	15.1
20	_	59.7				
21	Zahlten weer	62.4	comer 1	1949S	Reputed Monthly	
22	na Strizzahor.	65.4?	Selfer Marian	harding	Party in the second	
23	cher - null	68.6?	Linght		aday in the	
24	_	71.8?			and the Roy and	
25	_	75.2?				
26		78.0?				
27	Line <u>er</u> ation	81.8?				

Weiter berichten Brackett und Liddel [704] über eine Untersuchung von HCN im flüssigen und gasförmigen Zustande mit einem automatischen Spektrographen zwischen λ 7000 und 20000 Å, wo sie 15 Absorptionsbanden der Flüssigkeit finden, von denen auch drei im Gaszustande auftreten. Zwischen den Banden von Gas und Flüssigkeit finden sie Verschiebungen von 145—104 cm⁻¹ nach kleineren Frequenzen. Die Banden lassen sich auch nach Angaben dieser Autoren bis auf eine schwache alle als Oberschwingungen der drei Grundfrequenzen bei 14, 4.7 und 3.04 μ deuten. Die zweite und dritte Oberschwingung der 3.04 μ -Bande konnten bei der gasförmigen Absorption in Dubletts mit Aufspaltungen von 47 und 50 cm⁻¹ aufgelöst werden.

328

Daraus berechnen sich Trägheitsmomente zu 21×10^{-40} und 18×10^{-40} , wovon der letztere Wert mit dem von Badger und Binder [692] ermittelten übereinstimmt und sich außerdem noch aus der Aufspaltung der Kombinationsbande $2 \times 3.04 \,\mu + \frac{(\nu_{1})}{1.47 \,\mu}$ ergibt.

5. Halogencyanide.

Badger und Sho-Chow Woo [J. Amer. Chem. Soc. 53 p. 2572–2577 (1931)] untersuchen die Absorption der gasförmigen Halogencyanide im Ultraviolett, ohne daß gesonderte Banden aufgefunden werden. Die Spektren von JCN, BrCN und ClCN sind einander sehr ähnlich, in der angegebenen Reihenfolge nach kürzeren Wellen verschoben und die Absorption abgeschwächt. Die langwellige Grenze der kontinuierlichen Absorption liegt beim ClCN bei λ 2270, beim BrCN bei λ 2450 und beim JCN bei λ 2900 bis 2100. Die Ähnlichkeit der Spektren und ihre Beziehungen lassen ähnliche Struktur der Moleküle vermuten. Mooney und Reid [737] beobachten ebenfalls die oben erwähnten kontinuierlichen Absorptionsmaxima der Cyanhalogene und schreiben sie dem Zerfall des Moleküls in ein normales Halogenatom und ein angeregtes CN-Molekül zu. Ferner finden diese Autoren zwischen λ 2380 und 1860 Å etwa 40 nach Rot abschattierte Banden des Dicyans.

VI. Die Bandenspektren des CCl₄.

Jevons gibt [367] an, die nichtkondensierte Entladung durch CCl_4 gebe außer bekannten Banden von C_2 und CO eine besondere, nach Violett abschattierte Bande bei 2788.2 (4), 2782.3 (2), 2778.6 (1) und 2777.5 (4).

Leifson teilt [459] mit, daß der Dampf von Tetrachlorkohlenstoff bei 90 mm Druck von 2100 Å ab kontinuierliche Absorption zeige. Bei abnehmendem Druck weicht die Grenze nach kürzeren Wellenlängen. Bei 10 mm Druck findet sich eine Absorptionsbande von 1840—1670, der dann von 1530 ab Endabsorption folgt.

Im Ultraroten hat Marvin [601] einige Banden gemessen (siehe dort auch die ältere Literatur) und in Grundbanden und Kombinationsbanden eingeordnet. Als Grundbanden (mit A bis F bezeichnet) sind die den von Pringsheim und Rosen [544] gemessenen Ramanfrequenzen entsprechenden Wellenlängen bestimmt. Cl. Schäfer [690] berichtigt diese Einordnung, indem er unter Berücksichtigung der Tetraedersymmetrie des Moleküls nur vier Grundfrequenzen (darunter zwei inaktive) statt sechs aktiver zugrunde legt. Die Linie E von Marvin [601] wird als Dublettkomponente von D gedeutet und mit D' bezeichnet. Die Linie F als Oktave von D.

Der Raman-Effekt an CCl_4 ist sehr häufig untersucht worden, zuerst von Pringsheim und Rosen [544] und dann von einer Reihe anderer Autoren, die alle hier aufzunehmen zu weit führen würde. Eine Zusammenstellung der einzelnen von den verschiedensten Autoren gemessenen Frequenzen ist in dem Buch von Kohlrausch (Der Smekal-Raman-Effekt) zu finden. Hier seien daher nur die Mittelwerte der sechs gefundenen Ramanfrequenzen und ihre Intensitäten angegeben:

 $\Delta \nu$ (Mittel) = 217 (8), 313 (8), 459 (8), 760 (3), 791 (3), 1537 (1).

Einordnungen der Ramanfrequenzen sind von Marvin [601], Langer [600],

Komb.	Ber.	Beob.	R = Raman U = Ultrarot
A	-	46.07	R inaktiv
B	en Blant Schules	31.74	R
C	_	21.83	R inaktiv
A + C	14.82	14.89	U1)
D	Soc. 22 p. 50	13.21	R, U
D'	I ini things were	12.61	R, U
2 A + B	13.35	and The house in the	verdeckt
B + C	12.92		verdeckt
A + 2 B	11.80	The bar The File	aparina mise represente bine villa
3 B	10.58	presidential resident	Wellen verschohen und die Aben
A + D	10.26	10.21	continuentieben Absorit on liert
A + D'	9.88	9.94	U U I I I I I I I I I I I I I I I I I I
B + D	9.32	9.31	U
2 B + C	9.19	9.13	U ¹)
B + D'	9.01	9.08	un un alla aballando applicantose
2 A + D	8.39	Lettell des Males	Jeanhalogene und echreiben sie den
C + D	8.23	8.24	a illiadol U.C. mitesterrane de ben
2 A + D'	8.14	mbmill-mittierte-Binder	verdeckt
B + 2C	8.12		verdeckt -
C + D'	7.98	7.99	U
2 B + D	7.21	andenspelitren d	I dia - O M. Die B
2 B + D'	7.02		
2 D	6.60	6.57	un and an U could deal success.
D + D'	6.44	6.45	ekannien Banden von U. und CO
2 D'	6.29	(1) 0.7777 ban (1)	\$12738.3141, 2748.3 (2), 2778.6
2 C + D	5.98]	the second wh	and the local the read but
A + 2 D	5.77 ∫	0.1	nicht aufgelöst
A + 2 D'	5.54]	5.50	
B + 2 D	5.46 ∫	0.00	nicht aufgelöst
B + 2 D'	5.25	5.00	nickt antellist
C + 2 D	5.07 ∫	5.00	nicht aufgelöst
C + 2 D'	4.88	Identifi bout manual	
2 D + D'	4.33	1.21	wisht substrated
D + 2 D'	4.26	4.01	nicht aufgelöst
3 D'	4.10	ano il noominoordi	
4 D	3.30	3.40	annun of and the state
4 D'	3.14	3.00	U This is the Male I and a stranger

Tabelle des Ultraroten-Absorptionsspektrums des CCl₄ [690].

1) Nur von Marvin beobachtet.

Schaefer [690], Bhagavantam [632] versucht und in neuerer Zeit von Placzek [745] kritisch diskutiert worden. Auf Grund seiner Polarisationsmessungen erklärt Placzek [745] die Schaefersche Einordnung als die richtige. Die Linie 459 ist fast vollständig linear polarisiert und entspricht somit der Schwingung ν_1 . Nachfolgende Tabelle zeigt zu den Frequenzen, wie Placzek sie angibt, die Einordnung von Schaefer und die Polarisationsgrade ϱ , die Placzek und van Wijk [746] durch Polarisationsmessungen mit der Woodschen Anordnung gefunden haben. Dabei sind die Mittelwerte der $\Delta \nu$ gewählt, die gefunden sind, wenn die Ramanlinien durch Hg 4358 und 4047 angeregt werden.

Raman-Spektrum von CCl4.

219	314	459	758 789	1539
ν_2	24	v ₁		2 v3
0.900	0.915	0.458	0.952	0.58

In neuerer Zeit hat dann Langseth [732] eine Feinstruktur der Raman-Banden des CCl₄ gefunden. Seine Messungen sind in der folgenden Tabelle enthalten:

216.78 (7)	312.57 (8)	455.07 (5)	762.0 (2)	790.5 (2)
218.98 (7)	810.00 (8) —	458.35 (10) 461.45 (10)	The sie maltive	Grundscheringung
<i>v</i> ₂	<i>v</i> 4	<i>v</i> ₁	va	

Die Triplettaufspaltung der C-Bande wird als Isotopieeffekt gedeutet, wobei die drei Molekülarten $CCl_2(35) Cl_2(37)$, $CCl_3(35) Cl(37)$ und $CCl_4(35)$ in Erscheinung treten. Damit ist die Schaefersche Deutung der C-Bande als inaktive, einfache Eigenschwingung bestätigt. Die übrigen Aufspaltungen werden durch eine Abweichung von der regulären Tetraedersymmetrie des Moleküls erklärt.

VII. Die Banden des CS-Moleküls.

Martin [287] untersucht den Bogen, der in Schwefeldampf brennt und Entladungen durch Schwefelkohlenstoff. Es zeigt sich in beiden Fällen, daß gleiche Bandenspektren auftreten. Martin nimmt als Träger des Spektrums das CS-Molekül an. Er hat diese Banden ausgemessen, sie sind nach Rot abschattiert und von Martin in 7 Serien eingeteilt worden. Er gibt eine Reproduktion eines solchen Spektrums mit kleiner Dispersion. Neue Platten von Martin mit größerer Dispersion benutzt Jevons [533] zu einer Analyse des Spektrums. Die Banden liegen zwischen 2854 und 2418 Å. Jede Bande hat 2 Kanten, die zum Q- und R-Zweig gehören. Die jedenfalls vorhandenen P-Zweige sind nicht beobachtet. Ähnlich wie bei der 4. positiven Gruppe des CO, die einen $1^{4}\Pi \rightarrow 1^{4}\Sigma$ -Übergang darstellt, hat auch hier das Schwingungsniveau v' = 1 des Anfangszustandes einen abnorm weiten Abstand von dem v' = 0 Niveau. Deshalb und mit Rücksicht auf noch andere Vergleichsmomente, auf die hier nicht näher eingegangen werden soll, schließt Jevons [533], daß auch hier ein $1^{4}\Pi \rightarrow 1^{4}\Sigma$ -Systems vorliegt.

v'	$\mathbf{v}^{\prime\prime}=0$	(*)(⁴ 18:11(d.d. (b))	2	3
0	2575.64 (10)	2662.56 (10)	2754.73 (7)	2852.35 (2)
1	2507.32 (4?)	2589.66 (6d)	2677.01 (6d)	2769.17 (3dd)
2	2444.80 (3)	2523.23 (7)	2605.88 (10)	2693.22 (8d)
3	and all T 1 - Contraction	2460.17 (5)	2538.69 (8)	2621.63 (7)
4	-		2476.99 (4)	2555.78 (5)
5	and a wanter a	the repert water	2418.40 (000)	2493.66 (6)
6	tom media Nutling	160 [003] - mbank	montredit-montre day	2436.01 (1)

Kantenschema der CS-Banden (R-Zweige) [533].

v'	4	5	6	7
2	2785.68 (5)	<u></u>		Transa
3	2708.94 (7)	2801.46 (5)		-
4	2638.96 (2)	2726.68 (4)	2819.51 (3)	0.901
5	2572.67 (5)	2656.17 (00)	2743.91 (3)	2836.79 (2)
6	2511.23 (3d)	1)	2659?	2762.69 (1)
7	2454.27 (1)	2529.97 (3)	1)	1)
8		2473.44 (3)	2549.47 (3)	2629.51 (1)
9	-		2493.19 (0)	2569.51 (1d)
10	1997 _ 199	177 (Dr 1 170 0.1	2440.14 (000)	

Kantenschema der CS-Banden (Q-Zweige) nach [533].

v'	v '' = 0	1	2	3	4	5
0	2576.70 (7)	2664.02 (8)	2756.49 (5)	2854.41 (2)		
1	2509.41 (5)	2592.06 (8)	2679.41 (8)	2771.96 (4 d)	Folly To main	HUNNELL CIT
2	2445.43 (2)	2523.99 (5)	2606.93 (8)	2694.55 (7)	2787.15 (5)	Damilt ist die
3	Abweighter	2460.79 (3)	2539.51 (6)	2622.58 (5)	2710.30 (4)	2803.33 (3)
4	_		2477.46 (3)	2556.30 (4)	2639.89 (2)	2819.51 (3)
5	D _	R.L	_	2494.11 (4)	2573.30 (3)	_
6	20 -	ALL ALL	-	2436.41 (0)	AverAt	-

Jevons gibt [533] für die R- und Q-Zweige die folgenden Kantenformeln: $v_{\rm R} = 38814.2 + 1060.0 \text{ v}' - 10.11 \text{ v}'^2 - 1275.7 \text{ v}'' + 6.42 \text{ v}''^2 - 0.24 \text{ v}' \text{ v}''$ $v_{\rm Q} = 38796.3 + 1062.2 \text{ v}' - 10.05 \text{ v}'^2 - 1275.5 \text{ v}'' + 6.00 \text{ v}''^2.$

VIII. Das Bandenspektrum des CS₂.

Mit dem Absorptionsspektrum haben sich, wenn man von älteren Arbeiten absieht, vor allem Pauly [300] und Wilson [625] beschäftigt. Ersterer mißt zwischen 3589 und 2919 Å etwa 90 Linien, letzterer zwischen 3786 und 2907 Å über 600 Linien. Es gelingt ihnen aber keine Analyse des Spektrums.

Mit größerer Dispersion hat Jenkins [594] das Spektrum aufgenommen, aber auch ihm ist es nicht gelungen, das Spektrum einzuordnen. Er kann lediglich eine Anzahl konstanter Differenzen feststellen und 6 Kanten bei 3572.08, 3536.24, 3502.43, 3469.32, 3437.65 und 3407.70 finden. Er berechnet auch Trägheitsmomente, die aber sehr zweifelhaft sind. Watson und Parker [760] haben dann das Spektrum analysiert und geben im Auszug nur die Formel für — wie sie sagen — die meisten Banden des Systems, wie folgt an:

 $\nu = 28880 + 215 \left(\mathbf{v}_{1}' + \frac{1}{2} \right) - 802 \left(\mathbf{v}_{1}' + \frac{1}{2} \right) + 270 \left(\mathbf{v}_{2}' + \frac{1}{2} \right) - 1466 \left(\mathbf{v}_{2}'' + \frac{1}{2} \right).$

Die Absorption der Flüssigkeit wurde von Bruchat und Pauthenier [363] untersucht.

Ferner haben Emeleus [J. chem. Soc. (1926) p. 2948], Kondratjew [665], Fowler und Vaidya [716] das Spektrum der Flamme untersucht. Die auftretenden Banden gehören dem S₂, SO, SO₂ und CS an.

332

^{1) =} verdeckt durch andere überlagerte Banden.

Das ultrarote Spektrum haben Bailey und Cassie [704] untersucht und haben vier Banden bei 11.391, 6.566, 4.591 und 4.292μ gefunden. Die drei ersten sind Doppelbanden mit einer Aufspaltung von = 13 cm⁻¹. Bailey und Cassie [704] haben versucht unter Heranziehung zweier Ramanfrequenzen, die Krishnamurti gefunden, das Spektrum in Grundschwingungen und Kombinationsschwingungen einzuordnen. Die Einordnung ist aber recht zweifelhaft, zumal nur eine der drei Grundschwingungen im Ultrarot wirklich gefunden ist. Kurz darauf haben Dennison und Wright [709] eine der hier noch fehlenden Banden gefunden bei 25.20 μ . Sie besteht aus drei Zweigen P, Q und R bei 389.4, 396.8 und 405.8 cm⁻¹. Es wird nun eine Einordnung gegeben, bei der die Ramanfrequenz 795 als Oberschwingung der neu gefundenen Grundschwingung 396.8 und die Ramanfrequenz 655.5 als inaktive Grundschwingung gedeutet ist, was auch mit einer Deutung von Placzek [745] übereinstimmt.

Ultrarot- und	Raman-Spel	ktrum von	CS2.
---------------	------------	-----------	------

396.8	655.5 R	795.0 R	878	1523	2179	2330
ν_{2}	ν ₁	2 1/2	$v_3 - v_1$	ν ₃	$. v_3 + v_1$	$v_3 + 2 v_2$

Dennison und Wright berechnen aus der Duplettaufspaltung 16,4 cm⁻¹ das Trägheitsmoment zu $J = 172 \times 10^{-40}$ und den Abstand der S-Atome zu 2.54 Å.

Das Ramanspektrum des CS_2 zeigt keine direkte Ähnlichkeit mit dem ultraroten Absorptionsspektrum, da keine der gefundenen Ramanfrequenzen im Ultraroten beobachtet worden ist. Nur eine von Schaefer, Matossi und Aderhold [621] beobachtete, aber sehr unsichere Ramanlinie $\Delta \nu = 848$ würde einer ultraroten Bande entsprechen. Die genannten und eine Reihe anderer Autoren wie Petrikaln und Hochberg [609], Gavesan und Venkatesvaran [583], Krishnamurti haben die Ramanfrequenzen $\Delta \nu = 647, 655, 789$, von denen 655 die stärkste ist, gefunden. Ferner hat Bhagavantam [583] außer diesen noch die Frequenzen $\Delta \nu = 412, 1229$ und 1577 beobachtet und für die Linien $\Delta \nu = 655$ und 789 den Polarisationsgrad bestimmt zu $\varrho = 0.25$.

IX. Die Bandenspektren des CH-Moleküls.

Vom CH-Molekül sind bisher 3 Banden bekannt geworden, die Banden bei 4300, 3900 und 3143 Å.

Die älteren Messungen über die CH-Banden finden sich in diesem Handbuch Bd. VII p. 144-145.

Heurlinger und Hulthén [320] und [342] untersuchen das CH-Bandensystem eingehender und Kratzer [370] hat die erste Einordnung gegeben. Mulliken [463] hat die Natur der Elektronenterme untersucht (s. auch [504-507]).

Die Banden bestehen aus je 4 P-, Q- und R-Zweigen und sind nach der Analyse Mullikens als ${}^{2}\!\Delta \rightarrow {}^{2}\!\Pi$ -System anzusehen.

Wir bringen zunächst eine Tabelle zum Vergleich der verschiedenen Bandenbezeichnungen nach Mulliken [507].

334		Kohlenstoff	Kohlenstoff				
Mulliken Kratzer Hulthén	$\begin{array}{ccc} P_{1A \ 1B} & \binom{7}{2} \\ P_{1} & (4) \\ P_{11} & (4) \end{array}$	$\begin{array}{ccc} P_{1A \ 1B} & (\frac{7}{2}) \\ P_{3} & (4) \\ P_{12} & (4) \end{array}$	$\begin{array}{ccc} Q_{1A} & (\frac{5}{2}) \\ Q_{1} & (3) \\ Q_{11} & (3) \end{array}$	$\begin{array}{ccc} Q_{1B} & (\frac{5}{2}) \\ Q_{1} & (3) \\ Q_{12} & (3) \end{array}$			
Mulliken Kratzer Hulthén	$\begin{array}{ccc} R_{1B \ 1A} & \binom{3}{2} \\ R_{1} & (2) \\ R_{11} & (2) \end{array}$	$\begin{array}{ccc} R_{1A \ 1B} & (\frac{3}{2}) \\ R_{3} & (2) \\ R_{12} & (2) \end{array}$	$\begin{array}{ccc} P_{2B \ 2A} & \binom{5}{2} \\ P_{2} & (4) \\ P_{21} & (4) \end{array}$	$\begin{array}{ccc} {\rm P}_{2{\rm A}} & _{2{\rm B}} & (\frac{5}{2}) \\ {\rm P}_{4} & (4) \\ {\rm P}_{22} & (4) \end{array}$			
Mulliken Kratzer Hulthén	$\begin{array}{ccc} Q_{2A} & (\frac{3}{2}) \\ Q_{2} & (3) \\ Q_{21} & (3) \end{array}$	$\begin{array}{ccc} Q_{2B} & (\frac{3}{2}) \\ Q_4 & (3) \\ Q_{22} & (3) \end{array}$	$\begin{array}{ccc} R_{2B \ 2A} & \binom{1}{2} \\ R_{2} & (2) \\ R_{21} & (2) \end{array}$	$\begin{array}{ccc} {\rm R}_{2\rm B} _{2\rm A} \left(\frac{1}{2} \right) \\ {\rm R}_{4} & (2) \\ {\rm R}_{22} & (2) \end{array}$			
Mulliken Kratzer	$\begin{array}{ccc} F_{1A'} & (\frac{5}{2}) \\ F_{1} & (3) \end{array}$	$\begin{array}{ccc} F_{1B'} & (\frac{5}{2}) \\ F_{3} & (3) \end{array}$	$\begin{array}{ccc} F_{2A'} & \binom{3}{2} \\ F_{2} & (3) \end{array}$	$\begin{array}{ccc} {\rm F}_{2{\rm B}'} & (\frac{3}{2}) \\ {\rm F}_{4} & (3) \end{array}$			
Mulliken Kratzer	$\begin{array}{ccc} {\rm F_{1A''}} & \binom{3}{2} \\ {\rm f_1} & (2) \end{array}$	$\begin{array}{ccc} F_{1B''} & \binom{3}{2} \\ f_{3} & (2) \end{array}$	$\begin{array}{ccc} {\rm F}_{2{\rm A}''} & (\frac{1}{2}) \\ {\rm f}_2 & (2) \end{array}$	$\begin{array}{ccc} {\rm F_{2B''}} & (\frac{1}{2}) \\ {\rm f_4} & (4) \end{array}$			

Tabelle der Anfangstermwerte der Bande 4300 Å, bezogen auf $F_{2B''}$ ($\frac{1}{2}$).

Term- bezeichnung	$F_{1}'(\frac{5}{2})$	$F_{2}'(\frac{3}{2})$	$F_{1}'(\frac{5}{2})$	$F_{2}'(\frac{5}{2})$	$F_1'(\frac{9}{2})$	$F_2'(\frac{7}{2})$	$F_1'(\tfrac{11}{2})$	$F_{2}'\left(\frac{9}{2}\right)$
D (i 1)	99946 41	02049 (1)	02222 041)	92225 11)	98450 81	28450 98	23595 38	23595.79
$R_{1B1A}(j-1)$ $R_{1A1B}(j-1)$	23240.4^{1} 246.4^{1}	23248.0°) 248.0°)	333.74^{1}	334.91)	450.23	451.02	595.32	595.85
Q1A (j)	246.47^{1})	248.24^{1})	333.95	335.421)	450.27	450.91	595.18	595.76
Q _{1B} (j)	246.27^{1})	248.06^{1})	333.85	335.001)	450.19	451.00	595.36	595.87
P _{1B1A} (j+1)	246.621)	248.3^{1})	333.99	335.75	450.35	450.93	595.47	595.78
$P_{1A1B}(j+1)$	246.20	247.9^{1})	333.81	335.06	450.18	451.08	595.33	595.90
Mittelwert	23246.40	23248.08	23333.90	23335.04	23450.26	23450.99	23595.34	23595.83
$F_{2}' - F_{1}' = D$	1.	68	1.	14	0.	73	0.	49

1) Diese Linien wurden zweimal in der Berechnung gebraucht als unaufgelöstes A-B-Dublett.

Die Molekularkonstanten finden sich hinter der dritten CH-Bande, also weiter unten.

Die CH-Bande bei 3900 Å.

Nach Mulliken [507] ist die Bande einem ${}^{2}\Sigma \rightarrow {}^{2}\Pi$ -Übergang zuzuordnen. Die Rotationsstruktur besteht aus 6 Hauptzweigen und 6 Satellitenzweigen. Letztere sind aber nur teilweise bekannt. Wir bringen wieder zuerst eine Tabelle zum Vergleich der verschiedenen Bezeichnungen der Bande nach Mulliken [507].

Mulliken 1 Hulthén 1 Kratzer 1	$ \begin{array}{l} P_{1} \left(\frac{3}{2}\right) \\ P_{1} \left(2\right) \\ P_{3} \left(2\right) \end{array} $	$\begin{array}{c} Q_1 \ \left(\frac{3}{2} \right) \\ Q_1 \ \left(2 \right) \\ Q_1 \ \left(2 \right) \\ Q_1 \ \left(2 \right) \end{array}$	R ₁ (R ₁ (R ₃ ($(\frac{3}{2})$] (2)] (2)]	$ \begin{array}{l} P_2 & (\frac{3}{2}) \\ P_2 & (3) \\ P_4 & (3) \end{array} $	$\begin{array}{c} {\rm Q}_{12} \ \left({1\over 2} \right) \\ {\rm P}_{2} \ \left({2} \right) \\ {\rm P}_{4} \ \left({2} \right) \end{array}$	Q: Q: Q: Q: Q:	$\binom{1}{2}$ $\binom{1}{2}$ $\binom{2}{2}$ $\binom{2}{2}$	$\begin{array}{c} {\rm R_2} \ (\frac{1}{2}) \\ {\rm R_2} \ (2) \\ {\rm R_4} \ (2) \end{array}$
Termbe- zeichnung	$F_{1}'(\frac{1}{2})$	$F_1 (\frac{3}{2})$	$F_{2}'(\frac{1}{2})$	$F_1'(\frac{\delta}{2})$	$P_{2}'(\frac{3}{2})$	$P_1'(\frac{7}{2})$	$F_{2}'(\frac{5}{2})$	$P_1'(\frac{9}{2})$	$F_2'(\frac{7}{2})$
$ \frac{ Q_{12} \ (j) }{ P_1 \ (j+i) } \\ Q_1 \ (j) \\ R_1 \ (j+i) \\ Mittelwert } $	25698.72 698.93 25698.83	 724.09 724.13 724.11		774.56 774.64 774.49 774.56		850.14 850.22 850.22 850.20		950.68 950.80 950.78 950.75	950.81 950.71 950.87 950.80
$F_{2}' - F_{1}'$	-	-(0.04	-(0.02	0.	02	0.	05

Die CH-Bande bei 3143 Å.

Diese Bande wurde zuerst von Hori [657] gefunden. Die Bande besitzt nach Hori 6 Hauptzweige, R_1 , Q_1 , P_1 , R_2 , Q_2 , P_2 . Alle 3 CH-Banden haben denselben Endzustand. Der Unterschied der Hori-Banden gegen die Bande bei 3900 besteht darin, daß die R- und P-Zweige auf a-Niveaus und die Q-Zweige auf b'-Niveaus enden, was bei der Bande 3900 gerade umgekehrt ist. Die Endniveaus aller Zweige haben also bei der Hori-Bande die umgekehrte Symmetrie wie die von der Bande 3900 Å, woraus dasselbe für die Anfangsterme folgt. Einer der beiden Σ -Terme muß ein Σ^+ -, der andere ein Σ^- -Term sein.

Die Bande 3900 stellt also einen ${}^{2}\Sigma^{-} \rightarrow {}^{2}\Pi$, die Bande 3143 einen ${}^{2}\Sigma^{+} \rightarrow {}^{2}\Pi$ -Übergang dar. Neben der Bande (0,0) gibt Hori noch die Bande (1,1) bei 3157 Å an.

Bande Type		Type E ₀ (Volt) Außenelektroner Konfiguration		r _o Å.	ω_{e} cm ⁻¹	D ₀ Volt	
4300	2⊿	2.86	$(2 p \sigma) (2 p \sigma)^2$	1.10	3030	2.35	
3900	2 <u>∑</u> -	3.17	$(2 p \sigma) (2 p \sigma)^2$	1.17	2600	0.83	
3143	² ∑+	3.93	$(2 p \sigma) (2 p \sigma)^2$	1.12	2980	1.28	

Tabelle der Molekularkonstanten der CH-Banden [765].

Die hier geschilderte Bande tritt besonders auf bei Entladungen in Kohlenwasserstoffen und bei ihrer Verbrennung, insbesondere bei der Verbrennung des Methans, daher beschäftigen sich eine Reihe von Arbeiten, die im Literaturverzeichnis angeführt sind, mit dem Auftreten dieser Banden in Flammen und der Deutung der entsprechenden Reaktionen. Man sehe auch J. Lauer, Methanflammen, Diss. Bonn 1932, wo die hierzugehörige Literatur zusammengestellt und auch das Auftreten von CH₂ diskutiert wird.

X. Acetylenbanden.

C₂H₂ ist das bisher spektroskopisch am erfolgreichsten untersuchte mehratomige Molekül. Im Ultraroten oberhalb $2.5\,\mu$ ist das Rotationsschwingungsspektrum des Azetylens von Coblentz (Publ. Carnegie Inst. of Wash. 35 1905), Burmeister [229] und zuletzt von Levin und Meyer [536] mit Hilfe thermischer Methoden untersucht worden. Nach den Ergebnissen dieser Autoren liegen starke Absorptionsbanden bei 13.7μ , 7.5μ , 3.5μ und schwache bei 3.7μ und 2.5μ . Unterhalb 2.5μ findet nur Dreisch (Zs. f. wiss. Photogr. 23 p. 102, 1924) eine Absorptionsbande, die sich als erste Oberschwingung der $3.5\,\mu$ -Bande deuten läßt. Eine provisorische Durchsuchung des Spektralbereiches zwischen 2.5 μ und 0.9 μ im Bonner Institut bestätigte jedoch neuerdings die Vermutung, daß dort noch weitere Acetylenbanden sind, die inzwischen zum Teil von Lueg und Hedfeld mit großer Dispersion photographiert worden sind. Zwischen $\lambda\lambda$ 9000 und 7000 haben Hedfeld und Mecke [649, 675] bereits drei Absorptionsbanden bei $\lambda\lambda$ 7887, 7956 und 8622 mit großer Dispersion photographiert. Die sehr intensive Bande bei λ 7887 haben sie genau ausgemessen und darauf eine fast vollkommene Analyse des Acetylenspektrums gegründet. Während die sehr einfache Feinstruktur des Acetylens in den starken Banden gut aufgelöst ist, gelingt ihre Messung in den schwachen Banden nur teilweise. Doch eine Vergrößerung der Schichtdicke führt auch hier zum Ziel, wie die Arbeiten von Lueg

und Hedfeld¹) gezeigt haben. In allen Acetylenbanden besteht ferner ein deutlicher Intensitätswechsel in den Rotationslinien, der von Childs und Mecke [636] durch photometrische Messungen in der Bande λ 7887 zu 1:3 bestimmt wurde. Daraus kann man auf einen Kernspin von 1/2 für H und 0 für C schließen. Sonderbarerweise zeigen nur einige Acetylenbanden einen Q-Zweig, wofür es bisher noch keine sichere Erklärung gibt. Auf Grund der Analyse von Mecke und seinen Mitarbeitern [636, 649, 674, 675] ergibt sich eine lineare Gestalt des C₂H₂-Moleküls, dessen Trägheitsmoment im Grundzustand 23.509 \cdot 10⁻⁴⁰ g cm² beträgt. Die Kernabstände sind C—H gleich $1.08 \cdot 10^{-8}$ cm und C \equiv C gleich $1.19 \cdot 10^{-8}$ cm. Weiter wird von Mecke [674] gezeigt, daß man das ganze Rotationsschwingungsspektrum des Acetylens mit Hilfe seiner fünf Eigenfrequenzen $\delta_1 = 729.27$, $\delta_2 = 1328.5$, $v_1 = 1975$, $v_2 = 3312.83$ v -36v², $v_3 = 3365$ darstellen kann.

Angeregt durch die erfolgreichen Untersuchungen im nahen Ultrarot hat Kistiakowsky [728] die bereits von Stark und Lippe [290], sowie Henry und Landau [285] beobachteten ultravioletten Absorptionsbanden des Acetylens sorgfältig untersucht. Während Stark und Lipp nur über Banden zwischen 22 2200-1900 berichten, jedoch keine Wellenlängen angeben, haben Henry und Landau zahlreiche Banden bei längeren Wellen gemessen, die sie in drei Gruppen einteilen: Banden mit Feinstruktur von λ 3157— λ 2872; zum Teil scharfe, zum Teil diffuse Banden von λ 2960— λ 2495 und Banden mit Feinstruktur zwischen 2 2327 und 2236 Å. Kistiakowsky benutzt eine Wasserstoffröhre als kontinuierliche Lichtquelle, deren Licht er durch ein 2 m langes Absorptionsrohr mit sehr sorgfältig gereinigtem und getrocknetem C2H2-Gas mittels eines großen Hilgerspektrographen photographiert. Er findet oberhalb 2400 Å überhaupt keine Absorption und nimmt daher an, daß Henry und Landau dort Banden von Verunreinigungen gemessen haben. Zwischen 2400 und 2200 Å mißt er etwa 30 Bandenkanten, deren Wellenlängen wegen der geringen Meßgenauigkeit (Fehler bis 5 cm⁻¹) und der sehr schlechten Übereinstimmung mit den älteren Messungen hier nicht angeführt sind. Die Banden sind nach Rot abschattiert, haben Doppelkanten mit etwa 14 cm⁻¹ Abstand und sind nur teilweise in den höheren Gliedern aufgelöst. Der auf diese Messungen aufgebauten Analyse kann man natürlich keinen großen Wert beilegen, darum sei sie hier nicht weiter mitgeteilt. Herzberg [721] findet ein schwaches Absorptionsbandensystem ausgehend von 2070 Å, das mit steigender Intensität nach dem Violetten läuft. Seine weiteren Angaben über eine Acetylenbande bei 1540 Å sind unsicher. Endlich hat Rose (Bonner Diss. 1932) 23 Kanten des Bandensystems bei 2070 Å gemessen und wechselnde Intensitäten festgestellt. Zwischen 1824 und 1650 Å mißt er ein weiteres Acetylenbandensystem, daß sehr intensiv auftritt bei 15 cm Schichtdicke und 0.1 mm Druck.

XI. Die Banden des Äthylens und des Äthans.

Äthylen C_2H_4 und Äthan C_2H_6 lassen wegen ihrer dem Acetylen ähnlichen chemischen Strukturformeln auch ähnliche Absorptionsspektren vermuten, die allerdings wegen der größeren Zahl möglicher Grundschwingungen viel komplizierter sein können,

Nach Mitteilung der Autoren sind von ihnen weitere Banden bei 1.0372; 1.0166; 0.96; 0.8617;
 0.64 und 0.54 μ gemessen worden, deren Veröffentlichung bevorsteht.

als das Acetylenspektrum, und es tatsächlich auch sind, wie die Ultrarotuntersuchungen von Levin und Meyer [536] zeigen. Diese Autoren untersuchen die Absorptionsbanden der genannten Gase zwischen 2 und 15μ , wo bereits Coblentz (Public, Carnegie Inst. Wash. 35 1905) mit sehr geringer Dispersion Absorptionsmaxima ohne jegliche Feinstruktur feststellt, und zwar für Äthylen bei 10.5μ , 6.9μ , 5.3μ , (4.9μ) , 3.3μ , (2.3μ) und für Äthan bei 12.2μ , 6.8μ , 3.4μ (2.4μ). Levin und Meyer gelingt es bei Anwendung größerer Dispersion (Gitter) fast alle diese Banden aufzulösen. Alle gemessenen Äthylenbanden zeigen scharfe aufgelöste P-, Q- und R-Zweige, während die Äthanbanden keine einheitliche Struktur zeigen, viel komplizierter sind und zum Teil auch durch Methanbanden überlagert erscheinen. Badger [628, 693] sucht zwischen λλ 9500-6500 bei 2.80 m Schichtdicke photographisch nach weiteren Banden dieser Kohlenwasserstoffe. Während er von Äthan in diesem Gebiet überhaupt keine Absorption findet, erhält er bei λ 8720 eine teilweise meßbare Äthylenbande, die ziemlich komplizierte Feinstruktur zeigt und auf Grund dieses Materials keineswegs eindeutig analysiert werden kann. Augenblicklich werden im Bonner Institut diese Spektren mit größerer Schichtdicke und neuen Sensibilisatoren zwischen 8000 und 12000 Å von Lueg und Scheib photographiert, wo sich bereits neue Banden zeigen¹).

XII. Methanbanden.

Da das CH₄-Molekül wegen seiner vier H-Atome kleine Trägheitsmomente und daher relativ große Feinstrukturabstände besitzt, ist es ebenfalls im Ultraroten häufig untersucht worden. Bei den ersten orientierenden Messungen findet Coblentz (Invest. of infr. spectra I p. 43 ff. 1906), daß Methan bei 7.7 μ und 3.31 μ stark und bei 2.15 μ schwach absorbiert. Außerdem ist noch eine Absorptionsstelle bei 5.8 µ angedeutet. Ellis [480, 481] untersucht die Methanabsorption im kurzwelligen Ultrarot. Cooley [398] gelingt es, in den starken Banden bei 7.7 μ , 3.31 μ sowie in einer weiteren schwachen Bande bei $3.5 \,\mu$ Feinstrukturen zu messen. Weiter hat Moorhead (Phys. Rev. (2) 39 p. 83-88, 1931) die ultraroten Methanbanden zwischen 1.4 und 2.6 μ mit großer Dispersion untersucht. Es gelingt ihm, die Feinstruktur der Bande bei 2.3 μ und 1.6 μ in erster bzw. zweiter Ordnung seines Gitters aufzulösen. Die 2.2 μ Bande zeigt konstante Abstände von 10.7 cm⁻¹. woraus sich das Trägheitsmoment zu 5.17×10^{-40} gr cm² ergibt. Die entsprechenden Werte der 1.6 μ Bande sind 10.4 cm⁻¹ und 5.32 \times 10⁻⁴⁰ gr cm², was mit den Angaben Cooleys [398] 9.77 cm⁻¹ bzw. 5.66×10^{-40} gr cm², die der 3.31 µ Bande entnommen sind, leidlich gut übereinstimmt. Dennison und Ingram [639] photographieren an einem 6 m-Konkavgitter bei 10 m Schichtdicke eine Methanbande bei 2 8900, die sie als dritte Oberschwingung der Bande bei 3,3 µ deuten. Diese Bande zeigt eine sehr konplizierte Feinstruktur, wovon über 100 Linien gemessen sind. Eine vollständige Analyse der Methanbanden ist bisher noch nicht veröffentlicht und wird auch mit dem bisher vorliegenden Material noch nicht möglich sein. Dennison [399, 400], Guillemin [446] und Elert [522] haben zwar bereits Rechnungen über Molekülmodelle für das Methan aufgestellt, doch die experimentelle Bestätigung dafür steht noch aus. Ferner sei darauf aufmerksam ge-

¹) Veröffentlichung steht bevor.

Kayser u. Konen, Spektroskopie. VIII.

macht, daß Mecke [Leipziger Vorträge 1931 p. 33] eine neue Methanuntersuchung angekündigt hat. Im Bonner Institut ist ebenfalls die Methanabsorption zwischen λ 8000 und λ 12000 bei mehr als 20m Schichtdicke photographiert worden. Nach Dennison [399, 400], Dennison und Ingram [639] sowie Ellis [480, 481] lassen sich die bisher bekannten Rotationsschwingungsbanden des Methans mit Hilfe von 4 Eigenschwingungen einordnen; da auch diese Einordnung in allernächster Zeit wieder Ergänzungen und Änderungen erfahren dürfte, sei sie nicht angeführt.

Zu den Methanuntersuchungen im Violetten seien die Arbeiten von Lauer und Gerwinn [Bonner Dissertationen 1932] erwähnt. Während Gerwinn Absorptionsbanden stark erhitzten Methans beobachtet, erhält Lauer Emissionsbanden in gespaltenen Flammen. Im äußersten Ultraviolett stellt Leifson [459] 6 Banden fest, die sich aber nach den Untersuchungen von Rose (Bonner Diss. 1932) als Intensitätsminima im Viellinienspektrum des H₂ herausgestellt haben.

Weiter sei noch bemerkt, daß Dickinson, Dillon und Rasetti [Phys. Rev. (2) 34 p. 582 1929] bei 2914.8 cm⁻¹, 3022.1 cm⁻¹ und 3071.5 cm⁻¹ Ramanfrequenzen von Methan gemessen haben, die höchst wahrscheinlich der ultraroten Bande bei 3.33 μ entsprechen.

XIII. Die Banden des Benzols.

Wie bereits bemerkt, sehen wir davon ab, die Banden aller Kohlenstoffverbindungen, die meist in Absorption untersucht worden sind, an dieser Stelle zu behandeln. Wir gehen auch auf die Muttersubstanz so zahlloser Körper mit interessanten spektroskopischen Eigenschaften, das Benzol, hier deshalb nicht ein, weil eine Behandlung ohne Rücksicht auf Substitutionsprodukte und Heranziehung chemischer Betrachtungen nur ein einseitiges Bild gibt. Zu den in Bd. III, Bd. V und Bd. VII angegebenenen Literaturverzeichnissen fügen wir die folgende Liste hinzu, die keineswegs vollständig ist, allein wenigstens einen Anhalt gibt. Dabei ist auch der Ramaneffekt teilweise berücksichtigt.

Literaturübersicht zum Benzolproblem¹).

[1] L. Grebe, Über die Absorption der Dämpfe des Benzols und einiger seiner Derivate im Ultraviolett. Zs. wiss. Photogr. 3 p. 376-395 (1905).

[2] O. Fischer, Über diskontinuierliche Kathodenluminiszenzspektra einiger aromatischer Verbindungen. Diss. Bonn (1908).

[3] E. Dickson, Über die ultraviolette Fluoreszenz des Benzols und einiger seiner Derivate.
 Zs. wiss. Photograph. 10 p. 166-180, 181-200 (1911).

[4] J. E. Purvis, The ultra-violet absorption spectra of the vapours of various organic substances compared with the absorption of these substances in solution and in thin films. Rep. Brit. Ass. Portsmouth p. 359-360 (1911).

[5] J. J. Dobbie and J. J. Fox, The absorption spectra of some thioderivatives of benzene.J. Chem. Soc. 103 p. 1263—1266 (1913).

[6] H. S. Fry, Absorptionsspektra und dynamische Formel von Chlor-, Brom- und Jod Benzol. Zs. phys. Chem. 82 p. 665-687 (1913).

[7] V. Henri et M. Landau, Étude de l'absorption des rayons ultraviolets par l'acétyléne.
 C. R. 156 p. 677-680 (1913).

¹) Man sehe auch die Bände III (Absorption), II (Fluoreszenz), V und VII (unter C) und die Bücher von Ley, Henry, Pringsheim usw.

[8] J. E. Purvis and N. P. Mc Cleland, The absorption spectra of various derivatives of benzene. J. Chem. Soc. 103 p. 1088-1108 (1913).

[9] J. E. Purvis, The absorption spectra of various derivatives of aniline, phenol and benzaldehyde. J. Chem. Soc. **103** p. 1638-1652 (1913).

[10] J. Stark, Die ultravioletten Absorptionsbanden der wechselseitigen Bindung von Kohlenstoffatomen. I. Methodik, Acetylenbindung. Jahrb. Radioakt. 10 p. 139-174 (1913).

[11] J. Stark und P. Lipp, Die ultravioletten Absorptionsbanden der wechselseitigen Bindung von Kohlenstoffatomen. II. Acetylen- und III. Benzol-Bindung. Jahrb. Radioakt. 10 p. 175-188 (1913).

[12] J. E. Purvis, The absorption spectra of the vapours and solutions of various derivatives of benzaldehyde. J. Chem. Soc. 105 p. 2482-2501 (1914).

[13] C. C. Baly and F. G. Trykorn, The absorption spectra of mono-substituted benzene compounds and the benzene substitution law. J. Chem. Soc. **107** p. 1058-1070 (1915).

[14] J. E. Purvis, The absorption spectra of various halogen and nitrile derivatives of benzene and toluene as vapours and in solution. J. Chem. Soc. **107** p. 469-509 (1915).

[15] J. E. Purvis, The absorption spectra of various derivatives of benzoic acid. J. Chem. Soc. 107 p. 966-973 (1915).

[16] C. Strasser, Die ultraviolette Absorption einiger Monoderivate des Benzols. Zs. wiss. Phot. 14 p. 281-311 (1915).

[16a] Rudolf Witte, Zur Struktur der ultravioletten Absorptionsspektren des Benzols und seiner Monoderivate. Zs. wiss. Phot. 14 p. 347-392 (1915).

[17] M. Kemp, Die ultraviolette Bandenabsorption einiger Biderivate des Benzols. Diss. Bonn 1916.

[18] Massol et Faucon, Sur l'absorption des radiations ultraviolettes par les dérivés bromés du méthane. C. R. 163 p. 92-94 (1916).

[19] H. H. Stang, The infra-red absorption spectrum of naphthalene and of some of its monoderivatives in solution. Phys. Rev. (2) 9 p. 542-554 (1917).

[20] V. Henri, Spectre d'absorption de la vapeur de benzène et grandeurs fondamentales de la molécule de benzène. C. R. **174** p. 809-812 (1922).

[21] V. Henri, Étude des spectres d'absorption et de fluorescence du benzène. J. de Phys. et le Rad. 3 p. 181-211 (1922).

[22] V. Henri et P. Steiner, Absorption des rayons ultraviolets par le naphthalène. C. R. 175 p. 421-423 (1922).

[23] V. Henri, Spectre d'absorption ultraviolet de la vapeur de chlorure de benzène. Determination de la structure de la molécule. C. R. 176 p. 1298-1301 (1923).

[25] V. Henri, Structure des molécules et spectres d'absorption des corps à l'état de vapeur.
 C. R. 177 p. 1037-1040 (1923).

[26] C. F. Meyer, The structure of the absorption bands of certain organic gases and vapors in the near infra-red. Phys. Rev. (2) 21 p. 712-713 (1923).

[27] W. H. Vicker, J. K. Marsh and A. W. Stewart, Tesla-luminiscence spectra. I. The form of apparatus and the spectrum of benzene. J. Chem. Soc. **123** p. 624-654 (1923).

[28] W. H. Mc Vicker, J. K. Marsh, Tesla-luminiscence spectra. II. The effect of varying temperature and pressure on the benzene spectrum. J. Chem. Soc. 123 p. 817-820 (1923).

[29] W. H. Mc Vicker, J. K. Marsh and A. W. Stewart, Tesla-luminiscence spectra. III. Some mono-substitution products of benzene. J. Chem. Soc. **123** p. 2147-2163 (1923).

[30] Th. Dreisch, Die Absorption einiger Flüssigkeiten und ihrer Dämpfe im Ultraroten unterhalb 3 µ. Zs. f. Phys. 30 p. 200-212 (1924).

[31] V. Henri et H. de Laszlò, Spectre d'absorption ultraviolet de la vapeur de naphthalène. Activation et structure de la molécule. C. R. **178** p. 1004—1006 (1924).

[32] V. Henri et H. de Laszlò, The analysis of the absorption of the molecule of naphthalene. Proc. Roy. Soc. A. 105 p. 662-682 (1924).

[33] P. Pringsheim und A. L. Reimann, Über die Fluoreszenz des Benzoldampfes bei monochromatischer Erregung. Zs. f. Phys. 29 p. 115-124 (1924).

[34] V. Henri, Structure des molécules. Publ. de la Soc. de Chim. phys. XII (1925).

[35] H. de Lászlò, Absorption des rayons ultraviolets par les dérivés méthylés du naphthalène.
 C. R. 180 p. 203-206 (1925).

[36] H. de Lászlò, Die Absorptionsspektren und Aktivierungsstufen von Naphthalin und einigen Methylderivaten. Zs. phys. Chem. 118 p. 369—413 (1925).

[37] W. R. Orndorff, R. C. Gibbs, S. A. Multhy, The absorption spectra of benzaurin. J. Amer. Chem. Soc. 47 p. 2767 (1925).

[38] A. L. Reimann, Photoluminiszenz des Benzols und seiner Derivate. Naturw. 13 p. 744-745 (1925).

[39] W. Stenström and M. Reinhard, The influence of PH on the ultra-violet absorption spectra of certain cyclic compounds. J. Chem. Soc. 29 p. 1477-1481 (1925).

[40] F. Vlés et M. Gex, Sur le comportement du benzène en présence de solutions aqueuses. C. R. 181 p. 506—509 (1925).

[41] R. T. Birge, The structure of molecules. Nat. 117 p. 300 (1926).

[43] A. Castille, Spectres d'absorption ultra-violets de quelques substances à deux noyaux benzène. Bull. de Belg. 12 p. 498—519 (1926).

[44] J. W. Ellis, Band series in infra-red absorption spectra of organic compounds I. Phys. Rev. (2) 27 p. 298-313 (1926).

[45] V. Henri et J. Errera, Étude de quelques réactions chimiques produits par les rayons β et γ du radium sur les corps a l'état de vapeur. J. de Phys. et le Rad. (6) 7 p. 225–229 (1926).

[46] H. de Lászlò, The absorption spectra of some naphthalene derivatives in vapour and solution. Proc. Roy. Soc. A. 111 p. 335-379 (1926).

[47] P. Pringsheim, Das Absorptionsspektrum des festen Benzols bei — 180°. Phys. Zs. 27 p. 856—859 (1926).

[48] K. R. Ramanathan, The structur of molecules in relation to their optical anisotropy.II. Benzene and cyclohexane. Proc. Roy. Soc. A. 110 p. 123-133 (1926).

[49] A. Reimann, Über die Photoluminiszenz des Benzols und einiger Derivate in versch. Aggregatzuständen. Ann. d. Phys. (4) 80 p. 43-70 (1926).

[50] J. Barnes and W. H. Fulweiler, The near infrared absorption spectra of liquid benzene and toluene. J. Opt. Soc. Amer. 15 p. 331-336 (1927).

[51] J. Barnes, The shift in a near infrared absorption band of some benzene derivatives. Phys. Rev. (2) 29 p. 1694 (1927).

[52] J. Barnes and W. H. Fulweiler, The shift in a near infra-red absorption band of some benzene derivatives. J. Amer. Chem. Soc. 49 p. 2034-2037 (1927).

[53] F. Hund, Zur Deutung der Molekelspektren. III. Bemerkungen über das Schwingungsund Rotationsspektrum bei Molekülen mit mehr als 2 Kernen. Zs. f. Phys. 43 p. 805-827 (1927).

[54] F. Hund, Zur Deutung der Molekelspektren. Zs. f. Phys. 42 p. 93-122 (1927).

[55] H. de Lászlò, Ultraviolet absorption spectra of cyclohexene, J. Amer. Chem. Soc. 49 p. 2106-2111 (1927).

[56] J. K. Morse, The structure and dimensions of the benzene ring. Proc. Nat. Acad. 13 p. 789-792 (1927).

[57] J. B. Austin and F. C. Brickwedde, The ultraviolet absorption spectra of benzene.....J. Opt. Soc. Amer. 16 p. 121 (1928).

[58] J. Barnes and W. H. Fulweiler, Absorption spectrum of liquid benzene. Phys. Rev.(2) 32 p. 618-623 (1928).

[59] J. Barnes and W. H. Fulweiler, The near infra-red absorption bands of some hydrocarbons. J. Amer. Chem. Soc. 50 p. 1033-1035 (1928).

[60] J. W. Ellis, Correlations of visible and near infra-red absorption bands in colorless liquids. Phys. Rev. (2) **31** p. 310 (1928).

[61] J. Errera et V. Henri, Spectres d'absorption et structure des molécules des dérivés dihalogénés du benzène. J. de Phys. et le Rad. (6) 9 p. 205-224, 249-264 (1928).

[62] F. Hund, Zur Deutung der Molekelspektren IV. Zs. f. Phys. 51 p. 759-796 (1928).

[63] F. Hund, Molekelbau und chemische Bindung. Phys. Zs. 29 p. 851-853 (1928).

[64] W. R. Orndorff, R. C. Gibbs, McNulty and Shapiro, The absorption spectra of benzene J. Amer. Chem. Soc. 50 p. 831-837 (1928).

[65] V. Posejpal, Fluorescence du bezène et son absorption infrarouge. C. R. 187 p. 1046-1048 (1928).

[66] C. V. Shapiro and R. C. Gibbs, The ultraviolet absorption spectra of benzene and toluene in alcoholic solution. Phys. Rev. (2) **31** p. 310-311 (1928).

[67] R. Bär, Über eine lifhtstarke Anordnung zur Beobachtung des Ramaneffektes in Flüssigkeiten und ihre Anwendung auf das Ramanspektrum des Benzols. Phys. Zs. 30 p. 856—858 (1929).

[68] J. Barnes and W. H. Fulweiler, The shift in the 1,14 absorption band of some benzene derivatives. J. Amer. Chem. Soc. 51 p. 1750-1752 (1929).

[69] J. Barnes, Absorption spectrum of liquid benzene. Phys. Rev. (2) 33 p. 627-628 (1929).

[70] A. Carrelli, Nuove misure sull' effetto Raman. N. Cim. (N. S.) 6 p. 64 (1929).

[71] A. Dadieu und K. W. F. Kohlrausch, Studien zum Ramaneffekt. II. Das Ramanspektrum organischer Substanzen. (Benzolderivate.) Wiener Ber. 138 p. 134-135 (1929). — Sitzber. Akad. Wiss. Wien IIa 138 p. 335-351 (1929).

[72] A. Dadieu und K. W. F. Kohlrausch, Studien zum Ramaneffekt. IV. Das Ramanspektrum organischer Substanzen. (Benzolderivate.) Wiener Ber. **138** IIa p. 607-624 (1929).

[73] A. Dadieu and K. W. F. Kohlrausch, Studien zum Ramaneffekt. V. Das Ramanspektrum organischer Verbindungen. (C-O und C-C-Doppelbindung, Halogenderivate.) Wiener Ber. **138** IIa p. 635—662 (1929).

[74] R. Dantinne und A. Molle, Photoelektrizität des Benzol und seiner Derivate. Bull. Soc. chim. Belg. 38 p. 435-443 (1929).

[75] J. F. Daugherty, The infra-red absorption spectra of benzene and its halogen derivatives. Phys. Rev. (2) 34 p. 1549-1557 (1929).

[76] J. W. Ellis, Absorption spectrum of liquid benzene. Phys. Rev. (2) 33 p. 625-627 (1929).

[77] J. W. Ellis, Heats of linkage of CH and NH-bonds from vibration spectra. Phys. Rev. (2) 33 p. 27-37 (1929).

[78] W. Gerlach, Über die Breite der Spektrallinien der Raman-Streustrahlung von Benzol. Ann. d. Phys. 1 p. 301-308 (1929).

[79] V. Henri, Absorption spectra of polyatomic molecules. Predissociation and dissociation of these molecules. Trans. Faraday Soc. 25 p. 611 (1929).

[80] A. Langseth, A relation between Raman spectra and ultra-violet absorption. Nat. 124 p. 92 (1929).

[81] H. Ley und B. Arends, Absorption der Carboxylgruppe im kurzwelligen Ultraviolett. Zs. phys. Chem. B. 4 p. 234—238 (1929).

[82] C. V. Shapiro, Raman spectrum and fluorescence of benzol. Nat. 124 p. 372 (1929).

[83] K. L. Wolf, Über die Absorptionsspektren von bisubstituierten Benzolen. Leipziger Vorträge p. 100-134. Leipzig, Hirzel (1929).

[84] E. D. Mc Alister and H. J. Unger, Differences in the absorption spectrum of benzene in the liquid and vapor state. Phys. Rev. (2) **36** p. 1799 (1930).

[85] F. Almasy and C. V. Shapiro, The fluorescence spectrum of benzene. Phys. Rev. (2) 35 p. 1422 (1930).

[86] J. B. Austin, The emission spectra of some simple benzene derivatives. J. Amer. Chem. Soc. 52 p. 4755 (1930).

[87] R. B. Barnes, The infrared absorption of some organic liquids under high resolution. Phys. Rev. (2) 35 p. 1524-1532 (1930).

[88] S. Bhagavantam, Forms of oscillation of the benzene ring in Raman effect. Ind. J. of Phys. 5 p. 615-631 (1930).

[89] J. A. Black, The tesla-luminiscent-spectrum of benzene. Nat. 125 p. 277 (1930).

[90] G. B. Bonino and P. Cella, Raman spectra of pinene. Nat. 126 p. 915 (1930).

[91] M. Bourguel et P. Daure, Constitution chimique et effet Raman; composés acétyléniques. Bull. Soc. Chim. 47/48 p. 1349-1365 (1930).

[92] A. Campetti, Spettri di assorbimento e struttura moleculare. N. Cim. (N. S.) 7 p. 65-86 (1930).

[93] J. R. Collins, The effect of high pressure in the near infra-red absorption spectra of certain liquids. Phys. Rev. (2) **35** p. 1433-1435 (1930).

[94] A. Dadieu und K. W. F. Kohlrausch, Studien zum Ramaneffekt. IX. Das Ramanspektrum organischer Substanzen. Wiener Ber. **139** Ha p. 165-181 (1930).

[95] M. Dunkel, Die Elektronenanordnung in den häufigsten organischen Bindungen. Zs. f. phys. Chem. B. **10** p. 434-459 (1930).

[96] E. Hückel, Zur Quantentheorie der Doppelbindung. Zs. f. Phys. 60 p. 423-356 (1930).

[97] E. Hückel, Zur Quantentheorie der Doppelbindung und ihres stereochemischen Verhaltens. Zs. f. Elektrochem. **36** p. 641—646 (1930).

[98] F. Hund, Methode der Deutung und Vorhersage von Molekelspektren. Phys. Zs. 31 p. 876-881 (1930).

[99] F. Hund, Methoden der Deutung und Vorhersage von Molekelspektren. Zs. f. Elektrochem. 36 p. 596-600 (1930).

[100] J. Söderquist, Der Ramaneffekt in einigen organischen Substanzen. Zs. f. Phys. 59 p. 446-466 (1930).

[101] S. C. Sirkar, On the relative intensities of different Raman lines due to different exciting frequencies. Ind. J. of Phys. 5 p. 663-668 (1930).

[102] S. C. Sirkar, Further investigations on the intensities of lines in Raman spectra. Ind. J. of Phys. 5 p. 593-601 (1930).

[103] S. Venkatesvaran, Ramaneffect in some organometallic and heterocyclic compounds. Ind. J. of Phys. 5 p. 145-158 (1930).

[104] S. M. Werth, Relative efficiency of the Hg-arc lines in exciting the Raman spectrum of benzol. Phys. Rev. (2) **36** p. 1096 (1930).

[105] R. W. Wood, Raman spectra of benzene and diphenyl. Phys. Rev. (2) 36 p. 1431-1435.

[106] R. Bär, Über die Polarisation der Ramanlinien von Tetrachlorkohlenstoff, Benzol und Schwefeltrioxyd. Helv. Act. Phys. 4 p. 130-136 (1931).

[107] F. S. Brackett and U. Liddel, Progressive relationships in the near infrared absorption spectra of the halogen derivatives of benzene. Phys. Rev. (2) **37** p. 108 (1931).

[108] E. Hückel, Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Zs. f. Phys. **70** p. 204-286 (1931).

[109] E. Hückel, Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polaritäten. Zs. f. Phys. **72** p. 310-338 (1931).

[110] K. Lonsdale, An X-ray analysis of the structure of hexachlorobenzene, using the Fourier method. Proc. Roy. Soc. A. 133 p. 536-553 (1931).

[111] G. Placzeck and W. R. van Wijk, Polarisationsmessungen am Ramaneffekt von Flüssigkeiten. Zs. f. Phys. 67 p. 582-589 (1931).

[112] S. Rafalowski, The fine structure of spectral lines of light scattered by liquids. Nat. 128 p. 495 (1931).

[113] C. V. Shapiro, R. C. Gibbs and J. R. Johnson, Band spectrum of benzene: existence of a small vibrational frequency in the normal state. Phys. Rev. (2) 38 p. 1170-1179 (1931).

[114] C. Wagner, Bemerkung zum Prinzip der freien Drehbarkeit in Molekülen mit einfacher Kohlenstoffbindung. Zs. f. phys. Chem. **B. 14** p. 166-169 (1931).

[115] J. Weiler, Das Spektrum einiger einfacher offener und ringförmiger Kohlenwasserstoffe. Zs. f. Phys. 69 p. 586-597 (1931).

[116] J. Weiler, Bemerkung zur Intensität und Polarisation der Streulinien ringförmiger Kohlenwasserstoffe. Zs. f. Phys. 72 p. 206—215 (1931).

[117] K. L. Wolf, Probleme der freien Drehbarkeit bei einfacher und doppelter Kohlenstoffbindung. Leipziger Vorträge p. 1–22. Leipzig, Hirzel (1931).

[118] K. L. Wolf und W. Herold, Über die Ultraviolettabsorption von Benzolderivaten und die Theorie der induzierten alternierenden Polaritäten. Zs. f. phys. Chem. B. 13 p. 201-230 (1931).

[119] R. C. Yates, Raman lines of cyclopropane and valence properties of some organic compounds. Phys. Rev. (2) 37 p. 616-618 (1931).

Abgeschlossen am 15. März 1932.

Calcium (Ca = 40,07, Z = 20, Isotope: Ca⁴⁰ und Ca⁴⁴).

Literatur.

[239] T. Royds, An investigation of the displacement of unsymmetrical lines under different conditions in the electric arc. Kodaikanal Bull. 40 p. 85-93 (1914) und Bull. 54 p. 194-196 (1916).

[240] Th. Lyman, The extension of the spectrum beyond the Schumann region. Astrophys. J. 43 p. 89-102 (1916).

[241] T. Royds, The cause of the so called pole-effect in the electric arc. Kodaikanal Bull. 54 p. 194-196 (1916).

[242] Toshio Takamine and N. Kokubu, The effect of an electric field on the spectrum lines of calcium and magnesium. Mem. Coll. Kyoto 3 p. 173-181 (1918).

[243] J. Stark und O. Hardtke, Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. Ann. d. Phys. (4) 58 p. 712-772 (1919).

[244] J. C. McLennan, J. F. T. Young and H. J. C. Ireton, Arc spectra in vacuo and spark spectra in helium of various elements. Proc. Roy. Soc. A. 98 p. 95-108 (1920).

[245] Niels Stensson, Über die Dubletten in der K-Reihe der Röntgenspektren. Zs. f. Physik 3 p. 60-62 (1920).

[246] E. Carter, Character of the spectra produced by high potential sparks in a vacuum. Phys. Rev. (2) 17 p. 436 (1921).

[247] H. G. Gale and A. F. Miller, Pressure shift in calcium arc. Phys. Rev. (2) 17 p. 428-429 (1921).

[248] G. F. Gibson und W. A. Noyes, Hg, Tl, Na, Ca, Mg in various vapours and flames. J. Chem. Soc. 43 p. 1255-1261 (1921).

[249) H. L. Howes, The spectral structure of the luminescence excited by the hydrogen flame. Phys. Rev. (2) 17 p. 469-474 (1921).

[250] C. Ramsauer und F. Wolf, Leuchtdauer der Spektrallinien im erlöschenden Bogen. Ann. d. Phys. (4) 66 p. 323-396 (1921).

[251] M. N. Saha, On the problem of temperature radiation of gases. Phil. Mag. (6) 41 p. 262-278 (1921).

[252] R. A. Sawyer and A. L. Becker, On the exploded wire spectrum of calcium. Phys. Rev. (2) 18 p. 164 (1921).

[253] R. Seeliger und D. Thaer, Die Bogen- und Funkenspektra der Alkalien, Erdalkalien und Erden. Ann. d. Phys. (4) 65 p. 423-448 (1921).

[254] L. et E. Bloch, Spectres d'étincelle dans l'eau. J. d. Phys. et le Rad. (6) 3 p. 309-325 (1922). C. R. 174 p. 1456-1457 (1922).

[255] A. Campetti und A. Corsi, Sugli spettri di scintilla mediante la fiamma. Nuov. Cim. (6) 24 p. 117-127 (1922).

[256] E. Carter, The vacuum spark spectra of the metals. Astrophys. J. 55 p. 162-165 (1922).

[257] A. J. Dempster, Positive ray analysis of zinc and calcium. Phys. Rev. (2) 19 p. 431 (1922).

[258] V. Dolejšek, Sur les lignes Ka des éleménts légers. C. R. 174 p. 441-442 (1922).

[259] P. D. Foote and E. L. Mohler, The significance of the $\frac{1}{2}$ terms in spectral series formulae. J. Opt. Soc. Amer. 6 p. 54-56 (1922).

[260] A. S. King, Electric furnace experiments involving ionization phenomena. Astroph. J. 55 p. 380-390 (1922).

[261] A. S. King, Ionization and absorption effects in the electric furnace. Proc. Nat. Acad. 8 p. 123-125 (1922).

[262] J. Polvani, Studio stroboscopico dello spettro dell' arco alternativo ad alta frequenza. Nuov. Cim. (6) 23 p. 59-75 (1922).

[263] M. Siegbahn und V. Dolej šek, Erhöhung der Meßgenauigkeit innerhalb der Röntgenspektren. Zs. f. Phys. 10 p. 159-168 (1922).

[264] A. Sommerfeld und W. Heisenberg, Die Intensität der Mehrfachlinien und ihrer Zeemankomponenten. Zs. f. Phys. 11 p. 131-154 (1922).

[266] M. Kimura and G. Nakamura, The broadening of spectral lines caused by increasing current density and their Stark effects. Jap. J. of Phys. 2 p. 61-75 (1923).

[267] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of Phys. 2 p. 167-278 (1923).

[268] St. Procopiu, Sur les spectres d'arc des métaux dans divers milieux et dans le vide. C. R. 176 p. 385-388 (1923).

[269] T. Royds, The effect on wave-length in arc spectra of introducing various substances into the arc. Kodaikanal Bull. 73 p. 53-61 (1923).

[270] R.A. Sawyer and L. Becker, The explosion spectra of the alkaline earth metals. Astroph. J. 57 p. 98-113 (1923).

[271] T. A. Saunders and H. N. Russell, New regularities in the spectra of the alcaline earths. Phys. Rev. (2) 22 p. 201 (1923).

[272] Y. Takahashi, Band spectra and molecular structure. Jap. J. of Phys. 2 p. 95-110 (1923).

[273] G. Wentzel, Bemerkungen über Serienspektren, an deren Emission mehr als ein Elektron beteiligt ist. Physik. Zs. 24 p. 104—109 (1923).

[274] J. A. Anderson, The vacuum spark spectrum of calcium. Astroph. J. 59 p. 76-96 (1924).

[275] H. C. Burger und H. B. Dorgelo, Beziehung zwischen neueren Quantenzahlen und Intensitäten an Mehrfachlinien. Zs. f. Phys. 23 p. 258-266 (1924).

[276] H. B. Dorgelo, Die Intensität mehrfacher Spektrallinien. Zs. f. Phys. 22 p. 170-177 (1924).

[277] H. B. Dorgelo, De intensiteitsverhouding der componenten van hogere nummers der aardalkalitripletseriën en van eenige vonkdoubletten van calcium. Physica 4 p. 281-286 (1924).

[278] Roscoe Ernest Harris, Pole-effects and pressure shifts in the lines of the spectra of zinc and calcium. Astroph. J. 59 p. 261-273 (1924).

[279] N. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Japan. J. of Phys. 3 p. 29-41 (1924).

[280] N. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[281] R. J. Lang, On the ultra-violet spark-spectra of some of the elements. Phil. Trans. A 224 p. 371-419 (1924).

[282] A. E. Lindh, Über die K-Absorptionsspektren der Elemente Kalium und Calcium. Ark. f. Mat. Astr. o. Fys. 18 p. 14 (1924).

[283] D. H. Menzel, A study of line intensities in stellar spectra. Harv. Coll. Obs. Circ. 258 p. 1-20 (1924).

[284] R. A. Millikan and J. S. Bowen, Extreme ultra-violet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[285] E. L. Nichols and H. L. Howes, The photoluminescence of flames. II. Phys. Rev. (2) 23 p. 472-477 (1924).

[286] St. Procopiu, Sur les spectres de l'arc entre métaux dans différents milieux et dans le vide. Ann. de Phys. (10) 1 p. 89-133 (1924).

[287] T. Takamine, The Stark effect on fondamental (Bergmann) series. Nat. 114 p. 433 (1924).

[288] A. T. Williams, Influencia de la selfinducción y de la dilución en la persistencia de las líneas espectrales las líneas últimas y la teoría quántica de los espectros ópticos. Anales Soc. Cient. Argentina **97** p. 15-41 (1924).

[289] E. Back, Regelwidrige Zeemaneffekte von Multipletts, I. Stufe. Zs. f. Phys. 33, p. 579-600 (1925).

[290] E. Bäcklin, Das K $\alpha_{1,2}$ -Dublett der leichteren Elemente und die Abhängigkeit der Röntgenspektren von der chemischen Bindung. Zs. f. Phys. **33** p. 547—556 (1925).

[291] H. B. Dorgelo, Intensitätsmessungen im ultravioletten Teil des Spektrums. Zs. f. Phys. 31 p. 827-835 (1925).

[292] R. Frerichs, Intensitätsmessungen an Multipletts. Zs. f. Phys. 31 p. 305-310 (1925).
 [293] F. H. Getman, The absorption of ultraviolet light by inorganic halides. J. phys. chem. 29

p. 853—864 (1925). [294] P. Kapitza und H. W. B. Skinner, The Zeeman effect in strong magnetic fields. Proc.

Roy. Soc. A 109 p. 224—239 (1925). [295] A. S. King, Spectroscopic phenomema of the high current arc. Astroph. J. 62, p. 238—264 (1925).

[296] O. Laporte and W. F. Meggers, Some rules of spectral structure. J. Opt. Soc. Amer. 11 p. 459-463 (1925).

[297] O. Laporte und G. Wentzel, Über gestrichene und verschobene Spektrallinien. Zs. f. Phys. 31 p. 335 (1925).

[298] W. F. Meggers, The periodic structural regularities in spectra as related to the periodic law of the chemical elements. Proc. Nat. Acad. Amer. **11** p. 43—52 (1925).

[299] Jos. Mik. Mohr, Sur l'effet de pôle des séries du baryum et du néodyme dans la partie visible du spectre. C. R. **180** p. 1397-1400 (1925).

[300] R. S. Mulliken, A band of unusual structure probably due to a high unstable calcium hydride molecule. Phys. Rev. (2) 25 p. 509-522 (1925).

[301] H. Rausch v. Traubenberg, Über die Spektren von Calcium und Lithium bei extrem hohen Stromdichten, nach Versuchen von Hermann Lechem. Verh. d. D. Phys. Ges. (3) 6 p. 45-47 (1925).

[302] H. N. Russell and F. A. Saunders, New regularities in the spectra of the alkaline earths. Astroph. J. 61 p. 38-69 (1925).

[302a] O. Sandvik and B. J. Spence, The infra-red spectrum of the calcium arc in vacuo. Astroph. J. 62 p. 265-270 (1925).

[303] F. A. Saunders and H. N. Russell, On the spectrum of ionized calcium (Ca II). Astroph. J. 62 p. 1-7 (1925).

[304] Y. Sugiura, Sur les spectres du lithium ionisé. J. de Phys et le Rad. (6) 6 p. 322-333 (1925).

[305] A. T. Williams, Die spezifischen Linien der Bogenspektren. Ann. Soc. Cient. Argentina 99 p. 13-84 (1925) (nach Ref. Hantke Phys. Ber. 7 1926 p. 967).

[306] E. Adinolfi, Sullo spettro di assorbimento dei permanganati di KeCa. Lincei Rend. (6) 3 p. 196-201 (1926).

[307] E. Eisenschitz und A. Reis, Über die Zuordnung von Bandenspektren zu chemischen Stoffen auf Grund von Flammenversuchen. Zs. f. Phys. 36 p. 414-425 (1926).

[308] R. Frerichs, Intensitätsmessungen an Multipletts. Ann. d. Phys. (4) 8 p. 807-845 (1926) und Zs. f. Phys. 31 p. 305-310 (1925).

[309] E. Hjalmar, Die Dispersion der Röntgenstrahlen bei Gips. Ann. d. Phys. (4) 79 p. 550-556 (1926).

[310] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 171-175 (1926) und 4 p. 59-78 (1926).

[311] M. Kimura, The number of easily detachable electrons in the atoms of various elements. Jap. J. of Phys. 4 p. 71-74 (1926/27).

[312] M. Kimura, On the reversibility of spectral lines. Jap. J. of Phys. 4 p. 75-80 (1926/27).

[313] J. Lang, New terms in the spectrum of Ca. Astroph. J. 64 p. 167-171 (1926).

[314] O. Laporte, Über die Grundterme der Spektra der ersten und zweiten großen Periode. Zs. f. Phys. 39 p. 123-129 (1926).

[315] G. A. Lindsay und G. D. van Dyke, The fine structure of the K x-ray absorption edge of calcium. Phys. Rev. (2) 27 p. 508-509 (1926).

[316] G. A. Lindsay und G. D. van Dyke, The K x-ray absorption of calcium in calcite, gypsum, and fluoride. Phys. Rev. (2) 28 p. 613-619 (1926).

[317] R. Mecke, Dublettaufspaltung bei einigen Bandenspektren. Verh. d. Phys. Ges. (3) 7 p. 18 (1926).

[318] Ch. E. Moore and H. N. Russell, On the winged lines in the solar spectrum. Astroph. J. 63 p. 1-12 (1926).

[319] A. Petrikaln, Über die Explosionsspektra des Quecksilberfulminats und einiger Azide. Zs. f. Phys. 37 p. 610-618 (1926).

[320] R.K.Sur, On selective radiation pressure and the accelerated motion of Ca⁺ vapour in eruptive prominences. Astroph. J. **63** p. 111-122 (1926).

[321] S. Aoyama, K. Kimura und Y. Nishina, Die Abhängigkeit der Röntgenabsorptionsspektren von der chemischen Bindung. Zs. f. Phys. 44 p. 810-833 (1927).

[322] M. J. Druyvesteyn, Das Röntgenspektrum zweiter Art. Zs. f. Phys. 43 p. 707-725 (1927).

[323] M. Fukuda, Reversed spectra of metals produced by explosion under increased pressure. Sc. Pap. Inst. Phys. Chem. Res. 6 p. 1-47 (1927).

[324] R. C. Gibbs and H. E. White, Multiplets in two electron systems of the first long period. Phys. Rev. (2) 29 p. 426-432 (1927).

[325] S. Goudsmit, The structure of the calcium fluoride band λ 6087. Proc. Amsterd. 30 p. 355-361 (1927).

[326] E. Hulthén, Feinstruktur und Elektronenterme einiger Bandenspektren. Zs. f. Phys. 45 p. 331—336 (1927).

[327] E. Hulthén, On the band spectrum of calcium hydride. Phys. Rev. (2) 29 p. 97-111 (1927).

[328] Hans Kerschbaum, Messung der Leuchtdauer der Atome. Ann. d. Phys. (4) 83 p. 287-295 (1927).

[329] P. K. Kichlu and M. Saha, On the explanation of spectra of metals of group II. Phil. Mag. (7) 4 p. 193-207 (1027).

[330] R. Mecke, Bandenspektra und periodisches System der Elemente. Zs. f. Phys. 42 p. 390-425 (1927).

[331] M. Miyanishi, Spectra of various metals emitted from arcs in chlorine atmospheres Japan. J. of Phys. 4 p. 119-131 (1927).

[332] H. Nagaoka, D. Nukiyama und T. Futagami, Instantaneous spectrogramms of the alkaline earths by disruptive disharge. Proc. Imp. Acad. Tokyo **3** p. 208-211 (1927).

[333] L. S. Ornstein und H. C. Burger, Die Einheit von Singulett- und Triplettsystemen und ihre Interkombinationen. Zs. f. Phys. 40 p. 403-413 (1927).

[334] G. Ortner, Die Kβ-Linien der Elemente der Eisenreihe II. Wien. Anz. 12 p. 83-84 (1927).

[335] H. N. Russell, Related lines in the spectra of elements of the iron group. Astroph. J. 66 p. 184-216 (1927).

[336] H. N. Russell, Series and ionisation potentials of the elements of the iron group. Astroph. J. 66 p. 233-255 (1927).

[337] M. Saha, On the detailed explanation of spectra of the metals of the second group. Phil. Mag. (7) 3 p. 1265-1273 (1927).

[338] F. Schmidt, Bandenarten und Absorptionskantenserien der Erdalkaliphosphore. Ann. d. Phys. (4) 83 p. 213-246 (1927).

[339] N. Seljakow, A. Krasnikow, T. Stellezky, Die Struktur der Linien Kz der Elemente Cu bis Ca. Zs. f. Phys. **45** p. 548-556 (1927).

[340] O. Struve, Interstellar Calcium. Astroph. J. 65 p. 163-199 (1927).

[341] M. Travniček, Über das Spektrum der Ca Sr S-Samarium-Mischphosphore. Ann. d. Phys. (4) 84 p. 823-839 (1927).

[342] E. Viterbi, Über die ultravioletten Absorptionsspektren wässeriger Lösungen von Calciumchlorid, Strontiumchlorid und Bariumchlorid. Gazz. chim. ital. 57 p. 615-620 (1927).

[343] O. H. Walters and S. Barratt, The line absorption spectra of the alkaline earth elements. Phil. Mag. (7) 3 p. 991-993 (1927).

[344] H. E. White and R. C. Gibbs, Two electron multiplets of the first and second long periods. Phys. Rev. (2) 29 p. 359 (1927).

[345] F. Bandow, Über die Ausbildung der Phosphoreszenzspektren in Calciumsulfid. Ann. d. Phys. (4) 87 p. 469-508 (1928).

[347] C. H. Boissevain and W. F. Drea, Luminescence excited by x-rays in colloidal alkaline earth salts. Phys. Rev. (2) **31** p. 851-858 (1928).

[348] J. S. Bowen, The origin of the nebular lines and the structure of the planetary nebulae. Astroph. J. 67 p. 1-15 (1928).

[349] J. S. Bowen, Series spectra of potassium and calcium. Phys. Rev. (2) 31 p. 497-502 (1928).

[350] P. S. Delaup, Zeeman effect in the calcium hydride A band Phys. Rev. (2) 31 p. 1130 (1928).

[351] J. Frank und H. Sponer, Beiträge zur Bestimmung der Dissoziationsarbeit von Molekülen aus Bandenspektren. Götting. Nachr. 1928 p. 241-253.

[352] R. C. Johnson, The band spectra of the alkaline earth halides. Proc. Roy. Soc. A 122 p. 161-186 (1928) und p. 189-201 (1929).

[353] S. Kalandyk, L. Kozłowski und T. Tucholski, Die Metallspektren in Explosionsgasgemischen. Sprawozdania i Prace Polskiego Towarzystwa Fizycznego 3 p. 241-255 (1928).

[354] C. C. Kiess, Interferometer measures of wave-lenghts in the vacuum arc spectra of titanium and other elements. J. Bur. Stand. 1 p. 75-90 (1928).

[355] G. Landsberg und L. Mandelstam, Eine neue Erscheinung bei der Lichtzerstreuung in Kristallen. Naturw. 16 p. 557-558 und p. 772 (1928).

[356] G. Landsberg et L. Mandelstam, Sur les faits nouveaux relatifs à la diffusion de la lumière dans les cristaux. C. R. 187 p. 109-111 (1928).

[357] G. Landsberg und L. Mandelstam, Über die Lichtzerstreuung in Kristallen. Zs. f. Phys. 50 p. 769-780 (1928).

[358] G. L. Locher, The time intervals between the appearance of spectral lines in the spectra of alkali and alkaline earth metals. J. Opt. Soc. Amer. 17 p. 91-101 (1928).

[359] K. Majumdar and G. K. Toshniwal, The application of the irregular doublet law to complex spectra. Nat. 121 p. 828-829 (1928).

[360] E. A. Milne, Pressure of calcium in the sun's atmosphere. Nat. 121 p. 1017-1018 (1928).

[361] E. A. Milne, Pressures in the calcium chromophere and reversing layer. Monthl. Not. 88 p. 188-202 (1928).

[362] M. Miyanishi, The nature of streamers in electric sparks. Jap. J. of Phys. 5 p. 67-82 (1928).

[363] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules VII. Phys. Rev. (2) 32 p. 388-416 (1928).

[364] K. Narkiewicz-Jodko, Anregung der Strahlung einiger Metalle durch Quecksilberdampf im Zustand des Nachleuchtens. Spawozdania i Prace Polskiego Fowarzystwa Fizycznego 3 p. 257-266 (1928).

[365] W. Prokofjew, Untersuchung über die anomale Dispersion im Ca-, Sr- und Ba-Dampf. Zs. f. Phys. 50 p. 701-715 (1928).

[366] E. Rumpf, Bemerkungen über eine durch Röntgenstrahlen erregte, ultraviolette Lumineszenz des Calciumoxyds und des Calciumsulfids. Ann. d. Phys. (4) 87 p. 590-594 (1928).

[367] O. Schellenberg, Die ultravioletten Banden der Erdalkalisulfidphosphore. Ann. d. Phys. (4) 87 p. 677-715 (1928).

[368] O. Struve, Further work on interstellar calcium. Astroph. J. 67 p. 353-390 (1928).

[369] F. E. Swindells, The phosphorescence of calcium tungstate induced by x-rays. J. Opt. Soc. of Amer. 16 p. 165-173 (1928).

[370] A. M. Taylor, Polarization of infra-red radiation by calcite. Phil. Mag. (7) p. 88-97 (1928).

[371] M. Travnicek, Nachtrag zur Arbeit: Über das Spektrum der Ca Sr S-Samarium-Mischphosphore. Ann. d. Phys. (4) 85 p. 645-646 (1928).

[372] O. H. Walters and S. Barratt, The alkaline earth halide spectra and their origin. Proc. Roy. Soc. A 118 p. 120-137 (1928).

[373] T. Wetterblad, Über die K β_2 -Linie der Elemente K bis Mn. Zs. f. Phys. 49 p. 670-673 (1928).

[374] R. Bär, Raman effect from powdered crystals. Nat. 124 p. 692 (1929).

[375] J. Cabannes, Les radiations secondaires dans la lumière diffusée par le spath calcaire. C. R. 188 p. 1041—1043 (1929).

[376] P. Daure, Contribution expérimentale à l'étude de l'effet Raman. Ann. de phys. (10) 12 p. 375-411 (1929).

[377] P. Daure, Sur les radiations secondaires observées dans la diffusion moléculaire de la lumière (effet Raman). C. R. **188** p. 61—62 (1929).

[378] R. G. Dickinson und R. T. Dillon, Raman spectra of solutions of some ionized substances. Proc. nat. Acad. Amer. 15 p. 334-337 (1929).

[379] I. Evershed, The normal wave-lengths of the calcium lines H und K and the relativity shift of these lines in the prominences and chromosphere. Monthl. Not. **90** p. 187—190 (1929).

[380] A. Hollaender and J. W. Williams, The molecular scattering of light from solids, crystalline sulfates and their water solutions. Phys. Rev. (2) **34** p. 994—996 (1929).

[381] C. E. Howe, Wave-length measurements of L-lines (Zn to Ca). Phys. Rev. (2) 33 p. 1088 (1929). (Abstr., siehe auch [410].)

[382] G. Kellström, Undersökning av L-serien hos elementen 29 Cu-20 Ca medelst plangitterspektrograf. Fysisk Tidesskr. 27 p. 145-148 (1929).

[383] G. Kellström, Wellenlängenbestimmungen in der L-Reihe der Elemente 29 Cu bis 20 Ca mit Plangitterspektrograph. Zs. f. Phys. 58 p. 511-518 (1929).

[384] M. Kimura and Y. Uchida, The Raman spectra of calcite, aragonite, and water solutions of potassium carbonate. Scient. Pap. Tokyo 11 p. 199-204 (1929).

[385] K. S. Krishnan, The Raman spectra of crystals. Ind. J. of Phys. 4 p. 131-136 (1929).

[386] R.S. Mulliken, Assignement of quantum numbers for electrons in molecules. III. Diatomic hydrides. Phys. Rev. (2) 33 p. 730-747 (1929).

[387] H. Nisi, Raman effect in some crystals. Proc. Imp. Acad. Tokyo 5 p. 407-410 (1929).

[388] H. Nisi, Raman effect in crystals. Proc. Imp. Acad. Tokyo 5 p. 127-129 (1929).

[389] J. Öhman, The possibility of observing an emission spectrum of the calcium substratum in the Galaxy. Nat. **124** p. 179—180 (1929).

[390] C. H. Payne, E. T. R. Williams, Photometry of hydrogen and calcium lines in stellar spectra. Monthl. Not. 89 p. 526-538 (1929).

[391] E. K. Plyler, The near infra-red absorption spectra of calcite and strontianite. Phys. Rev. (2) 33 p. 948-951 (1929).

[392] Cl. Schaefer, F. Matossi und H. Aderhold, Zum Ramaneffekt an Kristallen. Phys. Zs. 30 p. 581-585 (1929).

[393] A. Schleede und Tien-Huan Tsao, Über die Ursache des Nachleuchtens von Calciumwolframat. Chem. Ber. **62** p. 763—768 (1929).

[394] E. W. H. Selwyn, Arc spectra in the region λ 1600–2100. Proc. Phys. Soc. London 41 p. 392–403 (1929).

[395] H. E. White, Spectral relations between certain iso-electronic systems and sequences. Part. I. Ca, Sc, Ti, Cr, V. Phys. Rev. (2) **33** p. 538-546 (1929).

[396] R. W. Wood, The Raman spectra of scattered radiation. Phil. Mag. (7) 6 p. 729-743 (1929).

[397] A. Zwaan, Übergangswahrscheinlichkeiten im Ca II-Spektrum. Naturw. 17 p. 121-122 (1929).

[398] F. Bandow, Neue Untersuchungen über die Auslöschung von Calciumphosphoren unter besonderer Berücksichtigung der Mischphosphore. Ann. d. Phys. 6 p. 434-457 (1930).

[398a] Fr. Becker, Helle Calciumlinien in Sternspektren. Zs. f. Astroph. 1 p. 208 (1930).

[399] W. Bleeker, Über das Intensitätsverhältnis der Resonanz- und Interkombinationslinie von Ca. Zs. f. Phys. 63 p. 760-762 (1930).

[400] K. Burns, Spectroscopie notes. Publ. Allegheny Obs. 8 Nr. 1 (1930).

[401] H. Deslandres, Raies ultimes des corps alcalins et alcalino-terreux. C. R. 161 p. 169-173 (1930).

[402] E. Ekefors, Spektren im extremen Ultraviolett. Phys. Zs. 31 p. 737-738 (1930).

[403] J. W. Ellis, The near infra-red absorption spectrum of calcite. Proc. Nat. Acad. Amer. 16 p. 315-320 (1930).

[404] N. Embirikos, Über den Ramaneffekt bei kristallisierten und gelösten Sulfaten und Karbonaten Zs. f. Phys. 65 p. 266-269 (1930).

[405) W. Gerlach, Über die Ramanbanden des Wassers. Phys. Zs. 31 p. 695-698 (1930).

[406] W. Gerlach, Ramanspektra von kristallisierten und gelösten Nitratsalzen. Ann. d. Phys. 5 p. 196-204 (1930).

[407] D. N. Goyle et N. Singh, Effet des impuretés sur la phosphorescence du sulfure de calcium. J. chim. phys. 27 p. 443-451 (1930).

[408] B. Grundström und E. Hulthén, Pressure effects in the band spectra of calcium hydride. Nat. 125 p. 634-635 (1930).

[409] A. Hervey and F. A. Jenkins, Interpretation of the spectra of CaF and SrF. Phys. Rev. (2) 36 p. 1413-1414 (1930).

[410] C. E. Howe, The L-series spectra of the elements from calcium to zinc. Phys. Rev. (2) **35** p. 717-725 (1930).

[411] Berta Karlik, Über die Szintillationsfähigkeit von Calciumwolframat. Wien. Anz. Nr. 15 p. 151-152 (1930) und Wien. Ber. 139 [2a] p. 319-326 (1930).

[412] Ben Kievit jr. and A. Lindsay, Fine structure in K x-ray absorption spectra. Phys. Rev. (2) 35 p. 292 (1930). (Abstr.)

[413] Ben Kievit jr. and A. Lindsay, Fine structure in the x-ray absorption spectra of the K series of the elements calcium to gallium. Phys. Rev. (2) **36** p. 648-664 (1930).

[414] J. v. Koezkás, Die ultraviolette Absorption der anorganischen Salzlösungen I. Die Absorption der Chloride. Zs. f. Phys. 59 p. 274—288 (1930).

[415] P. Kremer, On the ratio of the number of Ca⁺ atoms in the solar atmosphere over faculae and over corresponding parts of the solar surface near the limb. Proc. Amsterd. **33** p. 379-388 (1930).

[416] P. Krishnamurti, The Raman effect in crystal powders of inorganic nitrates. Ind. J. of Phys. 5 p. 1-12 (1930).

[417] P. Krishnamurti, Raman effect in some crystalline inorganic sulfates. Influence of paramagnetism on Raman lines. Ind. J. of Phys. 5 p. 183-191 (1930).

[418] Johanna Querbach, Über die Spektra von Fe, La, Ca, Ba, Sr, Mg und ihrer Verbindungen im nahen Ultrarot. Zs. f. Phys. 60 p. 109-129 (1930).

[419] C. Ramaswamy, Raman spectra of inorganic sulfates and nitrates. Ind. J. of Phys. 5 p. 193-206 (1930).

[420] Cl. Schaefer, F. Matossi und H. Aderhold, Untersuchungen über den Ramaneffekt an Kristallen. Zs. f. Phys. 65 p. 289-318 (1930).

[421] N. F. Shirow, Phosphoreszierende Stoffe IV. Sulfide des Kalziums. Ukrain. chem. J. 5 p. 365-382 (1930).

[422] O. Struve, The coexistence of stellar and interstellar calcium lines in the eclipsing binary U Ophiuchi. Astroph. J. **72** p. 199-201 (1930).

[423] A. Unsöld, O. Struve, C. T. Elvey, Zur Deutung der interstellaren Calciumlinien. Zs. f. Astroph. 1 p. 314-325 (1930).

[424] W. W. Watson and W. Bender, The Zeeman effect in the red CaH-bands. Phys. Rev. (2) 35 p. 1440 (Abstr.) und p. 1513—1523 (1930).

[425] Wm. Bender, Asymmetric Zeeman patterns at intermediate strengths of field in Ca I. Phys. Rev. (2) 38 p. 588 (1931).

[426] S. Bhagavantam, Raman effect in calcite and aragonite. Zs. f. Krist. 77 p. 43-48 (1931).

[427] A. Dadieu, F. Jele und K. W. F. Kohltausch, Das Ramanspektrum organischer Substanzen (Nitrokörper, Nitrate, Nitrite). Wien. Ber. **140** p. 293-319 (1931).

[428] Erik Ekefors, Vakuumfunkenspektren von Kalium und Calcium im Gebiete 100-1100 Å. Zs. f. Phys. 71 p. 53-88 (1931).

[429] J. Evershed, The shift towards red of the calcium, aluminium, and iron lines in the solar spectrum. Monthl. Not. 91 p. 200-270 (1931).

[430] S. Frisch, Zur Hyperfeinstruktur in den Spektren von Ca II, Ba II und Tl I. Zs. f. Phys. 68 p. 758-763 (1931).

[431] B. Grundström, Die Bandenspektren des Calciumhydrids. I. Zs. f. Phys. 69 p. 235-248 (1931).

[481a] H. Hamada, Molecular spectra of mercury, zinc, cadmium, magnesium and thallium. Nat. 127 p. 555 (1931).

[432] A. Harvey, Interpretation of the spectra of CaF and SrF. Proc. Roy. Soc. A 133 p. 336-350 (1931).

[432a] A. Harvey, Emission and absorption spectra of CaF. Phys. Rev. (2) 37 p. 228 (1931).

[433] K. Hedfeld, Die Bandenspektren der Erdalkalihalogene. Zs. f. Phys. 68 p 610-631 (1931).

[434] Elisabeth von Mathes, Zeemaneffelt an Silizium und den Bandenspektren der Erdalkalifluoride. Zs. f. Phys. 68 p. 493-504 (1931).

[435] R. S. Mulliken and A. Christy, Λ-type doubling and electron configuration in diatomic molecules. Phys. Rev. (2) 38 p. 87-119 (1931).

[436] F. Rasetti, Raman spectra of crystals. Nat. 127 p. 626-627 (1931).

[437] F. K. Richtmyer, Are the wave lengths of x-ray satellites affected by chemical combination? Phys. Rev. (2) 37 p. 457 (1931).

[438] O. Schellenberg, Untersuchungen über die ultraviolette Emission des Calciumoxydphosphors. Ann. d. Phys. (5) **11** p. 94-102 (1931).

[439] A. G. Shenstone, The Auger effect in atomic spectra. Phys. Rev. (2) 37 p. 1701-1702 (1931).

[440] B. Trumpy, Über die inaktive NO₃-Ionenfrequenz. Kongl. Norsk. Vidensk. Selsk. Forh. 3 p. 159-162 (1931).

[441] B. Venkatesachar and L. Sibaiya, A study of the Raman effect in certain substances with a new apparatus. Ind. J. of Phys. 5 p. 747-754 (1931).

[442] A. T. Williams, El numero de átomos excitados y los espectros de absorción de varios vapores metálicos. Estud. de las ciencias fisicas y matemáticas 5 p. 501-510 (1931).

[443] A. G. Shenstone and H. N. Russell, Perturbed series in line spectra. Phys. Rev. (2) 39 p. 415-435 (1932).

[444] W. W. Watson, Zeeman effect and A-type and spin doubling in the CaH bands. Phys. Rev. (2) 39 p. 278-289 (1932).

1. Linienspektren.

Die Kenntnis der Linienspektra des Ca hat sehr erhebliche Fortschritte gemacht. Von neuen Messungen ist an erster Stelle die des Funkenspektrums im Vakuum von Anderson [274] zu nennen. Er mißt etwa 1000 Linien zwischen λ 6499 und λ 2094 mit einem 1 m-Gitter und schätzt die Genauigkeit auf 0.02 A; sie ist indessen geringer.

Die Linien scheinen ausschließlich hohen Ionisationsstufen anzugehören, von Ca II sind nur wenige vorhanden. — Im Ultrarot haben Sandvik und Spence [302a] eine Anzahl Linien zwischen λ 20000 und λ 10000 bestimmt. — Im sichtbaren Spektrum haben Kiess [354], Burns [402], Querbach [417] einzelne Linien z. T. mit Interferometer gemessen.

Bei kurzen Wellen, im Schumanngebiet, haben zuerst McLennan, Young und Ireton [244] einige Linien in Bogen und Funken erhalten. Dann folgt die grundlegende Arbeit von Millikan und Bowen [284], welche Linien bis zu λ 269 messen. Lang [281] bringt eine Liste zwischen λ 2063 und λ 327, die leider wenig genau ist. Später hat Lang [313] für einzelne Teile genauere Messungen ausgeführt, ebenso Bowen [349]. Das beste Material aber liefert Ekefors. Er bringt erst [402] eine Photographie des Spektrums, dann [438] die Messung von etwa 700 Linien zwischen λ 1035 und λ 135. Sie sind mit einem Gitter-Vakuumspektrograph bei streifender Inzidenz erhalten. Er gibt die 2 mit 3 Dezimalen an. Sein Apparat hatte ein Auflösungsvermögen von 80000 bei λ 310 A und von 40000 bei λ 151 A. Die Linien sind mit Hilfe von Tabellen berechnet, wobei ein Fehler von ± 0.002 A gegen die Tabelle angegeben ist. Die 3. Dezimale kann jedoch nur von relativem Wert sein. Für seine Messungen gibt Ekefors einen Fehler von ± 0.1 A an, der jedoch durch eine Korrektionskurve mit Standardlinien auf 0.02 verkleinert wurde. - Durch Einwirkung von Selbstinduktion auf den Funken hat Ekefors eine "vorläufige Einteilung nach der Ionisierung" gegeben, wobei er bis zu Ca VII gelangt.

Ca I. Zweivalenzelektronensystem mit Singuletts und Tripletts. Ionisierungsspannung 6.09 V (¹S₀), Anregungsspannung: 1.88 V (¹S₀ ³P₁) nach [336].

Auf p. 170 von Bd VII dieses Handbuchs ist beschrieben, wie der Bau dieses Spektrums allmählich aufgeklärt worden ist, namentlich durch Saunders. Die vielen Triplett- und Singulettserien sind in den bekannten Büchern von Paschen-Götze und von Fowler zusammengestellt, ebenso einige Multipletts. Inzwischen sind aber noch zahlreiche Linien dem System hinzugefügt worden, namentlich durch Russell und Saunders [302]. Man sehe auch Back [289]. So erreicht die Zahl der klassifizierten Linien etwa 325. Leider ist das Zahlenmaterial aus folgenden Gründen nicht sehr wertvoll: die beste Messung scheint die von Crew und McCauley [179], aber sie bezieht sich auf den Vakuumbogen, während die übrigen Messungen auf dem Luftbogen beruhen. Holtz [170] ist für kürzere Wellenlängen sehr zuverlässig, nicht für längere, wo er schlechte Normalen benutzt hat. Ein Teil der Messungen ist noch auf Rowlandsche Normalen bezogen. Kurz das Zahlenmaterial ist weder einheitlich noch genau.

In der folgenden Tabelle 1 sind die Resultate für Ca I zusammengestellt. Ich bin dabei ausgegangen von den Tabellen von Paschen-Götze, die im wesentlichen auf den Messungen von Crew und der Einordnung durch Saunders beruhen. Alle diese Linien sind durch ein vorgesetztes P bezeichnet. Dazu sind dann die wenigen Linien gefügt, die Fowler (F) außerdem führt, das Multiplett von Back (B) und endlich die zahlreichen Linien von Russell und Saunders [302] und einige von Russell [335, 336]. Wo neue Messungen zu den Linien vorliegen, sind sie angegeben.

To	hall	0	1 (Col	n.
1.0	ocn	10 .	4.4	Uch 1	Ļ÷

-

			Paschen u. Götze	Sandvik u. Spence [302 a]			CONDEX and		Paschen u. Götze	Sandvik u. Spence [302a]
P	21S-31P	29300	-			-		19100	_	0.7 23
R	31P_1S	25259	8 -	199 <u>0</u>	-	-	Notes of the second second	056	102210	6.8 10
R	31P-1S	25061	2	-	and a second	-	the second second	007	12-11	7.4 16
P	$4^{3}D_{3}-4^{3}F$	22855	9	- 18	17 11	-	E hree madel	18981	1 == (1.1 10
F	$4^{3}D_{2}$ $4^{3}F$	624	6		Pil Pil	-	nelosi - Anton	915	-	5.1 13
F	$4^{3}D_{1}-4^{3}F$	610	0	-		-		897	-	7.4 8
-	-	20673	-	3.0 11		-	-	841		1.7 35
-	-	617	-	7.0 8		-		785	-	5.9 45
-	CONTRACTOR OF T	547		7.0 10	all	-	Service survey	16756		6.7 22
-	in be-streifen	159		9.7 8	160	F	$3^{3}P_{2}$ — $5^{3}D_{2}$	200	0	1 4 4 C 1
-	the state of the	19970	-	0.9 9	in the	F	$3^{3}P_{1} - 5^{3}D_{2}$	162	2	-
P	$2^{3}S - 3^{3}P_{0}$	946	2	6.9 9	in or a	F	$3^{3}P_{0}-5^{3}D_{2}$	144	8	-
Р	$2^{3}S - 3^{3}P_{1}$	935	2	6.1 12		-	-	14302	-	2.1 ?
P	$2^{3}P_{2}$ — $3^{3}D_{1}$	917	3	5.0 50		P	2 ³ S-3 ³ P' ₀ ²)	12825	6	_
P	$2^{3}P_{2}$ — $3^{3}D_{2}$	864	3	4.4 30	100	P	2 ³ S-3 ³ P' ₁ ²)	819	1	1914
P	$2^{3}S - 3^{3}P_{2}$	856	3	7.3 40	-interp	P	$2^{1}S-4^{1}P$	11960		
P	$2^{3}P_{2}$ — $3^{3}D_{3}$	777	1	5.2 80	abrix	R	x ³ D ₃ -a ³ D ₃ ' ⁰)	840	-	-
R	³ P— ³ D	771	1	-	1	-	-	406	-	6.9 150
P	$2^{3}P_{1} - 3^{3}D_{1}$	506	8	7.5 8		R	41F-q8	10689	-	-
-	-	502		2.5 30		R	31D-W	543	1917	_
Р	$2^{3}P_{1}$ $3^{3}D_{2}$	452	6	2.5 75		R	$4^{3}F-q_{8}$	499	5	-
P	$2^{3}P_{2}$ -3 $^{3}D_{1}$	310	3	1.0 35	ani tra	P	21P-21S	345	0	4.1 200
-		116	11-81	6.4 8	roes	ham	que anni anni anni a	C.Paryo	7 201	manin

	enti serobutazi enti serobutazi Phadriapfemen		Paschen u. Goetze	Russell u. Saunders [302]	Burns [400]	Back [289]	Kiess [354]	Anderson [274]
R	41F-q7	9400	-	0.19	_	_	_	_
R	a 3F4-x3D30)	50	8	0.8	-	-	-	-
R	33D2-W	9122	_	2.0		_		
R	33D3-W	03		3.0	tons (print) more		awin_don	
R	43F-33P'1)	8249	8	9.8	the local of the	1000 11 ST	1.5	man - min
Р	-	7798	76	-		-	10 -	
Р	21P-31P	7645	25	-	-	-	-	_
R	33D1-q2	10	-	0.38	-	-		-
R	$3^{3}D_{2}$ -q ₅	02	-	2.50		_		222
R	41F-q6	7565	-	5.80	. It manufaction	NOTEL STOR	and the part of	2001 304
R	43F-q6	7468	-	8.41	-	-		anno-donad
Р	21P-41D	7326	10	-	6.148 2	-	_	-
R	31D-43F"2	7202	8	2.16	2.191 3	_		
R	31D-43x(2)	7148	1	8.12	8.145 10	0.002 001		ind and all
Р	31D-31P	6717	69	uni-enti	r tind-der	vor Liter	angues the	C and Line
R	21P-m3P'2	09	-	-	ante - real		-	100
Р	$1^{1}S-2^{3}P_{1}$	6572	78	-	-	-	-	_
RB	33D3-43F"2	08	-	8.84	-	8.88 1	-	_
RB	33D2-43F"2	6499	-	9.65	9.646 30	9.67 1	9.651	9.70 1
RB	33D1-43F"2	93	-	3.79	3.780 80	3.79 6	3.780	3.88 2

[aut			Paschen u. Goetze	Russell u. Saunders [302]	Burns [400]	Back [289]	Kiess [354]	Anderson [274]
RB	33D3-43F"3	6471	-	1.66	1.658 40	1.67 6	1.661	1.68 1
RB	$3^{3}D_{3}-4^{3}X_{(2)}$	64		4.70		4.71 1		Cold-case :
RB	33D2-43F"3	62	1-34	2.58 *	2.565 125.	-2.57 7	2.565	2.58 3
RB	3 ³ D ₃ -4 ³ x ₍₃₎	56		-	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	6.90 1	-	
RB	$3^{3}D_{2}-4^{3}X_{(2)}$	55	-	5.61	-	5.57 3	20-	910-00
в	$3^{3}D_{3}-4^{3}X_{(4)}$	53		-		3.86 7	-	24
RB	$3^{3}D_{1}-4^{3}X_{(2)}$	49	5	9.81	9.810 50	9.81 6	9.809	110-110 V
B	$3^{3}D_{2}-4^{3}X_{(3)}$	47	-	-		7.63 6	-	BELL-MAR
R	33D3-43F"4	39	1	9.09	9.070 150		9.073	9.07 4
Р	- 10	6192	37	-		1	-	10 1 - CT 5
P	- 10	85	71	-		10	- 15	TRO-DEP
P	- 0	71	28	-				102-012
Р	33D3-33D5	69	61	-	-	- 11	9.554	8.86 - 248 ·
Р	$3^{3}D_{2}$ $3^{3}P_{1}$	69	16	-		•	9.048	251-058
Р	3 ³ D ₁ -3 ³ P ₀	66	54	-	-	-	-	1241-080
Р	3 ³ D ₁ -3 ³ P ₁	63	81	-				111-018
· P,	$2^{3}S-2^{3}P_{2}$	62	18	-	2.168		2.173	2.22 1
P	$3^{3}D_{2}$ — $3^{3}P_{2}$	61	39	-	-			910-018
P	$3^{3}D_{1} - 3^{3}P_{2}$	56	10	-	-	0	8-	1910-010
Р	$2^{3}S-2^{3}P_{1}$	22	22	-	and and	- 1	2.217	2.23 1
Р	2 ³ S—2 ³ P ₀	02	72	-	-		2.720	2.85 0
R	$2^{1}P_{1S}$ ¹)	5867	-0	7.58				012-919
R	$2^{1}P_{1}D_{2}^{1}$	57		7.48	-		7.451	7.40 1
P	$3^{3}D_{2}$ - m ³ D' ₁	5604	37	-	-		-	C+1-4-9
Р	$3^{3}D_{3}$ —m ³ D' ₂	02	82	2.83				2.95 1
R	$3^{3}D_{3}$ —m ³ D' ₂	01	-	1.28	-		-	010-010
Р	$3^{3}D_{1}$ - m ³ D' ₁	5599	99	-	-		-	
R	3 ³ D ₁ —m ³ D' ₁	98	-	8.48	-		-	-
P	$3^{3}D_{2}$ —mD' ₂	95	95	-	-			(1) - I - I - I
R	$3^{3}D_{2}$ -m ³ D' ₂	94	-	4.46	-	02		7-7-8
P	$3^{3}D_{1}$ —m ³ D ₂ '	91	60	-	-	00	- 1	Ser - Gee
Р	$3^{3}D_{3}$ -m ³ D ₃	90	04	0.11	-	-	- / -	10 m - 10 - 1
R	3 ³ D ₃ —m ³ D' ₃	88	0	8.74	-		-	- 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
P	$3^{3}D_{2}$ -m ³ D' ₃	83	46	-	-		-	Part and
R	3 ³ D ₂ -m ³ D' ₃	81	-	1.97	-	-	-	Part and
P	21P-31S	12	98	-	-		-	-
R	$3^{1}D - {}^{1}F_{3}$ ¹)	5349	4	9.47		- 24	-	9.39 1
P	$3^{3}D_{3} - 3^{3}P'_{2}^{2}$	5271	71	-		-	0-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R	3 ³ D ₃ -2 ³ P'' ₂	70	00	0.27		-		1 - 9 - 9 - 1
P	$3^{3}D_{2} - 3^{3}P'_{1}^{2}$	67	00 .	-	-	-	-	
R	3 ^a D ₂ -2 ^a P'' ₂	65	68	5.56		-		5.57 1
R	3°D2-2°P"2	64	-	4.24			-	
P	3°D ₁ -3°P' ₀ ²)	63	69	-		-	-	-
P	3*D1-3*P'1 2)	63	15	-		-	-	
R	3°D1-2°P"0	62	02	2.24	_	-	-	2.18 1
R	3°D ₀ -2°P'2	61	85	1.70	-	-	-	-
P	3°D1-2°P"2	60	-	0.38	-	-	-	0.50 0
P	21P_51D	5188	85	-	-		-	8.72 0
P	31D-41P	5041	61	-	-		-	- 1

Kayser u. Konen, Spektroskopie, VIII.

23

353

.

	Internet (ACT)	642 644	Paschen u. Goetze	Russell u. Saunders [302, 303]	Anderson [274]					Paschen u. Goetze	Russell u. Saunders [302, 303]	Anderson [274]
P	31D-31S	5014	9		4.23 1		P	33D2-53F	4094	94		-
R	33D3-1F3 1)	4957	-	7.30			Р	33D1-23F	92	65	-	2.80 2
R	33D2-1F3 1)	52	+	2:04	-	•	P	21P-91S	84	5		144
P	21P-51P	29	25	-			F	$2^{3}D-5^{3}P_{2}$	65	44	-	-
P	31D-41F	4878	13	-	8.75 1		F	$2^{3}D'-5^{3}P_{2}$	62	49	-	-
Р	21P-41S	47	29	-	-		P	31D-71P	58	91		-
Р	21P-61D	4685	26		D -		P	$2^{3}P_{2}$ — $3^{3}S$	3973	72		-
P	3 ³ D ₃ -4 ³ F]	4585	92	-	6.03 1		P	31D-71F	.72	58		-
Р		85	87	0	-		-	-	57	-		7.87 1
Р	$3^{3}D_{2}-4^{3}F$	81	41	-	1.65 2		F	2 ³ P ₁ -2 ³ S	57	05		7.01 1
Р	33D1-43E	78	57	'	-		-	23P0-33S	48	90	-	
P	1 ¹ S-3 ¹ D	75	43	-	-		P	31D-81P	46	05	-	5.81 14
Р	$3^{1}D-5^{1}P$	26	94	-	6.60 3		R	$2^{3}P_{2}$ - $^{1}D_{2}^{1}$	35	-	0.36	-
P	$3^{3}D_{3}-4^{3}P_{2}$	12	28		2.88 4		R	23P1-1S	23	-	3.50	-
P	$3^{3}D_{2} - 4^{3}P_{1}$	09	45	-	-		R	$2^{3}P_{1}$ - $^{1}D_{2}^{1})$	18	-	8.90	-
P	$3^{3}D_{2}$ - $4^{3}P_{2}$	09	11	-			P	31D-81F	3889	14	T	
P	$3^{3}D_{1}$ — $4^{3}P_{0}$	07	42	-	_		P	3°D ₃ -6°F	10	81		
P	$3^{3}D_{0} - 4^{3}P_{1}$	06	62	-	E 00 0		P	3°D ₂ -0°F	71	54		
P	$3^{3}D_{1} - 4^{3}P_{2}$	00	10	-	0.20 3		P	3*D-9*P	70	04		
P	21P-01S	4496	10	-	0.03 1		P	3°D1-0°F	00	90		
P	$2^{\circ}P_2 - 4^{\circ}D_1$	50	00	-	5.00 0		P	31D 101F	2705	60		2
P	$2^{\circ}P_2 - 4^{\circ}D_2$	00	00		0.00 0		I D	3-D-10-F	67	40	1	
P	$2^{\circ}P_2 - 4^{\circ}D_3$	04	07		4.70 0		P	93D31S	61	70		
P	$2^{\circ}P_1 - 4^{\circ}D_1$	24	01		1.93 4		P	23D _73F	53	37	100	
P	$2^{\circ}P_1 - 4^{\circ}D_2$	01	12		5.43 4		P	33D_73F	50	35		0.15 2
P	2°F ₀ -4°D ₁	. 20	62		P. 01.0		p	33D -73F	48	37		
P		18	78				P	33D-83F	3678	24		4
D	91P_71D	12	30	_	_		P	33D-83F	75	31		-
P	31D_51F	4355	10				P	33D83F	73	45		-
P	23P3P'	19	99		9.54 3		P	23P-53D	44	99	1	5.08 1
R	$2^{3}P_{-}mP'_{-}^{3}$	18	_	8.65	8.63 5	-	P	23P-53D.	44	76	1.1.1	4
P	21P_61S	12	31	-	-		P	23P-53D	44	40	1000	4.38 2
P	23Pm3P'	09	10	-			P	23P1-53D1	30	97	n -010	4
R	23Pm3P'	07	-	7.74	-		P	23P1-53D2	30	75?	11-4218	0.68 1
P	23Pm3P'.	03	71		-		P	38D3-48F	28	60	10-472	8.69 0
R	23Pm3P'.	02	-	2.53			P	33D2-43F	25	69	1-41	-
P	23P,-m3P'1	00	17	-	-		P	23Po-53D1	24	11	12	1 4
R	23P1-m3P'1	4298	-	8.99	-		P	33D3-53F	3594	08	2	-
P	23P0-m3P'1	90	53		-		P	$3^{3}D_{2}-5^{3}F$	91	26	12	4
R	23P0-m3P'1	89	-	9.38	-		P	$3^{3}D_{1} - 5^{3}F$	89	49		
P	23P1-m3P'2	84	18		-		P	$3^{3}D_{3}-6^{3}F$	68	91	12-2-8	
R	23P1-m3P'2	83	-	3.01	-		P	$3^{3}D_{2}-6^{3}F$	66	12	2	-
P	31D-61P	40	46	-			P	33D1-63F	64	-35	18	4.31 1
P	11S-21P	26	73	-	6.75 10		P	33D3-73F	50	03	1	
P	21P-71S	03	22	-			P	$3^{3}D_{2}$ -7 ³ F	47	38		-
P	21P-81S	4132	64	-	2.51 1		P	33D1-73E	45	58		5.47 3
P	31D-61F	08	55	-			P	33D3-83E	35	55		-
P	33D3-53F	4098	55				P	$ 2^{3}P_{2}-4^{3}S $	3487	61		

354
			Paschen u. Goetze	Russell u. Saunders					Paschen u. Goetze	Russell u. Saunders
Р	23P1-43S	3474	77	-		P	23P,-93S	3039	21	_
Р	2°P4°S	68	48	-		P	23P93S	34	52	1
Р	23P2-63D1	3362	28	-		P	23P103S	28	97	
Р	$2^{3}P_{2}-6^{3}D_{2}$	62	13	-		P	23P1-43D	24	93	_
Р	$2^{3}P_{2}-6^{3}D_{3}$	61	92	-		Р	23P0-43D1	20	15	-
Р	23P1-63D1	50	36	-		P	23P1-103S	19	37	
Р	23P1-63D2	50	20	-		P	23P53D.	18	55	-
Р	23P0-63D1	44	51	-		P	23P2-113S	14	01	
Р	$2^{3}P_{2}-5^{3}S$	3286	06	-		Р	23P2-n3P1'	10	16	1
Р	$2^{3}P_{1}-5^{3}S$	74	66	-		R	23P2-n3P1'	09	-	9.21
Р	2 ³ P ₀ -5 ³ S	69	09 .	-		Р	23P2-n3P2'	07	83	-
Р	$2^{3}P_{2}$ — $7^{3}D_{2}$	26	13	-		R	$2^{3}P_{2}$ — $n^{3}P_{2}'$	06		6.86
Р	$2^{3}P_{2}$ 7 $^{3}D_{3}$	25	88	-	1.5	Р	$2^{3}P_{2}-6^{3}D_{3}$	06	22	
Р	2 ³ P ₁ -7 ³ D ₁	15	33	-		Р	23P1-n3P0'	01	32	
Р	$2^{3}P_{1}$ — $7^{3}D_{2}$	15	15	-	1.1	P	23P1-n3P1'	00	60	0.86
Р	$2^{3}P_{1}$ — $7^{3}D_{1}$	09	93	-		R	23P1-n3P1'	2999	-	9.65
R	33D1-43D1	3188	77	8.15	all	P	23P1-n3P2'	. 98	27	5-
R	$3^{3}D_{2}-4^{3}D_{1}'$	87	-	. 7.61		R	23P1-n3P2'	97	-	7.31
R	33D2-43D2'	85		5.22	1	P	23P1-63D.	96	67	all the second
R	$3^{3}D_{2}-4^{3}D_{3}'$	84		4.27	-	Р	23P0-n3P1'	95	92	_
R	33D2-43D3'	82	-	2.03		R	23Po-n3P1'	94	-	4.95
Р	$2^{3}P_{2}-6^{3}S$	80	52			Р	23P83D	88	98	
Р	23P1-63S	69	85			Р	23P2-93D3	82	89	-
Р	23P63S	64	62	_		R	23Pq	2772	_	2.80
Р	23P2-83D2	51	28			R	23P1-q1	64	_	4.66
Р	23P2-83D3	50	75	-		R	23P0-q1	60	-	0.66
Р	23P1-83D1	41	16			R	23Pq.	57		7.40
Р	23P1-83D2	40	78	-		R	23P1-0.	49	-	9.34
Р	23Po-83D1	36	00			R	23Po-q.	45	-	5.49
Р	23P2-73S	17	66			P	11S-33P,	34	84	
Р	23P2-93D2	3109	51			P	11S-31P	21	65	-
Р	23P2-93D3	08	58	_		P	11S-41D	2680	36	-
Р	23P1-73S	07	93		-	R	1S_3D'	17	-	7.66
Р	2°P0-7°S	02	36	-		R	23Pa-43P1'	2565	-	5.15
Р	23P1-93D1	00	22	_		R	23P43P.'	64	_	4.07
P	23P1-93D2	3099	34	-		R	23P1-43P0'	58	-	8.60
Р	23Po-93D1	95	29	-		R	23P,-43P,'	58		8.20
P.	$2^{3}P_{2}$ — $10^{3}D_{2}$	81	55			R	23P1-43P2'	57		7.16
Р	$2^{3}P_{2}$ -10 ³ D ₃	80	82	-		R	11S-23P,"	41	-	1.40
Р	23P2-83S	76	99	-		R	23Pq.	2429		9.16
P	2 ³ P ₁ -10 ³ D ₁	71	97	-		R	23P2-q4	23	_	3.96
Р	$2^{3}P_{1}$ — $10^{3}D_{2}$	71	58			R	23P1-q3	23	1	3.02
Р	23P1-83S	67	01			R	23P1-q4	17		7.69
Р	23P0-83S	62	05			R	23P0-q4	14	-	4.66
Р	23P2-33D2	55	55	-		Р	11S-41P	2398	58	
Р	23P2-33D3	55	32			Р	11S-31S	92	22	-
Р	23P2-93S	49	01			R	23P2-53P1'	63		3.22
Р	23P1-33D2	45	75	-me		R	23P2-53P2'	62		2.10
Р	23P0-33D1	41	05	-016		R	- 23P1-53P0'	58		8.27

355

23*

			Paschen u. Goetze	Russell u. Saunders	•				Paschen u. Goetze	Russell u. Saunders
R	23P,-53P,'	2357	-	7.34	P	1	11S-61D	2221	91	-
R	23P,-53P.	56	-	6.21	P		11S-61P	00	78	-
R	23P_53P	54	-	4.46	P		$1^{1}S_{5^{1}S}$	2177	8	-
P	118-51D	29	33	-	P		11S-71P	50	78	-
P	118-51P	2275	49	_	P		11S-81P	18.	68	-
R	23P-63P.	69	-	9.40	P		11S-91P	2097	49	-
R	23P63P_'	68	-	8.10	P		1 ¹ S-10 ¹ P	82	73	-
R	28P63P.'	63	-	3.8	P		11S-111P	73	04	-
R	23P63P.	63	-	3.0	P		11S-121P	64	77	-
P	11S-41S	- 57	40	-		1				1 ist

^o) Einordnung nach Russell [336].

1) Terme nach Kichlu und Saha [329].

²) Diesen Term haben Russell und Saunders [302] mit 1 p", in moderner Schreibung 2³P", bezeichnet, was wohl auch richtig ist.

³) Nach Russell und Saunders [302] ist m = 2.

Es sei gleich angeschlossen die Tabelle für die Termwerte von Ca I in Tab. 1 a.

23S	17765.12	n ³ Po'	780.26	73D3	2998
338	8830.33	n ³ P ₁ '	766.69	83D1	2268
43S	5323.82	n ³ P _o '	740.83	$8^{3}D_{2}$	2264
53S	3565.74			83D3 .	2259
635	2556.20	43P.'	-4977.5*	93D1	1847
738	1922.41	43P,'	-4983.6*	93D2	1838
835	1498.70	33P.'	-4999.8*	93D3	1828
935	1200.52			10 ³ D ₁	1551
1035	985.55	53P.'		10 ³ D ₂	1546
1135	819.77	53P,'		10°D ₃	1539
** *	cient	53P.'		N. State Inc	
98P.	34146.9	2011		m ³ D ₁ '	11111.8
23P.	34094.6	63P,'	-10063 *	m ³ D ₂ '	11085.0
23P	33988.7	63P.'	-10086 *	m ³ D ₃ '	11045.0
33P	12752.5	Line in		b. 1 00 (757	
33P.	12750.2	33D,	28968.8	43D1'	-2406.5^{*}
33P	12730.3	*33D.	28955.1	43D2'	-2429.8*
43P.	6789.6	33D.	28933.5	43D3'	-2462.2*
43P.	6785.6	43D,	11556	a ban the	
43P	6777.8	43D.	11552	43F	7133
53P.	4342.7	43D.	11547	53F	4541
0.12		53D,	6561	63F	3139
m 3P. ' 1)	10886.89	53D.	6559	73F	2298
m 3P.'	10839.27	53D.	6557	83F	1754
m ³ Pa'	10752.54	-63D,	4255	93F	1382
		63D.	4254	10 ³ F	. 1117
33P.'	9970.54	63D.	4252	113F	921
33P.'	9968.58	73D.	3002	123F	772
gsp.'	9963.85	73D.	3000	133F	660

43F2"	13573.9*	31S	7518.4	31D	27455.3
43F3"	13485.9*	41S	5028.0	41D	12006.3
43F4"	13497.6*	51S	3417.3	51D	6385.5
	1 10 10 10 10	61S	2469.4	61D	4685.7
$4^{3}x_{(2)}$	13469.17**	71S	1867.7	71D	2994.7
4 ³ x ₍₃₎	13450.25**	81S	1461.5	1.	-990
4 ³ x(4)	13442.9**	91S	1176.0	41F	6961.3
	+ ents 1			51F	4500.0
q,		21P	25652.4	61F	3122.6
• Q.	-2266.9*	31P	12573.1	71F	2289.7
Q.a		41P	7625.9	81F	1749.8
QA	-7254.1*	51P	5371.4	91F	1379.8
Q.s	15818.3*	61P	3879.6	10 ¹ F	1116.3
qe		71P	2824.6	111F	919.3
97		81P	2120.3	w	17073 8
q ₈		· 91P	1638.2		11010.0
		10 ¹ P	1305.9	X (1D2)	8584.9*
11S	49304.8	11 ¹ P	1071.6	Y (1F3)	8767.0*
21S	15988.2	12 ¹ P	888.5	Z (1S)	8614.2*

¹) Nach Russell u. Saunders ist für die Terme m³P': 2³P'; für 3³P': 2³P''; für n³P': 3³P' nnd für m³D: 3³D zu setzen.

Russell und Saunders [302] besprechen die Eigenschaften der gestrichenen Terme eingehend und geben eine Erklärung für das Auftreten der negativen Terme. Unter der Annahme, daß die gestrichenen Terme Zuständen des Atoms entsprechen, bei denen beide Valenzelektronen aus ihren Grundbahnen in höhere Quantenbahnen gelangt sind, kommen sie durch Erhöhung der Termwerte um die Differenz des Grundterms und des zweitgrößten Terms von Ca II $2^2S-3^2D = 13711$ zu positiven Termwerten.

Ca II. Einvalenzelektronensystem mit Dubletts. Ionisierungsspannung 11.82 V (²S₃) nach [336].

Man nahm längst an, daß zu Ca II das bekannte Paar H und K gehöre; andere Paare sind hinzugefunden worden, so daß z. B. Fowler in seinem Buche deren 15 aufzählt, die zur Hauptserie, den beiden Nebenserien und der Fundamentalserie gehören. Das Spektrum ist jetzt erheblich vervollständigt durch Messungen von Saunders und deren Diskussion gemeinsam mit Russell [303], unter Benutzung der Aufnahmen von Crew und Lyman. Auch Lang [313] hat das Spektrum untersucht, neue Linien und Terme gefunden. Seine Messungen stimmen schlecht mit denen von Saunders und Russell, dürften aber wohl richtiger sein. Auch Anderson [274] hat einige wenige Linien von Ca II erhalten, ebenso Selwyn [394]. Alle hier erwähnten Angaben sind in der folgenden Tab. 2 enthalten.

Tol	hall	0	9	Call	CT.
1.01	OGU	10	÷.	Ua J	

ances dira		Saunders n. Russell	Lang	Anderson	Burns	Querbach
(69) (19)		[303]	[313]	[274]	[400]	[417]
2 ² P ₁ -3 ² D ₂	8662	11	_	- '	2.137	2.12 8
2 ² P ₂ -3 ² D ₃	8542	15	-	-	2.089	2.10 10
$2^{2}P_{2}$ - $3^{2}D_{2}$	8498	00		-	8.019	8.02 8
4 ² F-6 ² F'	6456	91	- 111	-		-
4 ² F-7 ² F'	5339	29	- 11	-		10- m.
$3^{2}P-5^{2}S$	07	30	-			·
$3^{2}P-5^{2}S$	5285	34	- 11			-
3 ² P-6 ² D	5021	14	- 10	14-194	-	-
3 ² P—6 ² D	19	98		-	-	-
3 ² P—6 ² D	01	49	- 11	-		-
4 ² F-8 ² F'	4800	16	- 10	-	-	-
$4^{2}D-5^{2}F$	4722	58		-	-	-
$4^{2}D-5^{2}F$	18	16	-	-	-	-
V ₂ —1 ¹ S	4516	-	6.60 8	6,60 8	-	
4 ² F9 ² F'	4489	22	-	-	-	-
32S-42P	79	29	-	-	-	-
32S-42P	72	09	- 10	1 . T	12 T	1 1 1 - 1 1 - 1 1 1 1 -
3 ² P-6 ² S	4220	13	-	-		-
3*P-6*S	06	21	-	-		-
22S-V2	4116		6.04 3	-	-	-
3*P7*D	10	33	-		_	-
3*P-(*D	4007	83	-	aut - und		-
3*P-(*D	4097	12	(asThen)	0 40 10	inh Tonik	def April
2*P ₁ -2*5	. 3900	400 .	eter distere	0.40 12	in Vielanza	- 1)
2"F2-2"5 92D 92S	9726	002 0	th remailer	0.00 10	ale surrent)
2-12-2-5 02D_02S	06	000 0		6.00 10	-	
2°11-2°5 32P_82D	2694	31 0		4.96 0		-
32P_82D	94	11 1	-	4.20 0	1040.1	1207
32P-82D	- 83	71 1				
32P_92D	3461	90 1		in the second second	in simaro	101 JD 101
32P-92D	52	67 1	_	_	- <u>0</u>	
32P-102D	3316	58 0				
32P-102D	08	08 0		_	_	
22P42D.	3181	283 6		1.27 6	_	-
2 ² P ₂ -4 ² D ₂	79	340 10	and Days	9.34 10		
22P,-42D.	58	877 9	all degrees	8.87 9	nin Elog X	the state
V1-42D2	3079	1	9.10 2	9.10 1	I manh	in Sand
V-42D3	73		3.18 1	3.18 1	and the second	men n ler
V_9-42D9	71	-	1.39 1	1.39 1		
2 ² P ₂ -3 ² P ₂	2840	16	-	0.10 1	-	-
$2^{2}P_{2}-4^{2}S$	2208	606 3	_		-	-
$2^{2}P_{1}-4^{2}S$	2197	791 2	1 COLLEGE	11 12 100	and a	_
32D-32P	32	25 1	here and	T nebues	1 - 1	he he he
32D-32P	31	43 2	-	Selwyn	-	-
$2^{2}P_{5^{2}D}$	13	19 1	-	[394]	-	-
$2{}^{2}P_{2}$ — $5{}^{2}D_{3}$	12	763 2	-	2.77 10	- 1	-

1) Bowen [348] hält es für möglich, daß diese Linie sich in Nebeln findet.

		Saunders u. Russell [303]	Lang [313]	Selwyn [394]	Lyman [163]	Millikan u. Bowen [284]	McLennan [244]
92P_52D	2103	239 2		3.24 8		-	_
VW	1872	-	2.27 12	-	2.5 3		_
VW	70	_	0.17 12	_	0.4 3	-	-
22P-52S	51	10 2	-	-	1.3 7	-	1.2 1
22P52S	43	6 1	-	-	3.8 6	-	-
$3^{2}D_{2}-4^{2}F$	40	21	9,96 10	0.07 8	0.2 10		0.4 10
32D42F	38	08	7.89 9	8.04 7	8.0 9	8.9 10	8.2 10
2 ² P ₂ —6 ² D ₂	15	04 1		4.59 1	5.0 8	4.9 0	5.5 0
2 ² P,-6 ² D ₂	07	74 1	dire-oild	7.39 1	7.8 7	7.8 0	7.5 4
V _o —x	1724		4.91 1				former lind
22P2-62S	1698	9 1	-	-	8.9 2	-	
22P1-62S	92	4 1		-	2.4 1	-	
$2^{2}P_{2}-7^{2}D_{3}$	80	5 1	olgram den	1 10 Line	0.5 2	C	0.5 2
$2^{2}P_{1} - 7^{2}D_{2}$	74	6 1	nitomitto.	ror-br	4.1 1	101 - L	4.1 1
V_2-23Po'	52	02 1	1.19 0	1.99 1		Con-UK	— ¹)
V23P1'	49	96 2	9.94 3	9.87 1	The	ATT THE	R. The
V23P.	47	-	7.49 2	-	-	7.5	-
32D-42P	44	25 0	-	-	-	1	-
V _e —Z	1593	-	3.81 1	-	-	-	- ²)
V ₂ -X	. 92	-	2.94 6	-		-	- ²)
V2-43F2. 3. 4	55	-	5.58 10	-	-		-
3 ² D ₃ -5 ² F	55	1	4.70 3		5.1 8	5.0 5	5.1 4
$3^{2}D_{2}-5^{2}F$	53	5	3.25 2	-	8.5 7	3.5 1	3.5 1
32D3-62F	1434	3	3.72 1	-	4.3 6	4.2 0	-
32D2-62F	33	3	2.52 0	-	3.1 5	-	-
V1-33P2'	15	-	5.77 0		-	-	
V2-33P1'	14	-	4.90 2	-	-	-	-
V2-33P0'	14	-	4.40 2	-		-	-
$3^{2}D_{3}$ -7 ^{2}F	1370	6	9.50 0	-	0.6 3		
$3^{2}D_{2}$ —7 ² F	69	1	8.33 0	-	9.1 3	-	-
$V_2 - 4^3 D_3'$	52	-	2.95 0		-		-
22S-42P	42	07	fehlt	-	-	-	-
$V_2 - 4^3 P_2'$	10	-	0.72 0	-	-	-	-
V1-43Po'	09	-	9.28 0	-	-	-	-

1) Lang findet 1652.02 nicht.

²) In betreff dieser Linien ist Lang zweifelhaft.

Es schließt sich an Tab. 2a mit den Termwerten.

Tabelle 2 a. Termwerte Ca II. Russell u. Saunders [303]. Lang [313].

22S 32S	95748.0 43581.0	2 ºP	∫70333.6 \70556.4	3ºD	[82037.0 [82097.8
42S 52S	25070.3 16298.3	3ªP	35135.0 35213.4	42D	{38889.6 {38908.7
62S	11445.7	4*P	21226.3 21262.2	52D	{23017.3 23026.0

62D	∫15220.0	10 PD / 4992.1	5°F' [17585]
0.0	15224.8	4993.1	6°F' 12211.0
720	∫10809.8	1670	7 ² F' 8970.1
1-1	10812.8	4ºF 27649.0	8 °F' 6867.2
0.970	6 8072.4	5°F 17714.1	9°F' 5424.6
0-D	8074.2	6 ² F 12290	I IFEL
0.2D	6257.2	7 ² F 9022	V, 71380
9-D	6258.5		V. 71440

Ca III. Achtelektronensystem mit Singuletts und Tripletts. Ionisierungsspannung 51.0 V (³S₀) nach Bowen [349].

Von dem Spektrum von Ca III, welches früher ganz unbekannt war, da der größte Teil der Linien im Schumanngebiet liegt, sind jetzt durch Bowen [349] 137 Linien bekannt. Ekefors [438] hat noch zahlreiche Linien als Ca III bezeichnet, ohne sie einzuordnen. Siehe Tabelle. In der folgenden Tab. 3 sind die Wellenlängen über λ 2250 den Messungen von Anderson entnommen, die kürzeren hat Bowen selbst bestimmt. Ältere Messungen sind in Anmerkungen beigefügt. — Angeschlossen sind in Tab. 3a die Termwerte.

Tabelle	3.	Ca	III	nach	Bowen	[349]	1
							•

 the second s				-					-
43S1-43P1	4081	74	5		43P2-41D1	31	08	1	
43S0-43P1	3761	62	6	1 1 1 1 1 1 1	43P2-41D2	2393	20	3	
43S1-43P1	3537	75	7	1 2 2 2	43P1-41D.	51	40	1	
43S2-43P1	3372	68	8	13 23	43P2-41D1	10	87	0	
43S1-43P2	67	81	5		43P2-41D2	2276	54	2	
43S1-43P1	3233	02	4		43P2-41D3	56	33	0	
$4^{3}S_{1} - 4^{3}P_{2}$	3119	66	6		4 ³ P ₁ -4 ¹ D ₁	52	65	2	
4 ³ S ₀ -4 ³ P ₁	3028	66	6					_	-
43S1-43P1	2989	30	6	13.00	E TRADING	-	λ vac.		
$4^{3}S_{1} - 4^{3}P_{2}$	88	61	7		31D1-43P2	2245	01	2	
$4^{3}S_{1} - 4^{3}P_{2}$	24	33	8		$4^{3}P_{1} - 4^{1}D_{2}$	20	56	1	
43S1-43P0	07	90	2		$4^{3}P_{1}-4^{1}D_{3}$	19	91	2	
$4^{3}S_{2}-4^{3}P_{3}$	2899	78	9	1172	$4^{3}P_{1} - 5^{3}S_{2}$	05	08	3	
$4^{3}S_{1} - 4^{3}P_{1}$	81	80	7		$4^{3}P_{2}-4^{1}D_{1}$	2191	95	2	
$4^{3}S_{2}$ - $4^{3}P_{2}$	69	95	7		31D1-43P1	83	98	3	
$4^{3}S_{1} - 4^{3}P_{1}$	66	57	7		$4^{3}P_{2}-5^{3}S_{2}$	72	27	5	
43S0-43P1	13	88	7		$4^{3}P_{2}$ - $4^{1}D_{2}$	64	18	4	
$4^{3}S_{1} - 4^{3}P_{2}$	2791	63	6	Rettale	$4^{3}P_{2}-4^{1}D_{2}$	61	07	2	
$4^{3}S_{2}-4^{3}P_{1}$	71	27	4		$4^{3}P_{2}-4^{1}D_{3}$	53	15	6	
43S0-43P1	04	87	6	1.1.21	$4^{3}P_{3}-4^{1}D_{2}$	44	47	1	
$4^{3}S_{2}$ - $4^{3}P_{2}$	2687	78	8		$4^{3}P_{2}-5^{3}S_{1}$	41	07	6	
$4^{3}S_{1} - 4^{3}P_{1}$	86	73	3		31D1-43P2	32	17	31)	
$4^{3}S_{1} - 4^{3}P_{2}$	34	17	6	Junior 2	$4^{3}P_{1}$ — $4^{1}D_{2}$	2129	88	6	
4 ³ S ₁ -4 ³ P ₀	20	82	6		31D1-43P1	2099	23	5	
$4^{3}S_{2}$ - $4^{3}P_{1}$	2590	34	2		$4^{3}P_{2}-5^{3}S_{2}$	75	55	2	
$4^{3}S_{1} - 4^{3}P_{1}$	87	09	3	stin!	31D1-43P1	70	21	2	
$4^{3}S_{2}-4^{3}P_{2}$	41	49	6	1.861	$4^{3}P_{2}$ - $4^{1}D_{2}$	68.	30	2	
$4^{3}S_{2}-4^{3}P_{1}$	2497	67	5	10001	43P1-53S0	62	83	31)	
4 ³ P ₁ -4 ¹ D ₁	72	52	1	12122	31D3-43P3	57	30	3	
4 ³ P ₀ -4 ¹ D ₁	42	54	1		$4^{3}P_{2}-4^{1}D_{3}$	49	02	3	

$\alpha - 1$		
- 63	6777	1777
0.00	ICI I	
~ ~ ~ ~ ~		

		and the second					
4 ³ P ₁ -5 ³ S ₁	47	80 3	Concession 1	31D1-43P2)	10	17	5
$4^{3}P_{2}-5^{3}S_{1}$	47	31 4	C. Trible 1	$3^{1}D_{2}-4^{3}P_{1}$	12	11	0
$3^{1}D_{3}-4^{3}P_{2}$	42 -	27 4		· 31D _{1.2} -43P ₁	07	91	53)
$3^{1}D_{1} - 4^{3}P_{2}$	39	01 3		$4^{3}P_{2}$ - $4^{1}D_{3}$?	00	24	4
$4^{3}P_{3}-4^{1}D_{3}$	34	12 4		$4^{3}P_{1} - 5^{3}S_{2}$	1794	31	4
31D1-43P0	30	67 1		3 ¹ D _{1,2} -4 ³ P ₂	83	92	4
$4^{3}P_{1} - 5^{3}S_{2}$	28	38 2	CONTRACTOR OF	3 ¹ D _{1.2} -4 ³ P ₀	77	93	0
4 ³ P ₀ -5 ³ S ₁	27	34 2		$4^{3}P_{1} - 5^{3}S_{1}$	73	29	3
$4^{3}P_{1} - 4^{1}D_{2}$	21	48 3		3 ¹ D _{1.2} -4 ³ P ₁	62	14	3
$4^{3}P_{2}-5^{3}S_{1}$	19	42 2d		$3^{1}D_{1} - 4^{3}P_{2}$	44	61	3
31D2-43P3	14	75 3		3 ¹ D ₁ -4 ³ P ₀	38	56	3
31D1-43P1	10	55 1		$4^{3}P_{2}$ — $4^{1}D_{3}$?	26	88	11)
43P1-53S0	03	74 3		$4^{3}P_{3}-4^{1}D_{3}$?	16	23	1
$4^{3}P_{1} - 5^{3}S_{1}$	01	61 4		$4^{3}P_{1}-5^{3}S_{0}$	1698	95	1
$3^{1}D_{2}-4^{3}P_{2}$	00	44 4		$4^{3}P_{1} - 5^{3}S_{2}$	88	81	1
$4^{3}P_{1} - 5^{3}S_{1}$	1989	61 2	and the state	$3^{1}D_{2}$ -4 $^{3}P_{3}$	1595	24	1
$4^{3}P_{2}-5^{3}S_{2}$	78	63 3		$3^{1}D_{2}$ -4 $^{3}P_{2}$	86	19	44)
$4^{3}P_{2}$ - $4^{1}D_{2}$	72	01 1	C G G G	$4^{3}P_{1}-4^{1}D_{3}?$	84	82	01)
4 ³ P ₁ -4 ¹ D ₁	68	03 5	1112	$3^{1}D_{3}-4^{3}P_{3}$	71	31	54)
$4^{3}P_{3}-5^{3}S_{2}$	64	70 5	14 K.	$3^{1}D_{3}-4^{3}P_{2}$	62	50	64)
$4^{3}P_{3}$ - $4^{1}D_{2}$	58	18 2	Section	$3^{1}D_{2}-4^{3}P_{1}$	55	48	44) 5)
4 ³ P ₂ -5 ³ S ₁	5.9	06 4	a sulling of	$3^{1}D_{2}$ -4 $^{3}P_{2}$	28	89	0
3 ¹ D _{1,2} -4 ³ P ₃	00	00 4		$3^{1}D_{3}$ -4 $^{3}P_{2}$	06	94	3
$3^{1}D_{2}-4^{3}P_{1}$	52	16 3	out of	3 ¹ D ₂ -4 ³ P ₁	1496	92	2^{6})
$3^{1}D_{3}$ - $4^{3}P_{2}$	48	31 5	and a star	$3^{1}D_{2}-4^{3}P_{1}$	84	92	4^{6})
$4^{3}P_{1}$ — $4^{1}D_{2}$	43	12 6	Est in	$3^{1}D_{2}$ -4 $^{3}P_{2}$	80	55	2
$3^{1}D_{1,2}$ — $4^{3}P_{2}$	39	72 4		$3^{1}D_{1} - 4^{3}P_{1}$	63	41	4^{6})
$4^{3}P_{2}-5^{3}S_{1}$	35	79 31)		$3^{1}D_{3}$ — $4^{3}P_{2}$	59	87	3
$3^{1}D_{2}$ — $4^{3}P_{2}$	10	17 4	1	$3^{1}D_{2}-4^{3}P_{3}$	1385	39	2
$4^{3}P_{1}-5^{3}S_{0}$	07	46 2		$3^{1}D_{1} - 4^{3}P_{2}$	59	31	1
$3^{1}D_{1}-4^{3}P_{3}$	05	98 0 ¹)		$3^{1}D_{2}$ -4 $^{3}P_{1}$	35	37	1
4 ³ P ₁ -4 ¹ D ₃ ?	1896	94 0		$3^{1}D_{2}$ -4 $^{3}P_{2}$	34	94	3
3 ¹ D _{1,2} -4 ³ P ₁	94	17 3	1.1.1	$3^{1}D_{1}$ -4 $^{3}P_{2}$	17	60	2
$3^{1}D_{1} - 4^{3}P_{2}$	92	92 1 ¹)		$3^{1}D_{2}-4^{3}P_{1}$	10	58	1
$4^{3}P_{2}$ -41D ₃ ?	72	39 5 ²)		$3^{1}D_{2}$ -4 $^{3}P_{2}$	1297	96	3
$3^{1}D_{3}$ -4 $^{3}P_{2}$	70	28 6 ²)		$3^{1}D_{1}-4^{3}P_{2}$	81	50	2
$3^{1}D_{2}-4^{3}P_{1}$	60	50 3		31D1-43P0	78	38	2
3 ¹ D _{1,2} -4 ³ P ₂	54	72 61)		31D1-43P1	70	54	2d
$3^{1}D_{1} - 4^{3}P_{1}$	49	51 2		33P-31D1	490	56	2^{6})
$3^{1}D_{2}-4^{3}P_{0}$	28	43 1		$3^{3}P-4^{3}S_{1}$	409	948	56)7)
				33P-43S1	403	734	$5^{6})^{7})$

1) Diese Linien sind nicht ganz sicher.

²) Diese Linien hat auch Lyman [163]: 1872.5 (3), 1870.9 (3) und Lang [313]: 1872.27 (12), 1870.17 (12).

³) Hier liegt auch eine Linie von Ca II.

4) Diese Linien sind mehrfach gemessen: Millikan u. Bowen [284]: 1586.1 (0), 71.5 (0), 62.4 (4), 55.0 (5). — Lyman [163]: 1561.2 (2), 55.1 (8). — Lang [313]: 85.0 (1), 62.4 (10), 55.7 (2).

⁵) Hier liegt auch eine Linie von Ca II; die Messungen sind nicht genau genug, um zu entscheiden, was im einzelnen Fall gemessen ist. Lang [313] hat hier 3 Linien: 55.58 (10), 54.70 (3), 53.25 (2). Saunders u. Russell [303] geben für Ca II nur 2 Linien: 55.1 u. 53.5.

⁶) Diese Linie scheint auch Lang [263] zu haben. Siehe nächste Tabelle.

7) Millikan u. Bowen [284] geben: 410.1 (6), 403.8 (6).

1211								
	43S0	167518.6	121 -01	43P0	131055.0		(209281.9	
	139	∫169200.0	a la		(140941.6	31D1	188574.6	
	4.01	165433.6	Const Const	43D	. 134510.3		180295.6	
	43S2	170583.5	1000	4-11	131990.7	31D1. 2	187303.8	
	53S0	82084.3	100		130558.6		(208291.6	
	53S1	∫ 84546.6	Carl Parts		(135749.5	31D2	198794.7	
		1 81728.4		$4^{3}P_{2}$	133388.8		185739.2	
	5^3S_2	85210.0	A Start Price		131248.2	41D1	90128.1	
	33P0	413127				41D	∫89476.4	
			7.81 2.13			4-12	185040.5	
			Section 1			41Da	86945.0	
			and the second			4 ¹ D ₃ ?	77841.1	

Tabelle 3 a. Termwerte Ca III [349].

Anm.: Bowen [349] gibt die Termbezeichnungen mit der von Meissner beim Argon eingeführten Numerierung der einzelnen S-, P- und D-Terme. Hier sind statt dieser Nummern die inneren Quantenzahlen j rechts unten an den Term gesetzt. Die Hauptquantenzahlen sind so belassen, wie Bowen sie eingeführt hat.

Ca IV und Ca V. Sieben- und Sechselektronensystem.

Für diese beiden Ionisationsstufen hat Bowen [349] einige Linien angegeben und eine Einordnung versucht, für Ca IV zwei Paare, für Ca V die PP'-Gruppe. Die Zahlen folgen in den Tab. 4 und 5. Ekefors bezeichnet zahlreiche Linien mit IV und V, ohne sie einzuordnen. Siehe Tab. 6.

Komb. [349]	Nach Bowen [349]		Nach Bowen [
a P ₁ —b S	669.70 5 ¹)	a P ₁ —b P ₂	656.71 3
a P ₂ —b S	65.96 6	a Po-b P1	51.49 4
a P1-4 k P2	338.92 2	a P ₁ —b P ₁	47.82 3
a P ₂ -4 k P ₂	35.36 2	a P ₂ —b P ₂	46.51 5
14/1 A. 11/2 / 10	Contraction of the second s	a P ₁ —b P ₀	43.10 3
		a P2-b P1	37.89 4

Tabelle 4, Ca IV.

Tabelle 5, Ca V.

[349]

1) Lang [281] gibt 669.0 (10), Millikan u. Bowen [284] 669.6 (4).

In den genannten 5 Ionisationsstufen sind sehr viele der für Ca gemessenen Linien untergebracht, aber es ist doch nur der kleinere Teil aller. Von den älteren Messungen, die in Band VII gegeben sind, bleiben oberhalb λ 2000 noch etwa 100 nicht eingeordnete Linien übrig und Anderson [274] hat in seinem Funkenspektrum etwa 600 weitere Linien.

Vollends im Schumanngebiet finden sich sehr viele nicht eingeordnete Linien. Die folgende Tab. 6 gibt diese Linien, wie sie von Lang [281], Millikan und Bowen [284], Saunders [150, 184, 221], Lyman [163] und namentlich Ekefors [438] gemessen sind. Die jeweilig vermutete Ionisationsstufe ist in römischen Ziffern vorgesetzt.

		Lang [281]	Saunders [150, 184, 221]	Millikan u. Bowen [284]		- AND		Lang [281]	Saunders [150, 184, 221]	Lyman [163]	Millikan u. Bowen [284]
III?	2065 63	- 4 1	5.42 0				1604 1593	5 1 6 N? 1		-	-
1112	52	8 1 7 1	-	27.5	01	3:10	80 80	0 1 8 1	100	A I B	71.5 0
	40		0.26 6	_			55	-	-	-	5.0 5
	35	-	5.13 5	-			45	7 N? 3	-	11	5.6 5
	31	6 3	-	007 0			34	1 Si? 1	3.8	3.4 2	-
III?	19	3 1	-				26	e 1	DBT S	6.7 2	-
1112	1000	4 1	1 7	087			24			I.	
m	62	9 1		V.E.		III?	1497	2 1	_		0.0 0
III?	48	0 1	_	_		III?	84	9 1	_		5.9 0
	45	1 1		-		•	81	4 C? 1	-		-
	15	0 1	-	-			75	-	5.5	-	-
	00	8 1	-	-		III?	64	0 1	1000-00		4.1 0
1.16	1889	1 1		87			54		310-	-	4.3 0
	77	9 1	-	Not 1			34		800	4.3 0	4.2 0
111?	71	7 1	-		101		14	8 1	S00-700	0.1 0	Ξ.
111?	69			-			02	9 512 10		27 4	_
11.1	30	5 1		Tay			00	-	0.7		_
	27	5 Hg? 1		17.2			1393	4 Si? 8	-	3.6 5	-
	22	0 1	_	-			74	3 1	-	-	-
	19	7 1	-	- 1		112	46	9 1	7.1		-
	14			4.8 0			11	6 10	0.2	- 1	-
	05	7 1	50	7.8 0	1.6	III?	1298	0 2	-	· -	-
	1776	0 2		-		172	91	6 2	00-	-	
	51	5 1	-	107 1			86	7 1	1	1 1	0.7 0
	43	0 1		BIT		m	85	0 1	007	61 2	-
111?	38			1177		E 1	74			0.4 0	
130	129	6 5					68	- ·	_	8.2 2	_
	08	1 1		22			64	6? 2	4.7	4.5 2	
	04	0 1	_	-	10		60	-	-	0.2 1	- 1
1. 12.	1697	5 1	- 1	1			54	-	-	4.3 2	-
	93	8 1	L				47	0 C 2	-	6.2 1	
	85	5 5	2 -			at 1	41	6 H 1	-		-
	82	4	3 -				29	5 1	-	TI	-
	76	4	- 10	-			1184	4 1		-	-
	67	0	1 -				49	5 1		T	
	48	5		75.0			20	5 1		L	_
	40	4	1 _	1.0 0			1084	-	_		4.6N0
	27	0	1 -	-						1	

	N		Ekefors [438]	Lang [281]		N	8.3 14	Ekefors [438]	• Lang [281]	Millikan u. Bowen [284]
poll .	III	1035	366 4	-		V	975	825 4	per-	-
84	III	34	848 3	-		VI	75	055 3		-
	VII	34	288 2	-		-	73	437 6	-	
	VI	32	612 2	-		VII	70	887 2	- 1	
	III	31	760 4			VI	69	652 6	-	- 10
1	IV	30	273 4			V	68	236 3	-	-
0.0	IV	29	566 3	-		V	66	466 6	-	-
10.01	III	28	560 4	-		5. 11	64	771 0	-	-
- and	VII	28	366 2	-			64	176 0	-	-
1	IV	27	309 5	-		V	62	896 2	-	-
	VII	27	110 3	-			59		9.6 5	-
TRAP	IV	24	339 5	-		VII	58	135 1	-	-
	IV	23	820 4		1	VII	54	270 3d	-	
	VII	22	010 2	-			50	817 0	-	-
	VI	21	508 4				48	699 0	-	-
	V	21	139 3	-			48	309 0	-	-
	VII	19	799 3d				47	-	7.3 1	
	III	19	371 2	-	1		46	449 0	-	-
	VI	18	346 3	-		S- pa	40	398 0		-
	III	14	998 3	-			38	699 1	-	-
	V	14	162 4	-			37	-	7.3 1	-
	V	12	613 3				34	875 1	-	4.6 0
	VI	11	049 0	-			34	329 0	-	-
	VI	10	852 0	-			33	-	3.5 1	-
	V	09	638 3	-			27	428 0	-	-
		08	757 2	-			26	193 0	-	-
	III	08.	470 0	-		VII	24	249 1	-	-
		05	270 0	-		VII	23	179 3	-	-
	178	04	967 0	-			22	474 0d	-	-
1.1		04	689 0	-		VII	21	956 2d	-	-
	VII	03	611 2	3.8 1		***	18	768 0		-
	VII	02	398 5	-			17	278 2	7.5 1	-
	V	01	544 3	-		III	16	917 2	-	-
	V	00	310 6	-		VI	16	682 2	-	-
	III	998	397 3	, -	1		15	972 0	T	-
	IV	97	579 7	-			12	979 0	-	
	V	94	946 3	-			11	383 0	-	-
	IV	94	311 6				10	195 0		-
1030		93		3.2 1		TTT	08	015 0	8.3 1	-
	VII	92	740 1	-	1	m	06	615 2	-	-
-	VII	89	973 3	-			05	245 1		-
	111	88	131 1	-			02		2.3 20	-
	VII	87	867 3	-		111	897	972 1	-	
	V	87	680 3			III	94	351 4		-
	III	87	336 5	-		VI	92	671 3	2.0 1	-
	TIT	84	930 4	05 0		m	90	050 0	-	
	VII	83	432 4	3.5 2		1	90	059 0	-	-
		81	489 0				89	170 0	-	
	111	177	044 2	-			87	176 0		

	N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]		N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]
		886	916 0				v	774	354 8	num 11	_
		85	553 0		T		v	74	088 5		37 1
	III	83	159 8		30 0		III	72	641 2	26 N 1	-
	m	81	100 0	15 9	5.0 0		VI	79	389 1	2.0 IT I	
		74		40 1				71	048 0		· · · · ·
		72	824 0	4.0 1	58 0		VI	70	998 1	0.8 1	
		71	036 0		0.0 0			69	602 1	0.0 1	
		69	981 OR		T			69	232 0	_	_
		64	695 4				VI	67	861 0		_
		63	984 0				VI	66	522 1	_	
		63	011 0	_			VI	65	154 6		
		60	983 1				VI	64	358 3		
	VI	60	827 2	_	I I I		VI	63	344 2	-	
	IV	58	855 3				III	58	465 1	_	_
	III	56	791 4		L		***	51	897 0	_	_
	III	56	635 4		65 1		v	48	409 3R	7.42 1	8.2 0
		55	056 0	59 9	0.0 1	16	ш	46	246 1		
	VI	54	928 8	0.2 2			***	45	-	5.0 1	5.9 0
	III	50	966 3	0.0 1			1	39	_	9.2 1	_
	III	46	611 3	0.0 1	65 0			36	738 1	-	6.3 0
		45	011 0	54 1	0.0 0			35		5.4H?1	_
	v	49	950 8	0.1 1	I. I.			33	867 0	_	_
	III	41	385 1					33	327 0	_	_
	III	40	991 .2	9.9 10	L			32	883 0	20H21	2.9 0
	III	40	807 1	0.0 10			VII	31	286 5d		
	III	91	495 1	16 20			V	30	257	_	_
	VII	98	451 9	1.0 20	1. 1.			28		8.9H21	_
1	VII	93	395 0				v	27	646 1		
	V	91	583 1R1)		2 0			27	529 0	_	7.4 0
		18	000 IN-)	8 45121			VII	27	185 1	_	_
	VI	17	058 9					25	088 1		_
	VI	16	805 2	_	_			24	470 0		_
	VII	13	379 0	_			VI	24	091 0d		-
	VII	12	967 2	_	_			22	752 0		
	VI	11	480 1	_			VII	22	456 2		-
	V	10	937 4	_	1 C O		VII	21	514 1	-	
	v	03	325 1	_	_			20	946 0		
	VII	00	652 3	_	100			18	_	8.2 10	-
		788	-	8.9 2	_		VII	14	693 2	-	1
		87	-	7.3 2	_		VII	14	678 3	4.5 1	
		81	350 OR	-			VII	14	176 3		-
		80	116 1	-	_		VII	13	972 0	-	-
	N	79	919 4	_	_		VII	13	793 3	-	-
	v	79	824 3	-			VII	11	390 2	-	
	VI	78	718 1	6.5 1			VII	10	671 2	-	-
	VI	77	508 1	-			VII	09	932 2		
	VI	75	966 3	_	10 _ m		VII	09	001 2		-
	IV	75	526 3	-			III	01	370 1	-	
	VI	74	532 3	-	_		VII	00	793 0	-	-

N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]		N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]
VII	700	695 0	14	1 - 27		IV	635	318 8	4.3 5	
VII	698	988 Od	-	1 - V		III	33	187 5	2.0 2	2.7 0
VII	97	972 2	-	- 11		VII	30	515 3	-	11 - 11
VII	97	809 2	7.8 1			VI	29	594 2	-	
VII	97	281 2		-		III	29	355 4	8.4 3	9.0 0
III	96	206 R3		-		VII	26	940 1	-	-
III	95	824 R4	-			III	23	749 1	2.7 1	-
VII	93	824 2	3.3 1	-		ш	21	279 3	-	-
VI	89	539 3	-	-			20	566 1	-	-
III	88	907 3	-	8.6 0			20	289 2	9.6 3	-
VII	88	223 1		-			18	301 0	-	T
VII	87	985 2	7.0 8	-		WT	18	517 4	-	T
1111 WI	80	190 2	-	T		VI	11	015 9		T
VI	00	749 5		T		TIT	19	010 5		a In
VII	84	282 0		L. T.			11	186 1	10 3	Lin
VII	83	581 0		LI	1.	Ш	10	740 3	1.0 0	
III	83	149 1	_			III	08	895 3	1	10 -17
III	81	908 4	_			III	07	069 3		11 - 11
VII	81	363 3	-			III	06	333 2	-	11 410
	79	240 0	_	12 -		VII	05	824 10	5.5 1	-
	77	820 R1	-	-		VII	04	766 1d	1 12	- 1
V	76	775 1	-	8 - 1			04	580 2	-	11 - 10
VII	76	563 3	- 1	- 1		III	03	622 3	3.0 1	DI' 4 TH
VII	74	278 2	-	10 -117			02	664 0	-	D: + 111
VI	74	046 1	-				02	389 0	-	18 - 10
VII	73	885 1	-	-		VI	01	700 5		- 1V
VII	73	367 1	-			VI	00	917 6	0.0 2	0.9 1
VII	72	315 0	-	-		1.0	597	281 0	-	
III	72	083 1	-			VII	96	944 4	-	-
V	71	365 6	-	-		III	96	223 2	-	
IV	69	725 10	9.0 10	4.6 4		III	94	640 3		-
	68	701 1	-	-		V	94	239 1	05 0	
	68	462 1	-	T		V	93	4/2 1	0.0 0	TIN
TTT	50	126 2	-	T		V	95	404 1		A Ty
W.	50	769 6		T		ш.	91	149 3		
IV	56	038 15	50 10	59 5		VI	90	396 3	0.9 4	In Inv
III	53	790 4	0.0 10	0.0 0		VI	87	872 1	-	
VII	59	634 0	i local la	In Link		VI	87	604 2		_
VII	51	992 0	al and the	101		Ш	- 87	311 3	10 100	-
V	51	550 5	o m	1.0 C 0		III	86	880 2	6.5 6	12 -
V	47	876 5	3 -	1 - 11			84	760 0	-	15 - 1
VII	47	292 2	-	11 -11			83	975 0	12 144	1 - Y
V	46	570 8	1 1	6.4 3		VII	82	- 844 4	1 -	- 17
V	43	118 6	-	a) -114			81	789 0	1 -	155 - 27
V?	42	812 2	2.6 3	2.5 C O		VI	81	466 3	-	17 - 18
III	39	230 6	-	10 + 10		VI ·	80	654 0	0.4 1	
V	37	928 8	7.8 3	8.01		VI	79	775 2		1 - 1

N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]		N		Ekefors · [438]	Lang [281]	Millikan u. Bowen [284]
VI	578	732 4	_			IV	535	647 4	1 11	- 10
	78	170 0	-	- 11			35	027 0	100	5.1 0
	76	662 1	1 - 1			III	34	715 4	4.5 5	-
III	75	580 6	-				31	144 0	1 12	11 - 117
III	74	398 3	-	-17			30	501 0	1	12 - 1
VI	74	007 3	-	-117	100	V	30	303 1	-	3-1
III	72	691 4	2.0 3	2.0 0			29	651 1	1 24	17
	71	873 0		10-			29	346 0	2 200	- 60
III	70	291 2	-	-		V	28	746 3	8 999	
III	69	122 1	9.0 3	-		III	28	286 8	7.6 3	1 -
IV	65	463 3	-	_			25		5.0 2	- 11
VI	64	275 2	4.2 5	12 -			21		1.5 1	
V	62	250 3		-			20	797 0	-	ei -117
III	61	670 3	0.9 5	-			18	-	8.0 0 1	- 01
V	58	602 10	7.8 5	8.1 1			14	498 1	_	10 -
III	57	112 3	-	11 - 111		VII	12	067 2		- 10
III	56	583 3		11-111		VII	10	435 3	0.6 1	10 -
III	56	215 2	-	21-117		V	09	293 2	-	10 -
V	55	482 3	5.5 5	01 -117		1	07	-	7.3 0 3	10 -
III	54	615 3	3.6 3	.e0 - 11		VII	06	163 4	1	- 10
	52	005 4		10 -111		VI	05	199 8	-	10 -
VII	51	448 6	10: 447	- 11		VII	04	591 3	4.2 1	- 51
V	51	103 2	1.1 3	10 - 17		VII	03	261 2	1 22	20 -
VII	50	183 6		10-17		1 8	02	120 0	0	- 11
III	50	004 3	- 1	1017-317			00	812 0		
III	49	201 4	27	20 -		VII	497	986 3		0
V	49	070 3	0 -	80 -			96	336 0		- Y
	48	920 2	8.6 3	122			95	968 0	5.9 1	4 - 7
VI	47	898 3	15 449 I	16 - 114			95	376 0	01 (11)	-
	47	620 2	1914	10-111		VII	91 .	370 2		
	47	393 0	-	-		VII	91	097 1		
	46	535 0	3 -	198 - III		III	90	546 2	0.5 1	-
	46	301 0	2 +0	100-11		VII	89	700 1		
III	45	091 2		- 88 -		VII	88	465 1	-	-
VII	44	247 2	0 -	80		VII	86	838 2d		-
VII	44	132 R3	0	-			86	160 3		
	42	842 3?					85	636 3R	-	-
V	42	290 10	1.5 5	2.2 1		1	85	507 R0	5.5 1	-
VII	39	382 2	-	-			85	350 R0	-	-
IV	- 38	967 2	0 -	-			84	368 3		-
IV	38	648 3		-		1 Vi	83	963 R0	-	-
V	37	613 6	7.3 8	7.8 C 3		1.00	83	415 R0	3.2 1	
1	37	484 2?		- 17			83	005 0	-	-
IV	37	004 2		-			82	169 2	· · ····	-
IV	36	790 2		-			82	663 1	-	
IV	36	531 2	-	-			80	822 0	-	-
m	36	132 4	-	-			80	4/1 3	-	T
	36	008 0	-			TTT	50	040 2	-	
1	30	913 0			1	1111	10	000 4		

N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]	N	13X 1	Ekefors [438]	Lang [281]	Millikan u. Bowen [284]
	477	300 1	7.0 1	7.5 0		430	506 0	100000	32 -17
V	76	606 2	-	-	III	30	050 1		-
	76	177 2	-	10 - 11		29	$933 \mathrm{R1}$		
VII	71	180 3	18 - I	-	N N L	29	744 1	9.6	- H1
V	71	067 3	8 =	- 1	VII	28	819 1		
	68	540 1	1 -	2 - 7	VII	28	112 6	-	- 17
VII	. 66	227 6	- 1	- 1		27	655 1	-	
	65	990 2	0	- 1	V	25	000 15	4.4 1	-
III	64	830 3		12 - 11		22	661 0	2 44	
	64	260 1	4.2 1	182-11		22	463 0	11.244	-11
111	63	938 0	-			22	088 0	5 4	- 73
	62	996 1	-	- 1		21	935 0	-	- 10
VII	62	587 3		- 10	VII	21	718 1	-	
	61	700 5		- 1		20	700 0	2 - 1	n + n
Vite	61	085 5		- 1	VII	20	191 1	01	
117.5	59	811 1	9.3 1	11 - 17	VII	19	778 3	11 44	10 - UL
	58	160 Od	-		VII	14	663 12		111 - 50
111	56	981 5	6.4 1	10 - 1	VII	12	175 2	- 44	86 <u>-</u> 110
	55	812 Od			VII	10	499 5	-	- V
	55	341 Od		80 TY	III	09	971 18	0.3 10	0.1 6
	54	553 1		0 - 17	VII	07	776 4	-	- 2
	54	053 1	-	- 17	III	03	732 20	3.8 10	3.8 6
	52	239 0	-	m - m	VI	02	551 2	-	18 - 1
IV	50	565 10	0.0 1	0.5 0	VI	00	827 4	-	08 - 119
	47	662 0	-	_	VI	399	928 1	e e	- 18
125	46	972 0	_	10		98	615 R2	-	15 - 18
V	46	036 1	-		l lett	98	473 0		- 7
v	45	933 1	-		I INS	97	178 4		
	45	607 R0	-		VII	96	918 2	- 1	12 - 27
111	45	018. 1			VII	96	770 R3	2 -	-
IV	44	766 3	-	11 - 111		96	535 0		-
	44	254 1			III	96	382 3	6.3 1	-
IV	43	821 15	3.4 1	4.1 0	VI	96	. 044 2	-	
	42	755 0	-	-		93	618 0	-	a 4 m
	42	607 1	-	-		93	289 0	-	11 - 11V
	42	014 0	-			93	024 0		- 17
	41	812 R0	-	-		92	841 0	11 (H) (I)	-
	41	356 R0		_	III	92	420 R2	1012-02	
VII	41	095 5		_		92	014 0	-	-11V
	40	118 2	_	-		91	747 0	1.9 1	an - 21
IV	39	700 5	9.3 1	9.7 0	1 here	91	237 0	-	22 - 71
IV	38	930 4	-		inte :	91	051 0		1 - 1
IV	37	773 5	-	-	VI	90	137 R3	-	- 51
IV	37	271 2		-		89	927 0	-	18 - 10
VII	36	907 0	_			89	495 0	-	71
VII	36	152 6	_	-	VII	89	195 1	-	
IV	34	570 12	4.0 2	_	VII	88	685 3		H - 10
VII	33	609 6		0 -	VII	88	235 R2		- 10
VII	32	880 6	_	-	VII	87	669 2	0	12 -

N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]		N		Ekefo [438	ors]	Lang [281]	1
VII	387	490 2	_			VI	361	645	2		
VII	87	349 R2h			2		61	361	0	_	
VI	87	080 4	_				61	241	0	-	
VI	86	954 1				VI	61	114	4		
VI	86	106 1				VII	60	296	2	_	
VI	85	941 1	_			VII	59	640	2d	-	
VI	85	091 2	_			VII	59	364	5	-	
11	84	609 0				VI	58	153	3		
VI	84	172 3	_			III	57	973	8	7.7	1
VI	84	028 2					56	889	b0		Ĩ
VI	83	505 2	_			VI	56	239	3		
	83	121 0				VII	55	692 H	21		
VI	81	849 2	_	1		VII	55	351 I	21	-	
v	81	601 3		_		VII	54	404 1	34	-	
VI	81	46 2				VII	54	1561	34		
V	80	396 5	_			V	52	908	8	2.4	1
VI	80	003 1	_			VII	51	996	2		-
v	79	765 3	_			VII	51	460	3	-	
v	79	138 2	_	_		VII	51	368	3		
VI	78	745 1	_	_			50	715	0	-	
VI	78	551 1		_		VI	50	394	1	-	
	78	379 1	_	_		VI	49	494]	R1	-	
VII	78	258 3	_	-		VI	48	996	1		
VII	78	095 3	_	_		VI	48	927	1		
V	77	181 5	_			VI	48	650	1		
v	76	279 3		_		VII	48	043	3		
v	75	333 3		_		VI	47	967]	R3d		
IV	74	744 5	4.2 1	- 1		VI	47	431	1		
V	74	000 4	_	1		VI	47	334	1	-	
VI	73	700 3	_	_	1000	VI	47	005	4	-	
VI	73	417 2	_	_		VI	46	335	2d		
V	72	904 6	-	_		IV	45	100	4	-	
VII	71	902 2	-	_	1	III	44	958	4	-	
V	71	225 6		-		III	44	219	2	4.0	1
VI	70	033 5	_	-		IV	43	933	5	-	
III	69	647 5	_			IV	43	438	4		
III	68	422 R1	8.7 1	-		VI	43	- 194	2		
III	68	303 3	-	-		IV	42	447	5	-	
VI	67	371 R2	_		1	IV	41	455	4		
VII	67	011 3	-	-		IV	41	284	4	0.5	1
VII	66	203 3	-	- 07	1.99	VII	40	516	3		
	65	432 0	-	-		III	40	389	3	-	
	65	040 0	-	-		IV	40	286	4	-	
	64	928 0	-	-		VI	39	953	3	-	
VII	63	525 2	-	-		III	39	790	8	0	
VII	63	395 2		_		VI	39	463	3	-	
VII	62	788 1				IV	38	828	4	-	
VI	62	617 2	-	-	1	1 8:41	38	508	0		
1	62	240 0		-			38	293	0	84	

Kayser u. Konen, Spektroskopie. VIII.

369

Millikan u .Bowen [284]

8.0 3

2.9 0

4.7 2

1.0 0

N		Ekefors [438]	Lang [281]	Millikan u. Bowen [284]		N		Ekefors [438]	Millikan u. Bowen [284]
V	338	056 5		T-		IV	296	554 5	100_ 101
V	37 .	541 4	108 10		-	VII	95	396 3	78 - 117
	37	396 2	111 - 115	-		VII	95	171 3	10 - 17
1.017	37	020 1	111-18	11-		VI	91	976 1	- 17
V	36 .	554 4	202 - 20	111-	are!	VI	87	657 3	~ - 17
V	35	344 5d	01.000	4.9 0	1	V	86	947 5	- 17
V	34	135 3	1.09 - 00			V	84	948 6	
V	33	857 3	163.1 - 16	1-		V	81	000 4	0.9 0
V	33	438 4	1020 - 23	114		VII	75	343 3	- 11
	33	137 1	1724 - 86				74	808 0	10 - 14
IV	32	808 3	00 + 200	12-			74	461 0	19 - L
IV	32	531 5	1000 - 60	114	1		73	695 1	-
IV	31	991 5	1.4 1	1.8 3	110	V	72	982 4	-
V	31	652 1	100 - 10	1304		VII	72	866 3	
IV	31	442 4	84 - 100	- 11	100	V	72	336 3	-
0	30	928 2	1000 - 00	- 1	1 TT	V	72	265 5	-
	30	809 1	1922 - 12	- 10	121	V	70	494 3	-
VII	30	000 5	1000 + 10	LU-		V	70	305 6	9.7 0
III	29	391 3	26 - 10	- 12	111	V	67	768 8	-
VI	29	298 R3		-	13 1		64	482 R0	
IV	29	116 5	8.8 1	1.13-	1		64	348 R0	-
IV	28	577 1	123 - 69	-	11	-	63	800 R1	-
VI	27	806 4	7.9 1			VI	60	446 3	100 - 100
VI	27	175 2	A DECEMBER OF			VI	59	978 3	
V	25	282 5	1000 84			VI	59	856 3	- 1
V	25	020 3	96 1 6	-		VI	59	576 3	-
V	24	477 5	118 1 2	4.7 2		VI	58	251 3	-
IV	24	110 3	143 1 19	-		V	57	976 5	-
VI	23	223 6		and the second			53	621 0	
V	22	757 5	200 65		111		52	943 R0	-
V	22	166 10	199 19	2.1 Mg?1		0.9	02	144 0	
VI	21	110 1	22. 1 23		117	100	51	400 1	
VI	20	445 2	122 1 1.1			WIT	. 51	6 406	
	20	309 0	10	-		IW	50	159 09	
VII	18	385 1		-		IV	40	105 R5	ion in
VII	18	094 4				IV	49	408 K5	
1	17	287 0		-		III	40	706 129	100
VII	16	947 3	1				47	555 R0	
VII VII	16	389 0		-		III	11	384 3	1000
VI VI	16	110 3	125 165			m	42	496 0	1 10 111
VII	10	600 0					41	347 Ob	
VII	14	479 0					40	777 9	100
VII	10	569 0					40	794 R4	100
VII	01	010 2					40	040 2	100 TTW
IV	04	330 3					39	527 4	1 100 - 100
IV	04	741 4				-	39	007 B1	
IV V	200	315 4	Los Los	9.7 0		-	38	851 0	IS IV
IV	200	958 6	1 1 1 100	0.1 0			32	537 5	198
111	00	000 0	and a state				1 04	1	1

N		Ekefors [438]	N	Logineri Hondi	Ekefors [438]	N		Ekefors [438]
110	232	275 4		207	789 1		182	715 2
n 'B	32	094 0	100	05	391 2	and the second	79	500 0
V	31	971 0		04	722 1	ALC: YES	79	204 0
WH	- 31	530 1	(18) m [1	04	003 4	tripped 165	78	929 0
VI	30	501 3	and these	03	896 1	College of	78	651 2
VI	29	743 5		02	976 1	- S. S. S.	78	557 1
VI	28	634 6		01	811 0	1.1	78	383 0
11114	27	895 2		199	527 0		78	235 Ob
103	27	633 R0		99	057 0d	-	77	879 1
	26	292 1d	and a second	98	401 0	in the	75	963 1
-	22	467 R0		98	079 0	dan be	70	207 R0
	21	014 R0		97	821 0	113	67	034 1
	20	666 R0	916	97	685 0		66	945 1
	17	019 1	318	96	971 R2b		53	012 0
	16	005 1	10.00	92	757 1		51	832 0
	14	140 1	adal data	90	560 0	BO Chie	44	038 3
	14	008 0	da Th	90	453 0	1 Port	43	173 2
	09	723 3		87	515 1	S NAME	41	947 0
	09	271 1d		86	605 1		41	623 0
	09	188 1d	neg synn	84	433 1		35	597 1
	08	352 0	Charles Barris	all se			a Reserve	Sell Light

1) R Verunreinigung, in den meisten Fällen wahrscheinlich Sauerstoff.

Untersuchungen des Zeemaneffekts sind in neuerer Zeit nur an wenigen Liniengruppen ausgeführt worden. Kapitza und Skinner [294] haben einzelne Linien von Ca II in starken Feldern (70000 bis 130000 Gauss) eines Solenoid, jedoch nur mit der Dispersion eines Quarzspektrographen untersucht, z. B. die Linien λ 3968 und 3934 der Dublett S—P_{1,2}-Kombination. Im Transversaleffekt wurden die Komponenten nicht aufgelöst, im Longitudinaleffekt Dubletts mit dreifach normaler Aufspaltung erhalten, was der theoretischen Aufspaltung entspricht. Die Linien λ 3179 und 3159 (P_{1,2}— D_{2,3}) zeigen wie zu erwarten partiellen Paschen-Back-Effekt, da offenbar die Aufspaltungen von ähnlicher Größe, wie die D-Termabstände sind.

Back [289] fand regelwidrige Zeemaneffekte an den Liniengruppen des Ca I, die zu dem System der neuen Terme von Russell und Saunders gehören. Es sind dies die Kombinationen mit F"- und x-Termen und ferner mit P"-Termen. Sie zeigen zum Teil Aufspaltungsfaktoren g, die nicht der Landéschen g-Formel folgen und Intervallverhältnisse, die von der Intervallregel abweichen. Durch Vergleich der g-Werte kommt Back zu einer Deutung der x-Terme, insofern als er die f_2 "- und $x_{(2)}$ -Terme als zusammengehörige und wesensgleiche Terme bezeichnet, die sich zu dem regelrechten f_2 -Term ergänzen. An den P_1 "-Termen hat Back eine Durchbrechung des Auswahlprinzips der m beobachtet, so zwar, daß die Übergänge aus m = 0 ausfallen. In nachstehender Tabelle sind zu den einzelnen Termen die Mittelwerte g aus dem jeweils beobachteten Linientypus und die rationale Deutung der beobachteten g-Werte in Rungescher Bruchform angegeben.

	Tubene It	, der beobachteten g	mercer [neo].		
7202.45	31D-43F2"	$g_1 = 1.014$	33D1	28969.2	1
	-	$g_2 = 0.756$	33D2	28955.3	7
7148.40	3 ¹ D-4 ³ x ₍₂₎	$(g_1 = 1.00)$	33D3	28933.5	4/3
12 -	-	$g_2 = 0.891$		Section 0	11
6499.67	$3^{3}D_{2}-4^{3}F_{2}''$	$g_1 = 1.159$	43 F2"	13574.13	34
	-	$g_2 = 0.746$	43F3"	13485.82	13
6493.79	$3^{3}D_{1}-4^{3}F_{2}''$	$g_1 = 0.505$	$4^{3}F_{4}^{\prime\prime}$	13407.86	54
	-	$g_2 = 0.7604$		NU.SEP.	
6471.67	3 ³ D ₃ -4 ³ F ₃ "	$g_1 = 1.3301$	43x 2	13469.17	89
		$g_2 = 1.0703$			
6462.57	33D2-43F3"	$g_1 = 1.1657$	1) 33Po'	9971.7	00
-		$g_2 = 1.0826$	3°P1'	9969.8	30
6455.57	$3^{3}D_{2}-4^{3}X_{(2)}$	$g_1 = 1.160$	33P2'	9965.0	3
no	-	$g_2 = 0.891$		L 100- 11-0	
6449.81	$3^{3}D_{1}-4^{3}x_{(2)}$	$g_1 = 0.498$		Endly La 1 5	
	-	$g_2 = 0.897$		0.00.11	
6439.18	33D3-43F4"	$g_1 = 1.327$		E-strice In	
real	-	$g_2 = 1.245$		True Star 10	

Ferner liegt ein kurzer Bericht von Bender [425] über Untersuchungen der Linien 2³P_i-4³D_i vor, welche unsymmetrische Zeemanbilder zeigen.

Tabelle 10 der beobachteten g-Werte [289]

Der Starkeffekt wurde noch in älterer Zeit von Takamine und Kokubu [242] an einigen Linien untersucht. Sie bringen Beobachtungen, die zum Teil denen von Stark und Kirschbaum (Bd. 7 I 185) widersprechen. Die Linien λ 3737, 3706, 3179, 3159 von Ca II fanden sie vom elektrischen Feld schwach beeinflußt. Von Ca I fanden sie die Linien λ 3644, 3631, 3624 und 4685 nach Violett verschoben und die Linien λ 5042, 4878, 4586, 4582, 4579, 4527, 4355, 4099, 4095, 4093 nach Rot verschoben, geben jedoch nur diese qualitativen Angaben. Eine spätere Arbeit von Kimura und Nakamura [266a] bringt nichts Neues.

Von den übrigen Arbeiten, die sich auf Linienspektra beziehen, sei folgendes erwähnt: Kimura und Nakamura [280] teilen die Linien, die in Funkenspektren erscheinen, je nach der Länge in die Klassen: E II, E III, E IV usw. Bei Ca finden sie nur die erste Klasse vertreten, also keinerlei Linien von Ca III usw. In einer anderen Arbeit bringen dieselben Verfasser [279] Calciumbromid an die Kathode eines Geißlerrohrs; bei Funkendurchgang treten einige wenige Linien von Ca I auf. — Miyanishi [362] unterscheidet bei vielen Elementen die Ionisationsstufen durch die verschiedene Geschwindigkeit der Leuchtzentren im Funken; aber bei Ca findet er nur eine Art. Er sagt versehentlich, es seien Linien von Ca I, während es sich um Ca II handelt. Miyanishi [331] beobachtet ferner den Ca-Bogen in Cl und findet, daß dabei im allgemeinen die Linien verbreitert auftreten, während die Funkenlinien verstärkt sind. Er behauptet, die Verbreitung sei meist ähnlich der Wirkung des Starkeffektes. Ferner habe er auch neue Linien — etwa 2 Dutzend — gefunden und eingeordnet. Doch darauf wollen wir nicht näher eingehen. Die Messungen sind sehr ungenau.

¹) Diese Terme bezeichnet Back wie Russell und Saunders mit P_i ", während hier die Paschensche Bezeichnung übernommen ist.

Mehrere Arbeiten beschäftigen sich mit Aufsuchung der umgekehrten Linien. Da diese bei Ca weniger Interesse für Aufstellung von Serien haben, begnügen wir uns damit, die Arbeiten anzugeben Bloch [254] Unter-Wasser-Funke, Sawyer und Becker [252], Hori [310], Petrikaln [319], Kichlu und Saha [329], Fukuda [323] in Explosionen. Siehe auch Walters und Barratt [343].

Untersuchungen über den Pol- und Druckeffekt bei Ca von Gale und Whitney, Whitney und von Miller sind in Band VII p. 167 besprochen. Ganz ähnliche Versuche hat jetzt Harris [278] ausgeführt mit im wesentlichen gleichen Resultaten, nur daß er größere Verschiebungen findet, als die früheren Autoren. Mohr [299], der mit Interferometer den Poleffekt mißt, erhält die gleichen Resultate wie Gale und Whitney und Harris.

Es sind mehrfach Intensitätsmessungen an Ca-Linien ausgeführt. Dorgelo [276] mißt das Verhältnis der drei Linien der Triplets bei den Erdalkalien und findet: $\frac{5}{2}:\frac{3}{2}:\frac{1}{2}$. In einer weiteren Arbeit [291] hat er die Intensitätsverhältnisse der Komponenten der Funkendublette der ersten und zweiten Nebenserie gemessen und die in einer früheren Arbeit gefundene Gesetzmäßigkeit wieder erhalten.

Frerichs [308] behandelt das Multiplett 6508—6439. Die Intensitätsverteilung stimmt einigermaßen mit der Theorie. Bleeker [399] vergleicht die Resonanzlinie mit anderen Linien.

Frisch [430] sucht nach Feinstruktur an den Linien $2^{2}S_{\frac{1}{2}} - 2^{2}P_{\frac{1}{2},\frac{3}{2}}$, λ 3968 und 3933, und findet sie einfach, was auf den Kerndrehimpuls I = 0 schließen läßt.

King [295] benutzt den Bogen mit außerordentlich starkem Strom. Er führt eine Reihe von Linien an, die sich unsymmetrisch nach Violett oder Rot verbreitern.

Zu Isotopen siehe Dempster [257] und einen verfehlten Versuch von Nagaoka und Sugiura [267].

Ramaneffekt. Den Smekal-Ramaneffekt an Calcium zu messen, ist natürlich mit sehr großen Schwierigkeiten verbunden, daher liegen auch keine derartigen Messungen vor. Doch die Halogenverbindungen, Sulfate, Nitrate, Nitrite und Carbonate von Ca sind sehr häufig und zum Teil erfolgreich untersucht worden. Während Daure [377] für flüssiges Calciumbromid und Calciumchlorid keine Ramanfrequenzen findet, geben Dickinson und Dillon [378], Ramaswamy [419] und Trumpy [440] für gesättigte Lösungen von Ca(NO₃)₂ als charakteristische Ramanfrequenzen im Mittel 721 und 1050 cm⁻¹ an. Bär [374], Krishnamurti [418] und Gerlach [406] finden für wasserfreies kristallisiertes Calciumnitrat $\Delta v = 1064$ und für wasserhaltiges $\Delta v = 1045$. Gerlach beobachtet außerdem auch gelöstes Calciumnitrat und erhält eine Verschiebung der Ramanlinien mit zunehmender Konzentration. Calciumnitrit Ca(NO2)2 haben Dadieu, Jele und Kohlrausch [437] in 30% iger Lösung untersucht und folgende Ramanfrequenzen gemessen: $\Delta v = 596, 663, 716, 825, 1231$ und 1327 cm⁻¹. Für Calciumsulfatkristalle (CaSO4 + 2 H2O) geben Krishnan [385], Schaefer, Matossi und Aderhold [392, 420], Hollaender und Williams [380], Nisi [388] und Krishnamurti [416] nach der Kristallpulvermethode ermittelte Ramanfrequenzen an, die zum Teil dem Kristallwasser und zum Teil dem SO4-Ion zuzuordnen sind. Im Mittel betragen ihre Messungen: $\Delta v = 412, 489, 619, 670, 1009, 1132, 1596, 2174,$ 3137 und 3404, doch sei dabei bemerkt, daß die Übereinstimmung der verschiedenen Messungen nur bei einigen Werten gut ist, während andere nur in einer der genannten

Arbeiten zu finden sind. Am häufigsten von allen Calciumverbindungen ist der Kalkspat CaCO₃ auf Ramaneffekt untersucht worden. Auch hier seien jedoch nur die Arbeiten angeführt und die nach diesen Arbeiten als wahrscheinlich gesichert zu betrachtenden Ramanfrequenzen zusammengestellt; denn es würde sicherlich zu weit führen jede dieser Messungen genau zu diskutieren. Von den Smekal-Ramaneffekt-Untersuchungen sind uns bekannt: Landsberg und Mandelstam [355, 356, 357], Wood [396], Cabannes [375], Kimura und Ushida [384], Nisi [387], Schaefer, Matossi und Aderhold [392, 420], Daure [376], Embirikos [404], Venkatesachar [441], Bhagavantam [426] und Rasetti [436]. Sie finden im Mittel folgende $\Delta \nu$ -Werte: 147, 155, 161, 221, 282, 714, 771, 877, 1088, 1438, 1741, 7270, 7345, 7395, 7456, wobei die einzelnen Arbeiten verhältnismäßig gut übereinstimmende Werte bringen.

Röntgenspektrum.

An Untersuchungen des Emissionsspektrums seien zunächst die Arbeiten genannt, die sich nach der Plangittermethode mit der L-Reihe beschäftigen. Howe [381, 410] fand mit Hilfe von absoluten Messungen die Wellenlänge 39.63 Å für die Linie 1 ($L_{III}-M_{I}$), während Kellström [382, 383] für die gleiche Linie 40.90 Å, für die hier wesentlich schwächere *a*-Linie ($L_{III}-M_{IV,V}$) 36.27Å angibt. Diese Zahlen sind jedoch auf den Larssonschen Wert für Al-Ka: 8.3229 Å und somit letzten Endes auf den üblichen Wert der Gitterkonstante des Kalkspates bezogen.

In der K-Reihe liegen Messungen von Siegbahn und Dolejšek [263] vor, an die Dolejšek [258], Druyvesteyn [322], Ortner [334] und Wetterblad [373] ihre Untersuchungen schwächerer Linien anschlossen. Die Werte sind in Tab. 1 wiedergegeben. Neuere Präzisionsmessungen erscheinen wünschenswert, da die Arbeit

Messungen mit Kristallgitter. Wellenlängen in XE, bezogen auf Kalkspat: $d_{18^0} = 3029.45$.

Über- gänge	Bezeich- nung	i	Siegbahn u. Dolejšek [263]	Dolejšek [258]	Druyvesteyn [322]	Ortner [334]	Wetterblad [373]
KLII	a_2	5	3354.951)	and the state			-
_	a_2'	00	_	3349		and a los	_
KLIII	a	10	3351.69	[3351.69]	1111 222 3366	of Tan Ling	1.0101
Funkenl.	a	00		3339.87		in and the second	Inton- anti
**	<i>a</i> ₃	00	-	3332.3		- 1	- 7.1
,,	α4	00		3330.0	-		
**	β	00	3091.1	-	-	-	-
KM _{II} , III	β_1	2	3083.43		[3083.43]	[3083.43]	[3083.43]
Funkenl.	β''	00		200044010	3079.7	3079.7	-
KMIV, V	β5	0	3069.1		[3069.1]	3068,1	3068.0 ²)
Funkenl.	β'''	00		-	1 2011 2	and the state	3047.6
,,	β''''	00	-	-	1 0014.5	P. Ration	3040.1

Tabelle 1. Emission, K-Reihe.

1) Nach Siegbahn, Spektroskopie der Röntgenstr., 2. Aufl., p. 170.

²) Aus der Differenz gegenüber der Bezugslinie.

von Siegbahn und Dolejšek bereits 1922 erschienen ist. — Stensson [245] gibt als Abstand für das $Ka_{1,2}$ -Dublett den Wert 3.260 XE an, im übrigen ist diese Arbeit heute überholt. Der entsprechende Wert von Bäcklin [290] ist 3.28 XE. — Ferner machen Seljakow, Krasnikow und Stellezky [339] eine Untersuchung über die Linienstruktur, die bei $Ka_{1,2}$ ganz regelmäßig gefunden wird, während die Photometerkurven bei β_1 eine kurzwellige Komponente β'' zeigen.

Richtmyer [437] suchte vergeblich nach einem Einfluß der chemischen Bindung auf die Lage der Satelliten. Dagegen wurde ein solcher Einfluß auf die Lage der K-Absorptionskante von Lindh [282], Lindsay und van Dyke [315, 316] (die auch mehrere Kanten fanden) und Aoyama, Kimura und Nishina [321] festgestellt. Die Ergebnisse finden sich in Tab. 2-4. Die letztgenannten Autoren messen nicht die Kanten, sondern die durch geeignete Schichtdicke erhaltene Absorptionslinie.

Tabelle 2. K-Absorptionsgrenzen nach Lindh [282].

Substanz	λ	۵۵	⊿ V (Volt)
Ca	3064.3	A PAT AN ALCONOMICAL	
CaCO ₃ (Kristall)	3060.5	3.8	5.0

Stelle	CaCO ₃		$\rm CaSO_4\cdot 2~H_2O$		CaF ₂	
	λ	ΔV	λ	AN	2	⊿v
(Hauptkante) A	3060.3	- 12 8.0	3059.1	10025	3059.9	_
(Nebenkante) B	3050.2	13.3	3047.5	15.3	3047.8	16.0
., C	3037.9	29.5	3035.3	31.6	3034.6	33.7
" D	3023.3	49.1	The state of the s	Had Tobad	3025.3	46.2

Tabelle 3. Desgl. nach Lindsay und van Dyke [316].

Tabelle 4. Desgl. nach Aoyama, Kimura und Nishina [321].

Substanz	K1	K ₂	Substanz	K1	K ₂
CaCO ₂ Kalkspat	3057.7	3047.5	CaO	3057.3	?
., synthetisch	3057.7	+	CaF2	3056.3	+
Aragonit	3057.4	-	$CaCl_2 \cdot 6 H_2O$	3057.6	-
Muschelschale	3057.2	+	CaS	3057.9	+
(CaMg)CO, Dolomit	3056.5	+100	Ca(COO) ₂ H ₂ O	3057.1	100-00
CaSO, ·2 H.O Gips	3055.9	r male H	Ca(H ₂ PO ₄) ₂ H ₂ O	3055.4	?
synthetisch	3056.0	1-1	CaH ₂ PO ₄ · 2 H ₂ O	3055.6	?
CaSO ₄ Anhydrid	3056.5	-			

Es bedeutet: + vorhanden, - nicht vorhanden, ? zweifelhaft.

Ferner erhielten Kievit und Lindsay [413] eine Anzahl deutlicher Sekundärabsorptionskanten bei dem reinen Element, die Tab. 5 wiedergibt. Die Einstel-

lung erfolgt bei ihnen auf die Stelle der beginnenden Schwärzungsänderung an der langwelligen Seite.

λ	3063.9	3059.0	3048.5	3041.8	3034.7	3014.2	2987.3	2959.9
⊿v	(il) (g)	6.5	20.2	29.3	38.9	66.4	94.0	142

Tabelle 5. Sekundäre Absorptionskanten nach Kievit und Lindsay [413].

Es folgt schließlich die Zusammenstellung der Energieniveaus nach Siegbahn, dessen Linienbezeichnung hier allgemein benutzt wird, während die der Niveaus nach Bohr und Coster gewählt wurde.

Röntgenniveau	K	LII	LIII	M _{II, III}	MIV, V
Opt. Symbol	$1^2S_{\frac{1}{2}}$	$2^{2}P_{\frac{1}{2}}$	$2^{2}P_{\frac{3}{2}}$	$3^{2}P_{\frac{1}{2},\frac{3}{2}}$	32D _{3, 2}
₩ D	297.4 ²)	25.8	25.5	1.9	0.4

Tabelle 6. Energiewerte der Röntgenniveaus nach Siegbahn¹).

2. Bandenspektren.

Es sind Bandenspektren von Verbindungen des Ca mit O, H, Cl, Br, I, F beobachtet und gemessen worden. Über Ca₂ und CaO liegen erwähnenswerte neue Spektraluntersuchungen nicht vor. Für CaO hat Birge [Int. crit. Tabl. 5 p. 412 1929] folgende Kantenformel aufgestellt:

 $v(v', v'') = 23057 + (740 v' - 3.3 v'^2) - (848 v'' - 4 v''^2).$

CaH besteht aus mehreren Bandensystemen, die von Mulliken [300], Hulthén [326], Watson und Bender [424] und Grundström [431 und 408] eingehend untersucht worden sind. Mulliken [300] hat zuerst ein nach Violett abschattiertes Bandensystem bei 3536 genauer studiert und dazu eine Analyse der Rotations- und Oszillationsenergien gegeben. Dieses System besteht bei niedrigem Wasserstoffdruck nur aus einer (0.0) Bande mit einfachen P- und R-Zweigen, die mit P (12) resp. R (10) plötzlich abbrechen, wobei die letzten Linien stark gestört sind, was man zunächst als Dissoziation durch Rotation deutete. Bei höherem Druck (7 Atm.) lassen sich die Bandenlinien jedoch nach Grundström und Hulthén [408] bis K = 40 beobachten. In der Umgebung von K = 10 werden die Bandenlinien etwas diffus, was man auf eine Prädissoziation des Elektronenterms zurückführen kann.

Hulthén [326] untersucht außer dem violetten, mit C bezeichneten Bandensystem noch zwei im Roten liegende, A und B benannte Bandenfolgen, die Olmstedt bereits mit kleiner Dispersion gemessen hat. A-Kanten liegen bei 7035, 7028, 6921, 6903 und B-Kanten bei 6389, 6382 AE. Alle diese Banden sind nach Violett abschattiert. A besteht aus Dublettbanden mit P, Q und R-Zweigen. Im B-System hat jede

¹⁾ Spektroskopie d. Röntgenstr., 2. Aufl., Berlin 1931, p. 348.

²) Experimentell. Die Übrigen berechnet.

Bande zwei P- und R-Zweige und C besteht aus Banden mit nur einem P- und R-Zweige. A, Bund Chaben dasselbe Endniveau, das Hulth én mit N bezeichnet. Mulliken [363] befaßt sich ebenfalls mit den A- und B-Banden und bringt einige Korrekturen zu Hulthéns Angaben. Er meint, A sei wahrscheinlich die (0,0) Bande und B die (1,1), die dem Übergang ${}^{2}\Sigma \rightarrow {}^{2}\Sigma$ zuzuordnen sei. Watson und Bender [424] geben an, A sei einem ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ - und B einem ${}^{2}\Sigma \rightarrow {}^{2}\Sigma$ -Übergang zuzuschreiben. In A finden sie mehrere Satellitenzweige. Sie untersuchen ferner den Zeemaneffekt in diesen Banden in Feldern bis zu 30000 Gauß. Die Aufspaltungen sind zwar sehr kompliziert, entsprechen aber im allgemeinen der Theorie von Hill (Phys. Rev. 34 p. 1507 [1929)]. Delaup [350] hat ebenfalls diese roten Calciumhydridbanden in der ersten und zweiten Ordnung eines 7 m-Gitters in Magnetfeldern von 9000-23000 Gauß photographiert und gefunden, daß die Q1 (1)-, Q1 (2)- und P1 (4)-Linien bei schwachen Feldern linear mit der Feldstärke in Dubletts aufspalten, und zwar stimmt die Größe der Aufspaltung mit der Formel von Van Vleck für den Fall loser Kopplung der Rotationsachsen überein, wonach die Aufspaltungen für diesen Fall gleich der doppelten normalen Aufspaltung sind. Bei starken Feldern waren genaue Messungen nicht möglich, weil die Aufspaltung die Größenordnung des Linienabstandes erreichte.

Hulthén (Ark. f. Mat., Astr. och Fysik, 21 Nr. 5, 1929) fügt in einer uns nicht zugänglichen Arbeit ein weiteres viertes Bandensystem D hinzu, dessen Banden zwischen 5000 und 4000 Å liegen und nach Rot abschattiert sind.

Grundström wiederholt seine früheren Untersuchungen [408] der Calciumhydridbanden in einer späteren Arbeit [431] bei höheren Wasserstoffdrucken. Dabei werden die roten Banden wesentlich stärker und zeigen mehr Bandenkanten. Er gibt für die D-Gruppe das folgende Kantenschema:

v'v'	0	1	2	3
0	-	23608	24647	Citra Series
1	21236	22348		-
2	20043	21127	-	
3	18860	-	-	-

Die (0.0) Bande fehlt, während die hier angeführten Banden R_1 -, R_2 - und P_1 -, P_2 -Zweige zeigen, die mit großer Intensität einer Grenze zulaufen, wo sie dann plötzlich abbrechen. Die Wirkung des Druckes auf die A-Gruppe ist deutlich sichtbar; dabei werden von Mulliken vorhergesagte und von Watson gefundene Satellitenserien der P-Zweige sehr intensiv. Grundström findet auch noch Kanten zu A, die die Gruppe $\Delta \nu = -1$ bilden, nämlich: 7654 ($0 \rightarrow 1$), 7611 ($1 \rightarrow 2$), 7569 ($2 \rightarrow 3$). Besonders deutlich zeigen sich die Druckwirkungen an den C-Banden, wo sich, wie bereits weiter oben ausgeführt wurde, gewisse Prädissoziationserscheinungen zeigen. Die nach Mulliken einfache Bande λ 3509 wird ergänzt durch eine ($0 \rightarrow 1$) Bande bei 3696.6, bei der auch das plötzliche Abbrechen des R- und P-Zweiges auftritt. Bei Drucksteigerung verlängert sich ($0 \rightarrow 0$), neue Bandenkanten $\Delta \nu = 0$ treten auf und auch eine neue Gruppe $\Delta \nu = 1$. Die bei höheren Drucken gefundenen C-Banden, die übrigens einem ${}^{2}\Sigma^{**} \rightarrow {}^{2}\Sigma$ -Übergang zukommen, sind im folgenden Kantenschema zusammengestellt.

v.v.	0	1	2	3	4	5
0	28291.7	29686.3	nob-set	long 2 amb	tipe ILetred	e dablba
1	27044.2	2843.2	29786.6	in all - interest	- dilli - cheidi	a sector and a
2	TOTANA		28578.9	29873.3	-	
3		-		28710.9	29952.9	-
4	_	Contraint_ States	-	anal <u>in</u> a n	-	30014.1

b) Haloidverbindungen.

Diese Spektren sind auch heute noch trotz mancher Untersuchungen als ungeklärt zu bezeichnen. Unter den neuen Angaben seien zuerst Walters und Barratt [372] genannt, welche die Banden in Absorption beobachten. Für das Chlorid, Bromid, Jodid geben sie lange Listen der gemessenen Kanten. In allen Fällen seien drei Gruppen vorhanden, deren erste und dritte nach Violett abschattiert sind, die zweite nach Rot. Beim Chlorid sind die Grenzen der Gruppen 6350—5810, 3994—3671, 3238—2918; beim Bromid: 6390—6004, 3996—3910, 2967—2890; beim Jodid: 6909—6268, 4334 bis 4211, 3266—3129.

Eine zweite Untersuchung liefert Hedfeld [433]. Er benutzt als Lichtquelle teils den Bogen, der aber nur die Chloridbanden gut liefert, teils wie Olmstedt eine Gebläseflamme, in welche Papierrollen eingeschoben werden, die mit dem Salz gefüllt sind. Seine Untersuchungen beziehen sich auf längere Wellenlängen, während Olmstedt vorwiegend kürzere betrachtete. Da er ein 3.5 m-Gitter verwendet, kann er die Banden besser auflösen, aber auch so ist nur von Kanten die Rede, nicht von Einzellinien. Er glaubt, daß die von ihm gemessenen und die Olmstedtschen Banden den gleichen Endzustand haben, der eine 2/17-Termkombination sei, während als angeregte Zustände wahrscheinlich ${}^{2}\Sigma_{1}^{3}$ -Terme vorliegen. Isotopieeffekte sind meßbar; meist haben sogar beide Atome Isotopen, so daß man eine Spaltung in 3 Linien erwarten kann. - Beim Chlorid findet er P- und Q-Kantenzweige die er von 6366 bis 6048, resp. 6353 bis 6046 mißt. Vom 10. Gliede an war die Chlorisotopie zu erkennen. Die Banden sind nach Violett abschattiert. — Dann untersucht er noch eine im Gelbroten liegende Bandengruppe zwischen 6067 und 5809, deren Einzelbanden auch nach Violett abschattiert sind, während die ganze Gruppe nach Rot läuft. Hier ist die Cl-Isotopie besonders gut zu erkennen. In gleicher Weise werden die roten Bromidbanden behandelt, deren P- und Q-Zweige er zwischen 6286 und 6164 mißt. Vom Jodid dagegen können nur ganz kurze Stücke zwischen 6513 und 6258 gemessen werden.

Am eingehendsten sind von jeher die Fluoridbanden untersucht worden. Jetzt liegt eine neue Untersuchung von Johnson [352] vor, der die Fluoride von Ca, Sr, Ba nach der Quantenmethode behandelt. Er mißt die meisten Kanten neu, gibt Formeln für die verschiedenen Bandenserien, bespricht das Auftreten von "Schwänzen" bei ihnen usw. Es würde zu weit führen, die Resultate im einzelnen anzugeben. Die größere und rote Gruppe schreibt er $2^{2}\Sigma \rightarrow 1^{2}\Sigma$ und $2^{2}\Pi \rightarrow 1^{2}\Sigma$ Übergängen zu, während man das dritte violette CaF-Bandensystem zwischen 3350 und 3500 AE als $3^{2}\Sigma \rightarrow 1^{2}\Sigma$ deuten kann, so daß alle drei Systeme denselben Grundzustand $1^{2}\Sigma$ haben. Aus Johnsons Analyse ergeben sich folgende Molekülkonstanten für CaF.

Calcium

Term	A ₀	ω	ω ₀ х	<i>ω</i> ₀ y
$1 {}^2\Sigma$	-	583.63	2.548	?
2 °II 1	16485.13	588.534	3.3341	+ 0.061866
2 °Пa	560.17	590.285	3.1057	+ 0.005053
2 ² 2	18888.14	563.388	1.7160	-0.02245
3 ° 2	29252.37	488.705	2.5632	- 0.03825

Harvey und Jenkins [409] untersuchen CaF in Emission und Absorption mit großer Dispersion und stellen einige Ungenauigkeiten in Johnsons Analyse fest, die darin bestehen, daß der Abstand Kante—Nullinie bei diesen Banden zu groß ist, um vernachlässigt zu werden. In zwei weiteren Arbeiten [432 und 432a] bestätigt Harvey die Termdeutung Johnsons und bestimmt aus Kombinationsbeziehungen für den tieferen Term ${}^{2}\Sigma$ das Trägheitsmoment des CaF-Moleküls zu $I_{0}^{\prime\prime} = 86 \cdot 10^{-40}$ und den dazugehörigen Kernabstand $r_{0}^{\prime\prime} = 2,0 \cdot 10^{-8}$ cm. v. Mathes [434] mißt Zeeman-Aufspaltungen an einigen Kanten dieser Banden und deutet sie unter Bezugnahme auf die von Mecke, Zs. f. Phys. 42 p. 390—425 (1927), entwickelte Theorie als Mittelwerte der an den unaufgelösten Bandenlinien hoher Ordnungszahl auftretenden Aufspaltungen. Sie stellen demnach Dubletts der π - und σ -Komponenten von der Größe 2 Δv_{n} dar.

Mit der ultravioletten Absorption von Calciumhalogenlösungen befassen sich Getman [293], Viterbi [342], Koczkas [414] und andere Autoren, die in der Arbeit [414] zitiert werden, deren nähere Besprechung hier jedoch zu weit führen würde. Ebenso können wir hier nicht näher auf die zahlreichen Arbeiten ins Einzelne eingehen, die sich mit den violetten und ultravioletten Lumineszenzbanden der Calciumphosphore, der Calciumoxydphosphore, der CaSrS-Samarium-Mischphosphore, der Calciumsulfidverbindungen und des Calciumwolframats befassen. Zu ihnen gehören: Schmidt [338], Schellenberg [367, 438], Fravniček [341, 371], Swindells [369], Bandow [398, 345], Boissevain und Drea [347], Rumpf [366], Schleede und Tsao [393], Goyle und Singh [407], Karlik [411] und Schirow [421].

Schließlich sei noch kurz auf einige neuere ultrarote Absorptionsmessungen am Kalkspat hingewiesen, worüber zuerst Schaefer, Bormuth und Matossi (Zs. f. Phys. **39** p. 648 [1926]) genauere Werte für den Spektralbereich oberhalb 2 μ mitteilen. Sie glauben, das ultrarote Spektrum des CaCO₃ vorteilhaft in 2 Teile einteilen zu können: einen kurzwelligeren $(2-7\mu)$, der als sogenannte "innere" Schwingung der CO₃-Gruppe zuzuordnen sei, und den langwelligeren Teil, der nur unter Zuhilfenahme der "äußeren" Schwingung erklärt werden könne. Taylor [370] glaubt, daß eine Anzahl der von den vorgenannten Autoren gefundenen Oberschwingungen nicht real sei; sondern durch Interferenzen an der dünnen Kristallplatte vorgetäuscht sei, da es ihm gelungen sei, die wirklichen Absorptionsbanden durch Experiment festzustellen und einzuordnen. Die weiter hierher gehörenden Arbeiten von Plyler [391] und Ellis [403] bringen eine genaue Absorptionsuntersuchung des Kalkspats im kurzwelligen Ultrarot zwischen 1 und 3 μ .

Abgeschlossen am 1. 4. 32.

Cadmium (Cd = 112.41, Z = 48)

Isotopen nach fallenden Intensitäten geordnet: 114, 112, 110, 113, 111, 116.

Literatur.

[229] A. de Gramont, Sur les spectres d'arc direct des métaux à point de fusion peu élevé.
 C. R. 170 p. 31-38 (1920).

[230] L. et E. Bloch, Spectres d'étincelle dans l'eau. J. de Phys. et le Rad. (6) 3 p. 309-325 (1922). C. R. 174 p. 1456-1457 (1922).

[231] A. Campetti e A. Corsi, Sugli spettri di scintilla mediante la fiamma. N. Cim. (6) 24 p. 117-127 (1922).

[232] E. Carter, The vacuum spark spectra of the metals. Astrophys. J. 55 p. 162-165 (1922).

[233] D. Coster, On the spectra of X-rays and the theory of atomic structure. Phil. Mag. (6) 43 p. 1070-1107 (1922) und (6) 44 p. 546-573 (1922).

[234] F. Croze, Sur la place des raies ultimes des éléments dans les séries spectrales et sur leurs rapports avec les raies de résonance. C. R. 175 p. 1143—1146 (1922).

[235] G. A. Hemsalech and A. de Gramont, Observations and experiments on the occurrence of spark lines (enhanced lines) in the arc. Part. II. Phil. Mag. (6) 43 p. 834-871 (1922).

[236] Erik Hulthén, Kombinationsprinzip und einige neue Bandentypen. Zs. f. Phys. 11 p. 284-293 (1922).

[237] Erik Hulthén et Ernst Bengtsson, Recherches sur les spectres de bandes du cadmium. C. R. 175 p. 423-426 (1922).

[238] Stephan van der Lingen, Die elektrodenlose Entladung des Quecksilberdampfes und des Cadmiumdampfes. Zs. f. Phys. 8 p. 145-151 (1922).

[239] M. Maggini, Dispersione anomala di vapori ,,triple regolari". N. Cim. (6) 24, p. 181-201 (1922).

[240] W. F. Meggers and Keivin Burns, Notes on standard ware-length, spectrographs and spectrum tubes. Sc. Pap. Bur. Stand Nr. 441 Bullet. 18 p. 185-199 (1922).

[241] W. F. Meggers. 1921 report of comittee on standard ware lengths. J. opt. Soc. 6 p. 135-139 (1922).

[242] H. D. Babcock, A determination of $\frac{e}{m}$ from measurements of the Zeeman effect.

Astroph. J. 58 p. 149-163 (1923). Phys. Rev. (2) 22 p. 201 (1923).

[243] F. Back, Zur Kenntnis des Zeemaneffektes. Ann. d. Phys. (4) 70 p. 333—373 (1923).
 [244] Erik Hulthén, Über die Kombinationsbeziehungen unter den Bandenspektren. Dissert.
 Lund 1923.

[245] L. Janicki und E. Lau, Über den Einfluß metallischer Oberflächen auf die Spektren von Hg, Cd, He und O. Ann. d. Phys. (4) 71 p. 562-566 (1923).

[246] A. Kratzer, Die Feinstruktur einer Klasse von Bandenspektren. Ann. d. Phys. (4) 71 p. 72-103 (1923).

[247] A. Kratzer, Über das Kombinationsprinzip und eine neue Klasse von Banden. Zs. f. Phys. 13 p. 82-84 (1923).

[248] A. Pérard, Étude de quelques radiations du neon en vue de leur application à la métrologie. C. R. 176 p. 375-377 (1923).

[249] St. Procopiu, Sur les spectres d'arc des métaux. . . C. R. 176 p. 385-388 (1923).

[250] St. Procopiu, Sur l'aspect des raies de flammes, d'arc et d'étincelle dans les spectres d'arc des métaux, dans le vide. C. R. **176** p. 504-507 (1923).

[251] T. Takamine and M. Fukuda, Spectra of constricted arc of metals. Japan. J. of Phys. 2 p. 111-119 (1923).

[252] F. W. Aston, The mass spectra of cadmium, tellurium and bismuth. Nat. 114 p. 317 (1924). Siehe auch Phil. Mag. (6) 49 p. 1191 (19).

[253] H. B. Dorgelo, Die Intensität mehrfacher Spektrallinien. Zs. f. Phys. 22 p. 170-177 (1924).

[254] M. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Japan. J. of Phys. 3 p. 29-41 (1924).

[255] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[256] M. Kimura, A classification of enhanced lines . . . II. Japan. J. of Phys. 3 p. 217-225 (1924).

[257] M. Kimura and G. Nakamura, Cathode spectra of metals. Japan. J. of Phys. 3 p. 43-44 (1924).

[258] Karl Lang, Messung von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).

[259] R. J. Lang, On the ultra-violet spark spectra of some metals. Phil. Trans. A 224 p. 371-419 (1924).

[260] R. S. Mulliken, The isotope effect as a means of identifying the emitters of band spectra . . . Nat. 113 p. 489 (1924).

[261] H. Nagaoka and Y. Sugiura. Distribution of electric field in metal arcs and the Stark effect observed in arcs of silver, copper, magnesium, chromium, nickel, cobalt, iron and ten other metals. Jap. J. of Phys. **3** p. 45-73. (1924).

[262] A. D. Power, Resonance radiation from Cadmium vapor. Phys. Rev. (2) 23 p. 293 (1924).

[263] St. Procopiu, Sur la largeur des raies du spectre de l'arc électrique à diverses pressions. J. de phys. et le Radium (6) 5 p. 220-224 (1924).

[264] St. Procopiu, Sur les spectres de l'arc . . . Ann. de Phys. (10) 1 p. 89-133 (1924).

[265] H. M. Randall and W. N. St. Peter, The infra-red line spectra of zinc and cadmium. Phys. Rev. (2) 23 p. 766 (1924).

[266] B. B. Ray, On the irregularity of the La-doublet in the X-ray spectra. Phil. Mag. (6) 48 p. 707-711 (1924).

[267] A. E. Ruark, Multiple electron transitions and non-Ritzian spectral terms. Sc. Pap. Bur. Stand. June 24 (1924).

[268] V. Sugiura, On the doublets and triplets in the spectra of different elements. Jap. J. of Phys. 3 p. 155-185 (1924).

[269] Hildegard Stücklen, Der Absorptionssprung des neutralen und des ionisierten Cadmiumatoms im Unterwasserfunken. Zs. f. Phys. 30 p. 24-37 (1924).

[270] P. Wallerath, Beitrag zur Erweiterung und Verbesserung des Systems sekundärer Wellenlängennormalen. Ann. d. Phys. (4) 75 p. 37-74 (1924).

[271] F. L. Brown and J. W. Beams jr., The order of appearance of certain lines in the spark spectra of cadmium and magnesium. J. Opt. Soc. Amer. 11 p. 11-15 (1925).

[272] P. D. Foote, T. Takamine and R. L. Chenault, The excitation of forbidden spectral lines. Phys. Rev. (2) 26 p. 165-175 (1925). Nature 115 p. 265 (1925).

[273] M. Fukuda, Change of ware-length for certain lines of zinc, cadmium and mercury in a condensed discharge. Sc. Pap. Inst. Phys. Chem. Res. 3 p. 183-192 (1925).

[274] E. Hulthén, Some relations between the band spectra of zinc, cadmium and mercury and their atomic spectra. Nat. 116 p. 642 (1925).

[275] Georg Joos, Gesetzmäßigkeiten in der Hyperfeinstruktur von Spektrallinien. Physik. Zs. 26 p. 380-382 (1925).

[276] W. Kapuściński, The fluorescence of cadmium vapour. Nat. 116 p. 170 u. 863-864 (1925).

[276a] A. Leide, Experimentelle Untersuchungen über Röntgenspektra. K-Serie. Diss. Lund (1925).

[277] A. D. Power, The fluorescence of cadmium vapor. Phys. Rev. (2) 26 p. 761-764 (1925).

[278] A. E. Ruark and Roy L. Chenault, Stages in the excitation of the spectra of cadmium. J. Opt. Soc. Amer. 10 p. 655-659 (1925).

[279] A. E. Ruark and Roy L. Chenault, Fine structure of spectrum lines. Phil. Mag. (7) 1 p. 937-956 (1925).

[280] A. E. Ruark, Multiple electron transition and primed spectral terms. J. Opt. Soc. Amer. 11 p. 199-211 (1925).

[281] G. von Salis, Die ersten Funkenspektra von Zink und Cadmium. Ann. d. Phys. (4) 76 p. 145-162 (1925).

[282] R. A. Sawyer and N. C. Beese, A pp' group in the arc spectra of zinc and cadmium. Nat. 116 p. 936-937 (1925).

[283] Sinclair Smith, A study of electrically exploded wires. Astroph. J. 61 p. 186-203 (1925).

[284] A. Terenin, Anregung von Atomen und Molekülen zur Lichtemission durch Einstrahlung. I. Zs. f. Phys. 31 p. 26-49 (1925).

[285] J. W. Beams, The time interval between the appearance of spectrum lines . . . Phys. Rev. (2) 28 p. 475-480 (1926). Siehe auch ibid. (2) 27 p. 805 (1926).

[286] Felix Esclangon, Séparation des spectres des divers ordres du cadmium. J. de Phys. et le Rad. (6) 7 p. 52-58 (1926).

[287] J. S. Bowen, Vacuum spectroscopy. J. Opt. Soc. Amer. 13 p. 89-93 (1926).

[288] Fr. L. Brown, Comparison of the red cadmium line in the vacuum arc and in the discharge tube. J. Opt. Soc. Amer. 13 p. 189-192 (1926).

[289] C. Coster und F. P. Mulder, Über die Röntgenniveaus der Elemente Cu (29) bis La (57). Zs. f. Phys. 38 p. 264-279 (1926).

[290] Charles Deppermann, Some studies of the Stark effect. Astroph. J. 63 p. 33-47 (1926).

[291] John G. Frayne and Alpheus W. Smith, The absorption spectra of the vapours of Zn, Cd, Pb, Sn, Bi and Sb. Phil. Mag. (7) 1 p. 732-737 (1926).

[292] Y. Fujioka, Effect of electric field on the spectral lines of zinc and cadmium. Sc. Pap. Inst. Phys. Chem. Res. 5 p. 45-53 (1926).

[293] F. Fukuda, On the new lines (1S-2p_{1,3}) of zinc, cadmium and mercury. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 171-176 (1926).

[294] M. Fukuda, T. Kuyama, Y. Uchida, The spectra of metals under heavy current excitation. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 177-188 (1926).

[295] M. Fukuda, The change of the wave-length of the cadmium red line (2.6438A). Sc. Pap. Inst. Phys. Chem. Res. 4 p. 167-170 (1926).

[296] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. Phys. Chem. Res. 4 p. 59-78 (1926).

[297] W. Kuhn, Die Stärke der anomalen Dispersion in nicht leuchtendem Dampfe von Thallium und Cadmium. Dansk. Vid. Selsk. Math.-fys. Medd. 7 87 S. (1926).

[298] W. Kuhn, Intensität von Absorptionslinien in Cadmiumdampf. Naturwissensch. 14 p. 48–49 (1926).

[299] Arvid Leide, Messungen in der K-Serie der Röntgenspektren. Zs. f. Phys. 39 p. 686-710 (1926).

[300] Walter A. Mc Nair, Fine structure of certain lines and energy levels of cadmium. Phil. Mag. (7) 2 p. 613-622 (1926). Proc. Nat. Acad. Amer. 12 p. 555-556 (1926).

[301] Robert S. Mulliken, Systematic relation between electronic structure and bandspectrum structure in diatomic molecules. Proc. Nat. Acad. 12 p. 144-151, 151-158 (1926).

[302] Hantaro Nagaoka and Tadeo Mishima, Fine structure of cadmium lines. Proc. Imp. Acad. Tokyo 2 p. 201-203 (1926).

[303] K. Robertson, A method for exciting spectra of certain metals. Phil. Mag. (7) 1 p. 752-761 (1926).

[304] K. A. Sawyer, On the deep lying terms in two- and three-valence electron system spectra. J. Opt. Soc. Amer. 13 p. 431-442 (1926).

[305] J. L. Snock und T. Bouma, Intensitätsverteilung in der Feinstruktur (Trabanten) des Cadmium tripletts 2p₁—2s. Zs. f. Phys. **38** p. 368—369 (1926).

[306] R. W. Wood, Note on the structure of the cadmium and zinc resonance lines. Phil. Mag. (7) 2 p. 611-612 (1926).

[307] M. J. Druyvesteyn, Das Röntgenspektrum zweiter Art. Zs. f. Phys. 43 p. 707-725 (1927).

[308] George D. van Dyke and George A. Lindsay, L x-ray absorption edges of Sn (50), Zn (49), Cd (48), Ag (47), Pd (46), Rh (45) and Ru (44). Phys. Rev. (2) **30** p. 562-566 (1927); (2) **29** p. 205-206 (1927).

[309] E. Hulthén, Feinstruktur und Elektronenterme einiger Bandenspektren. Zs. f. Phys. 45 p. 331-337 (1927).

[310] M. Fukuda, Reversed spectra of metals produced by explosion under increased pressure. Sc. Pap. Inst. Phys. Chem. Res. 6 p. 1-47 (1927).

[311] *Alexander Jablonski, Sur le spectre de fluorescence et d'absorption de la vapeur de Cadmium. Krakauer Anz. 1927 p. 473—487; Physik. Ber. 6 p. 1447.

[312] A. Jablonski, Über die Bandenabsorption und Fluoreszenz des Cadmiumdampfes. Zs. f. Phys. 45 p. 878-891 (1927).

[313] Axel Jönsson, Beitrag zur Kenntnis der Intensitäten in der L-Röntgenreihe. Zs. f. Phys. 41 p. 221-229 (1927).

[314] W. Kapuściński, Die Linienfluoreszenz des Cadmiumdampfes. Zs. f. Phys. 41 p. 214 bis 220 (1927).

[315] *W. Kapuściński, Sur la fluorescence de la vapeur de cadmium. C. R. Soc. Polon. de Phys. 8 p. 5 (1927); Bull. de l'acad. Polon. 1927.

[316] P. K. Kichlu and M. Saha, On the explanation of spectra of metals of group II. Phil. Mag. (7) 4 p. 193-207 (1927).

[317] Wali Mohammad and S. B. L. Mathur, On the fine structure of the spectrum lines of cadmium in the ultra-violet. Phil. Mag. (7) 4 p. 121-120 (1927).

[318] F. L. Mohler and H. R. Moore, Absorption spectra of mercury, cadmium and zinc at high pressure. J. Opt. Soc. Amer. 15 p. 74-81 (1927).

[319] Hantaro Nagaoka, Daizo Nukiyama and Tatsugoro Futayami, Instantaneous spectrograms . . . Proc. Imp. Acad. Tokyo 3 p. 319-333 (1927).

[320] Walter A. Mac Nair, Secondary radiation and polarization of resonance radiation in cadmium. Phys. Rev. (2) 29 p. 677-682 (1927).

[321] [292] L. S. Ornstein und B. C. Burger, Intensität verbotener Multipletts. Naturw. 15 p. 670-671 (1927).

[322] Annelise Schrammen, Die Hyperfeinstruktur der Terme des Cadmiumspektrums. Ann. d. Phys. (4) 83 p. 1161-1199 (1927).

[323] Paul Soleillet, Influence du champ magnétique sur la polarisation de la radiation de résonance du cadmium. C. R. 185 p. 198—199 (1927).

[324] John R. Bates, The quenching of cadmium resonance radiation. Proc. Nat. Acad. 14 p. 849-852 (1928).

[325] Rudolf Frerichs, Stoß zweiter Art, Anregung und Wiedervereinigung in der Glimmentladung. Ann. d. Phys. (4) 85 p. 362-380 (1928).

[326] P. C. Gibbs and H. E. White, Certain multipletts of Cd III and In IV. Phys. Rev. (2) 31 p. 776-781 (1928) und p. 707.

[327] W. de Groot, Die ultraviolette Bande des Cadmium bei 2000 A. Naturw. 16 p. 101 (1928).

[328] Alexander Jablonski, Sur l'absorption à spectre de bandes de la vapeur de cadmium.

Krakauer Anz. (A) p. 163—170, Nr. 4/5 (1928). C. R. Soc. Polon. de Phys. 3 p. 357—316 (1928).
[329] *J. C. Mc Lennan, A. B. Mc Lay, M. F. Crawford, On the second spark spectrum of

cadmium. Trans. Canada (3) 22 III p. 45-54 (1928).

[330] Gordon L. Locher, The time intervals between the appearance of spectral lines . . . J. Opt. Soc. Amer. 17 p. 91-101 (1928).

[331] M. Miyanishi, The nature of streamers in electric sparks. Japan. J. of Phys. 5 p. 67-82 (1928).

[332] M. Miyanishi, Spectra of various metals emitted from arcs in chlorine atmospheres. Japan. J. of Phys. 4 p. 119-131 (1928).

[333] Robert S. Mulliken, Electronic states and bandspectrum structure in diatomic molecules. VII. Phys. Rev. (2) 32 p. 388-416 (1928).

[334] J. Okubu and H. Hamada, Metallic spectra excited by active nitrogen. Phil. Mag. (7) 5 p. 372-380 (1928).

[335] K. A. Sawyer and C. J. Humphreys, The spectra of cadmium II, arsenic V and selenium V. Phys. Rev. (2) **31** p. 1123 (1928).

[336] Annelise Schrammen, Die Struktur der Grundlinie und einiger anderer Linien des Cadmiumspektrums. Ann. d. Phys. (4) 87 p. 638-652 (1928).

[337] Paul Soleillet, Polarisation des radiations de resonance du cadmium. C. R. 187 p. 212-214 (1928).

[338] J. M. Walter and S. Barratt, The band spectra associated with zinc, cadmium and mercury. Proc. Roy. Soc. A 122 p. 201-210 (1929).

[339] J. M. Walter and S. Barratt, Spectra of intermetallic compounds. Nat. 122 p. 684-685 (1928).

[340] R. K. Waring, Absorption bands in the spectra of mixtures of metallic vapors. Phys. Rev. (2) 32 p. 435-442 (1928).

[341] A. P. Weber, Eine neue Methode höchster Genauigkeit zur interferometrischen Wellenlängenmessung . . . Physik. Zs. 29 p. 233-234 (1928).

[342] E. Wieland, Verbindungsspektren der Halogensalze von Quecksilber, Cadmium und Zink, Helv, Phys. Acta 1 p. 442-443 (1928).

[343] Richard M. Badger, Flammenfluoreszenz und die Auslöschung von Fluoreszenz in Gasgemischen bei hohem Druck. Zs. f. Phys. 55 p. 56-64 (1929).

[344] S. Barratt, The spectra of metal molecules. Trans. Farad. Soc. 25 p. 628-780 (1929).

[345] Ernst Bengtsson und Ragnar Rydberg, Über neue Cadmiumhydridbanden im Ultraviolett. Zs. f. Phys. 57 p. 648-657 (1929).

[346] Henry Crew, On the influence of a hydrogen atmosphere upon the arc spectra of certain metals. Phil. Mag. (7) 7 p. 312-316 (1929).

[347] A. Ellet, Polarisation of cadmium resonance radiation 1¹S₀-2³P₁ 3261 A. Phys. Rev. (2) 33 p. 124 (1929).

[348] S. Goudsmit, Gibt es eine Isotopenverschiebung im Cadmiumspektrum? Naturw. 17 p. 805-806 (1929).

[349] S. Goudsmit and R. F. Bacher, Separations in hyperfine structure. Phys. Rev. (2) 34 p. 1501-1506 (1929).

[350] A. Jabloński, Sur un système de bandes d'absorption de la vapeur de cadmium. C. R. Soc. Pol de phys. 3 p. 357-366 (1929).

[351] W. Kapuściński et A. Jabloński, Über die Träger der im Cadmiumdampf beobachteten Absorptions- und Fluoreszenzbanden. C. R. Soc. Polon. de Phys. 4 p. 305-309 (1929). Zs. f. Phys. 57 p. 692-695 (1929).

[352] R. J. Lang, On the spectra of Zn II, Cd II, In III and Sn IV. Proc. Nat. Acad. 15 p. 414-418 (1929).

[353] J. C. Mc Lennan and E. J. Allin, The fine structure of spectral lines. Phil. Mag. (7) 8 p. 515-520 (1929).

[354] Heinz-Theodor Meyer, Über die Intensität der K-Linien des Röntgen-Spektrums in Abhängigkeit von der Ordnungszahl. Wiss. Veröffentl. a. d. Siemens-Konzern 7 p. 108-162 (1929).

[355] H. Nisi, The Raman spectra of some compounds containing S_m O_n-or RO₄-group. Jap. J. Phys. 5 p. 119-137 (1929).

[356] T. K. Richtmyer, Satellites of certain X-ray lines. Phys. Rev. (2) 33 p. 291-292 (1929).

[357] T. K. Richtmyer and R. D. Richtmyer, The satellites of the X-ray lines L_a , $L_{\beta 1}$ and $L_{\beta 2}$. Phys. Rev. (2) 34 p. 574—581 (1929).

[358] H. Schüler und H. Brück, Über Hyperfeinstrukturen in Triplettspektren und ihre Bedeutung für Bestimmung von Kernmomenten. Zs. f. Phys. 56 p. 291-296 (1929).

[359] H. Schüler und H. Brück, Über Hyperfeinstrukturen und Kernmomente. Zs. f. Phys. 58 p. 735-741 (1929).

[360] E. W. H. Selwyn, Arc spectra in the region 2 1600-2100. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[361] Yutaka Takahashi, Die ersten Funkenspektren von Zink und Cadmium. Ann. d. Phys. (5) 3 p. 27-48 (1929).

[362] J. Valasek, Precision measurements in the K-series of the elements 48 Cd and 49 Zn. Phys. Rev. (2) **34** p. 1231—1233 (1929).

[363] H. E. White, Interpretation of hyperfine structure in spectral terms. Phys. Rev. (2) 34 p. 1404-1410 (1929).

[364] K. Wieland, Bandenspektra der Quecksilber-, Cadmium- und Zink-Halogenide. Helv. phys. acta 2 p. 46-76, 77-94. Berichtigung p. 144 (1929).

[365] J. G. Winans, The energies of dissociation of cadmium and zinc molecules from an interpretation of their bandspectra. Phil. Mag. (7) 7 p. 555—565 (1929). Nat. **123** p. 279 (1929).

[366] J. G. Winans, Flutings in the absorption spectrum of a mixture of mercury and cadmium vapours. Phil. Mag. (7) 7 p. 565-666 (1929).

[367] C. L. Albricht, Hyperfine structure of some cadmium lines and the hypothesis of molecular spin. Phys. Rev. (2) **36** p. 847-854 (1930).

[368] S. Barratt and A. R. Bonar, The band spectra of cadmium and bismuth. Phil. Mag.
 (7) 9 p. 519-524 (1930).

[369] Paul Bender, Effect of gases on the optically excited Cd I spectrum. Phys. Rev. (2) 36 p. 1535-1542 (1930).

[370] Paul Bender, Optical excitation of cadmium hydride and zinchydride bands. Phys. Rev. (2) 36 p. 1543-1552 (1930).

[371] H. Braune und G. Engelbrecht, Über den Ramaneffekt an Lösungen von HgCl₂ und HgBr₂. Zs. f. phys. Chem. **10** p. 1-6 (1930).

[372] De Ver Colson, Voltage-intensity relations of the cadmium spectra. Phys. Rev. (2) 35 p. 294 (1930).

[373] N. Embirikos, Über den Ramaneffekt bei kristallisierten und gelösten Sulfaten und Carbonaten. Zs. f. Phys. 65 p. 266-269 (1930).

[374] P. Krishnamurti, The Raman effect in crystal powders of inorganic nitrates. Indian J. of Phys. 5 p. 1-2 (1930).

[375] P. Krishnamurti, Raman spectra of crystalline inorganic chlorides. Indian J. of Phys. 5 p. 113-128 (1930).

[376] P. Krishnamurti, Raman effect in some crystalline inorganic sulphates. Indian J. of Phys. 5 p. 183-191 (1930).

[377] Allan C. G. Mitchell, Polarisation of sensitized fluorescence. J. Franklin Inst. 209 p. 747-756 (1930).

[378] S. Mrozowski, Über die Bandenspektra der Zink- und Cadmiumdämpfe. Zs. f. Phys. 62 p. 314-330 (1930).

[379] C. Ramaswamy, Raman spectra of inorganic sulfates and nitrates. Indian J. of Phys. 5 p. 193-206 (1930).

[380] C. Schaefer, F. Matossi und H. Aderhold, Untersuchungen über den Ramaneffekt an Kristallen. Zs. f. Phys. 65 p. 289-318 (1930).

[381] F. Stark, Über den Zeemaneffekt der Hyperfeinstruktur. Physik. Zs. 31 p. 375 (1930).
 [382] Erik Svensson, Untersuchungen über das Bandenspektrum des Cadmiumhydrids. Zs.
 f. Phys. 59 p. 333-352 (1930).

[383] B. Venkatesachar, The fine structure of spectral lines in relation to selective absorption. S. A. Proc. 17. Ind. Science Congr. p. 63-91 (1930).

[384] William W. Watson, The Zeeman effect in the ZnH and CdH bands. Phys. Rev. (2) 36 p. 1134-1143 (1930).

[385] J. G. Winans and R. Rollefson, The energy of dissociation of normal Cd₂. Phys. Rev. (2) **35** p. 1436 (1930).

Kayser u. Konen, Spektroskopie. VIII.

[386] J. G. Black and W. G. Nash, The effect of hydrogen upon the intensity of the spectra of zinc, cadmium and mercury (Abstr.). Phys. Rev. (2) 37 p. 468 (1931).

[387] K. Butkow, Absorptionsspektren einiger Quecksilber- und Cadmiumhalogenide im Dampfzustand. Zs. f. Phys. 71 p. 678-689 (1931).

[388] H. Hamada, On the molecular spectra of mercury, zinc, cadmium, magnesium and thallium. Phil. Mag. (7) 12 p. 50-67 (1931).

[389] G. Hoffmann, Über Absorption der elektrisch angeregten Dämpfe von Cadmium, Zink Thallium. Zs. f. Phys. 60 p. 457 (1930).

[399] H. Hamada, Molecular spectra of mercury, zinc, cadmium, magnesium and thallium. Nat. 127 p. 555 (1931).

[400] W. Kapuscinski, Über die Nachleuchtdauer der Cd-Dampffluoreszenz. Naturwissensch. 19 p. 400-401 (1931).

[401] H. W. Knorr, Photometric study of the appearance of spectral lines in a condensed spark. Phys. Rev. (2) 37 p. 1611-1621 (1931).

[402] K. Larché, Die optischen Anregungsfunktionen der Cadmium- und Zinklinien. Phys. Zs. 32 p. 180-181 (1931).

[403] K. Larché, Die Leuchtausbeute in Abhängigkeit von der Voltgeschwindigkeit der Elektronen und die relativen Intensitäten von Cadmium und Zinklinien bei Anregung durch Elektronenstoß. Zs. f. Phys. 67 p. 440-477 (1931).

[404] R. Mecke, Bandenspektra negativer Ionen. Zs. f. Phys. 72 p. 155-163 (1931).

[405] Allan C. G. Mitchell, The effect of hyperfine structure on the polarisation of cadmium resonance radiation. Phys. Rev. (2) 38 p. 473-476 (1931).

[406] Robert S. Mulliken and Andrew Christy, A-type doubling and electron configurations in diatomic molecules. Phys. Rev. (2) 38 p. 87-119 (1931).

[407] J. Okubo and E. Matuyama, Apparances of the forbidden lines and the intensity modifications of the spectra of mercury, cadmium and zinc under high frequency excitations. Phys. Rev. (2) 38 p. 1651—1656 (1931). Nature 128 p. 224 (1931).

[408] H. Schüler und J. E. Keyston, Über Beziehungen zwischen Mengenverhältnissen der Isotopen und zwischen Kernmomenten bei einigen Elementen. Zs. f. Phys. 68 p. 174-177 (1931).

[409] L. Schüler und J. E. Keyston, Über Intensitätsmessungen in einigen Cd I-Hyperfeinstrukturen . . . Zs. f. Phys. 67 p. 433-439 (1931); 71 p. 413-416 (1931).

[410] B. Setna, Under-water spark spectra in the infrared. Indian Journ. of Phys. 6 p. 29-34 (1931).

[411] J. Gibson Winans, Properties of some zinc, cadmium and mercury bands. Phys. Rev. (2) 37 p. 902 (1931).

[412] M. W. Zemanski, Absorption der Cadmiumresonanzstrahlung λ 2288 A und Lebensdauer des Cd 2¹P₁-Zustandes. Zs. f. Phys. **72** p. 577–599 (1931).

[413] A. Ellett and Lewis Larrick, Polarisation of resonance radiation and hyperfine structure: The cadmium resonance lines. Phys. Rev. (2) **39** p. 294—298 (1932).

[414] M. Kimura, Energy levels of CdJ_2 molecule and the relation between the absorption frequencies of the substance in the states of vapour and crystal. Scient. Pap. of phys. a. chem. res. **18** p. 141–150 (1932).

1. Linienspektren.

Trotz zahlreicher Arbeiten ist die Kenntnis der Linienspektren des Cd noch ziemlich unvollkommen. Im Jahr 1922 erschienen gleichzeitig die Tabellen über Linienserien von Paschen und Götze einerseits, von Fowler andererseits. In ihnen finden sich sehr zahlreiche Linien von Cd I eingeordnet, nur sehr wenige Paare von Cd II, auf Grund der zahlreichen Angaben von Kayser, Runge, Rydberg, Paschen, Saunders, Fowler und anderer. (Siehe Bd. VII p. 196-197.) Cd I ist aufgebaut aus Triplettserien und Singulettserien. Paschen und Fowler stimmen im allgemeinen

überein, nur die Linien $2 p_{1,2,3}$ —7s und $2 p_2$ —8s haben sie verschieden gewählt. Es scheint aber zweifellos, daß Fowler Recht hat. Siehe z. B. Ruark [280]. In der weiterhin folgenden Tabelle I für Cd I sind die Zahlenreihen von Paschen und von Fowler angegeben, nebst den späteren Ergänzungen.

Eine erste solche Ergänzung bringen Takamine und Fukuda [251]. Sie lassen einen Bogen durch eine Einschnürung, ein kleines Loch in Quarz, brennen. Dann beobachten sie weitere Glieder der ersten Nebenserie, die sie freilich nur sehr roh messen (siehe Tab. 1) und eine Anzahl "verbotener" Linien. Letztere seien hier angeführt, da sie zu ungenau für die Tabelle sind: 2757 (3), 2689 (1), 2671 (1), 2666 (2), 2658 (1), 2605 (1), 2601 (1), 2588 (1), 2577 (3), 2551 (1), 2531 (1), 2524 (1).

Kimura und Nakamura [254, 257] machen Versuche ähnlich denen von Goldstein, indem sie Metallsalze in Pulverform als Kathode in Vakuumröhren benutzen, oder auch das Metall selbst. Die Versuche ergeben nur, daß Linien von Cd I und Funkenlinien sichtbar sind. Dann aber [255] messen sie die Länge der Linien von der Kathode aus. Sie finden zwei Arten von Funkenlinien, die sie Cd II und Cd III zuschreiben. Im allgemeinen scheinen ihre Angaben richtig zu sein, wenn man sie mit denen von Esclangon [286] vergleicht. Siehe die Tab. 2 und 3. Kimura allein [246] verwendet einen oft unterbrochenen Bogen mit Einschaltung eines Kondensators und findet auch hier Linien von Cd II und bei höherer Spannung von Cd III.

Der erste, welcher das Schumanngebiet betritt, ist Lang [259]. Er mißt das Funkenspektrum von λ 2033 bis λ 369. Siehe Tab. 5.

Einen wichtigen Schritt in der Trennung der verschiedenen Ionisationsstufen macht Esclangon [286]. Er benutzt die Methode der Brüder Bloch: eine hochgespannte oszillierende Entladung umfließt ein mit dem Dampf gefülltes Rohr, dessen Inhalt leuchtet, in verschiedenen Farben je nach dem Abstand vom äußeren Rande. Entsprechend sind die Spektrallinien verschieden lang; die vom Rande bis zur Mitte reichenden gehören zu Cd I, die kürzeren zu Cd II usw. Bei Cd kann er 4 verschiedene Längen unterscheiden, erhält also zum ersten Male auch Linien von Cd IV. — Ich habe schon bei anderen Elementen, wo dies Verfahren der elektrodenlosen Ringentladung angewendet worden ist, ausgeführt, daß das Verfahren nicht sicher ist, da auch die Intensität der Linien eine Rolle für die Länge spielen muß. Sicher ist eine Linie nur, wenn sie eingeordnet ist. Aber das Verfahren in vorsichtigen Händen scheint doch recht gut zu sein. Die Resultate von Esclangon sind in den Tab. 2, 3 und 4 niedergelegt.

Hier seien gleich zwei andere Arbeiten angeschlossen, welche auch die elektrodenlose Entladung benutzen: van der Lingen [238] sagt, bei Erhitzung des Rohres auf 100° setze die Erregung ein. Mit dem Funkenspektrum verglichen fehle die Linie 2195 (nach Salis eine Linie von Cd II, nach Ruark und Chenault nicht Cd I) während 2147 kräftig sei. λ 2748 sei doppelt. Von 5500 bis 4500 reiche eine strukturlose schwache Bande. Erhöht man die Temperatur, so verschwindet die starke Linie 2288 (Cd I) und an derselben Stelle trete eine nach Rot abschattierte schwache Bande auf. Gleichzeitig verschwände das obengenannte Band. Robertson [303] gibt an, daß er die Linien 2288, 2265, 2261, 2144 erhalten habe, also Linien von Cd I und Cd II.

Ruark und Chenault [278] suchen eine Trennung der Stufen zu erreichen, indem sie mit verschiedener Spannung im Geißlerrohr anregen. Das Ionisations-

potential liegt bei 8.96 Volt und bei 10 Volt ist das Spektrum Cd I voll entwickelt; bei stärkerer Anregung erscheinen dann die Linien von Cd II usw. Die Schwierigkeit ist hier, daß man nie weiß, ob nicht durch wiederholte Stöße die Anregung einer Linie hervorgebracht ist, die durch einen Einzelstoß bei derselben Spannung nicht erscheinen würde. Durch Beobachtung der Intensitätsänderung bei steigender Anregung suchen die Autoren darüber Auskunft zu erhalten. Wesentlich an der Arbeit ist, daß die Einordnung der Linien berücksichtigt wird und eine solche in manchen Fällen gelingt. Die Resultate finden sich in den Tabellen. Ruark [280] gibt nach Versuchen mit Bogen kleiner Spannung die Wellenlängen einiger Glieder der pp'-Gruppe und solche der höheren Glieder der Nebenserien. Siehe die Tabelle 1.

Die erste eingehende Untersuchung und Ordnung von Cd II führt von Salis [281] durch; er ordnet die Paare zwischen λ 8066 und λ 2144. Die Arbeit wird später fortgeführt durch Takahashi [361]. Er verwendet eine Hohlkathode in Helium, photographiert mit Quarzspektrographen und Vakuungitter. Er findet eine sehr große Anzahl neuer Linien, deren größten Teil er in Paaren und Quartetten einordnen kann, erreicht die Wellenlänge λ 710. Die Resultate beider Arbeiten siehe in Tabelle 2. — Eine Abhandlung von McLennan, McLay und Crawford [329], welche Ordnungsversuche für Cd II und Cd III bringt, ist nicht zugänglich.

Fukuda, Kuyama und Uchida [294] verwenden einen Bogen mit sehr starken Strömen zwischen 5 und 250 Amp. Sie erhalten eine Menge verbotener Linien von Cd I und mehrere sonst nicht gemessene Linien. Leider sind die Wellenlängen so ungenau, — Fehler bis zu mehreren A werden nicht fehlen, — daß in einem so linienreichen Spektrum die Zahlen nicht viel besagen. Man kann auch nicht entscheiden, ob nicht Linien höherer Ionisationsstufen darunter sind oder Verunreinigungen. Wir geben daher die Zahlen hier im Text, lassen nur die schon von Takamine und Fukuda [251] gegebenen verbotenen Linien fort.

_									-
	6168	2P-3P	3537	2p3-3p3	2819	2p3-4b	2568	2p1-8p1	
	4694	2P-4p3	3528	$2p_{3} - 3p_{2}$	2777	2p1-5p2. 3	2545	2p1-9p1	
	4140	2P-5pa	3520	2pa-3P	2773	2p1-5p1	2528	$2p_2 - 7p_1$	
	3884	2P-6P	3369	$2p_2 - N/3^2$	2755	2p1-5e	2517	2p1-11p1	
	3880	2P-6b	3307	$2p_{a}-N/_{a}^{2}$	2687	$2p_2 - 5p_1$	2508	2p1-12p1	
	3771	$2P-7p_i$	- 3013	$2p_1 - 4p_3$	2668	2p2-5e	- 2492	2p2-8b	
	3764	2p1-3p3	3010	$2p_1 - 4p_2$	2664	$2p_1 - 6p_1$	2489	2pa-7b	
	3761	2P-7b	3006	2p1-4p1	2655	2p1-6f	2474	$2p_{2}-9p_{i}$	1
	3755	2p1-3p2	2970	2p1-4P	2652	2p3-5p2.3	2457	2p3-8b	
	3730	2p1-3p1	2962	2p1-4b	2633	2p3-5b	2453	$2p_2 - 10p_i$	
	3689	2P-8P	2912	$2p_2 - 4p_3$	2629	2p3-5e	2446	$2p_2 - 11p_i$	
	3688	2P-8b	2909	$2p_{2}-4p_{2}$	2599	2p1-7e	2441	2p2-11b	
	3640	2P-9b	2904	$2p_2 - 4p_1$	2595	2p1-7g	2439	$2p_{3} - 9p_{1}$	
	3596	2p3p.	2863	$2p_{a}-4p_{2}$	2584	2p2-6p1	2435	2pa-9b	1
	3574	2p2-3p1	2862	2p2-4b	2575	2p2-6e	2411	2p3-11b	1
	3561	2p1-3P	2825	$2p_3-4P$	2573	2p2-6f	2401	2p3-12p1	
		Contraction of	Charles on Line	A THIN A PRAISE	No.	and the second second second	2393	2p3-13p1	

Von den übrigen Linien geben wir nur diejenigen, die sonst nicht gemessen zu sein scheinen.

5379	$4029.6 p_2 - 7 d_2$	3825	3484	3248	3076	3035 2 p ₃ -3 S	2720 2 p ₃ -4 S
4270	3944	3806	3346	3219	3068	3022	2707 2p1-5S
4058	3851	3780	3282	3175	3059	$2852 \ 2p_1 - 4S$	2672 5d1-7f1
4045	3828 2P-6s	3769 2P-7d2	3281	3087 R	3048	2832	2656 R
4042	3827	3524 6p1-9s	3274	2002 6p1-9d1	3038	2822	2614
e de	C manadian	etta entile etta	PROFILE STATE	2P-2p1	10100	$27996p_1 - 11d_1$	2613

Mit den verbotenen Linien 1¹S—2³P_{0,1,2} beschäftigen sich eingehend Foote, Takamine und Chenault [272]. Sie besprechen auch die pp'-Gruppe, ebenso Sawyer und Beese [282].

Auch Okubo und Matuyama [407] haben die verbotenen Linien 1¹S-2¹P₂ und 1¹S-2³P₀ beobachtet.

Fujioka [292] findet zahlreiche verbotene Linien im elektrischen Felde von 39000 V/cm, die schwach nach Rot verschoben sind. Die Linien mit ihren Verschiebungen (n, p in ÅE) sind hier gegeben. Im wesentlichen sind es dieselben Linien die auch Takamine und Fukuda haben, nur hier besser gemessen.

λ		n	р	2		n	р
3011.71	$2p_1 - 4p_2$	0		2656.95	2p1-6b	+0.30	+0.25
3005.25	$2p_1 - 4p_1$		0	2654.3	2p1-6e	()	()
2961.72	2p1-4b	0	0	2586.3	2p2-6p1,2		(+) d
2773.27	2p1-5p1		+0.32	2577.1	$2p_2 - 6b$	0	0
2759.48	2p1-5P?	d	d	2574.9	2p ₂ -6e	0	0
2756.30	2p1-5b	+0.11	+0.11	2541.4	2p3-6e	(+)	(+)
2686.00	2p5p.		+0.10	2600.6	2p1-7b	(+)	(+)
2670.49	2p5b	+0.10	+0.10	2599.1	2p1-7e	(-)	()
2665.20	2p,-6p,	(+) d	+1.30	2596.8	2p1-7f	()	()

d = diffus.

Miyanishi [331] untersucht im oszillierenden Funken mit rotierendem Spiegel die Geschwindigkeit der Leuchtzentren, wie es zuerst Schuster und Hemsalech gemacht haben. Er findet, daß die Träger der verschiedenen Linien verschiedene Geschwindigkeit haben, und zwar kommen bei Cd drei verschiedene vor: etwa 850, 1100, 1500 m/sec. Die betreffenden Linien schreibt er Cd I, Cd II, Cd III zu und

gibt für	Cd I: λ 5086,	für Cd II: 2 6467, 1	für Cd III: λ 3186
	4800	5379	3134
	4699	5339	3096
		4416	
		3251	

In einer zweiten Abhandlung läßt Miyanishi [332] den Bogen in Chlor brennen. Er findet erstlich auch eine große Zahl verbotener Linien, dann Verlängerungen der Hauptserie der Tripletts und Singuletts, endlich zahlreiche Funkenlinien, welche er "nach der Methode von Kimura und Nakamura" in solche von Cd II und Cd III einteilt.

Meggers und Burns [240] sowie Wallerath [270] haben einige Linien von Cd I mit Interferometer gemessen und sehr gut stimmende Resultate erhalten.

Wenn noch eine Arbeit von Selwyn [360] angeführt ist, in welcher er drei Linien von Cd I im Schumanngebiet angibt, eine Abhandlung von Lang [352], welche Linien und Terme für Cd II im Schumanngebiet enthält, endlich eine von Gibbs und White [326], die Linien von Cd III gibt, so dürfte damit die wesentliche Literatur zur Kenntnis der Spektra Cd I bis Cd IV besprochen sein.

Es mögen nun die einzelnen Ionisationsstufen behandelt werden.

Cd I. Zweivalenzelektronensystem mit Singuletts und Tripletts. In Tab. 1 sind alle dazugerechneten Linien eingetragen und die Einordnung nach Paschen bzw. Fowler usw. angegeben. Wenn die Linien in den Bau des Spektrums eingeordnet sind, so ist der betreffende Autor vor der Wellenlänge angedeutet. Dabei bedeutet P = Paschen, F = Fowler, RC = Ruark und Chenault [262], R = Ruark[250], M = Miyanishi [301], Fu = Fukuda [273], Ta = Takamine und Fukuda [240]. Wenn kein Buchstabe vor der Linie steht, ist sie noch nicht eingeordnet; solche Linien finden sich aber nur sehr wenige. Es ist noch zu erwähnen, daß auch Esclangon [286] die Hauptlinien angibt, meist nach fremden Messungen. Die einzige von ihm allein gegebene und wohl zweifelhafte Linie ist: 2554.51 (00).

Section in			Paschen Buch	Fowler Buch	Walle- rath [270]	Meggers [240]
PF	4°F-X	39086	9	6.9	1	_
PF	33D3-43F	16482	2	2.2	-	-
PF	33D43F	433	8	3.8	_	
PF	33D,-43F	401	5	1.5	-	-
PF	31D-43F	15713	50	3.5	-	-
	_	257	_	7.8	- 42	
PF	21S-31P	154	78	4.8	111	
PF	33P43D	14852	9	2.9		
PF	33P1-43D3	474	62	4.62	-	-
PF	33Po-43D1	854	45	4.5	-	-
PF	3 ³ P ₀ -4 ³ D ₃	829	60	9.6	201-1000	a and and
PF	23S-33P1	327	99	7.99	dari-jada	nin-peak
PF	23S-33P.	13979	22	9.22	- 2mm	000+001
PF	33D2-53F	11630	8	0.8		-
PF	31D -53F	268	36	8.4	19-01	1 2 4 1 4 4
PF	21S-21P	10395	. 17	4.7	+	-
Р	21S-41P	8200	5	0.2		-
Р	23S-43Po	7396	58	8.9	-	-
Р	23S-43P1	82	49	5.0		-
PF	23S-43P2	46	10	6.2 10	-	
PF	23S-41P	7132	4	2.1	di min	
PF	21S-51P	6778	34	8.10	· () ()	Indet State
PF	21P1-31D2	6438	71	8.47 10	a state	and There a
PF	2 ¹ P - 3 ³ D ₁	6330	18	9.97 8	-	-
PF	21P-33D	25	40	5.19 10	-	-
PF	21S-21P	6198	43	8.22	-	-
PF	2 ³ S-5 ³ P ₀	16	395	6.19 4*)	-	-

Tabelle 1. Cd I.

*) Fowler gibt noch 6128.66 (2), 5783.93 (4) nicht eingeordnet.
forest housest (223)	-1865 -1865 -1865 -1965	icanal. Ionej	Paschen Buch	Fowler Buch	Walle- rath [270]	Meggers [240]	Ruark [267]	Ruark Chenault [278]
PF	938_53P	11	799	1.52 6		_		29
PF	235_53P	6099	393	9.18 8	20	- 11	-	1
PF	235_51P	31	61	1.39		_		PER
PF	918_31P	5896	-	5.8	_	- 18	an <u>_</u> le	_1
		39	_	3.93 4	1	0.000	1912_194	29
PF	21S_81P	5716	_	5.8	-		8112 414	1
	_	5637	_	7.22 5		-	012-49	_
Р	23S-63P	07	068	5.85	-	07-	849 <u>-</u>	
PF	23S-63P,	04	903	4.68 4	-		012-94	
PF	23S-63P.	5598	989	8.77 6		- 60	COLL STR	8
PF	21S_91P	98	28	8.06?	10	00-1	102_ SN	1 1 1
PF	21S-61P	68	_	8	-	1.467	112 31	P.L.
M	21S-101P	18		30-10	-	- ¹)	192 99	123
M	21S-111P	5460	-	100-002	_	_ 1)	GER_UPS	1 29
M	21S-121P	16	_		_	_ 1)	92.31	-1
PF	23S-73P	5339	69 trip.	9.50 1	-	1000	-	-
PF	23S-71P	24	_	4	-	10-	332-181	29
PF	21P-33S	5297		7.64 2	-	- 12	182-19	2 2 0
M	23S-83P	5186	-	-	-	- 1)		-
PF	21P_31S	54	85	4.68 6	1-1	1112	1910-81	-
PF	23P2-23S1	5086	06	5.88 10R	5.813	5.8230	12-19	1
M	23S-103P.	5018	-	-0.80		0.000	27	- ¹)
M	23S-113Pa	4968	-	10-10-1000	-	10-	272	- 1)
M	23S-123P	31	-	as -ika	-	- 00-	391-39	- 1)
PF	23P,-23S,	4800	09	9.91 10R	9.912	9,9139	0.0-04	18
PF	23P0-23S1	4678	37	8.19 10R	8.151	8.1504	(C*)(T)	
PF	21P1-41D2	62	69	2.34 8r	2.352	2.3525	10.00-146	-
PF		15	-	5.75 2	14	-	10-11	-1
PF	21P-43D1	15	57	5.39	-	0-	19-11	
PF	21P-43D2	14	35	4.17	-	-	17-17	-1
		4511	- 10	1.34 5	-	10-	1.	1.34 3
PF	23P1-21S0	4413	23	3.06 6	-	-	101-101	49
PF	21P1-41S0	4306	98	6.82 4u	-	12-	ALT I	-
A CL		4177		1.28-57.0		08		7.3 10
PF	$2^{1}P - 5^{1}D$	4141	- 00	0.5	-		10	-
RC	$6^{3}P_{2}$ — $7^{3}D_{3}$	34	-		-	-	- 1º	4.78 0
PF	21P-53D2, 1	14	7 d	4.5	-	- 12		49
1-	1 244	4009	- 1	188-98.8	-	00-	(C	9.0 1
PF	$2^{1}P_{1} - 5^{1}S_{0}$	3981	92	1.77 2u	-	-		-
PF	21P-61D	3905	-	5.1				-
PF	2 ¹ P-6 ¹ S	3819	-	8.5	-	-	-	-
R	21P-71D	3774	-		-		4.8	-
PF	$2^{3}P_{2}$ $3^{3}P_{2}$. 29	21	9.06 4r		-		-
PF	21P-71S	23		3.2	-		1 O.	-
R	2 ¹ P-8 ¹ D	3695	-	1	-	-	5.9 6	-
R	2 ¹ P-9 ¹ S	61	-	-	-	-	1.98	-
PF	2 ³ P ₂ -3 ¹ D	49	74	9.59 2r	-	-	-	-
R	21P-91D	45	-	-	-	-	5.0 4	-
R	21P-101S	21	-		-		1.3 1	

Shade			Paschen Buch	Fowler Buch	Ruark [267]	Meggers [240]	Taka- mine [251]	Ruark Chenault [278]
PF	23P2-33D1	14	58	4.43 4			100	program
PF	23P2-33D2	13	04	2.89 8R	2.876	2.8748	1000	
PF	23P2-33D3	10	66	0.51 10R	0.510	0.5096	in Len	- LOUIS BEEN
R	2 ¹ P-10 ¹ D	08	-	_	-		8.2	and the second
PF	23P1-33P1	3595	64	5.49 1u		_	_	_
R	21P-111S	91	-	-		-	1.5 0	_
R	2 ¹ P-11 ¹ D	82	-	-		_	2.7 1	_
R	2 ¹ P-12 ¹ S	70	-		_	10	0.4 0	_
R	2 ¹ P-12 ¹ D	63		-	T, beneficial I	non-entri	3.2 1	
R	2 ¹ P-13 ¹ D	48	-	-		-	8.0 0	1.4
PF	$2^{3}P_{1}$ — $3^{1}D_{2}$	00	09	9.94 4r	-	-	110-245	11
PF	$2^{3}P_{1} - 3^{3}D_{1}$	3467	76	7.61 SR	7.656	7.6559	10-20	
PF	$2^{3}P_{1}$ $3^{3}D_{2}$	66	33	6.18 10R	6.200	6.2016	10-818	
PF	2 ³ P ₀ -3 ³ D ₁	03	74	3.60 10R		3.6529	1211-212	
Fu	1 ¹ S-2 ³ P ₀	3320	-		-	31-1	112-318	_ 2)
	-	3298	-	8.97		0.001	1112-1810	1
PF	$1^{1}S_{0}-2^{3}P_{1}$	61	17	1.04 10		19-11	92.29	141
PF	$2^{3}P-3^{3}S_{1}$	52	63	2.52 8r	-	2.5248	21491	-
	-	24	-	-	-		112-015	4.21?
Fu	$1^{1}S-2^{3}P_{2}$	3141	-		-	- 11	-9-C	-2
PF	$2^{3}P_{1}$ — $3^{3}S_{1}$	33	29	3.19 8r	-	3.167	1212- 1	
PF	$2^{3}P_{1}$ — $3^{1}S$	3082	80	2.68	- 1	-	1990- 841	
PF	$2^{3}P_{0}$ $3^{3}S_{1}$	81	03	0.93 6r		0.827	1912-012	-
PF	$2^{3}P_{2}-4^{3}P_{2}$	05	53	5.41 1r	-	- 5	1995-849	-
RC	$2^{3}P_{1}-4^{1}D$	01		1977-C.03	-	-	10-10	1.2 1
PF	$2^{3}P_{2}$ - $4^{3}D_{1}$	2982	01	1.89 1		-	13.00	-
PF	$2^{3}P_{2}$ $-4^{3}D_{3}$	81	46 d	1.34 4R			10 35.	-
PF	$2^{3}P_{2}$ $4^{3}D_{2}$	80	75 d	0.63 8R	-	-	-	— ³)
PF	2°P2-4°F	61	64	1.48 4v			1920-102	-
PF	$2^{\circ}P_1 - 4^{\circ}P_1$	08	85	8.74 1r		- 1	0-1-1C	-
PF	$2^{\circ}P_1 - 4^{\circ}P_2$	03	24	3.13 1u			-	-
DE	2°P1-4'D	2899			-	-		9.3 2
Pr	$2^{\circ}P_1 - 4^{\circ}D_2$	81	34	1,23 4R	-	- 10	100-100	
P	$2^{\circ}P_1 - 4^{\circ}D_2$	80	88	0.77 SR	-	-	-	-
DF	$2^{\circ}P_{0} - 4^{\circ}D_{1}$	10	01	0.00 0	-	-		
DE	$2^{\circ}\Gamma_2 - 4^{\circ}S_1$ 93D - 43E	60	00	8.20 Or	-	-	-	-
F	2°11-1°1 93D_43D	20	00	2.50 2V	-	_	-	-
PF	23D 43F	18	ee	0.30 OR		-	-	-
PERC	93P_43S 2	9775	00	5.00 Gr	-			= 0
PF	2 ³ P_5 ³ D	64	90	110 OP				0.8 2
PF	23P_53D	63	99	3.89 GP				_
RC	23P41S	57	00	0.00 01				7.87 0
PF	23P-53F	56	69	6.78 8.			and here	1.01 2
	_	48		8.61 2				
PF	23P43S.	33	97	3.88 4r	_		1	
PF	23P-53S	12	65	2.46 Gr				
RC	23P1-53P	2688	-		_	- 25	ine an	8.7 9
Р	23P1-53D.	77	65	7.64 8d		_	ato_ are	_

1794	-stal Steel ada finderal (Agr) (42)	Roler (See)	Paschen Buch	Fowler Buch	Ruark [267]	Ruark Chenault [278]	Taka- mine [251]
Р	23P1-53F	70	81	0.66 3u	-	_	1 2
RC	23P2-61D	68			-	8.26 3	
PF	23P2-63D3	60	45	0.40 4r	00-		
		57	- '	7.00 2	-	0-9	
	- 22	54	-	4.55 1	_	(C*)	-
P	2 ³ P ₀ -5 ³ D ₁	39	63	9.50 6R	2-	100-111	-
PF	2 ³ P ₂ -6 ³ S	82	29	2.25 2r		CPAL SAL	
PF	$2^{3}P_{0} - 3^{3}P_{2}$	00	15	0.06 4-	1 Sept		1 In
PC	2°F1-0°5	29	15	5.00 41		1 15 1	1 1
DC RC	2°F ₁ -5°5	07				7.0 0	
DE	2°F ₂ -7°D	01	00	918 91		1.0 0	0000
DF	$2^{\circ}F_{2} - 7^{\circ}D_{1}$ 93D 53S	01	14	2.10 2V			2002
PC	93P 61D	86	14	2.11 2V		6 86 9	
DE	03D 73S	89	86	5.07		0.00 2	
PF	23P_63D	80	33	0.27 21		1022	
RC	23P-81D	69	-	-		9.4	
F	23P83D	65	1 44 5	5.88	_	_	2566
F	211 02	54	- 1	4.51		in a	_
PFR	23P63S	53	61	3.53	3.91 3	1912 31	1 29
PF	2 ³ P6 ³ D,	44	84	4.72 2u	_	THE T	2545
F	2 ³ P ₂ -9 ³ D	41	-	1.64	-	_	2542
F	23P93S	2533	-	3.91	_	191-19	I III
RC	23P,-71D	30		-	_	0.0 2	-
PF	23P,-73D.	25	57	5.30 1u	_	_	2526
F	2 ³ P ₉ -10 ³ D	24		4.68	-	-	2525
PFR	23Po-63S	18	78	8.70	9.04	-	-
F	23P2-113D	12	-	2.37	-	-	2513
F	23P1-73S	08	- 1	8.91	-	-	-
PR	$2^{3}P_{2}$ —11 ³ S	07	93	-	7.84	-	-
Та	$2^{3}P_{2}$ — $12^{3}D_{3}$	04	-	-		-	2504
F	$2^{3}P_{2}$ —12 ³ D	02	-	2.99			-
F	2 ³ P ₂ -13 ³ D	2495	-	5.88	1 2 4	-	2497
RC	$2^{3}P_{1}$ — $8^{3}D_{2}$	94	-	-	-	4.25 1	-
Та	$2^{3}P_{1} - 8^{3}D_{2}$	93	-		-	-	2493
F	2 ³ P ₁ —14 ³ D	91	-	1.16	-	-	-
F	2 ³ P	90		0.23		-	-
Ta	$2^{3}P_{2}$ — $15^{3}D_{3}$	87	-	-		-	2487
R	2 ³ P ₂ -15 ³ D	85	- 1	-	5.61 1		-
Ta	$2^{3}P_{2}$ — $16^{3}D_{3}$	83	-	-	-	-	2483
R	$2^{3}P_{2}$ —16 ³ D	81	-	-	1.81 0	-	-
FR	23P1-83S	80	-	0.28	0.72 2	-	2480
R	2 ³ P ₁ -17 ³ D	78	-	-	8.89	-	-
F	2°P0-7°S	75		5.25	-	-	
P	2ªP0-7ªS?	74	15		-	0.50 1	0.170
RC	2°P1-91D	69	1000	0.05	al dabar (9.76 1	2470
F	2°P ₁ —9°D	68	-	0.20	-		9450
F	2°P1-9°S	57	-	7.97		Sector Ten	2400
I F	2°P0-8°D	1 07		1 1.01	day of the local day		

-adaTr saint	Ananak Maramito 19781	Rank (287)	Paschen Buch	Fowler Buch	Ruark [267]	Ruark Chenault [278]	Taka- mine [251]	Selwyn
F	$2^{3}P_{1}$ —10 ³ D	2452 .	-	2.22		-	2453	-
R	23P0-83S	47	- 1	1 - 1	7.47 1	-		-
R	$2^{3}P_{1}$ —10 ³ S	46	-		6.68 1		-	41
F	2 ³ P ₁ -11 ³ D	40		0.51	-	0 0000 000	2441	-
FR	2 ³ P ₀ -9 ³ D	35	- 10	5.58	6.25		2436	-
F	2 ³ P ₁ -12 ³ D	31	- 11	1.73	-	-	2432	-
R	2 ³ P ₀ -9 ³ S	-28	2- 03	10 - 01	8.31 1	- (P)		-
F	2 ³ P ₁ -13 ³ D	25	-	5.04	_	4 1	2424	
RF	$2^{3}P_{0}$ — $10^{3}D$	19	- 1	9.90	9.64	+ 19	2419	149
R	$2^{3}P_{1}$ —15^{3}D	15	- 10	B - al	5.24	- 11	2415	-
R	2 ³ P ₁ -10 ³ S	14	-		4.65 0	- 27	10-41	
R	2 ³ P ₁ -16 ³ D	11	17		1.70 0	- (1)		-11
R	2 ³ P ₀ -11 ³ D	08	-	A LAR	8.36 lu	1 - CT	2408	-1
R	23Po-113S	04	1 14 11	10 H K	4.56 0		2.4	-1
R	23P0-123D	00		1.00 <u>20.</u> 50 (0.06 1	100- QQ	49.0	-1
Та	23P0-123D1	2398	-			_	2398	
R	23Po-133D	93	- 19		3.42 0	(1)	2393	-1
R	2 ³ P ₀ -14 ³ D	88	-		8.16 0	- (1)	2386	
R, RC	23P2-23P1'	29	10	9.27 10	9.27 10R	7.27	4)	-
R, RC	23P1-23P0'	06	-	6.61 5	6.61	6.61	- ⁴)	-
PF	11S0-21P1	2288	10	8.02 10R	-		4	111
R, RC	23P1-23P1'	67		7.48 5	7.46 5R	7.47	- ⁴)	149
	_	2262		2.29 1			A-3	-
R, RC	23P0-23P1'	39	- 11	9.86 5	9.86 5R	9.86		- ⁴)
	-	30	-	0.40 1		- 94	- 41 9	
		09	1 - CU	1 -1	-	9.72	420	-1
	-	03	- 10	-	+	3.57	42	-
	-	2170	- 01	0.04 1			- 49	1
	-	1993		3.07			-4-2	-
Р	110 080	42	9?	2.29 6			- 443	-1/
Р	1.9-2.9	39	2	71		-810		
P shoe	_	1820	-					0.87 0
Р	11S-33P1	1710	51 vac.	0.51 3		-122	- 440	-
	-	1688		8.58 2		347	2++	-
F	-	82	-	2.12 1	+			(9.45 0
PF	$1^{1}S - 3_{1}P$	69	30	9.29 10		-		9.02 0
		- 69	-			-251		10.04 0
	-	47	-	7.78 2		-010		-
		1571	-	1.40 1		-10		-
Р	$1^{1}S-4^{3}P_{1}$	37	83 vac.	7.83 1				-
PF	1 ¹ S-4 ¹ P	26	73	6.85 8	-	-190		
PF	1 ¹ S-5 ¹ P	1469	35	9.39 6	+	-010		-
PF	1 ¹ S-6 ¹ P	40	15	0.18 3		- 20		
PF	1 ¹ S—7 ¹ P	23	22	3.23 1		1		
Р	11S-81P	12	46	-	-	- 60	- 40	-
Р	1 ¹ S-9 ¹ P	05	16	- 41				-

Miyanishi (332) findet im Chlorbogen die Glieder der Singulett-Hauptserie: 5518.1 (2), 5460.0 (1),5416.8 (1), und die Glieder der Triplett-Hauptserie: 5186.2 (2),5018.3 (2),4968.5 (1),4931.8 (1).
 Diese Linien sind von Fukuda [293] gegeben; 3141 auch durch Foote [257].
 Meggers und Burns [240] messen 2980.6216.
 Foote, Takamine, Chenault [272] messen: 2330.0, 2306.7, 2267.4, 2240.0.

Pa	schen	Fowler un	nd Ruark	Fowler u	and Ruark
2°S	21050.39	33S	9975.6	43D,	7185.3
$2^{3}P_{2}$	40706.60	43S	5857.3	43D.	7179.5
23P1	41877.65	5°S	3856.6	43D3	7171.8
23P0	42419.51	63S	2732.9	53D,	4549.9
3°D ₃	13018.50	73S	2037.6	53D.	4546.8
$3^{3}D_{2}$	13036.76	83S	1576.8	53D3	4541.3
33D1	13048.48	93S	1257.0	63D,	3139.2
		103S	1023.2	63D,	3138.5
11S	72532.76	113S	849.2	63D3	3134.5
21S	19224.3	1 100	19-11-11-11-11-11-11-11-11-11-11-11-11-1	73D	2294.5
21P	28841.56	43F	6957.1	8°D	1751.8
		53F	4445.1	93D	1379.3
		1 58	1007	10 ³ D	1114.3
		20	10	113D	920.3
			1.1	123D	771.6
		2 22 100		13°D	658.1
			1960	14 ³ D	566.7
		9 91 12	2	15 ³ D	492.1
	The second second		1992	16 ³ D	430.6
			1. 1. 1. 1.	173D	383.1
Fowler 1	und Ruark	05	12		
31S	9452.1	31P	12633.2	31D	13319.2
41S	5634.1	41P	7044.6	4 ¹ D	7404.9
51S	3739.2	51P	4483.4	51D	4701.7
61S	2665.7	61P.	3103.1	61D ·	3246.3
71S	1995.6	71P	2276.2	71D	2362.9
		81P	1738.8	8 ¹ D	1796.9
91S	1546.7	91P	1380.9?	91D	1419.8
101S	1239.8	and and		10 ¹ D	-
111S	1010.8	61 · 181		111D	942.5
121S	846.4	The second		121D	782.7
	1	The second second	1000	131D	669.6

Tabelle 1a. Termwerte Cd I.

Cd II. Einvalenzelektronensystem mit Dubletts. Nachdem von den Paaren dieses Spektrums nur sehr wenige durch Paschen und Fowler gefunden waren, sind eine außerordentlich große Anzahl durch von Salis [281] und Takahashi [361] hinzugefügt worden. Eine geringe Anzahl findet sich bei Ruark und Chenault [262], deren Tabelle vielleicht noch einige Linien mehr enthält. Esclangon [285] erhält auch nur eine geringe Anzahl Linien von Cd II. Da er im allgemeinen fremde Messungen nimmt, sind die von ihm beobachteten Linien nur mit einem x bezeichnet, und nur bei eigener Messung seine Zahlen gegeben. — Lang [352] hat vier Linien im Schumanngebiet gemessen. Frerichs [325] bestimmt die Anregungsenergie einiger Linien. Für die Ionisierungsspannung des Atoms gibt Takahashi [361] den Wert 8.95 Volt $(1^{1}S_{0})$ an. Für das Ion Cd I 16.84 Volt $(1^{2}S_{4})$.

Tabelle 2. Cd II.

		1		1 90	1
1			Salie	Takabashi	Ruark
	and a state of the second	- mail has	[981]	[261]	Chenault
	The second second	1,0108	[soi]	[bor]	[278]
S	22S-32P.	8066	99 3		
		7664	74 1	and and and a	
S	$4^{2}D_{3}-6^{2}F_{4}$	7284	38 6		_
S	$4^{2}D_{2}-6^{2}F_{2}$	75	75 0	Land Land	
S	$4^{2}D_{2}-6^{2}F_{2}$	37	01 5	1.000	
S	$4^{2}P_{0}-6^{2}S_{1}$	6817	98 0	and the second	the second
S	$3^{2}P_{a}-4^{2}D_{a}$	6759	26 7	and the second	
S	$3^{2}P_{e} - 4^{2}D_{e}$	25	83 15	1000	
	$4^{2}P_{3} - 7^{2}D_{5}$	6567	73 3		
S	$3^{2}P_{-}-4^{2}D_{-}$	6464	98 10	11984	T
S	$4^{2}F_{*}-6^{2}F'$	6359	93 10	and the second	T
S	42F-62F'	54	72 9		
S	4 ² D-7 ² F.	5880	19 3		T
S	$4^{2}D_{-}-7^{2}F_{-}$	43	35 95		T
S	$3^{2}D_{-}4^{2}F_{-}$	5381	89 10		T
SR	$3^{2}D_{-}4^{2}F_{-}$	78	19 30	in the second	8 40 0
SR	$3^{2}D - 4^{2}F$	97	40 95		0.42 2
SIL	$4^{2}F_{-7}^{2}F'_{-7}$	5971	57 9		1.10 2
g	42F - 72F'	67	00 7	_	-
T	$4^2D_2 = 8^2E_2$	5195	00 1	5.90 000	TT
T	$4^{2}D_{3} - 5^{2}D_{3}$	42	916	2.00 000	T
1	$4^{-}D_{\frac{0}{2}} - A(15)$	5095	1922	5.69 000	T
	Contraction of the second	0020	50 0	0.90 20	T
m	2.97	10	52 6		
т	$3^{-}D_{\frac{3}{2}}$ -A (3)	4001	73 10	2.04 10	1.78
m	200 1 (14)	34	-	4.96 0	-
Т	$3^{2}S_{\frac{1}{2}}$ A (14)	29	-	9.03 00	-
5	4 °F4-8 °F	4/44	72 4		-
8	4 ² F ₃ —8 ² F'	41	78 3		-
		4605	-	5.81 00	-
		4588	-	8.64 00	
	-	4491	-	1.42 00 d	-
Т	$3^{2}D_{\frac{5}{2}}$ —A (4)	40	-	0.78 0	-
	and any management	14	and the second s	4.63 250	
Т	$2 {}^{2}P_{\frac{3}{2}} - {}^{*}D_{\frac{5}{2}}$	15	-	5.66	-
Т	Cd I	13	-	3.06	-
ST	Cd II	[12	31 10	2.31	1.000-000
10742	$3^{2}D_{\frac{3}{2}}-4^{2}P_{\frac{3}{2}}$	4384	an Arappointe a	4.60 00	ins er effig
S	$3^{2}P_{1}-4^{2}S$	4285	07 8	Transferration of it	dal Torres
	and the second second second	45	-	5.86 2	-
	-	43	-	3.39 1d	-
S	$3^{2}P_{2}$ — $5^{2}D_{2}$	4141	59 6	and the value of	_
S	$3^{2}P_{2}$ — $5^{2}D_{3}$	34	78 15	All a second for	thin the state
and the	manna an - an an an an	12	st (88 44 116)	2.55 0.5	Pa +his
Sol Tak		10	and the second	0.28 0	
т	A (14)—B (9)	02	-	2.00 00d	-
	And the second s	4094		4.50 00	-
S	$3^{2}P_{1}$ — $5^{2}D_{2}$	29	08 10	-	9.08 0
	3 ² D _§ —A (6)	16	· - ·	6.56 00	-

	Tabababbi Tabababbi [201] (2019)	3162 [123]	Salis [281]	Takahashi [361]	Ruark Chenault [278]	Esclan- gon [286]
-		4006	1882	6.68 5	_	-
T	$3^{2}D_{3}$ —A (7)	3957	81 -	7.40 8	. 6.1	-
T	*Da-32Pa	3827	- 22	7.40 5	(8) 8-(8)	-
T_		3776	11 - 12	6.32 0	_	-
T	3 ² Dg—A (8)	68	- 0	8.09 0		_
-	_	3697	100-1	7.50 00		-
T	3 ² D _§ —A (9)	88	00-	8.25 00		-
Т		67	2009	7.33 10	5.5 1	7.0 0
		55	- 1	5.36 00		-9
1	1 189-	45		5.43 00		-
т	2ºPa-*Da	3535	67 20	5.71 100	5.82 1	x 1)
S	3 ² P ₀ -5 ² S	24	07 8	_	4.07 1	x
	-	3495	36 15	5.33 100	5.35 0	x
S	3°D5°F	- 83	04 6		3.04 1	x
S	and an and a second	64	35 6		_	x
T	$5^{2}P_{1}$ —B(7)	59	_	9.80 00		_
S	32P52S	42	34 6		9.84 1	x
T	$3^{2}D_{5}$ —A (11)	22	-	2.98 0	-	_
S	$3^{2}P_{2}-6^{2}D_{2}-2$	20	14 4			v
S	$3^{2}P_{-}-6^{2}D_{-}$	17	40 10		7 40 1	v
S	$92S_42P_1$	02	17 3		1.40 1	~
T	A(12) - B(7)	3399		9.65 5	lore a	
g	$P_{12} = P_{12} = P$	88	85 4	0.00 0	9.95 9	~
T	(11) B(4)	85	44	5.40 40	5.95 0	X 5.5
1	A (11)—B (4)	76	44	6.78 00	0.00 2	0.0
	T	70		0.10 00 1		
T	5.9E D (9)	10	_	5.20 0.5	_	-
1 o	5-r	- 00	15 0	5.50 0.5	0.15 1	—
S	3*P1-0*D2	43	10 8	0.11 00	3.15 1	x
T	A(11) - B(0)	5292	-	2.11 00	-	
T	$3^{2}D_{3}$ —A (12)	83	-	3.56 00	-	
T	A(11) - B(i)	19	-	9.17 00	-	
T	$2*P_{\frac{1}{2}}-*D_{\frac{3}{2}}$	50	. 30 25	0.11 100	0.3	X
T	$3 = D_{\frac{6}{2}} - 5 = P_{\frac{6}{2}}$	38	-	8.81 2		-
T	$5^{2}P_{\frac{3}{2}}$ —B(8)	- 32		2.35 1		-
T	3 ² D _a o ² P _a	22	-	2.59 0		-
		3194	-	4.34 00		- 2
T	A (9)—B (3)	- 85	-	5.55 00		-
T	$3^{2}D_{\frac{5}{2}}$ —A (13)	80		0.03 0	-	-28
T	A (12)—B (8)	74	- 25	4.42 00	-	-
Т	A (10)—B (6)	73		3.63 00		-
Т	$3 {}^{2}D_{\frac{3}{2}}$ —A (13)	64	-	4.42 00	-	-8
т	A (9)—B (4)	61	-	1.81 00		8-
-		60	102-1	0.88 00	-	-
T	$*D_{\frac{3}{2}}$ —A (1)	57	100-	7.16 00	7.08? 0	-
Т	$2^{2}S_{\frac{1}{2}}$ —A (6)	49	21-1	9.91 00	- Veretter	-3
S	$3^{2}P_{1}-6^{2}S$	- 46	78 4		6.78 1	-
	100 + 4.04	29	1-1	9.21 00	-	

¹) Esclangon [286] gibt hier noch 3576.5(3).

398

Cadmium

-naiha proj 1991	Tabahadal Hunds I Hacosoft (1963) (363) (276)		Salis [281]	Takahashi [361]	Ruark Chenäult [278]	Esclan- gon [286]
		8191		1.77 00		1992
		18	2010	8.85 00	1000	
т	A (8)-B (3), 5 ² Pa-B (11)	12	State 1	2.91 00	2-	_
-		12	11 1	_	_	
		07	85 1	-10 A-	(P4-	
	- 10 00.5	06	71.2	_	-	-
1	- 10 80.8	- 04	57 2	-01-	11-11	-1
5 6	1 1 0 0 0 10 10	3095	- 11	5.41 00	-	-
S	$3^{2}P_{2}$ — $7^{2}D_{2}$, 3?	93	77 1		-	-
S	$3 {}^{2}P_{2}$ — $7 {}^{2}D_{3}$	92	34 8	-	2.34 1	-
T	A (8)—B (4), $6^{2}P_{\frac{1}{2}}$ —B (15)	89	1032	9.84 00		-
		84	-	4.88 0		-
S	$3^{2}P_{1}-6^{2}S$	81	58 2	-	-	
T	A (9)—B (5)	78		8.50 00		-
3	· · · · · · · · · · · · · · · · · · ·	11		7.17 00	-	-
8.51	The second s	74	14 3	2 20 00	-	-
m	A (0) B (0)	10		3.80 00		
T	A(3) = B(6) A(11) = B(8)	68		8.80 00		1.5
	A (11)-D (0)	64		4.95 00	and a	_
-		60	29 1			_
т	A (12)—B (11)	59	-	9.20 00	-	-
	_	57	51 1		-	
	5.40 AD - 5.35 2 5	56	41 1		111-4	-
-	- 00 St.M	53	99 0	-	-	-
1	- 100 10.0	53	01 T	3.13 00	-	-
	- 0.0 0.0	48		8.82 00	-	-
		35	-	5.79 4	-	-
S	$3 {}^{2}P_{1} - 7 {}^{2}D_{2}$	30	67 6	(I) B-	0.67	x
	- 0 0.6	27	86 0d	-	-	-
-	+ 00 100 10	27	21 0d		-	-
-		16	09 0	8.06.00		-
T	$2^{2}S_{1}$ —A (8)	00	-	1.51 2		-
Т	A (11)—B (9)	3000		6.56 00		
T	A (11) B (11)	60	83 2	0.74 00		
1	A (11)—B (11)	48		8.05 00	8.11 II	_
ST	$2^{2}S_{1} - A(9)$	43	89 2	3.60 00	3.89	_
~ 1	= ×± - 11 (0)	34	15 1	_	_	-
-	The second	31	14 2d			
S	3ºD6ºF.	29	29 9	-	9.29	x
S	3 ² D ₃ —6 ² F ₂	27	90 3	-018	7.90	x
	_	26	93 1	-	-	-
	738 00 - 70 8	19	13 1	- 11 /		-
S	$3^{2}D_{2}$ — $6^{2}F_{3}$	14	69 8	-115	4.69	x
Т	$3^{2}P_{\frac{3}{2}}$ — $8^{2}D_{\frac{3}{2}}$. 12		2.68 00		- 2
S	$3^{2}P_{2}$ — $8^{2}D_{3}$	11	64 4	-	1.64	-
Т	A (7)—B (5)	2899		9.43 00	9.3 1	100 0
т	$D_{\frac{3}{2}}$ —A (2), A (7)—B (6)	93	76 1	3.74 0	3.76	x

anis	Takanati MandalaT	ile?	Salis	Takahashi	Ruark	Esclan-
1000	[803] [108]	Inst	[281]	[361]	[286]	[278]
		2893	28 0	-	_	_
S	3 ² P ₁ -7 ² S	86	60 1	-	6.60	_
S	$3^{2}P_{1} - 8^{2}D_{2}$	56	45 2	-	-	x
т	*Da—A (3)	34	-	4.19 10	4.08?	x
т	$3^{2}D_{\frac{5}{2}}-6^{2}P_{\frac{3}{2}}$	23	11 -	3.19 4	-	-
S	$3^{2}P_{2}$ — $8^{2}S$	19	89 1	- 00	-	-
Т	$3^{2}D_{\frac{3}{2}}-6^{2}P_{\frac{1}{2}}$	13	10 -	3.41 2	-	-
Т	$3 {}^{2}D_{\frac{3}{2}} - 6 {}^{2}P_{\frac{3}{2}}$	10	- m	0.93 0	1.0-11	-
-	0.86 989	09	01 1			-
T	220 020	05	000	5.61	5.55	-
C	3*Pa-9*Da 22D 02D	2/99	00 1	9.57 00	8.00	-
Ø	5-F2-5-D3	98	14 1		0.00	-
		76	14 1	6.07 0		
т	$2^{2}S_{1} - A(11)$	71		1.94 1	_	x
ŝ	$3^{2}P_{-}=8^{2}S$	67	49	-		-
T	A (13)—B (15)	53	-	3.80 00		3.7
	_	49			-	9.9
S	$2^{2}P_{2}-2^{2}S_{1}$	48	58 10		8.68	-
		87		7.81 00	-	-
Т	$5^{2}P_{\frac{1}{2}}$ —B (15)	07		7.14 30	7.04	-
т	$2^{2}S_{\frac{1}{2}}$ —A (12)	2691	-	1.48 00	0-	-
Т	A (4)—B (7)	88	-	8.30 00	- m	-
78	5.08 CIAN - RUG	87	69 1		- 11	-
	522 (10) (2)	. 85	08 1	-	-	-
т	$*D_{\frac{3}{2}}-A(1)$	80		0.08 3	100 to	-
m	- (10)	70	36 0d	4.92 00	1.74	-
T c	A (8)—B (12)	14	74 10 co 9	4.82 00	4.74	-
D Q	$3^{\circ}D_{3}$ $7^{\circ}F_{4}$	70	00 0		2.00	-
T	$\Delta (12) - B (15)$	69	21 0	9.92 00		*
T	$*D_{2} - A(4)$	68		8.33 2	8.26 I	
S	$3^2D_e - 7^2F_e$	59	29 2	-		_
S	22S-52P.	54	27 0	-	-	
S	22S-52P.	50	44 1			-
	and the second second	46	80 0		-	-
	- 00 822	45	86 3	- 101		-
	no no	40	69 2	8.00 - (0) 8	+	-
100	ine-massa []	- 38		8.49 0		-
-	(2.56 , 000 - (100 - 10.52)	36	29 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	+ 12	-
		33	63 1	300-1008		-8
		33	20 0	-		-
1	soonas a	30	63 1	3.71 0d	-	-
x		30	22 0	6.00		
18		26	11 1	0.85 Vac.		-
T	*D. 4 (5)	19	-	8.05 00	8.89 1	-
1	-D ₃ -A (0)	10	87 0	0.01 4	0.00 1	_
3	the I have been have	17	13 0	7.25 vac	to re-out	111
1			1	1		

	~	100	2	
1	n		۱.	
	. 1			
	~	~	r	

oneine- onei onei		alies a	Salis	Takahashi [361]	Ruark . Chenault 19781	Esclan- gon
	Read I have a large		[mor]	[cor]	[210]	[200]
		0010	00 0			
		2010	02 0	-	-	-
		14	40 0		_	
		13	12 0		-	-
1.4.1		12	19 1		-	-
	_	11	81 0	-	-	-
		10		0.15 vac.	_	-
	T a ma	01	48 0	_	_	-
		00	19 0	-	-	
	_	00	32 0	0.86 vac.	-	-
		2596	13 2	-	-	-
	The second second	88	01 - 2	_	-	-
	The second se	86	43 2			
	0.20 0.20	73	-	-	-	3.83 0
S	$2*P_1 - 2*S_1$	73	03 8		3.12 2	3.03 10
		- 64	02 0		-	-
Т	*Dg-4*Fg	52	-	2.99 2	-	x
Т	$D_{\frac{1}{2}} - 4^{\frac{1}{2}} F_{\frac{1}{2}}$	52	01	2.17 20	2.01 6	х
T	$3^2 D_{\frac{3}{2}} - 8 F_{\frac{3}{2}}$	26	-	6.23 00	-	
Т	$3^2 D_{\frac{3}{2}} - 8 F_{\frac{3}{2}}$	16	-	6.36 5	- 1	-
Т	A (12)—B (18)	-12		2.40 00	-	-
T	$3^{2}D_{\frac{5}{2}}$ —A (15)	- 09	04 1	9.25 6	1.4.4	
Т	$3 {}^{2}D_{\frac{3}{2}}$ —A (15)	2499		9.94 6		-
Т	*D _a _A (7)	95	-	5.73 15	10 -	-
Т	$D_{\frac{6}{2}}$ —A (2)	88		8.06 8	7.96 1	x
		75	-	5.22 00	-	-
T	A (9)—B (14)	70		0.61 7	102-	x
T	*D _§ —A (3), A (9)—B (16)	43	01 I	(3.72 0.5)		-
Т	$4{}^{2}\mathrm{F}_{\frac{6}{2}}$ —B (6)	34	-	4.30 00	-127-	-
T	A (12)—B (19)	27	8-	(7.08 0)	_	-
T	A (8)—B (14)	26	00-00	(6.35 1)	-0.5	-
T	*D _g —A (8)	19	-01	9.49 4	(21) <u></u>	-
T	A (9)—B (17)	18	-	(8.26 1)	- 1	x
T	*D ₂ A (9)	2377	- 00	7.63 3	100 <u>1</u>	x
Т	$2^{2}S_{\frac{1}{2}}$ - $6^{2}P_{\frac{1}{2}}$	67		7.91 00		_
T	$2 {}^{2}S_{\frac{1}{2}} - 6 {}^{2}P_{\frac{3}{2}}$	66		6.19 0		-
Т	A (11)—B (19)	64	-	(4.93 00)	-	-
T	A (1)—B (5)	32		2.98 00 -		x
Т	A (2)—B (9)	30	-	0.11 00 .		-
т	A (1)—B (7)	26	-	6.18 00	5.73	-
Т	A (12)—B (21)	22		(2.56 00)	-	-
S	$2^{2}P_{2}$ — $3^{2}D_{2}$	21	15			x
т	$*D_{\frac{3}{2}}$ —A (10)	20		0.09 00	_	-
		16	00 -4	6.51 00		-
S	$2^{2}P_{2}$ - $3^{2}D_{3}$	12	87		2.87	x
Т	A (7)—B (17), A (10)—B (19)	07	- 0	7.78 0	_	-
3-	- A CO 400 + (1-0-	2296	- 10	(6.80 00)	-	-

1) Von hier an gibt Takahashi λ vac; nur die eingeklammerten Zahlen sind λ Luft.

. Istered	and a second second		Salis	Takahashi	Ruark	Esclan-
			[281]	[361]	[278]	[286]
-	A (0) B (17)	0005	9	5 29 0		· · / T
т	A(0) - B(11)	2200	A Good	4.28 00		
	States I Dentilly all	99		2.02 0.5		
T	*D:_5E:	90	to Chiesa	0.86 0.5	Contraction of	
T	$D_{\underline{\theta}} = 0 T_{\underline{\theta}}$ *D_2 = A (5)	82	13 5 138	2.52 0		_
T	A(11) - B(20)	72	12 1000	2.38 00		_
	A (11)—B (20)	69		9.80 0	_	_
S	12S_92P	65	06	-	5.04 10	_
5		63	-	3.02 00	_	_
т	$5^{2}F-B(20)$	46		6.93 00		(1 - T)
T	$2^{2}S_{1} - A(14)$	22	-	2.08 00		
		13 .		3.67 00		
т	*Da—A (12)	10	-	0.37 2	-	(C - 7
T	$4^{2}Pa - B(16)$	04		4.18 00	-	-
		01		1.51 00		-
т	*D ₅ —A (6)	2199	-	9.38 00		-
Т	A (4)—B (16)	98	-	8.14 00	-	-
S	2 ² P ₁ -3 ² P ₂	94	60	100 - 100	4.61 2	01-31
	The Approx American	92	-	2.41 00	-	-
Т	the set + a press of the	90	-	0.63 0	-	-
Т	*D _§ —A (7)	88	-	8.55 6	7.78? 2	-
	a la 14 jacas Cart	86	-	6.95 1	-	-
Т	*Da-5 2Pa	82	-	2.64 0	-	1 - 1
Т	A (4)—B (17)	76	-	6.88 0		a - 1
Т	A (9)—B (21)	62	-	2.94 0		-
Т	*Dg—A (13)	55	-	5.70 6	-	-
0	at sets - market	51	-	1.06 0		017
12	0 m 25 m m m m m m m m m m m m m m m m m	48		8.96 00	-	-
10.61	10 A + 1948-187	47	-	7.76 00	-	-
S	$1^{2}S-2^{2}P_{2}$	44	39	-	4.40? 10	-
	28 188 +	36	10	6.17 00		-
Т	*D _§ —A (8)	29	an arrive	9.12 2	The state	-
1.2.	NO LEF T NOTANISH	27	E. C.	7.13 0	AL TRANS	-
Т	A (1)—B (12)	25	11.81	5.66 0	1 593 0	-
	-	11			1.05? 0	-
Т	*D _§ —A (9)	2096		6.63 8		-
ALURI S	approximation - within Acceler	88	1 mage	8.07 2		-
		40	1.0.0	6.22 0	_	
T	$4^{2}F_{\frac{3}{2}}$ -B (14)	40	in the second	6.79 4		
T	*Da-6 *Fa	00		2.03 3		
1	*D 59E *	00		8.86 1		
T		20	A LOUR	8.06 2		
T	-D ₂ -A (11)	00		1.98 0		
-	A (5) D (01)	1005		5.34 0		
T	A (0)—B (21) *Da2D,	1000	1 1 1 1 1	6.81 8	De Carroll	I IL
T	*Da_62Pa	85		5.56 2		_
T	*D- A (19)	65	1	5.44 2	_	1 10
T	*Ds_52Pa	43	A Bernel	3.41 7	-	_
Kar	Konen Snektroskonie. V	III.			26	

Kayser u. Konen, Spektroskopie. VIII.

402

Cadmium

-	Reark Reda Chevarit per	desdeol	Taka [3	hashi 61]		a Takainahi	4	Tak [3	ahashi 61]
T	*D ₄ —A (13)	1922	2.15	13			1594	86	2
т	_ `	09	93	0		_	86	87	00
T	*Da-72Fa	08	71	1	Т	22P1-32S1	83	16	41)
т	A (3)—B (21)	1886	64	00	T	$2^{2}P_{a}-4^{2}D_{a}$	73	41	3
T	*Da-A (14)	83	07	0	T	$2^{2}P_{3}-4^{2}D_{5}$	71	58	12
		80	28	1		2 2	69	03	00
T	A (1)—B (18)	74	04	2			47	68	00
T	3ºP1-B(4)	56	58	3		The state of the state	45	16	1
		55	75	00			29	28	00
		51	20	0	T	22P1-42Da	14	25	8
		44	65	0.5			1455	70	00
т	*Da-82F5	33	99	0.5		mera-	47	59	00
T	*Da-62F1	27	62	11		- 100	46	18	00
T	*Da-A (15)	25	46	00			37	89	00
T	$3P_1 - B(7)$	23	43	05		-1006-	20	16	00
	or # (i)	16	10	00	T	92Pa_42S1	00	06	3
		1796	13	00	T	2 2 2 2 - 4 5 ±	1971	80	1
		93	34	2	T	$2^{2}P_{2} - 5^{2}D_{3}$	70	91	5
		89	20	00	T	92P1_42S1	52	05	0 1)
T	*Ds-62Pa	85	75	19	T	$2^{-1} \pm -4^{-5} \pm 0^{-1} = 0^{-1} \pm $	00	50	6
1	12 -0 1 -	78	00	1	T	02Da 52S.	1906	47	10
		68	87	0.5	T	$2^{2}\Gamma_{\frac{3}{2}} - 0^{*}S_{\frac{1}{2}}$	1290	41	12
	La caracter	47	66	1.5	1	2-ra-0-Da, a	01	60	00
		20	03	1.0	T	09D. 59C.	50	02	00
T	*D. 7E:	94	25	1	T	$2^{-}F_{\frac{1}{2}} - 0^{-}S_{\frac{1}{2}}$	00	00	-
	*D. 7F. 2	02	00	*	T	$2*P_{\frac{1}{2}} - 0*D_{\frac{3}{2}}$	42	63	D
1	Dg-rrg r	20	00	1	1 m	$2*P_{\frac{3}{2}} - 0*S_{\frac{1}{2}}$	41	07	1
	_	21	94	1 5	1 m	$2^{*}P_{\frac{3}{2}} - i^{*}D_{\frac{3}{2}}, \frac{5}{2}$	33	20	1
m	***	07	10	1.0	T	$2*P_{\frac{1}{2}} - 6*S_{\frac{1}{2}}$	04	70	0
T	$D_{\frac{5}{2}} - A(14)$	102	40	0	T	$2^{2}P_{\frac{1}{2}} - 7^{2}D_{\frac{3}{2}}$	1196	76	0
	-	1078	23	0.5	T	$1^{2}S_{\frac{1}{2}} - 3^{2}P_{\frac{1}{2}}$	1055	83	41)
	_	08	58	0	T	$1^{2}S_{\frac{1}{2}}$ $-3^{2}P_{\frac{3}{2}}$	48	39	41)
	+D 0D 0	64	31	D	Т	$1^{2}S_{\frac{1}{2}}$ —A (2)	913	85	00
T	*Dg-SFg ?	1662	55	00		—	891	25	1
T	*D _g —A (15)	54	90	6	T	$1^{2}S_{\frac{1}{2}}-4^{2}P_{\frac{1}{2}}$	90	00	0
	-	52	04	0.5	T	$1^{2}S_{\frac{1}{2}}$ - $4^{2}P_{\frac{3}{2}}$	88	92	2
	-	50	14	00	T	$1^{2}S_{\frac{1}{2}}$ —A (8)	60	40 .	1
T	$2^{2}P_{\frac{3}{2}} - 3S_{\frac{1}{2}}$	47	98	61)	T	$1 {}^{2}S_{\frac{1}{2}}$ —A (9)	54	85	00
	-	44	99	00	T	$1 {}^{2}S_{\frac{1}{2}}$ —A (10)	47	51	1
		28	54	0.5	T	$1^{2}S_{\frac{1}{2}}$ —A (11)	39	86	1
		23	00	0.5		-	38	23	1
		21	70	1	T	$1 {}^{2}S_{\frac{1}{2}}$ —A (12)	32	77	2
		09	94	.1	Т	$1^{2}S_{\frac{1}{2}}$ - 5 $^{2}P_{\frac{3}{2}}$?	29	49	0
		04	93	00	T	$1^{2}S_{\frac{1}{2}}-6^{2}P_{\frac{3}{2}}$	798	42	2.5
		01	66	1		-	35	62	00
		01	05	3			10	51	00
	-	1599	49	00 -		$3^{2}D_{3}$ — $4^{2}F_{4}$	530	-	- 2)
	¹) Lang[314] gibt	eingeord	net:	5P ₂ —7 5P ₁ —7	S 1648 S 1583	3.15 (3) 5 S- 3.35 (2) 5 S-	-6P ₂ -mD ₂	1048.4 1335.1	$ \begin{array}{c} 4 & (2) \\ 4 & (1) \end{array} $

⁵S-6P₁ 1055.85 (2) ²) Diese Linie ist von Mc Lennan und Allin [353] gemessen.

Tabelle 2a. Termwerte Cd II [361].

m	$^{2}S_{\frac{1}{2}}$	$^{2}\mathrm{P}_{\frac{3}{2}}$	$^{2}\mathrm{P}_{\frac{1}{2}}$	$^{2}\mathrm{D}_{\frac{5}{2}}$	² D ₃	${}^2F_{\frac{7}{2}}$	2F [§]	² G
1	136376.59	_		-		- 20	-	
2	53386.37	89758.07	92241.29	-		-	-	-
3	29077.10	40992.54	41665.80	46531.04	46685.31	-	-	-
4	18335.49	23886.27	24001.74	26128.58	26202.09	27942.34	27955.11	-
5	12624.31	15668.03	15722.44	16814.24	16853.98	17828.65	-	-
6	9223.21	11119.77	11151.36	11738.92	11762.35	12402.97	12386.79	12223.22
7	7033.80		1 2	8663.87	8678.81	9126.47	9092.46	8977.91
8	5540.60	_	_ 01	6657.66	6667.60	5-	6957.46	6872.14
9			A LANK	5275.83	5283.27		-	-

 $D_{g} = 6148.296$

		B
0.0	A	
(1)	= 29816.97	(3) = -11961.17
(2)	= 26936.86	(4) = -12204.01
(3)	= 26208.85	(5) = -13052.10
(4)	= 24018.12	(6) = -13122.34
(5) 4]	$P_{a} = 23308.95$	(7) = -13167.02
(6)	= 21647.54	(8) = -15256.78
(7)	= 21425.99	(9) = -15986.82
(8) 4	$P_{a} = 20151.36$	(11) = -16445.69
(9)	= 19423.45	(12) = -17227.80
(10) 4	$P_{1} = 18382.34$	(14) = -21051.74
(11)	= 17319.81	(15) = -21206.87
(12)	= 16240.03	(16) = = 21482.35
(13)	= 15093.47	(17) = -21914.54
(14)	= 8378.83	(18) = -23549.01
(15)	= 6696.79	(19) = -24950.86
		(20) = -26683.75
		(21) = -26801.95

Cd III. Zehnvalenzelektronensystem mit Tripletts und Singuletts. Von diesem Spektrum sind nur zwei Stücke bekannt: Esclangon [286] sucht die zugehörenden Linien zwischen λ 3667 und λ 2312 heraus ohne einen Versuch der Einordnung zu machen; Gibbs und White [326] aber bringen eine Liste von eingeordneten Tripletts und Singuletts zwischen λ 2225 und λ 634. Die Ionisierungsspannung ist 32 Volt (${}^{1}S_{0}$).

Tabelle 3. Cd III nach Esclangon [286].

							-							-
3695	5	3	3540	7	0	insisi	3423	5	4	and a	3333	2	3	
82	3	1	32	9	1	hum de	3395	6	3	dist.	18	7	4	
69	5	2	29	8	2		91	5	2		07	0	3	
65	8	0	27	3	1		89	8	3		3285	98	6	
62	2	1	25	0	0	-	78	3	1	1000	83	82	6	
40	6	0	3486	0	6		74	0	1		76	8	6	
81	9	4	53	2	2	Schurg	71	7	1	a man	67	6	3	
26	7	6	24	9	1	minh-	53	1	3	Tabel	64	4	5	
1	1.			•							0.0*			

3258 5 2 3124 4 5 2967 2 5 2720 2 1 566 2 2 18 5 777 6 1 16 00 2 54 6 2 18 9 5 777 6 1 2 5 16 00 2 26 67 6 12 93 4 70 2 2 18 312 0 0 0 2 2 16 00 2 2 18 312 0 0 0 2 2 00 7 2 0 2 7 2 0 2 7 2 0 0 1 0 <t< th=""><th></th><th>_</th><th></th><th>_</th><th>-</th><th></th><th></th><th>_</th><th>-</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th></t<>		_		_	-			_	-				-			
56 2 21 8 5 77 6 1 $*16$ 34 2 54 6 2 18 9 5 71 2 5 16 00 2 366 67 6 12 93 4 70 2 2 13 31 1 24 21 5 3005 50 10 69 7 1 09 2 02 7 2 17 8 8 99 13 3 644 3 38 80 28 2 10 7 2 66 2 10 7 2 66 2 10 11 7 2 66 2 10 14 7 49 52 2 10 11 30 3 18 96 7 31 316 5 211 01 1 2593 21 316	3258	5	2		3124	4	5		2987	2	5		2720	2	1	
54 6 2 18 9 5 71 2 5 16 00 2 36 67 6 12 93 4 70 2 2 13 31 1 24 21 53 6 3095 50 10 69 7 1 09 02 0 21 63 6 91 7 2 65 1 2 02 7 2 21 8 8 89 13 3 644 7 2 2685 8 4 15 5 2 88 42 3 644 7 2 2685 8 4 15 5 2 88 42 3 644 3 3 80 28 6 13 8 4 84 92 10 544 5 1 72 66 2 10 1 66 77 2 6 514 8 14 7 49 52 2 3197 8 4 665 8 26 93 3 18 96 7 3196 6 2 59 3 5 210 0 1 2593 21 3 95 9 3 58 9 1 10 8 6 36 91 1 90 6 2 48 8 5 900 0	56	2	2		21	8	5	1 de	77	6	1	100 10	\$16	34	2	
36 67 6 12 93 4 70 22 22 13 31 1 24 21 5 3095 50 10 69 7 1 09 02 0 21 63 6 91 7 2 66 1 2 02 7 2 17 8 8 89 13 3 644 7 2 265 88 42 15 5 2 88 42 3 644 3 3 80 28 6 13 8 3 84 92 10 54 5 1 72 66 2 10 1 6 77 2 6 511 8 5 29 1 01 8 4 685 9 6 446 4 1 30 63 1 97 5 1 665 0 8 226 93 3 18 96 7 3196 6 2 59 3 5 211 0 1 2593 21 30 95 9 3 58 9 1 108 86 91 1 101 10 2 87 6 2 53 1 5 2893 28 1 011 10 2499 85 7 895 9 3 55 59 90 <	54	6	2		18	9	5	1	71	2	5		16	00	2	
24 21 5 3095 50 10 69 7 1 09 02 0 21 63 6 91 7 2 65 1 2 02 7 2 17 8 8 89 13 3 64 7 2 2685 08 4 15 5 2 88 42 3 64 3 3 80 28 6 10 1 6 77 2 6 51 8 5 53 2 1 01 8 4 65 9 6 51 8 5 53 2 1 101 8 4 65 9 6 24 93 3 18 96 7 1 49 52 2 3197 8 4 65 9 1 10 8 6 36 91 1 97 5 1 65 9 1 10 <td>36</td> <td>67</td> <td>6</td> <td></td> <td>12</td> <td>93</td> <td>4</td> <td></td> <td>70</td> <td>.2</td> <td>2</td> <td></td> <td>13</td> <td>31</td> <td>1</td> <td></td>	36	67	6		12	93	4		70	.2	2		13	31	1	
2163691726512027217888133647226550841552884236472265508413838492105451726621284827353225929110167726518553223197846896464130631975165082693318967319662593521012593213959358911086369119062488590002499857844461416022410076230332055566766074553032277022542407455303227702254240745<	24	21	5		3095	50	10		69	7	1	autres .	09	02	0	
17888133647226850841552884236433802861383849210545172662128482735322592911016772651855321018473954814749522319784650826933189673196625315289328101102876248859000249985785538444061464202638376223032710901323708407673357341486118303762230327109013237084074553032279702254400767335734148611830 </td <td>21</td> <td>63</td> <td>6</td> <td></td> <td>91</td> <td>7</td> <td>2</td> <td>1000</td> <td>65</td> <td>1</td> <td>2</td> <td>and a second</td> <td>02</td> <td>7</td> <td>2</td> <td></td>	21	63	6		91	7	2	1000	65	1	2	and a second	02	7	2	
15 5 2 88 42 3 64 3 3 80 28 6 13 8 3 84 92 10 54 5 1 72 66 2 12 8 4 82 7 3 53 2 2 59 29 1 10 1 6 77 2 6 51 8 53 2 1 10 1 65 29 1 10 1 60 63 1 97 5 1 65 0 8 26 93 3 18 96 7 3196 6 2 59 3 5 21 0 1 2593 21 3 90 6 2 48 8 5 90 0 0 2499 85 7 819 4 4 40 6 1 41 60 2 24 10 0 10 2 24 </td <td>17</td> <td>8</td> <td>8</td> <td></td> <td>89</td> <td>13</td> <td>3</td> <td>-</td> <td>64</td> <td>7</td> <td>2</td> <td>-</td> <td>2685</td> <td>08</td> <td>4</td> <td></td>	17	8	8		89	13	3	-	64	7	2	-	2685	08	4	
13 8 3 84 92 10 54 5 1 72 66 2 12 8 4 82 7 3 53 2 2 59 29 1 10 1 6 77 2 6 51 8 5 53 2 1 01 8 4 73 9 5 48 14 7 49 52 2 3197 8 4 68 9 6 46 4 1 30 63 1 97 5 1 65 0 8 26 93 3 18 96 7 3196 6 2 53 1 5 2893 28 1 01 10 2 87 6 2 48 8 9 1 10 8 6 36 91 1 10 2 2499 85 7 82 91 4 44 2<	15	5	2		88	42	3	1000	64	3	3	and a	80	28	6	
128482735322592911016772651855321018473954814749522319784689646413063197516508269331896731966253152893281011029062531528932810110287624885900024998578553844607270u5302182914444214642026383762230327109013237084074553032055566766073565272122757832u252100745530326664766122562618314546715629 <td>13</td> <td>8</td> <td>3</td> <td>21-158</td> <td>84</td> <td>92</td> <td>10</td> <td></td> <td>54</td> <td>5</td> <td>1</td> <td>A.T.T</td> <td>72</td> <td>66</td> <td>2</td> <td></td>	13	8	3	21-158	84	92	10		54	5	1	A.T.T	72	66	2	
10167726518553210184739548147495223197846896464130631975165082693318967319662593521012593213959358911086369119062531528932810110287624885900024998578553844607270u5302182914444214642026383762230327104013237084074553032055566766073565272122797022544407455303205556676607592113551882239999<	12	8	4		82	7	3	10.00	53	2	2		59	29	1	
018473954814749522 3197 846896464130631975165082693318967 3196 6259352101259321395935891108636911906248852893281011028762488529030024998578553844607270u5302182914442146420263837622303271090132370840767335530320555667660735652721227970225424074553032279702254240745530326847231170769314546715629 <t< td=""><td>10</td><td>1</td><td>6</td><td></td><td>77</td><td>2</td><td>6</td><td>-</td><td>51</td><td>8</td><td>5</td><td>_</td><td>53</td><td>2</td><td>1</td><td></td></t<>	10	1	6		77	2	6	-	51	8	5	_	53	2	1	
3197846896464130631975165082693318967 3196 62593521012593213959358911086369119062531528932810110287624885902810110282914442146420249985782914444214642026383762280327109013237084076733573414861183037622803271090132370840745530322797022542407081254493516299917622718028548870708125449351629991 <td>01</td> <td>8</td> <td>4</td> <td></td> <td>73</td> <td>9</td> <td>5</td> <td>the state</td> <td>48</td> <td>14</td> <td>7</td> <td></td> <td>49</td> <td>52</td> <td>2</td> <td></td>	01	8	4		73	9	5	the state	48	14	7		49	52	2	
975165082693318967319662593521012593213959358911086369119062531528932810110287624885900024998578553844607270u530218291444214642026383784444214642026383762230327109013237084074553032055566766073565272122797022542406093145467156299915705411722757832u252100559211355188223920054135100030880u2256	3197	8	4		68	9	6		46	4	1		30	63	1	
319662593521012593213959358911086369119062531528932810110287624885900024998578553844607270u530218291444421464202638376223032710901323708407455303205556676607356527212279702254240708125449351050303631222718028548870609314546715629991170669211355188223920055921135518822392005692060030880u22<	97	5	1		65	0	8		26	93	3		18	96	7	
959358911086369119062531528932810110287624885900024998578553844607270u5302182914442146420263837844406141602241007673357341448611830376223032710901323708407455303227970225424070812544935105030363122271802854887061881732668472311706093145467156299915705411722757832u252100559211355880u22962 <td>3196</td> <td>6</td> <td>2</td> <td></td> <td>59</td> <td>3</td> <td>5</td> <td>1</td> <td>21</td> <td>0</td> <td>1</td> <td></td> <td>2593</td> <td>21</td> <td>3</td> <td></td>	3196	6	2		59	3	5	1	21	0	1		2593	21	3	
9062531528932810110287624885900024998578553844607270u53021829144421464202638378444061416022410076733573414861183037622303271090132370840745530320555667660735652721227970225424070812544935105030361881732668472311706093145467156299915705411722757832u2521005592113551880u225625352060030880u22662	95	9	3	1	58	9	1		10	8	6		-36	91	1	
87 6 2 48 8 5 90 0 0 0 2499 85 7 85 53 8 44 6 0 72 7 $0u$ 53 02 1 82 91 4 44 2 1 46 42 0 26 38 3 78 4 4 40 6 1 41 60 2 24 10 0 76 7 3 35 73 4 14 86 1 18 30 3 76 2 2 3032 7 1 099 01 3 2370 84 0 74 5 5 30 3 2 055 6 677 66 0 73 56 5 277 21 2 2797 02 2 54 24 0 70 8 1 255 4 4 933 51 0 50 30 3 63 1 2 222 7 1 80 28 5 48 87 0 61 8 8 17 32 6 688 47 2 31 17 0 60 9 3 14 5 4 67 15 6 299 99 1 57 05 4 111 7 2 2757 83	90	6	2		53	1	5		2893	28	1		01	10	2	
8553844607270u530218291444214642026383784440614160224100767335734148611830376223032710901323708407455303205556676607356527212279702254240708125449351050303363122271802854887061881732668472311706093145467156299915705411722757832u2521005592113551882u2392005413090340501225625352060030880u2204 </td <td>87</td> <td>6</td> <td>2</td> <td></td> <td>48</td> <td>8</td> <td>5</td> <td></td> <td>90</td> <td>0</td> <td>0</td> <td></td> <td>2499</td> <td>85</td> <td>7</td> <td></td>	87	6	2		48	8	5		90	0	0		2499	85	7	
82914442146420263837844406141602241007673357341486118303762230327109013237084074553032055566766073565272122797022542407081254493510503036312227180285488706093145467156299915705411722757832u25210055921135518822392005413090340501225625352060030880u22040449203232926113510449203232926113510 <td>85</td> <td>53</td> <td>8</td> <td></td> <td>44</td> <td>6</td> <td>0</td> <td></td> <td>72</td> <td>7</td> <td>0u</td> <td>12</td> <td>53</td> <td>02</td> <td>1</td> <td></td>	85	53	8		44	6	0		72	7	0u	12	53	02	1	
784440614160224100 76 7335 73 41486118303 76 22303271090132370840 74 5530320555667660 73 56527212279702254240 70 8125449351050303 63 1222718028548870 61 88173266847231170 60 9314546715629991 57 05411722757832u252100 55 92113551882239200 54 1309034050122562 53 52060030880u22040 44 9203232926113510 44 92032328262	82	91	4 -		44	2	1		46	42	0		26	38	3	
76 7 3 35 73 4 14 86 1 18 30 3 76 2 2 3032 7 1 09 01 3 2370 84 0 74 5 5 30 3 2 05 55 6 67 66 0 73 56 5 27 21 2 2797 02 2 54 24 0 70 8 1 25 4 4 93 51 0 50 30 3 63 1 2 22 7 1 80 28 5 48 87 0 61 8 8 17 32 6 68 47 2 311 17 0 60 9 3 144 5 4 67 15 6 299 99 1 57 05 4 111 7 2 2757 83 $2u$ 25 21 00 55 9 2 111 3 5 51 88 2 23 92 00 54 1 3 09 0 3 40 50 1 22 56 2 53 5 2 06 0 0 30 88 $0u$ 22 04 0 44 9 2 03 2 3 29 26 <td< td=""><td>78</td><td>4</td><td>4</td><td></td><td>40</td><td>6</td><td>1</td><td></td><td>41</td><td>60</td><td>2</td><td></td><td>24</td><td>10</td><td>0</td><td></td></td<>	78	4	4		40	6	1		41	60	2		24	10	0	
76 2 2 3032 7 1 09 01 3 2370 84 0 74 5 5 30 3 2 05 55 6 67 66 0 73 56 5 27 21 2 2797 02 2 54 24 0 70 8 1 25 4 4 93 51 0 50 30 3 63 1 2 22 7 1 80 28 5 488 87 0 61 8 8 117 32 6 688 47 2 311 17 0 60 9 3 144 5 4 67 15 6 29 99 1 57 05 4 111 7 2 2757 83 $2u$ 25 21 00 55 9 2 111 3 5 51 88 2 23 92 00 54 1 3 09 0 3 40 50 1 22 56 2 53 5 2 06 0 0 30 88 $0u$ 22 04 0 48 7 3 04 0 4 30 11 $0u$ 14 72 0 44 9 2 03 2 3 29 26 <	76	7	3		35	73	4		14	86	1		18	30	3	
745530320555667660 73 56527212279702254240 70 8125449351050303 63 1222718028548870 60 93145467676629991 57 05411722757832u252100 55 92113551882239200 54 1309034050122562 53 52060030880u22040 44 9203232926113510 44 9203232826209230 29 2362996532693607470 27 8396055470	76	2	2		3032	7	1		09	01	3		2370	84	0	
73 56 5 27 21 2 2797 02 2 54 24 0 70 8 1 25 4 4 93 51 0 50 30 3 63 1 2 22 7 1 80 28 5 488 87 0 61 8 8 17 32 6 68 47 2 31 17 0 60 9 3 144 5 4 67 15 6 29 99 1 57 05 4 111 7 2 2757 83 $2u$ 25 21 00 55 9 2 111 3 5 51 88 2 23 92 00 54 1 3 09 0 3 400 50 1 225 21 00 54 1 3 09 0 3 400 50 1 225 21 00 54 1 3 09 0 3 400 50 1 222 56 2 53 5 2 06 0 0 30 88 $0u$ 22 04 0 44 9 2 03 2 3 29 26 1 13 51 0 44 9 2 03 2 3 26 2 <t< td=""><td>74</td><td>5</td><td>5</td><td></td><td>30</td><td>3</td><td>2</td><td></td><td>05</td><td>55</td><td>6</td><td>12</td><td>67</td><td>66</td><td>0</td><td></td></t<>	74	5	5		30	3	2		05	55	6	12	67	66	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	73	56	5		27	21	2		2797	02	2	A. 8.	54	24	0	
$ \begin{array}{c cccccccccccccccccccccccc$	70	8	1		25	4	4		93	51	0	57 SS	50	30	3	
	63	1	2		22	7	1		80	28	5		48	87	0	
$ \begin{array}{c cccccccccccccccccccccccc$	61	8	8	-	17	32	6		68	47	2		31	17	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	9	3		14	5	4		. 67	15	6		29	99	1	
	57	05	4		11	7	2		2757	83	2u	1	25	21	00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	9	2		11	3	5		51	88	2		23	92	00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	1	3		09	0	3		40	50	1		22	56	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	5	2		06 .	0	0		30	88	0u		22	04	0	
44 9 2 03 2 3 29 26 1 13 51 0 41 6 6 00 9 3 28 26 2 09 23 0 29 23 6 2996 5 3 26 93 6 07 47 0 27 8 3 96 05 5 9 9 0 9 10	48	7	3		04	0	4		30	11	0u		14	72	0	
41 6 6 00 9 3 28 26 2 09 23 0 29 23 6 2996 5 3 26 93 6 07 47 0 27 8 3 96 05 5 26 93 6 07 47 0	44	9	2		03	2	3		29	26	1		13	51	0	
29 23 6 2996 5 3 26 93 6 07 47 0 27 8 3 96 05 5 26 93 6 07 47 0	41	6	6		00	9	3		28	26	2		09	23	0	
27 8 3 96 05 5	29	23	6	and Sub-	2996	5	3	1000	26	93	6	and a	07	47	0	
	27	8	3	a ndop	96	05	5	12 11	holod			ang yan	Duie			

Cd IV. Für dies Spektrum liegen nur Angaben von Esclangon [286] vor, zum großen Teil auf eigener Messung beruhend; es sind nahe an 400 Linien.

Wenn auch in den Tab. 1, 2, 3, 4 eine große Zahl von Cd-Linien untergebracht und so wenigstens ihre Ionisationsstufe bestimmt ist, so bleiben doch noch zahlreiche Linien übrig, von welchen gar nichts bekannt ist. Dahin gehört namentlich die Liste der Linien, welche Lang [259] für das Schumanngebiet gibt. Sie ist in der folgenden Tabelle 5 abgedruckt. Sie muß natürlich nur Funkenlinien enthalten und bei einigen ist durch vorgesetztes II oder III angedeutet, daß die betreffende Linie sich durch Vergleich mit den Tab. 2 und 3 sicher oder wahrscheinlich als zur betreffenden Stufe gehörig herausstellt.

Aber auch außer diesen Linien im Schumanngebiet finden sich noch zahlreiche Linien (siehe die Tabelle in Band VII), deren Ursprung unbekannt bleibt.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[[[326]. 0 3.2 3.3 9.3 1.7 3 5 5 3 5 4 2 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 3.2 3.3 9.3 1.7 3 5 3 5 4 2 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 3.2 3.3 9.3 1.7 3 5 3 5 4 2 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2 3.3 9.3 1.7 3 5 3 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.3 9.3 1.7 3 5 3 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.3 1.7 3 5 3 5 4 2 7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.7 3 5 8 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 5 3 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 3 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 5 4 2 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 4 2 7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 2 7
	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1
³ P ₁ - ³ D ₉ 73 01 12 ¹ D ₉ '- ³ D ₉ 12 62 5 ³ D ₉ ' 14290	1
	5
³ F ₂ - ³ D, 68 77 10 ¹ D ₂ '- ³ D ₂ 1470 34 4 ¹ P, 1460	5
$^{1}P_{,-1}D_{a}$ 48 10 10 $^{3}P_{,-1}S_{a}$ 720 64 8 $^{1}F_{a}$ 14610	1 10 10
${}^{1}F_{a}$ ${}^{1}D_{a}$ 47 65 12 ${}^{3}D_{a}'$ ${}^{-1}S_{a}$ 677 33 8 ${}^{1}D_{a}'$ 1484'	5
$^{3}D_{2}^{-3}D_{2}$ 21 89 7 1P_1S 684 53 15	1 10 1
${}^{3}F_{-}{}^{3}D_{-}$ 07 11 15	
Tabelle 4. Cd IV nach Esclangon [286].	
3656 4 0 3355 7 0 3152 8 1 3046	00
40 8 0 48 2 1 00 2 1 45	1
41 7 0 44 6 2 49 5 1 43	1
3592 5 0 12 2 1 44 7 1 40	. 0
89 8 1 10 9 1 36 9 1 39	11
88 5 2 09 5 0 36 3 2 38	1
81 0 0u 05 7 0 15 5 2 34	0
72 0 0u 02 6 0 10 7 2 32	1
68 9 0 3298 2 4 07 85 3 31	0
59 2 0 80 7 0 06 71 4 27	6 3
52 6 0 79 6 1 04 57 5 24	4
30 4 1 72 7 0 03 5 0 21	00
	00
10 5 1u 69 2 0 01 4 1 20	0
07 4 0 68 7 0 00 6 2 18	1
07 4 0 68 7 0 00 6 2 18 05 9 00 45 5 0 3099 6 3 16	1 9 2
07 4 0 68 7 0 00 6 2 18 05 9 00 45 5 0 3099 6 3 16 0 02 2 1 43 3 0 99 0 1 15	9 2
07 4 0 68 7 0 00 6 2 18 05 9 00 45 5 0 3099 6 3 16 02 2 1 43 3 0 99 0 1 15 3490 5 1 42 5 0 92 8 3 12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 9 2 0 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 9 2 0 5 0 4
$ \begin{array}{c cccccccccccccccccccccccc$	1 9 2 0 5 0 4 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 9 \\ 2 \\ 0 \\ 0 \\ 5 \\ 0 \\ 4 \\ 4 \\ 6 \\ \end{array} $
$ \begin{array}{c cccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 9 \\ 2 \\ 0 \\ 0 \\ 5 \\ 0 \\ 4 \\ 4 \\ 6 \\ 3 \\ 3 \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 0 0 5 0 4 4 6 3 3 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Cadmium

							_								
298	5	0	0		2859	22	1		2724	13	1		2624	3	0
8	4	2	1	Turn T	58	38	1		17	92	2		23	78	1
8	2	8	3		53	75	4		15	36	1		22	95	2
7	9	3	2		51	76	1		08	34	1u		21	92	2
7	8	2	2		48	58	00		08	15	1		21	05	1
7	7	9	1		46	89	3		07	39	1		20	77	1
7	7	1	0		45	65	5		06	00	2		20	48	1
71	5	4	1		43	46	0		01	85	0		18	68	0
7	3	2	0		43	05	2		01	22	0		17	87	1
7	2	0	4		40	47	2		2699	02	00		17	13	1
6	8	9	2	1	39	44	0		97	64	3		16	02	2
6	8	0	00		35	93	1		91	17	0	100	14	96	3
6	6	0	0		34	70	0		90	65	2	213	14	26	1
6	5	9	1		33	16	1		89	82	1	100 1 10	13	44	2
6	3	4	0		32	66	2		88	5	5	. 12	13	12	2
6	0	83	4		31	35	0		87	69	5	-	12	19	3
6	0	3	2		30	67	1		86	37	1		11	81	3
5	9	8	2		29	72	0		83	41	0		08	06	0
5	9	2	0		28	76	0		82	58	1		07	80	0
5	8	8	1		27	77	5		81	82	2	201	02	10	4
5	7	3	1		24	65	5		75	36	4		04	48	4
5	4	1	3		22	71	.4		74	74	4		00	19	2
5	0	8	1		21	90	4		73	04	2		2099	01	4
4	6	7	0		19	24	0		69	95	2		99	10	0
4	5	7	2		10	73	1		66	20	1		98	40	5
4	2	7	2		07	74	1		65	66	2		96	10	0
4	1	7	0		07	44	1		63	98	4		90	04	20
3	9	5	0		00	01	0		63	0	4		04	49	2
3	8	8	1		2799	12	ou	1.6.1.1	50	54	0		99	10	3
8	7	7	0		98	14	3		57	99	1		88	51	5
3	7	0	1		89	82	1		57	12	1		87	51	3
3	4	15	D		05	90	0		55	10	0		86	43	3
8		14	4		80	10	1		54	97	2		85	82	3
2	G	0	1		00	42	1 1 1		59	69	0		84	89	3
2	0	1	1		79	090	1u 0		50	14	5		83	69	- 4
1	9	15	0		74	50	1		46	84	2		81	36	6
	0	9	1		79	34	0		46	50	1		80	8	2
	10	1	1		70	63	0	1	45	86	5		78	*55	1
		0	Ou	1000	58	59	3	er had	44	30	0	ing con	78	00	0
0	1	0	0		56	82	1	100	43	76	2	NO TO	75	90	2
090		9	00		54	2	001	-	42	05	1		74	65	1
200	9	9	1		51	19	2	-	41	84	3		71	27	2
0	7	0	0		47	01	1		41	62	2	10.00	69	14	1
0	G	6	1	A RECEIPTION	46	30	2	1000	40	69	5	A DESCRIPTION	68	46	1
0		95	2	fuing.	40	85	ĩ	dest sales	36	29	5	0.000	68	18	2
9	3	0	3		49	65	0		35	79	2		67	80	1
0	9	2	0	-	39	85	1		84	10	.0		66	56	1
-	8	55	0		39	04	2		33	63	2		65	96	3
1	4	9	0		87	39	2		83	31	2		64	4	2
1 7	12	3	1		36	20	01		31	75	2		64	02	4
	33	57	3		82	43	1	1.800	31	09	3		61	96	2
1	32	42	2	1.0.0	32	12	1	desen	30	22	5	BIRS.	60	95	2
1	31	65	3		31	69	0		26	11	4		60	05	2
1				1	1	-		1				*			

			-	_				-			-1			
255	9 62	0	and the second	258	36 08	0	1000	24	89 52	2 1	1.44	2420	65	00
5	7 85	4	0.098	3	82 86	0	502		85 04	1 1	nobre	15	66	0
5	6 94	3	davia	3	12 56	0	1010	1	81 88	5 1	N. LTT	12	64	0
5	5 61	4	9	3	30 59	0	1195	-	77 75	2 0	11-15	2399	08	2
5	4 90	2	In Deve	2	28 16	5	. druch		75 49	0 (-	97	19	3
5	2 52	3		2	27 39	0			75 19	2 0		96	71	2
5	0 70	2		2	6 56	0			73 35	2 0		58	15	00
4	9 95	2	130 ftbu	2	6 15	2			72 31	1 2		56	30	00
4	8 13	3	44.0	1	8 39	3	20	0 1.50	47 90	0 (-	53	63	00
4	6 93	5	Phin	1	7 36	0	15 also	1	45 59) 1	a in a	53	17	0
4	5 90	0	1 000	1	5 71	. 0	and in.		44 8	6 2	10.0	48	22	6
4	5 60	0		1	3 00	6		1	37 50	0 (100	46	12	00
'4	3 32	0		249	07 28	1			31 88	3 0		44	83	00
4	0 80	1	122.00	9	5 51	. 1			22 43	3 1	-	43	36	0
3	8 04	3	1023	9	00 00	1			21 08	3 0		18	43	0
ta	ab Bal		Personal Person	Tal	belle 5.	Kurze	Well	en nac	h Lang	[259]				
	2033	4	2		1622	3	1	П	1242	3	1	601	2	1
	26	5	1	III	02	H?	20		32	6	1	597	50	?1
II	1995	1	1		1593	3	5		22	7	1	90	5	1
	82	4	1	П	82	6	2		08	1	1	78	4	1
n in	65	7	2	III	69	6	4	II	1176	5 C	?1	70	5	1
III	44	0	1		57	0	3		32	7?	1	66	8	1
III	39	7	1	-	24	1 H	25	1	01	8	1	63	0	1
	35	7	1	II	.14	5	20	-	1055	9	1	59	6	1
III	1873	8	15		03	2 H	23		21	2 H	?1	52	7	1
III	56	0	15		1497	0	2		18	2	1	46	5	1
Date	43	9	10	1	83	3	2		989	0?	1	41	6	1
II	28	3	2		79	6 H	?5	10	81	0	1	30	50	2?1
	23	7	1	1	72	5	8	107	51	7	2	23	6	1
	04	0	1		66	5	8		41	6	2	19	0	1
III	1773	1	8		32	9	5		889	0	5	03	5	1
III	68	8	8		29	6	5		80	9	1	498	3	1
	55	9	1		21	0?	20		64	8	2	94	9	1
III	47	9	5		21	7	20		46	8	10	92	4	1
	36	5	1	100	10	6	2		38	2?	15	80	6	1
III	21	8 C	? 5		1396	9	20	1	798	3?	2	62	6	1
III	08	1	10		76	9	5		90	10	? 2	49	4	1
	1695	6	3	II	69	6	20		79	70	23	38	4	1
	88	0 0	?1		45	9	2		67	5	1	25	6	1
	80	5	2	II	25	3	3		13	9	1	19	4	1
1111	77	6	2		21	3	2	100	10	7	2	14	3	1
	56	20	? 2		1298	8	2	-	697	3	1	06	7	1
III	52	3	2		93	6	1		47	3	1	03	1	1
II	48	3	1		85	4	1		43	6 0	21	399	4	1
	43	7 H	?1	II	81	4	1		39	4	. 1	97	2	1
	39	8	2		76	3	1		35	7	1	90	8	1
III	29	1	10		65	2Al	?1		31	5	1	82	4	1
-	25	OPI	0?1		49	0?	1		24	0	1	69	2	1

Bau der Linien. Die rote Cadmiumlinie λ 6438, 4696 bei 15° C, 760 mm Druck ist das Fundament aller unserer Wellenlängen. Es ist daher von Wichtigkeit, sich zu überzeugen, daß diese Linie einfach und unveränderlich ist, da bei zahlreichen anderen

Cd-Linien eine Feinstruktur beobachtet worden ist. Daß die Linie einfach sei, ist nie angezweifelt worden, nachdem Michelson, Fabry, Perot, Benoit sie aus diesem Grunde zum Standard aller Messungen gewählt hatten. Es ist auch oft gezeigt worden, daß die Wellenlänge unveränderlich ist. Meggers und Burns [240] sagen z. B., daß sie die Temperatur ihrer Röhren zwischen 250° und 320° geändert hätten, die Stromstärke zwischen 20 und 200 mA, den Druck zwischen 0.005 mm und mehreren Zentimetern, aber nie eine Änderung der Wellenlänge beobachtet hätten. Auch Brown [288] findet keinen Unterschied der Wellenlängen im Vakuumbogen und im Geißlerrohr. Der einzige, der andere Meinung äußert, ist Fukuda. In einer ersten Arbeit [273] sagt er, daß bei Zn, Cd, Hg eine starke Verschiebung der Funkenlinien eintrete, wenn man die Kapazität, oder namentlich die Länge der eingeschalteten Funkenstrecke ändere. Er gibt für zahlreiche Cd-Linien Messungen, die "Verschiebungen" von mehr als 1 A aufweisen. In einer zweiten Arbeit [295] wird speziell die rote Linie behandelt und mit einer Art Interferenzmethode festgestellt, daß durch Ausschalten von Selbstinduktion eine Verschiebung nach Rot um 0.044 A eintrete. Photographien sind beiden Arbeiten beigegeben, und sie zeigen, daß der Verfasser unrichtig gemessen hat. Es handelt sich durchweg um Verbreiterung der Linien, die ja selten symmetrisch ist, sondern meist stärker nach Rot; er nimmt die Mitte der verbreiterten Linie als Ort der Linie und erhält so seine Verschiebungen. Dieser Fehler ist so oft immer wieder gemacht und von Kayser bekämpft worden, daß es kaum lohnt, noch ein Wort darüber zu verlieren. Sonst wäre darauf hinzuweisen, daß in solchen Fällen die Photographie so einzurichten ist, daß die Linie in eine Spitze ausläuft, die den wahren Ort der Linie angibt und keine Verschiebung zeigt.

Eine Menge anderer Linien von Cd I sind auf Feinstruktur untersucht, und es sind eine Reihe theoretischer Betrachtungen angeknüpft. Es sei zuerst das Beobachtungsmaterial gegeben. Eine Abhandlung von Nagaoka und Mishima [279] ist uns nicht zugänglich. McNair [300] nimmt als Lichtquelle einen gekühlten Bogen, zerlegt mit Lummerplatten aus Quarz, deren erste 13 cm lang, 4.40 mm dick ist, während eine zweite 20 cm lang und 6.55 mm dick ist. — Frl. Schrammen [322] hat einen gleichen Bogen, eine Quarz-Lummerplatte von 14.5 cm Länge, 4.81 mm Dicke. Endlich benutzt Albright [367] ein Geißlerrohr mit Wasserstoff, in welches aus einem Seitenrohr mit etwas metallischem Cd durch Erwärmung Spuren von Cd-Dampf gebracht werden können. Ihm stehen auch zwei Quarzplatten zur Verfügung, die 13.5 resp. 20 cm lang sind bei einer Dicke von 4.92 resp. 6.42 mm.

Die folgende Tabelle enthält die Resultate der drei Beobachter, wozu noch ein paar Angaben von Wood [306] gefügt sind. Die Abstände der Trabanten von der mit 0 bezeichneten Hauptlinie sind in Tausendstel A angegeben, mit + bezeichnet nach Rot hin, mit — nach Violett.

5086.0:+77	0 - 25 Mc Nair ¹)	4687.3: + 31	0-56 Mc Nair ¹)
+76	0 — 27 Schrammen	+30	0-57 Schrammen
+79	0 — Albright	+ 31	0-57 Albright
4800.0:+58	0-34-81 Mc Nair ¹)	4413.2:+28	0-15 Mc Nair ¹)
+62 + 62 + 62	14? 0 - 29 - 78 Schrammen 0 - 79 Albright	+ 28 ·	0 — 12? Schrammen

1) Siehe auch Snock und Bouma [305].

3614.5: + 37.5 ?	0 — 23 Mc Nair ¹) 0 — 22 Schrammen	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0-12-33 McNair ¹) 0-11-32 Schrammen
+ 39.5	0-21 Albright	3080.9:+12	0 - 23 McNair ¹)
3610.6:	0 - 36 Mc Nair ¹)	+13	0-22 Schrammen
+ 3?	0-37 Schrammen	2980.6:	0 — 26 McNair
	0-37 Albright	2881.3: + 21	0-10 McNair
3500.0: + 17 + 17	0	2836.9:+11 + 11	0 McNair ¹) 0 Schrammen
3467.7:+31	0-15 McNair ¹)	2775.0: +20 + 5?	0-8-24 Schrammen
+31 + 30	0-15 Schrammen 0-17 Albright	2733.9:+9	0—17 Schrammen
3403.7: + 17	0 McNair ¹)	7687.6:	0-11 Schrammen
+ 17	0 Schrammen	2660.4:+28	0 Schrammen
+ 16	0 Albright	2639.6:+9	0 Schrammen
3261.1:+19	0 Wood ¹)	2580.3: + 17	0 Schrammen
3252.5:+31	0-10 McNair ¹)	2288: + 21	0 oder 0 — 17 Wood

Die Termaufspaltungen ($\Delta \nu$ in cm⁻¹) hat Albright [367] wie folgt berechnet:

2^3S_1	0.397	23P2	0.281	1.00	33D1	0.184
33S1	0.369	33P1	0.210	r ale m	33D2	0.281 u
43S1	0.354	21P1	0.324		33D3	0.281 u
$2^{3}P_{1}$	0.210	in chatte				

Daneben sind viele Linien von einen oder mehreren Beobachtern als einfach angegeben, nämlich: 6438, 6325, 5154, 4664, 3613, 3466, 3252, 2868, 2748, 2712, 2629, 2601, 2592, 2573.

Neben dem Begriff der Feinstruktur ist der der Hyperfeinstruktur eingeführt worden. Den ersteren will man auf Fälle beschränken, wo mehrere Linien, die von verschiedenen Niveaus stammen, dicht zusammenfallen, während bei der Hyperfeinstruktur die Trabanten von ein und demselben, dann freilich unterteilten, Niveau kommen. (Zur Theorie sehe man z. B. Pauli [Naturw. 12 p. 741] und Back und Goudsmit [Zs. f. Phys. 43 p. 321 und 47 p. 174]). Dabei ist eine neue Quantenzahl i eingeführt worden, die als mechanisches Impulsmoment des Kerns gedacht ist. Durch

die Rotation des Kerns soll eine Aufspaltung eines Niveaus eintreten, wenn $i = \frac{1}{2} \frac{\pi}{2\pi}$

oder ein Vielfaches davon ist, nicht wenn i = 0 ist. Wenn nun ein Element Isotopen besitzt, die teils das Kernmoment 0, teils das $\frac{1}{2}$ besitzen, so werden Linien mit Hyperfeinstruktur entstehen, wobei meist die Hauptlinie dem Moment 0 angehört. Von diesen Vorstellungen haben zuerst Back und Goudsmit (siehe oben) bei Bi Gebrauch gemacht.

Es ist klar, daß alle Linien, welche von demselben gespaltenen Niveau ausgehen in Paare mit der gleichen Aufspaltung zerfallen müssen. Man würde daher aus der

¹) Siehe auch Mohammad und Mathur [317], deren Messungen aber von denen der übrigen Autoren stark abweichen.

Feinstruktur zusammengehörende Linien herausfinden und Schlüsse auf den Bau eines Spektrums ziehen können. So hat man vielfach versucht, die Richtigkeit dieser Annahmen nachzuweisen, und dazu ist besonders auch Cd benutzt worden, dessen Feinstrukturen relativ einfach sind. Zuerst sei Joos [275] genannt, dann Ruark und Chenault [279]. Man erhält aus diesen Arbeiten den Eindruck, daß allerlei Gesetzmäßigkeiten vorliegen, daß aber offenbar die Sachlage nicht so einfach ist. Auf Einzelheiten kann hier nicht eingegangen werden. Dann folgen Mc Nair [300] und Schrammen [322], die kaum weiter kommen. Letztere schließt, es unterliege "wohl keinem Zweifel, daß die Hyperfeinstruktur der Linien hervorgerufen wird durch die Hyperfeinstruktur der Terme", daß die Feinstruktur von den 6 Isotopen des Cd hervorgebracht werde, wie man früher vermutet (namentlich Nagaoka) sei ausgeschlossen, weil bei allen daraufhin untersuchten Linien (Wali Mohammad, Ann. d. Phys. 39, p. 225 [1912] und Ruark, Phil. Mag. [7] 1 p. 977 [1925]) die Hauptkomponente anderen Zeemaneffekt zeige, als die übrigen.

Einen kleinen Schritt weiter führen Arbeiten von Schüler und Bruck [358, 359]. Sie behandeln das Triplett 5086, 4800, 4678 und die Linie 3133, welche mit den Niveaus 23P und 23S zusammenhängen. Beide seien gespalten, und der Bau der Linien entspreche der Theorie genau, wenn man die Nullinien, die stärksten in der Feinstruktur jeder Linie, ausschließt. Diese bilden also ein ungespaltenes Triplett für sich, gehören also zum Kernmoment i = 0, während die andern Trabanten zum Kernmoment $i = \frac{1}{2}$ gehören. Man habe es also mit Isotopen zu tun. Nach Aston [252] seien solche mit dem Atomgewicht 110, 111, 112, 113, 114, 116 vorhanden. Diese teilen sie in 2 Gruppen: die geradzahligen mit Kernmoment 0, und die ungeradzahligen mit Kernmoment 1, die zusammen die beobachtete Feinstruktur ergeben. Dabei müssen sie freilich eine Linie, welche nur von Frl. Schrammen angegeben ist, als richtig annehmen. Goudsmit [348] stimmt im allgemeinen mit Vorigem überein, führt aus, daß außer dem Unterschied in den Kernmomenten bei den Isotopen auch eine Verschiebung der Energieniveaus zu erwarten sei. In [312] folgen theoretische Betrachtungen. Auch White [363] äußert sich zustimmend. Schüler und Keyston [409] sagen, die von den Beobachtern gegebenen Intensitäten der Feinstrukturlinien stimmten nicht mit den theoretischen überein. Sie messen nun selbst die Intensitäten, erhalten gute Übereinstimmung mit der Theorie und erklären die widersprechenden Intensitäten, die die früheren Autoren fanden, mit einer Beeinflussung der Hyperfeinstrukturterme durch die Entladungsbedingungen. Sie geben an, daß der Prozentsatz der mit dem Kernmoment i = $\frac{1}{2}$ aufspaltenden Isotopen, bezogen auf die Summe aller Isotopen, 23% beträgt.

Während die letztgenannten Autoren der Hypothese von Schüler und Brück zustimmen, führt Albright [367] gegen sie an, daß sie nur für die 4 Linien $\lambda\lambda$ 3468, 3614, 3404 und 3613 gilt. Er bezweifelt die Existenz der Komponente — 0.060 cm⁻¹ der Linien $\lambda\lambda$ 4800, 3133 und 2775, da sie nur von Schrammen, und auch hier nicht mit Sicherheit, gefunden wurde, und sagt daher, daß die Schülersche Hypothese nur teilweise auf Linien vom Typus ³S—³P Anwendung finden kann. Auch zeigt er, daß die Voraussagungen der Theorie für die Linie λ 6438 und für die Polarisation der Resonanzlinie $1^{1}S_{0}$ — $2^{3}P_{1}$ nicht zutreffen.

Die Wirkung eines schwachen (schwach gegenüber der Koppelung der i-j-Vek-

toren) Magnetfelds auf die Hyperfeinstruktur hat Stark [381] behandelt und speziell die Linie 4678 (${}^{3}S_{1}$ —3P₀) behandelt. Die zwei S-Hyperfeinniveaus spalten demnach im magnetischen Feld in 6 Niveaus auf, das P-Niveau in zwei. Es treten 8 Zeemanlinien auf. Er berechnet auch die Größe der Aufspaltungen. Snoek und Bourma [305] messen die Intensitäten der Feinstrukturkomponenten dreier Linien wie folgt: 4678 (11:100:10), 4800 (7:100:6) und 5086 (6:100:?).

Es sei noch hinzugefügt, daß McLennan und Allin [353] auch für drei Linien des Funkenspektrums die Feinstruktur wie folgt geben:

Über die Resonanzlinien 2 2288 und 3261 liegen einige Untersuchungen vor. Zuerst wurden sie von Power [262] und von Terenin [284] gefunden. McNair [320] behandelt die Anregungsbedingungen und die Polarisation der Resonanzstrahlung $(\lambda 3261)$ beim magnetischen Feld Null (kompensiertes Erdfeld), die er zu $35^{\circ}/_{\circ}$ findet. Soleillet [323] findet bei tieferer Temperatur des Dampfes einen größeren Polarisationsgrad und untersucht den Einfluß des magnetischen Feldes auf die Polarisation. In einer zweiten Arbeit [337] berechnet er aus dem Grad der Depolarisation im Magnetfeld die Lebensdauer der 2³P₁- und 2¹P₁-Zustände und findet, daß das 2¹P₁-Niveau aus mindestens zwei nahe benachbarten Termen bestehen muß. Man sehe hierüber auch Ellett [347]. Über den Einfluß der Hyperfeinstruktur auf die Polarisation der Resonanzlinie λ 3261 bringt Mitchell [405] eine Berechnung, die er auf die oben angegebene Theorie von Schüler und Keyston stützt und die gut mit den Messungen von Soleillet übereinstimmt. Zemansky [412] hat die Absorption der Resonanzstrahlung & 2288 bei verschiedenen Dampfdrucken gemessen und den Maximalabsorptionskoeffizienten gleich $1.64 \cdot 10^{-11}$ N (N = Zahl der Cd-Atome pro cm³) gefunden. Die Lebensdauer des $2^{1}P_{1}$ -Zustandes ist zu $1.99 \cdot 10^{-9}$ sec berechnet.

Power [262] findet unter besonderen Bedingungen außer der Resonanzlinie $\lambda = 3261$ noch die Linien λ 4678, 4800 und 5086 im Fluoreszenzlicht. Kapuściński [314] findet außer diesen noch die Fluoreszenzlinien λ 3614, 3467, 3404 und 3133.

3613, 3466,

3610,

Es liegen mehrere Intensitätsmessungen vor: Dorgelo [253] mißt die relativen Intensitäten im Triplett 5085, 4800, 4678, findet etwa 100:60:30.

Ornstein und Burger [321] untersuchen verbotene Multipletts.

Mit aktivem Stickstoff bringen Okubu und Hamada [334] Metalldämpfe zusammen, um Aufklärung über das Wesen des Cd-Dampfs zu finden. Cd-Dampf zeigt dabei mehrere Tripletts der diffusen und scharfen Serie und die beiden Linien 3261 und 2288.

Ferner liegen Versuche vor, die zeitliche Reihenfolge des Auftretens von Spektrallinien im Funken festzustellen. Sie sind von Brown und Beams [271], Beams [285], Locher [330], Knorr [401] ausgeführt, haben aber keine brauchbaren Resultate ergeben. Kondensierte Funken zwischen Zn und Cd zeigten Linien der Luft und

Bogen- und Funkenlinien des Metalls. Es wird die Zeit gemessen, die zwischen Bildung des Funkens und Auftreten der einzelnen Linien vorgeht, wobei zur Messung der Kerreffekt und Auge oder photographische Platte benutzt werden. Die Beobachter sind darin einig, daß zuerst die Luftlinien auftreten, dann die Funkenlinien, endlich die Bogenlinien. Aber Widersprüche bestehen zwischen den Beobachtern: die gemessenen Zeiten sind außerordentlich verschieden, die Reihenfolge des Erscheinens ist verschieden, — bei einem erscheinen die 3 Linien des Cd-Tripletts gleichzeitig, bei den andern nicht, — sogar die optischen und die photographischen Resultate desselben Beobachters sind verschieden. Es ist deutlich, daß in der Methode erhebliche Fehlerquellen stecken; sie ist von Gaviola (Phys. Rev. [2] 33 p. 1023, 1929) kritisiert worden.

Wie bei zahlreichen anderen Elementen ist auch bei Cd die Absorption durch den Dampf vielfach untersucht worden. Dabei scheint die Absorption und Verbreitung der Resonanzlinien 2288 und 3261 die Hauptrolle zu spielen. Die älteren Beobachter (siehe Bd VII d. Hdb. p. 195—196) erwähnen diese Linien allein. Auch Mohler und Moore [290, 318] besprechen die Linien ausführlich: die Linie 2288 ist schon bei 180° (Druck 0.0001 mm) stark und beginnt bei 0.3 mm sich zu verbreitern. Bei 600° (80 mm) reicht sie bis 2212 (womit die Ausdehnung nach dieser Seite nach anderen Angaben aufhört), bei 200 mm bis 2537, bei 650 mm bis 2800 A. Die Linie 3261 erscheint bei 360° (0.3 mm), ihre Breite ist bei 1900 mm 77 A, bei 2700 mm 100 A, bei 3400 mm 122 A. — Sonst erhalten die Verf. nur Absorptionsbanden, die unter den Bandenspektren besprochen sind. Ganz ähnliche Angaben finden sich auch bei den anderen Autoren für Bandenabsorption.

Sehr viel linienreicher erweisen sich die Absorptionen, die bei Explosionen von Drähten auftreten. Hori [296] sieht die Linien 6439, 5086, 4800, 4678, 4663. Fukuda [310] bekommt weit mehr Linien umgekehrt, indem er die Explosion unter Druck von 8 Atmosphären stattfinden läßt; er nennt: 5086, 4800, 4678, 3610 (3 Linien) 3261, 3252, 2980 (3 Linien), 2837, 2764, die pp'-Gruppe 2329, 2306, 2267, 2239, ferner 2288, 2265, 2144. Es sind ausschließlich Linien von Cd I.

Auch im Unterwasserfunken werden nach Bloch [230] nur Linien von Cd I umgekehrt. Sie nennen die Tripletts 5085, 3612, 2980, während sie nicht umgekehrt erhalten: 5378, 5337, 4415, 3261, 2748, 2573; man sehe auch Bd. VII d. Handb.

Sehr eingehende Untersuchungen macht Frl. Stücklen [269] mit zum Teil abweichenden Resultaten. So erhält sie z. B. auch umgekehrte Linien von Cd II (2265, 2144). Im allgemeinen treten Emissions- und Absorptionslinien zugleich auf, auf kontinuierlichem Hintergrund. Die Zahl der letzteren wird gesteigert durch Erhöhung der Frequenz des Schwingungskreises, Verringerung der Spannung, Vergrößerung des Elektrodendurchmessers. Die umgekehrten Linien gehören sämtlich dem Seriensystem an. Am leichtesten kehren sich beim normalen und ionisierten Atom die Linien um, welche dem Übergang des Elektrons aus der Normalbahn (1⁴S und 1³S) in die nächsthöheren entsprechen.

Eigenartige Versuche führt Smith [283] aus: durch Metallfäden, die sich entweder in Luft oder in Holzkästen eingeschlossen befinden, werden hochgespannte oszillierende Entladungen (20000 bis 55000 Volt) hindurchgeschickt. Die erste Oszillation läßt den Draht verdampfen, die folgenden gehen durch den Dampf. Das Licht fällt auf ein

Konkavgitter, von dort, vor Entstehung des Bildes, auf einen rasch rotierenden Spiegel, der es auf einen Film wirft, der ihn halbkreisförmig umgibt. Bei Rotieren des Spiegels wird das Spektrum in Richtung der Linien verschoben, das zeitlich sich Folgende räumlich getrennt, und man kann verfolgen, wie die einzelne Linie entsteht, sich während der ersten und der folgenden Oszillationen ändert. Nach dem Aussehen teilt er die Linien in 9 Klassen. Er bespricht mehrere Metalle, darunter auch Cd für die Strecke von λ 3000 bis λ 5000. Er erhält hier 10 umgekehrte Serienlinien, eine nicht eingeordnete, 4416 (?). Eine Funkenlinie ist nicht sichtbar.

Den Zeemaneffekt an den beiden Linien λ 4799.90 und 4678.17, die schon früher von Wali Mohammad [150] untersucht wurden, hat Babcock [242] nochmals zur Bestimmung von e/m gemessen. Er gibt die mit den theoretischen übereinstimmenden Werte: (0.50), 1.50, 2.00, für die Linie ${}^{3}P_{1}$ — ${}^{3}S_{1}$ und (0), 2.00 für ${}^{3}P_{0}$ — ${}^{3}S_{1}$.

Der Starkeffekt bei Cd ist von Nagaoka und Sugiura [261] zwar nicht besprochen aber durch eine Photographie dargestellt. Man sieht starke Verbreitung vieler Linien.

Fujioka [292] benutzt die Methode von Lo Surdo, findet, daß nur die Linien der diffusen Nebenserie verschoben werden, und zwar beide Komponenten nach Rot. Die Verschiebung wächst mit abnehmender Wellenlänge. Die Aufspaltungen in einem maximalen Feld von $3.9 \cdot 10^4$ V/cm zeigt die folgende Tabelle:

2.		n	p	2		n	p
2980.63	$2^{3}P_{2}-4^{3}D_{2}$	+	+	2639.50	23P53D.	+0.10	+0.10
2880.77	23P1-43D2	+	+	2660.40	23P63D.	+0.70	+0.35
2836.90	23P0-43D1			2580.27	23P,-63D	+0.81	+0.36
2763.89	23P2-53D3	+0.21	+0.21	2544.72	23P-63D.	+0.67	+0.51
2677.64	$2^{3}P_{1} - 5^{3}D_{2}$	+0.20	+0.15	2602.18	$2^{3}P_{2}-7^{3}D_{1}$	+	+

Die Messungen von Fujioka an einigen verbotenen Linien sind weiter oben schon gebracht.

Der Dritte, der sich mit der Frage beschäftigt, ist Deppermann [290]. Da er nur längere Wellen beobachtet, ist es kein Widerspruch gegen das Vorige, wenn er keinen Starkeffekt findet.

Röntgenspektrum.

Auch hier liegen mehrere meist gute Neumessungen vor.

Die Emissionslinien der L-Reihe werden von Coster [233] durchmustert, während Druyvesteyn [307], Siegbahn¹) und die beiden Richtmyer [356, 357] eine größere Anzahl Satelliten feststellen. Ferner gibt noch Ray [266] als Wellenlängendifferenz des La-Dubletts den Wert 8.51 XE an. Sämtliche Messungen sind jedoch an die von Hjalmar aus dem Jahre 1921 angeschlossen, so daß neue Präzisionsmessungen wünschenswert sind.

In der K-Reihe steht es in dieser Hinsicht besser, indem die Werte von Lang [258] mit denen von Leide [276a, 299] und Valasek [362] für die $\alpha_{1,2}$ -Linien noch in der vierten Stelle eine recht gute Übereinstimmung zeigen, während die der schwächeren

¹) M. Siegbahn, Spektroskopie der Röntgenstrahlen, Berlin 1931. 2. Aufl. p. 228.

Linien etwas größere Unterschiede aufweisen, wobei aber immer noch die dritte Stelle durchaus gesichert ist.

Auch über die Intensitätsverhältnisse sind zwei Arbeiten erschienen. Die Werte von Meyer [354] sind bei der Zusammenstellung der Linien der K-Reihe mit aufgeführt. Für die L-Reihe gibt Jönsson [313] nur das Intensitätsverhältnis $\beta_1: \beta_2: \gamma_1 = 100: 36.3: 15.6$ an. Beide Arbeiten enthalten auch die notwendigen Korrekturen für ungleichmäßige Absorption auf dem Lichtwege. Meyer benutzt die photographische Methode, Jönsson den Spitzenzähler.

Coster und Mulder [289] sowie van Dyke und Lindsay [308] geben neue Werte für die L-Absorptionskanten. Diese unterscheiden sich für die kräftigste, die L_{III}-Kante, nur um eine Einheit in der vierten Stelle, bei den anderen schwächeren Kanten dagegen naturgemäß etwas mehr.

Die Angabe Leides [276a] für die K-Kante ist wohl bis zur vierten Stelle ebenfalls richtig.

Schließlich folgt noch eine Zusammenstellung der Niveauwerte nach Siegbahn, dessen Linienbezeichnungen durchgehend benutzt werden, während die Niveaubezeichnungen nach Bohr und Coster gewählt sind.

Über- gänge	Bezeich- nung	i¹)	Lang ²) [258]	Leide [276a, 299]	Valasek [362]
KLII	a	53.8	538.27	538.29	317
KLIII	a	100	533.94	533.86	904
KMIT	Ba	1	1 151 10	474.97	203
K M TIT	β,	26.13)	4/4.13	474.29	080
K N II, III	Ba	4.18	_	464.39	203

Emission, K-Reihe.

Kante	i	Coster u. Mulder [289]	v. Dyke u. Lindsay [308]	Leide [276a]
LIII	st.	3495.3	3496.3	-
LII	m.	3321.8	3319.2	
LT	schw.	3070.9	3077.3	to de laganda est
K	st.	and the second s		463.13

Absorption.

Energiewerte der Röntgenniveaus nach Siegbahn⁴).

Röntgenniveau	K	LI	$\mathbf{L}_{\mathbf{II}}$	LIII	MI	MII	MIII	MIV	Mv	NI	N11,111	NIV	Nv
Opt. Symbol	$1{}^2\mathrm{S}_{\frac{1}{2}}$	$2^2\mathrm{S}_{\frac{1}{2}}$	$2^{2}P_{\frac{1}{2}}$	$2^{2}P_{\frac{3}{2}}$	$3^2S_{\frac{1}{2}}$	$3^2P_{\frac{1}{2}}$	$3^{2}P_{\frac{3}{2}}$	32D3	$3 {}^2\mathrm{D}_{\frac{5}{2}}$	$4{}^2\mathrm{S}_{\frac{1}{2}}$	$4^{2}P_{\frac{1}{2}} \cdot \frac{3}{2}$	$4 {}^{2}\mathrm{D}_{\frac{3}{2}}$	4 ² D _∯
ν/R	1967.65)	296.0	274.8	260.8	57.1	48.0	45.4	30.5	30.0	8.2	4.5	1.0	0.9

¹) Nach Meyer [354]. ²) Relativ zu CuKa₁: 1537.30.

³) Gegenseitiges Verhältnis $\beta_1: \beta_3 = 2:1$ durch Allison und Armstrong für M₀ gefunden, Phys. Rev. (2) 26, p. 714 (1925).

4) Spektroskopie der Röntgenstrahlen, Berlin 1931, 2. Aufl., p. 346.

5) Experimentell, die übrigen berechnet.

Messungen mit Kristallgitter. Wellenlängen in XE, bezogen auf Kalkspat: $d_{18^3} = 3029.45$. Emission, L = Reihe. $n = \infty$

Übergänge	Be- zeichnung	i	Coster [233]	Druyvesteyn [307]	Siegbahn 1)	• Richtmyer [356, 357]
LIII MI	1	0	4471.3	r dan <u>in</u> faihu		19 10 10 10
LII MI	1	0	4187.5	anies been	AKN LONDING	Sault - Car
LIII MIV	α_2	1	3956.36 ²)	han the second	hond as loud	and bran only
LIII MV	a1	10	3947.82 °)	— ²)	- ²)	— ²)
Funkenlinie	a	00	Manda- Int M		3937.5	3938.0
Funkenlinie	a4	00	-	-	3934.3	3934.0
Funkenlinie	a5	0	3928.8	Transfer Transfer	3928.9	3929.0
Funkenlinie	a	00	and may as	Contraction in the	3922.4	3922.2
Funkenlinie	a7	00		-	,	3915.8
LII MIV	β_1	6	3730.08 ²)	-	-	- ²)
Funkenlinie	β_1'	00	3719	_	_	3720.4
Funkenlinie	$\beta_1^{\prime\prime}$	00	3711.6	-	-	3712.5
LI MII	β_4	1	3674.25 ²)		_	-
LI MIII	β_3	1	3636.42 ²)		-	-
LIII NI	βσ	00	3605.6 ³)		-	_
LIII NIV, V	β_2	2	3506.4	-	_	- 4)
Funkenlinie	β_2'	00	3477.5	3478.7	-	3477.3
Funkenlinie	$\beta_2^{\prime\prime}$	00	3468.4	3470.7	-	3468.2
LII NI	2'5	00	3418.1	-	_	_
LII NIV	21	1	3228.00 ²)		_	
Funkenlinie	21	00	3302	3296	-	-
LINII, III	29.3	00	3131.6			

2. Bandenspektra.

Trotz zahlreicher Veröffentlichungen über die Bandenspektra, die in Emission, Absorption und Fluoreszenz in Verbindung mit Cadmium auftreten, muß man sagen, daß nur eine einzige Verbindung einigermaßen aufgeklärt ist, das Hydrid. Im übrigen sind die Angaben so verschieden, so widersprechend, die Banden so verschieden gedeutet, daß nichts Positives übrig bleibt.

a) Hydridbanden. Die einzigen früher genauer untersuchten Banden waren die beiden Doppelbanden 4510, 4493 und 4314, 4299, welche Frl. Howson [154] gemessen hat. Fowler und Payn [95] haben wohl zuerst die Vermutung ausgesprochen, sie gehörten zu einem Hydrid. Das ist inzwischen einwandfrei bewiesen. Hulthén, zum Teil mit Bengtsson [236, 237, 244, 274] hat sich wiederholt mit ihnen beschäftigt, und unter Mitwirkung von Kratzer [246, 247] ihre Struktur völlig geklärt. Jede Bande besteht aus 6 Zweigen, $P_1, P_2, R_1, R_2, Q_1, Q_2$; die erste Kante wird durch den Beginn der Serien P_1 und R_1 gebildet, die zweite Kante durch den Beginn der übrigen Serien. Die beiden Banden gehen von verschiedenen Anfangszuständen aus, haben

¹) Nach: Spektroskopie der Röntgenstrahlen, 2. Aufl. p. 228.

²) Nach Hjalmar [213, 216].

³) Nach Coster und Mulder [289], der entsprechende Wert von Coster [233] lautet: 3607.3.

⁴) Nach Coster [233]. F. K. und R. D. Richtmyer [356, 357] geben noch: $\beta_1^{III} = 3703.9$; $\beta_1^{IV} = 3696.4$; β_2 (a) = 3501.0; β_2 (b) = 3472.6; β_2 (c) = 3462.2

gleichen Endzustand; sie entsprechen dem Übergang ${}^{2}\Pi \rightarrow {}^{2}\Sigma$. Als Beweis für die Zugehörigkeit zu CdH führt Kratzer den Bau der Banden an; der weite Abstand der Einzellinien läßt auf ein kleines Trägheitsmoment schließen, wie es bei CdH vorhanden sein muß, nicht aber bei Cd₂, Cd O usw. Mulliken [260] fügt noch ein anderes Argument hinzu: die Banden zeigen keinen Isotopieeffekt. Mulliken führt aus, daß er bei CdH natürlich auch vorhanden sein muß, aber so klein ist, daß er der Messung entgeht, während er etwa bei dem Oxyd oder Nitrid 10- bis 15mal größer wäre und beobachtet werden müßte. Auch sonst behandelt Mulliken diese Banden [301, 333].

Aber damit sind nur die beiden stärksten Banden des sehr komplizierten Bandensystems behandelt. Svensson [382] gibt noch eine große Anzahl dazugehöriger Banden, welche er sämtlich ausmißt. Er gibt Kanten bei

		The second se	
5624	${}^{2}\Pi_{\frac{1}{2}}$ $-{}^{2}\Sigma_{4\frac{1}{2}}$	4500	${}^{2}\Pi_{\frac{1}{2}} - {}^{2}\Sigma_{\frac{1}{2}}$
5368	$2\Pi_{\frac{1}{2}} - 2\Sigma_{\frac{3}{2}}$	4470	${}^{2}\Pi_{1\frac{1}{2}}$ $-{}^{2}\Sigma_{2\frac{1}{2}}$
5146	${}^{2}\Pi_{1\frac{1}{2}}$ $-{}^{2}\Sigma_{4\frac{1}{2}}$	4437	${}^{2}\Pi_{1\frac{1}{2}} - {}^{2}\Sigma_{1\frac{1}{2}}$
5081	$2\Pi_{\frac{1}{2}} - 2\Sigma_{2\frac{1}{2}}$	4300	${}^{2}\Pi_{\frac{1}{2}} - {}^{2}\Sigma_{\frac{1}{2}}?$
4926	${}^{2}\Pi_{1\frac{1}{2}}$ $-{}^{2}\Sigma_{3\frac{1}{2}}$	4247	${}^{2}\Pi_{1\frac{1}{2}} - {}^{2}\Sigma_{1\frac{1}{2}}$
4835	${}^{2}\Pi_{\frac{1}{2}} - {}^{2}\Sigma_{2\frac{1}{2}}?$	4198	${}^{2}\Pi_{1\frac{1}{2}}$ $-{}^{2}\Sigma_{\frac{1}{2}}$
4791	${}^{2}\Pi_{\frac{1}{2}} - {}^{2}\Sigma_{1\frac{1}{2}}$	4026	${}^{2}\Pi_{1\frac{1}{2}}$ $-{}^{2}\Sigma_{\frac{1}{2}}$
4693	${}^{2}\Pi_{1\bar{4}} - {}^{2}\Sigma_{3\bar{4}}$	3980	${}^{2}\Pi_{2\frac{1}{2}}$ - ${}^{2}\Sigma_{1\frac{1}{2}}$
· 4683	${}^{2}\Pi_{11} - {}^{2}\Sigma_{21}$	3789	${}^{2}\Pi_{2\frac{1}{2}}$ $-{}^{2}\Sigma_{\frac{1}{2}}$
4571	${}^{2}\Pi_{\frac{1}{2}} - {}^{2}\Sigma_{1\frac{1}{2}}$		

Alle diese Banden sind nach Rot abschattiert und weisen 2 P-, 2 R-, 2 Q-Zweige auf. Die Mittelzweige P_2 , Q_1 und Q_2 , R_1 bilden enge Dubletts. Hierzu sehe man Hulthén [236].

Daneben gibt es auch ein System, welches dem Übergang ${}^{2}\Sigma \rightarrow {}^{2}\Sigma$ angehört; die Banden sind nach Rot abschattiert, besitzen 2 P- und 2 R-Zweige.

1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the state of t	
3524	$2\Sigma'_{1} - 2\Sigma_{1}$	3174	${}^{2}\Sigma'_{4\frac{1}{2}}$ $-{}^{2}\Sigma_{\frac{1}{2}}$
3420	$2\Sigma'_{1\frac{1}{2}}-2\Sigma_{\frac{1}{2}}$	3105	${}^{2}\Sigma'_{5\frac{1}{2}}-{}^{2}\Sigma_{\frac{1}{2}}$
3332	$2\Sigma'_{21}-2\Sigma_{1}$. 3042	${}^{2}\Sigma'_{6\frac{1}{2}}-{}^{2}\Sigma_{\frac{1}{2}}$
2985	$2\Sigma'_{3\frac{1}{2}}-2\Sigma_{\frac{1}{2}}$	2985	${}^{2}\Sigma_{7\frac{1}{2}} - {}^{2}\Sigma_{\frac{1}{2}}$

Ferner findet er ein Band mit Kante 4930, über dessen Deutung er aber nicht sicher ist. Er vermutet einen ${}^{2}\Sigma'' \rightarrow {}^{2}\Pi_{\frac{1}{2}}$ Übergang. Für die Molekular-Konstanten gibt Svensson die in den folgenden Tabellen enthaltenen Werte.

Konstanten der 2/17-Terme.

aslimi	J′	A ₀ '	. B ₀ '	J' · 10-40	r' · 10-8
977.	3.	22271,5	5,95	4,655	1,687
-11 # [11	23948,6	5,73	4,834	1,720
ſ	ł	23272,1	6,02	4,601	1,678
2111	11	24952,6	5,78	4,792	1,712
	21	26563,8	5,4	5,130	1,771

Bande	J''	J′	V ₀	A ₀ " -	B ₀ "	J'' · 10-40	r'' · 10-8
4500	3	1	22271,5		5,32	5,207	1,785
4791	11	1	20934,4	1337,1	5,04	5,496	1,833
5081	21	1	19722,2	2549,3	4,71	5,881	1,897
5368	31	1	18656,7	3614,8	4,32	6,412	1,981
5146	41	11/2	19452,5	4496,1	3,81	7,270	2,109
			Konstan	ten der ² <i>Σ</i> '-Te	rme.		
3524	1 1	1 1 1	28359,1	28359,1	2,91	9,519	2,413
3420	1	11	29205,4	20205,4	2,79	9,928	2,464
3332	1	21	29996,4	29996,4	2,72	10,184	2,495
3249	1	31	30757,5	30757,5	2,67	10,375	2,519
3174	i	43	31489,0	31489,0	2,59	10,695	2,558
3105	1	51	and a man	_	_	-	
3042	1	61	32849,4	32849,4	2,45	11,306	2,629
2985	1	71	33479,5	33479,5	2,35	11,787	2,685

Konstanten der ²*S*-Terme.

Für das ${}^{2}\Sigma''$ -System sind folgende Konstanten berechnet: $v_{0} = 20256.2$, $A_{0} = 42528$, $B_{0} = 5.03$, $J = 5.507 \cdot 10^{-40}$, $r' = 1.835 \cdot 10^{-8}$. Die zugehörigen ${}^{2}\Sigma'' \rightarrow {}^{2}\Pi_{\frac{3}{2}}$ -Banden sind noch nicht gefunden.

Außer den Banden des neutralen Hydridmolekels finden Bengtsson und Rydberg [345] auch solche des ionisierten, Cd⁺H, zwischen 2700 und 2200. Die Banden sind ebenfalls nach Rot abschattiert, bestehen aus einfachen P- und R-Zweigen. Für die Kanten werden folgende Wellenlängen und Intensitäten gegeben:

$v' \rightarrow v''$	2	J	$v' \rightarrow v''$	λ	-
8 15	2676,9	0	3 7	2558,5	1 8
7 13	2674,9	1	1 5	2538,2	1
5 11	2669,0	2	5	2481,4	1
3 9	2657.7	2	001	2461,3	
1 7	2641,6	0	1 3	2437,9	1
ũ 15	2600,9	0	1 1	2340,9	1
8 13	2595,2	1	3 1	2275,2	1
5 11	2586,3	4	cicre cice	2263,6	1
1 9	2574.8	7	7 3	2239,8	
2 2			5 1	2214,1	

Die Nullagen einiger Banden sind wie folgt berechnet:

$v' \rightarrow v''$	V	$v' \rightarrow v''$	V
$\frac{1}{3} \rightarrow \frac{1}{3}$	42680,0	$\frac{3}{5} \rightarrow \frac{5}{5}$	40587,6
	40978,8	$\frac{13}{10} \rightarrow \frac{17}{10}$	39038,8
$\frac{1}{2} \rightarrow \frac{1}{2}$	39353,2	$\frac{5}{2} \rightarrow \frac{7}{2}$	40258,7

Kayser u. Konen, Spektroskopie. VIII.

Die Banden sind als ${}^{1}\Sigma \rightarrow {}^{1}\Sigma'$ -Übergänge gedeutet. Nachfolgende Tabelle enthält die Bandenkonstanten.

	B 0 *	a*	Jo	ro	D ₀ *	w0*	x*
15	6,06	0,19	4,57 . 10-40	$1,67 \cdot 10^{-8}$	$-2,7 \cdot 10^{-4}$	1776,8	0,021
$1\Sigma'$	4,86	0,09	$5,71 \cdot 10^{-40}$	$1,87 \cdot 10^{-8}$	$-2,6 \cdot 10^{-4}$	1248,9	0,006
B [*] _o E B _v D _v	$= \frac{h}{8\pi^2 c J_0}$ $= E_0 + h$ $+ I$ $= B_0 - a$ $= D_0 + \beta$	$\int_{0}^{0} c \left[\omega_{0} v - \lambda \right]$ $\int_{0}^{0} v \left(J + \frac{1}{2} \right)^{4} dv$ $\int_{0}^{0} v + \gamma v^{2} - \frac{1}{2} dv$	$\begin{array}{l} x\omega_0 v^2 + y\omega_0 v^3 \\ + \dots \\ + \dots \end{array}$	+] + hc	$\{Bv[(J + \frac{1}{2})^2 +$	const]	

Die Kernschwingungsformel lautet:

 $v = 42936.3 + 1248.9 v' - 7.25 v'^2 - [1776.8 v'' - 37.8 v''^2 - 0.028 v''^3]$

wo v' und v'' die Kernschwingungsquanten $\frac{1}{2}$, $\frac{3}{2}$, ... sind. Die Dissoziationsenergien der beiden Elektronenzustände sind zu: D' = 2.5 Volt und D'' = 1.9 Volt bestimmt. Die Dissoziationsenergie des neutralen Hydrids ist nach Svensson D = 0.67 Volt.

Bender [369, 370] erhält das ganze System ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ durch Anregung von Cd-Dampf mit Wasserstoff durch Licht der Entladung in Cd mit H (nicht Cd mit He). Die Intensitäten der einzelnen Banden sind dabei aber verschieden. Mit geringer Intensität werden die ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -Banden auch durch Stöße zweiter Art zwischen angeregten Cd-Atomen und normalen CdH-Molekülen oder H₂-Molekülen emittiert.

Watson [384] hat das Verhalten der Bande bei λ 4500 (${}^{2}\Pi_{\frac{1}{2}} \rightarrow {}^{2}\Sigma_{\frac{1}{2}}$) im magnetischen Feld untersucht und gefunden, daß die Aufspaltung (in Dubletts) für die Linien mit $\nu > 5$ von der Größe $2 \Delta \nu_{n}$ ist. Nur bei den Zweigen Q_{2} , P_{2} und R_{1} erreicht die Aufspaltung diese Größe erst bei der Linie $\nu = 17$. Die Komponenten dieser Dubletts bestehen aus Gruppen unaufgelöster Zeemanlinien.

b) Oxydbanden. Mohler und Moore [318] haben die Absorption durch Cd-Dampf untersucht, nachdem schon früher Dobbie und Fox [207] sich damit beschäftigt hatten. Diese hatten eine Anzahl Banden angegeben, von welchen Mohler und Moore nichts finden. Dafür sehen sie 7 verschiedene Bandensysteme: I bei 2212; II bei 2781—2653; III bei 3071—3023; IV bei 3104—3083; V bei 3177—3141; VI bei 3249—3222; VII bei 3310—3289. Über die Zugehörigkeit der beiden letzten Gruppen sind sie im Zweifel, die übrigen aber werden dem Cd-Molekül zugeschrieben.

Walter und Barratt [338] wiederholen die Versuche, kommen zum Schluß, daß nur I zu Cd gehöre, die übrigen Banden zu Verbindungen oder Verunreinigungen. So wird II stärker, wenn sie Oxyd hinzufügen, aber verschwindet fast, wenn sie das Oxyd möglichst beseitigen. Sie vermuten also, es seien Oxydbanden. Auch Waring (Phys. Rev. [2] 32 p. 435, 1928 und Nat. 112 p. 675) hat die Gruppen II und VI + VII erhalten, erstere einer In-Cd-Verbindung, letztere einer Hg-Tl-Verbindung zugeschrieben. — Später geben Barratt und Bonar [368] an, sie hätten die Banden II auch von As erhalten; da aber dann gleichzeitig Linien von Bi auftraten, untersuchten sie nun Bi und fanden dort die Banden in voller Stärke. Eine nachträgliche Besichtigung der alten Cd-Platten zeigt auch auf ihnen stets die Bi-Linie 3067. Die

Annahme, daß es sich um Banden von Bi handle, — ob Metallbanden oder Verbindungsbanden, bleibt unbekannt — wird noch dadurch gestützt, daß Narayan und Rao (Phil. Mag. [7] 1 p. 645, 21) sie bei Bi gemessen haben. Dieselbe Gruppe war auch von Jablonski [328] in Fluoreszenz bemerkt und als Cd-Bande angegeben worden, ebenso in [313]. — Auch Mrozowski [378] sagt, die Banden gehörten nicht zu Bi, er habe sie in Absorption erhalten ohne eine Spur der Linie 3067. Was die Identität der Banden mit denen von Narayan und Rao betreffe, so sei die Ähnlichkeit Zufall.

Nach allen diesen Angaben, die man wegen ungenügender Dispersion bei den Photographien und ungenügender Messung nicht sicher beurteilen kann, bleibt es ganz ungewiß, ob es sich um eine Bande von Cd oder einem anderen Element, ob um Metall- oder Verbindungsbande handelt. Barratt und Bonar geben in folgender Tabelle eine Zusammenstellung der besprochenen Messungen:

Walt u. Bar	er ratt	Mohler u. Moore	Waring	Narayan u. Rao	Jablonski
2856	0		_	2859.9	
44	0	-	-	42.9	-
25	0	-	-	28.2	2825
10	3	_	-	13.5	10
2797	4	-	2800	2799.8	2795
83	1	2781 II	2787.9	85.0	81
69	2	67	76.3	72.2	67
56	3	56	53.0	59.6	55
45	5	45	44.1	44.8	45
32	5	36	3434.7	32.6	36
21	3	16	29.8	22.0	27
10	2	09	12.4	12.3	08
2699	2	01	05.5	01.9	00
90	1	2694	94.2	93.2	2694
79	0	80	84.2	81.5	78
73	0	73	72.1	70.0	72
60	0	59	61.1	-	59
52	0	53	52.8	_	54
44	0		-	-	46

c) Halogenide. Walter und Barrat [338] haben die Gruppe II von Mohler und Moore [318] dem Cd-Oxyd, später dem Bi zugeordnet, wie eben besprochen. Die Gruppen III, IV, V fanden sie sehr verstärkt bei Zufügung von Chlor, erhalten sie auch vom Chlorid und ordnen sie also diesem zu. Diese nach Rot verlaufenden Banden liegen: 3181-3115 (V von M. u. M.: 3177-3141), 3104-3077 (IV: 3104-3083), 3074-3018 (III: 3071-3023). Sie machen dann Versuche mit dem Bromid, welches ihnen nach Rot abschattierte Banden von 3551-3407 liefert, und mit dem Jodid, das zwei Systeme zeigt: 4032-3806 (abschattiert nach Violett) und 4301-4054 (abschattiert nach Rot).

Die Banden VI und VII von Mohler und Moore halten Walter und Barratt für wahrscheinlich zu TICI gehörig.

Nun liegt aber eine eingehende Untersuchung von Wieland [342, 364] vor, der vollkommen verschiedene Resultate für die Halogenide gibt. Seine Arbeit ist sehr

27*

viel genauer. Nach ihm zeigt das Chlorid zwei Systeme: 6400—3300 hat diffuse nach Rot verlaufende Banden, 3400—3300 hat scharfe nach Violett laufende Banden. Das Bromid zeigt ein System 6400—3300 von diffusen, vielleicht nach Rot verlaufenden Banden, und ein System 3250—3100 von scharfen nach Violett abschattierten Banden. Das Jodid endlich zeigt 3 Systeme: 6600—3600, diffus, nach Rot verlaufend; 3500 bis 3250, scharf, nach Violett abschattiert; 2550—2350, mittelscharf, nach Rot verlaufend. Die Bandenkanten sind in der folgenden Tabelle angegeben.

v'	v''	λ	J	S	INT MIN	v'	v"	λ	J	S
0	3	3247.2	1	us		2	3 .	3194.9	4	ms
1	4	44.2	3	ms		3	4	92.25	2	us
2	5	41.7	2	us		0	0	3176.65	9	S
3	6	39.15	1	uss	a designed	1	1	74.3	(5)	-
4	7	36.55	1	uss		2	2	71.9	(3)	-
0	2	3223.45	4	ms	1000	1	0	3151.35	7	S
1	3	20.8	5	S		2	1	48.95	5	S
2	4	18.2	3	us		3	2	46.65	3	-
3	5	15.4	3	ms	10000	4	3	44.6	0	-
0	1	3199.95	8	S	PA 2728	2	0	3126.5	2	us
1	2	97.4	6	s		3	1	24.45	3	us
Contra la			1.12	in the	19183	4	2	22.71	1	uss

Tabelle der Bandenkanten von CdBr [364].

Tabelle der Bandenkanten von CdJ [364].

v'	y''	λ	J	S		v'	v''	λ	J	S
10	18	3516.85	1	ms	1219	3	6	38.5	2	ms
11	19	12.95	1	ms	6.83	4	7	3435.85	3	us
12	20	09.3	2	ms	12.18	5	8	33.55	2	ms
13	21	06.4	1	us	e Subis of	6	9	30.95	2	ms
14	22	02.7	1	ms	LL X Fra	7	10	28.5	1	ms
10	17	3497.8	1	us	1.19.1	8	11	26.0	1	us
11	18	93.95	2	ms	18.23	1	3	3423.1	2	ms
12	19	90.95	2	ms	Construction of	2	4	20.75	3	ms
13	20	87.7	3	ms	1.1.1	3	5	18.5	3	ms
14	21	84.55	3	ms	1 180 1	4	6	16.0	2	ms
. 9	15	3481.2	3	ms	million	5	7	13.5	2	ms
10	16	78.2	3	ms	the second second	6	8	11.5	1	ms
11	17	74.95	2	us	The second	7	9	08.9	0	us
12	18	72.0	2	uss		0	1	3404.8	5	S
9	14	3461.9	1	us	No. Contraction	1	2	02.4	3	S
10	15	59.1	1	us	shi sede	2	.3	- 00.35	4	ms
4	8	3456.35	3	ms	if and	3	4	3398.2	2	us
5	9	53.6	4	ms	dante la	4	5	96.05	1	us
6	10	50.6	3	ms		5	6	93.5	0.	uss
7	11	48.0	3	ms		6	7	91.15	0	us
8	12	45.3	2	ms	NUT COM	7	8	89.2	0	us
9	13	42.95	1	ms	gleith	8	9	87.35	1	ms
2	5	3440.85	2	us	-interpoli	9	10	85.6	1	ms

s = scharf, ms = mittelscharf, us = unscharf.

v'	v''	λ	J	S	v'	v"	λ	J	S
0	0	3384.4	7	S	5	3	35.45	4	ms
1	1	82.6	-	-	6	4 '	33.8	4	us
2	2	.10_0.000	1	11	7	5	32.25	3	uss
3	3	3379.25	1	us	8	6	30.65	2	uss
4	4	76.25	2	S	9	7	29.05	2	uss
5	5	74.35	2	S	10	8.	27.5	1	uss
6	6	72.25	3	ms	11	9	25.75	0	uss
7	7	70.35	3	ms	4	1	3317.4	1	ms
8	8	68.4	2	ms	5	2	16.0	2	ms
9	9	66.55	2	ms	6	3	14.35	2	ms
10	10	64.6	1	ms	7	4	12.9	3	ms
1	0	3362.2	5	ms	8	5	11.65	3	us
2	1	60.35	6	ms	9	6	10.4	3	us
3	2	58.3	5	ms	10	7	08.7	2	us
4	3	56.5	4	ms	11	8	07.35	2	us
5	4	54.8	2	us	12	9	06.2	2	us
6	5	53.0	1	uss	13	10	04.8	1	uss.
10	9	46.05	1	us	14	11	03.6	1	uss
11	10	44.25	2	ms	15	12	02.25	0	uss
12	11	42.45	3	ms	16	13	00.85	0	uss
2	0	3340.85	2	ms	11	7	3289.3	1	us
3	1	39.0	3	us	12	8	88.2	1	us
4	2	37.0	3	ms	Mar	1 000		100	-

Wieland gibt die Kantenformeln wie folgt an: CdBr: $\nu_{v', v''} = 31458.3 + 254.5 (v' + \frac{1}{2}) - 230.0 (v'' + \frac{1}{2}) - 0.75 (v' + \frac{1}{2})^2 + 0.50 (v'' + \frac{1}{2})^2$

CdJ: $\nu_{\mathbf{v}', \mathbf{v}''} = 29530.0 + 196.6 (\mathbf{v}' + \frac{1}{2}) - 178.5 (\mathbf{v}'' + \frac{1}{2}) - 0.70 (\mathbf{v}' + \frac{1}{2})^2 + 0.625 (\mathbf{v}'' + \frac{1}{2})^2.$

Das zweite Bandensystem schreibt Wieland dem CdJ_2 zu. Die einzelnen Bandengruppen enthalten hier noch Untergruppen. In der Tabelle ist die Zugehörigkeit zu einer Obergruppe mit römischen, zu einer der Untergruppen mit arabischen Ziffern gekennzeichnet.

Gruppe	2	J	S	Gruppe	2	J	S
I, 1	2364.0	0	us	VI, 8	-2425.8	3	ms
II, 2	73.9	1	ms	VI, 9	31.6	1	us
II, 3	79.7	1	ms	• VII, 9	35.55	2	S
III, 3	83.8	2	S	VII, 10	2441.65	1	ms
III, 4	89.65	3	ms	n a harring	41.9	3	us
IV, 4	93.7	2	us	VIII, 10	45.7	1	us
III, 5	95.5	1	us	IX, 10	49.5	0	us
IV, 5	99.6	3	ms	VIII, 11	51.7	1	ms
IV, 6	2405.4	2	us	an been Rithin Leben	52.15	2	us
V, 6	09.6	2	us	X, 11	59.4	0	uss
V, 7	15.6	3	ms	IX, 12	61.85	1	ms
VI, 7	19.7	1	us	-	62.3	2	us
V, 8	21.7	1	us	X, 13	71.85	1	ms
and the interior	25.45	3	ms	for that by Dig tabl	72.35	2	ms

Tabelle der Bandenkanten von CdJ₂ [364].

Das Absorptionsspektrum des CdJ_2 hat Butkow [387] in dem Spektralbereich von 7000 bis 1950 Å untersucht. Es ist ein kontinuierliches Spektrum mit drei Maxima bei 2610, 2205 und 2075 Å. Diese Maxima werden mit der verschiedenen Dissoziation der Moleküle bei der Absorption des Lichts in Verbindung gebracht.

d) Metallbanden. Über solche Banden sind sehr mannigfaltige, oft nicht übereinstimmende Beobachtungen gemacht worden, die eine sichere Beschreibung des Spektrums bis in die jüngste Zeit nicht möglich machten. Von den früheren Arbeiten soll daher nur die von Mrozowski [328, 378] aus 1930 besprochen werden, in der er nachweisen will, daß Hg, Cd und Zn ganz gleich gebaute Bandenspektra haben. Im Absorptionsspektrum findet er: (a) die sehr verbreiterte Resonanzlinie 3261, — die er als Band bezeichnet. (β) schwache unsymmetrische Banden 3178; dies ist die Bande V von Mohler und Moore (3177—3141), die von Walter und Barratt zu TICl gerechnet wird. Dann folgt (γ), eine schwache Bande, welche nichts anderes ist, als die oben besprochene Bande II von Mohler und Moore; deren Banden III und IV fehlen also bei Mrozowski. Die nächzte "Bande (δ)" ist nichts anderes, als die unsymmetrisch verbreiterte Resonanzlinie 2288. Den Schluß macht ein schwaches Band (ε) bei 2212 und ein von Jablonski zuerst bemerktes Band bei 2116 (η).

Das Band bei 2116 ist noch öfter beobachtet worden, so von de Groot [327], von Winans [365]. Letzterer beschreibt die Absorptionserscheinungen bei wachsendem Druck so: bei kleinem Druck erscheint die Linie 2288, die sich mit Druck symmetrisch verbreitert bis zu 60 A. Bei 60 mm Druck erreicht sie die Linie 2212, die nicht überschritten wird, obgleich nach langen Wellen hin die Verbreiterung fortschreitet bis λ 2530 bei 186 mm Druck. Oberhalb 130 mm sind auf der langwelligen Seite Banden sichtbar, die von 2650 bis 2780 reichen (Mohler und Moore Gruppe II), welche nach Violett hinlaufen. 2212 verbreitert sich schwach nach langen Wellenlängen, 2114 symmetrisch. In der elektrodenlosen Entladung ist das Band 2114 sichtbar, nicht aber 2214. Daraus berechnet er [365] die Dissoziationsenergie zu 0.20 Volt. Ein kontinuierliches Spektrum reicht von 4800 bis 2240 mit Maxima bei 4400, 3300, 2980, 2288. Er meint die Gruppe II gehöre zu Cd₂, nicht zum Oxyd.

In neuerer Zeit hat Hamada [388] das Spektrum in Emission untersucht und größtenteils mit denen von Mrozowski übereinstimmende Resultate erhalten. Ein kontunierliches Spektrum mit einem Maximum bei der Resonanzlinie 3261 $(1^{1}S_{0}-2^{3}P_{1})$ erstreckt sich bis 3170. Auf der langwelligen Seite zeigt es ein zweites Maximum bei 3939 und endet bei 4044. Es ist dies das von Mrozowski mit (*a*) bezeichnete Bandensystem. Zwischen 4044 und 3664 liegt ein Bandensystem mit folgenden Kanten:

4044	3966	3879	3813
4029	3953	3866	3779
4012	3939	3850	3746
3996	3925	3836	3714
	3903		3688
			3664

Ein diffuses Band erstreckt sich von 3186 bis 3148 mit einem Maximum bei 3178; das System (β) von Mrozowski. Die Bande (γ), nach Mohler und Moore "Cd II", wurde nicht gefunden und gehört wohl dem Oxyd an. Ein kontinuierliches

Band mit einem Maximum bei der Resonanzlinie 2289 $(1 \, {}^{1}S_{0} - 2 \, {}^{1}P_{1})$ erstreckt sich bis 2191 (hier wohl das Band ε bildend) und auf der langwelligen Seite bis 2850. Es ist dies das Band (δ). Auch das kontinuierliche Band (η) zwischen 2136 und 2112 mit einem Maximum bei 2124 wurde gefunden. Weiterhin fand Hamada ein Bandensystem zwischen 5400 und 4058 mit einem Maximum bei 4530. Es zeigt 12 deutliche Banden mit den Kanten bei:

4463	4392	4319	4253
4439	4369	4296	4231
4416	4343	4275	4210.

Die Banden werden als Übergänge von den Zuständen $2{}^{3}P_{0}$, $2{}^{3}P_{1}$, $2{}^{3}P_{2}$ oder $2{}^{1}P_{1}$ zu dem $1{}^{1}S_{0}$ -Zustand gedeutet. Die Dissoziationsenergie wird zu 0.24 Volt berechnet.

Zu den Bandenspektren sei noch hinzugefügt, daß Winans [366] in einem Gemisch von Quecksilber- und Cadmiumdampf neue Banden entdeckt, die von 2488 bis 2407 reichen. Waring [340] hat wie oben erwähnt in Gemischen von In- und Cd-Dämpfen bei Temperaturen von 400°, 500° und 800° Absorptionsbanden gefunden, die er dem InCd Molekül zuschreibt. Sie reichen von λ 2634 bis λ 2800. Bei 800° tritt noch ein Bandensystem zwischen 2333 und 2353 auf. Die Absorptionsspektren von Gemischen von Cd mit Alkalimetallen hat Baratt [344] untersucht und hat Banden mit enger Feinstruktur und diffuse Banden im sichtbaren Gebiet gefunden.

Über die Fluoreszenz des Cadmiumdampfes sind eine ganze Reihe von Publikationen erschienen, namentlich auch von polnischer Seite, die uns nicht zugänglich sind. Es seien die andern hier kurz besprochen. Van der Lingen [238] sieht in Fluoreszenz, erregt durch Funkenlicht, eine Bande die bei 2288 scharf begrenzt und nach 2314 abschattiert ist. Bei höherer Dampfdichte "fehlt ihr der Kopf", sie beginnt dann scharf bei 2313, reicht bis 3005, wo sie auch schaff begrenzt endet. Von 2745-3005 ist eine kannelierte Bande, in welcher er "16 Linien" (soll wohl heißen: Kanten) zählt. Terenin [284] sieht die beiden Linien 2289 und 3261, erstere viel schwächer, wohl wegen Absorption. - Power [277] belichtet mit Funken von Cd, Fe, Ni, sieht die Linien 3262, 4678, 4800, 5086, schwach 2289. Namentlich in destillierendem Dampf ist die Fluoreszenz stark. Kapuściński [276, 315] sieht außer den Resonanzlinien 2289 und 3261 auch zahlreiche andere: 3613, 3467, 3404, 5086, 4800, 4678, 3133. Oberhalb 600° beginnt die Fluoreszenz wieder abzunehmen, ist bei 950° schon sehr gering. Die Linien werden auch erregt durch Funken von Zn, Mg, Fe, Al. Anwesenheit von Wasserstoff löscht sie nahezu aus. – Jablonski [311, 312] unterscheidet: Resonanzstrahlung der beiden Linien, Linienfluoreszenz von Kapuściński [351], Bandenfluoreszenz. Die Linienfluoreszenz werde angeregt durch eine ultraviolette Bande, die mit keiner Absorptionslinie zusammenfalle. Diese Bande reicht in Absorption von 2140 bis 1990, in Fluoreszenz liegt sie bei 2130. Sie wird erregt durch Licht von λ 2110 bis 2130. Kapuściński habe sie auch in Emission bei elektrodenloser Entladung erhalten. Diese Fluoreszenz sei am besten sichtbar, wenn die Temperatur 600-700° beträgt, sie verschwinde bei 800°. - Sonst erwähnt er noch an Fluoreszenzbanden: die im sichtbaren Gebiet 5100 bis 3800 (er verweist hier auf Kapuściński (C. R. Soc. Polen. de Phys. 5, p. 57, 1925), eine Bande bei 2289, eine Bande von 2260-3050, eine schmale

Bande bei 3261. — Mrozowski [378] macht keine eigenen Beobachtungen, benutzt nur die fremden.

Daß Wasserstoff die Resonanzstrahlung erheblich ändern kann, ist zuerst bei Hg gefunden. Bender [369] untersucht es für Cd. Die Resonanz wird in einem Rohre angeregt, um welches ein Geißlerrohr gewickelt ist, das Wasserstoff und Cd-Dampf enthält. Dann erscheint im Resonanzrohr 3261 und Tripletts. Wird in das Resonanzrohr N oder CO eingelassen, so werden die Tripletts stark geschwächt, die Resonanzlinie weniger; bei N muß dessen Druck auf 35 mm steigen, um die Resonanzlinie auf die halbe Intensität zu bringen, bei CO genügen dazu schon 3 mm. Wasserstoff wirkt sehr viel stärker schwächend, die Resonanzlinie kann ganz verschwinden. Dafür treten Cadmiumhydridbanden auf, wenn die Anregung durch H + Cd geschieht, nicht, wenn durch He + Cd. — Die stark schwächende Wirkung des Wasserstoffs finden auch Bates [324], Hoffmann [389], Black und Nash [386]. Erklärungsversuche sehe man bei Bender.

Der Ramaneffekt an Cadmiumhalogeniden in wäßriger Lösung wurde von Braune und Engelbrecht [371] untersucht, die keinen Effekt fanden. Krishnamurti [375] fand bei kristallisiertem CdJ_2 drei schwache Ramanlinien mit $\Delta v = 105$, 345 und 395.

An Cadmiumbromat wurde der Effekt von Schaefer, Matossi und Aderhold [380] untersucht und die Ramanfrequenz $\Delta \nu = 787$ gefunden. Dies entspricht einer ultraroten Schwingung von 12.7 μ , die aber optisch inaktiv ist.

Am kristallisierten pulverförmigen Nitrat fand Krishnamurti [374] die inaktive Frequenz $\Delta \nu = 1051$.

Das Sulfat in wäßriger Lösung wurde von Nisi [355], Ramaswamy [379] (Phys. Ber. 1930, 2617) und Embirikos [373] untersucht. Die Mittelwerte der von ihnen gefundenen Frequenzen sind $\Delta \nu = 452$, 620, 983, 1108. Von diesen sind die erste und dritte inaktiv, die zweite und vierte aktiv. Am kristallisierten Sulfat fand Embirikos [373] die inaktive Frequenz $\Delta \nu = 1003$. Krishnamurti [376] fand außerdem noch die Frequenze $\Delta \nu = 447$ und 1120, von denen nur die letzte aktiv ist.

Arthford anti-barleine dama (1992 haus

Abgeschlossen 1. 2. 32.

Cer (Ce = 140.13; Ce¹⁴⁰, Ce¹⁴²; Z = 58).

Literatur.

Nachtrag.

[35a] E. Wagner, Spektraluntersuchungen an Röntgenstrahlen II. Sitzungsber, bayer, Akad.d. Wiss. Math.-Phys. Kl. 31 (1916).

[39a] A. Dauvillier, Recherches spectrométriques sur les rayons X. Ann. de Phys. et Chim. (9) 13 p. 49 (1920).

[44a] C. C. Kiess, B. S. Hopkins and H. C. Kremers, Wavelengths longer than 5000 Å. in the arc spectra of yttrium, lanthanum and cerium etc. Bull. Bur. Stand. 17 p. 318—351 (1921). Sc. Pap. No. 421.

[46] D. Coster, On the spectra of X-rays and the theory of atomic structure. Phil. Mag. (6) 44 p. 546-573 (1922).

[47] J. Cabrera, Sur les limites d'absorption K de quelques élements. C. R. 176 p. 740-741 (1923).

[48] D. Coster, Y. Nishina und S. Werner, Röntgenspektroskopie: Über die Absorptionsgrenzen in der L-Serie der Elemente La (57) bis Hf (72). Zs. f. Phys. **18** 207-211 (1923).

[49] A. Dauvillier, Recherches spectrographiques de haute fréquence dans le groupe des terres rares. C. R. 176 p. 1381—1383 (1923).

[50] F. W. Aston, The mass spectra of zirconium and some other elements Nat. 114 p. 273 (1924).

[51] R. J. Lang, On the ultra-violet spark spectra of some of the elements. Phil. Trans. A. 224 p. 371-419 (1924).

[52] Arvid Leide, Experimentelle Untersuchungen über Röntgenspektren, K-Serie. Diss. Lund (1925) und Zs. f. Phys. 39 p. 686—710 (1926).

[53] J. Nishina, On the L-absorption spectra of the elements from Sn (50) to W (74) and their relation to the atomic constitution. Phil. Mag. (6) **49** p. 521-536 (1925).

[54] J. M. Cork and B. R. Stephenson, The K-series emission spectra for elements from atomic number 50 (Sn) to atomic number 83 (Bi). Phys. Rev. (2) 27 p. 103 (1926), Abstr.

[55] J. M. Cork and B. R. Stephenson, The K-emission spectra for elements tin (50) to hafnium (72). Phys. Rev. (2) 27 p. 530-537 (1926).

[56] R. C. Gibbs and H. E. White, Rubidium and caesium-like doublets of stripped atoms. Proc. Nat. Acad. 12 p. 551-555 (1926).

[57] M. C. Mc Donald, Miss E. E. Sutton and A. B. Mc Lay, The arc and spark spectra of a number of elements in the lower quartz spectral region. Trans. Canada (3) **20** Part. III p. 313—322 (1926).

[58] J. C. Mc Lennan and M. J. Ligett, Arc and spark spectra of rare elements in the fluorite region. Trans. Canada (3) 20, Part. III p. 377-383 (1926).

[59] A. S. King, Characteristics of the neutral and of the singly and doubly ionized spectra of cerium. Phys. Rev. (2) **30** p. 366 (1927).

[60] H. Margenau, On the Zeeman effect of the cerium spectrum. Phys. Rev. (2) 30 p. 458-465 (1927).

[61] A. S. King, Temperature classification of the stronger lines of cerium and praseodymium. Astroph. J. 68 p. 194-245 (1928). [62] R. C. Gibbs and H. E. White, Relations between doublets of stripped atoms in five periods of the periodic system. Phys. Rev. (2) 33 p. 157-162 (1929).

[63] L. Rotta and G. Piccardi, On the ionization potentials of the rare earth elements in relation to their position in the periodic system. Phil. Mag. (7) 7 p. 286-301 (1929).

[64] E. Lindberg, The M- and N-series. A spectroscopic study of X-rays. Nova acta reg. soc. sci. Upsal. (4) 7 No. 7 (1931).

[65] R. Brunetti und Z. Ollano, Zur Aufspaltung zwischen den 2 F-Niveaus des Ce IV. Zs. f. Phys. 75 p. 415-417 (1932).

[66] A. S. King and R. B. King, The spectrum of doubly ionized cerium. Astroph. J. 75 p. 40—45 (1932).

Das außerordentlich linienreiche Spektrum, welches Cer im Bogen entwickelt, ist sehr uncharakteristisch durch das Fehlen stärkerer Linien und die gleichmäßig geringe Intensität aller. So war es noch niemand gelungen, eine Trennung der Linien in solche des neutralen und des ionisierten Atoms auszuführen. Jetzt ist der Anfang einer solchen Trennung King [61] gelungen. Er photographiert das Spektrum des elektrischen Ofens, findet, daß sämtliche hier auftretenden Linien im Bogenspektrum vorhanden sind, wenn auch sehr schwach, während sie im Funkenspektrum fehlen, bis auf einige wenige. So ist zu schließen, daß das gewöhnliche Bogenspektrum mit allen stärkeren Linien zum ionisierten Atom gehört, nur schwache Linien zu Ce I gehören. Das gilt namentlich vom violetten und blauen Teil, wo zudem viele dieser Linien mit solchen des ionisierten Ce zusammenfallen. Im Grün werden Linien von Ce I zahlreicher, im Gelb und Rot dominieren sie.

King photographiert das Ofenspektrum bei 3 verschiedenen Temperaturen zwischen 2000^o und 2700^o, außerdem im Funken und im offenen Bogen. Durch die Änderung der Intensität kann er für die meisten Linien entscheiden, ob sie zu Ce I gehören. Wenn noch Zweifel bleiben, wendet er das auch früher von ihm mit Erfolg gebrauchte Mittel an, etwas Cs beizufügen; wegen seines niedrigen Ionisationspotentials liefert es zahlreiche freie Elektronen, welche die Ionisierung der Ce-Atome rückgängig machen. Bei Zusatz von Cs verschwinden also die Funkenlinien, die Bogenlinien bleiben unverändert.

King sucht zwischen den Grenzen λ 7049 und 2976, — soweit reicht das Spektrum im elektrischen Ofen — 1362 stärkere Linien heraus; die Wellenlängen entnimmt er meist Kiess, Klein, Exner und Haschek (siehe Band VII des Handbuchs), doch fügt er auch zahlreiche eigene Messungen zur Ergänzung und Korrektur hinzu. Die Linien werden in Temperaturklassen eingeordnet, wobei I bedeutet, daß die Linie schon bei der tiefsten Temperatur sichtbar ist, II, daß sie schnell an Intensität wächst, III, IV und V, daß sie erst bei einer höheren Temperatur erscheint. Die Linien von Ce I gehören fast alle zu den drei ersten Klassen. Die angegebenen Intensitäten sind solche des Bogens. In den folgenden Tabellen 1 und 2 geben wir die Linien von Ce I und die Funkenlinien nach King, da sie das Fundament bilden, auf dem die weitere Untersuchung der Struktur der Linienspektra aufgebaut werden muß. Um indessen die erste Tabelle zu kürzen, lassen wir alle Messungen von Kiess, die bis λ 5500 reichen, fort; man wird im wesentlichen alle von ihm gemessenen Linien für Ce I annehmen können. Diese Linien sind schon abgedruckt in Bd VII p. 201—225. Die Tab. 1 enthält also oberhalb λ 5500 nur die wenigen von King hinzugefügten Linien.
Tabollo	1	Col	r	nach	Kin	or 1	[61]	
Tabene	1.	Ue .	r.	nacn	171U	K I	OT	٠

Cer

							1			
6705.92	3	III		5355.61	4	II		5204.72	4	II
5975.97	15	I		55.20	6	II		04.27	4	II
10.13	20	I		47.82	4	II		03.27	4	II
09.88	30	Î		36.21	8	I		02.58	3	II
5773.12	50	I		35.72	15	I		02.48	4	п
72.89	15	Î		29.52	4	II		01.39	10	Ι
5582.73	20	Ĩ		28.05	20	I		00.43	7	II
12.13	20	T		17.58	1	II		00.13	3	II
5498 19	20	II		14.99	3	II		5198.68	2	II
91.10	3	I		14.83	3	П		94.74	4	II
82.00	12	III		14.38	4	П		91.76	?	II
78.61	8	I		13.91	4	П		91.70	?	II
78.53	10.4	T		08.52	8	II		88.64	12	II
68.86	15	III		08.30	3	II		87.38	2	II
65.35	500	I		03.31	6	I		83.18	4	II
60.09	B	II		5298.23	4	II		81.91	8	I
58.86	8	T		96.58	15	II	1995	81.74	3	П
57.99	1	II.		94.04	4	II	10155	80.88	8	T
56.40	6	I		90.99	6	T		78.68	3	Î
52.00	2	II	1	86.79	3	Î		77.78	8	II
51.90	0	III	1944	81.95	3	II		74.58	30	II
50.05	2	ш		77.49	3	II		69.74	4	I
40.00	20	п		76.9	0	II		64.88	4	Î
49.20	50	п		71.87	19.4	I	1000	61.48	40	II
40.20	4	I	1.5	71.02	5	1 II		59.68	40	II
40.40	4	T	1.1.1	60.59	6	II		50.99	40	I
38.40	0	III		64.18	6	I		49.98	15	II
33.37	2			61.60	9	T		40.00	10	T
30.29	4	III		50.0	0	II		40.49	4	II
27.29	4			54.99	4	II		20.40	2	II
26.43	3			50.45	4	II		28.00	0	II
23.47	4	II		50.45	2	II		97.10	4	II
20.41	20	III T		50.10	2	II		01.14	9	II
18.71	D	1		49.09	0	II		00.02	4	II
14.15	4	II		49.19	2	II	1.1.1	04.40	95	II
11.83	3	II		45.89	20		1	29.00	10	II
09.41	1 2	11	10000	45.26	2	III		20.00	10	II
01.20	4	III		44.48	10	1		22.00	10.1	т
5399.61	4	Ш		43.06	4	III T	1.1	22.39	120	I
99.08	3	п		38,49	4	1		20.69	0	II
97.65	30	I		33.79	8	II		15.62	0	II
95.75	4	п		30.84	3	11		15.23	15	II
95.28	6	I		30.13	4	п		15.03	4	II
91.89	5	II		29.76	15	I		12.69	20	П
86.35	15	I	1. 2. 7.	23.48	20	II	1.1.1.	11.59	5	п
82.61	6	II		22.96	4	II		07.47	4	П
79.96	4	II		21.94	3d	II		07.18	4	П
71.60	2	II		16.40	3	II		5099.40	4	II
69.12	3	II		11.92	25 d	II		97.29	2	II
63.36	12	II		11.04	3	II		91.76	5	Ι
59 91	3d	II		08.91	4	II		84.81	1	II
59.30	2	II		07.34	2	II		84.18	5	II
57.21	4	I	1.1.1.1.1.1.1	05.13	5	II		83.58	4	II

	۰.,	ы.
•		

	1	1			1		1 Contractor		1	1
5080.48	4	II	Dense Mil	4955.96	- 4	II	CODO:	4836.66	40	- I -
75.20	?	II	Hoese	55.39	4	I	timbred .	35.42	3	II
74.67	5	II	a cin per	54.03	4	II	17	34.02	10	I
71.73	20	II		53.73	3	II		29.82	4	I
71.49	6	I	1 million	48.67	7 d	I		29.02	4	II
65.88	12	II		39.13	20	I		22.53	50	I
63.92	6	II		38.81	2	II	and second	20.61	10	I
55.97	3	II		30.72	5	I		20.02	20	T
55.77	8	п	10.00	30.56	2	I		17.47	8	Î
54.15	12	I		24.56	_	T		10.38	5	T
53.52	5	II		24.27	20	Î		08.50	5	II
53.27	4	II	S. Berley	24.04	2	Î	nee Car	07.66	10	T
50,98	4	П	-	21.94	3	ÎÎ		05.93	30	T
48.80	12	I		20.80	19	II		05.55	2	II
48.53	1	П	100.002	19.90	5	I	1.000	03.00	0	II
42.09	4	П	and de	15.67	20	II	printiples	03.03	4	II
40.85	25	I	KIB2	15.30	20	I	(deraph	1700 00	0	II
40.00	20	Î	in the	14.09	20	I		\$100.00	0	п
39.74	4	II		19.40	0	T		, 00.41	20	1
37.99	9	II		08.19	2	I		00.00	20	I
96.65	G	T	60 305 F	04.95	0	T	withuring	84.70	10	II I
22.80	4	II	mon lo	01.07	10	I	inter las)	82.22	12	1
91 79	4 6	II	Sert Halling	4800.01	10	1	-	81.71	D	1
01.72	0	II T		4899.91	30	II		80.73	5	п
20.01	10	· 1		98.19	0	II		76.47	10	1
16.40	12	T	alar ning	97.08	8	п		76.23	8	1
10.49	10	T	int day	96.92	1	1	 verzeli 	75.06	12d?	I
10.70	10	1	TP MID	94.75	3	II	Line alte	73.84	3	п
12.47	0	II	a lease and	93.25	2	ш	and the second second second	64.73	5	II
09.44	2	II		92.87	7	1		58.52	4	II
09.07	40	1		89.57	. 15	1		57.91	. ?	п
05.69	D	II		81.52	3	I	per appart	52.59	10	II
03.27	3	II	n fridd fi	74.35	5	Ι	malera	51.42	5	II
01.49	3	ш		73.92	?	П	1. 1. 184	50.85	10	I
4998.12	8	1		72.92	6	П		50.23	5	I
95.26	1	II		71.94	2	II		47.07	?	I
94.61	6	II	so sien la	70.17	2	II		44.76	15	II
92.39	6	II	- 1968	68.71	3	Ι	1. dis 1	43.25	12	I
90.65	4	II		63.24	20	Ι	In Prairie	40.57	4.	I
88.68	5	I		61.72	8	Ι	and the	34.67	10	I
87.52	5	II		59.46	20	Ι		33.92	10	I
86.43	15d	II	Constraint,	54.98	4	II		27.57	4	II
82.13	2	II	and a state	53.59	5	II	le stelling	24.84	20	I
74.09	4	Ι	service lives	52.70	6	Ι	and the state	24.30	8	I
72.20	5	II	i deal into	52.61	8	I	Same	15.07	8	I
71.90	5	II		49.89	25	I		07.27	20	I
71.66	4	II		49.51	5	II		07.03	10	II
70.64	6	I	Part Prate	47.72	70	I		06.49	8	II
70.10	3	II	Line der i	45.47	50	I	Net for	05.58	10	I
66.38	6	II	- lasson -	43.02	10	I	It's base i	03.77	4	II
65.25	3	II	1	42.28	4	II		00.62	2	II
65.18	4	II		38.93	6	II		4696.53	8	II
58.24	2	II		38.42	3	II	1	91.96	?	II
56.98	3	II	Potenti (37.43	10	I		90.83	2	II

4690.71 4 II 4449.047 2 II 4209.210 10 I 84.55 ? I 427.701 15 I 4197.995 ? II 74.50 ? II 424.71 5 II 94.106 5 I 74.50 ? II 394.051 15 I 98.848 8 I 67.371 3 II 25.677 2 II 85.515 5 I 67.377 2 II 23.452 30 I 85.15 5 I 63.671 1 15.774 3 II 61.474 3 II 48.825 4 II 04.261 2 I 42.74 8 II 41.071 8 II 06.368 30 I 28.948 6 I 20.047 3 II 95.052 3 II 18.109 20 I </th <th>c</th> <th></th> <th></th> <th></th> <th>1 (</th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th>	c				1 (1			
		4690.71	4	П		4449.047	2	П		4209,210	10	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l	88.90	25	I		47.701	15	I		4197.995	?	II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	84.55	2	Ĩ		42.471	5	П		94.106	5	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	74.50	5	II		41.873	2	II		88,384	8	. I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	70.902	8	II		39.515	15	I	10.10	86.821	5	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	67.371	3	II		25.607	2	II		85,518	5	I
30.51 1 16.622 3 11 62.474 3 11 49.885 10 1 15.774 3 11 51.721 4 1 48.825 4 11 04.261 2 11 42.719 10 1 41.071 8 11 03.062 15 11 35.109 6 11 42.255 6 11 01.523 15 11 28.394 8 11 20.047 3 11 96.036 30 1 28.375 15 1 20.047 3 11 95.052 3 11 $14.90.901$ 20 1 10.474 10 1 82.943 64.2 11 $14.99.10$ 11 10.2763 31 64.602 2 11 96.098 8 11 10.2763 31	l	53 377	2	II		23.452	30	I		83,160	4	П
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	50 514	15	I		16.622	3	II		62.474	3	II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	49.885	10	Î		15.774	8	II		51.721	4	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	48 895	4	II		13.250	2	II		50.143	2	Ĩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	48 175	4	II		04.261	2	II		42,719	10	Ĩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	41 071	8	II		03.062	15	II		35,109	6	II
	l	40.857	8	II		01.523	15	I		32,447	8	II
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł	39 399	40	T		4396,190	15	Î		28.904	8	II
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l	94 995	6	Î		96.036	30	I		26.375	15	I
	l	90.047	3	II		95 788	12	Î		18,319	2	Î
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	15 195	20	T		95.052	3	II		15 656	8	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł	10.100	10	T	S. C.S.	82.943	642	II	12.1	14,910	20	I
	l	08 499	20	Ť		80,698	8	II		00.901	20	T
	l	09.763	5	Ť	1.1.1.1.1	68 879	2	II		4098.144	15	Î
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	00.933	8	Î		64.502	2	II		96.093	8	II
10 11 <t< td=""><td>l</td><td>4594 194</td><td>5</td><td>II</td><td></td><td>53.457</td><td>2</td><td>II</td><td></td><td>95.449</td><td>10</td><td>П</td></t<>	l	4594 194	5	II		53.457	2	II		95.449	10	П
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		82 001	8	T		51.815	12	I		95,122	10	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		81 104	4	Î		43.567	20	Ť		93.278	25	T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		74 190	2	II		34,883	2	Î		86.373	10	Î
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70 645	8	II		30,939	8	П		80.033	8	Î
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.096	5	II		25,308	6	II		68,989	6	Ĩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		65 949	30	I		24.598	25	I		68.050	6	Î
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		53 060	12	T		17,101	8	П		67.213	5	II
48.888 25 I 01.541 8 I 66.576 10 I 46.064 20 I 4293.137 12 I 66.576 10 ? I 45.452 3 II 90.289 10 II 61.803 8 II 40.632 6 I 87.005 5 II 60.713 20 I 36.210 3 II 85.847 4 II 60.713 20 I 36.210 3 II 85.847 4 II 60.713 20 I 36.216 6 II 83.320 2 II 55.839 25 I 31.308 $15d$ I 82.811 3 II 45.663 5 II 27.338 ? II 79.328 10 II 45.663 6 II 18.023 20 I 62.810 8 II 42.662 3 II		52.066	4	Ť		05.425	10	I		66,916	20	I
46.064 20 I 4293.137 12 I 63.987 $10?$ I 46.064 20 I 90.289 10 II 61.803 8 II 40.632 6 I 87.005 5 II 60.713 20 I 36.210 3 II 85.847 4 II 60.713 20 I 36.216 6 II 83.320 2 II 55.839 25 I 31.308 $15d$ I 82.811 3 II 54.663 5 II 27.338 ?II 79.328 10 II 45.976 $8?$ I 21.961 10II 73.789 3 II 44.062 6 II 18.280 3 II 66.702 5 II 43.963 6 II 18.023 20 I 62.810 8 II 47.747 4 II 14.064 6 II 58.326 5 II 32.740 2 II 06.417 25 I 54.690 8 I 22.934 4 II 01.103 12 I 47.674 2 II 22.934 4 II 93.425 3 I 42.280 $12d$ II 19.955 4 II 99.85 10II 40.594 6 II 13.952 4 II 79.985 10II 40.594 6 II 13.952 <t< td=""><td></td><td>48.888</td><td>25</td><td>Ť</td><td></td><td>01.541</td><td>8</td><td>I</td><td></td><td>66.576</td><td>10</td><td>I</td></t<>		48.888	25	Ť		01.541	8	I		66.576	10	I
45.047 25 1 90.289 10 11 61.803 8 11 40.632 6 1 87.005 5 11 61.803 8 11 36.210 3 11 85.847 4 11 60.713 20 1 32.016 6 11 85.847 4 11 60.769 8 11 31.308 $15d$ 1 82.811 3 11 54.663 5 11 27.338 $?$ 11 79.328 10 11 45.976 $8?$ 1 21.961 10 11 73.789 3 11 44.062 6 11 18.280 3 11 66.702 5 11 43.963 6 11 18.023 20 1 62.810 8 11 32.740 2 11 14.064 6 11 58.326 5 11 32.740 2 11 06.417 25 1 54.690 8 1 22.934 4 11 01.103 12 1 47.674 2 11 22.934 4 11 93.425 3 1 42.280 $12d$ 11 19.195 4 11 79.985 10 11 40.594 6 11 13.952 4 11 79.985 10 11 42.287 5 11 05.231 $?$ 1		46.064	20	T		4293.137	12	Ĩ		63,987	10?	I
10.102 0 11 87.005 5 11 60.713 20 1 36.210 3 11 87.005 5 11 60.713 20 1 32.016 6 11 85.847 4 11 60.169 8 11 32.016 6 11 83.320 2 11 55.839 25 1 31.308 $15d$ 1 82.811 3 11 54.663 5 11 27.338 $?$ 11 79.328 10 11 45.976 $8?$ 1 21.961 10 11 73.789 3 11 44.062 6 11 18.280 3 11 66.702 5 11 43.963 6 11 18.023 20 1 62.810 8 11 47.747 4 11 14.064 6 11 58.326 5 11 32.740 2 11 06.417 25 1 54.690 8 1 28.626 3 11 05.121 6 1 54.371 3 11 26.129 2 11 01.103 12 1 47.674 2 11 22.934 4 11 93.425 3 1 42.280 $12d$ 11 19.195 4 11 84.813 $?$ 11 40.594 6 11 13.952 4 11 7		45.452	3	II		90.289	10	II	100	61.803	8	II
36.210 3 II 85.847 4 II 60.169 8 II 32.016 6 II 83.320 2 II 55.839 25 I 31.308 $15d$ I 82.811 3 II 54.663 5 II 27.338 $?$ II 79.328 10 II 45.976 $8?$ I 21.961 10 II 73.789 3 II 44.062 6 II 18.280 3 II 66.702 5 II 43.963 6 II 18.023 20 I 62.810 8 II 47.747 4 II 14.064 6 II 58.326 5 II 32.740 2 II 06.417 25 I 54.690 8 I 28.626 3 II 05.121 6 I 54.371 3 II 22.934 4 II 4497.614 8 I 43.799 $8?$ II 21.244 5 II 93.425 3 I 42.280 $12d$ II 19.995 4 II 79.985 10 II 40.594 6 II 13.952 4 II 78.000 4 II 22.887 5 II 05.231 $?$ I 76.319 10 I 22.887 5 II 05.231 $?$ I		40,632	6	I		87.005	5	П		60.713	20	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36 210	8	Î		85.847	4	П		60.169	8	II
31.308 $15d$ I 32.811 3 II 54.663 5 II 27.338 ?II 79.328 10II 45.976 $8?$ I 21.961 10II 73.789 3 II 44.062 6 II 18.280 3 II 66.702 5 II 43.963 6 II 18.023 20 I 62.810 8 II 47.747 4 II 14.064 6 II 58.326 5 II 32.740 2 II 06.417 25 I 54.690 8 I 22.934 4 II 05.121 6 I 54.371 3 II 22.934 4 II 01.103 12 I 47.674 2 II 22.934 4 II 93.425 3 I 42.280 $12d$ II 19.95 4 II 93.425 3 I 42.280 $12d$ II 19.95 4 II 79.985 10II 40.594 6 II 13.952 4 II 78.000 4 II 22.887 5 II 05.231 $?$ I 67.319 10I 21.632 10I 3992.709 4 II 49.365 $?$ II 09.366 $?$ I 86.138 5 II		32.016	6	II		83.320	2	II		55,839	25	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		31 308	15d	I		82.811	3	II		54.663	5	II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		27.338	2	II		79.328	10	II		45.976	8?	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		21.961	10	II		73,789	3	II	1	44.062	6	П
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18,280	3	п		66.702	5	II		43.963	6	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18.023	20	I	100	62.810	8	П		47.747	4	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14.064	6	П		58,326	5	II	1000	32.740	2	II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		06.417	25	I		54,690	8	I		28.626	3	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		05.121	6	I		54.371	3	II		26.129	2	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		01,103	12	I		47.674	2	II		22.934	4	II
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4497.614	8	I	112	43,799	82	II		21.244	5	II
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		93,425	3	I		42.280	12d	II		19,195	4	II
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		84.813	2	II		41.259	3	II		17.657	6	II
78.000 4 II 24.225 4 II 11.290 4 II 75.315 4 II 22.887 5 II 05.231 ? I 67.319 10 I 21.632 10 I 3992.709 4 II 49.365 ? II 09.366 ? I 86.138 5 II		79,985	10	II		40,594	6	II	-	13.952	4	II
75.315 4 II 22.887 5 II 05.231 ? I 67.319 10 I 21.632 10 I 3992.709 4 II 49.365 ? II 09.366 ? I 86.138 5 II		78,000	4	II		24 225	4	II		11.290	4	II
67.319 10 I 21.632 10 I 3992.709 4 II 49.365 ? II 09.366 ? I 86.138 5 II		75.315	4	II		22,887	5	. II	1	05.231	2	I
49.365 ? II 09.366 ? I 86.138 5 II		67.319	10	I		21.632	10	I		3992.709	4	II
		49.365	?	II		09.366	?	I		86.138	5	II

Cer

. 4	. 6	۰.	~	
4	- L	21	6.1	
44	1.0	١.	6.1	
- 4	· *.		~	٢.

				_				
3985.240	5	II	3706.863	4	П	3496.443	5	П
82.164	15	I	02.246	4	I	94.870	4	II
73.996	10	I	3690.121	12	I	92,488	6	II
67.918	4	II	89.677	15	I	91,700	15	I
67.642	5	п	86.050	12	I	90.264	10	II
63.777	3	II	79.075	5	I	89.468	5	II
57.203	15	I	72,176	2	I	86.864	12	I
56.768	20	T	71.303	4	Î	84.552	6	II
49.818	30	Ť	66 023	30	I	84 054	5	II
43.004	15	T	60.698	6	Î	70.018	10	I
41 588	10	T	58 789	8	I	68.986	10	T
38 166	152	T	55 021	6	II	68.068	6	II
34.081	15	T	54.977	2	III	69.437	19	T
29.404	20	II	51 594	Å	II	61 492	10	II
20.509	4	II	48 520	G	II	61 904	4	II
97.440	4 C	T	40.000	e	II	600.00	0	II
27.440	0	T	41.040	10	I	50.147	0	II
20.091	0	T	40.400	10	T	54 909	20	T
21.740	r r	T	01.014	10	T	04.000	50	I
11.700	0	TT	30.103	10	T	02.800	0	п
11.720	4	T	29.807	0	T	02.218	0	II
04.100	10	I	20.373	10	I	46.207	15	II
3898.971	2	I	22.943	4	п	43.553	20	ш
92.065	4	1	16.469	8	1	42.249	6	п
89.547	8	1	14.250	4	ш	39.432	4	11
85.236	8	I	12.469	10	1	37.823	35	I
77.125	5	п	09.229	3	п	36.197	8	п
07.940	3	I	08.303	4	II	35.198	30	I
03.832	8	II	06.129	12	I	34.133	8	II
3799.098	5	I	03.725	8	II	33.131	3	II
91.961	10	I	3597.571	4	II	28.870	8	II
89.469	10	I	97.230	8	II	21.070	8	II
85.016	8	II	91.747	4	II	20.958	12	II
66.850	4	II	83.586	6	II	16.701	15	I
66.068	15	I	71.460	4	II	08.382	6	II
59.757	20	I	69.837	8	II	3399.081	4	II
56.264	12	I	52.367	4	II	98.965	12	II
47.549	10	II	48.167	12	I	95.415	8	I
46.573	5	II	40.117	4	II	93.585	12d	I
46.401	?	II	38.965	5	II	89.636	15	I
44.725	5	II	37.854	5	II	85.338	15	I
43.981	4	II	37.432	?	I	83.788	5	II
42.228	5d?	П	31.620	12	I	72.538	8	I
38.243	4	I	21.533	3	II	71.061	8	I
32,560	2	II	19.012	8	I	70.863	5	II
31.256	5	II	18,497	8	II	70,407	10	I
31,192	5	II	17,499	4	П	69.098	8	I
26.030	4	II	12.268	8	I	66.564	2	II
24 232	3	II	10 222	12	T	65.849	15	I
23 668	15	I	09.586	4	II	64.006	8	II.
17 767	5	II	07 348	10	I	69 991	5	II
11.650	2	II	04.145	ß	II	61 998	19	II
07.994	1	II	01.507	15	I	60.979	ß	II
06.000	4	II	01.097	10	T	50.497	10.12	II
00.932		III	01.343	0	1 1	09.437	1001	1 11

Cer

9950 900	19	T	3970 134	8	п	3156.885	3	П
59 998	2	II	66.091	4	II	53.451	3	п
48 194	10	II	64 724	3	Î	53.346	5	П
45.104	9	п	59.571	6	П	44.375	12	I
45.938	4	п	57.844	3	П	39,188	5	П
43 949	5	п	54,691	2	П	39.000	3	II
41.292	12	I	51,393	4	II	37.393	2	II
37.898	5	II	48,552	6	I	34.602	6	II
32.206	8	II	41.372	2	II	32.041	5	II
31.421	8	I	40,393	3	II	28.898	4	II
30,636	6	II	38,909	3	II	22.625	10	I
28.002	8	I	36,859	10	I	21.495	4	II
24.588	6	п	35.022	4	II	16.280	5	II
23.093	6	п	27.136	?	II	12.974	4	II
22,167	3	II	25.634	?	II	11.808	3	II
16,539	6	II	22.846	3	II	05.875	3	II
11.459	?	L	22.617	10	I	91.285	7	II
08.277	5	II	16.690	6	II	89.803	5	II
3298.195	10	I	12.598	20	I	87.162	10	II
89,950	8	II	07.172	5	II	63.109	4	II
89,800	3	II	05.000	4	II	61.236	6	II
88.579	3	II	3193.975	3	п	53.297	10	II
86.549	2	II	91.093	8	II	30.232	6	II
86.039	?	II	85.416	6	1?	29.870	3	II
83.909	4	II	81.640	5	II	24.592	5	II
82.327	3	II	69.395	8	II	17.769	5	II
77.134	5	II	69.150	?	II	14.563	4	II
72.939	6	I	59.730	6	II	11.034	2	II
72.742	10	I	59.317	2	II	06.620	3	II

Tabelle 2. Cer Funkenlinien nach King [61].

				procession of the local division of the loca	1			and the second se		
6652.75	4	v	HANR!	5330.56	25	v	1.00	4747.13	20	v
06.87	4	V		5274.23	75	V		39.49	25	V
6513.61	5	V		65.66	15	V		37.24	60	V
6466.86	5	V		5187.44	60	V		25.11	20	V
6371.10	10	IV		47.58	8	V		14.00	30	V
43.96	20	V	2.1	17.17	15	V	1961	4684.62	30	V
6272.05	20	V		5079.68	75	V		80.13	25	V
6098.34	10	V		75.30	20	V	100	69.52	20	V
43.39	60	V		44.02	25	V		54.31	30	V
5975.90	20	V	No.	22.85	20	V		28.16	500	V
5768.94	20	v		11.76	10	V	0.150	24.91	60	V
11.45	10	V		4971.48	20	V	180	06.42	50	V
5668.94	40	v		44.61	15	V		4593.94	200	V
10.27	20	V		43.47	15	V		72.28	250	V
5518.52	10	V		14.94	8	V	1000	65.85	50	V
12.08	150	V		4893.96	15	V		62.35	400	V
5472.29	30	V		82.47	40	V		60.96	60	V
09.28	80	V	1.79	4773.91	50	V		60.27	125	V
5393.42	100	V		68.76	12	V	1.345	39.755	200	IV
53.54	50	V		57.82	15	V	1.000	28.479	150	V
							-			

Cer

1			1			1 1	1		1
4527.354	200	V	4193.105	50	v		3992.387	125	IV
23.082	125	V	86.598	600	V		89.446	30	V
4497.849	25	V	69.880.	30	V		84.679	100	V
86.909	150	V	65.606	200	V		82.901	60	V
83.900	100	V	59.036	50	IV		80.894	100	V
	50	V	51.975	200	IV		78.649	125	V
79.357	30	V	1	50	V		71.686	100	V
71.240	200	V	49.939 {	60	V		67.048	100	IV
63.411	60	V	46.233	75	· IV		60.912	125	IV
61.138	50	V	44.992	60	V		56.282	150	V
60.212	400	V	42.394	150	V		10000	125	V
50.735	75	V	37.644	400	IV		52.568 {	125	IV
49.335	200	V	33.801	500	IV		43.891	100	IV
44,703	75	V	31.097	100	V		42.751	150	V
44.397	60	V	30.707	100	V		42.156	125	IV
29.272	100	V	27.371	150	IV		40.341	100	IV
18,782	200	V	23.875	150	V		33,723	?	IV
10.645	30	V	20.835	150	V		31.371	100	IV
4399,205	60	IV	18,146	200	V		31.092	125	IV
91.668	250	IV	17.013	75	v		24.650	60	IV
82,173	200	IV	15.376	150	v		23,108	125	V
75.93	60	V	11.40	60	v		21.739	100	v
78,819	50	v	10.383	60	v	1100	19.811	100	v
64,659	125	IV	07.425	200	v		18 279	200	IV
52.72	75	IV	05.00	50	IV		12 434	300	IV
49 788	100	IV	01.775	125	V	3.5	08 545	100	IV
39.817	30	v	4093.963	50	v		08.415	195	IV
87 776	125	IV	85 246	100	v		07 294	195	V
36 253	50	V	83.237	200	v		3898 979	100	IV
30 446	30	IV	81 224	150	v		96.808	100	IV
20.726	60	IV	78 331	60	v		95 192	195	IV
09.742	50	IV	77.479	. 75	v	a ma	89.994	300	IV
06 795	100	IV	75 855	195	IV	-	89.453	75	IV
00.333	60	IV	75 711	150	V		78 979	150	IV
4299 364	60	IV	73 485	200	IV		54,896	100	IV
96 680	200	IV	71.85	150	IV		54 194	100	IV
89.933	300	IV	70.098	15	V		53 166	195	IV
85 370	30	IV	68 844	75	v		48 600	150	IV
70 720	50	v	67 290	50	v		38 543	150	IV
70 193	60	IV	62 229	60	v		24 555	100	IV
55 787	60	IV	54 994	50	IV		92 902	50	IV
53 369	50	IV	53 510	100	IV		15 899	950	IV
48 679	200	IV	46 349	100	V		08 118	200	IV
39 909	200	V	49.582	200	IV		02.008	200	IV
31,749	200	v	40.760	300	IV		01.596	500	IV
97 748 .	100	v	21,226	150	IV		9709 995	50	IV
22 604	300	IV	28.408	150	IV		89.754	75	IV
17 590	30	V	24.492	60	IV		86.694	150	IV
14.040	50	IV	14 894	195	IV		89.594	25	IV
02.947	150	IV	19 289	800	V		81 691	150	IV
02:011	60	IV	03 768	100	V		64 118	150	IV
4198.722 {	75	V	3999 924	500	IV		55 491	75	IV
96 229	75	v	92.818	200	V		48.059	150	IV
00.000	10		00.010	1 200	1 1	1	10.000	100	1 11

		•	

3728.421	250	IV		3667.980	400	v	3613.700	150	v
18.377	200	V		60.640	250	IV	09.690	250	V
18.191	150	IV		59.227	125	IV	07.627	200	IV
16.365	600	IV		55.848	500	IV	00.580	60	V
09.932	500	IV	- 64.28	53.669	250	IV	3598.190	50	V
09.287	400	V		53.109	125	V	90.595	125	V
3699.917	50	V		46.963	200	V	77.446	500	v
94.910	60	V		31.191	125	V	60,795	500	v
87.800	30	V]	200	V	54,993	150	v
79.425	50	V		23.840 {	60	V	46.182	150	v
72,790	60	IV		99 149	100	V			

Ki	ng [61]		King [66]	
(Ofen		Funk	te
	Intens.	Klasse	001.103	Intens.
3543	-	-	43.999	80
39.072	300	V	-	-
34.043	300	V	-	-
21.878	200	V	-	-
20.522	150	V		-
17.382	300	V		-
07.944	125	V	18-211	-
04	-	-	04.596	100
01.458	60	V	-	-
3497	-	-	97.755	60
88.559	75	V	00	-
85.060	400	IV	0022	
76.839	150	V	-	-
70	-	-	70.894	300
59	-	-	59.374	200
54	-	-	54.368	150
43	-	-	43.609	150
42.383	75	V	-	-
41.208	150	V	-	-
39.831	60	V		-
33.078	50	V	-	-
27	-	-	27.332	125
26.205	250	V	-	
22.706	300	V	-	-
17.451	125	V	-	-
05.980	100	V	101-	-
3398	-	-	98.910	20
95	-	-	95.735	50
93.918	50	V	-	-
79.172	100	V	-	-
77.125	300	V	-	-
73.731	125	V	-	-
73.457	100	V		-
66.552	150	V	-	12-4
60.539	75	V	-	-
57.211	125	V	- 11	5

Ki	ng [61] Ofen		King [66] Funke		
	Intona	Vlama		Tere	
9959	intens.	Masse	59.000	Intens.	
14 760	200	v	05.202	190	
42.861	200	V		15	
41.872	100	V	_	_	
94 449	60	V	_		
95 221	50	V	_	-	
17 795	30	V		_	
14 795	100	V			
12,219	50	V		-	
04.837	60	v		0.0	
00.151	60	V	Sin Politica	0.000	
3296 879	40	V			
95.281	80	v		-	
85.227	195	v			
80	150		80.78	9	
79.841	195	v	00.10	-	
74.863	150	v			
72.252	250	v			
67		_	67.92	Gh	
67	_	_	67.72	4	
61	_	_	61.61	9	
60.974	60	v	-	_	
52	-	_	52.95	1	
52,482	30	V		-	
46.672	60	v	-	_	
43.370	200	v	_	_	
36.738	150	v	_	-	
34.272	300	V			
31.240	200	V	_	-	
28		_	28,564	400	
27.116	300	V	_	_	
21.172	250	V		-	
18.945	200	V	_	-	
10	-	_	10.48	3	
01.712	300	V			
3194.821	200	V	-	-	

28

1

Kayser u. Konen, Spektroskopie. VIII.

Ki	ing [61]	1 2500	King	[66]
	Oren		Fun	ke
	Intens.	Klasse		Intens.
3191	-		91.41	2
90	-	-	90.67	1
86.124	125	V	-	1-1
83.524	250	V	-	-
71.618	200	V	-	
69.181	150	V	-	-
68	-	-	68.02	25h
65	-	-	65.536	25h
64.157	200	V		-
63	-	-	63.644	2
47	-	-	47.05	300
46.412	200	V	-	-
45.283	150	V	-	-
43	-	-	43.956	200
41		-	41.247	250
27.529	80	V	-	-
26	-	-	26.21	1
25	-	-	25.28	2
22	-	-	22.93	4h
21	-	-	21.548	400
18	- 0	-	18.379	2
10	-	-	10.71	4
10	-	-	10.516	200
10.279	100	V	-	-
.06	-	-	06.974	200
03.367	125	V	-	

Ki	ng [61]	King [66]			
	Ofen	1	Fun	ke	
and and	Intens.	Klasse		Intens.	
3102	- '	-	02.335	4	
3088	-	-	88.86	5h	
88	-	-	88.022	3	
85		-	85.089	200	
83.670	100	V	08	-	
76	-	-	76.82	6h	
63.011	400	V		-	
57	-	_ 1	57.575	100	
57	-	-	57.214	200	
56.778	200	V		-	
56	-	-	56.556	125	
55	-		55.585	600	
55.241	150	V	-	-	
51.977	60 d	V	-		
48		-	48.2	2	
37.728	80	V	-	-	
31		-	31.559	500	
25		4	25.73	8	
22	_	44	22.736	200	
17,196	80	V	-	-	
11	-	-	11.493	8	
08.788	125	V	_	-	
2995.644	.80	V		-	
90.872	80	V	-	-	
76.904	100	V		-	
	V	1 m		- Ter	

King [66] Funke			King [66] Funke		King [66] Funke			King [66] Funke	No.
2973.716	50	and I	2833.868	8	2730.069	60 s		2663.80	10 h
48.564	15		22.648	8	19.329	60s	100	62.836	30 s
44.3	15	1.12	20.8	1	17.22	10		58.6	3h
31.558	100		17.1	2	14.4	1		55.71	20 h
27.258	10	1.12	06.3	1	05.026	2		54.48	6h
25.283	80	11	02.408	10s	2694.857	6s		49.418	50
23.84	100		01.824	10s	86.74	10h	1964	39.57	4
08.804	2	177	2798.1	1	85.99	10h	00	38.72	3
07.064	30	1	95.158	8	81.03	2h	1000	37.953	1
2874.2	20?		80.59	3h	79.2	1	1	34.08	4h
73.722	25	175	74.473	88	75.6	2h	797	31.88	30h
61.416	15	1	68.339	150	75.08	4h	36	30.7	1 .
49.372	80	NV.	54.912	80	78.6	1	64.1	29.773	4
48.2	2h	12	48.936	50s	73.3	4h		25.68	1
47.3	3h	1257	43.736	60s	72.857	10s	18.	24.86	3
46.4	2		41.688	5	71.9	-1	100	23.83	4h
45.19	- 10		38.861	3h	68.69	Sh		23.36	2
40.7	- 1h	200	33.4	3h	65.7	- 1h		22.753	4s

Cer

	٠					
				-	٠	
		F	٠			
		٩.		8		

King [66]		King [66]		King [66]		King [66]	
Funke		Funke		Funke		Funke	
2621.151	15	2547.92	5h	2439.87	250	2327.95	3
20.68	2h	44.39	3h	33.57	3	24.37	50
19.80	28	43.110	88	31.51	300	18.70	200
17.72	2h	39.43	20h	28.68	158	17.40	100
16.1	Sh	37.6	2h	23.20	10h	15.91	8
15.93	60 h	32.040	100	19.03	6h	14.39	2
14.58	3h	25.1	1	18.44	10h	12.83	8
10.91	4h	22.11	4h	17.11	- 30 h	02.14	100
09.94	4	18,555	8	15.74	60h	00.70	80
08.114	150h	17.6	1h	15.21	38	2299.96	4
05.3	2h	15.77	4h	11.06	6h	98.75	20
04.078	Ag	14 864	Ae	10.41	20h	98.9	1
03.646	400	13.34	2	08.15	30.0	97.79	1 2
01.20	400	11 745	10	06.15	201	02.80	0
01.52	901	00.5	10	00.51	20n Ch	95.00	4 00
00.408	201	09.0	1 6-	04.44	101	01.00	30
2039.41	18	04.404	10	00.72	lon	84.64	2
99.18	30 h	03.605	10	2398.76	8n	82.25	6
92.38	28	2498.98	2	97.66	3s	68.22	25
91.19	15h	97.56	60	95.10	60	66.95	10
88.58	2	90.35	38	93.00	2h	64.91	50
84.87	70h	84.31	58	90.7	1	49.31	15
79.17	6	83.88	60	86.23	3h	44.18	8
78.34	30 s	79.50	50	85.11	15	42.35	80
77.828	80h	77.31	40	82.33	. 30	41.30	10
75.06	20 h	75.3	1h	80.18	200	38.69	8
73.17	88	73.4	1	79.5	1	36.95	4
69.21	4	72.71	4	78.48	6	28.10	50
67.02	4h	71.81	15h	77.53	40	27.88	40
66.02	2h	70.00	150	77.13	50	25.12	125
65.44	3h	65.49	4h	73.44	6h	22.06	100
63.450	6	64.41	3	72.39	300	18.16	12
62.6	1	62.99	10s	71.15	4s	10.7	2
60.442	10h	61.55	2	67.81	30s	07.30	8
57.628	30h	60.86	28	62.58	40	03.22	6
54.3	1	58.56	2h	56.8	1h	2188.9	1
53.28	128	54.37	50s	45.26	2	83.8	1
51.75	15h	45.55	5	37.71	25	69.55	ß
48.79	5?	44.93	10h	30.19	4	66.95	20
48.72	10?s	41.69	20 h	29.92	6s		40
		T	abelle 3. n	ach Lang.		anthrony web	anh tios
2070.0	1	1974.0	1	1869.8?	1	1622.6	1
63.5	1	68.8	1	31.6	1	17.3	1
58.9	1	64.0	1	1799.02	1	1588.6	1
51.9	1	26.9	1	47.1	1	81.1	1
35.8	1	24.0	1	20.0	2	75.6	1
	-	21.0	-	20.0	-	00.1	1
1996.9	1	14.5		(154.11		104	
1996.2 96.6	1	14.5	1	03.0		39.1	1

28*

					-						
1372.6	20	1024.0	2			812.4	1	Γ	528.3		1
41.3?	1	16.1	2			791.5	1		19.6		1
31.8	20	964.4	1			40.7	5		13.4	10	1
12.1	1	27.1	1			76.4	1	Change	489.6	-	1
1293.8	1	10.9	1			69.7	1		77.2		1
36.2	1	882.3	1			31.4	1		75.1		1
27.5	1	62.0	2			27.6	1		50.0		1
1156.4	1	52.2	2			21.9	1		47.5		1
1088.4	5	50.6	2			09.0?	1		44.5		1
80.6	5	46.1	2			579.5	1		39.6		1
47.1	2	38.6	2			44.4?	1		398.7		1
41.7	3	30.4	20								
Tabelle 4. King [66]	Ce IV.		McDona	ld [4	[9]	Tab McLennan	elle 5.	ſ	Mc Dona	ld [4	19]
Funke		in a second		Bo	Fu	PALINE .	Fu			Bo	Fu
2778.243	60 ¹)		2267.2	-	1	_	_		1915.1	-	1
2456.86	1251)		22.0	-	2	-		17.	12.8	2	2
2430.31	60		2166.8	2	2	-	-		11.7	2	3
2350.16	200		09.0	1	1	-	-		09.0	1	1
2180.70	100		2083.3	1	2		-		07.6	1	1
			33		-	2033.51	3		06.0	3	3
			09.7	-	2	09.77	5		01.3	3	3
			00	-	-	00.31	5		1891.3	3	2
			1949.4		2	1949.65	2		72.5	2	3

Cer

King hat dann gemeinsam mit seinem Sohne in jüngster Zeit auch die stärker ionisierten Linien im Funken bestimmt. Die Kings finden in sehr starken Funken unterhalb 3550 bis 2194 etwa 280 Linien, die z. T. sehr stark sind und dem Ce III zugeschrieben werden. Einige gehören vielleicht zu höheren Ionisationsstufen. Als Kennzeichen für Funkenlinien galt ihr Fehlen im Bogen. Die betr. Linien wurden in der zweiten Ordnung eines großen Gitters gegen Normalen nach Jackson²), unterhalb 2327 gegen unpublizierte Normalen von Burns ausgemessen. Die scharfen Linien sind auf 3 Stellen genau angegeben; bei den übrigen bedeutet h, daß die Linie diffus, s, daß sie scharf ist. Bei mittlerer Schärfe ist keine Angabe gemacht.

Die Tab. 2 umfaßt die Linien des ionisierten Cers. Hierbei gehören die in der ersten Spalte genannten Linien wohl der Hauptsache dem einmal ionisierten Ce, also C II, an, wie schon der Vergleich mit den nur in sehr starken Funken auftretenden Linien der zweiten Spalte zeigt, die dem Ce III (also dem doppelt ionisierten Ce) zugerechnet werden müssen. Unterhalb 2976 ist diese Liste allein fortgesetzt. Einige wenige Linien sind vermutlich dem C IV zuzuschreiben. Sie sind in Tab. 4 zusammengestellt. Bemerkt sei noch, daß die Linien der zweiten Spalte der Tab. 2 sämtlich Neumessungen darstellen.

So ist erst ein Anfang zu einer Sonderung der Ionisationsstufen gemacht. Ce II scheint in dem von den beiden King untersuchten Bereich zuverlässig ermittelt;

¹) Von Gibbs und White an den Polen verstärkt gesehen (56); Badami sieht noch 5 weitere Linien. — ²) Proc. Roy Soc. London (A) **130** p 395 (1931).

in einem kleinen Spektralbereich gilt das Gleiche von C III. Für die Zugehörigkeit der Linien der Tabelle 4 zu Ce IV spricht die Übereinstimmung der Paare konstanter Differenz von Gibbs und White [56.62] mit den Beobachtungen von King. Gibbs und White finden (λ vac.) 2769.2, 2455.1 und 2457.59, 2279.07. Diese Linien erscheinen an den Polen des Bogens verstärkt. Badami¹) gibt an z. Zt. nicht zugänglicher Stelle noch 5 weitere Funkenlinien des Ce IV. Endlich schließen Brunetti und Ollano [65] aus konstanten $\Delta \nu$ -Differenzen, die sie im Ramaneffekt an wäßrigen Lösungen finden, auf C IV als Ion, ${}^{2}F_{\frac{5}{2}}$ als Grundzustand und ${}^{2}F_{\frac{7}{2}}$ als zweites Niveau des Elektronensprunges.

Nach Rotta und Piccardi [63] ist das Ionisationspotential 6.91 Volt. Als ein weiterer Fortschritt in der Kenntnis der Linienspektra ist die Messung des Funkenspektrums im Schumanngebiet durch Lang [51] zu nennen. Seine Angaben finden sich in Tab. 3.

Einige wenige kurzwellige Linien sind auch von McLennan und Ligett [58], sowie von McDonald, Sutton, McLay [57] gefunden und in Tab. 5 vereinigt.

Margenau [60] sucht den Zeemaneffekt zu bestimmen. Trotzdem er ein großes Rowlandgitter in zweiter Ordnung verwendet, ist die Dispersion viel zu klein, die Typen sind nicht aufgelöst; so sind die Angaben für etwa 280 Linien ohne wesentlichen Wert.

Aston [50] findet zwei Isotopen mit Atomgewicht 140 und 142.

Röntgenspektren.

a) Emissionsspektren. Neue Kenntnisse der Feinstruktur der Röntgenserien brachten die Untersuchungen von Lindberg [64], Dauvillier [49], Coster [46], Leide [52] und Cork und Stephenson [54, 55]. Lindberg bringt die Wellenlängen dreier Linien der M-Serie, Dauvillier und Coster die Feinstruktur der L-Serie, Leide und Cork und Stephenson die der K-Serie. Die Resultate ihrer Messungen sind in der folgenden Tabelle zusammengestellt.

		1461. 1913-19	Lindberg [64]	Coster [46]	Dauvillier [49]	Leide [52]	Cork u. Stephenson [54, 55]
M-Reihe	My Ny1, VII	<i>a</i> ₁	140.30	_	_		-
-	MIV NVI, VII	β	137.55	-	-	-	Include The lose of
-	MIII Ny	y	115.11	-	-	-	-
L-Reihe	LII MIV	β_1	-	2351.0	[2352.3]	-	
	LI MII	β_4	-	2344.2	2345.2	-	-
	LI MIII	β_3	-1	2305.9	2306.1	-	-
	LIII NI	ße	-	2276.9	2277.2	-	-
	Funkenl.	β14	-	2212.1	2212.4	-	-
- <u>0</u> 00	LIII Ny	ßa	-	2204.1	2204.0	-	-
	L _I My	Bo	-	2184.0	2184.4	-	-
	LIII OI	B7	_	2176.3	2177.0	_	
	LIII OIV	β_5^2	-	-	2164.0	-	
_		β_{10}^2	-	-	2153.1	10	daless-
_	LII NI	25		2105.6	2106.0	-	and the feature

1) Proc. Phys. Soc. London 43 p. 53, 1931, z. Zt. nicht zugänglich.

²) Bezeichnung nach Dauvillier [49].

	ngag Trade prod 1996 Trade prod 1 Janey argani		Lindberg [64]	Coster [46]	Dauvillier [49]	Leide [52]	Cork u. Stephenson [54, 55]
-	Funkenl.	20	_	2051.0	2051.1		_
-	LII NIV	71	_	[2044.3]	2045.5		
and the state	Funkenl.	21'	_	2029	2028.8		offer and a
anni - S ant a	LII OI	28	th -one	2019	2019.6		Long 110 her
Lines The seal	and the later	γ_2^{1}	1111		2009.1	-	
-	Funkenl.	7'10	-	1962.3	1963.4	-	
	LI NII	72	-	1955.9	1956.1	-	-
-	LI NIII	2/3	-	1950.9	1951.5	-	_
and the state	o Same of the	791)		The Lot of	1922.5	0	and mestion
nabe- and	LI OII, III	24	5 - 20	1895.2	1894.8		nt market long
K-Reihe	K LII	α_2	-	-	-	361.10	360.97
	K LIII	<i>a</i> ₁	-	-	-	356.47	356.37
-	K MII	β_3	-	-	-	-	315.72
_	K MIII	β_1	_	-	_	-	315.01
	K NII, III	β_2	-				307.70

b) Absorptionsspektren. Über die K-Absorptionskanten des Cers liegen zwei neue Messungen von Leide [52] und Cabrera [47] vor. Sie finden als Wellenlängen 306.26 bzw. 306.5 XE. Die L-Absorptionskanten wurden von Coster, Nishina und Werner [48] und Dauvillier [39a] bestimmt. Ihre Werte sind:

and the second second second	L_{I}	L _{II}	LIII
Coster, Nishina u. Werner	1885.6	2006.7	2159.7
Dauvillier	-	-	2159.5

Es folge noch eine Zusammenstellung der Energiewerte der Röntgenniveaus nach Siegbahn²).

Röntgenniveau	К	LI	LII	LIII	MI	MII
Opt. Symbol	1 ² S ₁ 2978	2 ² S ₁ 482.9	$2^{2}P_{\frac{1}{2}}$ 454.4	2 ² P _g 421.9	3 ² S ₁ 106.0	3 ² P ₁ 94.2
Röntgenniveau	MIII	MIV	Mv	NI	NII	NIII
Opt. Symbol $\frac{\nu}{R}$	3²₽ <u>∄</u> 87.7	3 ² D ₃ 66.7	3 ² D ₂ 65.4	4 ² S _{1/2} 21.7	4 ² P ₁ 17.0	4 ² P ₃ 15.8
Röntgenniveau	NIV	Nv	01	011, 111		
Opt. Symbol $\frac{\nu}{R}$	4 ² D ₂ 8.6	4²D§ 8.5	$5^{2}S_{\frac{1}{2}}$ 3.2	$5^{2}P_{\frac{1}{2}}, \frac{3}{2}$ 2.1	Contr Bass	

¹) Bezeichnung nach Dauvillier [49].

²) Siegbahn, Spektroskopie der Röntgenstrahlen, 2. Aufl. p. 345-346, Berlin 1931.

Abgeschlossen am 15. Januar 1932.

Cer

Chlor (Cl = 35,457; Isotopen: Cl³⁵, Cl³⁷ und Cl³⁹; Z = 17).

Literatur.

1. Nachtrag.

[115] H. Rubens und H. v. Wartenberg, Absorption langwelliger Wärmestrahlung. Verh.
 d. D. Phys. Ges. 13 p. 796-804 (1911).

[116] M. Kimura and M. Fukuda, Studies of the spectrum of chlorine. Mem. Coll. Kyoto 4 p. 155-161 (1920).

[117] N. Stensson, Über die Dubletten in der K-Reihe der Röntgenspektren. Zs. f. Phys. 3 p. 60-62 (1920).

2. Fortsetzung.

[118] Sir J. J. Dobbie and J. J. Fox, The absorption of light by elements in the state of vapour. The halogens. Proc. Roy. Soc. A. 99 p. 456-461 (1921).

[119] E. Hjalmar, Precision-measurements in the X-ray spectra, part 4, K-Series, the elements Cu-Na. Phil. Mag. (6) 41 p. 675-681 (1921).

[120] Axel E. Lindh, Zur Kenntnis des Röntgenabsorptionsspektrums des Chlors. Zs. f. Phys. 6 p. 303-310 (1921). C. R. 172 p. 1175-1176 (1921).

[121] E. v. Angerer, Spektroskopische Messung der Elektronenaffinität von Chlor. Zs. f. Phys. 11 p. 167-169 (1922).

[122] V. Dolejšek, Sur les lignes K_a des éléments legers. C. R. 174 p. 441-442 (1922).

[123] H. v. Halban und K. Siedentopf, Die Lichtabsorption von Chlor. Zs. f. phys. Chem. 103 p. 71-99 (1922).

[124] E. C. Kemble, The infra-red absorption spectra of diatomic gases and their ionization potentials. Phys. Rev. (2) 19 p. 374-395 (1922).

[125] Cl. Schäfer und M. Thomas, Oberschwingungen ultraroter Absorptionsspektren. Zs. f. Phys. 12 p. 330-341 (1922).

[126] M. Siegbahn und V. Dolejšek, Erhöhung der Meßgenauigkeit innerhalb der Röntgenspektren. II. Zs. f. Phys. 10 p. 159-168 (1922).

[127] B. J. Spence and C. Holley, The absorption spectra of hydrogen chloride at 200° K. Phys. Rev. (2) **19** p. 397-398 (1922).

[128] E. v. Angerer, Versuche zur Erzeugung des Funkenspektrums von Li. Zs. f. Phys. 18 p. 113-119 (1923).

[129] A. Catalán, Sur la structure des spectres d'arc, du molybdène, du sélénium et du chrome. C. R. 176 p. 247-248 (1923)¹).

[130] W. F. Colby, Note on the formulation of absorption bands in the near infra-red. Astrophys. J. 58 p. 303-306 (1923).

[131] W. F. Colby, C. F. Meyer and D. W. Bronk, An extension of the fundamental infra-red absorption band of hydrogen chloride. Astroph. J. 57 p. 7-20 (1923) und Phys. Rev. (2) 21 p. 389 (1923).

[132] F. Haber, Anregung von Gasspektren durch chemische Reaktionen. Berl. Ber. 1922. Naturw. 11 p. 94 (1923). Zs. f. Phys. 9 p. 302-326 (1923).

1) In diesem Titel ist ein Fehler unterlaufen: statt "chrome" muß es "chlore" heißen.

[133] W. Jevons, The line spectrum of chlorine in the ultra-violet. Proc. Roy. Soc. A 103 p. 193-204 (1923).

[134] A. E. Lindh, Experimentelle Untersuchungen über die K-Röntgenabsorptionsspektra der Elemente Chlor, Schwefel und Phosphor. Diss. Lund 1923.

[135] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of phys. 2 p. 167-278 (1923).

[136] A. L. Narayan and D. Gunnaya, Emission and absorption of halogens in the visible and ultra-violet region. Phil. Mag. (6) 45 p. 827-830 (1923).

[137] F. Paschen, Das Funkenspektrum des Aluminiums. II. Teil. Ann. d. Phys. (4) 71 p. 537-561 (1923).

[138] B. J. Spence and C. Holley, The infrared absorption of hydrogen chloride in the region $3.5\,\mu$ and at 200° K. J. Opt. Soc. Amer. 7 p. 169–175 (1923).

[139] E. v. Angerer, Das ultraviolette Linienspektrum von Chlor. Zs. f. wiss. Photogr. 22 p. 200—209 (1924).

[140] H. Bell, The halogen hydrides. Phil. Mag. (6) 47 p. 549-560 (1924).

[141] F. Colby, Use of half quantum numbers in interpretation of hydrogen chloride absorption bands. Phys. Rev. (2) 23 p. 295 (1924).

[142] W. Jevons, On the band spectra of silicon oxide Proc. Roy. Soc. A 106 p. 174-194 (1924).

[143] H. Krefft, Bericht über den Dopplereffekt an Bogen und Funkenlinien. Phys. Zs. 25 p. 352-366 (1924).

[144] A. E. Lindh und O. Lundquist, Untersuchungen über die K_{β_1} -Linie des Chlors. Ark. Mat. Astr. o. Fys. 18 p. 35 (1924).

[145] E. F. Lowry, The infrared absorption of carbon monoxide. J. Opt. Soc. Amer. 8 p. 647-658 (1924).

[146] Jos. Lunt, On the spectrum of germanium. Monthly Not. 85 p. 38 (1924).

[147] Jos. Lunt, On large displacements in the spectra of germanium and chlorine under different conditions of temperature. Monthly Not. 85 p. 148-153 (1924).

[148] H. Mayer, Absorptionsspektrum und spezifische Wärme des Chlordioxyds. Zs. f. phys. Chem. 113 p. 220-235 (1924).

[149] R. A. Millikan and J. S. Bowen, Extreme ultraviolet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[150] E. Bäcklin, Das Ka_{1, 2}-Dublett der leichteren Elemente und Abhängigkeit der Röntgenspektren von der chemischen Bindung. Zs. f. Phys. **33** p. 547-556 (1925).

[151] E. F. Barker and O. S. Duffendack, Ionization of HCl by electron impacts. Phys. Rev. (2) 26 p. 339-346 (1925) und Bull. of Develop. 1926 p. 13.

[152] G. Becker, Über die Druckabhängigkeit der Absorption des Chlorwasserstoffs im Ultrarot. Zs. f. Phys. 34 p. 255-272 (1925).

[153] L. et E. Bloch, Spectre d'étincelle du chlore. C. R. 180 p. 1740-1742 (1925).

[154] M. Bodenstein und G. Kistiakowski, Photochemische Zersetzung von Chlormonoxyd. Zs. f. phys. Chem. 116 p. 371-390 (1925).

[155] J. S. Bowen and R. A. Millikan, The series spectra of the stripped atoms of phosphorus (P V), sulphur (S VI) and chlorine (Cl VII). Phys. Rev. (2) 25 p. 295-305 (1925).

[156] J. S. Bowen and R. A. Millikan, Relation of PP'groups in atoms of the same electronic structure. Phys. Rev. (2) 26 p. 150-164 (1925).

[157] J. S. Bowen and R. A. Millikan, The series spectra of two-valence-electron atoms of phosphorus (P IV), sulphur (S V) and chlorine (Cl VI). Phys. Rev. (2) 25 p. 591-599 (1925).

[158] M. Czerny, Messungen im Rotationsspektrum im langwelligen Ultrarot. Zs. f. Phys. 34 p. 227-244 (1925).

[159] H. Deslandres, Recherches complémentaires sur la structure et la distribution des spectres de bandes. C. R. 181 p. 265-271 (1925).

[160] W. D. Harkins and S. B. Stone, The isotopic composition of the element chlorine in the meteorites: the atomic weight of meteoric and terrestrial chlorine. Proc. Nat. Acad. 11 p. 643-645 (1925).

[161] F. Holweck, Determination précise de fréquences charactéristiques des atomes dans le domaine spectral compris entre la lumière et les rayons x. J. chim. phys. 22 p. 432-433 (1925).

[162] F. Holweck, Mesures précises des fréquences spectrales dans le domaine des radiations comprises entre la lumière et les rayons x. (Discontinuité L_m de Cl, S, P, Si, Al.) C. R. **180** p. 658—661 (1925).

[163] J. Hopfield, Series and multiplets in sulfur and chlorine (Abstr.). Phys. Rev. (2) 26 p. 282-283 (1925).

[164] E. C. Kemble, The application of the correspondence principle to degenerate systems and the relative intensities of band lines. Phys. Rev. (2) 25 p. 1–22 (1925).

[165] O.Laporte, Some remarks on primed terms in the spectra of the lighter elements. J. Wash. Acad. 15 p. 409-413 (1925).

[166] E. B. Ludlam und W. West, The ultra violet emission spectra of the halogens. Proc. Edinb. 44 p. 185-196 (1924).

[167] R. A. Millikan and J. S. Bowen, The series spectra of three-valence electron atoms of phosphorus (P III), sulphur (S IV) and chlorine (Cl V). Phys. Rev. (2) **25** p. 600-605 (1925).

[168] F. L. Mohler, Relative production of the negative and positive ions by electron collisions. Phys. Rev. (2) 26 p. 614—624 (1925).

[169] W. A. Noyes, A study of the luminous discharge in chlorine. The electron affinity of halogen molecules. J. Amer. Chem. Soc. 46 p. 1598—1606 (1924).

[170] B. B. Ray, On the dependence of the K_{α} -doublet with different chemical compounds. Phil. Mag. (6) 49 p. 168—170 (1925).

[171] Y. Sugiura, Sur les spectres du lithium ionisé. J. d. Phys. (6) 6 p. 322-333 (1925).

[172] S. K. Allison, Note on the LII, LIII levels of the atoms Si, P, S, Cl. J. Wash. Acad. 16 p. 7-10 (1926).

[173] Kwan-ichi Asagoe, Large displacements of the spectral lines of chlorine. Mem. Coll. Sc. Kyoto A 10 p. 15-23 (1926).

[174] T. L. de Bruin, Bemerkungen über einige Gesetzmäßigkeiten in den Bogenspektren von Fluor und Chlor. Zs. f. Phys. 39 p. 869-876 (1926).

[175] D. G. Bourgin and E. C. Kemble, The intensities of the lines in the HCl absorption band at 3.5μ . Phys. Rev. (2) 27 p. 802 (1926).

[176] K. Gleu, Die Lichtemission beim Zerfall von Chlorazid. Zs. f. Phys. 38 p. 176-201 und p. 947 (1926).

[177] H. C. Hicks and A. C. G. Mitchell, The specific heat and entropy of hydrogen chloride derived from infra-red band spectra. J. Amer. Chem. Soc. 48 p. 1520-1527 (1926).

[178] F. A. Jenkins, The line spectra of isotopes. Nat. 117 p. 893 (1926).

[179] E. C. Kemble, On the energy required to split HCl into atomic ions. J. Opt. Soc. Amer. 12 p. 1-15 (1926).

[180] E. C. Kemble and D. G. Bourgin, Relative intensities of band lines in the infra-red spectrum of a diatomic gas. Nat. 117 p. 789 (1926).

[181] Heinrich Kuhn, Absorptionsspektra und Dissoziationswärme von Halogenmolekülen. Zs. f. Phys. 39 p. 77-91 (1926).

[182] C. W. Leifson, Absorption spectra of some gases and vapours in the Schumann region. Astrophys. J. 63 p. 73-89 (1926).

[183] L. B. Loeb, The mobility of gas ions in HCl mixtures and the nature of the ion. Proc. Nat. Acad. **12** p. 35-42 und 42-48 (1926).

[184] R. A. Morton and R. W. Riding, Refractivity, ionization potentials and absorption spectra. Phil. Mag. (7) 1 p. 726-731 (1926).

[185] Gisaburo Nakamura, The absorption of jodine vapour. The analysis of the band spectra of jodine, bromine and chlorine. Mem. Coll. Kyoto A 9 p. 315-364 (1926).

[186] James A. Swindler, The effects of changes in potential and frequency on the line spectrum of certain gases. Phys. Rev. (2) 28 p. 1136-1146 (1926).

[187] Louis A. Turner, The arc spectra of jodine, bromine and chlorine in the Schumann region. Phys. Rev. (2) 27 p. 397-406 (1926).

[188] K. L. Wolf, Bemerkungen zu den kontinuierlichen Absorptions- und Emissionsspektren der Halogene. Zs. f. Phys. 35 p. 490-494 (1926).

[189] S. Aoyama, K. Kimura und Y. Nishina, Die Abhängigkeit der Röntgenabsorptionsspektren von der chemischen Bindung. Zs. f. Phys. 44 p. 810-833 (1927).

[190] R. M. Badger, Absolute intensities in the hydrogen chloride rotation spectrum. Proc. Nat. Acad. 13 p. 408-413 (1927).

[191] H. A. Barton, Ionization in hydrogen chloride vapour. Nat. 119 p. 197-198 (1927).

[192] W. H. Bennet and F. Daniels, Infra-red absorption spectra. II. The chloracetic acids. J. Amer. Chem. Soc. 49 p. 50-57 (1927).

[193] L. et E. Bloch, Spectres d'étincelle du chlore. Ann. de Phys. (10) 8 p. 397-432 (1927).

[194] L. et E. Bloch, Sur la fluorescence du chlor et du brome. C. R. 184 p. 744-746 (1927).

[195] D. G. Bourgin, Line intensities in the hydrogen chloride fundamental band. Phys. Rev. (2) 29 p. 794-816 (1927).

[196] T. L. de Bruin, Note on regularities in the spectra of fluorine and chlorine. Proc. Acad. Amsterd. **30** p. 20-24 (1927).

[197] M. Czerny, Die Rotationsspektren der Halogenwasserstoffe. Zs. f. Phys. 44 p. 235-255 (1927).

[198] M. Czerny, Die Darstellung der ultravioletten Absorptionsspektra der Halogenwasserstoffe nach der Schrödingerschen Theorie. Zs. f. Phys. 45 p. 476-483 (1927).

[199] G. E. Gibson and H. C. Ramsperger, Band spectra and dissociation of jodine monochloride. Phys. Rev. (2) **30** p. 598-607 (1927).

[200] Francis A. Jenkins, The line spectra of the isotopes of mercury and chlorine. Phys. Rev. (2) 29 p. 50-58 (1927).

[201] G. Kornfeld und W. Steiner, Die Lichtabsorption in trockenem Chlor. Zs. f. Phys. 45 p. 325-330 (1927).

[202] M. Miyanishi, Spectra of various metals emitted from arcs in chlorine atmosphere. Jap. J. of Physics 4 p. 119-132 (1927).

[203] O. Stelling, Über den Zusammenhang zwischen chemischer Konstitution und K-Röntgenabsorptionsspektren (1. Mitt.). Zs. f. anorg. u. allgem. Chem. **131** p. 1023 (1927).

[204] O. Stelling, Beitrag zur Kenntnis des Zusammenhanges zwischen chemischer Konstitution und K-Röntgenabsorptionsspektren. V. Untersuchungen einiger Chlorverbindungen. Chem. Ber. **60** p. 650—655 (1927).

[205] Georges Vaudet, Spectre d'étincelle du chlore et du brome dans la région Schumann. C. R. 188 p. 1270-1272 (1927).

[206] L. et E. Bloch, Sur les spectres d'étincelle du chlore et de brome. Ann. de Phys. (10) 9 p. 554-555 (1928).

[207] D. G. Bourgin, An approximation method and application to some HCl bands. Phys. Rev. (2) 32 p. 237-249 (1928).

[208] J. S. Bowen, Series spectra of chlorine, Cl II, Cl III, Cl IV and Si II, P III and S IV. Phys. Rev. (2) **31** p. 34-38 (1928).

[209] J. S. Bowen, Series spectra of potassium and calcium. Phys. Rev. (2) **31** p. 497-502 (1928).

[210] T. L. de Bruin, Recherches sur la structure de quelques spectres en rapport aux considérations théoriques récentes. Arch. Néerl. (3 A) **10** p. 70–153 (1928).

[211] T. L. de Bruin und C. C. Kiess, Series in the arc spectrum of chlorine. Science N.S. 68 p. 356-357 (1928).

[212] A. Carreli, P. Pringsheim und B. Rosen, Über den Ramaneffekt an wässerigen Lösungen und über den Polarisationszustand der Linien des Ramaneffektes. Zs. f. Phys. 51 p. 511 --519 (1928).

[213] D. M. Dennison, Shape and intensities of infra-red absorption lines. Phys. Rev. (2) 31 pp. 503-519 (1928).

[214] M. J. Druyvesteyn, Het Röntgenspectrum van de tweede Soort. Diss. Groningen p. 100 (1928).

[215] A. Elliot, The isotope effect in the spectrum of chlorine. Nat. 122 p. 997 (1928).

[216] J. Franck und G. E. Gibson, Notiz über die Auslöschung der D-Linien in Flammen durch Chlorzusatz. Zs. f. Phys. 50 p. 691 (1928).

[217] G. E. Gibson, Der Isotopeneffekt bei Jodmonochloridbanden in der Nähe der Konvergenz. Zs. f. Phys. 50 p. 692-696 (1928).

[218] E. Hutchisson, The molecular heat and entropy of hydrogen chloride calculated from band spectra data. J. Amer. Chem. Soc. **50** p. 1895—1900 (1928).

[219] V. Kondratjew und A. Leipunski, Rekombinationsleuchten der Halogene. Zs. f. Phys. 50 p. 366-371 (1928).

[220] Herbert W. Kursmann, Die Verbreiterung der HCl-Rotationslinien durch Fremdgase. Zs. f. Phys. 48 p. 831-844 (1928).

[221] O. Laporte, The arc spectrum of chlorine. Nat. 121 p. 1021 (1928).

[222] J. M. Nuttall, The K-absorption edge of potassium and chlorine in various compounds. Phys. Rev. (2) **31** p. 742-747 (1928).

[223] Y. Ota and Y. Ushida, Studies on the emission band spectrum of chlorine. Japan. J. of Physics 5 p. 53-58 (1928).

[224] O. Stelling, Über den Zusammenhang zwischen chemischer Konstitution und K-Röntgenabsorptionsspektren. Zs. f. Phys. **50** p. 506—530 (1928).

[225] O. Stelling, Röntgenabsorptionsspektren und chemische Bindung. Zs. f. Elektrochem. 34 p. 520-522 (1928).

[226] Earl D. Wilson, Absorption band spectrum of jodine monochloride. Phys. Rev. (2) 32 p. 611-617 (1928).

[227] Kwan-ichi Asagoe, Stark effect for the spectral lines of chlorine, jodine and bromine. Sc. Pap. Inst. Phys. Chem. Res. Tokyo 11 p. 243-250 (1929).

[228] S. B. Bonino, Bemerkungen über das Ultrarotspektrum einiger Halogenverbindungen. Zs. f. Phys. 54 p. 803—805 (1929).

[229] Br. A. Brice and F. A. Jenkins, A new band system probably due to singly ionized HCl. Phys. Rev. (2) 33 p. 1090-1091 (1929).

[230] Brooks A. Brice and F. A. Jenkins, A new ultra-violet band spectrum of hydrogen chloride. Nat. 123 p. 944 (1929).

[231] W. F. Colby, Analysis of the HCl bands. Phys. Rev. (2) 34 p. 53-56 (1929).

[232] P. Daure, Contribution expérimentale à l'étude de l'effet Raman. Thèses, Serie A Nr. 1217 pp. 72 Paris (1929) und Ann. d. phys. (10) 12 p. 375-441 (1929).

[233] S. Ch. Deb, Structure of the trebly ionized chlorine. Nat. 124 p. 513 (1929).

[234] G. H. Dieke, Difference between the absorption and the Raman spectrum. Nat. 123 p. 569 (1929).

[235] J. L. Dunham, Intensities in the harmonic band of hydrogen chloride. Phys. Rev. (2) **34** p. 438-452 (1929).

[236] A. S. Elliott, The absorption band spectrum of chlorine. Proc. Roy. Soc. A 123 p. 629-644 (1929).

[237] A. E. Gillam and R. A. Morton, The absorption spectra of halogens and inter-halogen compounds in solution in carbon tetrachloride. Proc. Roy. Soc. A **124** p. 604—616 (1929).

[238] J. Gilles, Sur la trajectoire 3d dans les atomes ionisés P II, S II, S III et Cl III. Quadruplets de Cl III. C. R. **188** p. 1158-1160 (1929).

[239] C. F. Goodeve and C. P. Stein, The absorption spectrum of chlorine dioxide. Trans. Farad. Soc. 25 p. 738-751 (1929).

[240] E. L. Hill and E. C. Kemble, On the Raman effect in gases. Proc. Nat. Acad. 15 p. 387-392 (1929) und Phys. Rev. (2) 33 p. 1096 (1929).

[241] E. C. Kemble and E. L. Hill, Note on the Raman effect in gases. Phys. Rev. (2) 33 p. 1096 (1929). (Abstr.)

[242] C. C. Kiess and T. L. de Bruin, The arc spectrum of chlorine and its structure. Bur. of Stand. Res. Pap. No. 2 p. 1117-1136 (1929).

[243] E. B. Ludlam, Band spectrum of chlorine or hydrogen chlorine. Nat. 123 p. 86-87 und 414 (1929).

[244] E. B. Ludlam, H. G. Reid and G. S. Sontar, The hydrogen-chlorine flame. Proc. Edinb. 49 p. 156-159 (1929).

[245] K. Majumdar, The arc spectrum of chlorine. Nat. 123 p. 131 (1929).

[246] K. Majumdar, The arc spectrum of chlorine. Proc. Roy. Soc. A 125 p. 60-67 (1929).

[247] K. Majumdar and S. C. Deb, On the spectrum of doubly ionised chlorine (Abstr.). Ind. J. of Phys. 3 p. 445-450 (1929).

[248] A. H. Marwin, Combination bands in the infra-red spectra of CCl₄ and SiCl₄. Phys. Rev. (2) 33 p. 952-953 (1929).

[249] Charles F. Meyer and Aaron A. Levin, On the absorption spectrum of hydrogen chloride. Phys. Rev. (2) **34** p. 44-52 (1929).

[250] L. Néel, Action du champ magnétique sur quelques raies d'étincelle du spectre du chlore. J. d. Phys. et le Rad. (6) 10 p. 27 (1929).

[251] E. O. Salant and A. Sandow, Raman scattering from HCl liquid. Science (N.S.) 69 p. 357 (1929).

[252] E. O. Salant, Raman effect for HCl liquid. Phys. Rev. (2) 33 p. 1096 (1929).

[253] G. Scheibe, Die Absorption der Halogenionen in wässerigen Lösungen im beginnenden Schumann-Ultraviolett. (Elektronenaffinitätsspektren). Zs. f. phys. Chem. B 5 p. 355-364 (1929).

[254] O. Stelling, Über die K-Röntgenabsorptionsspektren einiger Chlorverbindungen in wässeriger Lösung. Naturw. 17 p. 689 (1929).

[255] H. C. Urey and J. R. Bates, The recombination spectra of the halogens. Phys. Rev. (2) 33 p. 279 (1929).

[256] H. C. Urey and J. R. Bates, The continuous spectra of flames containing the halogens. Phys. Rev. (2) 34 p. 1541-1548 (1929).

[257] R. W. Wood, Raman lines from hydrochloric acid gas. Nat. 123 p. 166 (1929).

[258] R.W. Wood, The Raman effect in gases. Part I. HCl and NH₃. Phil. Mag. (7) 7 p. 744-749 (1929) und Phys. Rev. (2) **33** p. 1097 (1929).

[259] R. W. Wood, The Raman effect with hydrochloric acid gas: The "missing line". Nat. 123 p. 279 (1929).

[260] H. Becker, Direkte Messung der Form und Breite ultraroter Spektrallinien. Zs. f. Phys. 59 p. 583-600 (1930).

[261] H. Becker, Ein drittes Chlorisotop. Zs. f. Phys. 59 p. 601-602 (1930).

[262] S. Bhagavantam, Raman spectra of some elements and simple compounds. Ind. J. of phys. 5 p. 35-48 (1930).

[263] Raymond T. Birge, The vibrational isotope effect. Phys. Rev. (2) 35 p. 133 (Abstr.) (1930).

[264] H. Cordes und H. Sponer, Die Molekülabsorption des Chlors, Broms, Jodchlorids und des Bromids im äußersten Ultraviolett. Zs. f. Phys. 63 p. 334-345 (1930).

[265] A. Dadieu und K. W. F. Kohlrausch, Das Ramanspektrum organischer Substanzen (Halogenderivate). Wien. Ber. **139** II a p. 717-737 (1930).

[266] J. L. Dunham, The isotope effect on band spectrum intensities. Phys. Rev. (2) 36 p. 1553-1559 (1930).

[267] J. L. Dunham, Intensities of vibration-rotation bands with special reference to those of HCl. Phys. Rev. (2) 35 p. 1347-1354 (1930).

[268] A. E. Elliot, The absorption band spectrum of chlorine. Proc. Roy. Soc. A 127 p. 638-657 (1930).

[269] A. E. Elliott, The band spectrum of chlorine. Nat. 126 p. 133 (1936).

[270] C. F. Goodave and Janet J. Wallace, The absorption spectrum of chlorine monoxide. Trans. Faraday Soc. 26 p. 254-260 (1930).

[271] M. Kulp, Analyse und Deutung der ultravioletten Salzläurebande. Zs. f. Phys. 67 p. 7-23 (1931).

[272] M. Kulp, Analyse der ultravioletten Salzsäurebanden. Physik. Zs. 31 p. 959-960 (1930).
 [273] M. Kulp, Ultraviolette Salzsäure-Emissionsbanden. Naturw. 18 p. 719 (1930).

[274] R. S. Mulliken, Electronic states in the visible halogen bands. Phys. Rev. (2) 36 p. 699-705 (1930).

[276] K. Murakawa, Spectrum of singly ionized chlorine (Cl II). Scient. Pap. Inst. phys. chem. Res. 15 p. 41-67 (1930).

[277] O. Stelling und F. Olsson, Röntgenspektroskopische Untersuchungen zur Kenntnis der Chlorsalze. Zs. f. phys. Chem. B. 7 p. 210-225 (1930).

[278] O. Stelling, Über das K-Röntgenabsorptionsspektrum von Chlor in raum-isomeren organischen Verbindungen. Zs. f. phys. Chem. B. 7 p. 325—326 (1930).

[279] O. Stelling, Zusammenhang zwischen chemischer Konstitution und K-Röntgenabsorptionsspektren. Zs. f. Elektrochem. **36** p. 605-611 (1930).

[280] R. Tréhin, Sur l'absorption des solutions aqueuses d'acide chlorhydrique dans l'ultraviolet. C. R. 191 p. 774-776 (1930).

[282] G. B. Deodhar, Some investigations in Röntgen-spectra. Part. I. X-ray spark lines. Proc. Roy. Soc. A. 131 p. 633-647 (1931).

[283] A. K. Dutta and M. N. Saha, Absorption spectra of saturated chlorides of multivalent elements. Nat. 127 p. 625-626 (1931).

[284] W. Finkelnburg und H. S. Schumacher, Das Spektrum und das photochemische Verhalten des Chlordioxyds. Zs. f. phys. Chem. B. (Bodenstein-Festband) p. 704-716 (1931).

[285] W. Finkelnburg, H. S. Schumacher und G. Stieger, Das Spektrum und der photochemische Zerfall des Chlormonoxyds. Zs. f. phys. Chem. B. 15 p. 127-156 (1931).

[286] O. R. Ford, Survey of the satellites of the $K_{a_1, \frac{1}{2}}$ doublet, the K_{β_1} and K_{β_2} lines. Phys. Rev. (2) **37** p. 1695 (1931).

[287] G. Hettner, Eine Doppelbande des festen Chlorwasserstoffs. Naturw. 19 p. 815 (1931).

[288] G. Hettner und J. Böhme, Das Chlorisotop Cl39. Zs. f. Phys. 72 p. 95-101 (1931).

[289] G. Hettner und J. Böhme, Das Chlorisotop mit der Kernmasse 39. Naturw. 19 p. 252 (1931) und Zs. f. Phys. 72 p. 95-101 (1931).

[290] K. Murakawa, Funkenspektrum des Chlors (Cl II). Zs. f. Phys. 69 p. 507-514 (1931).

[291] K. Murakawa, Note on the spark spectra of chlorine. Sc. Pap. Inst. Phys. Chem. Res. Tokyo 15 p. 105-109 (1931).

[292] E. O. Salant and A. Sandow, Modified scattering by hydrogen halides. Phys. Rev. (2) 37 p. 373-378 (1931).

[293] E. O. Salant and W. West, Absorption bands of hydrogen halides in the liquid state. Phys. Rev. (2) 37 p. 108-109 (1931).

[294] S. Tolansky, Anomale Feinstruktur und Isotopenverschiebung im Cl⁺-Spektrum. Zs. f. Phys. 73 p. 470-475 (1931).

[295] R. Trehin, L'absorption de la lumière par les solutions d'acide chlorhydrique. J. de phys. et le Rad. (7) 2 p. 219-229 (1931).

[296] H. C. Urey and H. Johnston, Absorption spectrum of chlorine dioxide. Phys. Rev.
 (2) 38 p. 581-582 und p. 2131-2153 (1931).

[297] L. A. Woodward, Ramaneffekt und elektrolytische Dissoziation. Phys. Zs. 32 p. 212 ---214 (1931).

[298] R. S. Mulliken, Interpretation of band spectra. Part III. Rev. of mod. phys. 4 p. 1-86 (1932).

[299] S. Tolansky, Die g(I)-Faktoren der Kerne Chlor, Phosphor, Aluminium. Zs. f. Phys. 74 p. 336-344 (1932).

Die Kenntnis der Chlorspektren ist seit 1920 sehr erweitert worden; hat man doch Linien von 7 verschiedenen Ionisationsstufen herausfinden können.

Jevons [133] hat zuerst neue Messungen im Funkenspektrum zwischen λ 3353 und 2070 gemacht. Er benutzt ein Geißlerrohr mit Goldelektroden, sowie verschiedene Kondensatoren und Funkenstrecken. Photographiert wird mittels 10-Fuß-Gitter und unter λ 2403 mit einem Quarzapparat; als Normalen dienen Eisenlinien und unter λ 2320 Cu-Linien nach Hasbach. Seine Versuche, Bogen und Funken zu trennen oder Gesetzmäßigkeiten zu finden, gelingen nicht. — Eine ähnliche Untersuchung führt Angerer [139] durch. Er benutzt dieselben Normalen, aber nur Quarzspektrograph. Die Messungen reichen von λ 3522 bis 2065. Auch diese Arbeit bringt keine Einordnung.

Erst Paschen [137] ordnet eine Anzahl Linien, und Catalán [129] bemerkt ein diffuses Triplett.

Danach beginnt eine neue Periode der Untersuchung durch Millikan und Bowen. Nachdem sie [149] mit Hilfe des "hotspark" das Cl-Spektrum zwischen λ 1832 und 528 festgestellt haben, wird ein Paar von Cl VII gefunden [155], dann Linien von Cl VI [156], und von Cl V [167]. Dazu fügt später Bowen [208, 209] zahlreiche eingeordnete Linien von Cl II, Cl III, Cl IV, und zeigt, daß einige Linien, die Turner in Chlor erhalten hatte [187], zu Cl I gehören. Inzwischen haben L. und E. Bloch ihr Verfahren, die Länge der Linien bei der elektrodenlosen Ringentladung zu messen und dadurch die Ionisationsstufen zu trennen, auch auf Cl angewandt und umfangreiche Tabellen von Cl II und Cl III gegeben [153, 194, Korrektur 206]. Die Spektren beginnen mit λ 6850, reichen bis λ 2234.

Dasselbe Prinzip verwendet Sugiura [171]: Bei Untersuchung für Li II in Hohlkathode erhält er die Linien von Cl und teilt sie nach der Länge in 2 Klassen, die also Cl II und Cl III entsprechen sollen. Im allgemeinen stimmen seine Angaben mit denen von Bloch überein. Da aber seine Messungen sehr roh sind (angebliche Fehlergrenze 0.5 A) und er nur wenige Linien gemessen hat, berücksichtigen wir seine Angaben nicht in der folgenden Tabelle.

Wenn bei den höheren Ionisationsstufen mehr oder weniger Linien durch Bowen und Millikan eingeordnet waren, so fehlte das bisher bei Cl I vollständig; das wurde anders, als de Bruin zuerst allein, dann mit Kiess die Untersuchung aufnahm [196, 174, 210, 211, 242]. Namentlich durch die Auffindung einer starken ultraroten Gruppe durch Kiess fand die Forschung eine erhebliche Förderung, so daß das Spektrum Cl I heute am besten erforscht ist. Dazu kommt noch eine Arbeit von Majumdar [246], der eine Anzahl von Linien einordnet. Vorher [245] hatte er eine Angabe von Laporte, der Linien von Asagoe [173] einordnet, für falsch erklärt.

Zu den Spektren von Cl kommt noch die Angabe von Deb [233], daß ihm Einordnungen im Spektrum von Cl IV gelungen seien, und eine Arbeit von Majumdar und Deb [246], welche Einordnung von 30 Linien bei Cl III enthält. - Die eben erwähnte Abhandlung von Asagoe gehört zwar nach ihrem Inhalt nicht direkt hierher, sei aber doch hier mit besprochen. Schon Eder und Valenta haben hervorgehoben, daß die Linien von Chlor sich sehr leicht bei höheren Drucken verbreitern, aber in verschiedenem Maße. Dasselbe findet Asagoe [173]; er mißt den "Schwerpunkt" der verbreiterten Linien, und spricht von einer Rotverschiebung derselben. Er teilt ferner die Linien in drei Klassen: die der ersten Klasse sollen um 0.1 bis 0.3 A "verschoben" sein, bei einer Verbreiterung auf etwa 1.5 A; die der zweiten Klasse sollen um 0.1 bis 0.7 A verschoben sein bei einer Verbreiterung auf 2 bis 3 A, die der dritten Klasse endlich um 0.8 bis 2.0 A bei einer Verbreiterung bis auf 4 A. Neue Messungen macht Asagoe nicht, sondern nimmt gemischt Zahlen von Eder und Valenta (Rowlandsches System) und Jevons (Internat. System). Seine Zahlen sind also in der Tabelle nicht angeführt. Ein Vergleich der Klassen mit der anderweitig bekannten Ordnung zeigt, daß seine erste Klasse nur Linien von Cl I enthält, die beiden anderen jedoch ein Gemisch von Linien von Cl II und Cl III sind. Asagoe meint, die "Verschiebung" beruhe auf Starkeffekt.

In einer weiteren Untersuchung [181] beobachtet Asagoe die in [148] durch Druck stark verbreitert gefundenen Linien in starken elektrischen Feldern (150 kV/cm) und findet seine Annahme, daß der interatomare Starkeffekt für die starke Verbreiterung bezw. "Rotverschiebung" der Bogenlinien des Chlors und die schwächere der Funkenlinien verantwortlich zu machen sei, voll bestätigt. Ähnliche Beobachtungen und Erklärungen gibt Miyanishi [202], der Linien von Hg, Cd, Zn, Mg, Ca, Sr und Ba in Bogen in Chloratmosphäre untersucht.

Eine ganz ähnliche Untersuchung hatte vorher Lunt [147] ausgeführt, nur daß er "Verschiebung" durch verschiedene Entladungsart findet, und sie durch gesteigerte Temperatur erklären will. Er gibt eine Gruppe von Linien zwischen 4276 und 4225 an, die eine Verschiebung von 0.8 A zeigt, während dazwischenliegende andere Linien um 0.14 A wachsen. Eine andere Gruppe zwischen λ 3917 und 3798 hatte 0.43 A Verschiebung. Die Messungen für die "unverschobenen" Linien sind in die Tabelle aufgenommen. — Sowohl Lunt als Asagoe veröffentlichen Photographien, die nur zeigen, daß es sich um so breite und diffuse Linien handelt, daß eine Messung ausgeschlossen erscheint. Wir verweisen auf die Ausführungen in diesem Handbuch Band II p. 348ff., und die Fig. 1 auf Taf. 3 daselbst, welche Lunts Gruppe 3917—3798 zeigt.

Damit sind alle Arbeiten erwähnt, welche Messungen und Ordnungsversuche enthalten, und es seien nun die Resultate in den folgenden Tabellen zusammengestellt.

Cl I. Siebenvalenzelektronensystem mit Dubletts und Quartetts. Die Anregungsspannung beträgt etwa 8.95 Volt [163, 169]. Im wesentlichen liegt nur die Messung und Einordnung von Kiess und de Bruin [242] vor, daneben noch Angaben über einzelne Linien von Majumdar [247] und Turner [187]. Die Angaben von Majumdar sind zweifelhaft; er scheint mehrfach Linien von Cl II genommen zu haben. Eine Anzahl von Linien läßt sich natürlich aus den alten Messungen von Eder und Valenta [49] herausfinden.

Tabelle 1. Cl I.

nach [242]	$\begin{array}{c} {\rm nach} \ [247] \\ {\rm Elektronenkonfiguration} \\ 4 {\rm M_2(N_1 \leftarrow N_2)} \end{array}$		Kiess de Br [242	und uin]	Majumdar [247]
$4s^{2}P_{1}$ — $4p^{2}D_{2}$	a shee Rot-rechtebrer	9876	08	1	antri-Hadre
$4s^{4}P_{1}$ — $4p^{4}P_{2}$	a mu mile-markit inder	9702	30	1	the metter I als
$4s{}^{2}P_{2}$ — $4p{}^{2}D_{3}$	-	9592	25	2	
$4s^{4}P_{2}$ — $4p^{4}P_{3}$		84	80	0	-
$4s^{4}P_{1} - 4p^{4}P_{1}$		9486	88	0	
$4s^{2}P_{1}$ — $4p^{2}P_{2}$	A the do-article and	52	06	3	1.010-01010
$4s^{4}P_{2}$ $-4p^{4}P_{2}$	Neht Zahle- vie Edel	9393	85	1	fain - naad
$4s^{2}P_{2}$ — $4p^{2}D_{2}$		9288	84	4	-
$4s^{2}P_{1}$ — $4p^{4}S_{2}$		9197	47	1	-
$4s^{4}P_{2}$ $-4p^{4}P_{1}$	-	91	71	5	-
$4s^{4}P_{3}$ — $4p^{4}P_{3}$	De manouro - dora nastra	21	12	8	
$4s^{2}P_{1}$ — $4p^{2}S_{1}$		9073	17	6	120 - 12.01
	-	69	68	4	- 1.14
$4s^{2}P_{1}$ — $4p^{2}P_{1}$	-	45	43	7	-
	-	38	98	5	-
$4s^{4}P_{3}$ — $4p^{4}P_{2}$	-	8948	01	10	_
$4s^{2}P_{2}$ — $4p^{2}P_{2}$	_	12	90	8	_
$4p {}^{4}D_{2} - 3d {}^{4}D_{3}$	C all and the loost said	8846	07	0	No. 2010 02001
4x22-5x26	of the to-induce an	8711	45	0	
		8696	-		6.8 0
$4s^{2}P_{2}$ — $4p^{4}S_{2}$		86	30	8	
Jacobs Land Them Chill	⁴ P ₁ — ⁴ D ₂	76	-		6.7 5
$4 p {}^{4}D_{3} - 3 d {}^{4}D_{4}$	1. / 4. (c) 10 - X (c) 18 (c) 10	41	80	0	198 -
$4 x 21 - 5 p^{2} D_{2}$	John State - abaitad ou	28	58	0	Inida - Van
and how the approve	instant and Teners I taken	8589	08	0	and and a
$4 s {}^{4}P_{2} - 4 p {}^{4}D_{3}$	⁴ P ₂ — ⁴ D ₃	85	99	15	5.2 4
$4 p {}^{4}D_{3} - 3 d {}^{4}D_{3}$	-	77	95	1	-
$4s^{4}P_{1} - 4p^{4}D_{2}$	4P4D.	75	97	19	55 9
$4s^{2}P_{2}$ — $4p^{2}S_{1}$ J					0.0 2
$4s^{2}P_{2}$ — $4p^{2}P_{1}$	adalar da ta angente	50	50	4	temp + ogb/
$4p *D_3 - 3d *D_2$	and molait worthin batter	8497	30	0	Dala-control
$4p^{4}D_{4}$ $-3d^{4}D_{4}$	and the second second	67	32	4	
$4s*P_1 - 4p*D_1$	^a P ₂ — ^a D ₂	28	27	15	8.6 3
$4p*D_4 - 3d*D_3$	-	06	14	1	-
$4s*P_3 - 4p*D_4$	*P ₃ -*D ₄	8375	97	20	6.3 9
$4s*P_2 - 4p*D_2$	*P2-*D1	33	31	15	3.9 14
$4p * P_2 - 0s * P_2$	have been the states	04	65	0	n, in st adda
	_	8286	54	0	
4p*D ₃ —5x25	a start of the	80	82	0	- 100
La Standard Standard	All Andrews The sale March 1	78	64	0	AND TO SAL
4n2D 0.14E	and and real and in the	68	98	0	The
4p*r ₂ -3d*r ₃	_	67	39	0	-
4:4D (n°D)		80	30	0	
$48^{1}2^{-4}p^{-0}3$		21	16	12	Billion - Steel
$48^{4}P_{1}$ $4p^{4}D_{2}$	40 40	20	40	8	10
45-13-4h-D3	·T ₃ —·D ₃	12	03	10	1.3 12
And the second sec	and the second second	03	00	T	20 1
		02			2.0

• \

-				
	1.1			
£.,	n			с
~		**	~	•

nach [242]	20	nach [24 Elektronenkonf 4M₂(N₁←	7] iguration N ₂)		Kiess de F [24	und Bruin 42]	Majumd [191]	ar
4x99-5n2P.	12	Mat		8200	23	5	State -	
$4x21-5p^{2}P_{1}$	69.4	_		8199	06	5	-	
$4s^{4}P_{-}-4n^{4}D_{-}$		_		94	39	7	-	
$4n^{4}D_{2} - 5x^{2}5$	21	_	1.5.1.1	70	02	0		
4p D2 0410	22	_		48	74	0	-	
		_		8094	75	0	-	
$4x23-5p^{2}S_{1}$	22.1	-		87	66	2	7.6	3
	21	-		86	71	8	-	
$4x22-5p^{2}S_{1}$	22.1	-		85	57	6		
$4x21-5p^{2}S_{1}$		-		84	51	4	-	
		- 1		51	03 .	2	-	
To MR - CO.		-	*	23	31	2	-	
$4x23-5p^{2}P_{2}$	21	-		17	54	1	-	
$4x22-5p^{2}P_{2}$	1	-		15	58	4	-	
$4s^{4}P_{2}$ - $4p^{2}D_{2}$		-		7997	84	6	100	12-1
$4s^{4}P_{3}$ - $4p^{4}D_{2}$	1	-		80	61	1	-	
$4p^{4}P_{1}$ -3d ⁴ D ₂		-		76	97	3	-	
-		-		74 .	74	2	-	
-		- 1		52	54	1	100	
4x21-5x25		-		35	01	2	-	
4x22-5x25		-		33	88	4	-	
$4s^{4}P_{1}$ $-4p^{2}P_{2}$		- 1		24	67	8	-	
$4p^{4}P_{1}$ -3d ⁴ D ₁		-		15	10	3	-	
$4p^{4}P_{2}$ 3d ⁴ D ₃	18	- 12		7899	36	5	-	
10 10 - C.C.		- 1		83		-	3.5	0
$4s^{4}P_{3}$ - $4p^{2}D_{3}$		-		78	24	8	-	
-		- 1		40	66	0	-	
$4p^{4}P_{2}$ 3d ⁴ D ₂				30	79	4	-	0
-		- 04		20	00		0.4	0
$4p^4P_3 - 3d^4D_4$		- 00		21	39	6	- 22 x 2	
-			1	71	12	0		
$4p^{4}P_{2}-3d^{4}D_{1}$		16 -		(1 60	13	1	S.C. A.E.	
$4p^{4}P_{3}$ 3d^{4}D_{3}			1991 242	59	18	4	87	1
		40 4	0	44	00	10	5.5	1
4s ⁴ P ₁ -4p ⁴ S ₂		*P1-*	51	90	90	10	0.0	0
		1 63	-	17	60	- 0	0.0	0
$4s^{*}P_{2}-4p^{*}P_{2}$				02	87	1		
$4p^{4}P_{3}-3d^{4}D_{2}$				7692	94	0	Proventer .	
$4p^*D_2 - 6s^*P_2$		318		72	16	5		
4s*P ₃ -4p*D ₂				59	47	0		
4.40 4.20		30		56	89	0		*
45-P1-4p-51		A BOOK		7561	19	0	_	
Ac4D 4n49		4D. 4	S.	47	09	12	7.2	1
$48 P_2 - 4p S_2$ 4p 4D - 6e 4D		12	~2	7492	10	3		
$4p \cdot D_4 = 0s \cdot P_3$ $4p \cdot 4D = 6s \cdot 4D$				89	46	2	_	
$4p^{-}D_3 = 0s^{-}F_2$	1							
$4n^{4}D - 3d^{4}F$	}	-		62	40	2	-	
$4p^4D_4 - 3d^4F_5$,	_	00,000	59	46	1	THE CA	
Fansary Vanan	Snakt	l voskopia VIII			1	29	,	

Kayser u. Konen, Spektroskopie. VIII.

	w .	~
Λ.	20.1	
4.	:)	
ж.	~	<u> </u>

nach [242]	nach [247] Elektronenkonfiguration $4M_2(N_1 \leftarrow N_2)$	an Iomridaldi Xo	Kiess und de Bruin [242]	Majumdar [191] _g
$4p^{4}D_{1}-6s^{4}P_{1}$		7454	23 0	
$4s^{4}P_{0}-4p^{2}P_{1}$		44	35 1	-12-1
$4p^4D_4$ $-3d^4F_4$		35	68 2	-ifis -
$4s^{4}P_{3}$ — $4p^{2}P_{2}$	_	14	12 12	- The last
_		7382	50 1	- Orell
$4 p {}^{4}D_{2} - 6 s {}^{4}P_{1}$	-	42	83 1	
$4p 4D_4 - 3d 4F_3$	_	29	36 0	_
$4sP_{3}$ — $4p^{4}S_{2}$	⁴ P ₃ -4S ₉	7256	65 15	6.2 2
_	_ :	44	82 0	
	-	7195	04 1	
_	-	91	52 0	
		7094	29 1	_
$4 p {}^{4}P_{2} - 6 s {}^{4}P_{3}$	_	86	83 3	_
_	-	08	18 1	
-		6995	90 1	
$4 p {}^{4}P_{3} - 6 s {}^{4}P_{3}$	-	81	90 2	
$4p^{4}P_{2}-6s^{4}P_{2}$	-	66	95 1	_
$4 p {}^{4}P_{3} - 3 d {}^{4}F_{4}$	-	32	94 2	-
-	-	6854	50 0	_
$4 p {}^{4}P_{3} - 3 d {}^{4}F_{3}$	_	40	26 1	-
-	-	10	08 1	_
-	-	6709	96 1	
-	-	03	26 1	_
-	-	6687		7.8 1
$4p^{4}P_{2}-6s^{4}P_{1}$	-	78	45 1	_
-	-	61	-	1.9 2
-	-	53	85 0	_
—	-	14	-	4.5 3
-	-	09	30 2	_
$4 p {}^{4}D_{3}$ - $4 d {}^{4}D_{3}$		04	61 2	-
$4 x 22 - 4 d^4 D_3$	-	00	14 0	
—	-	6542	42 2	-
$4p {}^{4}D_{4} - 4d {}^{4}D_{4}$	-	31	43 4	-
$4 p {}^{4}D_{4} - 4 d {}^{4}D_{3}$	-	02	28 1	-
-	-	6487	-	7.1 3
	-	71	60 0	-
Lorent Towners and	-	65	-	5.9 1
-	-	53	34 0	-
$4 p^2 D_3 - 60$	_	50	36 4	-
-	-	34	80 5	-
Teles	-	25	64 2	-
T	-	08	08 1	
There are		6398	64 7	- /
Talla	-	94	77 0	
Trans.		71	48? 0	_
Tent		47	05 1	- T
Time	The second s	41	70 8	-
	-	35	08 0	1)

¹) Lunt [147] gibt diese Linie 6335.5.

nach [242]	n as normality M1	Kiess und de Bruin [242]	Majumdar [191]	
		6321	65 1	
		06	77 0	
_		6291	86 0	-
		80	29 1	
$4p {}^{4}P_{1} - 4d {}^{4}D_{2}$	- 10	52	34 2	
$4 p {}^{4}D_{3} - 60$		42	66 1	-
$4p {}^{4}P_{1} - 4d {}^{4}D_{1}$	-	31	57 2	
		26	48 0	
$4 p^{4} D_{4} - 59$	0010 -	11	61 2	
$4 p {}^{4}P_{2} - 4 d {}^{4}D_{3}$		6194	75 4	
$4p {}^{4}P_{2}$ $- 4d {}^{4}D_{2}$		62	14 3	
$4p {}^{4}P_{2}$ $- 4d {}^{4}D_{1}$	-	41	87 0	-12 19 1
$4p {}^{4}P_{3}$ $4d {}^{4}D_{4}$	- 1100	40	25 6	-197 E
$4 p {}^{4}P_{3} - 4 d {}^{4}D_{3}$	and the set of the set of the	14	41 4	- Part
$4p {}^{4}P_{3}$ $4d {}^{4}D_{2}$	- 4891	6082	63? 0	
		28	38 0	
No A Vac Bas		19	80 1	
		5991	46 0	
-		87	78 0	-
the second second	-	65	74 0	
$4 p^{4} D_{3} - 4 d^{4} F_{4} \\ 4 p^{4} P_{2} - 59 $	-	30	42 1	-
- 1 000104	745	22	31 0	
		13	82 0	a gran
$4p {}^{4}D_{3}$ $4d {}^{4}F_{3}$	_	08	25 0	- 11 T
states to the second second		5866	73 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$4 p {}^{4}P_{3} - 59$		56	74 2	
$4 p {}^{4}D_{4} - 4 d {}^{4}F_{4}$	-	47	74 2	
A 212	-	46	71 2	-10° -
	-	44	27 1	
and the second s	-	42	40 0	-
and the second second	-	39	89 0	-
1 2 1 9 2 7 - 2 3 1 1 5 C		06	86 0	
$4p^{4}P_{3}-60$		02	91 1	-
D1 102.22		01	36 0	-
a	-	5799	94 8	-
	-	96	34 3	-
250 26.00 T 100000		74	84? 0	-
	-	72	65 0	-
4	-	31	07 0	-
	-	26	05 0	-
	-	02	00 00	-
a part - second	-	5686	50 0	
	-	5550	02 0	-
$4p^{a}P_{2}$ — $4d^{a}F_{3}$	-	18	17 0	
	-	40	29 0	
4m4D 4.14E	-	40	16 9	1000
4p*r ₃ -4d*r ₄		02	09 0	
	-	1 20	1 00 0	00#

452

Chlor

nach [242]	nach [247] Elektronenkonfiguration $4M_2(N_1 \leftarrow O_2)$	en annadats Sta	Kiess und de Bruin [242]	Majumdar [191]
12 - 12 - 0		5514	71 9	
$4p^4P_a$ — $4d^4F_a$	_	13	00 2	
-		5493	282 1	
	_	05	74 0	
		04	01 0	- 9°0- 1
- 1. 18	_	5341	04 1	a contraction of the
		30	79 0	ARE
		07	62 0	_
$4s^{2}P_{1}-5x24$		5140	38 1	in the second
$4s^{2}P_{2}$ -5x24	- 819a	4976	65 4	_
$4s^{2}P_{2}$ — $5p^{4}D_{3}$		4852	72 4	
$4s^{2}P_{1} - 5p^{4}S_{2}$	db	18	55 2	
$4s^{2}P_{2}$ — $5p^{4}D_{2}$		4740	68 5	L. C.
$4s^{2}P_{2}$ — $5p^{2}D_{3}$	- 10	21	28 3	-min_
$4s^{2}P_{2}$ — $5p^{4}D_{1}$		4691	54 4	
$4s^{2}P_{2}$ — $5x26$	-	77	76 2	_
$4s^{2}P_{1}$ — $5p^{2}P_{1}$		61	22 8	_
$4s^{2}P_{2}$ — $5p^{2}D_{2}$		54	06 4	_
$4s^{2}P_{1}$ — $5p^{2}S_{1}$		· 23	96 3	
$4s^{2}P_{1}$ — $5p^{2}P_{2}$		01	00 10	_
$4s^{4}P_{1}$ — $5p^{4}P_{2}$	_	4578	18 1	and on
$4s^{2}P_{2}$ — $5p^{2}P_{1}$	_ / _ /	26	21 12	
$4s^{2}P_{2}$ — $5p^{2}S_{1}$	-	4491	08 4	_
$4s^{4}P_{2}-5p^{4}D_{3}$		75	31 6	_
$4s^2P_a$ — $5p^2P_a$	_	69	37 6	
4s4P5p4P1	4P.4P.	46	12 2	6.18 2
$4s^{4}P_{1} - 5p^{4}D_{2}$	4P1_4P	45	82 2	5.93 2
$4s^4P_3$ — $5p^4P_3$		38	48 7	
4s4P3-5p4Pa	-	03	03 6	_
4s ⁴ P ₁ -5p ⁴ D ₁	_	02	52 1	_
4s4P,-5x26	_	4390	38 4	
$4s^{4}P_{9}-5p^{4}D_{4}$. 89	76 12	
4s4P,-5p4S.	4P4S.	87	53 3	7.54 5
$4s^4P_e - 5p^4D_e$	4P4P	79	91 7	991 8
	4P4P.	72		2.95 6
$4s^4P_a$ — $5p^4D_a$	4P,_4D,	71	55 1	1.55 5
$4s^4P_1$ — $5p^2D_2$	-1 -1	69	52 6	1.00 0
$4s^4P_a$ — $5p^2D_a$	4P_4D_	63	30 6	3 31 8
	4P4P.	43		3.66 10
4s4P5p4S.	4P,4D,	23	34 6	3.36 6
	4P4S_	09		9.03 3
_ 0 _ 70	-2 -2	07	_	7.43 6
2.0	4P4P.	4283		845 8
4 0 00	-3 - 2	80		0.10 0
4s4P5n2D	4P4D	64	58 9	4.58 2
-	4P4D	61	00 0	1 19 9
- 1	4P4D	59		3.37 0
4s4P-5n4S	4P_4S	96	43 5	6.47 7
$48^{4}P_{e} - 5n^{2}D_{e}$	13-02	00	67 4	0.41 1
10 13 0P 102		00	01 £	

nach [242]	nach [247] Elektronenkonfiguration $4M_2(N_1 \leftarrow N_2)$		Kiess und de Bruin [242]	1	Turner [187]
_	1 1020 <u>1</u>	4208	00 5	2	2.00
_		4185	52 1	L	-
		4032	19 5	2	
$4s^{4}P_{2}$ — $3p^{2}P_{1}$		1396	-	5	3
$4s^{4}P_{3}$ 3p ² P ₂ ; $4s^{4}P_{1}$ 3p ² P ₁		89	USA TON	9	4
4s4P2-3p2P2		79	-	6	. 5
$4s^{2}P_{2}$ - $3p^{2}P_{1}$		63	-	5	5
$4s^{2}P_{1}$ — $3p^{2}P_{1}$		51	13801 4	7	3
$4s^{2}P_{2}$ — $3p^{2}P_{2}$	_	47	-	2	5
$4s^{2}P_{1}$ $- 3p^{2}P_{2}$	_	35		8	2

Termtabelle zu Cl I nach Kiess und de Bruin [242].

Nr.	Term- bezeich- nung	Termwert	Elektronen- konfiguration		Nr.	Term- bezeich- nung	Termwert	Elektronen- konfiguration
1.	² Pa	104991.	1	3911	31	4Da	10168.25	1
2	2P,	104110.	3p	1911 11	32	4De	9681.57	and an end
3	4P.	33037.00	11 been at 1	on this	33	4D,	9460.49	inute des elpi
4	4P.	32506.80	La contract of	and the second	34	4S.	9382.70	Annonite retain
5	4P,	32168.36	48		35	² D _a	9594.69	5p
6	2P.	30769.56	A CARACTERIA	LONG A	36	² D ₂	9288.99	a sector a
7	2P.	30129.76	and the second	108.00	37	2P.	8682.16	is tilbe rottic
8	4P.	22076.46	i		38	2P1	8401.36	and and a strend at
9	4Pa	21864.41			39	2S1	8509.37	
10	4P.	21630.45	Southerd B	24.5	40	4DA	9294.51	1
11	4D.	21101.36	and and and	entires	41	4Da	9208.59	in falgenden
12	4D.	20863.10			42	4De	9097.84	
13	4Da	20510.09			43	4D,	8999.82	0.1
14	4D,	20306.73	4p	Sub 1	44	4Fs	?	} 3d
15	2D.	20347.31	I Indiate a	S an	45	4FA	7656.40	131 364
16	2D.	20006.96			46	4Fa	7461.15	1 mainel
17	2P.	19552.96			47	4Fe	?	
18	2P,	19077.56	The Dear	a icean	48	4Pa	7757.63	1 1 million alle
19	4S.	19260.32		with a	49	4Pe	7514.80	1 Stalluat
20	2S,	19111.28			50	4P1	6895.04	
21	2 X	20875.32			51	4D4	5794.98	11 million
22	2 X	20873.62	4x	13.1	52	⁴ D ₃	5726.29	
23	2 X	20870.54			53	$^{4}D_{9}$	5640.78	7.017
24		10681.33	1		54	4D1	5587.39	1 13
25	_	8274.65	5x		55	4F5	?	40
26	-	9397.72			56	4F4	4005.40	1 1 1 1 1
27	4P.	10513.07	li l		57	4Fa	3942.53	1 15.08
28	4P.	10331.72			58	4F2	? .	
29	4P1	10021.57	op 1		59	?	5006.88	
30	4D4	10263.09			60	?	4848.59	here's take of the set

4M2N1 4M2N	4P ₃	4P ₂	4P ₁	4M 4M20	f ₂ N ₁ 4P ₃	4P ₂	4P1 6
⁴ D ₄	11935.2	- A		4P 4P	23015.6 23355.5	22484.9 22825.1	22486.9
⁴ D ₃	12174.0	11644.8	-	4P	i —	23200.6	22861.5
$^{4}\mathrm{D}_{2}$	-	11861.1	11522.0	4D 4D	4 23504.2 3 23442.4	 22912.0	-
4D1	-	11995.9	11657.0	4D 4D		23209.2 23461.0	22868.8 23123.7
4S2	13777.5	13246.4	12907.2	4S	23654.0	23123.7	22785.4

Termtabelle zu Cl I nach Majumdar [247].

Cl II ist ein Sechsvalenzelektronensystem mit Triplett- und Quintett-Termen. Die Ionisierungsspannung beträgt nach Hopfield [163] 23.70 Volt und nach Murakawa [290] 18.32 Volt für den ³P₂-Term. Die wichtigste Arbeit über das Linienspektrum des einfach ionisierten Chloratoms ist von E. und L. Bloch [193, 194, 206]. Eine sehr genaue Messung und Einordnung einiger Linien gibt Paschen [137], während Murakawa [276, 290, 291] eine große Anzahl von Cl II-Linien mittels 1 m-Konkavgitter mißt und zum Teil auch einordnet. Seine erste Einordnung [276] stützt sich auf entsprechende Cl III-Terme, und in der zweiten Arbeit [290] hat er das isoliert auftretende Multiplett (²D)4s²D--(²D)4p³D als Schlüssel für die Analyse benutzt. In der folgenden Tab. 2, die alle hier erwähnten Angaben über das Cl II-Spektrum enthält, haben wir, soweit Linien zweimal eingeordnet wurden, die letzte Einordnung angeführt. Einige Linien haben wir aus den Angaben von de Bruin [174], Lunt [147], Sugiura [171] und aus den Tabellen von Jevons [133] und Angerer [139] herausgesucht. Im Schumanngebiet kommen noch Bowen [208] mit eingeordneten Linien, ferner Murakawa [276], der nur eingeordnet hat, und Hopfield [163] mit einigen Messungen hinzu.

Tabelle 2. Cl II.

n.Paschen [137]	nach Murakawa [276 und 291]	1897	Bloch [193]	Paschen [137]	de Bruin [174]	Su- giura [171]	Murakawa [276 u.291]
_	_	6850	13 0	_	_	_	-
_		31	52 0	-	-	-	-
	_	6759	35 1	-	-	-	9.3 1
-	_	13	38 3	-	-	-	3.32 5
-	-	6686	00 4	-	-	-	5.88 9
-	_	81	09 0	_	-	-	-
	-	61	64 4	-	-	-	1.60 8
	_	53	62 0	-	-	-	3.70 1
_		6577	-	-	-	-	7.7 1 ¹)
	_	22	47 00	-	- '	-	
_	_	6399	32? 0	-	-	-	-
		6160	71? 0	-	-	-	-
		6094	67 6	-	-		4.723 10
		5791	17 00	-	-	-	-
-	_	90	48 0	-	-	-	-
	_	5634	77 0	-	-	-	-
-		25	-	-	-	-	5.24 3
-		5570	-	-	-	-	$0.5 1^{1}$
_	_	68	86? 0	-	-	-	-
-		50	-	-	-	-	0.2 1
-	_	34	-	-		-	4.50 3
_		27	-	-	-	-	7.73 5
_		5472	-	-		-	2.9 0
3d -3p	(4S)3d ⁵ D ₀ -(4S)4p ⁵ P ₁	57	51 2	7.49 1	7.70 1	-	7.49 22)
3d3p.	(4S)3d ⁵ D ₁ (4S)4p ⁵ P ₁	57	09 4	7.07 3	-	-	7.07 202
3d3p_	(4S)3d 5P2-(4S)4p 5P1	56	34 3	6.177 2	-	-	$6.177 \ 10^{2}$
		53		-	-	-	3.53 1 ²)
3d3p.	(4S)3d ⁵ D ₁ (4S)4p ⁵ P ₂	44	98 1	4.91 1	-	-	4.91 5 ²)
3d-3p.	(4S)3d ⁵ D ₂ -(4S)4p ⁵ P ₂	44	27 3	4.198 3	-	-	4.198 202)
3d3p_	(4S)3d ⁵ D ₃ (4S)4p ⁵ P ₂	43	46 4	3.373 5	-	-	3.373 25 ²)
3d ₃ 3p ₁	$({}^{4}S)3d{}^{5}D_{2}$ (${}^{4}S)4p{}^{5}P_{3}$	24	40 0	4.310 0	-	-	4.310 n. Bloch, von Pasche vorhergesag
3d3p.	(4S)3d ⁵ D ₃ -(4S)4p ⁵ P ₂	23	-	3.493 2	-		3.493 52)
3d3p.	(4S)3d ⁵ D ₄ -(4S)4p ⁵ P ₂	23	34 7	3.231 6	-	-	3.231 30 2)
-	$(^{2}D)4s^{1}P_{1}-(^{2}D)4p^{3}D_{2}(?)$	5392	21 5	-	-	-	2.116 20
_		33	75 0	-	-	-	-
_	_	5285	45 1	-	5.8 1	-	-
_ ~	(4S)4s ³ S ₁ (4S)4p ³ P ₁	21	35 4	-	1.48 6	-	1.340 14
_	(4S)4s ³ S ₁ -(4S)4p ³ P ₀	18	-	-	-	-	8.16 2
-	$(^{4}S)4s^{3}S_{1}-(^{4}S)4p^{3}P_{2}$	17	93 6	-	-	7.1 2	7.917 17
	(-/	5192	98 0	-		-	3.01 1
	_	89	63 1	_	-	-	9.60 2
_ 100		75	78 0	- 1	-	-	5.73 1
_		73	07 0	- 1	-	-	3.06 1

1) Mit Prisma gemessen.

2) & nach Eder und Valenta [49] und von Paschen [137] auf internat. Norm. umgerechnet.

456

Chlor

n.Paschen [137]	nach Murakawa [276 und 291]		Bloch [193]	Paschen [137]	de Bruin [174]	Su- giura [171]	Murakawa [276 u. 291]
_		5162	33 00	_	-	-	2.32 1
-	-	60	80 0	-	-		0.77 1
-	$(^{2}D)4s^{3}D_{3}$ — $(^{2}D)4p^{3}D_{2}$	13	29? 00	-	3.3 1	-	3.12 3
-	$(^{2}D)4s^{3}D_{2}$ — $(^{2}D)4p^{3}D_{1}$	03	-	-	-		3.85 1
-	$(^{2}\text{D})4s^{3}\text{D}_{2}$ — $(^{2}\text{D})4p^{3}\text{D}_{2}$	02	97 1	-	-		2.86 5
-	$(^{2}D)4s^{3}D_{1}$ — $(^{2}D)4p^{3}D_{1}$	5099	16 0	-	-	-	9.103 3
-	$(^{2}\text{D})4s^{3}\text{D}_{1}$ — $(^{2}\text{D})4p^{3}\text{D}_{1}$	98	-	-	-	-	8.2 00
-	-	83	-	-	-		3.37 0
-	$(^{2}\text{D})4s^{3}\text{D}_{3}$ — $(^{2}\text{D})4p^{3}\text{D}_{3}$	78	16 2	-	8.36 4	-	8.200 10
-	$(^{2}D)4s^{3}D_{2}$ — $(^{2}D)4p^{3}D_{3}$	68	-	-	-	-	8.04 2
_	_	4995	35 0	-	-	-	5.30 1
-		70	03? 00	-	-	_	0.15 1
-	-	42	-	-	-	-	2.76 0
-	-	27	-	-	-	-	6.98 0
-	_	24	90 00	-	_	-	4.80 0
-	$(^{2}D)4s^{3}D_{2}$ — $(^{2}D)4p^{3}F_{2}$	21	-	- '	-	-	1.92 15
-	$(^{2}D)4s^{3}D_{1}$ — $(^{2}D)4p^{3}F_{2}$	17	63 2	-	-	-	7.65 8
-	$(^{2}D)4s^{3}D_{3}$ — $(^{2}D)4p^{3}F_{3}$	14		-	-	-	4.16 1
-	$(^{2}D)4s^{3}D_{2}$ — $(^{2}D)4p^{3}F_{3}$	04	66 3	-	4.85 4	-	4.661 15
-	$(^{2}D)4s^{3}D_{1}-(^{2}P)4p^{3}F_{4}$	4896	69 4	-	6.90 5	-	6.677 18
3s-3p3	$(^{4}S)4s^{5}S_{2}$ — $(^{4}S)4p^{5}P_{1}$	19	39 6	9.453 3	-	9.1 1	9.453 201)
3s-3p2	$(^{4}S)4s{}^{5}S_{2}$ — $(^{4}S)4p{}^{5}P_{2}$	10	01 8	0.048 5	-	0.0 2	0.048 251)
3s-3p1	$({}^{4}S)4s{}^{5}S_{2}^{*}-({}^{4}S)4p{}^{5}P_{3}$	4794	50 10	4.5456		4.9 3	4.545 301)
-	_	85	31 0		-	-	5.30 1
-	-	81	77 0	-	-	-	1.78 1
-	-	81	28 4	-	1.44 5	-	1.285 9
-	-	80	-	-	-	-	0.2 2
-	Comment of the state of the state	78	84? 1	-	-	-	8.90 1
-		71	02 1	- 1	1.19 2	-	1.04 0
-	-	68	59 2	-	8.76 4	-	8.62 1
-	-	55	51 0	-	5.9 1	-	5.58 0
-		40	38 6	-	0.52 3	-	0.369 12
-		39	35? 0	-	- 00	-	
-	$(^{2}D)4p^{3}P_{2}$ — $(^{2}D)4d^{3}G_{543}$	21	42 3	-	-	-	1.411 6
-	-	14	20 0	-		-	
-		4696	-	-		-	6.120 4
-	Indicates Transit Section	84	-	-	-	-	4.15 4
-	-	79	-	-	-	-	9.141 5
-	-	76	69 1	-	-	-	-
-	-	39	72 1	-	-	-	9.58 3
-	-	24	31 1	-	4.23 3	-	-
-	-	00	96? 1	-	1.19 4	-	-
-	$(^{4}S)4p^{3}P_{2,0}-(^{4}S)4d^{3}D_{2,1}?$	4584	99 3	-	-	-	5.003 8
-	$(^{4}S)4p^{3}P_{2}$ — $(^{4}S)4d^{3}D_{3}?$	84	24 6	-		-	4.226 15
-	$(^{4}S)4p^{3}P_{1}-(^{4}S)4d^{3}D_{2,1}?$	82	35 1	-	-	-	2.39 3
-	(4S)4p ³ P _{2,0} —(4S)5s ³ S ₁	72	00 12	-	-		2.20 15
-	$(^{4}S)4p^{3}P_{1}-(^{4}S)5s^{3}S_{1}$	69	37 8	-	-	-	9.545 10

1) & nach Eder und Valenta [49] und von Paschen [137] auf internat. Norm. umgerechnet.

CIL-1-	-
100	r.
UIIIO	

n.Paschen [137]	nach Murakawa [276 und 291]		Bloch [193]	Paschen [137]	de Bruin [174]	Lunt [147]	Su- giura [171]	Murakawa [276 u.291]
	_	4544	46 3	_	_	_	_	4.48 5
		36	74 5	_	7.0 1	_	_	6.752 15
	_	36	55? 3	_	_	South Law	-	_
_		26	21? 3	_	6.44 5	-	-	-
_	_	. 19	15 5	-	-	_	-	9.179 12
-		04	24 4	-	4.50 1	-	-	4.287 8
-	_	4497	28 5	-	7.45 1	-	-	7.290 13
-		89	95 8	-	-	-	-	9.999 20
-	_	81	99 2	-	-	-	-	2.00 5
-	_	75	23 5		5.50 4	-	-	-
-		71	14 3	-	-	·	-	1.13 6
_	_	53	23? 0	-	-	-	-	-
-	-	38	81 4	-	-		-	8.821 6
-	_	38	60 3	-	8.72 4	-	-	8.600 2
-	-	36	93 1	-	-	-	-	-
-	-	20	56 3	-	-		-	0.60 2
-		10	51 0	-	-	-	-	0.52 1
-		4399	15 4	-	9.37 2	-	-	03.48 1
-	-	89	77? 4	-	-	-	-	99.164 7
-		79	93 1	-	80.088	-	-	-
-	-	72	95 12	-	-	-	-	2.948 20
-	-	68	27? 2	-	-	-	-	-
-	$(^{2}D)4s^{3}D_{3}$ — $(^{2}D)4p^{3}P_{2}$	43	66 15	-	3.8210	3.80	-	3.654 30
-	$(^{2}D)4s^{3}D_{2}$ — $(^{2}D)4p^{3}P_{2}$	36	24 8	-	6.38 5	6.35	-	6.229 15
-	$(^{2}\text{D})4s^{3}\text{D}_{1}$ — $^{2}\text{D}4p^{3}P_{2}$	32	80 2	-	3.12 1		-	2.80 6
-	—	13	03 00	-	-	-	-	
-		09	04 8	-		9.15	-	9.051 10
-	$(^{2}\text{D})4\mathrm{s}^{3}\text{D}_{2}$ — $(^{2}\text{D})4\mathrm{p}^{3}\text{P}_{1}$	07	48 10	-	7.63 8	7.56	-	7.461 25
	$(^{2}D)4s^{3}D_{1} - (^{2}D)4p^{3}P_{1}$	04	07 7	T	4.21 4	4.18	-	4.080 10
	$(^{2}D)4s^{0}D_{1}-(^{2}D)4p^{0}P_{0}$	4291	14 8	100	-	1.80	-	1.735 10
-	$(^{2}P)4s^{3}P_{2}$ $(^{2}P)4p^{3}D_{3}$	70	01 00	T	0.05 0	0.00	-	0.000 20
T	$(^{\circ}P)4s^{\circ}P_{1} - (^{\circ}P)4p^{\circ}D_{2}$	10	04 0	1	0.80 2	0.72		4.56 2
-	$(-r)4s^{o}F_{2}$ $(-r)4p^{o}D_{2}$	04	97 4	T	-	1.91		1.00 0
T.	(2D) 4.2D (2D) 4.23D	50	57 6	1	T	1.01		9.548 10
22 10	$(^{4}P)_{48}^{4}P_{0}^{-}(^{4}P)_{4}^{4}P_{0}^{5}D_{1}$	59	49 10	0 000 5	T	9.02	11 9	2 288 252)
op ₁ -4s	$(^{8}S)^{4}p^{3}\Gamma_{3}$ $(^{8}S)^{5}S_{2}^{3}$	00	45 10	0.000 0	T	0.41	4.1 4	9.80 20-)
'an ta	$(-\Gamma) 45 \Gamma_1 - (-\Gamma) 45 D_1$ (48) 4 m 5 D (48) 5 m 5 S	40	98 10	1 949 4		1.95	19 1	1 949 932)
op ₃ -48	$(-3)_{4}p_{12} - (-3)_{5}s_{32}$		18 6	5.68 1	J	5.58	1.5 2	5.470 10
8n 4n	(45) 4 n 5P (45) 5 a 55	24	40 0	3 959 9		4.06	87 1	3 952 152)
0P3-48	('5)4p-11-('5)58-52	97	44 1	0.002 2		4.00	0.1 1	6 45 2
TRU	121021 10.14	21	93 9			5.01		4.956 2
		91	79 0			0.01	20 1	1.77 1
		08	04 6		8 16 4		2.0 2	8.032 8
	$(^{2}D)4n^{3}F_{}(^{2}D)4d^{3}G$	05	20 9	0.5 1		_	_	5.16 1
	(1)41 44 (1)44 0543	04	56 3	21	2	_		4.52 4

¹) Mit Prisma gemessen.

²) Nach Paschen.

nach Murakawa [276 und 291]		Bloch [193]	Paschen [137]	de Bruin [174]	Lunt [147]	Su- giura [171]	Murakawa [276 u. 291]		
	4195	11 3			4.6 2	_	5.09	4	
$(^{2}D)4p^{3}F_{3}$ — $(^{2}D)4d^{3}G_{543}$	92	24? 0	-	-	_	-	2.24	0	
_	91	64 3	-	-	1.6 1	-	1.63	5	
	88	83 3	-	-		-	8.90	5	
-	86	52 0	-	-	-	-	-	-	
-	84	86 1	-	-	-	-	4.84	3	
-	81	16 1	-	-	-	-	1.13	2	
The second second second second second	. 70	62 1	-	-	-	1.0 2	0.65	3	
	66	06 0	-	-	-	-	6.08	0	
-	64	94 0	-	-	-	-	-		
-	57	84 5	-	-	7.93	-	7.847	12	
-	56	17 1	-	-	-	-	6.13	3	
	53	96 0	-	-	-	-			
-	47	10 7	-	-	-	-	7.089	15	
minist - Discouting	43	04 1	-	-	-	-	-		
	38	26 1	-	-	-	-			
the second second second second	36	67 1	-	-	-	-	6.60	1	
The second	34	24? 1	-	-	-	-	4.22	2	
The second second	33	65 2	-	3.83 3	-	-	3.65	6	
and the month of the	32	54 10	-	2.72 9	2.63	-	2.545	25	
-	30	82 . 5	-	1.09 4	-	-	0.832	15	
	30	21 2	-	-	-	-	0.21	6	
-	26	78 1	-	-	-	-	-		
-	23	95 2	-	-	-	-	3.981	4	
-	18	80 1	-	-		- 1	8.768	2	
$(^{2}D)4p^{3}D_{3}$ — $(^{2}D)4d^{3}G_{543}$	4079	88 4		-	-	-	9.819	5	
-	62	51 0	-	-	-	-	-		
$(^{2}D)4p^{3}D_{2}$ — $(^{2}D)4d^{3}G_{543}$	57	48 1	-	-	-	8.2 0.2	7.44	1/2	
	55	45 1	-	-	-	-	-		
0000 m 2	55	00? 1	-	-	-	-	-		
ana ta a la cara a la	54	16 2	-	-	-	-	4.122	5	
	52	17 2	-	-	-	-	2.137	4	
The second second	49	07 0	-		-	-	9.04	1	
	44	09 2	-	-	-	1 100	4.08	4	
	40	65 2	-	-	-	-	0.63	4	
$(^{2}D)4p^{3}P_{0}-(^{2}D)4d^{3}D_{1}$	36	51 2	-	-	-	-	6.49	6	
	32	-	-	-	-	-	2.12	0	
$(^{2}D)4p^{3}P_{1}-(^{2}D)4d^{3}D_{1}$	25	67 2	-	-	-	-	5.63	4	
$(^{2}D)4p^{3}P_{1}$ — $(^{3}D)4d^{3}D_{2}$	20	07 4	-	-	-	-	0.054	10	
$(^{2}D)4p^{3}P_{2}$ — $(^{2}D)4d^{3}D_{2}$	3995	25 1	-	-	-	-	5.18	3	
$(^{2}D)4p^{3}P_{2}$ — $(^{2}D)4d^{3}D_{3}$	90	16 4	-	-	-	0.8 1	0.139	12	
The state of the state	88	23 0	-	-	-	8.1 0.2	1.000		
	81	95 4	-	-	-	-	1.942	9	
	71	15 3	-	-	-	-	1.128	5	
	67	95 0	-	-	-	-	-	10.1	
	61	68 2	-		-	-	1.66	5	
-	56	26? 0	-	-	-	-			
-	54	21 4	-	-	-	-	4.212	6	
-	49	96 2	-	-	-	-			

100			
	L. 1	100.0	-
	nı	m	r.
•			
-			-

nach Murakawa [276 und 291]		Bloch [193]	Paschen [137]	de Bruin [174]	Lunt [147]	Su- giura [171]	Murakawa [276 u. 291]
$(^{2}D)4n^{3}F_{-}=(^{2}D)4d^{3}F_{-}$	3928	62 1	2	0110	1	in the	8.65 3
$(^{2}D)4p^{3}F_{3} - (^{2}D)4d^{3}F_{3}$	27	81? 1	_	1	_	-	7.80 2
$(^{2}D)4n^{3}F_{}(^{2}D)4d^{3}F_{-}$	17	56 4		7.76 4		1 (<u>1)</u>	7.558 8
$(^{2}D)4p^{3}F_{2}-(^{2}D)4d^{3}F_{2}$	16	66 5	12		100	102	6.667 12
$(^{2}D)4n^{3}F(^{2}D)4d^{3}F.$	13	91 7	_	4.10 6	100	1000	3.911 15
$(^{2}D)4n^{3}F_{-}-(^{2}D)4d^{3}F_{-}$	05	66 0					5.66 n. Bl. 0
$(^{2}D)4p^{3}F_{2}-(^{2}D)4d^{3}F_{4}$	02	86 2		_	_	-	2.88 3
(2)1913 (2)1014	01	87 1	L I	1020	_	_	1.92 2
d.—p.	3887	00 1			_	1	7.02 1
d _a -p ₂	83	84 3	1	18 2 8		112-1	3.80 6
de-Da	81	_	-	_	· `	-	1.72 5
d	80	23 1	_		_	1	0.27 4
d _a —p.	75	01 1		1.123 1	_	1000	5.01 0
d ₂ —p ₁	68	61 5	1		_	NOT ST	8.600 8
-3 13	64	_	_	100			4.109 2
(4S)4p ⁵ P _o -(4S)4d ⁵ D _o	61	90 2	1.372 1				$1.372 4^{1}$
$(^{4}S)4p^{5}P_{2}-(^{4}S)4d^{5}D_{2}$	61	42 1	0.984 4		1.12	-	60.984 15 ¹)
(4S)4p ⁵ P ₂ -(4S)4d ⁵ D ₄	60	87 8	0.833 8		0.79	1.04 4	0.833 351)
()) P 13 ()) 10 -4	55	57? 00	_	1			
1 10 10 10 10 10 10 10 10 10 10 10 10 10	54	76 2	_	0.000	1 _ 1 1 1		4.76 8
50 EB 4	54	4		_			4.00 2
C 00.4			1000	10-1	Daman	96221-5	Samo's of
	0051	07 0	1 059 0		Looel	- California	1 059 01)
$(*S)4p^{s}P_{2} - (*S)4d^{s}D_{1}$	3801	07 Z	1.000 2		[208]	11 0	$1.000 0^{-})$ 1.07 91
$(*S)4p*P_2 - (*S)4d*D_2$	51	09 0 09 7	1.575 0		1.00	1.4 0	1.57 5-)
$(*S)4p*P_2 - (*S)4d*D_3$	50	90 (5 709 9		5.00	a company	5 708 01)
$(*S)4p^{\circ}P_{1} - (*S)4d^{\circ}D_{0}$	40	10 1 00 5	5.049 4	1000	5.70		5.648 151)
$(*S) 4p * P_1 - (*S) 4d * D_1$	40	00 0	5 021 0		0.10	50 0	5 961 191)
$(*S)4p*P_1 - (*S)4d*D_2$	40	01 0	0.001 0	-		0.4 4	3.914 8
$(-D) 4 p P_0 - (-D) 4 d P_1$	40	22 4					835 0
(9D) 4 - 9D (9D) 4 39D	00	30 0			1.1.1	HICE	6 520 8
$(^{\circ}D)4p^{\circ}P_{1}-(^{\circ}D)4d^{\circ}P_{0}$	00	97 5	-21	2 51 6	2.50		3 367 12
$(-D) + p + r_1 - (-D) + d + r_1$	00	74 0		0.00 0	0.00		0.77 1
(9D) 4= 3D (9D) 4.13E	20	14 0		0.00 2	11 200	ALCON	9.87 1
$(-D)^4 p^0 D_3 - (-D)^4 d^0 F_2$	29	97 2	01	POT -	1	1992	9.30 5
(2D) 4 = 3D (2D) 4 d 3D	20	61 7		125	7.80	and the second	7.602 15
$(-D) + p - r_1 - (-D) + d - r_2$	01	01 1	1 18	1118	1.00		1.65 0
(2D) 4= 2D (2D) 4 4 2F	21	00 0	1 28 - 1	0.40 5	0.40		0.901 90
$(^{2}D)^{4}p^{2}D_{3} - (^{3}D)^{4}d^{3}F_{4}$	10	22 0		8.58 2	0.40		8 40 4
$(^{2}D)^{4}p^{2}D_{3} - (^{2}D)^{4}d^{3}F_{3}$	10	05 1	1000	0.00 0			0.05 3
$(^{2}D)^{4}p^{2}D_{2} - (^{2}D)^{4}d^{3}F_{2}$	10	19 9		1885	9.70		9,502 10
$(^{2}D)^{4}p^{2}D_{1} - (^{2}D)^{4}d^{3}P_{2}$	05	10 5		16	5.88		5 200 15
$(^{2}D)^{4}p^{3}P_{2} - (^{2}D)^{4}d^{3}P_{2}$	2709	77 5	10		8.99		8.828 16
(-D)4h-D2-(-D)4d.1 2	0198	662 1	1.00		0.00		3.61 3
	93	007 1					7.02 1
	01	18 0		1 OE			1.20 6
(2D) 2 43D (2D) 4 = 3D	74	20 1	1 100				4.168 4

¹) Nach Paschen [137].

nach Murakawa [276 und 291]	nestern 1920 (241	Bloch [193]	de Bruin [174]	Su- giura [171]	Murakawa [276 u. 291]
(² D)3d ³ D,(² D)4p ³ D ₉	8773	62 1		_	3.642 3
(² D)3d ³ D ₂ -(² D)4p ³ D ₂	69	06 0		-	9.048 4
(² D)3d ³ D ₂ -(² D)4p ³ D ₁	68	03 0		-	8.057 3
(² D)3d ³ D ₂ -(² D)4p ³ D ₂	67	51 2	7.65 4 .	-	7.491 8
(² D)3d ³ D ₃ -(² D)4p ³ D ₃	49	96 2	-	-	9.956 10
(² D)3d ³ D ₂ -(² D)4p ³ D ₃	48	43 0			8.440 3
	25	71 2	-		5.76 4
-	3688	40 0	-	-	8.57 1
$(^{2}D)3d^{3}D_{1}$ — $(^{2}D)4p^{3}F_{2}$	73	77 1	-	-	3.79 1
$(^{2}D)3d^{3}D_{2}$ — $(^{2}D)4p^{3}F_{2}$	67	97 1	-	-	7.99 1
	63	-	-	-	3.74 1
$(^{2}D)3d^{3}D_{3}$ — $(^{2}D)4p^{3}F_{3}$	59	78 1	-	-	9.767 8
$(^{2}D)3d^{3}D_{2}$ — $(^{2}D)4p^{3}F_{3}$	58	33 1	-	-	8.33 1
$(^{2}D)3d^{3}D_{3}$ — $(^{2}D)4p^{3}F_{4}$	50	08 2	-	-	0.10 5
$(^{2}D)4p ^{3}P_{0}$ — $(^{2}D)4d ^{3}S_{1}$	48	00 1		_	8.01 2
$(^{2}D)4p ^{3}P_{1}$ — $(^{2}D)4d ^{3}S_{1}$	39	13 1	-	T	9.15 3
$(^{2}D)4p \ ^{3}P_{2}$ — $(^{2}D)4d \ ^{3}S_{1}$	18	83 1	-		8.88 3
$(^{2}D)4p {}^{3}F_{4}$ — $(^{2}D)4d {}^{3}D_{3}$	15	52 0		TEACH	5.07 1
$(^{2}D)4p ^{3}F_{2}$ — $(^{2}D)4d ^{3}D_{2}$	14	98? 0	-		3.43 0
$(^{2}D)4p \ ^{3}F_{3}$ — $(^{2}D)4d \ ^{3}D_{2}$	10	02? 2		- 10	9.74 1
$(^{2}D)4p {}^{3}F_{3}$ — $(^{2}D)4d {}^{3}D_{3}$	05		-	-	5.62 00
$(^{2}D)4p {}^{3}F_{2}$ — $(^{2}D)4d {}^{3}D_{1}$	04	·	-	-	4.90 0
$(^{2}D)4p ^{3}P_{1}$ — $(^{2}D)4d ^{1}P_{1}$	3595	80 1	-	-	5.83 2
	87	69 1	-	-	7.74 1
	84	07 2		-	4.12 3
$(^{2}D)4p {}^{3}P_{2}$ — $(^{2}D)4d {}^{1}P_{1}$	75	92 1	-	6.0 2	6.00 2
	67	98 3	-	-	7.947 7
-	44	-	2 1 1	-	4.960 3
$(^{2}D)4p^{3}D_{3}$ — $(^{2}D)4d^{3}D_{2}$	26	11 2		-	6.03 4
			Angerer[139]		
$(^{2}D)4p^{3}D_{3}$ — $(^{2}D)4d^{3}D_{3}$	22	10 7	2.0 6		2.131 20
$(^{2}D)4p^{3}D_{2}$ — $(^{2}D)4d^{3}D_{1}$	13	-	-	-	3.66 10
$(^{2}D)4p^{3}D_{1}$ — $(^{2}D)4d^{3}D_{1}$	13		-	-	3.204 10
$(^{2}D)4p^{3}D_{2}$ — $(^{2}D)4d^{3}D_{2}$	09	37 6	9.2 4	Contra of	9.400 18
$(^{2}D)4p^{3}D_{1}$ — $(^{2}D)4d^{3}D_{2}$	08	90 2	-	-	8.911 5
$(^{2}D)4p^{3}D_{2}$ — $(^{2}D)4d^{3}D_{3}$	05	44 3	5.3 2	- The second	5.530 12
-	3480	94 0	-	-	0.90 1
	79	82 3	9.6 4	There	9.75 2
-	70	74? 1	-	-	-
	70	36? 1	0.4 1	-	-
and the set of the set	48	21 1	-	-	-
the same in the same	45	68 0	-	-	-
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	42	10 0		-	-
	33	-	-	-	3.42 1
	25	65 0	-	-	-
-	15	75 2	6.0 1	-	-
_	09	93? 1	9.7? 1	The second	
$(^{2}P)4s^{3}P_{0}-X_{1}$	05	95 0	-	-	6.01 1
$(^{2}P)4s^{3}P_{1}-X_{1}$	3399	-	-	Can - don	9.80 2

nach Murakawa [276 und 291]		Bloch [193]	Jevons [133]	Angerer [139]	Murakawa [276 u. 291]
(² P)4s ³ P ₂ —X ₁	3395			_	5.96 3
(² D)4p ³ F ₂ -(² D)4d ³ D ₃	85	50 0	-	_	5.57 1
(² D)4p ³ D ₃ -(² D)4d ³ P ₂	82	60 0		-	1 74 12
	77	_	_	_	7.24 9
(² D)4p ³ D ₁ (² D)4d ³ P ₀	68		16 1	3 - 3.5	8.40 2
(² D)4p ³ D ₂ -(² D)4d ³ P ₁	66	_	- 0-01		6.41 3
(² D)4p ³ D ₂ -(² D)4d ³ P ₂	62	· _ ·		e	2.00 1
A - 10 P→ 10 +++ 21 P	53	34 6	3.30 7	3.2 7	3.329 10
(² D)3d ³ D ₁ -(² D)4p ³ P ₂	37	-	4	-	7.5 1
	33	60 3	3.58 3	3.3 5	3.631 4
	32	38 1		· · ·	2.50 1
(² D)3d ³ D ₁ (² D)4p ³ P ₁	20				0.06 1
	16	78 3	6.78 3	6.7 3	6.757 7
(² D)3d ³ D ₂ -(² D)4p ³ P ₁	15	40 7	5.40 6	5.3 9	5.381 8
Applets - Depter Charl	13	31 0	3.18 2		3.31
and the second second second	1144				n. Bloch [159]
$(^{2}D)3d^{3}D_{1}-(^{2}D)4p^{3}P_{0}$	12	74 1	2.70 1		2.70 1
p ₉ —p ₉ '	07	85 5	7.86 3	7.85 6	7.809 10
p ₂ —p ₂ '	06	39 4	6.38 5	6.4 6	6.342 8
	3276	75 3	6.72 1	6.6 4	6.709 4
	31	70 2		2.3 1	1.703 4
	27	94? 2	0.0-1-0	7.75 0	7.931 4
	24	70? 0		_	
2012-0-01	22	47? 0	_0-0-	2.4 1	0 00- 20
(² D)4p ³ D _a -(² D)4d ³ S ₁	15	_	0.8-1 - 25		5.70 3
	08	18 1			1 0- 50
	02	98 3	2.96 2	2.83 3	2.907 5
1.4.2 12 - 1 - 1 - 1	01	97 2	0.0-4 87		2.01 2
An Ille That I have	3199	83? 1	13 - 2 12	a	1 (0) - 00
1. 12 mm	97	09? 1			2 22 30
	88	94 3	100-100	8.85 2	8.90 6
	87	40 2			6 TO- 000
	81	58 2		1.4 2	10 100-102
	80	38 2	: : : :	0.45 2	30- 08
	79	28? 0		-	1 TS- 53
AS 8 044 0 008 E	78	06? 0		-	1 10-00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76	85? 1		- '	1 0- 5
3 400 S 400 8	75	27? 1		5.35 4	1 30- 1
1.8	73	52 3		-	2 10- 21
to the new large of the	72	48 2	-		6 10 10
and the other have been been	70	31 3	0.14 1	-	1 100-00
Stol T. Combilded I Line	69	30 2		-	Photos an
	66	67? 1		-	1 11- 10
	64	98? 1d		-	2 01-21
	61	40 3	100	1.35? 5	
1 2 ma 8 mms 11	60	40 2	8.0 - 5	_	0 05- 90
	57	04 0	_	_	1 11-1-10
	EE	00 00			
	00	00 0		annes.	and a second sec

462

Chlor

		Bloch [193]		Jevons [133]	Angerer [139]	Su- giura [171]			Bloc [193	h]	Jevons [133]	Angerer [139]	Su- giura [171]
914	7	70	4		7.82 4	_		2879	78? 0	u	_		-
014		842	2	_		_	1000	76	42	0	1744		-
9	5	87	1	_	_	_		68	41	1	11-211	8.28 2	
2	5	20	1	_	_	_	62.19	65	09	0	-	-	-
2	3	67 3	d	3.67 2	3.7 4	-		63	51	1		3.20 1	0-
2	1	53	2	_	1.45 3	-	0.0	62	00	0	1-01	-	10-
ī	9	71	1	_	9.8 1	_	1 8	60	75	0	9	-	-
1	7	36	1		-	- 1	10138	44	24	3	-	4.37 0	-
i o	6	34	2			-	72-11	39	06 1	lu	1-10	-	- 11
0	2	24?	1	_	-	-	12.05	33	03	2	-	-	-
0	0	97?	0	_	_	_	1	00	22	2	-	-	-
309	8	41	1	-	8.25 2	-	15	2799	58	2	9.6	9.43 2	-
9	6	49	3	-	6.6 3	-	85 81	88	62	2	-	-	-
9	3	00	2	-		_	68 OF	77	50?	00	7.65 1	- 1	-
9	2	05	4	2.14 3	2.15?6	-	31 -00	71	72?	0u	-	-	
8	6	37	3	_	6.4 3	-		63	94	2		3.85 2	
8	31	10	2	- 1	-	-		58	67	2	1-10	8.58 0	-
8	30	04	1					54	04	3	-	-	-
1 7	71	28	5	1.31 6	1.15 5	-	152 (10)	52	19?	1	-		-
6	39	57	1	-	-	-	100 100	51	49	1	-	1.37 3	
1	57	89	4		7.75 4	8.1 1	2 - 02	45	72	1	-	-	-
1	53	78	1		3.5 1	3.0 2	2	44	20	0	-	-	-
4	15	00	1		-	-	S- 305.	27	23	0	-	-	-
4	42	40	0	-	2.80 0	-	1 155	19	61	1	-	9.63 1	-
1	87	93	4		7.75 4	8.0 1	12 mg 2	12	72	1			((1+
1	36	35	1	-		-	10 - 82	09	48	0		-	-
1 1	22	95	4	-	2.73 4	-	10 BR	08	95	1	-	9.05 2	-
1	18	83	1	-	8.73 3	$9.0 \frac{1}{2}$	1	06	75	1	-	-	-
1	06	96	3	-	6.87 2	6.1 1	0.000	02	42	1	-	2.45 2	-
	06	05	2	-	5.89 2	-	100	2698	81?	1	8.8	8.54 2	-
	04	40	1	-	4.23 1	4.6 1/2	10.00	98	53?	1	-	-	-
29	96	57	3		6.55 6	-	1 - 04	94	96	0	-	-	-
	86	69	0	-	-	-	1 100	94	62	1	-	-	-
	85	79?	1	-	5.95 1	-		93	40	0	-	0.00 1	
	82	77	3		2.87 3	-	0.00	89	39	1	0.00 5	9.38 1	010
	80	88	1			-		88	07	3	8.03 0	8.03 9	0.4 0
	78	40	3	-	8.56 3	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	19	36	1	000 0	9.30 0	-
	78	42?	1	-	-	-	1.08	76	94	3	6.92 3	0.89 8	07.1
	72	60	2	-	2.7 0	-	-	13	00?	2	-	1 00 0	5.1 1
	51	16	0	-	-	-		1 11	12	1	-	1.30 2	-
	50	38	1	-	0.53 0	0.0 0.2		67	40	2	-	1.29 4	-
	44	88 1	.d?	-	4.20 2	-	1	66	01	Zu	-	0.39 3	-
	37	16	1	-	7.25 0	-		59	60?	10	874 0	864 0	-
	34	60	2	-	4.45 0		1.0.000	58	12	3	0.74 3	0.04 0	
	11	96	2d		1.85	2.8 1		48	24	1	700 9	6.00 2	-
	06	16	5	-	6.17 2	6.8 1		46	92	1	1.00 8	0.82 2	-
	02	35	1	-	-	4.2 1		42	21?	1	_	1.52 4	-
28	586	55	2	-	-	-		30	40	1	-	1 90 1	-
	80	96?	0	-			1	34	1 95	1		4.50 1	- 1
--------	-------	----------											
	 ~	-											
	 	r											
 ~*													

nach Murakawa [276 und 291]		Bloch [193]	Paschen [137]	Jevons [133]	Angerer [139]	Murakawa [276, 290, 291]
	2630	20 1	_	m. n.		
	26	89 0	_	_	_	_
_	23		3.632 0	_	_	_
_	21	95 0	-	_	_	_
	20	_	0.050 1	0.08 3	0.06 7	_
ALL AND TO THE M	19		9.968 1	-	-	-
2	16	-	6.996 1	6.99 8	6.99 9	-
Particular - Up the state	16	-	6.956 3	-	·	-
MARKE CONTRACT	16	-	6.091 2	-	-	-
	15	18 2	-	-	5.15 2	-
	14	65 1	-		4.64 2	-
	14	-	4.436 8	4.3	-	-
Plants - Prints	14	-	4.398 7u	-	-	-
	08	31? 0		-	-	-
$(3s)(3p)^{53}P_2 - (4S)4p^3P_1$	05	70 1	-	-	6.52 1	5.70 1
$(3s)(3p)^{53}P_2 - (^4S)4p^3P_2$	04	16? 1	-	-	-	4.97 2
	2582	80? 0	-	-	-	-
-	71	08 2	-	-	1.10? 2	-
-	68	13 1u	-	F 00 4	-	-
-	60	32 2	-	0.29 1	100 5	-
_	04	82 2	-	4.87 2	4.96 5	-
	04	14 0	-		-	-
_	50	29 0				-
	49	85 4			0.02 5	_
The second second	40	71 9			7.90 1	
a place	46	95 3	_	6.84 3	7.03 3	
$4n^{3}P_{2}-7s^{3}S_{2}$	44	82 3	_	-	1.00 0	4.823 8
$4p^{3}P_{1} = -78^{3}S_{1}$	44	01 3	_	100	3.96 1	4.002 10
	41	75 1	-	_	1.95 7	
ARCALS - ROMESTS	38	49 0	-	_	-	
	27	53? 1	-	_	-	_
1 -	26	95? 0	-		-	- 0.1
2 00- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18	16 1	10 14- 11	19 -	-	-
	15	83 1		-	-	-
	13	95 1	-	-	-	-
-	09	83? 0	-	-	-	-
	09	06? 1	-	-	-	-
	08	56? 0	-	-	-	-
$({}^{4}S)4p {}^{5}P_{3}$ — $({}^{4}S)6s {}^{5}S_{2} {}^{1})$	02	73 3	-	3.18 1	2.72 3	2.727 10
$({}^{4}S)4p{}^{5}P_{2}$ — $({}^{4}S)6s{}^{5}S_{2}{}^{-1})$	2498	52 3	-		8.54 3	8.518 8
$(^{4}S)4p {}^{5}P_{1} - (^{4}S)6s {}^{5}S_{2} {}^{1})$	95	93 2	-	-	5.97 2	5.985 5
	92	80 2u	-	-	2.75 1	-
	72	66 2	-	-	-	-
	66	73 Ou	-	T	0.75 0	-
	59	82 3	-	27	9.70 3	_
	02	32 2		-	2.2771	-

¹) Siehe auch Bloch [193].

nach Murakawa 276 und 291]		Bloch [193]	Jevons [133]	Angerer [139]	Murakawa [276, 290 u. 291]
	2445	35 3		5.36? 4	
- 12 - 11	44	12 1	100-110	4.16 3	
	42	50 3		2.32 4	
	41	10 1		_	
1 1-10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	40	36 3		0.38 3	_
N-10	34	06 4d	4.07 2	3.99 9	
1	30	11 4	an <u>-</u> nor i	0.0410	_
	27	80 4		7.83 10	_
	24	01 1	- 12 - 12 - 10 - 10 - 10 - 10 - 10 - 10	3.96 3	
10 20 12 22	22	80 1	191	2.52 3	
1 4.86 L 10 12 18 1	20	36 0	00	-	
Arrest al 1	19	76 0	and Har	9.62 2	1.2 - 1 - 1 - 1
and day -	12	48 1		2.51 4	-
8-10 -1	07	08 2	- 30 - 30 F	7.05 0	
5.003 -2.903	05	86 1u	701 - 3000 -	-991	P1- 140010
E 30.5	05	09 1u	801 - + 10 Y	-1-01	820-18-48708
	04	37 1d	100	-	
1 - 01 - 1 - 2 - 05.5 T	01	83 1	1.84 2	-	
	00	61 1	1.84 2	-	
	2399	91 1d?	E - 20	-	
	98	87 1	100	-	
	97	83 1u	- 66 - 10 ·	-	
	80	49 0	20 - 10	-	
	78	83 Ou	10 - 10	-	
5 -0 - 1 - 930 -	76	62 0		-	
	74	98 Ou	- 23 -	-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65	82 1			
	31	01 1	dia 28	- 19	-
at cons 2 - are	29	14 1		- 1	
a fill a fill a	27	03 3	-	-	
	24	53 1	- 20	-	-
	22	97? 4	-	-	-
$4 p {}^{3}P_{2}$ — $8 s {}^{3}S_{1}$	21	93 1		-	1.87 3
4p ³ P ₁ , ₀ —8s ³ S ₁	21	23 Ou	-	-	1.20 3
	20	18 1		-	-
	19	50 1	-		
	19	19 1		-	
	08	93 3	_		-
-	04	57 8	-	-	-
-	01	74 1	_	-	-
	01	31 1	-		-
the production - Arrow	00	92 0	-	-	
-	2295	27 0	-	1 50 0	-
-	94	42 0	-	4.08 3	-
-	93	73 0	-	-	-
-	92	60 0u	-	-	_
	88	96 2	-	-	-
-	87	10 0	-	-	-
-	53	18 3			and the second second

Chlor

Eingeordnet von Bowen [208]	nach Murakawa [276, 290, 291]	nach Bowen [208]	arest Line	Bloc [193	h]	Jevons [133]	Hopfield [163]
_			2251	50	3	1.50 4	-
_		1011	51	00	3	0.94 4	-
-	_	C	49	70	0		-
				Bowe [208	en 5]		
aP1-bP2	3p ³ P ₁ -(3s)(3p) ⁵³ P ₂	-	1079	07	3	-	-
aPo-bP1	3p ³ P ₀ -(3s)(3p) ⁵³ P ₁	- 003	75	22	4	-	
aP1-bP1	3p ³ P ₁ -(3s)(3p) ⁵³ P ₁	102 - 103	71	77	3	-	-
aP2-bP2	3p ³ P ₂ -(3s)(3p) ⁵³ P ₂		71	03	5	-	-
aP1-bP0	3p ³ P ₁ -(3s)(3p) ⁵³ P ₀		67	95	4		-
aP2-bP1	3p ³ P ₂ -(3s)(3p) ⁵³ P ₁		63	77	4	-	3.88
aPo-4kS	3p ³ P ₀ -(4S)4s ³ S ₁	-	895	953	2	-	-
aP1-4kS	3p ³ P ₁ -(⁴ S)4s ³ S ₁		93	550	3	-	-
aP2-4kS	3p ³ P ₂ -(4S)4s ³ S ₁	-	88	060	3	-	8.18
-	Carlo -menimotol	and the man Oak	34	- 1		-	4.83
aPo-3nD1	3p ³ P ₀ -(² D)4s ³ D ₁	3p ³ P ₀ -3d ³ D ₁	795	357	3	-	-
aP1-3nD1	3p ³ P ₁ -(² D)4s ³ D ₁	3p ³ P ₁ -3d ³ D ₁	93	473	3	-	-
aP1-3nD2	3p ³ P ₁ -(² D)4s ³ D ₂	$3p^{3}P_{1}$ — $3d^{3}D_{2}$	93	345	3	-	-
aPg-3nDg	$3p^{3}P_{2}$ —(² D) $4s^{3}D_{2}$	$3p^{3}P_{2}$ — $3d^{3}D_{2}$	88	985	4	-	9.03
a P ₂ -3n D ₃	$3p^{3}P_{2}$ —(² D) $4s^{3}D_{3}$	$3p^{3}P_{2}$ — $3d^{3}D_{3}$	88	742	4	-	-
aPo-D1	3p ³ P ₀ -D ₁	-	15	602	3	-	-
aP1-D1	3p ³ P ₁ -D ₁	-	14	063	2	-	-
aP1-D2	$3p^{3}P_{2}$ — D_{2}		12	682	4	-	-
aP2-D1	3p ³ P ₂ -D ₁	-	10	540	0	-	-
aP2-D2	3p ³ P ₂ -D ₂	-	09	173	3	-	-
aPa-Da	$3p^{3}P_{2}$ — D_{3}	-	07	450	4	-	-
aP1-P2	$3p^{3}P_{1}-P_{2}$	-	639	458	1	-	-
aPo-P1	3p ³ P ₀ -P ₁	-	38	278	1	-	-
aP1-P1	3p ³ P ₁ -P ₁	-	37	070	. 1	-	-
a PP.	3p ³ P ₂ -P ₂	-	36	626	2	-	-
aP1-Po	3p ³ P ₁ -P ₀		35	882	1	-	-
a Pa-Pa	3p3P2-P1	_	34	250	1	-	-

Tabelle der Termwerte zu Cl II nach Murakawa [276].

Triplett-Terme	Termwerte	Triplett-Terme	Termwerte
(3s) ² (3p) ⁴ ³ P ₂	187249.1	4s 3S1	74664.14
$(3s)^2(3p)^{4} {}^{3}P_{7}$	186557.2	5s 3S1	33619.54
$(3s)^2(3p)^{4}{}^{3}P_{0}$	186257.1	6s 3S1	20079.42
(3s) (3p) ^{5 3} P ₂	93882.3	78 3S1	13482.60
(3s) (3p) ^{5 3} P ₁	93250.0	8s 3S1	9710.92
(3s) (3p) ⁵ ³ P ₀	92919.8		
4p 3P.	52766.35	4d ³ D ₃	30958.50
4p ³ P _{1,0}	52778.92	4d 3D2, 1	30962.27
Konon Snektrosk	onie. VIII.		3

1. Die auf 4S von Cl III basierten Terme.

Kayser u. Konen, Spektroskopie. VIII.

Quintett-Terme	Termwerte	Quintett-Terme	Termwerte
48 5S2	84157.82		NO INTEL 1
4s 5S2	39802.41	4d 5D4	37412.65
6s 5S2	23362.12		
760 6 0		4 d 5D3	37413.78
4p ⁵ P ₃	63306.53		
4p5P2	63373.80	4d 5D2	37416.36
4p5P1	63414.37		
- 1 6 50		4d 5D1	37418.29
3d 5D4	81740.60		
3d ⁵ D ₃	81739.68	4d 5D0	37419.33
3d5D2	81736.98	- Andrew	
3d ⁵ D ₁	81734.31		
3d ⁵ D ₀	81732.73	A STREET	

2. Terme, die auf ²P von Cl III basieren. Singulett-Term.

(4D)4d ¹P₁ 9495.6

Terme	Termwerte	. Terme	Termwerte	
(2D)3d3D3	67440.1	(2D)4d3F4	14611.6	
(2D)3d3D2	67450.8	$(^{2}D)4d^{3}F_{3}$	14599.1	
(2D)3d3D1	67407.5	$(^{2}D)4d^{3}F_{2}$	14676.8	
(2D)4s 3D3	60467.4	(2D)4d3D3	12397.1	
(2D)4s 3D2	60506.8	(2D)4d3D2	12428.8	
(2D)4s 3D1	60525.0	(2D)4d3D1	12463.4	
(2D)4p3F	41926.9	(2D)4d3P2	11179.4	
(2D)4p3D3	40780.8	(2D)4d3P1	11218.5	
(2D)4p3D2	40915.4	(2D)4d3P0	11239.9	
(2D)4p3D1	40919.2	(2D)4d3S1	9826.6	
(2D)4p3P2	37451.7	Cash street of a	the stight of	
(2D)4p3P1	37297.8			
(2D)4p3P0	37230.9	EL ANT CLICA -		

Tripletts.

Tabelle der Termwerte zu Cl II nach Murakawa [290].

1. Tiefstliegende Terme und P'-Terme.

ED DI GE	Termwerte	- Conterna	Termwerte
(3s) ² (3p) ⁴ ³ P ₁	191969.0	(3s)(3p) ^{5 3} P ₂	98602.2
(3s) ² (3p) ⁴ ³ P ₁	191277.1	(3s)(3p) ^{5 3} P ₁	97969.9
(3s) ² (3p) ⁴ ³ P ₀	190977.0	(3s)(3p) ⁵ ³ P ₀	97639.7

Termwerte
81740.60
81739.68
81736.98
81734.31
81732.73

0	-4	0	Q.,		1 m	ma l
2.		0-	sy	S	ue:	ш.

	Termwerte		Termwerte
48 5S.	84157.82	3d 5D4	81740.60
5s 5S.	39802.41	3d 5Da	81739.68
6s 5S2	23362.12	3d ⁵ D ₂	81736.98
4p ⁵ P ₃	63306.53	3d ⁵ D ₁	81734.31
4p5P2	63373.80	3d5Do	81732.73
4p 5P1	63414.37	4d 5D4	37412.65
	-134 198 Q	4d ⁵ D _a	37413.78
		$4d^{5}D_{2}$	37416.36
		4d 5D1	37418.29
		4d 5D0	37419.33
4s 3S,	79364.00	4d ³ D ₂	38396.74?
58 3S.	38339.23	4d3D, 1	38400.44?
4p ³ P ₂	60204.59		
4p3P1	60217.14		
4p ³ P ₀	60205.48		
	3. ² D-5	System	
4s 3D3	65187.3	3d3D	72160.1
4s 3D2	65226.7	3d3D	72171.0
4s 3D1	65244.9	3d3D	72127.8
$4p^{3}F_{4}$	44771.2	$4d^{3}G_{543}$	20996.4
4p ³ F _a	44843.9	$4d^{3}F_{4}$	19228.3
4p ³ F ₂	44915.8	$4 d^2 F_3$	19319.2
$4p^{3}D_{3}$	45500.6	$4d^{3}F_{2}$	19397.0
$4p^{3}D_{2}$	45635.7	4d ³ D ₃	17116.9
4p3D1	45639.6	$4d^{3}D_{2}$	17148.8
4p3P2	42171.7	$4d^{3}D_{1}$	17183.6
4p3P1	42017.7	$4d^{3}S_{1}$	14546.7
4n3p	41930.9		24145 08

Cl III besitzt als Fünfvalenzelektronensystem Dubletts und Quartetts. Auch hier wird der Grundstock durch die Brüder Bloch gegeben, während man einen Teil der Linien wieder bei Jevons und Angerer heraussuchen kann. Majumdar und Deb [246] haben dreißig Linien eingeordnet, aber nicht gemessen. Diese sind in der folgenden Tab. 3 angekreuzt und, soweit wie möglich, mit der Einordnung von Murakawa [276, 290, 291] zusammengefaßt. Bei kürzeren Wellen, namentlich auch im Schumanngebiet hat Bowen [208] zahlreiche Linien gemessen und eingeordnet.

Tal	hell	le.	3	Cl	III
1. 68	DGU	10	0.	UL.	1111

Nach Murakawa [291] und nach Majumdar u. Deb (×) [247]	sni Gui	Blo [19	eh 3]	Majumdar u. Deb [247]	Murakawa · [291]
	6602	80	1		
_	6581	30	ō		
	54	65	1		19.00
_	36	65	õ		194
	6480	14	0		
_	23	70	1	_	
_	6396	63	0		AND A
_	95	38	0		
	63	42	11	_	
	59	17	0		
the subscription of the	15	16	1		
_	04	22	1		1100 - 1 S
	6296	54	0		
_	65	85	2		The second se
_	54	58	2		
_	40	17	1		
_	35	58	1		
	19	44	ō		
	6191	40	9		
	73	44	1	100	
C C C C C C C C C C C C C C C C C C C	64	99	0		128
	20	98	0		
	17	54	0		E ALLE TO A
	6087	43	0		
	39	90	0		
	26	462	1		
	19	53	0		
	17	06	0		
	5987	30	1		
	78	54	0		
	33	36	1		
	5623	95	00		-
	5593	912	1		
	28	12	1		
	5856	91	9	Troth A sure of the	and the second second
the administration and	4744	26	õ	D distant distant	provide telephysic
hen Takin Maland	99	372	1	to enough in	ining winders h
in removing These	27	862	1	Construct T weighting	Constant Dates
and and a start of the start of	19	14	1		•
	03	74	0	NUTRING OF	The second
3d4P4n4D	4695	335	1	-	A REAL PROPERTY OF
ou 11-4p D1	2000	001		A Destroyed	8.98 1
3d4P4n4D	35	81	1		0.00 1
$3d^{4}P_{-}4n^{4}D_{-}$	12	672	3		
ourg up Dg	08	10	6	<u>^</u> .	
	04	20	1		-
	4536	552	2		
3d4P_4n4D	1000	992	5	-	_
ou 12 1p D3	20	001	0	× ×	

•

Nach Murakawa [291] und nach Majumdar u. Deb (×) [247]		Blo [193	ch 3]	Majumdar u. Deb [129]	Nach Muraka und nach Ma u. Deb (×)
_	4512	60?	0	×	
$3d^{4}P_{3}-4p^{4}D_{3}$	4489	21	2	125 - 10	-
	62	16?	4		10 40
	54	71?	0	00	1491 -
	45	09	5	100-00	- 10
	37	66	1	N [2]	
	35	95	0	10 - of P	- 101 -
	4389	32	3		3d4P2-41
	88	77	0	A	128 -
	80	58	3		1 2 8 9
	74	99?	1	×	1 2 2 4
$3d^{4}P_{3}-4p^{4}D_{4}$	70	92	8		-
	69	60?	2		
	64	81	4		3d4P3-41
	61	66	0		190 -
	54	04	3		-
	53	73	2	-	- 12
-	50	40	1	-	10 4
	41	52	4		-
	40	31?	2	-	
- 20	37	62	0	-	- 22
	33	72	1	-	
-	25.	48?	2	-	
	24	67?	2	-	1
	08	43	1		Nach Boy
- 10-	05	99	1	-	[208, 247,
- 10	4282	46?	6	-	
	73	00?	1	-	-
	71	67?	1		-
	42	80	1	-	$4k^2P_2-4r$
	16	85	4	-	-
	15	64	3		3d4P1-41
- 60	4188	12	1		3d4P2-41
	57	01	2	-	-
	45	68	2	-	-
	43	82?	0	-	-
2.140 4.40	40	92	2	_	-
$3d^*P_1 - 4p^*P_1$	24	24?	3	×	
$3d*P_1 - 4p*P_2$	06	82	1	×	$4k^2P_1-4n$
od*P2-4p*P1	4000	22	9	×	4K*P3-4n
	4098	14	4	-	-
-	98	40	0	-	-
	90	50	0	-	(1-4D (
-	92	15	4	-	4K*P2-41
8d4D 4=4D	00	10	0	-	-
ourr2-4par2	01	01	0	×	41-40
	07	00	0	-	4K*P3-4n
8d4P 4m4D	50	07	1	-	4K*F2-4n
ou 13-4p 12	57	00	0	~	41-4D 4-
-	07	08	0	-	4K*P1-4n

ach Murakawa [291]				Majumdar	
nd nach Majumdar		Blo	och	n. Deb	Bowen
u. Deb (\times) [247]		[19	3]	1[29]	[208]
a. Deb(x)[an]				Teol	
	4051	64	3	-	
18 TO 18	50	46	4		-
0 +4 1 0	47	87	3	-	_
4 4 1 1 1 1	44	58?	5	_	-
100	38	43	3	_	_
	29	20	4	_	_
-	28	23	1		
3d4P-4p4P-	18	53	8	×	_
	15	06	4		
	03	45	1	_	
	3997	80	0		
	07	00	1		
	05	60	0	-	
9.44D 4.4D	01	50	10		
ou ra-4p ra	91	02	10	×	
	89	23?	3	-	-
_	88	78	2	-	
-	62	09	1	-	-
	58	34	1	-	-
-	55	37	2	-	-
-	52	74	2	-	-
-	51	02	1	-	-
	42	94?	2	-	-
N I D		1			
Nach Bowen				1990	
[208, 247, 291] .		de			
	3925	87	5	-	-
-	3896	18?	2	-	-
-	81	74	2	- 1	-
$4k^{2}P_{2}$ — $4m^{2}D_{2}$	50		-	-	0.81 4
-	24	46	4	-	-
$3d^{4}P_{1} - 4p^{4}S_{2}$	22	01	1	×	-
3d4P2-4p4S2	04	80	1	×	-
-	03	55	1	_	
	00	95	2	- 37	_
10 10 10	3791	46	3	_	_
	79	35	3		
A	59	09	2	_	
4k2P _4m2D	18	81	8		8.81 8
4h4P - 4m4D	40	70	0		1.70 9
IN 13-411-D2	90	48	8		1.10 0
	20	00	0		
	10	950	0	1.1.1	
	07	35?	3	-	F 15 0
$4 \mathrm{K}^{4} \mathrm{P}_{2}$ $-4 \mathrm{m}^{4} \mathrm{D}_{1}$	05	47	3	-	5.45 6
-	3688	05	00	-	-
-	83	40	3	-	-
$4k^{4}P_{3}$ -4m ⁴ D ₃	82	05	6	-	2.05 7
$4k^{4}P_{2}$ — $4m^{4}D_{2}$	70	29	8		0.28 7
-	61	48	0	-	-
4k4P1-4m4D1	56	95	8	_	6.95 7

Einordnung nach Bowen [208, 247, 291]		Bloch [193]	Bowen [208]	Jevons [133]	Angerer [139]
	9009	70 0			17
dh4D Am4D	0020	10 2	0.00 7		T
$4K*P_1 - 4M*D_2$	22	69 8	2.69 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10	21 0	-		
	13	80 2	-	1 1 - 10	
$4 K^{*} P_{2} - 4 m^{*} D_{3}$	12	86 10	2.85 8	C- 19- 11	-
-	08	78? 1			-
$4 k^{4} P_{3} - 4 m^{4} D_{4}$	02	10 12	2.10 9	0 00 00	-
	3573	66 1	-	8 19- episi	
	69	40 2		0. 1- 38	-
	60	70? 8		6 8- 98 1	-
- 0 0	60	20 3	-	1 11-12	-
- 11 30	45	48 4		2 4 5 7	0.4
- 1 3	30	04 10	-	S SO- 60 7	-
	01	12 2	-	1 1- 10	
- 1 103	3467	10 0		o the is the	
- 1. 18	40	52 1		8 - 10	
	00	15 2	-	8 2-20 1	9.9 3
- 1 10	3398	20 Ou	_		
	96	60? 1	_	1 - 1 - 1	
- 15 18	93	46 7		2 9 - 0	
	92	87 7		11 5- 73	2.8 8
- 1. 706	90	85 2	_	1 1 2 12 - 1	
-	90	30 1			
-	89	77 0	<u> </u>		100
$4k^{4}P_{3}-4m^{4}P_{2}$	87	59 6	7.60 6	T The PAN	7.6 5
	86	21 5	_	1	6.4 5
_	76	12 0	_	A State States	61 1
- 1000	46	61 1		-	- I
4k4P4m4P.	40	39 7	0.42 9	0.36 10	99 7
	36	11 8	616 5	6.09 5	59 8
_	35	40 0	0.10 0	5.40 1	0.0 0
4k4P-4m4P	29	092 8	9.06 8	9.06 6	80 10
$4k^2P_{e}-4m^2P_{e}$	20	51 7	0.57 7	0.51 8	0.9 10
$4k^{4}P_{-}-4m^{4}P_{-}$	00	87 8	0.95 8	0.96 2	0.0 0
$4k^{4}P_{-}-4m^{4}P_{-}$	3989	79 7	9.80 7	0.00 5	0.5 5
$4k^{4}P_{-}-4m^{4}P_{-}$	83	89 5	3.41 6	9.99 5	0.00 4
4K 12 4m 13	65	44 9	0 11.0.	0.02 0	0.0 0
	59	18 4	0.59 0	0.01 1	0.15 4
	57	79 1	0.02 0	0.24 4	9.10 4
	51	07 9	-	1.02 0	10 0
	44	01 0		1.03 2	1.2 3
	90	00 4 70 2	4.44 0	4.30 3	4.35 2
	32	12 3	-	2.58 1	2.3 1
	30	69 3	-	-	
	20	82 1		-	5.8 0
	16	01 4			5.85 2
-	06	29 1	-	-	-
	3193	78 1	-	0 - 10	3.5 1
$4 K^{4} P_{3} - 4 m^{4} S$	91	43 7	1.45 9	1.40 8	0.9 7
-	67	87? 1	-		1
C9.01 18.09	57	71 1	-	- 1	_

Einordnung nach Bowen [208, 247, 291]		Block [193	h]	Bower [208]	n	Jevons [133]		Anger [139]	er I
	3154	39	0		1	-		_	
	52	18	0	1 1	1000	_		-00-	
	41	80	1		12	-	200		
41-4P4m4S	39	16	6	9.34	8	9.28	7	9.1	4
TK 12 TH S	35	46	0		20	-		-	
_	34	65?	1u	- 25	18	-		-	
	81	22	1	_	60.	-			
	29	54	2	- 61	08	-			
a ne	28	42	1	10 1	58	-			
5 08 m	27	68	1	10 -	14.3	- 10			
	18	76	1	10 -	23	-		-	
	16	70	Ou	- 19	21	-		1-1P++	
	13	57	1	10 -	IT	-			
4k4P4m4S	04	47	5	4.46	6	-		1-1P-1	
	3087	25?	1u			- 10			
0 12	76	63	5	- 2		6.64	9	6.6	4
1007 - 11 To -	74	55?	0	-		-			
e min i	73	20?	0	- 0		-		1-10-14	
_	65	78	1	10 -		-		-	
2 312 -1	63	17	3	- 17		3.09	7	2.85	4
T DORE	59	74	0	-		9.69	5	9.55	0
1 1 1 L	53	38	1					3.5	1
1 00.0 1 10	48	86	00	1 23 -		8.64	2	8.8	. 0
3 191 191 1 19	11	64?	00			-		-	
1	03	18	1	10 -		-		-	
colldo	02	45	3	788 -		2.45	4	2.49	4
1 mil - 1 5	2999	29	1			-		-	
1 2 2 1 10	92	78?	3d	18 -		-		3.02	1
I THE A	91	67?	2	- 1		-		1.70	1
A SPECIAL SPECIAL	89	79	2	- 11		-		0.00	3
1-1-150	70	68	3	-				0.73	2
CARNELLA PLAN	65	45	6	19		5.50	5	5.55	4
(and)	43	98	2	- 18		-		4.20	2
	31	87	3	1 -		1.87	3	1.68	4
8 91-	25	04	1	-		-		-	
THE PROPERTY	24	35	1	12 -		-		4.53	1
I MARY - MARY	17	15	1			-		6.96	1
	16	01	0	11		-		-	
1 61-	14	10	0	1 10 -		-		-	
0 0-	05	52	1			-			
	2898	29	4	12 -		-		8.45	4
	96	88	3	118 -		-		7.00	3
1 10 10 10 10 10 10 10 10 10 10 10 10 10	93	78	1	38 -		1 3 10-		3.84	0
	92	56?	1u			-		272-	-
S 83 - 1	91	64	3	1 2 -		-		1.72	3
8 10-1 5 0	83	24?	2	1911		-			
	75	76	1	- 10		- 12		6.00	2
- 19 - 19 - 1	72	05	1	- 15		- 4.0		2.00	. 0
	71	25	1			0.0-		1.50	1
Ben The La della -	62	94	2	1 02 -				3.20	1

Einordnung nach Bowen (×) [208] u. Murak [291]	Einordnung nach Bowen (×) 8] u. Murak [291]		och 93]	Bowe [208	n]	Jevo [133	ns]	Ange [13	erer 9]	
${}^{4}P_{3}-{}^{4}F_{2}$	2859	75	1×			_				-
	48	36	2u	- 11		-		-		
${}^{4}P_{3}-{}^{4}F_{3}$	41	45	$2u \times$	01 -				1.51	0	
APP. TANK	35	53	0	-		1		5.45	2	
	34	35	0	S0 -		-				
ALCENT TO BE	32	23	1	19810 -		-		2 42	1	
	30	68	1	18 -		-		0.65	1	
	27	62	2	-		-		7.55	5	
-	22	28	4	-		-		2.30	5	
	13	95	1	- 10		-		4.04	1	
4p*P ₃ -4d*F ₄	13	39	1×	-		-		3.40	1	
AndD AND	11	10	1	-		-		1.74	1	
4p*r2-4d*r3	07	60	1×	-		-		1-1-1		1
1 m 48 1 m 4D	00	41	1	-	-	-		-		1
4m*5-4n*D ₂	04	82	2	5.17	2	-		4.72	0	1
4m48_4n4D	2191	24	2	0.07		-		-		l
4m-3-4n-D3	05	02	2	0.07	T	0.7	1	6.50	2	
	0.4	47	10	T		T		101		
	88	112	11	T		-		4.64	2	
	86	10	1	-		1		8.06	1	
	82	10	1	T		014		6.13	2	l
	80	10	0	T		0.14	3	3.09	4	I
	81	- 41	2	T		2.45	-	2.49	4	I
	76	952	0			1.01	T	1.05	4	I
	74	002	0	T				-		
i me	70	61	2	T		0.64	4	0.59	0	1
	69	37	2	I		0.04	4	0.52	0	I
-	67	76	2	I		7.84	2	7.74	1	I
-	64	95	2			4.8	0	1.14	T	
1	61	14	In	_		1.0	-	1.85	0	ł
-	59	37	11	_				1.00	0	l
1	57	41	11	_		_				I
-	56	82	3			_		6.90	8	l
	51	21	2	-		_		1.37	3	
1	48	78	1	_				_		
	48	17	1	_		_		-		1
	41	66	3u			-		1.75	2	I
-	38	26	1	-				8.41	0	I
1 A -	37	27	0	-		-		-		
a one-	36	64?	0	-		-		-		
0 18,	36	24	1	R		-		6.27	1	
	29	43	1	- 10		_		9.51	1	
8 ST-	27	83	2	10 -	1.92			7.83	2	
	23	99	2	- 91	18	4.03	2	4.05	3	
	23	46	1	88 -	1	_		-		
a sugar -	22	43	1		1.2	-		-		
1 00 -	21	99	0	- 225	121	-		-		
1 02 - 1 - 1	18	26	2	10 4	195	_		8.30	2	

*

Einordnung nach Bowen [208, 247, 291]		Blo [19	ch 3]	Bowen [208]	Jevons [183]	Ange [139	erer 9]
_	2717	69	3	_	7.62 1	7.55	8
	16	79	0				
-	15	61	0	_	_	-	
	14	88	1	_		_	
-	14	37	3	-	4.37 1	4.32	3
_	13	84	0			_	
	11	39	1u	-	_	_	
_	10	95	2		-	_	
	10	28	4	-	0.38 7	0.36	3
-	07	89	3		7.91 3	7.97	3
_	03	47	0		1		
	02	42	1m		-	2.45	2
	01	36	0		1.36 3	1.36	3
$4 m {}^{4}P_{a} - 4 u {}^{4}D_{a}$	2699	90	2	9.79 1	9.9 1	9.79	3
-	97	72	2	_	7.69 2	7.63	3
$4 \mathrm{m}^{4}\mathrm{P_{a}}$ -4u $^{4}\mathrm{D_{a}}$	91	48	4	1.52 5	1.49 6	1.50	6
-	86	03?	1		-	_	
- 101	85	38	3		5.40 5	5.41	6
	84	75	3	-	4.75 6	4.76	6
_	82	40	3		2.40 3	2.32	6
	81	26	1		-	_	
_	80	88	2	-	0.88 1	0.99	4
³ D ₄ -4F ₂	75	84?	$0 \times$	-		5.48	1
_	71	12	1u	-	_	1.30	2
$4p^{4}P_{2}-4d^{4}D_{1}$	70	55	1	10 - 10	-	0.54	2
$4m^{4}P_{2}-4u^{4}D_{2}$	69	61	3	9.52 3	9.57 4	9.53	3
1- 184	68	66	2		8.63 3	8.63	3
$(x^4P_1 - D_1)$	65	55	$4 \times$	5.54 6	5.52 6	5.47	7
$4n^{4}P - 4d^{4}D$	69	95	9		2 90 9	2 02	2
$4m^{4}P - 4n^{4}D_{1}$	60	20	2	9 90 9	0.20 0	9.17	9
$4m^{4}P_{-}4n^{4}D_{2}$	61	59	2	1.65 5	156 5	1.40	Ä
4m 12-4u D3	54	49	1	1.00 0	1.00 0	1.40	0
_	51	83	2			1.82	3
4n4D -4 d4F.	51	99	3~		1 16 3	1.02	4
$4p^4D_4 - 4n^4F_4$	48	86	0		1.10 0	1.10	4
4p 123-4p 12	40	24	0				
	45	81	1			5.75	1
	40	85	9		1.85 9	1.99	4
	39	11	3		1.00 2	8.95	2
	28	58	0		A DECEMBER OF THE OWNER OWNER OF THE OWNER OWNE	0.00	0
4n4D-4d4F	33	98	3~		316 4	3 19	4
1p 123 -10 13	39	76	1		2.68 5	2.79	4
	29	52	24			9.45	1
	25	45	1			0.40	+
	24	74	4		4.72 6	4.71	7
4p4D4d4F.	20	69	1		0.5 2		
-P -4 -10 15	20	05	4		0.08 5	0.06	7
$4p^4D_a-4d^4F_a$	18	79	2×	_	8.76 4	8.75	0

Einordnung nach Bowen	Contra Co	Bloch		Bowe	en 1	Jevo [129	ns	Angerer [139]		
[208, 247, 291]	_	[13	0]	[200	1	[100	1	[13:	1	
Setter de	9617	61	1							
4D4E	17	04	Av			6.99	9	6.90	0	
-D415	11	44	2			1.45	5	1.22	G	
4n4D-4d4F.	09	58	5×			9.50	7	9.51	7	
	08	832	0	_		0.00		0.01		
4D_4F	06	51	1×	_		10 -		6.52	1	
-1 -3	04	97	2	- R		5.02	5	5.03	4	
$4 p^4 D_a - 4 d^4 F_a$	03	51	4	10		3.50	5	3.46	7	
4p4D,-4d4F.	01	21	4×	199		1.14	6	1.31	4	
-1 -11	2599	53	2	_		_		9.60	2	
	95	18	2	_		5.17	2	5.15	3	
ar	94	04	2	-		3.95	2	4.00	3	
marsh the sea	92	54	2	_		2.45	2	2.53	3	
me _ 44	90	92	1			_		0.96	1	
Street Mis	88	84	2	1921		8.80	3	8.80	0	
Not in the	84	53	1	-		- 10		4.54	1	
	83	26	1			10 1		3.25	1	
12.2 1 2 04.3	78	36	3	- 10		8.23	5	8.29	6	
ALL 1 110	77	10	3	05		7.13	6	7.06	6	
188 1 L . 164	74	75?	Ou	- 1		4.77	2	_		
	74	04	2	- 15		4.13	2	4.02	2	
120 1 180	69	79?	Ou			08 1		- 1		
$4 m^4 S - 5 k^4 P_1$	66	15	1	1111		6.23	1	6.12	3	
	62	-	- 161	62.52	1	- 11		-		
100	59	49	3	10-		9.50	3	9.53	4	
100 L 100	57	88?	2	- 10		- 19		8.00	3	
101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55	58	1			- 19		5.65	1	
-	45	34	1	-				5.11	3	
$4m^{4}D_{4}$ - $4u^{4}D_{3}$	42	60	1	2.65	2	-				
- 92	40	79	2			0.84	3	0.96	1	
101 - 101 -	39	27	1	-		EU -		C.C.C.L		
0817 1 A 0818	35	54	1	-		100 -				
$4 m {}^{4}S - 5 k {}^{4}P_{2}$	33	85	1	3.95	1	- 11		4.00	1	
-	33	24	0	-		- 91		-		
and 1	32	52	3	-		2.46	6	2.59	9	
	.31	75	3	-		1.72	4	1.90	9	
-	29	53	Ou	-		9.98	5	-		
	28	77	2u	-		-		8.88	7	
	28	01	3	-		8.04	4	—		
$4m^{4}D_{4}-4u^{4}D_{4}$	19	49	4	9.45	5	9.49	5	9.65	8	
	17	84	0	-		-		-		
	16	28	1	-		-		6.42	9	
	14	69	2	-	-	4.57	2	4.62	8	
	12	62	1	-		-		2.70	2	
$4 \text{ m}^4 \text{D}_3 - 4 \text{ u}^4 \text{D}_2$	11	30	2	0.92	4	0.89	4	1.30	2	
	06	57	2	-		-		-		
	05	71	2	-		5.7	2	5.75	2	
	05	00	lu			-				
$4m^{4}D_{3}-4u^{4}D_{3}$	04	20	3	4.23	5	- 10		4.19	6	

Einordnung nach Bowen [208, 247, 291]		Bloc [193	eh 3]	Bower [208]	n .	Jevons [133]		Anger [139	er]
-	2494	94	1	-		_		5.01	1
	90	24	2	-		-		0.30	3
	88	60	2			-		8.74	3
-	87	34	1u	1980 -		-	1		
$(x^{4}D_{2}-4D_{1})$ $4m^{4}S-5k^{4}P_{3}$	86	85	3×	6.91	5	6.82	2	6.93	4
$4 p^4 D_2 - 4 d^4 D_1$	85	14	2	0 -		-	1200	5.17	2
$4 \mathrm{m}^4\mathrm{D}_2$ — $4 \mathrm{n}^4\mathrm{D}_2$	84	25	3	4.27	4	4.25	3	4.36	4
$4 m^4 D_3 - 4 n^4 D_4$	81	72	1	1.77	2	-		1.85	1
$4 m^4 D_2 - 4 n^4 D_3$	77	30	2	7.29	2	-	1	7.36	3
${}^{4}\text{D}_{1}$ - ${}^{4}\text{D}_{1}$	71	03	$3 \times$	- 17		1.07	3	1.05	5
$4p^{4}D_{1}$ — $4d^{4}D_{1}$	69	26	2	- 20		9.20	3	9.20	3
$4 \mathrm{m}^{4}\mathrm{D_{1}}$ - $4 \mathrm{n}^{4}\mathrm{D_{2}}$	68	41	1	8.37	3	8.42	1	8.43	2
$4m^{4}P_{2}-5k^{4}P_{1}$	48	59	2	8.58	6	8.59	4	8.65	4
and some This is an	48	10	1	-		-		-	
$4 m {}^{4}P_{3} - 5 k {}^{4}P_{2}$	47	16	2	7.14	6	7.19	3	7.26	4
$4m^{4}P_{1}-5k^{4}P_{1}$	46	85?	1	-		-	6200		1
	42	-		2.47	5	-		2.52	4
anden. Eli-strange-en	39	. 68?	2			9.69	2	9.64	0
h Denth - Booler	37	93?	1			7.74	1	8.03	2
	36	16	2	-		-		6.01	6
-	22	80	1	-		-		2.52	3
$4m^{4}P_{2}-5k^{4}P_{2}$	22	41	0	2.47	4	-			
	19	51	0		-		~	9.62	2
$4 m^4 P_1 - 5 k^4 P_2$	16	44	2	6.42	7	6.42	2	6.43	4
19121 -	15	99	1	-		6.00	2		
-	10	03	2	-		5.49	3		
	12	93	2	0.00	×	2.97	0	0.17	7
4m*P ₃ —0K*P ₃	03	29	0	0.02	0	0.29	4	0.11	
SH-RAT GOAL	2094	40	0	-		T			
DELET LE	91	12	0	-		T		100	
	00	00	0			T		and so that	
	87	00	0	_		Las To		7.18	1
	86	66	0			A I		6.64	2
4m4P_514P	79	48	3	9.47	5	9.7	2d	9.43	3
Am 12-OK 13	79	62	1	0.11		-			
17 MIZ & 14	70	24	4			0.37	4	0.43	5
AT HALL AND	67	80	1	_		-	0.09	-	
Wender Santh	63	53	2	-				3.32	2
1	62	36	0						
8 997 R 991	59	65	4			9.67	3	9.64	6
a the second	53	11	1	0				96.499	
a contract of	47	66	1	-		_			
and the second s	46	32	11			1		_	
and the second second	40	53	3	-		0.64	2	0.46	3
10 M 10 M 10 M 10	36	38	3	_		6.45	1	6.35	2
our conserved hourses	36	11	1	particul <u>e</u>		PRA THE		121.11	
The state of the	ollolle).	poletier.	logh	niemie b		TOTO OF STREET		1. 11 15 17 10	

Einordnung nach Bowen [208, 247, 291]		Bloch Bowen [193] [208]		Jevons [133]		Angerer [139]			
1 01-1	2335	52	1	_				5.55	1
	23	49	4	_		3.50	4	3.54	4
8 174	12	70	0	1 m-		_	121	-	
	06	58?	0	- 31		-			
-	02	53	0	-		_			
	2298	59	3	-		_		8.52	2
$4 m {}^{4}D_{2} - 5 k {}^{4}P_{1}$	91	88	2	1.81	4	1.83	1		
$4 m {}^{4}D_{3} - 5 k {}^{4}P_{2}$	91	41	2	1.38	4	1.39	3	1	
	86	00	1	-		_		1	
$4 m {}^{4}D_{4} - 5 k {}^{4}P_{3}$	83	93	3	3.93	7	3.90	5	3.90	4
1 30 - 1 - E 1	81	47	1	-		1.50	3	_	
- B (1994 - 1995 - 1	80	76	2			0.76	2	1	
$4 m {}^{4}D_{1} - 5 k {}^{4}P_{1}$	78	36	2	8.34	5	8.35	2	-	
$4 \mathrm{m}^4 \mathrm{D}_2 - 5 \mathrm{k}^4 \mathrm{P}_2$	68	96	2	8.95	5	8.89	2	1	
$4 m^4 D_1 - 5 k^4 P_2$.	66	00	0	_		_			
1 12- 16 1	55	I ANT		5.64	2	-	1000	1	
$4 m {}^{4}D_{3} - 5 k {}^{4}P_{3}$	53			3.07	7	_	100	3.16	6
1 12 - 1	34	65	2			120	1.0		
$4 m {}^{4}D_{2} - 5 k {}^{4}P_{3}$	31			1.16	5	_	1.28	1.22	1
2 8/2 1 1	02	25	1	- 101		77.3_1		2.25	6
	1			TP-	20		11		

Einordnung nach Bowen [208, 247, 291]		Bowen [208]			Einordnung nach Bowen [208, 247, 291]		Bov [20	ven 98]
a ⁴ S—b ⁴ P ₃	1015	023	7		a ² P ₁ — ² P ₁	666	040	3
a^4S — b^4P_2	08	777	6	1.00	a ² P ₂ -2P ₂	61	836	2
a4S-b4P1	05	280	5		a ² P ₁ -2P ₂	61	414	2
$b^{4}P_{2}$ -4m ⁴ P_{1}	953	40	2		$a^{2}P_{2}$ —4k ² D	30	746	1
$b^{4}P_{2}$ — $4m^{4}P_{3}$	48	72	1		$a^{2}P_{1}-4k^{2}D$	30	380	1
$b^{4}P_{3}$ — $4m^{4}P_{2}$	46	97	1		$a^{2}D_{2}-4k^{2}P_{1}$	23	768	3
$b^{4}P_{3}$ — $4m^{4}P_{3}$	43	22	1	1.10	a ² D _a -4k ² P ₂	21	280	4
$b^{4}P_{1}$ —4m ⁴ S	39	31	0		a^2D_2 -4k ² P ₂	21	027	3
$b^{4}P_{2}$ —4m ⁴ S	36	28	1	0.00	a 2D2-2P1	17	630	2
$b^{4}P_{3}$ —4 m ^{4}S	30	94	1		a ² D _a -2P ₂	13	874	1
$a^{2}P_{2}-4k^{2}P_{1}$	673	598	1	1.0 2.	$a^2D_2-4P_2$	13	643	0
$a^{2}P_{1}-4k^{2}P_{1}$	73	127	3		a^2D_3 —4k ² D	587	078	4
$a^{2}P_{2}$ —4 $k^{2}P_{2}$	70	383	3	1.00	a^2D_9 —4k ² D	86	847	4
$a^{2}P_{1}-4k^{2}P_{2}$	69	949	2		a4S-4k4P,	75	582	3
$a^{2}P_{2}-P_{1}$	66	500	0	10 1	a4S-4k4P.	74	408	3
		19			a4S-4k4Pa	72	693	4

Cl IV besteht als Viervalenzelektronensystem aus Singuletts und Tripletts, die von Bowen [208] gemessen und eingeordnet wurden. (Siehe Tab. 4.)

	**	

inti iner till	no zom	Bow [20	en 8]	ny and a second second second	Tel mana	Bow [208	en 8]
a ³ P ₂ -b ³ D ₂	985	749	4	a ³ Po-b ³ S	607	088	3
a ³ P ₂ -b ³ D ₃	84	852	7	a 3P2-3n 3D	04	590	3
a ³ P ₁ -b ³ D ₁	77	901	4	a 3P1-3n 3D	01	499	3
a ³ P ₁ -b ³ D ₂	77	560	6	a ³ P ₀ -3n ³ D	599	733	2
a ³ P ₀ -b ³ D ₁	73	212	5	a ³ P ₂ -3n ³ P	53	297	3
a ³ P ₂ -b ³ P ₂	840	933	6	a ³ P ₁ -3n ³ P	50	706	2
a ³ P ₂ -b ³ P ₁	40	808	4	a ³ P ₀ -3n ³ P	49	219	3
a ³ P ₁ -b ³ P ₂	34	967	5	a ³ P ₂ -4k ³ P ₁	467	194	3
a ³ P ₁ -b ³ P ₁	34	840	5	a ³ P ₁ -4k ³ P ₀	66	132	3
a ³ P ₁ -b ³ P ₀	34	659	3	a ³ P ₁ -4k ³ P ₁	65	350	3
a ³ P ₀ -b ³ P ₁	31	431	4	a ³ P ₂ -4k ³ P ₂	. 64	861	4
a ³ P ₂ -b ³ S	612	070	4	a ³ P ₀ -4k ³ P ₁	64	292	3
a ³ P,-b ³ S	08	903	4	a ³ P ₁ -4k ³ P ₂	63	011	8

Tabelle 4. Cl IV.

Cl V ist ein Dreivalenzelektronensystem mit Dubletts, die zum Teil von Bowen [208] und Bowen und Millikan [157, 167] gemessen und eingeordnet sind. O. Laporte [165] erörtert im Anschluß an die Arbeiten von Hund und Heisenberg das Auftreten gestrichener Terme, wie sie von Fowler, Bowen und Millikan angegeben werden. Er wendet sich gegen die Erklärung von Bowen und Millikan und hält die Deutung Hunds für besser.

CI VI besitzt zwei Valenzelektronen und hat daher ein Singulett- und Triplett-

Tabelle 5. Cl V.

Tabelle 6. Cl VI.

nde stale de	Larchill Rout ins	Bowe [167, 2	en 208]
$a {}^{2}P_{2}$ — $b {}^{2}D_{2}$	894	910	1
$a {}^{2}P_{2}$ — $b {}^{2}D_{3}$	94	340	4
a^2P_2 — b^2S	688	933	4
$a^{2}P_{1}$ — $b^{2}D_{2}$	83	127	4
b ⁴ P ₃ -c ⁴ S	83	171	4
a ² P ₁ -b ² S	81	924	4
b4P2-c4S	79	257	3
b ⁴ P ₁ -c ⁴ S	76	785	3
a ² P ₂ -b ² P ₁	39	226	3
a ² P ₂ —b ² P ₂	35	323	4
a ² P ₁ -b ² P ₁	33	186	4
a ² P ₁ -b ² P ₂	29	354	3
	570	31	2
	69	14	2
	65	47	2
-	64	30	2
a 2P2-3n 2D2	42	395	3
a 2P2-3n 2D2	42	297	6
a 2P1-3n 2D2	38	032	5
a ² P ₂ -4k ² S	392	39	1
a ² P ₁ -4k ² S	90	07	1

		Bow u. Mil [156,	ven likan 157]
	736	76	3
-	33	89	3
	30	31	4
and the second	27	54	3
_	24	13	3
3S-3P	671	37	4

Tabelle 7. Cl VII.

		Bow u. Mil [15	ven likan 5]
32S1-32P2	813	00	2
$3^{2}S_{1} - 3^{2}P_{1}$	800	70	3

Linienspektrum, wovon bis jetzt nur die pp-Gruppe durch Bowen und Millikan [157, 167] bekannt ist. (Siehe Tab. 6.)

Cl VII ist ein Einvalenzelektronensystem mit Dubletts, wovon nur zwei Linien durch Bowen und Millikan [155] gemessen sind.

Term- bezeichnung	Termwerte	Term- bezeichnung	Termwerte	Term- bezeichnung	Termwerte
aS	321936	5kP1	76984.5	4mD ₁	120862.6
bP ₁	222461	5kP2	76543.6	$4 m D_2$	120604.0
bP ₂	222806	5kPa	75798.8	$4 m D_3$	120170.9
bPa	223416	4mS	115997.5	$4 \mathrm{mD}_4$	119568.4
4kP1	148200	4mP1	117914.4	$4nD_2$	80363.6
4kP.	147842.2	4mP ₂	117812.0	$4 n D_3$	80250.9
4kP3	147322.1	4mP ₃	117394.8	$4nD_4$	79889.8

Tabelle der Termwerte von Cl III, Cl IV, Cl V, Cl VI und Cl VII nach Bowen [208].

Die Elektronenkonfiguration für ein n-Valenzelektronensystem nach Bowen [208].

Bezeichnung in den Wellenlängentabellen 2—7	Elektronen- konfiguration	Bezeichnung in den Tabellen 2—7	Elektronen- konfiguration
a	s ² pn- ²	k	s ² pn- ³ · s
b	spn-1	m	s ² p ⁿ⁻³ · p
c	pn	n	$s^2p^{n-3} \cdot d$
		p	· s ² p ⁿ⁻³ · f

Da in den Tabellen 2-7 nur neu gefundene Terme enthalten sind, seien hier die alten Bezeichnungen [155, 141, 146] neben den neuen aufgeführt.

alt	neu	alt	neu
3p1	a P2	5s	5kS
3p.	aP1	4p1	$4mP_2$
x	bS	4 p ₂	$4mP_1$
3p1'	bP ₂	3d1	$3nD_3$
3pg'	bP1	3d2	$3nD_2$
48	4kS	4d	4nD

Tabelle der Termwerte von Cl III nach Majumdar und Deb [247].

1. 111111 111111	Term- bezeichnung	Termwerte		Term- bezeichnung	Termwerte
2M.M.	4P,	142154.5	2MaNa	4F2	82430.1
	4P.	142272.6	-	4F4	82206.0
_	4P.	142440.7		4F5	81861.1
			-	4F5	81368.7
			-	4D1	80406.7

Term- bezeichnung	erm- chnung Termwerte		Term- bezeichnung	Termwerte	
$4 p^4 S_2$	115997.5)	(P+185.)		4d4D1	80378.1
$4p^4P_3$	117394.8			$4d^4F_5$	81412.2
$4p^4P_2$	117812.0			4d4F4	81862.0
4p4P1	117914.4			4d4Fa	82205.8
$4 p^4 D_4$	119568.4			4d4F2	82430.4
$4 p^4 D_3$	120170.9	nach		3d4P3	142440.9
$4 p^4 D_2$	120604.0	Bowen		3d4P2	142272.5
4p4D1	120862.6	[208]		3d4P1	142154.9
$4d^4D_4$	79889.8			Street where	
4d ⁴ D ₃	80250.9	al do bits		Card dette	
$4d^4D_2$	80363.6	1.00		and the state	and the second

Tabelle der Termwerte von Cl III nach Murakawa [291]

In den vorstehenden Tabellen sind alle Linien gesammelt, welche bestimmten Ionisationsstufen zugeordnet worden sind. Außerdem sind aber zahlreiche Linien gemessen, für die dies noch nicht gelungen ist. Für das sichtbare Spektrum sehe man die Tabellen von Cl in Bd. V und Bd. VII des Handbuchs. Für das Schumanngebiet liegen zwei Messungen vor: die erste von Millikan und Bowen [149] mit dem hot spark, welche bis λ 528 reicht, die zweite von Vaudet [205] mit elektrodenloser Ringentladung bis λ 1302. Dazu kommen noch ein paar Linien von Turner [187], die wohl sämtlich zu Cl I gehören. Alle diese Linien sind in Tab. 8 zusammengestellt.

Zu den übrigen in der Literatur angegebenen Arbeiten sei folgendes gesagt. Jenkins [178, 200] sucht im Linienspektrum nach Isotopen. Durch Diffusion stellt er zwei Chlorsorten mit den Atomgewichten 35.42 und 35.52 her und photographiert deren Spektren untereinander. Bei der Linie 5392 glaubt er einen Unterschied der Wellenlänge um etwa 0.001 Å zu erhalten, aber bei den Linien 5078 und 4135 findet er nichts. Die Wirkung liegt unter der Grenze seiner Meßgenauigkeit. Der Nachweis von Isotopen durch Nagaoka und Sugiura [135] nach eigner Theorie ist als verfehlt zu bezeichnen. Über den bandenspektroskopischen Nachweis von Chlorisotopen wird im folgenden noch berichtet.

Swindler [186] untersucht den Einfluß von Änderungen des Potentials und der Schwingungszahl auf Gasspektren. Seine Cl-Röhren zeigen ihm aber nur Banden von N und CN. Krefft [143] prüft den Dopplereffekt an Bogen- und Funkenlinien von Cl. Franck und Gibson [216] führen die Auslöschung der D-Linien in Flammen durch Zusatz von Chlor auf die Elektronegativität des Cl zurück. (Siehe dazu auch [70].) Noyes [169] ermittelt die Ionisierungsspannung für die verschieden stark ionisierten Cl-Atome aus der Charakteristik von elektrischen Entladungen im Chlor zu 8.2 Volt und Vielfachen davon. Ferner hält er die Knickpunkte seiner Kurven bei 4 Volt und Vielfachen davon für Resonanzpotentiale. Tolansky [294, 299] sucht vergeblich bei einigen Cl II-Linien nach theoretisch vorhergesagten Feinstrukturen und gibt als Erklärung dafür an, daß der g-Faktor für Cl³⁵ bei einem Kernspin von $\frac{5}{2}$ außerordentlich klein sei.

	0	77	XX7 X1 1**	
Tabelle	8.	Kurze	Wellenlangen.	

8

10220	Vaudet [205] λ vac.	Jevons [133] λ Luft		Vaudet [205] λ vac.	Millikan u. Bowen [149]	10		Vaudet [205] λ vac.	Millikan u. Bowen [149]
2252	37 6	1.50 4	1824	55 1	_		1344	_	4.0 1
51	88 5	0.94 4	22	51 4	1.9 2		31	-	1.2 2
43	-	3.77 1	17	81 1	7.8 1		29	18 1	-
35	34 0	4.58 3	12		2.4? 0		05	95 1	-
33	-	3.17 2	08	. 57 1	8.0? 0		04	78? 1	5.1 2
31	-	1.22 1	1794	28 00	-		02	12? 1	2.0 2
26	-	6.60 3	93	16 1	-		1298	53 0	-
25	46 3	-	92	12 1	-		1000	in status	
23	-	3.73 3	89	10 0	-		1200	a lossed	5 0
20	-	0.75 2	83	83 0	-		1145		0 2
10	- 0	0.46 3	12	06 3	-		28	10	0 0
2190	73 0		67	27 2	nia Tallar	1	1079	o constell	0 3
70		6.90 1	38	01 3			70	in unalista	9 4
79	02 2	4.00 1	1077	01 1			08		2 3
61		0.10 2	1077	00 00			60		0 3
58		1.00 D	65	17 0			14	in nonenn	9 4
41	ALL TRANS	1 22 1	60	79 0	3 12 1		05		0 4
25	Sele 187.	531 1	56		6.82 0	1.1.1	984	blow_shar	* 0
10	ound T de	0.71 2	54	17 0	0.01 0	101	77	ano bester	4 0 1 00
2094	41 2	3.64 3	49	96 3	-		78	- Instantion	0 9
92	27 0	0.01 0	47	43 2	_		60	1115 A 18	4 6
90	56 0	_	45	39 1	_		893		5 4
89	34 2	and the second second	1599	28 1	an <u>ho</u> tasi	11.1	88	anginetin n	0 4
87	79 2	7.1 4	92	84 2	3.5 0	1.1	64	ners [OIR]	4 4
70	-	0.8 1	90	_	0.7 0	1	51	CLASS STOR	6 4
53	45 2		76	32 1	7.7 2		40	trail ments	9 6
27	79 0	and and the	70	80 1	_		793		3 3
1998	75 2		64	99 3	5.1 0		87		8 .4
97	30 2	and the second s	58	02 1			77	anno onti	5 2
83	57 1	about the S	42	81 2	2.1 1		29	TOUGH IN	4 3
42	40 3	40 9297 M	40	56 2		0.00	25	nin. Thu	4 2
12	92 1	1	1488	39 1	-		18	ina nech	-7? 5
10	91 1	A interimente	65	-	5.8 1		15	and and	8 4
01	63 2		62	-	2.3 1		12	a l'ann	6 4
1897	14 1		59	63 0	-		07	WE CHERES	4 4
90	65 2	n) -undorr u	28	and the state	8.3 0	2.6.2	689	N. W.	6 10
83	20 2	ng der D-Eu	18	1	8.4 0	104	82	an dougo	2 3
80	15 0	THE YOUR	1396	51 1	1)	26	70	Billion Sta	8 3
69	41 2	Millikan	89	89 2	1)	01	63	Ariaman Bizz	2 4
57	68 5	u Bowen	79	55 2	1)		53		7 4
36	61 1	[149]	63	45 2	1)	-	39		1 3
33	25 1	[110]	54	-	4.6 2		35	AND NORTH	8 4
32	11 2	2.1 2	51	65 2	$1.6 2^{1}$	100	23	tymoren .	7 2
28	43 3	-	47	29 2	7.2 31)		21	L-II P)	1 2

¹) Turner [187] gibt hier: 1396.5 (3), 1389.9 (4), 1379.6 (5), 1363.5 (5), 1351.7 (3), 1347.2 (5), 1335.8 (2).

	Millikan u. Bowen [149]		nation Notice	Mil u. B [1	likan Gowen 49]		Mill u. Be [14	ikan owen 49]
618	2	2	586	9	4	556	4	4
12	2	2	84	6	3	53	1?	3
09	3	3	74	3	4	49	7	2
06	3	3	69	7	3	42	5?	0
595	8	3	65	1	3	36	7	4
91	5	3	61	5	4	28	3	1

Zeemaneffekt. Néel [250] untersucht einige Linien von Cl II im Magnetfelde von 30000 Gauß und findet, daß die Linien 4819 und 4234 Tripletts bilden mit den Aufspaltungsgrößen 1.78 bezw. 1.68, während der theoretische Wert 1.75 ist. Die Linien 4810 und 4241 bilden Quartetts, deren äußere Komponenten den Abstand 1.90 bezw. 1.89 haben, was mit dem theoretischen Wert 1.92 gut übereinstimmt. Die Linien 4794 und 4253 sind nicht aufgelöst.

Kimura und Fukuda [116] beobachten mit Gitterspektrographen mittlerer Dispersion die Emissions- und Absorptionsspektren von Cl-Dampf zwischen 3800 und 6500 und messen gleichzeitig folgende Zeemanaufspaltungen bei Feldstärken von 2000 bis 6000 Gauß.

Wellenlänge	Aufspaltung	Wellenlänge	Aufspaltung
4781	1.26	5078	1.42
4786	or of the second of the	5218	1.40
4794	1.94	5221	1.87
4896	1.27	5392	1.09
4904	1.05	and the state of the	

Außer λ 4786 geben alle diese Linien Tripletts.

Röntgenspektrum: Unsere Kenntnis des Röntgenspektrums von Chlor ist in den letzten 10 Jahren durch eine große Anzahl von Arbeiten erweitert worden. Dolejšek [122], Siegbahn und Dolejšek [126], Lindh und Lundquist [144], Hjalmar [119], Deodhar [282], Bäcklin [150] und Druyvesteyn [214] haben neue Messungen in der K-Emissionsserie gemacht, die in der folgenden Tabelle zusammengestellt sind. Alle Wellenlängen sind darin in XE angegeben und beruhen auf der Gitterkonstante des Kalkspates $d_{18^\circ} = 3029.45$.

Lindh [120, 134] hat die K-Absorptionskante in verschiedenwertigen Chlorverbindungen gemessen und aus den beobachteten Verschiebungen, die er relativ zu der Lage der Kante für freies Chlor angibt, nach der Einsteinschen Gleichung $e \cdot V$ = $h \cdot v$ die den Verschiebungen entsprechenden Voltdifferenzen ausgerechnet. Die Verschiebungen wachsen mit steigender Wertigkeit, und zwar stets nach kürzeren

Kayser u. Konen, Spektroskopie. VIII.

Bezeichnung der Linien	Dolejšek [122]	Siegbahn u. Dolejšek [126]	Hjalmar [119]	Lindh u. Lundquist [144] ¹)	Bäcklin [150]	Druyvesteyn [214]	Deodhar [282]
a ₂	-			-	$\Delta \lambda = 2.97$	2- 8	
<i>a</i> ₁	-	4718.21	-		-		-
a1'	4712	-	-	-	-	8 -8 8	
a	-	- 1		-	-	8 -8 3	4701.5
a7	4702.5	-	-	-			
aa	4688	-	-	-	-	-	4691.8
a	4684.—	- 1	-	-	-		4686.2
as			1	-	_ 9	_	4661
ae			-	an	102-128	/ St-Mona	4654.—
B'	-	4406.—	-	-	-	-	NONT IN
B,'	_	4394.63	4394.50	4394.2	-		-
Bix	10 econo	10000 200		4393.3	1911 <u>19</u> 12 20.00	Periodian and Periodian	
β''	um <u>s</u>	in all and	4391	Tere	the most	photo utsp u	pini te dit
Bx		ind-inte	ind	4390.6	inder Con	I wond Ob.	L bi-bill
β''	-	Indian	in the	Sale-dille	ban-+978	4326.4	hauttani

Wellen hin. Die aus den Messungen von Lindh sich ergebenden Mittelwerte für die bereits besprochenen Größen sind in der folgenden Tabelle zusammengestellt.

	Mittelwert der Wellenlängen in XE	Verschiebungen relativ zur Kante 4393.8	Voltdifferenz
Second Second	(K ₁ = 4382.9	10.9	7.0
für 1 wertiges Cl	$K_{2} = 4360.0$	33.8	21.6
1 10 h	$K_1 = 4376.9$	16.9	10.8
für 5 wertiges Cl	K. = 4357.4	36.4	23.3
	$K_1 = 4369.8$	24.—	15.3
für 7 wertiges Cl	K. = 4347.8	46.—	29.4
für HCl	$K_1 = 4385.3$	8.5	5.4
	$K_1 = 4393.8$	-	
für freies Cl	$K_{0} = 4381.6$	12.2	7.8

Anknüpfend an die Arbeit von Lindh, untersucht Stelling in einer Reihe von Arbeiten [117, 204, 224, 225, 254, 277, 278, 279] die Abhängigkeit der Lage der K-Absorptionskante von Cl I von den an das Cl-Atom gebundenen Atomen. Ferner stellt er fest, daß die kristallwasserhaltigen Chloride eine andere Wellenlänge der Absorptionskante aufweisen, als die entsprechenden wasserfreien. Die wasserhaltigen Verbindungen geben im allgemeinen zwei Kanten, weil während der Bestrahlung eine teilweise Entwässerung eintritt und die langwellige Kante den wasserhaltigen Kristallen zuzuschreiben ist und im Gegensatz zu der kurzwelligen nicht von der Konstitution der Verbindung abhängig ist. Aus den von Stelling gefundenen Werten, die wir hier jedoch nicht anführen, geht hervor, daß solche Verbindungen, in denen Cl nur ionogen gebunden ist, einfache Kanten besitzen, während bei den anderen zwei Kanten er-

¹) fanden bei den Substanzen LiCl, FeCl₂, ZnCl₂, CdCl₂, SnCl₂ und PbCl₂ (auf Cu-Antikathode) die Linie β_{1X} , bei NaCl, NaClO₃, KCl und CaCl₂ wurde gemessen: $\beta_1 = 4394.75$ und $\beta_{2X} = 4388.4$.

scheinen. Ähnliche Untersuchungen haben Aoyama, Kimura und Nishina [189] gemacht, die im Gegensatz zu Stelling behaupten, daß es durch Wahl geeigneter Schichtdicke immer möglich sei, von jeder absorbierenden Substanz Linien zu erhalten. Weiter gehören hierher die Untersuchungen von Ray [170], Ford [286] und Nuttal [222]. Ray mißt die K_a-Dublettaufspaltung verschiedener Cl-Verbindungen und findet, daß die Aufspaltung mit wachsender chemischer Wertigkeit abnimmt. Ford findet, daß der Satellit K_{a3} aus 2 Komponenten besteht und nicht einfach ist, wie man früher annahm. Nuttall gibt an, daß sich die Feinstruktur der K-Absorptionskante von Cl von λ 4383—4341 XE oder über einen Bereich von 27 Volt erstreckt, daß sich ferner bei etwa 4444 XE eine weiße Absorptionskante befindet, die sich wahrscheinlich durch das von Berg beobachtete Phänomen erklären läßt, und gibt ferner die in folgender Tabelle enthaltenen Wellenlängen der Feinstrukturkomponenten nebst den entsprechenden Voltdifferenzen.

Wellenlängen der Kompon. in XE	4383.2	4377.0	4366.3	4359.3	4353.5	4341.4
Voltdifferenzen relativ zur Kante 4383.2		4.0	10.9	15.5	19.2	27.3

Allison [172] bestimmt durch Messung der K-Absorptionsgrenze und der K_{a1}und K_{a2}-Linien die Werte der Anregungsspannung des L_{II}- und L_{III}-Niveaus und vergleicht seine Resultate mit denen von Holweck [161, 162], der durch direkte Röntgenbestrahlung von Cl₂-Gas die erwähnte Spannung mittels Elektrometer zu 20.3 Volt bestimmt, und findet, daß die Werte der Anregungsspannungen für den elementaren Zustand fast gleich sind, während sie bei den Sauerstoffverbindungen des Chlors um etwa 5% differieren.

Bandenspektren des Chlors.

Die im sichtbaren Spektralgebiet liegenden Chlorabsorptionsbanden sind von Kuhn [181], Nakamura [185] und Elliott [236, 268, 269, 215] untersucht worden; doch differieren die Messungen der verschiedenen Autoren sehr stark; darum sollen sie hier nicht angeführt werden. Kuhn [181] erkennt als erster, daß dieses Absorptionsspektrum des Cl_2 -Gases aus einigen v'-Bandenzügen besteht, die zu v'' = 0, 1, 2, 3 gehören, und findet das kurzwellige Ende dieser Banden bei 4785 ± 7 Å, an das sich ein Dissoziationskontinuum anschließt. Kornfeld und Steiner [201] versuchen festzustellen, ob die Konvergenzstelle für völlig trockenes Chlorgas eine andere Lage hat und damit die Dissoziationsenergie eine andere ist, wie für gewöhnliches Cl-Gas. Es stellt sich heraus, daß die Trennungsarbeit unabhängig ist von der Trocknung. Nakamura hat etwa 70 Absorptionsbandenkanten gemessen und diese in 4 Serien geordnet, wofür er folgende empirische Formel gibt:

 $v_{1,2,3,4} = (20836.5 - 550.1 \text{ n}_0) - 7.13 \text{ n} - 2.650 \text{ n}^2 - 0.05577 \text{ n}^3;$

worin $n_0 = 0, 1, 2, 3$ und $n = 0, 1, 2 \dots 21$ ist.

Bei 820° C und 2.5 m Schichtdicke beobachtet er noch eine fünfte Serie, die sich durch folgenden Ausdruck erfassen läßt:

$$\nu_5 = 17765.2 - 116.8 \text{ n} - 9.61 \text{ n}^2 - 0.438 \text{ n}^3 \text{ (n} = 0, 1, 2 \dots 10).$$

Elliott [215, 236] bestimmt aus dem Isotopieeffekt in den drei Absorptionsbanden bei λ 5134, 5157 und 5126 die Werte der Schwingungsquantenzahlen für den angeregten Zustand zu 17, 18 und 19. Die ebenfalls daraus berechneten Kernabstände und Trägheitsmomente im angeregten (') und Normalzustand ('') sind in folgender Tabelle zusammengestellt.

Bezeichnung der Bande	J''	J'	r"	r'
$(2 \rightarrow 17)_{35}$ 35	114 . 10-40	220 . 10-40	$0.991 \cdot 10^{-8}$	$1.38 \cdot 10^{-8}$
$(2 \rightarrow 18)_{35}$ 35	114	228	0.991	1.40
$(2 \rightarrow 18)_{35}$ az	118	237	0.993	1.41
$(2 \rightarrow 19)_{35, 35}$	114	237	0.991	1.43

In einer weiteren Arbeit [268] bringt er die Feinstrukturanalyse von vier anderen Banden des Cl³⁵Cl³⁵ und zweien des Cl³⁵Cl³⁷, wo er ebenso wie in den oben erwähnten nur einfache P- und R-Zweige findet und sie daher einem ${}^{1}\Sigma \rightarrow {}^{1}\Sigma$ -Elektronensprung zuordnet. Ferner teilt er mit, daß die in der früheren Arbeit [236] angegebenen Oszillationsquantenzahlen für den Normalzustand um 1 und für den angeregten Zustand um 6 verringert werden müssen. Aus genauen Intensitätsmessungen bestimmt er das Verhältnis der wechselnden Intensitäten in den Cl³⁵Cl³⁵-Banden im Mittel zu 1.4:1, was auf einen Kernspin von $\frac{5}{2}$ für Cl³⁵ schließen läßt. Das von ihm ebenfalls bestimmte Intensitätsverhältnis der Isotopenbanden Cl³⁵Cl³⁵ zu Cl³⁵Cl³⁷ stimmt nicht mit den Astonschen Werten des Isotopenverhältnisses überein, was vielleicht auf die Ungenauigkeit der Messungen zurückzuführen ist; man sehe dazu auch Dunham [267]. Birge [263] wendet die von Gibson (Zs. f. Phys. 50 p. 692, 1928) angegebene Methode, die Isotopieaufspaltung der Oszillationsenergie zu bestimmen, auf die Messungen Elliotts [236] an und findet, daß dessen ν' um zwei Einheiten erniedrigt werden muß.

Mulliken [274, 275, 298] zeigt auf Grund von theoretischen Überlegungen, daß die sichtbaren Halogenbanden nicht, wie man bisher annahm (siehe auch Elliott [236]), von einem ${}^{1}\Sigma \rightarrow {}^{1}\Sigma$ -Übergang herrühren, sondern einem ${}^{3}\Pi_{0} \rightarrow {}^{1}\Sigma_{g}^{+}$ -Übergang zuzuschreiben sind, wobei die Bezeichnung ${}^{3}\Pi_{0}$ des oberen Zustandes keine exakte Bedeutung hat, da physikalisch nur die Komponente des Gesamtimpulses wesentlich ist. Der durch diese Zuordnung geforderte Paramagnetismus des angeregten Molekülzustandes ist mit der Größe des Faraday-Effektes der Banden besser vereinbar als die frühere, ebenso die magnetische Auslöschung der Jodfluoreszenz.

Dobbie und Fox [118] photographieren die sichtbaren Absorptionsspektren mit kleiner Dispersion bei Temperaturen zwischen 20 und 1300° C und finden, daß die Absorption bis zur höchsten Versuchstemperatur dauernd zunimmt. Gillam und Morton [237] messen die Absorptionsspektren von Cl, Br, J und Halogengemischen in Lösungen von CCl₄ und stellen Absorptionsmaxima für Cl, Br und J bei 332, 417 und 520 m μ fest. Dutta und Saha [283] finden, daß die dampfförmigen Chloride CCl₄, SnCl₄, TiCl₄, SiCl₄ ein dem NaCl ähnliches kontinuierliches Spektrum zeigen, das sich von einer langwelligen Grenze bis ins Ultraviolett erstreckt und offenbar ein Dissoziationskontinuum ist. Cordes und Sponer [264] untersuchen die Absorption von Cl, Br, JCl und JBr zwischen 3000 und 1560 Å, wo sie für Cl unterhalb 1900 Å

nur kontinuierliche Absorption finden, deren Maximum noch weiter im Ultravioletten zu suchen ist, und das einer photochemischen Dissoziation des Cl_2 in zwei Cl-Atome im $2\,{}^2P_1$ -Zustand entsprechen soll. Wolf [188] überträgt die Theorie der Deutung des kontinuierlichen Wasserstoffspektrums auf diejenigen der Halogene und betrachtet sie, soweit ihre langwellige Grenze im Sichtbaren oder Ultraroten liegt, als Wiedervereinigungsspektra. Mit den kontinuierlichen Spektren der Halogene befassen sich ferner Kondratjew und Leipunsky [219] und Krey und Bates [255, 256], die ähnliche Deutungen geben.

Nach Emissionsspektren des Chlors im sichtbaren Spektralbereich haben Narayan und Gunnaya [136], Ludlam und West [166], Ludlam [244] und Ota und Ushida gesucht, doch alle diese Arbeiten, abgesehen von Ludlam und West, bringen keine sicheren Resultate, weil sie zum Teil mit zu kleiner Dispersion gearbeitet und anderseits Banden von Verunreinigungen gemessen haben. Ludlam und West erhalten im wesentlichen zwei kontinuierliche Spektren bei 320 und 265 m μ mit scharfen langwelligen Grenzen in Teslaentladungen. Der aus der kurzwelligen Grenze berechnete Wert für die Dissoziationswärme (107.3 cal) stimmt mit dem aus Kristallstrukturen errechneten Wert gut überein.

HCl-Banden. Spektren des neutralen HCl-Moleküls sind bisher nur im ultraroten Spektralbereich gefunden worden und dort wegen ihrer großen Intensität, der Einfachheit ihrer Struktur und der Möglichkeit des spektroskopischen Isotopennachweises sehr oft und sehr eingehend untersucht worden. Schon Rubens und v. Wartenberg [115] stellten fest, daß Salzsäuregas im langwelligen Ultrarot absorbiert. Czerny hat dann in mehreren Arbeiten [158, 197, 198] das reine Rotationsspektrum ausgemessen und gedeutet. Die von ihm angegebenen Wellenlängen maximaler Absorption sind in der folgenden Tabelle enthalten:

Wellenlängen in μ	v in cm-1	Wellenlängen in μ	v in cm-1
120.00	83.03	60.40	165.57
(96).00	(104.1)	53.83	185.77
80.45	124.30	48.49	206.24
68.95	145.03	44.15	226.50

Aus der Folge der Schwingungszahlen erkennt man, daß es sich um eine äquidistante Linienfolge handelt, deren Abstand $\Delta \nu$ nach der Theorie gleich $\frac{h}{4\pi^2 A}$ ist, worin h das Plancksche Wirkungsquantum und A das Trägheitsmoment des HCl-Moleküls bedeuten. Diese Formel gilt allerdings nur angenähert. Zu einer genaueren Darstellung muß man auf die vollständigen Formeln für den rotierenden Oszillator zurückgreifen, die Schaefer und Matossi (Das ultrarote Spektrum, Springer, Berlin 1930, p. 182) für das Rotationsspektrum spezialisieren und damit sowohl nach der Bohrschen Theorie als auch nach der Quantenmechanik die folgenden Trägheitsmomente und Molekülradien berechnen:

Bohrsche Theorie	Quantenmechanik				
$A \cdot 10^{40} = 2.656$	$A \cdot 10^{40} = 2.617$				
$r_0 \cdot 10^8 = 1.282$	$r_0 \cdot 10^8 = 1.273$				

Die bereits in Band VII p. 247—248 dieses Handbuches erwähnten Untersuchungen des Rotationsschwingungsspektrums von HCl, vorzugsweise der Grundbande bei 3.5μ und der ersten Oberschwingung bei 1.78μ , sind seit dem Jahre 1921 durch eine große Anzahl experimenteller und theoretischer Arbeiten ergänzt worden.

Schaefer und Thomas [125] finden gelegentlich einer Durchsuchung der ultraroten Absorptionsspektren auf Oberschwingungen bei 1.190 μ eine schwache Bande, die der theoretisch berechneten Duodezime der Grundbande bei 3.46 μ entspricht. Colby, Meyer und Bronk [131], Meyer und Levin [249] und Lowry [145] befassen sich mit neuer Messung der Rotationsschwingungsbanden. Die Untersuchung von Meyer und Levin [249] ist zweifellos die exakteste, da sie mit sehr engem Spalt gearbeitet hat. Es gelingt, die den Isotopen Cl35 und Cl37 zugehörigen Absorptionsmaxima sowohl in der ersten Oberschwingung, wo dies natürlich einfacher ist, als auch in der Grundbande sehr deutlich zu trennen, während Randall und Imes [101 und 98] wegen des geringeren Auflösungsvermögens ihrer Apparatur es nur in der Oberschwingung bei 1.76 μ vermochten. Becker [261] konnte sogar in der von Meyer und Levin gegebenen Meßkurve der Bande bei 1.7 μ seine Vermutung, daß es noch ein drittes Chlorisotop Cl³⁹ gebe, durch Auffinden entsprechender Nebenmaxima bestätigen. Daraufhin haben dann Hettner und Böhme [288, 289] mit einer ganz anderen hochempfindlichen Ultrarotapparatur diese Bande nochmals ganz exakt durchgemessen und tatsächlich das Vorhandensein eines dritten Chlorisotops Cl³⁹ bestätigen können. Die Beobachtungen von Meyer und Levin [249] lassen sich nach Colby [231] durch folgende Gleichungen darstellen:

HCl35	v_1	=	2885.88 -	+	20562	m —	0.3030	$m^{2} -$	0.0020	m ³
HCl37	v1	-	2883.84 -	+	20536	m —	0.3022	$m^2 -$	0.0020	m^3
HCl ³⁵	22	-	5667.96 -	+	20291	m —	0.6028	$m^{2} - $	0.0025	m^3
HCl37	vo	-	5663.97	+	20259	m —	0.6029	$m^{2} - $	0.0022	m^3

Daraus folgt für v_2 ein Dublettabstand von etwa 4 cm⁻¹, der durch die beiden Isotopen Cl³⁵ und Cl³⁷ bedingt ist, weil die beiden Rotationsschwingungsbanden um $\Delta v = r \cdot \frac{1}{2} \left(\frac{1}{35} - \frac{1}{37}\right)$ gegeneinander verschoben sind. Die für die Intensitäten der beiden Komponenten beobachteten Werte (1:3) stimmen mit dem nach dem Mengenverhältnis der Isotopen zu erwartenden überein. Ferner berechnet Colby. aus den Werten für die Banden bei 3.5 μ und 1.7 μ folgende Molekülkonstanten, die mit den für einen rotierenden Dipol mit Hilfe der Wellenmechanik berechneten übereinstimmen:

annannis Film Australia	berechnet aus der Bande					
	bei 3.5μ von Cl ³⁵	1.7 μ von Cl ³⁵	3.5μ von Cl ³⁷	1.7 μ von Cl ³⁷		
Trägheitsmom. J · 10 ⁴⁰	2.6126	2.6092	2.6161	2.6132		
Molekülradius r o $\cdot10^8$	1.2765	1.2757	1.2764	1.2757		

Die weiteren Arbeiten [130, 141] führen Colby zur halbzahligen Numerierung der Laufzahlen, die auch aus allgemeinen quantentheoretischen Gründen richtig zu sein scheint.

Spence und Holley [127, 138] untersuchen die Intensitätsverteilung in der Bande bei $3.5 \ \mu$ bei $+ 20^{\circ}$ C und $- 70^{\circ}$ C und finden entgegen der Erwartung, daß bei der niedrigeren Temperatur die in der Mitte der Bande gelegenen Linien relativ mehr geschwächt werden als diejenigen mit höheren Quantenzahlen.

Bourgin und Kemble [175], Badger [190] und Dunham [235, 266] stellen Intensitätsmessungen in den HCl-Absorptionsbanden an, um theoretische Voraussagen zu prüfen. Abgesehen von Badger, der zwischen 70 und 110 µ absolute Absorptionsmessungen macht, beziehen sich die Untersuchungen auf die Banden bei 3.5 und 1.7 μ . H. Becker [260], G. Becker [152] und Kussmann [219] arbeiten über Druckabhängigkeit der HCl-Absorption, und zwar untersuchen H. und G. Becker in den Banden bei 1.7 bzw. 3.4 µ, während Kussmann die Verbreiterung langwelliger Rotationslinien durch Zusatz verschiedener indifferenter Fremdgase berichtet und zu dem Schluß kommt, daß eine Verbreiterung durch intermolekularen Starkeffekt nur von untergeordneter Bedeutung ist, während in erster Linie eine Lorentzsche Stoßdämpfung als Ursache der Verbreiterung anzusehen sei. Hicks und Mitchell [177] entnehmen den Rotationsschwingungsbanden des HCl die Daten für die Bestimmung der spezifischen Wärme und erzielen eine Genauigkeit bis auf 4 Dezimalen zwischen 50 und 400° C. Barton [191], Barker und Duffendack [151] ermitteln das Ionisationspotential des HCl-Moleküls zu 13.8 bzw. 14 Volt, während Mohler [168] und Kemble [179] für die Dissoziationsarbeit 13.7 bzw. 10-11 Volt angeben. wobei der Wert 13.7 der richtigere zu sein scheint, da er mit dem von Born auf Grund der Gittertheorie errechneten übereinstimmt.

Endlich sind noch die rein theoretischen Arbeiten von Bell [140], Kemble [164], Deslandres [159], Loeb [183], Bourgin [195, 207], Dennison [213] und Hutchinson [218] zu erwähnen, auf die wir hier im einzelnen nicht eingehen wollen.

HCl ist außerdem noch im flüssigen und festen Zustande auf Absorption hin untersucht worden. Scheibe [253] findet, daß die von ihm gefundenen schmalen Absorptionsstreifen verdünnter Salzsäure der Trennung eines Elektrons vom Halogenatom zuzuschreiben sind, und Tréhin [280, 295] beobachtet, daß bei bestimmtem Druck die Absorption wässeriger HCl-Lösung innerhalb eines gewissen Bereiches der langen Wellen völlig gleichmäßig größer wird, während sich im Ultravioletten unterhalb 2320 Å ein von der Konzentration abhängiges Maximum befindet. Die ferner hierher gehörende Arbeit von Salant und West [293] bringt die Frequenzdifferenz zwischen dem Absorptionsmaximum des flüssigen und gasförmigen HCl gleich 125 cm⁻¹ sowie daran angeknüpfte Berechnungen von Schwingungskonstanten.

Hettner [287] untersucht bei der Temperatur der flüssigen Luft feste Salzsäure, im Spektralgebiet 3 bis 4 μ und findet eine Doppelbande, die einer nicht aufgelösten Rotationsschwingungsbande gleicht. Ihr Maximum liegt bei 3.6 und 3.7 μ , ist also gegen die entsprechende Bande des HCl-Gases bei 3.4 und 3.55 μ nur wenig nach Rot verschoben, woraus hervorgeht, daß die HCl-Moleküle im HCl-Gitter als solche erhalten bleiben und noch derselben Schwingungen fähig sind, wie im gasförmigen Zustande. Das aus der Doppelbande des festen HCl berechnete Trägheitsmoment stimmt daher natürlich auch mit dem für gasförmiges HCl berechneten überein. Da die Banden des festen HCl trotz genügender Dispersion nicht aufgelöst erscheinen, dürften die Rotationsniveaus unscharf sein. Hettner teilt ferner in dieser Arbeit mit, daß er auch für flüssiges HCl eine Bande bei 3.61 μ gefunden hat, worüber noch Näheres berichtet werden soll.

Weiter sind interessante Versuche gemacht worden, HCl-Banden in Emission zu erhalten. Doch läßt sich darüber heute wohl schon mit Bestimmtheit sagen, daß nicht das neutrale HCl-Molekül, sondern das einfach ionisierte HCl⁺ als Strahler in Frage kommt. Gleu [176] läßt HCl-Gas bei 2 mm Druck aus einer Kapillaren in ein auf 400° C erhitztes weiteres Quarzrohr strömen und beobachtet dabei 4 rote Bandengruppen, die vorher nicht bekannt waren. Sie sind wahrscheinlich einem Molekül aus N- und Cl-Atomen zuzuschreiben, während das HCl-Zerfallsleuchten intensiv ultraviolett strahlt und wahrscheinlich mit dem von Angerer [121] entdeckten kontinuierlichen Cl.-Spektrum mit den Hauptmaxima bei 3060 und 2570 Å identisch ist. Ludlam, Reid und Sontar [244] beobachten in der HCl-Wasserstofflamme einen weißen Kern und bläulichen Mantel. Der Kern läßt sich vielleicht als Wiedervereinigungsleuchten dissoziierter Moleküle deuten, während die bläuliche Hülle sich dem Schwefel zugehörig erweist, der als Verunreinigung in der Flamme enthalten war. Brice und Jenkins [229, 230] untersuchen das an den Elektroden eines Entladungsrohres mit strömendem HCl-Gas bei 1 mm Druck auftretende grüne Leuchten und finden außer H-Linien und Funkenlinien von Cl und Pt ein Bandensystem zwischen λ 3966 und 2830, das wahrscheinlich dem HCl⁺-Molekül zuzuordnen ist, weil es die Struktur eines ${}^{2}\Sigma \rightarrow {}^{2}\Pi$ -Systems besitzt. Die Dublettaufspaltung beträgt 663 cm⁻¹

und die Bandenköpfe lassen sich durch folgende Formel erfassen: $v = \begin{cases} 28446 \\ 27783 \end{cases} +$

1561 p — 36.3 p² — 2569 n, wobei die beobachteten (p, n)-Werte sind: (— 1.0); (0.0); (1.0); (2.0); (3.0); (4.0); (5.0); (0.1); (3.1). Kulp [271, 272, 273] erhält das von Brice und Jenkins gefundene violette Bandensystem des einfach ionisierten HCl-Moleküls im Geißlerrohr mit strömendem HCl-Gas bei 6 mm Druck und photographiert zwischen 2800 bis 4400 Å mit einer Dispersion von 2—5 Å/mm. Alle Banden sind nach Rot abschattiert und infolge des Isotopieeffektes doppelt. Ferner beobachtet er zwei Kontinua, deren Maxima bei 3000 und 2600 Å liegen. Das ganze Spektrum besteht aus Dublettsystemen mit je sechs Zweigen und einem Dublettabstand von 644 cm⁻¹. Er diskutiert weiter die Intensitätsverhältnisse und ordnet die Banden in folgendes Nulllinienschema ein:

v' V''	0	1
0	27773 28416	25205 25847
1	29300 29944	iden einedit. Ean- der
2	30751 31395	this more than
8	32198 32856	baug <u>ar</u> ajat? pehot us atan
4	33547 34205	nden en services
5	34835 35493	

Nach der Formel $B = \frac{h}{8\pi^2 c J}$ berechnet er ferner das Trägheitsmoment J und den Kernabstand r im angeregten Σ^{0} -Term und normalen Π^{0} -Zustand zu:

J_{Σ^0}	-	$3.80 \cdot 10^{-40}$	g cm ² ;	r_{Σ}	-	$1.54\cdot10^{-8}$	CI
J1	=	2.78;		r _{11_1}	-	1.32	
J	-	2.87;		r _{П + 1}	-	1.34	

Von den übrigen Verbindungsspektren des Chlors sei hier zunächst das des **Chlordioxyd**s erwähnt, das zum erstenmal im sichtbaren Spektralbereich von Käbitz (Diss. Bonn 1905) gemessen und später von Mayer [148] theoretisch diskutiert wurde. In neuerer und neuester Zeit ist dieses Absorptionsspektrum von Urey und Johnston [296], Goodeve und Stein [239] sowie von Finkelnburg und Schumacher [284] nochmal zwischen 2000 und 6000 Å. ausgemessen worden. Urey und Johnston haben [134] Absorptionsbanden mittels Hilgerspektrographen zwischen 5042 und 3226 mit einer Genauigkeit von 0.7 Å oder 3-6 cm⁻¹ gemessen, die sich durch folgende Formeln darstellen lassen:

$$\bar{\nu} = 19795.4 + 719.34 (v_1' + \frac{1}{2}) - 2.817 (v_1' + \frac{1}{2})^2 + 304.82 (v_2' + \frac{1}{2}) - 2.487 (v_2' + \frac{1}{2})^2 - 4.892 (v_1' + \frac{1}{2}) (v_2' + \frac{1}{2}) - \bar{\nu}_1',$$

worin $\bar{\nu}' = 0$; 528.8; 727.0; 857.7 und 1471.3 cm⁻¹ zu setzen ist. Für die Isotopieverschiebungen geben sie folgende Formeln an: $\bar{\nu}_{35} - \bar{\nu}_{37} = 5.37 (v_1' + \frac{1}{2}) + 0.80$ $(v_2' + \frac{1}{2}) - 14.4$, wenn $\bar{\nu}'' = 526.2$ ist und $\bar{\nu}_{35} - \bar{\nu}_{37} = 5,37$ $(v_1' + \frac{1}{2}) + 0.80$ $(v_2' + \frac{1}{2})$ -11.2, wenn $\bar{\nu}' = 0$ ist. Goodeve und Stein behaupten zwar, ihre Messungen zwischen 2200 und 6200 Å seien bis auf Fehler weniger Schwingungszahlen reproduzierbar, doch einige Werte, vor allem im fernen Ultraviolett, differierten bis zu 15 cm⁻¹. Finkelnburg und Schumacher haben nach ihren Angaben im Sichtbaren bis auf \pm 0.05 Å und im fernen Ultraviolett bis auf \pm 0.5 Å genau gemessen, was von Urey und Johnston wohl fälschlich bezweifelt wird. Finkelnburg und Schumacher photographieren an einem 2-m-Gitter in dritter Ordnung und finden in dem bei 5225 Å beginnenden Spektrum zunächst Feinstruktur in den Banden, die aber bei 3750 Å infolge von Prädissoziation von ClO_2 in ClO + 0 verschwindet. Unterhalb 3200 Å werden auch die Bandenkanten unscharf. Aus dem Verlauf der Banden extrapolieren sie graphisch eine Konvergenzstelle bei 2560 Å, woraus sich die Dissoziationsenergie des ClO zu 45 ± 5 kcal berechnet. Ferner diskutieren die Verfasser die möglichen Strukturformeln des ClO2, seine Bindungsverhältnisse und sein photochemisches Verhalten.

Die hier erwähnten Messungen sind in der folgenden Tab. zusammengestellt; die Wellenzahlen sind abgesehen von denjenigen von Goodeve und Stein auf das Vakuum reduziert.

Zum Schlusse der Betrachtungen über Cl-Molekülspektren seien noch die Arbeiten von Bodenstein und Kistiakowski [154], Goodeve und Wallace [270] und von Finkelnburg, Schumacher und Stieger [285] über Spektren des Chlormonoxyds erwähnt, während die noch ausstehenden Besprechungen der Spektren organischer Chlorverbindungen hier nicht behandelt werden sollen. Bodenstein und Kistiakowsky stellen kontinuierliche Absorption des Cl₂O fest, wofür Goodeve und Wal-

489

n

CARLE OF THE COURT		and the second s			
Urey	Goodeve	Finkelnburg	Urey	Goodeve	Finkelnburg
u. Johnston	u. Stein	u. Schumacher	u. Johnston	u. Stein	u. Schumacher
[296]	[239]	[284]	[296]	[239]	[284]
_	19140	19134.1	23548.6	23556	23553.0
-	19423	19424.4	23789.7	23796	_
-	19635	19625.4	23806.3	23812	23813.8
19831.9	19848	19841.7	23902.0	23904	
STELLER NOT	19900	tores Constructions	23938.2	23944	A SPAN MAYNA
20070.2	20079	and department of the	23959.1	23967	and the state of t
20080.2	-	20081.5	24058.6	24062	and a line
20125.8	20130	20130.4	24078.2	24084	24079.3
20185.3	_	_	24169.6		
20332.7	20341	and a second sec	24227.7	24232	24228.3
20359.8	20368	and the second s	Ren Automa Statement	identi	24241.0
20368.4	6 - CO	20369.9	24463.9	24471	_
20542.3	20548		24488.1	24495	24488.4
20569.4	20574	_	24610.9		_
20574.2		20572.7	24635.8	24641	24636.8
20782.1	20786	20778.8	24709.7		
20785.9	_	_	24732.2	24738	100 March 100 Ma
20825.1	20835		24757.2	24763	24757.1
21014.2	21023	21016.4	24899.1	24904	24907.4
21064.6	21070	21064.1		24986	
21275.8	21283	21276.2	25116.3	_	_
21307.7	21310	21305.4	. 25132.8	25141	Constraint _ Real first
21479.8	21483	21480.4	25163.9	25170	25164.2
21716.8	in in	b Dist_ent() res	25238.7		
21724.8	21733	21724.3	25274.6	25284	and the second s
21760.6	21769	21761.2	25307.0	25313	25307.5
21842.2	21849		25397.8	25397	20001.0
21979.1	21980		25428.0	25436	95498.0
22009.7	22016	22010.3	25536.9	25544	20120.0
22172.3	22178	22173.7	25569.2	25575	95571.4
22369.4				25656	20011.1
22426.4	22437	99495.4	25769.9	20000	
22449.2	99457	99450.9	25799 7	95810	100001 - 1.000
22536.2	22542	22400.2	25884.9	25810	95995 4
22590.9	22580	99598 7	95903.4	20040	20000.4
22000.0	22000	22000.1	25016.5	A minimizer	in all many
99703 9	99703		25910.5	05049	
22706.4	99711	99706.3	95079 1	20340	95079 6
22100.4	99856	99860 7	20072.1	20979	20975.0
99873 9	22000	99875.0	20029.9	90005	dilata Malientali's
22010.2	22000	22010.0	20009.0	20065	20005 4
23107.6	93116	and have been and the	20034.4	20107	20095.4
93190.5	23110	92110.0	20101.9	00000	
20120.0	20124	20110.2	20195.5	26208	00000 0
02001 7	92995	NORS THE LOS OF T	20230.7	26242	26232.2
20221.7	20220	02021 7	20303.4	26306	26310.6
20200.0	20211	20201.7	20409.4	00500	00504.0
20002.2	20001	02205.0	2000.4	26503	26504.9
20000.1	20402	20000.0	20049.0		

Tabelle der ClO2-Banden in cm-1 nach Urey und Johnston [296].

Urey	Goodeve	Finkelnburg	Urey	Goodeve	Finkelnburg	
u. Johnston	u. Stein	u. Schumacher	u. Johnston	u. Stein	u. Schumacher	
[296]	[239]	[284]	[296]	[239]	[284]	
26591.4	-		29346.0	29365	29351.8	
26633.5	26648	26635.8	29685.1	29686	_	
26664.0		transcription and to	29748.7	29745		
26686.5	and the party of t	_	29843.0	29858	29850.5	
26715.5	Balvel inst	the man set by	a la nec_ada in	29900	thingsas at a	
26756.0	26764	26757.4	sting I the sector	29936	0-0-00	
26843.5	26860		29980.9	29996	29982.2	
26875.8	-	-	- 1		30153	
26887.0	26900	26888.6	_	30307	_	
26963.8	26971	26967.2	30375.3	30377	30380	
27117.4	estining 1994	min and how	1220 all 100 518	30400	109 han 7/	
27162.3	27163	harmer - ralare	30435.6	30477	no all -murer	
27240.2		La resolution	-	30529	-	
27288.6	27302	27293.2	30570.9	-	-	
27368.6	27377	-	-	30613		
27412.9	27424	27414.9		30976	THE PROPERTY OF	
105 - 100	27507	and the state of the	30989.3	31014	30996	
27525.0		-		31142	marin-hair	
27536.6	27550	27540.4	1 11 1 Lann	31218		
27625.2	27623	27618.5	_	31539	_	
27761.5	27772	-	_	31619	31601	
27815.7	27821	_	-	31749	-	
27829.7	_	_	-	31847		
27883.1	_	_	_	32202	32190	
27939.0	27956	27946.7	_	32779	32768	
1 20 L	28021		-	33336	33330	
28037.3	Level, De Da	-		33761		
28063.0	28079	28065.1	-	33877	33848	
-	28148	-	_	34238	-	
28172.8	28194	28186.0	_	34341	34346	
28415.0	28424	-	-	34746		
28470.7	28475		_	34855	34841	
28523.5	A REAL PROPERTY AND	_		-	35288	
28583.7	28603	28590.2		35370	_	
28704.5	28724	28713.8	-	35840	35805	
28762.8	A. There are			36260		
28843.9	28840	-	-	-	36321	
29112.4	29114			36700		
29170.1	1 1	-		37106	-	
29223.8	29236	29229.3	the second	37509	and a - comba	
	29304	10.10 11 10.10		37922		

lace im Bereich 6200 bis 3200Å den Verlauf der Extinktionskoeffizienten messen, und Absorptionsmaxima bei 5800 und 4300Å, sowie ein breites Absorptionsband zwischen 3000 und 2500Å finden. Sie ordnen die Maxima den verschiedenen Dissoziationsmöglichkeiten des Cl₂O-Moleküls zu. Finkelnburg, Schumacher und Stieger untersuchen das Absorptionsspektrum von reinem strömenden Cl₂O bei verschiedenen Konzentrationen und 600 bis 10 mm Quecksilberdruck mit einem großen Dreiprismenapparat von Steinheil. Sie erhalten ein rein kontinuierliches Spektrum, das bei 6600 Å beginnt und deutliche Maxima bei 6250, 5300, 4100 und 2560 Å besitzt, wovon das letzte besonders breit und intensiv ist. Ferner bestimmen sie den Verlauf der Absorptionskoeffizienten über das ganze Gebiet nach einer photographischen Methode und diskutieren eingehend die Deutung des Spektrums. Das Einsetzen der Absorption schreiben sie dem Zerfall in Cl + ClO zu, wobei das Cl-Atom wahrscheinlich angeregt ist, und die Maxima bei 5300 und 4100 dem gleichen Zerfall, aber in verschiedenen Anregungsstufen. Das starke Maximum bei 2560 Å wird dagegen als dem Zerfall des Moleküls in Cl + Cl + O zugehörig betrachtet. Weiter wird der Zerfalls- und Reaktionsmechanismus eingehend diskutiert, worauf wir hier nicht näher eingehen können.

Ramaneffekt. Bhagavantam [262] und Dadieu und Kohlrausch [265] finden übereinstimmend für Chlor (verflüssigt) die Ramanfrequenz $\Delta \nu = 556$.

Wood [257, 258, 259, 281] und Salant und Sandow [292] erhalten als Ramanfrequenz für gasförmiges HCl $\Delta \nu = 2886$, die der ultraroten Grundschwingung bei 3.5 μ zu entsprechen scheint, während Daure [232], Salant [252] und Salant und Sandow [251, 292] eine Ramanschwingung das flüssigen HCl zu 2800 cm⁻¹ bestimmen, die vielleicht den von Hettner [287] bei 3.6 μ gefundenen ultraroten Banden entspricht. Weiter berichten über Ramaneffektuntersuchungen an Salzsäurelösungen Carelli, Pringsheim und Rosen [212] und Woodward [297]. Ferner seien hier noch Arbeiten von Bonino [228], Dieke [234] und Hill und Kemble [240, 241] erwähnt, die überwiegend theoretischer Natur sind.

Kobalt (Co = 58.94, Z = 27).

Literatur.

[104] P. W. Merrill, The behavior of spectral lines at the positive pole of the metallic arc. Astroph. J. 56 p. 475-482 (1922).

[105] M. Kimura and G. Nakamura, The broadening of spectral lines caused by increased current density and their Stark effects. Jap. J. of Phys. 2 p. 61-75 (1923).

[106] E. v. Angerer und G. Joos, Die Absorptionsspektren der Elemente der Eisengruppe. Ann. d. Phys. (4) 74 p. 743-756 (1924).

[107] R. Hill and O. R. Howell, Crystal structure and absorption spectra. The cobaltous components. Phil. Mag. (6) 48 p. 833-847 (1924).

[108] E. O. Hulburt, The ultra-violet absorption spectra of the spark in water between metallic electrodes. Phys. Rev. (2) 23 p. 108-109 (1924).

[109] E. O. Hulburt, The absorption lines in the spectrum of the metallic spark in water. Phys. Rev. (2) 24 p. 129-133 (1924).

[110] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Jap. J. of Phys. 3 p. 197-215 (1924).

[110a] K. Lang, Messung von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).
[111] R. J. Lang, On the ultra-violet spark spectra of some of the elements. Phil. Trans.
A. 224 p. 371-419 (1924).

[112] M. Levi, On the characteristic X-rays from light elements. Trans. Canada (3) 18 III p. 159-176 (1924).

[113] H. Nagaoka and Y. Sugiura, Distribution of the electric field in metal arcs and the Stark effect observed in arcs of silver, copper, magnesium, chromium, nickel, cobalt, iron, and ten other metals. Jap. J. of Phys. 3 p. 45-73 (1924).

[114] M. Siegbahn and B. B. Ray, On the irregularity of the K_a doublets in the elements of lower atomic number. The spark lines of copper. Ark. f. Mat., Astr. och Fys. 18 Heft 19 (1924).

[115] M. Siegbahn und R. Thoraeus, Eine Erweiterung des röntgenspektroskopischen Gebietes. Ark. f. Mat., Astr. och Fys. 18 Heft 24 (1924).

[116] F. M. Walters, Regularities in the arc spectrum of cobalt. J. Washington Acad. 14 p. 407-412 (1924).

[117] L. et E. Bloch, Nouvelles recherches sur quelques spectres d'étincelle dans la région de Schumann. J. de phys. (6) 6 p. 105-120 (1925).

[118] M. C. W. Buffam and H. J. C. Ireton, The under-water spark spectrum of a number of elements. Trans. Canada (3) **19** III p. 113-118 (1925).

[119] M. A. Catalán, Über spektrale Gesetzmäßigkeiten bei den Atomen der Eisenreihe. Münchner Ber. 1925 p. 15-22.

[120] M. A. Catalán und K. Bechert, Die Struktur des Kobaltspektrums. Zs. f. Phys. 32 p. 336-369 (1925).

[121] M. A. Catalán y K. Bechert, La estructura del espectro del cobalto neutro. An. Soc. Españ. Fís. y Quim. 23 p. 304-342 (1925).

[122] M. A. Catalán, La estructura de los espectros de los elementos de la serie del hierro en el sístema periodico. An. Soc. Españ. Fís. y Quim. 23 p. 395-408 (1925).

[123] J. C. McLennan and A. B. McLay, Absorption spectra of various elements in the ultraviolet. Trans. Canada (3) **19** III p. 89-111 (1925).

[124] A. E. Ruark and R. L. Chenault, Fine structures of spectrum lines. Phil. Mag. (6) 50 p. 937-956 (1925).

[125] H. N. Russell, A list of ultimate and penultimate lines of astrophysical interest. Astroph. J. 61 p. 223-283 (1925).

[126] Ch. Thomas, Soft X-rays from cobalt, nickel, and copper. Phys. Rev. (2) 25 p. 883 (1925).

[127] Ch. Thomas, Soft X-rays from iron, cobalt, nickel and copper. Phys. Rev. (2) 26 p. 789-748 (1925).

[128] U. Andrewes, A. C. Davies, and F. Horton, The soft X-ray absorption limits of certain elements. Proc. Roy. Soc. A. 110 p. 64–90 (1926).

[129] A. C. Davies and F. Horton, Critical potentials and X-ray term values. Phil. Mag. (7) 2 p. 1253-1263 (1926).

[130] O. Laporte, Über die Grundterme der Spektren der ersten und zweiten großen Periode. Zs. f. Phys. 39 p. 123-129 (1926).

[131] J. C. McLennan and R. F. B. Cooley, Note on the ultra-violet absorption spectra of nickel, cobalt, and tellurium. Trans. Canada (3) 20 III p. 349-353 (1926).

[132] N. K. Sur and K. Majumdar, On the absorption spectra of aluminium and cobalt. Phil. Mag. (7) 1 p. 451-462 (1926).

[133] R. Thoraeus, The X-ray spectra of the lower elements. Part I. Phil. Mag. (7) 1 p. 312-321 (1926).

[134] R. Thoraeus, The X-ray spectra of the lower elements. Part II. Phil. Mag. (7) 2 p. 1007-1018 (1926).

[135] F. de Boer, Mesures précises des spectres d'absorption du cobalt et de ses combinations dans la région K des rayons X. (Zitiert im J. de Phys. [6] 8 p. 1415 [1927] ohne nähere Angaben.)

[136] M. A. Catalán, Estructura del espectro de cobalto I (2ª parte). An. Soc. Españ. Fís. y Quim. 25 p. 518-548 (1927).

[137] C. R. Davidson and F. J. M. Stratton, Multiplets of the nickel and cobalt arc spectra in the chromospheric spectrum. Monthl. Not. 87 p. 739-747 (1927).

[138] W. F. Meggers and F. M. Walters, Absorption spectra of iron, cobalt and nickel. Phys. Rev. (2) 29 p. 358-359 (1927).

[139] W. F. Meggers and F. M. Walters, Absorption spectra of iron, cobalt and nickel. Scient. papers Bur. of Stand. No 551 (1927); Vol. 22 p. 205-226 (1927).

[140] H. Nagaoka, D. Nukiyama, and T. Futugami, Instantaneous spectrograms of iron, cobalt, and nickel. Proc. Imp. Acad. Tokyo 3 p. 392-397 (1927).

[141] G. Ortner, Die K_β-Linien der Elemente der Eisenreihe. Wiener Anz. 1927 p. 83–84 Nr. 12.

[142] H. N. Russell, Related lines in the spectra of the elements of the iron group. Astroph. J. 66 p. 184-216 (1927).

[143] H. N. Russell, Series and ionization potentials of the elements of the iron group. Astroph. J. 66 p. 233-255 (1927).

[144] N. Seljakow, A. Krasnikow, T. Stellezky, Die Struktur der Linien K_a der Elemente Cu bis Ca. Zs. f. Phys. **45** p. 548-556 (1927).

[145] A. W. Smith and M. Muskat, The absorption spectra of Ga, In, Mn, Cr, Ni, and Co in under-water sparks. Phys. Rev. (2) 29 p. 663-672 (1927).

[146] N. K. Sur, On the origin of terms of the spectrum of cobalt. Phil. Mag. (7) 4 p. 36-49 (1927).

[147] W. R. Brode, The analysis of the absorption spectrum of cobalt chloride in concentrated hydrochloric acid. Proc. Roy. Soc. A. 118 p. 286-295 (1928).

[148] W. R. Brode and R. A. Morton, The absorption spectra of solutions of cobalt chloride, cobalt bromide, and cobalt iodide in concentrated hydrochloric, hydrobromic and hydroiodic acids. Proc. Roy. Soc. A. 120 p. 21-33 (1928).

[149] M. A. Catalán, Die Struktur des Kobaltspektrums II. Teil. Zs. f. Phys. 47 p. 89—113 (1928).

[150] S. Eriksson, Präzisionsmessungen in der K-Serie der Elemente Chrom bis Nickel. Zs. f. Phys. 48 p. 360-369 (1928).

[151] W. F. Meggers, Multiplets in the Co II spectrum. J. Washington Acad. 18 p. 325-330 (1928).

[152] M. A. Catalán, Estructura del espectro del cobalto (3ª parte). An. Soc. Españ. Fís. y Quim. 27 p. 832-845 (1929).

[153] V. Dolejšek and H. Filčáková, The complexity of the K line of X-ray spectra. Nature 123 p. 412-413 (1929).

[154] V. Dolejšek et K. Pestrecov, Sur l'allure des valeurs des discontinuités d'absorption K des corps simples. C. R. **188** p. 164—166 (1929).

[155] C. E. Howe, Wave-length measurements of L lines (Zn to Ca). Phys. Rev. (2) 33 p. 1088 (1929).

[156] G. Kellström, Undersökning av L-serien hos elementen 29 Cu-20 Ca medelst plangitterspektrograf. Fysisk Tidskr. 27 p. 145-148 (1929).

[157] G. Kellström, Wellenlängenbestimmung in der L-Reihe der Elemente. 29 Cu bis 20 Ca mit Plangitterspektrograph. Zs. f. Phys. 58 p. 511-518 (1929).

[158] H. Th. Meyer, Über die Intensität der K-Linien des Röntgenspektrums in Abhängigkeit von der Ordnungszahl. Wiss. Veröff. a. d. Siemens-Konzern 7, 2. Heft, p. 108-162 (1929).

[159] P. Vaillant, Sur le spectre d'absorption de CoCl₂ et ses variations. C. R. **189** p. 747-749 (1929).

[160] H. Beuthe, Über neue schwache Linien in der K-Serie der Elemente V bis Y. Zs. f. Phys. 60 p. 603-616 (1930).

[161] T. Bouma, Intensiteitsmetingen in het Nikkel- en Cobaltspectrum. Proefschrift Utrecht 1930.

[162] I. H. Findlay, Spark spectrum of cobalt, Co II. Phys. Rev. (2) 36 p. 5-12 (1930).

[163] C. E. Howe, The L series spectra of the elements from calcium to zink. Phys. Rev. (2) **35** p. 717-725 (1930).

[164] A. Karlsson, Die Gitterkonstante hochmolekularer gesättigter Fettsäuren nebst den Röntgenspektren innerhalb der K- und L-Reihen bei einigen niedrigeren Elementen. Ark. f. Mat., Astr. och Fys. 22 No 9 (1930).

[165] S. Kawata, Satellites of the K_{β} -line of elements from Fe to Zn. Mem. Coll. Kyoto (A) 13 p. 383-387 (1930).

[166] Ben Kievit jr. and G. A. Lindsay, Fine structure in K X-ray absorption spectra. Phys. Rev. (2) 35 p. 292 (1930).

[167] Ben Kievit and G. A. Lindsay, Fine structure in the X-ray absorption spectra of the K-series of the elements calcium to gallium. Phys. Rev. (2) 36 p. 648-664 (1930).

[168] L. S. Ornstein and T. Bouma, Intensity measurements in the spectrum of nickel and cobalt. Phys. Rev. (2) 36 p. 679-693 (1930).

[169] P. Vaillant, Sur l'absorption des sels de cobalt en solutions concentrées. C. R. 190 p. 170-172 (1930).

[170] J. Valasek, The fine structure of certain X-ray emission lines. Phys. Rev. (2) 36 p. 1523-1530 (1930).

[171] M. Châtelet-Lavollay, Spectres d'absorption comparés de sels complexes de chrome et de cobalt trivalents. C. R. **193** p. 30 (1931).

[172] H. T. Gilroy, A study of the vanadium I isoelectronic sequence. Phys. Rev. (2) 37 p. 1704 (1931).

[173] H. T. Gilroy, Certain spectra in the vanadium I isoelectronic sequence. Phys. Rev. (2)
 38 p. 2217-2233 (1931).

[174] W. Kraemer, Beiträge zur Spektralanalyse mit Hilfe von empfindlichen in dem der Glasoptik zugänglichen Gebiet liegenden Linien. I. Zs. f. Elektrochem. **37** p. 862–874 (1931).

[175] R. Samuel, Absorptionsspektren komplexer Salze der Metalle Fe, Co, Ni, Pd, Pt (Beiträge zur Theorie der koordinativen Bindung I). Zs. f. Phys. **70** p. 43-73 (1931).

[176] M. Sawada, On the multiple structure in the X-ray absorption spectra of the metallic elements Cr, Mn, Fe, Co, Ni, and Cu. Mem. Coll. Kyoto 14 p. 229-250 (1931).

[177] P. Vaillant, Sur la constitution des solutions tirée des mesures d'absorption. C. R. 193 p. 654-656 (1931).

[178] M. A. Valouch, Über die Wellenlänge und Struktur der K-Absorptionskante von Kobalt. Coll. Trav. chim. Tchécoslavaquie 3 p. 205—215 (1931).

[179] W. Kraemer, Beiträge zur Spektralanalyse mit Hilfe von empfindlichen in dem der Glasoptik zugänglichen Gebiet liegenden Linien. II. Zs. f. Elektrochem. **38** p. 51-53 (1932).

[180] H. Vatter, Über das magnetische Verhalten des Kobaltatoms. Zs. f. Phys. 73 p. 260-272 (1932).

[181] H. Casper, Das Bogenspektrum des Kobalts im Gebiete 3300 bis 4700 ÅE. bei vermindertem und normalem Druck. Dissertation Bonn 1932.

[182] H. Slevogt, Über die Bogenspektra von Chrom, Mangan, Kobalt und Nickel im Rot und nahen Ultrarot. Dissertation Bonn 1932.

Für Kobalt lagen gute Messungen vor: im langwelligen Gebiet (λ 11453 bis λ 5515) von Meggers und Kiess [88], dann von Dhein [94] zwischen λ 7417 und λ 2590, endlich für noch kürzere Wellen von Krebs [83], Exner und Haschek [66], sowie von Piña de Rubies [86]. Zu diesen ist eine ganze Anzahl neuer Messungen hinzugekommen: Slevogt [182] mißt das Spektrum des Bogens zwischen Metallelektroden im Gebiet λ 8589 bis λ 6070; die Übereinstimmung mit Dhein und Krebs wie auch mit der früheren Messung von Stüting [46] ist stets befriedigend, während gegen Meggers und Kiess gelegentlich Differenzen von mehreren Hundertsteln ÅE auftreten. Ferner gibt Casper [181] gelegentlich einer Untersuchung der Druckverschiebung Wellenlängenmessungen für den Metallbogen (zwischen λ 4698 und λ 3287) in Luft, welche mit den Werten von Dhein, bisweilen auch mit den Ergebnissen von Krebs, vorzüglich übereinstimmen. Seine Messungen werden, ebenso wie die von Slevogt, in Tab. 3 mitgeteilt. Außerdem liegen für das Gebiet von λ 5000 bis λ 2000 Messungen des Funkenspektrums von Meggers und Findlay vor, die in Tab. 5 nach Findlay [162] aufgeführt sind.

Auch unsere Kenntnis des Schumanngebietes ist bereichert worden. Hierfür hatten die Brüder Bloch schon zwei Veröffentlichungen [76, 77] und [98, 99], zu denen sie eine dritte [117] hinzufügen, die von λ 1882 bis λ 1424 reicht; ein Vergleich mit der vorigen [99] zeigt schr bedeutende Unterschiede. Sodann liegt jetzt eine früher nicht zugängliche Messung von Takamine und Nitta [85] aus dem Jahr 1917 vor, die recht unvollkommen ist, auch nur bis λ 1828 reicht. Endlich hat Lang [111] das Spektrum des hot spark zwischen λ 2066 und λ 342 gemessen, aber offenbar auch nur unvollkommen. Diese drei Messungen sind in Tab. 1 nebeneinander gestellt. Auch wenn man die Verschiedenheit der Lichtquellen berücksichtigt, sind sie merkwürdig verschieden, und die Unsicherheit bleibt schr groß. Aus diesem Grunde wurde auch von einem Vergleich mit den Tabellen von Findlay (Tab. 5) und von Gilroy (Tab. 7) abgeschen, obwohl anscheinend beide verschiedene Linien mit Tab. 1 gemeinsam haben.

Wenn in Tab. 1 zwei Zahlen in dieselbe Zeile gesetzt sind, weil sie etwa gleich groß sind, so soll das nicht bedeuten, daß sie notwendig für Messungen derselben Linie gehalten werden.

Tabelle 1. Co, Kurze Wellen.

	Lang [111]	Takamine u. Nitta [85]			Lang [111]	Takam u. Nit [85]	Гакатіпе u. Nitta [85]		10	Bloch [117]		Lang [111]	Takamine u. Nitta [85]	
2066	6 1	_		1936	-	6.2	1		1882	14	5		2.4 1	
61	5 3			35	-	5.5	1		81	42	1	-	1.2 3	
34	3 1	-		34	-	4.5	2		80	85	1	-	0.7 1	
25	4 1	-		34	-	4.0	2		79	69	3	-	0.0 1	
08	0 1	-		33		3.8	2		78	-	-	8.8 2	8.5 2	
1999	-	9.3 2		33	- 11-	3.0	1		77	87	2		166 2	
99	-	9.0 4		30	-	0.3	1		75	32	4	-	50.0 -	
96	-	6.2 2		29	-	9.7	1		74	71	1	4.4? 2	4.5 1	
93	9 1	4.7 2		29	-	9.0	2		74	-	-	-	4.3 2	
		3.3 2		28	0 2	8.0	6		73		- 11	-	3.7 1	
90		0.8 2		27	-	7.1	2		72	85	3	-	-	
89	1 1	9.0 3		25		5.5	1		72	30	4	-	2.0 1	
86	20 - N.	6.5 3		24		4.9	2		70	93	0	-	1.2 4	
84	8 1	4.3 2		24	-	4:0	1	- 1	67	-		-	7.9 1	
83	- 12	3.2 2		23	-	3.5	1		67	32	1		-	
80	3 1	0.3 2		22	-	2.6	1		66	91	1	-	6.6 3	
79	-	9.1 4		22	-	2.0	1		65	71	1	4.9 1	-	
78	-	8.0 2		20	-	0.2	1		64	02	4u	1	-	
76	-	6.3 3		18	- 7	8.3	3		62	67	1	-	[3.0 2	
74		4.2 5		17	1 1	6.8	3				1.1	1210	2.4 2	
72	-	2.0 2		15	-	5.7	1		62	49	1	-	2.1 2	
71	-	1.1 3		14		4.5	1		61	88	2	-	1.5 3	
69		9.6 5		13	-	3.5	1		60	34	1		-	
68	-	8.3 2		12	-	2.5	1		59	-	•	141 77 11	9.9 2	
66	3 1	-		11	-	1.5	1		59	71	1	-	-	
62	-	2.8 4		10	-	0.1	3		58	41	1	-	-	
60		0.6 3		09	-	9.2	1		57	80	1	-	-	
58		8.6 2	5	08	-	8.3	3		56	11	1	-	-	
56	-	6.7 6	1	07		7.7	1		55	56	1	-	-	
55	-	5.3 5		07	-	7.5	1		54	84	3	-	-	
54	-	4.3 4		06	-	6.0	1		54	48	2	-	4.2 2	
53		3.4 3		05	0 1	5.1	1		53	-	-	3.5? 11)	3.7 1	
52	-	2.4 2		03	-	3.0	1		53	-	-		(3.4 2	
51	-	1.3 2		01	2 3	1.0	1		53	08	3	-		
50	1 1	0.5 1		00	-	0.1	1		52	14	1	-	2.0 3	
49	-	9.8 6		1899	-	9.6	1		51	87	1]	
49	-	9.4 1		96	-	6.1	1		50	82	2	-	0.8 1	
48	-	8.5 1		95	-	5.2	3		50	10	2	T	-	
46	-	6.2 1		93	-	3.7	1		49	48	3	9.7 1	9.0 1	
44	-	4.8 1		91	-	1.4	2		48	04	1	-	-	
43	-	3.7 2		90	-	0.1	1		47	51	1	-	-	
42	-	2.0 1		89	1 2	9.7	1		47	-		-	7.0 1	
41	4 1	1.6 2		88	-	8.2	2		46	17	4	T	6.3 1	
40	-	0.2 8		87	-	7.7	1		45	23	2	_	5.1 4	
39	-	9.4 2		86	-	6.3	1		44	94	2u	4.8 1		
37	-	7.0 1		85	1 2	4.9	1		44	06	1	-	4.0 1	
36	8 1	6.6 4		84	-	4.0	1		43	62	2	-	3.5 1	

1) A1?

Kayser u. Konen, Spektroskopie. VIII.

Kobalt

-	Bloc	h	Lang	Takamine		to to	Blo	ch	Lang		ing and	Blo	ch	Lang
1	[117	[]	[111]	u. Nitta [85]			[11	7]	[111]		Citra ([11	7]	[111]
1842	30 (00u	12.70	2.5 2		1797	13	00	-		1736	17	2	-
41	71 (00u	-	-	1.5	96	48	00	-	-	35	35	1	-
40	25	1	100- 100	-		94	98	1	-	. 8	34	08	1	-
39	52	3	-	-		94	18	2	-		33	64	00	
39	-		-	9.0 1		92	56	2	-		32	44	2	2.5 1
38	-		-	8.4 3	-	91	45	2	-		31	92	00	-
37	86	3	-	-		90	45	2	-		30	56	1	-
36	46	2	$6.5? 1^2$)	6.3 1	1	89	61	00	-		29	64	0	-
35	79	1	-			89	26	3	-		28	28	00	-
35	17	4	-	-		87	68	00	-		27	71	0	-
34	-		-	4.7 1		87	38	2	-		27	-	-	7.0 1
34	13	0	11	4.0 1	-	86	55	1u	-		26	12	1	-
32	22	3	-	-		85	13	0	-		25	15	00	-
31	61	2u	-	-		84	29	2	-		23	94	2	-
30	89	1	305 1	-		83	23	4	-		22	96	1	
30	25	2	J 0.5 1	-		80	26	3	-		21	60	00	-
29	87	1			100	79	87	00	-		20	00	0	-
28	50	0	-	-	0.02	78	45	00			18	41	1	-
28			-	8.0 1		77	31	3	-		16	-	-	6.8? 8
27	26	2	6.62 1n			76	06	00	-		16	17	2	-
26	14	3	J			74	62	2	-		15	57	1	
25	61	3	-			73	86	4	-		13	82	0	
25	14	1	01-01			73	46	2	- 20		12	38	0	
23	56	2	0 100	Worthese V	0.0	72	66	00	2.6 1	10	10	84	0	
23	17	4	- 1.	antina danara		72	21	00			09	44	00	9.8 3
21	99	3	-			71	81	00	-		08	80	00	-
21	49	1	1.4? 1u			70	15	2	-		07	81	3	
20	17	00	-			68	48	1	-		07	20	4	-
19	47	1	-	Sal and		67	42	0	7.6 1	-	06	66	1	-
18	85	1	-	6.01 100	1	65	67	0			05	98	0	-
17	84	1	-	14 1 1 H		63	67	1	-		02	69	2	-
16	78	00	-			61	96	0	-		1697	91	2	-
15	82	1		A MARKEN		61	36	00		1	96	81	0	6.5 2
14	98	1		12.95 16.91		60	46	5^{1})	-		95	88	3	- Containing
14	50	1	-	and the second		59	70	00			95	22	00	-
13	38	2	3.5 1	CR. Sugar	1	58	83	0	-		93	03	0u	-
12	71	1	-	SAL LAT		57	68	0	-		91	19	1	-
11	64	3	-	Int of her		56	78	0	$6.6 1^2$)		89	72	1	-
10	68	00	-			56	09	2	-		89	64	0	8.9 2
09	28	0		1.010	100	54	33	1	-		87	74	0	-
08	54	2	Dillo- Int	IN PLANS		51	73	31)	-		86	88	2	
05	70	3	-	1		51	20	1u			85	75	00	-
05	15	3	-	an laire		48	94	0	8.5 2		84	47	00	-
01	29	0	-	22 1 24		47	79	2	-	1	83	56	2	-
00	66	0	-	10- 10-		40	36	1	-		82	69	2	-
1799	18	Ou	-	16 7 13 m		39	96	1	9.4 2		82	02	0	-
98	29	2	8.5 3			38	80	2	J		81	40	00	-
Tank	1) C? 2) Hg?													
	Bloch	Lang	Mysia	Bloch	Lang		110	Bloch	Lang					
------	---------	-----------------------	-------	----------------------	-----------------	---	------	--------	------------------					
	[117]	[111]	1	[117]	[111]			[117]	[111]					
1680	42 0		1611	97 1	_	15	44	91 1	_					
79	95 1	_	10	06 00	_		44	55 1	_					
79	24 1		08	58 0	-		44	03 1	3.6 2					
77	72 00u		06	93 00	_	112 13	42	67 0	_					
75	64 2	1992 199 19	05	79 1	_	100	42	13 1u	A COMPANY OF THE					
74	78 1		04	37 00	_	a la na	40	56 00	he Look					
73	71 1	AL - Swelt	03	15 00 ¹)	3.5 22)		39	39 0						
72	17 1		01	87 00			37	56 00	-					
70	62 0	_	01	12 1	_		36	93 0						
69	74 0		1599	72 00			36	36 0	_					
68	38 00		99	19 0	_		35	47 00						
66	19 2	_	98	30 1		1	34	74 0						
65	23 0		97	79 00	_		34	24 2						
64	88 0		96	44 0	_		34	05 1						
63	62 00	_	95	67 1	_		32	98 00						
62	67 00	_	94	31 00	_		32	05 00						
61	19 3		93	21 1	3.5 85)		30	90 0	0.5 1					
59	53 00	_	90	44 2	_		30	31 0						
58	87 00u	-	89	74 0	9.6 13)		29	26 00						
55	00 00u	6.5 11)	86	15 00			28	48 0						
54	44 00		84	00 00	_		27	94 00	Do Di log					
52	83 00		83	21 00	_		27	22 00						
52	55 00		82	34 00	_		26	69 00	65 1					
49	12 2		81	92 04)	_		25	76 1n	0.0 1					
47	36 1	_	81	43 14)	_	1	23	99 1						
45	89 0	6.0 1	80	42 00	0.6 8		22	89 1						
45	38 00	_	79	97 00	-		21	64 2	19 1					
44	42 00		77	03 3	an Lab		20	47 00	1.0 1					
42	33 1u	1	76	85 8		1	19	44 0						
40	47 0	1.4 1	76	03 0			17	59 00						
39	18 2		75	59 Ou			17	00 00						
38	68 0		74	52 3			15	91 00						
37	08 00	_	73	07 0	3.0 10		15	07 00						
35	07 00		72	62 2	0.0 10		14	83 00	44 1					
33	44 00	form_think	67	54 1	70 1	et al	12	62 00	1.1 1					
32	22 00	-	57	52 1	1.0 1	are h	18	02 1	a lange waard					
31	50 00	1.4 2	57	05 1			11	64 0						
28	94 0		53	78 1			00	81 0						
27	07 00	65 1	52	78 3	notification of	100	09	18 2	an Tuans					
23	90 11)	0.0 1	59	33 0	den II.e.	10 11	07	18 1	ablieben.					
22	38 1		51	61 00			05	20 1	and the second					
20	17 00		50	00 00			04	28 00						
18	76 00		10	54 0	OTHER PARTY		02	15 0						
17	23 00	and the second second	48	71 0	anumbare	199	02	05 0	10 0					
15	75 00	the all line	47	93 9	F and and	10	00	71 0	1.0 2					
14	66 00	46 11)	47	31 00	lingfinde		00	0 00	er Bava					
18	44 00	1.0 1-)	47	16 00		14	00	18 0						
1) C? 2)	H? 3) N?	4) Z	n? 5) Of	2	1 14	00 1	10 0 1	in the second					

499

32*

	Blo	ch	Lang	19		Lang	5	(and	La	ng
	[11	7]	[111]	(m)		[111]]	In	[1]	ų]
1498	86	00		1.19	1383	3.7	11)	771	3	14)
97	. 17	00	-		70	0.7	1	44	7	1
91	85	3	_		61	1.7	21)	37	6	13)
89	88	0	_		56	6.5	11)	29	0	13)
88	01	0	-		42	2.4	12)	696	6	1
86	44	3	6.7 1		19	9.1	1	79	5	1^{3})
85	14	00	-	2 20	10	0.9	1	53	4	1
84	26	0	_		1270	0.8	1	44	1	32)
81	84	11)	_		41	1.1	13)	29	6	1^{2})
80	87	2	_		1151	1.3	1	21	2	1
79	45	00u	-		34	4.9	14)	17	0	2^{2})
78	28	0	_	1	27	7.6	3	10	7	4^{2})
76	73	1	-		18	8.0	2	07	6	4^{2})
75	76	3	-		1094	4.4	1	594	4	11)
74	91	0	_		84	4.1	14)	90	9	1
74	28	0	-		03	3.4	1	87	2	1
72	84	3		8 8 5 9	991	1.2	14)	18	3	1^{2})
71	92	1	-		66	6.7	1	08	0	1^{2})
69	69	0	_	1 3 1 2	50	0.4	1	486	1	.1
68	29	(0^1)	-		37	7.4	5	70	5	1
66	19	31)	6.8 1	1.1.1	12	2.5	1	10	5	1
59	84	0	_		898	8.3	12)	397	4	1
58	54	0	_		82	2.8	1	87	4	1
57	54	0	_	1 1 2	65	5.4	2	74	6	1^{2})
56	21	0	-		54	4.3	1	70	5	1
55	78	1	_	1.40	27	7.8	1	68	0	1
54	96	1	_		24	4.9	1	62	6	1
48	06	1	-		18	8.2	15)	59	1	1^{2})
45	67	1	5.5 1		00	0.6	11)	56	7	1
43	85	Ou	_		796	6.4	2 ²)	42	0	1
24	82	1	_		89	9.7	32)			
21			1.5 1		76	6.3	14)	1	0	

Co I. Neunvalenzelektronensystem mit Dublett-, Quartett- und Sextett-Termen. Den ersten Versuch zur Trennung der Ionisationsstufen machen Kimura und Nakamura [110] mit ihrer Methode der langen und kurzen Linien, die aber bei Kobalt versagt: alle gefundenen Linien haben die gleiche Länge, woraus die Autoren schließen, daß sämtliche zu Co II gehören; Zahlenangaben werden nicht gemacht.

Dagegen haben sich verschiedene Autoren erfolgreich mit der Einordnung von Kobaltlinien befaßt, und diese Einordnungsarbeiten haben dann zusammen mit einer größeren Zahl von Untersuchungen der Absorption im elektrischen Ofen und Unterwasserfunken, über die später berichtet werden soll, für eine beträchtliche Anzahl von Linien die Zugehörigkeit zu Co I sichergestellt.

1) C? 2) O? 3) H? 4) N? 5) Si IV?

500

Die ersten Ansätze zur Termdarstellung des Co I findet man bei Walters [116]. der im Spektrum bereits 12 Multipletts gefunden hat, ohne jedoch ihren Charakter vollständig zu erkennen, die dann in der kurz darauf erscheinenden Arbeit von Catalán und Bechert [120] die Nummern 10, 11, 13, 14, 19, 20, 22, 23, 25, 28, 31 und 34 erhalten haben; sie sind in Tab. 3 durch ein W vor der Einordnung gekennzeichnet. Catalán und Bechert gelang es, (unabhängig von Walters) 93 Multipletts aus den vorhandenen Messungen herauszufinden, die zugehörigen Terme zu klassifizieren und so über 500 Linien bei Co I einzuordnen (in Tab. 3 mit Cr bezeichnet). Ob ihre Einordnung durchweg als endgültig zu betrachten ist, sei dahingestellt; Stichproben zwischen λ 4640 und λ 4540 ergeben jedenfalls, daß Versehen (Druckfehler?) sich finden; soweit Druckfehler bemerkt wurden, sind sie hier beseitigt. Eine Kritik der Arbeit findet man bei Sur [146], der die bisher aufgefundenen Terme vergleicht mit der Termmannigfaltigkeit, die nach Sahas Schema des periodischen Systems zu erwarten ist. — Alsdann gab Russell [142], [143] für die Elemente der Eisengruppe verschiedene homologe Linien und Terme an und konnte so auch bei Kobalt eine Anzahl Linien (in Tab. 3 mit R bezeichnet) neu in Multipletts einordnen und Serien aufstellen; dabei ergab sich als Ionisierungsspannung 7.81 V (4F₅). während man als Anregungsspannung (für 4F5-6F6) 2.86 V erhält. Anläßlich einer Untersuchung des Unterwasserfunkens haben auch Meggers und Walters [139] einiges zur Einordnung beigetragen; die von ihnen neu eingeordneten Linien erhielten in Tab. 3 ein M.

Endlich hat Catalán in seinen Arbeiten [136, 149] und [152] die Einordnung weitergeführt, wobei es ihm gelungen ist, noch fast 800 Linien in Multipletts zu ordnen, so daß von den rund 1800 Linien, welche von Ultrarot bis λ 2000 im Linienspektrum des Co gemessen worden sind, insgesamt etwa 1300 bei Co I eingeordnet werden konnten. Die Terme, aus denen sie entspringen, lassen sich nach Russell[142] und Catalán [152] folgendermaßen anordnen:

(Man sieht, daß fast alle Terme verkehrt sind, wie nach der Hundschen Theorie zu erwarten.)

Konfigu- ration	Be- zeichn.	Termwert	Be- zeichn.	Termwert		Konfigu- ration	Be- zeichn.	Termwert	Be- zeichn.	Termwert
3d7 4s2	a4F	0	a 2Da	16470.60	1	3d ⁸ 4s	b4F5	3482.76	a ² F ₄	7442.39
	a4F4	815.98	a 2Da	16778.12	1.	1.0	b4F4	4142.61	a 2Fa	8460.77
	a ⁴ F _a	1406.83		12622	10	1 comments	b ⁴ F ₈	4690.10		
	a ⁴ F ₂	1809.30	b ² P ₂	20500.70	23	Part I	b4Fe	5075.75	a 2Gs	16467.80
	-		b ² P ₁	21215.86			-		a 2GA	17233.60
	b ⁴ P ₃	15183.98				1. 192	a ⁴ Pa	13795.44	1	14112123
	b ⁴ P ₂	15773.94					a ⁴ P ₂	14036.20	a ² P.	18389.51
	b ⁴ P ₁	16195.54		Long (**			a ⁴ P ₁	14399.15	a ² P ₁	18774.99
			1111			1ª keep			b ² D ₃	21920.06
		in the second					105	The second second	b ² D.	23152,51

Tabelle 2. Terme des Co I.

Terme I.

		-	-
 	 -		
$\alpha \mathbf{r}$	 		
 	 18.2		
~~	 	-	_

Konfi- guration	Bezeichnung	Termwert	Bezeichnung	Termwert	Bezeichnung	Termwert
3d ⁷ 4s 4p	6G70	25137.95	a4Ga0	28845.16	a 2G50	31699.61
	6G.0	25568.69	a 4G50	29269.68	a 2G40	32732.99
	6G50	25937.52	a 4G40	29735.09		
1000000000	6G40	26231.95	a 4G30	30102.88	9 2F 0	31871.09
manipul	6G30	26449.90	na surfano		a 2F.0	32781.64
	6G20	26597.55	a4F.0	28345.80	a 13	02101.01
thet Ehm	Bennet Printing		a4F.0	28777.19	Swipe Seland	
orran P. mai	6F.0	23611.72	a4F.0	29216.32	a ² D ₃ ⁰	33462.80
	6F.0	23855.61	a 4F.0	- 29563.05	a 2D20	34352.38
	6F.0	24326.05				
	6F.0	24733.23	ATL 0	00004.40	(m ² F ₃ ⁰)	43242.89
	6F.0	25041.11	a 4D40	29294.49	$(m^{2}F_{4}^{0})$	43398.50
	6F,0	25232.72	a 4D30	20040.74	aneniit Lipue	
	e stanfaren e		$a^4D_2^{\circ}$	20749.55	(n 2F.0)	43425.63
	60.0	94697 79	a 'D ₁ '	. 00742.00	$(n^{2}F_{0})$	43555.10
	6D 0	24021.10			(internal mark
	6D 0	20203.00	c 4D40	39649.04		10011.00
	6D 0	20100.00	c 4D30	40345.83	$(m^2 D_2^0)$	43911.36
	6D 0	20003.13	c ⁴ D ₂ ⁰	40827.63	$(m^2 D_3^0)$	43921.75
antipar		20200.00	c ⁴ D ₁ ⁰	41101.64	aless) ing	
erenand ou	annes an		c4F50	41225.4	an deb mor lie	
	A LOT HALL		c4F40	41918.2	Co Agentineer	
			c4F30	42434.0		
			c ⁴ F ₂ ⁰	42796.7	15001 (1501) m	
mont	ababana B v		c4G60	41528.3	bi, das fact a	als in IC
	D A BY A		c4G50	42269.0		
	ALL BUILDIN		c4G40	42810.6		
			c ⁴ G ₃ ⁰	43199.4		
			a4P30	41968.74		
	Bran aless		a 4P20	41982.57	refeta- and Sea	Last for Linescans
in the second	Sandes TOTAL		a ⁴ P ₁ ⁰	41969.78	A PARANEL AND	
an start	The second		m 4D40	46872.53		
Salas	1991 1982		m 4D ₃ 0	47393.85	T BEALS	
	and forest		m 4D20	47612.12	PERCAPP P	
(a filling	tion ophassis		m ⁴ D ₁ ⁰	47905.21	(oreased on)	
	and the second		n 4D40	48217.32	- Martinet	
	12.10		n 4D30	48443.67	A PROPERTY OF	
121212			n 4D20	48545.95	- Annother 1	
			n ⁴ D ₁ ⁰	48571.64		

Konfiguration	Bezeichnung	Termwert	Bezeichnung	Termwert
3d ⁸ 4p	b4Ge0	32430.56	b 2G50	33439.64
	b4G50	32464.66	b 2G40	34133.50
	b4G40	33173.30	ALC: NO DEC	
	b4G30	33674.32	b ² F ₄ ⁰	35450.51
			b 2F30	36329.79
	b4F50	32841.91	A REAL PROPERTY	
	b4F40	33466.78	b ² D _a ⁰	36092.40
	b4F30	33945.81	b 2D20	36875.06
	b4F20	34196.11	1.2224	
	LAD 0	20007 40	The second	
	D*D4	32027.42		
	b 4D30	32654.45		
	$b^{4}D_{2}^{0}$	33150.60		
	$b^4D_1^0$	33449.04		

Terme II (Fortsetzung).

71.	-	-	L L L	r
1.6	rm	е.		1.1
-				

Konfiguration	Bezeichnung	Termwert	Bezeichnung	Termwert
3d ⁷ 4s 5s	a ⁶ F ₆	45675.88	$\beta^4 F_5$	47524.42
	$a^6 F_5$	46222.88	$\beta^4 F_4$	48201.56
	$a^{6}F_{4}$	46706.70	$\beta^4 F_3$	48718.46
	a^6F_3	47090.48	$\beta^4 F_2$	49078.33
	$a^6 F_2$	47364.54		
	$a^{6}F_{1}$	47528.32		Maring
3d ⁸ 5s	a^4F_5	44781.94	a ² F ₄	45924.79
	a^4F_4	45105.39	$a^2 F_3$	46745.79
	a^4F_3	45876.37	Call and the last	and the second second
	$a^{4}F_{2}$	46375.00		

Daneben gibt Catalán in [149] und [152] folgende nur unvollkommen analysierte Terme, welche vermutlich den Konfigurationen $3 d^8 4 d$ (um 51000 cm⁻¹ herum) und $3 d^7 4 s 4 d$ (um 53000) zuzuordnen sind:

Be- zeich- nung	vermutlich	Termwert	Be- zeich- nung	vermutlich	Termwert	Be- zeich- nung	vermutlich	Termwert
$\begin{array}{c} \alpha_{4, 3} \\ \beta_{4} \\ \gamma_{7} \\ \delta_{5} \\ \varepsilon_{6} \end{array}$	$\begin{array}{c} [^4D_4,^4P_3] \\ [^4D_4] \\ [H_7] \\ [^4F_5] \\ [H_6] \end{array}$	51042.19 51053.02 51142.57 51170.14 51174.26	$ \begin{array}{c} \eta_{3, 2} \\ \vartheta_{6, 5} \\ \iota_{5, 4} \\ \varkappa_{3} \\ \lambda_{3} \end{array} $	$\begin{array}{c} [4D_3,^4P_2] \\ [^4G_6,^4F_5] \\ [^4G_5,^4F_4] \\ [D_3] \\ [F_3] \end{array}$	51200.7 51203.80 51267.96 51560.75 52070.08	$v_{4,3} \\ \xi_3 \\ o_4 \\ \pi_5 \\ o_3$	$ \begin{array}{c} [F_4, D_3] \\ [D_3] \\ [F_4] \\ [^4F_5] \\ [F_3] \end{array} $	52121.26 52460.04 52716.62 52864.28 52970.60

Be- zeich- nung	vermutlich	Termwert	Be- zeich- nung	vermutlich	Termwert
35 C	F5, G6	53511.70	41 C	X4.3	54374.65
36 C	β_{4} H ₇	53617.94	42 C	FA	54476.85
37 C	F4	53694.41	43 C	F ₅	54682.60
38 C	F5, D4	53701.96	44 C	X4. 3	54821.56
39 C	F5	53788.60	45 C	X3. 2	55165.41
40 C	G5, F4	54157.9			

Ferner sind noch genauer zu klassifizieren folgende Terme II:

vor- läuf. Be- zeichn.	vermutlich	Termwert	vor- läuf. Be- zeichn.	vermutlich	Termwert	vor- läuf. Be- zeichn.	vermutlich	Termwert
13	[D ₃ ⁰]	40621.51		(2D30)	44162.1	132	[D20, P20]	46186.33
a ₅	1	42609.4	i ₃	[0 ² F ₃ ⁰]	44201.87	-	[D20, P20]	46259,97
-	(a ² P ₁ ⁰)	43130.13	n ₁	[² S ₁ ⁰]	44453.0	28	[F ₃ ⁰ , D ₃ ⁰]	46329.60
22	$(a^2 P_2^0)$	43263.47	233. 2	-	44555.6	142	$[D_2^0, P_2^0]$	46562.74
b ₅	_	43294.9	10,	$(^{4}P_{2}^{0})$	45904.66	153	[D30, P30]	46671.89
7,8	$(m^2 P_2^0)$	43537.62	114	[F40, D40]	45971.09	162	[D20, P20]	46685.36
C4	[0 ² F ₄ ⁰]	43847.86	123	[D ₃ ⁰ , P ₃ ⁰]	46002.76	30	-	47981.7

Runde Klammern sollen anzeigen, daß bei den betr. Termen die Quantenzahlen nicht ganz sicher sind, während Terme in eckigen Klammern lediglich provisorisch gedeutet sind.

Bei allen diesen Einordnungen wurden, soweit möglich, die Messungen von Meggers und Kiess und von Dhein benutzt; wo solche fehlen, wurden auch andere Angaben herangezogen (Krebs und Exner-Haschek), um die vielfach unvollständig beobachteten Multipletts zu ergänzen, was den Autoren meist gelungen ist.

Noch ein Wort ist über die Intensitätsangaben zu sagen, die immer ein wunder Punkt bleiben. Es ist kein Zweifel, daß Angaben in einer Skala von 1 bis 500, wie sie beispielsweise King macht, weiter führen, als wenn man sich auf 1 bis 10 beschränkt. Da aber King in seinen Arbeiten [81] und [95], in denen er zu Wellenlängen von Exner und Haschek seine Temperaturklassen und Intensitätsangaben hinzufügt, nur ein Stück des Spektrums behandelt und durchaus nicht alle Linien gibt, so würde das Zahlenmaterial ganz uneinheitlich werden, wollte man, wie verschiedene Autoren, für Linien Kings dessen Intensitätsangaben, sonst andere verwenden. Deshalb wurde hier vorgezogen, die Intensitäten von Meggers, Dhein usw. anzuführen. Zum Vergleich jedoch enthält Tab. 3 noch die Resultate von Bouma [161] bzw. Ornstein und Bouma [168]. Diese Autoren haben sich die große Mühe gemacht, für mehr als 600 Linien des Co I nach der bekannten Utrechter Methode die Intensitäten exakt zu messen und an Hand ihrer Resultate und der Einordnung die Summenregeln zu prüfen: sie finden diese in keinem Falle bestätigt.

Eine Prüfung der Einordnung durch Zeemaneffekte ist bisher anscheinend noch nicht unternommen worden; lediglich für 22 Linien werden von Catalán und Bechert ältere Zeemandaten von Rybár [58] herangezogen (Tab. 4 ihrer Arbeit); die Übereinstimmung ist mäßig. Ein Teil der Multipletts ist von Dr. Slevogt für dieses Handbuch nachgerechnet worden. Man sehe die folgende Tabelle.

Slevogt 1) Einordnung [182] 2) 9597 89 2 R, CII b2F30-a2F3 52 2 b2F40-a2F4 R, CII 44 b4Fa0-a4Fa 8958 46 6 R, CII b 2D2-a 2D20 26 24 10 CII CIII c4F30-37C4 8878 30 1 b²F₄⁰-a²F₃ 50 74 10 R, CII b4F40-a4F5 22 35 8 R, CII CII c4G60-75 19 15 10 c4G50-37C4 13 8750 1 CIII a 2D20-a4F3 8675 02 1 R, CII b 2D2-a 2D30 61 04 2 CII CII 58 18 b2D3-b4F40 1 a 2P2-a 4D30 48 81 1 C_{II} R, CII b4F40-a4F4 8589 70 3 .714 4 86 71 3 3 R, CII a 2D30-a4F4 .74 75 32 .33 5 4 R, CII .733 b2G50-a4F4 69 72 2 2 R, CII 59 04 2 b4F20-a4Fa b2G40-a4Fa 13 48 R, CII 1 c4F40-37C4 8489 41 2 .47 2 CIII b2G40-a2F4 78 45 2 R, CII 09 c4G50-40C5, 4 03 1 CIII b4F30-a4F3 8379 54 3 .52 5 R, CII 7 b4G40-a4F4 78 37 7 .42 R, CII b4F50-a4F5 72 82 10 .854 8 R, CII b4F30-a2F4 45 59 2 R, CII c4G60-35C6.5 42 66 4 .73 3 CIII 31 70 2 a 2D3-a 4F40 CII a 2D20-c4F20 15 32 2 R c4F30-42C4 01 44 1 CIII 02 .024 8299 5 a 2G40-c4F5 96 85 5 .872 4 R .42 3 83 49 5 6 CII, CIII 69 39 8 .45 .667 7 $b^4F_2^0-a^4F_2$ 08 67 8 R, CII 8 b4G30-a4F3 8193 05 8 .06 R, CII c4G50-42C4 89 29 1 CIII C_{III} c4F40-40C5, 4 67 97 2

Tabelle 3. Co I.

Die inneren Quantenzahlen sind um 1/2 erhöht.

R, CII

b4G30-α2F4

¹) In dieser Spalte werden für eingeordnete Linien die Wellenlängen aus den betreffenden Einordnungsarbeiten mitgeteilt (welche mit den Mittelwerten der besten Messungen in der Regel nicht identisch sind); für nicht eingeordnete Linien enthält diese Spalte Mittelwerte früherer Messungen (man vgl. oben p. 496, sowie Bd. V p. 312 ff. und Bd. VII p. 251 ff. dieses Handbuchs).

60

68

2

²) Wie bereits oben p. 501 bemerkt, sind in dieser Spalte die Arbeiten notiert, in denen sich die Einordnung der betreffenden Linie findet. Dabei bedeutet: C_I Catalán und Bechert [120], C_{II} Catalán [149], C_{III} Catalán [152], M Meggers und Walters [139], R Russell [142, 143] und W Walters [116].

Е	inordnung	North Control of Contr			Slevo [182	gt]
Carr	a4C 0 20C	8154	21	1		
B Crr	$b_{4}E_{0}a_{4}E_{5}$	59	03	6	090	ß
Crr	h2P	40	49	2	.020	
Cru	c4F_0_35C	37	10	5	103	4
B. Crr	b4G-0-a4E-	16	43	7	44	G
R. Crr	a ² F ₀ -a ⁴ F	12	13	1		
R. Crr	h4G.0-a4F.	8094	03	10	3.99	8
Cru	c4F.0-45C	82	60	1	0.00	
R. Crr	a ² G. ⁰ -a ⁴ F.	80	23	5	26	5
R. Crr	$a^2D_0 - a^2F_0$	66	50	7	54	4
R. Curr	b4F.0-a4F.	56	03	8	.07	8
R. Crr	a ² D ₂ ⁰ —a ⁴ F ₂	53	50	1		~
R	b4Fc4F.0	43	33	8	34	8
Crr	$h^{2}D_{2} - a^{2}D_{2}^{0}$	41	33	2	36	2
Crr	$a^{2}D_{2} - a^{4}F_{2}^{0}$	37	63	1	.00	-
Crr	c4D.0-11.	32	41	1		
R. Crr	b4D_0-a4F.	29	29	7	.25	7
R. Crr	b4F.0-a2F.	24	75	7	.26	5
R. Crr	$a^{2}D_{a}^{0}-a^{2}F_{a}$	22	15	7	.16	5
Cur	c4F-0-37C.	17	88	i	.87	2
Cru	c4F.0-38C.	13	02	2	2.96	3
Crr	$b^2G^0 - \alpha^2F$	8007	34	10	.31	8
- II		7998	12	1	.09	2
CTT	2Ga4G.0	96	83	1	.73	2
Crr	a ² D,-a ⁴ D, ⁰	87	38	7	.364	10
R. Crr	b ⁴ Fa ⁰ -a ² Fa	66	12	2	.123	6
Cur	c4F.0-42C.	60	55	2	.54	3
Cm	c4F.0-39C.	57	77	3	.762	5
R. Crr	b ² G ₄ ⁰ —a ² F ₂	26	59	8	.57	9
		19	.50	2	.52	3
R. Crr	b4G.0-a4F.	08	75	10	.737	10
		7885	21	2	.17	1
and the second		77	44	2	.45	4
R. Crr	b4G.0-a4F.	71	43	6	.45	7
R. Crr	b4G40-a4F	69	92	6	.940	7
R, CII	b4D.0-a4F.	55	88	7	.88	8
Cr. Crr	$a^{2}D_{a} - a^{4}F_{a}^{0}$	43	61	1	.65	2
R. Crr	b4G40-a2F4	40	05	7	.056	3
R, CIT	b4D,0-a4F.	38	18	8	.16	8
R. CIT	b4F.0-a2F.	10	39	1	.382	2
CIT	² G ₅ -a ⁴ D ₄ ⁰	09	25	1	.29	3
Crr	² G _s -a ⁴ G _s ⁰	7794	15	1	.18	2
R, Crr	a ² F, ⁰ -a ⁴ F,	43	27	5	.266	6
R, CII	b4D10-a4Fa	34	25	6	.25	8
CTT	b ² D ₉ —b ² D ₉ ⁰	25	92	2	.97	5
CII	b ² P _a —a ² D _a ⁰	12	68	9	.707	10
and mention		04	90	2	.916	4
CTT	b ² P ₁ —b ⁴ F ₂ ⁰	01	88	2	.89	3
	_	7695	97	2	.96	1
R,CII	b4G30-a2F3	48	19	4	.11	1

• 11 () () ()

Kobalt

Ei	nordnung		• smathered	Slevogt [182]
R. CTT	b4F.0-a2F.	7641	43 1	
		37	63 4	
R. Crr	a 2F.0-a4F.	34	56 5	
Crr	h ² P.—a ² D. ⁰	10	29 6	310 10
R. Crr	a ² G.0-a ⁴ F.	06	30 1	31 1
Crrr	c4G-0-43C-	00	11 1	.01 1
Crr	a ² D _a -a ⁴ D _a ⁰	7590	60 6	65 8
-n		88	71 1	
Crr	b ² D _a -b ² F _a ⁰	86	72 4	.719 6
R. Crr	a ² G. ⁰ —a ² F.	78	34 1	
		64	98 5	970 5
R. Crr	b4D.0-a4F.	61	08 4	.09 4
R. Crr	b ⁴ D. ⁰ -a ⁴ F.	59	68 3	676 3
R. CII	a ² F. ⁰ —a ⁴ F.	54	04 8	.01 8
R. Cu	b4D.0-a2F.	33	52 5	507 4
R. CII	a ² D ₀ ⁰ —a ² F ₀	26	32 1	34 8
Crr	a ² D _a -a ⁴ G _a ⁰	02	74 2	79 8
Cur	c ⁴ D ₂ ⁰ -37C ₄	7489	41 3	[45] 4
Cr. Crr	a ² D-a ⁴ F ⁰	78	78 1	81 3
Crr	b4F.0-a6F.	71	21 1	214 1
R. Crr	a ² G. ⁰ —a ⁴ F.	57	43 8	43 9
Cr. Crr	a 2Da 4F_0	37	15 4	139 2
Cur	c4F.0-43C.	29	03 2	.100 2
Cr. Crr	a ² D _a -a ⁴ D _a ⁰	17	40 8	386 10
Crr	b ² D _o -b ² F _o	7388	66 7	68 5
CII	b4G.0-a2F.	65	77 1	
- n				1.67 8
CI	b ⁴ P ₃ —a ⁴ F ₄ ⁰	54	61 6	57 3
CTT	b4D.0-a2F.	53	48 2	
CII	a 2D,-a 4D,0	15	72 3	.71 1
CTT	b ² D ₉ —b ² D ₉ ⁰	7285	29 7	.29 4
CI, CII	a 2Da 4F.0	50	09 3	.12 3
CII	b ² P _o -a ² D _o ⁰	17	36 2	- 0
CII	b4D40-a2F4	7193	63 8	.58 4
R, CII	a 2F30-a2F3	59	23 8	.14 6
CI, CII	a 2D2-a 4D30	54	71 8	.69 4
R, CII	a 2G40-a2F3	34	37 8	.30 4
CI	b4P3-a4F30	24	45 5	.45 2
CITI	c4D30-37C4	17	91 2	
CIII	c4D40-38C54	14	09 1	-17
R, CII	a 2F40-a2F4	13	74 9	.6 5
-	Lunter al and	02	57 4	.55 2
CI	b ² G ₅ ⁰ -β ⁴ F ₅	7097	84 1	
CII	b4D30-a4F3	94	64 4	+ *)
W, CI	b4P3-a4D40	84	970 10	.98 4
-		79	21 2	- 0
CIII	c 4D40-39C5	70	45 4	
-	Constant 8	57	91 2	

*) + bedeutet: vorhanden, aber schlecht meßbar.

Eir	ordnung		Brenhood	Slevogt [182]
		7055	94 2	
	h2D h2D 0	54	09 9	094 9
W C	$b + D_3 - b + D_3$	50	854 10	855 G
w, CI	b 4D 0 a 6F	40	61 9	.000 0
CII	D ·D4 · a · r 5	90	50 4	_
P.C.	- 20 0	02	00 4	70 1
R, C _{II}	$a = G_5 = -\alpha = \Gamma_4$	21	500 0	.10 4
w, CI	D*P1-a*D2	10	12 0	.092 0
-		10	13 2	
CI, CII	a *D ₂ —a *D ₁ °	04	82 0	.0 4
CII	$b^2 D_2^0 - \eta_2$	6978	50 2u	-
CIII	c*D ₂ °-45C _{3, 2}	72	70 1	-
CII	a ² P ₂ —a ² F ₃ ⁰	46	33 2	-
CII	b ² D ₃ —b ² F ₃ ⁰	37	85 7	.81 2
		22	23 2	-
CII	² G ₄ —a ² G ₅ ⁰	10	84 2	-
	-	08	11 5	.07 4
-	-	01	51 2	
-	-	6878	50 2	-111
W, CI	b ⁴ P ₁ -a ⁴ D ₁ ⁰	72	41 7	.376 6
40.+11	- 1	46	99 3	.93 2
CII	² G ₄ —a ² F ₄ ⁰	29	92 1	
		26	99 2	+
1. 400.	1 1 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	57 3	.54 2
W, CI	$b^{4}P_{2}$ — $a^{4}D_{2}^{0}$	14	954 10	.936 7
CI	$b^{4}F_{5}^{0}-\beta^{4}F_{5}$	09	01 5	8.9 2
CII	b 2D20	07	43 1	
-0.1	-	6799	39 2	
CII	b ⁴ D ₄ ⁰ —a ² F ₃	92	35 1	
	6 40 m - 11 12	89	28 3	
CT	$b^4F_4^0-\beta^4F_4$	84	89 4	.84 3
W. CI	b ⁴ P _a -a ⁴ D _a ⁰	71	05 10	.03 8
Cr	b4F20β4F2	67	60 4	.76 3
-	_	58	08 2	.07 2
-		42	12 3	
Crr	b 2F.0-n.	22	82 2	1 1 1 1
R. Crr	a ² F, ⁰ -a ² F,	20	97 2	
Cr	b4Fo-B4Fo	17	61 3	+
-		03	94 3	_ 3
Crr	h ² D _e —h ² D _e ⁰	6684	88 3	.86 2
Crr	$h^2D_s^0-\beta_s$	82	30 1	
W Cr	$h^{4}P_{2} - a_{1}D_{2}^{0}$	78	812 4	810 4
C-	a 4P a 4F 0	79	96 9	975 3
B Crr	a 4G_04F	63	68 2	675 9
Cr Cr	$h^4G_{-}R^4F$	59	39 3	.010 2
Crea	c4D 0_ 42C	40	97 3	
C-	b4C 0 04E	45	22 0	
P	$p + G_3 - p + F_3$	40	78 2	
C	$h_{4C} = 0.4F$	619	10 0	
CI	$p q_5 - p q_5$	00	40 1	111 0
CII .	a *P ₂ —a *D ₃ °	32	42 8	.444 0
UII	a -D ₃ —a -F ₄	23	10.7	.702 4

NODEL	г.
rronar	•

Eir	nordnung		Lengthedist	Slevogt [182]
Crr	h2D.0_5.	6617	47 10	.526 4
Crr	h ² D ₂ ⁰ -n ₂	17	07 10	.118 3
R Crr	$a^{4}D_{2}^{0}-a^{4}F_{1}$	6595	91 9	.879 7
IN, OH	<i>a D</i> ₃ – <i>a T</i> ₄	95	-	38 2
		91	80 8	808 2
Car	h2D.0_1	79	29 8	292 2
Cra	$2G = 2G^{0}$	63	42 9	40 7
C _{II}	64F.0_84F.	54	84 3	
		54	382 2	385 2
W Cz	$h_{4}P = a_{4}D_{0}$	51	45 6	454 5
n, or	$p_{13} - a_{22}$ $p_{22} - b_{4G} = 0$	40	64 1	57 1
UII	a-12-0 U3	17	06 3	6.99 3
		08	76 4	720 3
P C	04C 0 4F	04	95 4	003 3
R, CII	$a \cdot G_4 - a \cdot \Gamma_4$	6490	20 4	394 G
CII	a_{5} $a_{F_{4}}$	0490	00 1	800 9
DI	$a \cdot P_1 - b \cdot P_2$	02	00 2	.000 Z
R, UII	a *D ₂ °—a *r ₃	74	90 9 57 5	.00 0 50 A
_	-	74	07 D	.00 4
-	LaD 0	10	10 5	.14 0
CII	$D^2 D_3^0 - \varkappa_3$	03	02 5	.00 0
R, C _{II}	a *D ₄ °-a*F ₅	00	03 10	.020 7
CI	$b^{a}D_{4}^{0}-\beta^{a}F_{5}$	51	14 0	.10 3
W, C_{I} , C_{II}	² G ₄ —a ² G ₄ ⁰	50	24 10	.230 6
R, C _{II}	a *G ₅ °	44	75 6	.724 8
-	-	39	10 7	.105 3
CI	$b^{4}G_{4}^{0}-\beta^{4}F_{3}$	31	08 5	.085 1
CI	b ⁴ D ₃ ⁰ —β ⁴ F ₄	30	30 4	.337 3
CII	² G ₄ -a ² F ₃ ⁰	29	97 7	.92 5
CII	² G ₅ -b ⁴ D ₄ ⁰	25	12 4	.124 2
CI	$b {}^{4}D_{2}{}^{0}\beta {}^{4}F_{3}$	21	72 5	.718 5
CII	a ² P ₁ —a ² D ₂ ⁰	17	79 7	.803 6
CII	$b^{2}D_{2}^{0}-\xi_{3}$	14	67 1	-
	-	08	39 2	.40 0
CII	$b^2F_4^0-\beta_4$	07	36 2	-
CI	$\mathrm{b^4D_1^0}\underline{-}\beta^4\mathrm{F_2}$	6396	52 4	.48 3
R, C _{II}	$a^4D_1^0 - a^4F_2$	95	19 7	.182 4
CI	$a^2F_4^0$ — β^4F_5	86	68 6	
CI	$b^{4}G_{5}^{0}-\beta^{4}F_{4}$	52	80 2	.750 1
CII	$b^2 F_3^0 - \lambda_3$	51	37 6	.42 6
CII	$b^{2}F_{4}^{0}-\zeta_{4}$	47	72 10	.8 7
	- 10	40	80 4	.806 5
R, C _{II}	$a^{4}G_{3}^{0}-a^{4}F_{3}$	37	98 3	.963 3
R, C _{II}	$a^4D_4^0-a^4F_4$	22	94 2	-
CII	b2F40-15, 4	20	35 10	.328 7
R	$a^4G_3^0-b^2F_4$	18	55 4	-
CII	$b^{2}P_{2}$ — $b^{2}F_{3}^{0}$	15	76 1	-
1		14	50 7	.503 3
R, C _{II}	$a^4G_5^0-a^4F_4$	13	07 6	.062 5
	-	11	29 7	.28 3
CII	$a^{2}D_{3}$ — $b^{4}D_{3}^{0}$	6296	95 2	.967 3

*

Ei	nordnung		pandes	Slevogt [182]
R. Crr	a4E_04E	6291	89 3	861 4
W. Cr	a4Pa4D.0	82	640 10	651 7
Cr. Crr	a4D.0-a4F.	76	62 5	626 4
B. Crr	a4D,0	75	16 4	142 2
R Crr	$a^4G_0-a^4F_1$	78	06 7	02 6
Crr	${}^{2}G_{-} - h^{4}G_{-}^{0}$	71	89 1	016 1
-n-		71	40 10	419 4
Crr	a2Da2G_0	65	97 1	945 1
Crr	${}^{2}G_{2}-b^{4}G_{2}$	00	01 1	.010 1
Crr	a ² Pa ² D_0	62	815 4	.828 3
B. Crr	$a^{4}D_{2}^{0}-a^{2}F_{1}$	57	56 10	599 7
Crr	$h^{2}D_{0} - 2$	56	90 10	.002 1
Cr.	a ² G 0_R4F	52	00 2	00 0
C	2G - h4G 0	40	50 6	509 7
C _m	h2D 0	40	00 0	.005 7
B C	$p - D_3 - \mu_{4,3}$	41	20 0	.20 0
n, on	a-r4	40	42 2	.41 3
C	h2D 0	42	40 2	100 0
CII	$D^{-}D_{3}^{-}-\nu_{3}$	01	13 2	.133 2
WC	-40 -40.0	32	40 0	.430 4
W, UI	a ⁴ P ₁ —a ⁴ D ₂ ⁶	31	050 10	.02 6
CI	$D^*D_3^0 - \beta^*F_3$	23	37 6	.37 4
CII	$D^2D_2 - \varrho_3$	11	15 8	.2 4
UII	D*F40-×3	05	50 3	.504 2
-	10110	03	50 5	-
CII	$b^2 F_3 - \xi_3$	6197	83 2	-
R, UII	a ⁴ G ₄ ⁰ —a ⁴ F ₃	93	58 6	.551 4
W, CI	a ⁴ P ₃ -a ⁴ D ₃ ⁰	88	980 7	.993 7
CI	b ⁴ D ₄ ⁰ —β ⁴ F ₄	81	00 5	.028 5
R, C _{II}	$a^4G_4^0$ — a^2F_4	75	08 2	.028 3
CII	² G ₄ —b ² G ₅ ⁰	68	86 1	.85 2
CII	² G ₄ —a ² D ₃ ⁰	60	04 1	- 1
CII	${}^{2}G_{4}$ —b ${}^{4}F_{4}{}^{0}$	58	53 2	.50 3
CII	${}^{2}G_{5}$ — $a^{2}G_{4}^{0}$	46	38 3	.40 2
C_{I}, C_{II}	$a^{4}G_{3}^{0}-a^{4}F_{2}$	43	78 4	.743 8
R, C _{II}	$a^{4}D_{2}^{0}-a^{2}F_{3}$	32	44 3	.383 3
C_{I}, C_{II}	$a^{2}D_{2}$ — $a^{2}F_{3}^{0}$	29	15 3	.104 5
R, C _{II}	$a^{4}F_{2}^{0}-a^{4}F_{3}$	28	26 3	.24 4
R, C _{II}	$a^{4}F_{4}^{0}-a^{4}F_{4}$	22	68 10	.655 5
W, C _I	a ⁴ P ₁ -a ⁴ D ₁ ⁰	16	982 6	.975 8
CII	$b^2D_3^0-\xi_3$	07	93 9	.948 4
CII	${}^{2}G_{5}$ —b ${}^{4}F_{5}{}^{0}$	05	49 4	.519 4
CII	$b^{2}P_{2}$ — $b^{2}D_{2}^{0}$	05	440 4	.438 3
CII	$b^{2}F_{3}^{0}-o_{4}$	00	76 5	.77 4
W, CI	$a^{4}P_{2}$ — $a^{4}D_{2}^{0}$	6093	138 5	.12 7
-	-	86	66 7	.647 7
R, C _{II}	$a^{4}F_{5}^{0}-a^{4}F_{5}$	82	49 10	.42 8
CII	$b^{2}D_{2}^{0}-\sigma_{3,2}$	70	61 7	(.66) 6
CI	$a^{2}G_{5}^{0}-\beta^{4}F_{4}$	58	27 4	37.3
CII	$b^2F_4^0-\lambda_3$	15	34 3	And the state of the
CII	$b^2D_3^0-o_4$	13	62 6	100

Eir	nordnung	diamil				E	inordnung	
R, C _{II}	$a^4D_4^0-a^2F_4$	6011	43	3		Сп	b4F30-×3	5675
CII	b2F30-03	07	67	6		Сп	² G ₅ -b ² G ₄ ⁰	59
CII	b2F40-µ4.3	06	31	8		CII	b ² D ₉ -c ⁴ D ₉ ⁰	56
W, CI	a4P3-a4D20	05	008	3		CT	b4P9-a2D30	51
R, CII	$a^4G_5^0-a^2F_4$	02	48	3		CIT	a ² P _o -b ² D _o ⁰	47
R, CII	$a^4F_a^0-a^4F_a$	00	70	8		Стт	a 2D.0-24	42
CII	b2F40-v3	5996	87	5		CI, CIT	a 2D. b 4F.º	39
CI, CII	$a^{2}D_{2}-b^{4}D_{2}^{0}$	93	49	1		CTT	b4F.0-2.	37
CII	a ² D ₃ -a ² D ₃ ⁰	91	89	10		Сп	a 2D.0-24	36
CII	a ² D ₃ -b ⁴ F ₄ ⁰	90	46	1		CII	a 2D.0-n.	36
CT	b4D40-B4Fa	89	531	1	1	Стт	b4D,0-na	31
CII	2G5-b4G40	84	25	10		Сп	b2Ge0-De	27
W. Cr	a ⁴ P _o -a ⁴ D _o	84	182	3		Стт	b4F.0_4	16
R. CII	a4F.0-a2F.	83	36	3		Стт	b4G.0-a. a	5594
CII	2Gb4F.0	82	01	3		Cr. Crr	a ² D ₀ -a ² D ₀ ⁰	90
R. Crr	a4F.0-a4F.	65	02	3	1	Crr	h4G.0-%	89
R. Crr	a ⁴ D ₂ ⁰ —a ² F ₂	51	73	2		Crr	b4G.0_2	78
R. Crr	84F.0-a4F.	46	51	7		Crr	b ² G. ⁰ — <i>µ</i> ,	65
W. Cr	h4P	35	379	6		Crr	$p \ 0_4 \ \mu_4, 3$ $p \ 4F \ 0_7 \ 2F$	63
Crr	h2D.0-0	23	13	1		Crr	h4G 0_2	45
W. Cr	b4P-b4D-0	92	350	1		Cr	0 44 -54 0 4P2F 0	20
Crr	$a^{2}D - b^{4}G^{0}$	16	88	1		Crr	h4G 0_/	94
Crr	$^{2}G - b^{2}G^{0}$	15	55	8		Crr	2D 0 4	02
Crr	24D 0_6F	05	59	3		Crr	$a^2D_3 - \varkappa_3$	20
Crr	$^{2}G - h^{2}G^{0}$	5890	48	7		Crr	$h_{1}^{-1} = 0^{-1} D_{2}^{-1}$	15
Ca Car	a_{5}^{2} b_{5}^{2} b_{5}^{2} b_{5}^{2}	82	404	2		C	b^4P b^4F 0	10
Cr, CH	$a^{-}D_{2}$ $a^{-}D_{3}$	00 91	404	0		C	$b + r_2 - b + r_3$	5490
C ₁	h4D ofF 0	79	00	0		C	$p - r_5 - p_4$	0400
C	b2F0_5	77	100	2	12	C	$-G_4 - D - \Gamma_4^{-}(r)$	00
CII	$b^{2}F_{4} = \varsigma_{3}$	70	42	0		W C	$a - D_4 - \rho - \Gamma_5$	00
P.C.	$0^{-}F_{3}^{-}-O_{3,2}^{-}$	10	57	0		w, CI	a P ₃ -D D ₄	00
n, on	h^2C_0	40	50	0		C	$a - D_3 - \rho - \Gamma_4$	70
P C	0-G4-15,4	90	05	2 5		C	$a \cdot D_2 \cdot -\rho \cdot \Gamma_3$	10
P C	$a - \Gamma_4 - \alpha - \Gamma_4$	00	00	1		CI	D*P ₃ —a ·D ₃ *	69
R, UII	$a + \Gamma_3 - a + \Gamma_2$	10	00	4		CII	D*F50-05	50
n, UII	hAF 0	10	09	2		CII	$D^* \Gamma_5 - \varepsilon_6$	50
CII	$D^{4}\Gamma_{3} - \eta_{2}$	0793	92	1	1.	CI	$a * D_1 = \beta * F_2$	52
CII		90	00	4		UII	D*F5-06,5	44
CII	a *F5-a *F6	68	11	1		CII	$D^{4}D_{3}^{0} - a_{4,3}$	36
CII	a =D ₃ —b =G ₄	60	39	1		CII	$b^*G_3^0 - \lambda_3$	34
CII	a G60-a F5	52	89	2		CI	b ⁴ P ₂ —b ⁴ F ₂ ⁰	26
CII	b ² F ₄ ⁰ —π ₅	40	99	2		CII	b ⁴ F ₅ ⁰ -t _{5,4}	25
CII	$b^2G_4^0 - \varkappa_3$	36	52	1		CI	$a^4G_4^0-\beta^4F_4$	13
CII	a 4F40-06F5	30	45	1		CII	$a^{2}P_{2}$ — $b^{2}D_{2}^{0}$	08
CII	a ² D ₂ —b ⁴ F ₃ ⁰	20	80	1		CII	b4F30-53	5399
CII	b 3F40-Q3	06	139	3		CII	a 2G40-15, 4	93
R, C _{II}	$a^{4}F_{3}^{0}-\alpha^{2}F_{3}$	03	03	2		CII	$b {}^{4}D_{3}{}^{0}-\eta_{2}$	90
CII	a ² D ₃ —a ² D ₂ ⁰	5688	51	3		CI	$b {}^{4}P_{2}$ — $a {}^{2}D_{2}{}^{0}$	81
R, C _{II}	$a^{4}F_{5}^{0} - a^{2}F_{4}$	86	96	8		CII	b ⁴ G ₅ ⁰ —β ₄	78
CII	a ² D ₃ ⁰ −α _{4,3} ∫	00	00	0		CII	$b {}^4F_4 {}^0 - \lambda_3$	73
CII	$b^4F_4^0-\beta_4$	84	69	1		Стт	a 2D.0-2.	72

39 3

07 4

10 1

70 4

6917810532792

69 1 85 6

76 8 971 7

968 1

270 8

930 4 511 1

632 3

031 1

950 4

336 9

081 2 463 3

302 3

545 6

299 3

554 2 983 2

 $\frac{1}{2}$

33 1

51 3

74

 $\begin{array}{ccc} 61 & 2 \\ 734 & 1 \end{array}$

136278272146511205201

93 1

75

1

Eir	nordnung	minodi			Ein	ordnung			
Cr	a4G.0-84F.	5370	350	1	Crr	a 2Da-b 2Da0	5176	075	8
W. Cr	a ⁴ P _a -b ⁴ D _a ⁰	69	580	5	Сп	a2F40-54	72	26	1
Crr	b4F.0-4.	66	72	2	W, CT	a ⁴ P ₃ -b ⁴ D ₂ ⁰	65	148	3
Cr	a 4D.º	64	84	2	CII	a 2G40-v3	56	325	6
CII	b4F40-123	59	181	4	CII	a 2F40-15.4	54	035	3
CII	${}^{6}\text{G}_{3}{}^{0}-a{}^{4}\text{F}_{4}(?)$	58	921	1	W, CI	a 4P2-b 4D10	49	800	4
CII	a 2D30-v3	58	01	1	CII	$b^4D_3^0-\lambda_3$	49	04	1
CI	a4G60	52	046	6	CI	$a^{4}F_{4}^{0}-\beta^{4}F_{4}$	46	775	9
CII	b4G60-05	44	580	1	CII	b 4D30	42	48	1
CII	$b^4G_5^0-\varepsilon_6$	43	382	6	C _{II}	b 4D ₃ °	35	543	1
CII	b4G60-72	42	678	8	CII	a 2G50-86	33	450	5
CII	$b {}^{2}G_{4}{}^{0}-\pi_{5}$	37	330	1	CI	$a {}^{4}F_{3}{}^{0}-\beta {}^{4}F_{3}$	26	200	10
CII	b4G50	36	168	2	CII	a 2G50-96, 5	25	680	4
CII	$b^{4}G_{6}^{0}-\delta_{5}$	34	821	2	CII	$a^2D_3^0-\varrho_3$	24	71	2
CII	b ⁴ G ₆ ⁰ —ε ₆	33	632	3	CI	$a {}^{4}F_{2}{}^{0} - \beta {}^{4}F_{2}$	22	774	7
CI	$a {}^{4}F_{4}{}^{0}-\beta {}^{4}F_{5}$	32	650	2	CII	a ² D ₃ —b ² F ₃ ⁰	13	238	4
W, CI	$a {}^{4}P_{1}$ — $b {}^{4}D_{2}{}^{0}$	31	450	6	CII	a 2G50-13, 4	08	879	2
CI	a ⁴ D ₃ ⁰ —β ⁴ F ₃	26	239	2	C _I , C _{II}	a ² D ₂ —b ² D ₃ ⁰	5094	943	4
CII	b4F30-04	25	940	2	CII	a ² F ₄ ⁰ —× ₃	77	416	1
CII	b4G60+++++++++++++++++++++++++++++++++++	25	256	4	C _I , C _{II}	$a^{2}D_{2}$ — $b^{2}F_{3}^{0}$	34	02	1
CII	b ⁴ G ₃ ⁰ —ξ ₃	21	712	1	CI	$a^{4}F_{3}^{0}-\beta^{4}F_{2}$	33	36	1
CII	b4G50-15,4	16	755	3	CI	$a^4F_4^0-\beta^4F_3$	13	358	1
CII	$b {}^{2}G_{4}{}^{0}-\varrho_{3}$	07	22	1	CI	b ⁴ F ₂ - ⁶ F ₂ ⁰	07	288	2
W, C_I, C_{II}	² G ₄ —b ² D ₃ ⁰	01	036	5	CI	⁶ G ₄ ⁰ —α ⁶ F ₅	00	87	1
CII	b 4D ₃ °— _{×3}	5287	770	2	CII	b4F50-75	4993	030	2
CII	$b^{4}G_{4}^{0}-\mu_{4,3}$	83	474	2	CII	baF4-oF4	88	02	3
CI	a 4G50-β4F4	80	632	7		$b^{a}D_{4}^{0}-\lambda_{3}$]	00	450	0
CII	$b^4G_4^0 - \nu_3$	76	165	4		$b^{2}D_{3} - a^{4}P_{3}^{0+})$	80	452	3
CI	$a * G_3^{\circ} - \beta * F_2$	68	490	4	CII	$D^{*}D_{4}^{\circ}-\mu_{4,3}$	51	100	2
C_{I}, C_{II}	² G ₅ —b ² F ₄ ⁰	66	484	4	CII	$a * D_3 - D * D_2^\circ$	74	47	1
CI	$a^{*}F_{3}^{\circ}-\beta^{*}F_{4}$	60	180	4		$G_6 - a^{\circ} \Gamma_6$	71	990	0
CII	$a = D_2 = \sigma_{3, 2}$	04 57	210	1 E		$D - D_2 - (a - P^2)$ b 4 F 6 F 0	66	580	4 5
CII	$b^{4}D_{4}^{0}-a_{4,3}$	54	610	0		b 4F = 6F 0	59	685	.0
CII	b^4G^0	10	020	0		$b_{12} - r_1$ $b_{4F} - 6F_0$	53	-180	4
W C	$p \cdot G_3 - O_4$	40	019	5	Cr	92F.0_0	51	82	1
w, CI	$a T_1 - b T_1$	25	185	4		a 2F.0_1/	43	25	1
W C	a4P_b4D 0	30	204	5	Crr	h4G-0-0.	36	416	2
Crr Crr	h4D.0_δ	22	47	1	Cr	6G.0-a6F.	35	21	1
Cr	a4F.0_64F	19	015	2	Cr	b4Pa-b2F.0	32	876	3
Crr	a ² F,0	14	748	1	Cr	6G.0-a6F.	28	292	7
Cr	a4F.0_64F.	12	702	-	Cr	b ⁴ P _a —b ² D _a ⁰	20	264	3
Crr	a ² F.º	11	824	1	Cr	b4F3-6F.0	12	404	2
Cri	a 2D0.	5192	36		Cr	b4F_6F.0	07	12	1
CII	a 2F.0_2	83	04	1	Crr	b ² D ₉ —(m ² P ₉ ⁰)	04	176	6
CII	a ² F ₄ ⁰ —δ ₅	80	13	1			134	10	

*) Später eingeordnet als a $^2\mathrm{D_3^0}\mathrm{\longrightarrow}35\mathrm{C}_{6,\,5}\mathrm{?}$

ŀ	Einordnung	and .			Bouma [161] Intensität	Casper [181]
CI, CII	$a^{2}D_{2}$ — $b^{2}D_{2}^{0}$	4899	516	8	PV992-993	1 10
CII	$b^4G_6^0 - \pi_5$	92	508	1	M. Con Star	
CI	${}^{6}\text{G}_{4}{}^{0}$ $- a^{6}\text{F}_{4}$	82	712	2	1.10	
CI	$b^{4}F_{4}-^{6}D_{5}^{0}$	80	22	1	A PROPERTY AND A PROP	
CI	${}^{6}\text{G}_{7}{}^{0}-a^{6}\text{F}_{6}$	67	680	5	18.	
CI	$b^{4}P_{2}$ — $b^{2}F_{3}^{0}$	63	457	1		
CII	$a^{2}F_{4}^{0}-\xi_{3}$	55	590	1	1200-120	
CI	b^4F_4 — 6F_3	55	233	1	1	
CI	⁶ G ₃ ⁰ —a ⁶ F ₃ ⁰	43	462	3	Pa-Pa	
CI	${}^{6}\text{G}_{6}{}^{0}$ $- a^{6}\text{F}_{5}$	40	267	4	14.	
CI	$b^{4}F_{2}-6D_{3}^{0}$	37	852	2	1.80-1.81	
CII	b^4D_4 — o_4	32	12	1		
CII	$b^{2}D_{2}$ — $m^{2}D_{2}^{0}$	15	896	2	(1390 - OTA	
CI	${}^{6}\text{G}_{2}{}^{0}-a^{6}\text{F}_{2}$	14	984*)	2		
CI	${}^{6}\text{G}_{5}{}^{0}-\alpha {}^{6}\text{F}_{4}$	13	482	4	12.	
CII	$b^4D_4^0 - \pi_5$	4797	854	1	1-314	
CI	b4F5-6F40	96	376	2	1202-000	
CII	a ² F ₄ ⁰ -0 ₄	95	857	4	1396-396	
CI	6G40-a6F3	92	867	5	8.5	
CI	$a^{2}F_{4}$ — $a^{4}F_{5}^{0}$	82	561	1	1.00-013	
CI	$b^{4}P_{3}$ — $b^{2}D_{3}^{0}$	81	· 426	1	- 19/8	
CI	⁶ G ₃ ⁰ —a ⁶ F ₄	80	001	4	5.7	
CI	${}^{6}\text{G}_{2}{}^{0}$ $- a^{6}\text{F}_{1}$	76	328	4	3.1	
CII	$b^4D_4^0 - \rho_3$	73	52	1	1 alta - 122	
CI	⁶ D ₄ ⁰ —a ⁶ F ₅	71	105	4	2.8	
CI	${}^{6}\mathrm{D}_{3}{}^{0}-\alpha {}^{6}\mathrm{F}_{4}$	68	096	3	1.2	
CII	a ² G ₅ ⁰ o ₄	56	730	1	0.8	
CI	${}^{6}\mathrm{D}_{2}{}^{0}-\alpha {}^{6}\mathrm{F}_{3}$	54	372	1	1.3	
CI	${}^{6}\mathrm{D}_{5}{}^{0}-\alpha {}^{6}\mathrm{F}_{6}$	49	684	4	6.8	
CII	$a^{2}F_{4}^{0}-\varrho_{3}$	38	12	1	(17P3)-906	
CI	$b^{4}P_{3}$ — $b^{2}D_{2}^{0}$	37	776	1	1.1	
CI	${}^{6}\mathrm{D_{1}}{}^{0}-a{}^{6}\mathrm{F_{2}}$	34	834	2	0.8	
CI	$b^{4}F_{4}-^{6}D_{4}^{0}$	32	010	5		
CI	$b^{4}F_{5}-6D_{5}^{0}$	27	924	2	2.2	
CI	b^4P_3 — $b^2F_3^0$	27	746	1		
CII	$a^{4}D_{3}^{0}-\eta_{2}$	04	144	1	0.7	
CI	$a^{2}F_{3}$ — $a^{4}G_{4}^{0}$	4699	171	2	(1940)-(1963	10 10
CI	⁶ D ₁ ⁰ —a ⁶ F ₁	98	370	4	1.4	.390
CI	${}^{6}\mathrm{D}_{2}{}^{0}-a{}^{6}\mathrm{F}_{2}$	93	193	4	2.8	.193
CII	$b^4D_4^0-\sigma_{3,2}$	89	98	1	20196-225	- 10
CII	b^2D_3 —(m ² F ₃ ⁰)	88	486	1	10000	1- 10
CI	a ² F ₄ -a ⁴ F ₄ ⁰	85	851	1		
CII	b ² D ₃ -a ² P ₂ ⁰	83	95	1	and the state of	b p1-4"
CI	⁶ D ₃ ⁰ —a ⁶ F ₃	82	363	6	6.6	.360
CI	$b^{4}F_{2}-^{6}G_{3}^{0}$	77	246	1	dill - from /	-
CII	b ² D ₂ -23 _{3,2}	70	92	1	-1) 82.440.5 Km	r Allinnini
CI	⁶ D ₄ ⁰ —a ⁶ F ₄	63	411	7	11.	.410
CI	6D20-a6F1	57	\$99	1	0.2	

*) Soll offenbar 4813.984 heißen.

Kayser u. Konen, Spektroskopie. VIII.

513

75	Einordnung				Bouma [161] Intensität	Casper [181]	Bemerk.
CII	b ² P ₂ -a ⁴ P ₂ ⁰	4653	771	1		-	
CT	a ² F ₃ —a ⁴ D ₃ ⁰	52	470	1	-	-	
CI	$b^{4}F_{2}-^{6}G_{2}^{0}$	45	143	1	-		
CII	a4G40-15.4	42	79	1	-		
CI	$b^{4}F_{3}-6G_{4}^{0}$	40	813	3			
CI	${}^{6}G_{5}{}^{0}-\beta^{4}F_{5}$	31	10	1	- 17	-	
CI	⁶ D ₅ ⁰ —a ⁶ F ₅	29	380	8	19.	.376	1 sense
CI	b4F4-6D30	28	938	1	-	-	*)
Сп	a4D30-×3	25	762	3	1.0	.765	3
CII	$b^2D_3 - (m^2P_2^0)(?)$	24	561	1	-	-	Same Gall
CI	⁶ D ₃ ⁰ —a ⁶ F ₂	23	024	2	1.1		**)
CII	a4D40-23	22	681	1	-		
CII	b^2D_3 —($n^2F_4^0$)	20	825	3			
CI	$b^{4}P_{3}$ — $b^{2}D_{2}^{0}$	08	903	2	-	-	
Сп	a4D40	4596	900	4	-	.888	and the second
CII	$a^4D_4^0-\beta_4$	94	615	2	3.2	.615	1000
CI	$b^{4}F_{3}-6G_{3}^{0}$	94	356	1	3.0		
CI	$a^{2}F_{4}$ — $a^{4}F_{3}^{0}$	91	375	1	-		
CII	$a^4G_5^0-\beta_4$	89	38	1	-		
CI	$b^{4}F_{5}-^{6}D_{4}^{0}$	88	700	1	-		
CI	$b^{4}F_{4}-6G_{5}^{0}$	86	932	2	-		
CI	${}^{6}\mathrm{F}_{5}{}^{0}-a{}^{6}\mathrm{F}_{6}$	81	618	8	25.	.608	
CI	$[^{6}D_{4}^{0}-\alpha^{6}F_{3}]$	80	964	1			***)
CI	a ² F ₄ -a ⁴ G ₅ ⁰	80	133	4	2.6	.132	Sec. 3
CI	a ² F ₄ —a ⁴ D ₄ ⁰	74	938	2	-	-	
CII	$a^4D_4^0-\delta_5$	70	01	2	1.4		3
CI	${}^{6}\mathrm{F_{4}}{}^{0}-a{}^{6}\mathrm{F_{5}}$	65	600	8	17.	.584	0)
CII	a4G50	64	81	2	-	-	March 1
CI	$b^{4}F_{3}-6G_{2}^{0}$	63	56	1		- 0.	(†)
CII	$b^2P_1 - (a^2P_1^0)$	61	945	2	-	-	in month
CII	b ² D ₃ -c ₄ ?	59	128	2			
CI	${}^{6}G_{6}{}^{0}-\beta^{4}F_{5}$	53	331	2	-	-	
CII	a4D40-15.4	49	669	7	11.	.662	(††)
CII	b^2D_3 —(m ² D ₂ ⁰)	45	975	2		-	1000
CII	a4G50-15.4	44	541	1	-		
CI	$[{}^{6}F_{3}{}^{0}-^{6}F_{4}]$	ſ 43	836)	ß	5.5	811	(++++)
CII	b^2D_3 -(m ² D ₃ ⁰)	1 43	81 5	0	0.0	110.	
CII	a4D20	40	79	2	-		10.00
CI	6F20-a6F3	33	998	7	6.1	.995	
CI	a ⁴ P ₂ -b ² D ₃ ⁰	32	605	1	-		and a large
CI	⁶ F ₆ ⁰ —a ⁶ F ₆	30	985	6	48.	.957	

*) In der Arbeit ist $\nu_{\rm vac}$ verdruckt; soll heißen 21597.22.

**) Druckfehler: Es heißt φ_2^1 , nicht γ_2^1 .

***) Ein Versehen: Die angegebene Einordnung ($\nu = 21821.15$) paßte zur Wellenlänge 4581.43. Vermutlich war λ 4581.38 (i = 1) gemeint.

⁰) Druckfehler bei Catalán.

(†) Die angegebene Einordnung paßt zur Wellenlänge 4563.385.

††) Läßt sich auch als 6F30-a6F4 einordnen.

†††) Rechenfehler, daher Einordnung falsch. Zudem ist die Linie mit der folgenden identisch.

Kobalt

	Einordnung	Been			Bouma [161] Intensität	Casper [181]	Bemerk.
CI	${}^{6}\mathrm{D}_{5}{}^{0}-a{}^{6}\mathrm{F}_{4}$	4527	936	2	0.8	20.00	
CI	$b^{4}F_{5}-6G_{6}^{0}$	26	501	1	m 12	10	
CI	$b^{4}F_{4}-6G_{4}^{0}$	25	802	1	10 - C.11		
CII	$a^4D_3^0-\lambda_3$	19	28	2			10
CI	⁶ F ₁ ⁰ —a ⁶ F ₂	17	121	4	2.8	.108	25
CII	$a^4D_3^0 - \mu_{4,3}$	14	186	3		-	
CII	b ² D ₃ (² D ₃ ⁰)	4494	751	2	0.6		1
CI	${}^{6}\mathrm{D}_{4}{}^{0}-\beta {}^{4}\mathrm{F}_{5}$	92	070	4	-	11 AL	1
CI	${}^{6}\text{G}_{5}{}^{0}-\beta^{4}\text{F}_{4}$	90	306	2	A - 7.57	(1)	
CI	${}^{6}G_{3}{}^{0}-\beta^{4}F_{3}$	89	40		10 - 2.0	-	
CII	b^2D_3 — i_3	86	717	1	-		1.1.1.1.1.1
CI	a ² F ₄ —a ⁴ G ₄ ⁰	84	516	2	-	12 . THE	10
CI	⁶ F ₁ ⁰ —a ⁶ F ₁	83	946	5	1.5	.925	12
C_{I}, C_{II}	a4G60-77	83	582	3	0 - 3	-	10
CI	$b^{4}F_{4}-6G_{3}^{0}$	81	577	1			0
CII	$b^{2}P_{1}$ —(m ² P ₂ ⁰)	78	666	2	1.6		1.17
CI	${}^{6}\mathrm{F_{2}}{}^{0}-a{}^{6}\mathrm{F_{2}}$	78	345		- 12	.322	1
CII	a4G60-26	77	220	2		-	12
CII	$a^4G_3^0-\zeta_3$	71	59]	ß	10	565	52
CI	${}^{6}\mathrm{F_{3}}{}^{0}\alpha {}^{6}\mathrm{F_{3}}$	71	578	0	4.0	.000	0.0
CI	${}^{6}\mathrm{F}_{5}{}^{0}-\alpha {}^{6}\mathrm{F}_{5}$	69	569	10	10.	.563	and the
CI	${}^{6}F_{4}{}^{0}-a{}^{6}F_{4}$	66	888	7	4.7	.888	0
CII	a 4G40-4v3	65	809	2	-		6.
CII	a4F40	58	57	2			1.1
CI	b ⁴ F ₅ ⁶ G ₅ ⁰	52	166	1		-	1
CI	${}^{6}\mathrm{D}_{3}{}^{0}-\beta {}^{4}\mathrm{F}_{4}$	50	79		-	21-1-1	
CI	⁶ F ₂ ⁰ — <i>a</i> ⁶ F ₁	45	730	1	1.4		(in the second
CII	a 4F40-c5, 4	45	036	. 4			100
CI	a ² F ₄ —a ⁴ D ₃ ⁰	41	950	1	-	-	
CII	a 4D20-23	37	88	2		-	100
CI	⁶ F ₆ ⁰ — <i>a</i> ⁶ F ₅	21	359	3	1.3	.358	D.
CII	a 4G30-04	20	86	1		-	
CII	$b {}^{2}P_{2} - (a {}^{2}P_{1}{}^{0})$	17	76	1		-	100
CI	⁶ F ₃ ⁰ —α ⁶ F ₂	17	425	3	1.5	-	1 2
CI	⁶ D ₂ ⁰ —β ⁴ F ₃	12	74	1	- 0		and I
CI	a ² F ₄ —a ⁴ G ₃ ⁰	11	786	1	Put -		2
CII	$b^2 P_1 - (m^2 D_2^0)$	04	940	2	-		120
CII	$a^2F_5^0-\beta_4$	02	651	2	1.0		
CII	$b^{2}P_{2}$ —(m ² F ₃ ⁰)	4395	882	2			
CI	b 4F5-6G40	94	53	1		-	12.52
CII	$b^2 P_2 - (a^2 P_2^0)$	91	897	3	-	.890	B
CI	⁶ F ₄ ⁰ —α ⁶ F ₃	91	59	3	1.2	.570	200
CII	a *F4 ×3	87	91	3	-	_	1 12
CII	a 4F30-05	80	05	2	-	.074	1.10
CII	a 4 F 50-E6	79	28	2	-	-	II SOL
CI	⁰ F ₅ ⁰ —α ⁶ F ₄	74	940	2	1.4	.921	261
CII	a 4F30-23	74	43	3	_		
CII	a *F5 - 06, 5	73	614	2	1.4	.614	0.0.06
CII	a ² D ₃ -c ⁴ D ₄ ⁰	71	136	2	1.4	.120	Parallenge (
CI	⁶ D ₅ ⁶ —β ⁴ F ₅	66	236	2	1.00 - 100	10,300-0 000	

33*

-	-			•	
14		ь.	-		÷-
	. 1	 г х	ы.	81	
	ъ.	 			

. Annandi I	Einordnung	incod (Bouma [161] Intensität	Casper [181]	Bemerk.
CI	a4F3-6F40	4361	918 1		10000	
CI	a ⁴ F ₂ -6F ₃ ⁰	61	040 1		111-1-1	
CII	$b {}^{2}P_{2}$ —(n ${}^{2}F_{3}{}^{0}$)	60	836 2		(P., ++)	
CI	${}^{6}\mathrm{D}_{4}{}^{0}-\beta {}^{4}\mathrm{F}_{4}$	59	447 1	- 1		- n0.
CI	⁶ D ₃ ⁰ —β ⁴ F ₃	50	65	11		
CII	a4G40-04	50	10 1	1	44	-
CII	a 4D30-03	42	48 1	10112 - 02		Cen I
CII	$b^{2}D_{2}$ —13 ₂	40	240		4	
Сп	$b {}^{2}P_{2}$ —(m ${}^{2}P_{2}{}^{0}$)	39	637 6	2.8	.630	5)
CI	a ⁴ P ₃ -b ² D ₂ ⁰	31	63		10-1-1	1
CII	$b {}^{2}D_{2}$ — z_{2}	26	419 1	12 4 U	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- Carlor
CII	$b^{2}D_{2}-28_{3}$	13	410 1	3 - 10	10-10-10-10-10-10-10-10-10-10-10-10-10-1	30
CII	a ² P ₁ -a ⁴ P ₁ ⁰	10	080 2	18 - 1	1	
CT	⁶ F ₄ ⁰ —β ⁴ F ₅	09	418 3	0.4		n0.0
CT	a ⁴ F ₂ -6F ₂ ⁰	03	236 2	1.3	19.20	5)
CII	a4F30-53	01	007 2	17 - 17,95	and the second second	-
CII	a 4F4	4287	37 1	x + x		
CI	a 4F2-6F30	85	787 5	2.8	.788	5)
CI	a 2F3-a 2F40	70	423 1	1.0	12-1-12	100
CII	$a^{4}F_{4}^{0} - \lambda_{3}$ $b^{2}P_{2} - m^{2}D_{2}^{0}$	68	444 2	-	-	3
Cr	a4F6F_0	68	031			5)
Crr	a 4G. 0-0.	63	738 1	_		-
Cr	6F.0_84F.	59	880	_		
Cr	a4F6F.0	52	303 5	6.9	.303	5)
Crr	b ² D ₂ -16 ₂	48	190 2	0.2		1
Crr	a ² D ₂ -c ⁴ D ₂ ⁰	41	886 2			S
Cu	a 4D,0-7.	41	517 2		100 M	
Cr	⁶ D _s ⁰ —β ⁴ F.	40	79		-	
CII	a ² P _a -a ⁴ P _a ⁰	37	344 1	_	10000	1. 13
Cr	a4F6F_0	33	996 3	1.8		5)
Cr	a4F6F.0	29	990 2	N _ 32		
Crr	$b^{2}P_{0}$ (2D_{0})	25	105 2	- 1. S.		1963
CI	6F50-β4F5	23	78	1 - 1		
Crrr	a 4D, 0-37 C4	10	095	L I	10	
Cr	a4F6D.0	4198	424 2	0.7		1 10 20 1
Crr	a 2D1.	92	825 2	0.8		
Cr	a4F6F.0	90	709 8	15	.709	4, 5)
Cr	a 4F6D.0	89	50	100 200.90		1
Cr. Crr	a 2D_0-c 4D_0	87	248 3	1.5	.248	
Cr	6F.0	80	71	10 L 10.00	-	
Cr	a4F6D.0	77	59	19		
Crr	a4F.0-0.	76	04 1	_	-	4)
Crr	a4G.0-7.	62	180 2	1.8	.181	
Cr. Crr	a4F.0_7.	50	442 3	0.5	.438	5)
CII	a 2D2-13	39	454 3	1 - 3	.454	1

In Absorption aufgefundene Linien sind gekennzeichnet durch: ¹) v. Angerer und Joos [106]; ²) Buffam und Ireton [118]; ³) McLennan und McLay [121]; ⁴) Sur und Majumdar [132]; ⁵) Smith und Muskat [145]; ⁶) Meggers und Walters [139].

Einordnung		interest Interest			Bouma [161] Intensität	Casper [181]	Bemerk.
CI, CII	a4F40-03	4132	15	4	3.0	89-9 <u>-1</u> 92	100
CI	b4F40-a4F50	30	538	1	0.4	05-127-6	Con 1
CIII	a 4D40-35C6, 5	28	114	1		10-12	1 20
CI	a ² F ₄ —a ² G ₅ ⁰	21	329	8	306.	.328	2, 5, 6)
CI	a ² F ₃ —a ² G ₄ ⁰	18	784	8	232.	.784	2,6)
CI	a ² F ₃ —a ² F ₃ ⁰	10	544	10	77.	.544	5,6)
CI	a 4F5-6F40	09	69	1			
CI	a ⁴ F ₃ — ⁶ D ₃ ⁰	08	488	1	-		100
CII	$a^{2}P_{1}$ —($a^{2}P_{1}^{0}$)	04	752	3	1.8	.746	1.10.10
C_{I}, C_{II}	a ² D ₂ -c ⁴ D ₂ ⁰	04	430	4	0.8	.430	120.121
CIII	$a {}^{4}D_{4}{}^{0}$ - 37 C ₄	4097	219	3		_	1102
CIII	a 4D40-38C5, 4	95	950	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000
CIII	a 4G50-37C4	93	058	2	- 11	-	1
CIII	a 4D30-41C4, 3?	92	854	3		.854	P
CI	a ² F ₄ —a ² F ₄ ⁰	92	397	8	135.	.397	5, 6)
CI	a ⁴ F ₂ -6D ₁ ⁰	90	351	2	-	_	12
CI	$a^{4}F_{4}-6D_{4}^{0}$	88	319	2		.319	de la
CI	$b^{4}P_{3}$ - $c^{4}D_{4}^{0}$	86	307	9	32.	.308	A PARTY
CIII	a4F30-37C4	84	145	1	- 1	-	10
CI	$b^{4}F_{2}$ — $a^{4}F_{2}^{0}$	82	606	3	2.0	.605	Car I
CIII	a4D40-39C2	81	49			_	Der pa
CII	$a^4F_5^0 - \pi_5$	77	410	5	1.4	.410	1.1.1
CI	b4F3-a4F30	76	134	4	3.1	.131	5)
CI	$b^{4}P_{2}$ — $c^{4}D_{3}^{0}$	68	553	6	9.4	.551	900
CI	$a^{2}F_{4}$ — $b^{4}D_{4}^{0}$	66	378	7	36.	.378	and a
CI	b4F3-a4D40	63	19	1	2.0		mil
C_{I}, C_{II}	$a^{2}D_{2}$ - $c^{4}D_{1}^{0}$	58	762	1		_	
CI	$b^{4}P_{1}$ — $c^{4}D_{2}^{0}$	58	603	7	5.5	.599	1
CI	b4F4-a4F40	58	188	.6	9.6	.188	
CI	$a^{4}F_{2}-6G_{3}^{0}$	57	199	4	4.5	.194	1 9
CI	a4F3-6D20	54	627	2			1
CIII	a4G60-35C6, 5	52	936		1.3	.930	in the
CII	$b^{2}P_{1}-4P_{2}^{0}$	49	295	3	0.6		1. 12.12
CI	a ² F ₃ -b ⁴ G ₄ ⁰	45	397	9	51.	.397	5)
CII -	$a^{2}P_{2}$ —($a^{2}P_{1}^{0}$)	40	803	3	0.5	.800	185
CIII	$a^4G_4^0-42C_4$	40	643		-	-	
CII	$a^{2}P_{1}$ —($m^{2}P_{2}^{0}$)	37	207	2	-	-	10
CII	$b^{2}D_{3}$ —16 ₂	36	780	1			E-1W
CIII	$a^4G_6^0-\beta^4H_7$	35	556		5.9	.554	NID!
CI	a4F3-6G40	27	044	5	11.	.043	4) .
CII	$b^{4}P_{2}-1_{3}$	23	408	4	2.1	.408	11
CI	$b^{4}F_{5}$ — $a^{4}F_{5}^{0}$	20	904	7	38.	.901	5)
CI	b4F3-a4F20	19	300	4	2.7	.300	*)
CII	$a^{2}P_{2}$ —($a^{2}P_{2}^{0}$)	19	141	2		-	512
CIII	a4G50-40C5, 4	16	830			-	100
CI	$b^{4}P_{1}$ — $c^{4}D_{1}^{0}$	13	950	6	4.8	.950	20
CIII	a4F40-37C4	12	158			-	4
CI	$a^{4}F_{4}-6D_{3}^{0}$	11	098		1.1	-	

*) Auch als b^4F_2 — $a^4D_3^0$ eingeordnet (C_I).

Е	inordnung	and ent			Bouma [161] Intensität	Casper [181]	Bemerk.
CIII	a4F40-38C5.4	4010	941		-	-	
CIII	a4G60-39C5	07	942		-	-	6
CII	$b^{2}P_{1}-13_{2}$	03	604	3	0.5	.603	1
CI	a ² F ₃ —a ² D ₃ ⁰	3998	554	1	1.0	-	
CI	a 2F3-b 4F40	97	909	7	125.	.909	2, 4, 5, 6)*)
CT	a ² F ₄ -b ⁴ G ₅ ⁰	95	312	8	244.	.311	4, 5, 6)
W, CT	b4F2-a4G30	94	541	4	1.0	.543	1
CTT	b^2P_1 — z_2	91	837	2		.837	
W, CI	b4Fa-a4G40	91	693	4	7.0	.692	10
CT	b4P2-c4D20	90	307	5	5.9	.307	100.00
CIII	a 4G30-45C3, 2	88	892	1			
Cr	b4F4-a4F30	87	121	5	4.1	.122	5)
CTTT	a4G40-44C4.3	85	089	1	-	-	
Cr	a4F4-6G50	79	525	6	20.	.525	-
W. Cr	b4F4-a4G50	78	656	5	11.	.653	1 9 9 9
CIT	a ² P ₁ —(m ² D ₀ ⁰)	77	194	5	- 1	.193	
Crr	$a^{2}P_{a}$ —(m ² P _a ⁰)	75	326	5	_	.325	
W. Cr	b4F,-a4D,0	74	732	5	17.	.732	
Cr	b4Pc4D_0	73	148	7	13.	.144	-
Crrr	a 4F. 0-35C.	72	528	7	3.5	.525	
Crr	a ² D ₂ -a ⁴ P ₂ ⁰	68	60	1	-	-	-
Cr	a 2F,-b 4D,0	65	239	2	_		5)
Cr	a 2F2-b 4G20	65	016	1		-	5)
Cur	$\left[a^{4}F_{0}-44C_{0}\right]$	57	95 1			004	
W. Cr	4b4Fa4D_0	57	935	6	26.	.934	")
Cru	aF.º-42C.	57	629	2			1 1 1 1 1
Cr	a 4F6D.0	56	276	2	0.8	-	1 14 101
Cr	a 2Fa 2G.0	52	923	8	55.	.922	5)
Cr	b4Fa4F.0	52	329	3	2.1	.329	
Cr	b4Pc4D.0	47	132	4	1.3	.132	
Cr	a 2Fa 2F.0	45	323	9	27.	.325	4)
Crrr	a4F.º-38C.	42	704	3	_	-	
W. Cr	b4Fa4G.0	41	735	5	39.	.742	
W. Cr	b4Fa4D.0	40	895	6	20.	.895	
Crrr	a 4F.0-40C.	38	901	3	0.8	.901	
Cr	a 2Fh4F.0	35	974	6	146.	.975	5,6)
Crr	h ² P_4P_0	35	286	2	_	_	
W Cr	b4Fa4G.0	33	921	4	4.5	.918	2, 5)
Crrr	a4F_0_35C	29	278	3	1.1	_	
Car	$h^{2}P - 16$	25	161	3	0.9	_	
Crr	$h^{2}D_{-}m^{4}D_{-}^{0}$	24	533	1			
	2Fh4F 0	92	764	6	81	_	5)
Crr	a ² D - a ⁴ P 0	20	743	4	5.8	.787	1
Car	a 2D - a 4P 0	20	586	9	0.0	.592	
Car	$h^{2}P_{-1}$	20	144	3			
Car	$p_{2}^{2} = 12_{3}^{2}$	17	197	6	8.6		70
Car	$a^{2}P_{2} - (m^{2}D_{2}^{0})$	15	519	0	0.0		
C	$a = 1_2 = -(m = D_3^{\circ})$	00	941	7	96	938	4, 6)
WC	h4F 4C 0	00	200	7	16	208	,
W, CI	D T4-a G4	1 00	1 200	1	1 10.	.200	-

*) Druckfehler bei Catalán.

Kobalt

E	Einordnung		Einordnung		Bouma [161] Intensität	Casper [181]	Bemerk.
CIII	a4F40-41C4.3?	3905	540	1	buce - col		*)
Cur	a 4F20-45C3, 2	04	790	1	-		
CIII	a 4F30-44C3, 4	04	350	1			1
CT	b4P3-c4D20	3898	499	3	1.6		
W. Cr	b4F2-a4D10	94	981	5	35.	.980	2, 4, 5, 6)
Cr	a 2F3-b 2G40	94	086	9	285.	.084	2, 4, 5, 6)
Crr	a ² P ₁ —n ₁	93	290	2	-	-	
Cu	b ² P ₂ -13 ₂	92	125	2		.120	1
Cur	a 4F40-42C4	90	008	1			
Cr	a 2F,-b 4G,0	85	281	6	5.0	.279	5)
Cr	a 2Fb 4F.0	84	609	8	11.	.606	5)
W Cr	b4Fa4D.0	81	877	5	133.		6)
Cur	b ² P _e —Z _e	80	998	1			
Crr	b4P,-a4P.0	78	751	4		-	**)
W Cr	b4Fa4G.0	76	840	8	37.	.840	6)
w C	h4Fa4D.0	73	957	7	185.	.954	4, 5, 6)
W C	h4Fa4D.0	78	117	9	188.	.117	4, 5, 6)
C- C	h ² P28.	70	542	6	2.5	.544	
C II	a 4P 0 4D 0	RR	839	2	1.0		1. 1. 1. 1. 1.
CI	$a^{2}F_{-a^{2}D_{4}}$	61	168	6	80	.169	6)
C	h_{3} h_{2} h_{3} h_{4} h_{2} h_{3} h_{4} h_{2} h_{3} h_{3	50	949	6	77	949	1
C	$2G = a^4G 0^2$	50	107	3	1.9	.010	
CII	$-G_4 - C - G_3^{-1}$	45	474	8	935	476	4, 5, 6)
G	$a = r_4 - b = G_5$	40	602	5	200.	693	,
CII	-G ₄ -(m-r ₃ -)	40	056	6	197	057	5,6)
CI	$a = r_4 - a = D_3^\circ$	42	460	5	101.	469	5)
CI	$a * r_4 - b * r_4$	41	009	0	TO	.402	,
CII	$0 P_2 - 14_2$	30	002	0			
CII	a^2P_2 — n_1	30	050	0		016	10
CII	$b * P_2 - 1b_3$	19	910	0		.010	
CII	$b^{2}P_{2}-16_{2}$	17	947	4	PT	970	A PAN
CII	${}^{2}G_{4}$ —(n ${}^{2}F_{3}^{0}$)	16	876	0	10	.070	- Contraction
CII	b ⁴ P ₂ —a ⁴ P ₃ ⁰	16	479	D	13.	.470	1
CII	$b {}^{4}P_{2} - a {}^{4}P_{1}^{0}$	16	326	0	17.	.320	100
CII	b ⁴ P ₂ —a ⁴ P ₂ ⁰	14	464	4	3.1	-	5)
CI	a ² F ₄ —b ⁴ G ₃ ⁰	11	070	4	1.9	100	5)
W, CI	b 4F ₅ —a 4G ₄ ⁰	08	106	6	7.2	.106	5)
CI	$a {}^{2}P_{2}? - c {}^{4}F_{2}{}^{0}$	3797	465	1	-	T	1
CII	$a {}^{2}D_{2}$ — $c {}^{4}F_{2}{}^{0}$	97	448	1	-		10
CII	$b {}^{2}P_{1} - m {}^{4}D_{2}{}^{0}$	87	345	1		-	Care a
CII	a ² D ₃ -c ⁴ G ₃ ⁰ ?	83	727	2	0.6	-	1 1 14
CII	$a {}^{2}D_{3}$ —(m ${}^{2}F_{3}{}^{0}$)	77	540	2	2.6		The second
CII	a ² D ₃ —(a ² P ₂ ⁰	74	601	3	2.9	-	1
CII	$a^{4}P_{2}-1_{3}$	60	403	2	1.3		
CII	${}^{2}G_{4}$ —C ₄	56	29	1	-	-	1
CII	a 2D3-m 2F40	55	453	6	9.3	.456	1.1.1
CII	a 2D3-n 2F30	51	632	4	3.3	-	1.
CII	a 2D2-a 2P10	49	933	6	14.	.938	
Cr	a 2Fb 2G.0	45	501	6	107.		4, 5, 6)

*) Druckfehler bei Catalán; das angegebene ν stimmt.
**) Druckfehler bei Catalán.

520

Kobalt

(itemetic)	Einordnung	ermeti, i			Bouma [161] Intensität	Casper [181]	Bemerk.
CTI	a 2D	3740	201	3	2.1	1	
CI	b4P3-c4F40	39	450	1	_	31	
CII	$a^{2}D_{3}$ —(m ² P ₂ ⁰)	35	931	6	12.	.934	2)
CII	$a^{2}D_{2}$ —(m ² F ₃ ⁰)	34	146	4	200 - 4	.151	
CII	a ² D ₃ -(n ² F ₄ ⁰)	33	495	5	22.	.494	1
CII	b4P3-a4P30	32	400	8	55.	1 C	6)
CII	$a^{2}D_{2}$ — $(a^{2}P_{2}^{0})$	31	275	2			1
CII	$b^{4}P_{3}$ — $a^{4}P_{2}^{0}$	30	484	7	27.	.490	1
CII	a ⁴ P ₂ -1 ₃	26	659	2	1.2	1	100
CII	${}^{2}G_{4}$ —(${}^{2}D_{3}{}^{0}$)	12	519	1	2.9	-	1
CII	² G ₅ -(m ² F ₄ ⁰)	12	180	4		.182	
CII	$b {}^{4}P_{1}$ —(a ${}^{2}P_{1}{}^{0}$)	11	648	2	12 - 10	1	Constanting of
CII	a ² D ₂ -(n ² F ₃ ⁰)	08	830	6	21.	.835	
CI	a ² F ₃ —b ² F ₄ ⁰	04	061	4	83.	.073	2, 5, 6)
CII	$a {}^{2}D_{2}$ —(m ${}^{2}P_{2}{}^{0}$)	3693	479	5	15.	.480	5)
CII	$b {}^{4}P_{1}$ —(a ${}^{2}P_{2}{}^{0}$)	93	364	2		.364	5)
CII	a 2D3-c4	93	115	5	L	.115	1 2
CII	${}^{2}G_{5}$ —(n ${}^{2}F_{4}{}^{0}$)	90	721	4	4.1	1	5)
CII	$a^{2}P_{1} - (^{4}P_{2}^{0})$	84	956	2	5.2	31 326	1
CII	$a^{2}D_{3}$ —(m ² D ₂ ⁰)	84	479	3		in 100	2.5
CII	$a^{2}D_{3}$ —(m ² D ₃ ⁰)	83	052	8	41.	.054	
CI	b4F3-a2F40	77	980	1	12 _ 32	_	5)
CI	b4P3-c4F30	68	65		M	4	1
CII	b ² P ₁ -n ⁴ D ₂ ⁰	57	919	2	1.0		
W, CI	b4F3-b4D40	56	965	4	7.5	.965	5)
CII	$b^{4}P_{2}$ —($a^{2}P_{1}^{0}$)	54	445	4	4.0	.445	1
W, CI	a4F3-a4F40	52	544	4	45.	.547	3, 5, 6)
CII	² G ₅ -c ₄	51	259	3	2.3	.257	
CII	a ² D ₃ -(² D ₃ ⁰)	50	719	1	7.8	1000	1 1 1 1 1 1
W, CI	a 4F2-a 4F30	47	663	4	37.	.663	5,6)
CII	a ² P ₁ -13 ₂	47	089	4	1 - 28	0.93	
CII	a ² D ₃ —i ₃	45	440	1	3.6		
CII	b4P2-c4G30	45	193	2	_	10 and 10	1
CII	$a^{2}D_{2}$ —(m $^{2}D_{2}^{0}$)	43	185	5	14.	.186	1
CII	a ² D ₂ -(m ² D ₃ ⁰)	41	786	4	7.0	.788	
CII	$b^{4}P_{2}$ —(m ² F ₃ ⁰)	39	445	10	17.	.445	1 1 1 1 1 1
CII	$a^{2}P_{1}-z_{2}$	37	318	4	1.7		1 1
CII	$b^{4}P_{2}$ —(a ${}^{2}P_{2}{}^{0}$)	36	717	5	4.7	.718	1
CII	$a^{2}P_{2}-(^{4}P_{2}^{0})$	33	333	2	7.4		
W, CI	a4F4-a4F50	31	340	4	50.		4, 5, 6)
CIII	$\left(a^{6}G_{6}^{0}-39C_{5}^{-}\right)$	27	85]				
CI	b 4F4-a 2G50	27	807	8	90.	.809	3, 4, 5, 6)
CII	a4P1-a4P10	26	019	2			
W, CI	b4F2-b4D30	24	955	6	11.	.956	4, 5)
CII	a 4P1-a 4P20	24	336	4	2,6	_	
CII	a ² P ₂ -12 ₃	20	420	4	2.7	A DEST	2)
CI	a 2F3-b 2D20	18	006	4	2.5		5)
CII	$b^{4}P_{2}$ —(n ${}^{2}F_{2}{}^{0}$)	15	391	5	4.3	.391	5)
CI	b4F2-a2F30	08	317	2	_	_	/
CI	b4F4-a2F40	05	367	2	74.	.367	3, 5, 6)

- ADDITION OF	Einordnung	namist people			Bouma [161] Intensität	Casper [181]	Bemerk.
CII	a ² D ₂ —i ₃	3605	013	4	100 - 01	10.00	A SALES
W, CT	a4F2-a4F20	02	081	5	114.	0.81	3, 4, 5, 6)
Сп	$b^{4}P_{2}$ —(m ² P_{2} ⁰)	00	807	3	01	-	
CTT	a ² P13.	3596	514	3	2.4		1.1.1.1
W, CI	a4F3-a4F30	94	869	5	101.	.870	3, 4, 5, 6)
CI	a ² F ₃ -b ² F ₃ ⁰	87	188	7	223.	.188	2, 5, 6)
W, CI	b4F4-b4D40	85	159	4	109.	.157	4, 5, 6)
W, CI	a4F3-a4D40	84	796	3	7.2	.796	4, 5, 6)
CII	a ² P ₁ -16 ₂	81	878	3	1.7	1 d - 24-d	1
CII	a4P2-a4P30	79	029	3	3.6	1	5)
CII	a4P2-a4P10	78	904	3	4.5	- <u></u>	1
CII	a 2P2-283	' 78	077	3	4.5	1	
CII	$(b^2 P_0 - n^4 D_1^0)$				18		
CITT	a 6G.0-35C. 5	77	684	1	-		1200
CII	a4P2-a4P20	77	260	2	× _ /	1.1.1	1/- 10
W, CT	a ⁴ F ₄ —a ⁴ F ₄ ⁰	75	361	6	114.	.360	3, 4, 5, 6)
W, CT	b4F3-b4D30	74	964	5	99.	.964	3, 4, 5, 6)
CT	a 2F4-b 2F40	69	382	6	185.	.379	2,3,4,5,6)
CIT	b4P3-c4G30	68	428	2	_		1
CT	b4F3-a2G40	64	955	5	103.	.952	3, 4, 5, 6)
CII	b 2P n 4D.0	64	644	2	_		
CTTT	a6G.0	64	143	3	1	1.1.1	1. 6 4 1 2 1
Сп	$b^{4}P_{a}$ —(m ² F _a ⁰)	62	919	5	5.3	19.130	1.00
W, CT	b4Fa-b4Da0	60	896	4	103.	895	3, 4, 5, 6)
Сп	b4P2-(a2P20)	60	304	2	_		1
CTT	a 2D. 23.	59	597	2	_	10-124	1.5.5
CT	b4Fa2F.0	58	780	4	15.	.780	5)
CTT	b 4Pm 2D.0	52	987	6	15.	.985	1
W, CT	a4Fa4D.0	52	719	3	3.0	.719	5)
CIT	b4Pm2D.0	51	663	2			1 10 10
CT	a 4Fa 4F.0	50	599	5	64.	.594	5,6)
CII	(a ² P ₂ -14 ₂)	10	150				
CTT	a 4Pa-a 4Pa0	48	450	7	5.8	.445	Provent Ser
CII	a 4P3-a 4P90	46	707	4	2.6	1	1
CII	$b^{4}P_{3}$ —(m ² F_{4} ⁰)	43	268	7	27.	.260	
CI	b4F5-a2G50	42	976	2	13	1-1-1-0	5)
CIII	a ⁶ G ₅ ⁰ -40 C ₅	42	517	10	1		0
CII	a 2P	34	772	4	12.	(2)
CI	a4F2-a4G20	33	363	6	100.	.362	3, 4, 5, 6)
CI	b4F4-b4G50	29	815	8	151.	.812	3, 4, 5, 6)
CI	a4F3-a4G40	29	037	4	83.	.037	3, 4, 5, 6)
W, Cr	a 4F5-a 4F50	26	856	9	99.	.856	1,3,4,5,6)
CII	b ⁴ P _a -m ² P _a ⁰	25	880	3	1	_	
CII	b ⁴ P ₂ -(n ² F ₂ ⁰)	23	706	5		.703	2)
W, CT	b4Fe-b4D.0	23	438	4	18 1	.438	4, 5, 6)
CT	b ⁴ F _a —a ² D _a ⁰	21	740	8	_		5)
CT	b4F,-a2F.0	21	572	5	186.	.578	3, 4, 5, 6)
W. Cr	a4Fa4F.0	20	087	4	78.	.087	3, 4, 5, 6)
CT	a ² F ₉ —b ² D ₉ ⁰	18	353	6	215.	.350	2,3,4,5,6)
CII	b ⁴ P ₀ —i ₀	16	675	2	_		

a estrati	Einordnung	annail annail			Bouma [161] Intensität	Casper [181]	Bemerk.
W, C _T	a4F4-a4G50	3513	483	4	89.	.483	8, 4, 5, 6)
W, CI	b4F3-b4D20	12	643	4	128.	.640	3, 4, 5, 6)
W, CI	a 4F4-a 4D40	10	419	4	92.	.419	1,2,3,4,5,6)
CI	b 4F3-b 4G40	09	844	4	122.	.843	3, 4, 5, 6)
W, CI	$b {}^{4}F_{4}$ $b {}^{4}D_{3}{}^{0}$	06	315	6	138.	.314	3, 4, 5, 6)
W, CI	a 4F3-a 4D30	02	620		159.		5)
W, CI	b 4F5-b 4D40	02	281	5	89.	.283	1,2,3,4,5,6)
CT	b4F4-a2G40	3496	682	2	38.	.682	5,6)
CI	$b {}^{4}F_{2}$ — $b {}^{4}G_{3}{}^{0}$	95	685	6	176.	.684	3, 4, 5, 6)
W, CI	a 4F2-a 4D20	91	324	3	76.	.321	3, 4, 5, 6)
CI	$\begin{cases} b^{4}F_{4} - a^{2}F_{3}^{0} \\ a^{4}P_{2} - c^{4}F_{2}^{0} \end{cases}$	90	741	3	20.	.740	4, 5, 6)
Cr	a ² Fh ² D. ⁰	89	406	5	166	405	3 4 5 6)
Crr	h4PC.	87	719	2	18	.405	2)
Cr	h4Fh4F.0	83	415	2	90	415	3 4 5 6)
Car	$h_{4}^{4} - (m_{5}^{2}) 0$	80	092	0	25	.410	0, 0, 0, 0)
Cm	$h^{4}P_{-}(m^{2}D_{2})$	78	745	4	5.0	749	1 10 20
Car	$a^{6}G^{0} - 43G$	77	852	2	1.9	.140	1 2 2
Cr	a 4p 4F 0	76	000	1	1.0	.002	
C	$h_{12} = 0 I_{2}$ $h_{4F} = 2D 0$	74	526	2		599	
oI	$(b^{4}F - b^{4}F^{0})$	1.4	000	0	T	.002	
CI	$\left\{ a^{4}F_{5}-a^{4}F_{4}^{0} \right\}$	74	019	9	169.	.018	1,3,4,5,6)
CII	b ⁴ P ₂ -23 ₃ , 2	73	455	1	- 1.5	-	1.1.1
W, C _I	a ⁴ F ₅ —a ⁴ G ₆ ⁰	65.	796	6	87.		1,2,3,4,5,6)
CII	$a^{4}P_{1}$ — $(a^{2}P_{2}^{0})$	63	496	3	-	-	1 10
CI	b 4F2-b 4F30	62	807	6	144.	.807	3, 4, 5, 6)
CIII	a ⁶ D ₅ ⁰ —35C ₆ , 5	61	170	6	15.	.178	
CI	a ² F ₄ —b ² F ₃ ⁰	60	732	4	2.4		5)
W, C _I	a 4F4-a 4G40	56	936	3	9.3	.932	6)
W, C _I	a ⁴ F ₂ —a ⁴ D ₁ ⁰	55	236	3	99.	-	3, 5, 6)
CI	b 4F ₅ -b 4G ₆ ⁰	53	513	6	155.	.509	1,2,3,4,5,6)
CI	b ⁴ F ₅ —b ⁴ G ₅ ⁰	49	443	6	153.	.444	2,3,4,5,6)
CI	b 4F ₃ -b 4G ₃ ⁰	49	171	6	170.	.172	3, 4, 5, 6)
CII	b ⁴ P ₃ —i ₃	45	14	1		-	1
CI	b 4F4-b 4G40	43	646	3	140.	.647	1,3,4,5,6)
W, C _I	a ⁴ F ₃ —a ⁴ D ₂ ⁰	42	924	4	84.	.923	2, 3, 5, 6)
CI	$b {}^{4}F_{2}$ — $b {}^{4}F_{2}{}^{0}$	33	043	6	170.	.041	2, 3, 4, 5, 6)
CII	$a {}^{2}D_{3} - ({}^{4}P_{2}{}^{0})$	32	319	2	-	-	
W, C _I	a 4F4-a 4D30	31	579	3	71.	.577	3, 5, 6)
CII	$a^{4}P_{1}$ —(m ² P ₂ ⁰)	30	900	1	-		
CII	a ² D ₃ —11 ₄	24	506	4	11.	.505	
CII	$a {}^{4}P_{2}$ —(m ${}^{2}F_{3}{}^{0}$)*)	22	896	3	3.1	.893	1 10
CII	$a^{2}P_{2}$ — $m^{4}D_{2}^{0}$	21	029	1	-	-	0
CII	a ² D ₃ —12 ₃	20	790	4	4.7	.788	1 Carlo
CII	$a^{4}P_{2}$ — $(a^{2}P_{2}^{0})$	20	482	2	1.9	.482	1 10 .57
CI	b ⁴ F ₅ —a ² G ₄ ⁰	17	796	4		-	5)
CI	$b {}^{4}F_{3}$ $b {}^{4}F_{3}{}^{0}$	17	158	4	118.	.157	3, 5, 6)
W, CI	$a^{4}F_{5}$ — $a^{4}G_{5}^{0}$	15	527	3	3.0	-	5)
CI	$b {}^{4}F_{2}$ — $a {}^{2}D_{2}{}^{0}$	14	738	5			5)

*) Auch als a ${}^{2}P_{1}$ —30_{2,3} eingeordnet.

Einordnung		erent -			Bouma [161] Intensität	Casper [181]	Bemerk.
W. Cr	a ⁴ F _s —a ⁴ D ₄ ⁰	3412	636	3	64.	.633	1, 2, 3,
CT	b4F4-b2G50	12	335	4	128.	.340	4, 5, 6)
CT	b4F4-a2D30	09	645	2	-	-	1
CT	b4F4-b4F40	09	176	4	124.	.180	3, 4, 5, 6)
CT	b4F5-b4F50	05	120	7	144.	.120	1,2,3,4,5,6)
CIII	a ⁶ F ₄ ⁰ -38C _{5,4}	03	166		0.6		
CII	a 4P2-n 2F30	01	609	2			
CII	a ² D ₃ —13 ₂	3399	40	1			
CII	$a^{2}D_{2}$ —(4 P_{2}^{0})	96	452	2	min + 98		
CI	$b {}^{4}F_{2}$ — $b {}^{2}G_{4}{}^{0}$	95	378	10	135.	.370	2,3,4,5,6)
CII	$a^{4}P_{3}$ —(m ² F ₃ ⁰)	94	902	3		_	
CII	$a^{4}P_{2}$ —(m ² P ₂ ⁰)	88	677	1			
CII	${}^{2}G_{5}$ -11 ₄	88	488	2		-	
CI	b4F3-b4F20	88	175	9	95.	.164	3, 5, 6)
CII	a ² P ₂ -m ⁴ D ₁ ⁰	87	063	2			
CI	b4F4-b4G30	85	227	9	81.	.226	3, 4, 5, 6)
CII	$a^{2}D_{2}$ —12 ₃	85	197	4	-		
CIII	a ⁶ D ₄ ⁰ -44C _{3,4}	82	866	1	16.		*)
CII	$a^{4}P_{a}$ —(m ² F ₄ ⁰)	77	060	8	4.7	.064	5)
CII	$a^{4}P_{3}$ —($n^{2}F_{3}^{0}$)	73	974	5		.974	1000
CIII	a ⁶ F ₅ ⁰ -35C _{6,5}	71	014	2		-	
CI	b ⁴ F ₃ —a ² D ₂ ⁰	70	330	5	15.	.330	2, 5, 6)
CI	b4F5-b4G40	67	114	4	94.	.117	3, 4, 5, 6)
CII	$b^{4}P_{1} - (^{4}P_{2}^{0})$	65	023	2	1.2		
CII	a ² D ₂ -13 ₂	64	266	8	3.0	.267	2)
CII	$a^{4}P_{3}$ —(m ² P ₂ ⁰)	61	278	3	-		
CIII	$a^{6}F_{3}^{0}-42C_{4}$	61	102	2		-	
CII	$a^{4}P_{3}$ —(n ${}^{2}F_{4}{}^{0}$)	59	279	5	5.6	.300	10.00
CII	a ² P ₁ -n ⁴ D ₂ ⁰	58	016	3	0.7	-	
CII	a ² D ₃ -14 ₂	56	473	8	3.8	.473	1.0
CII	a ² D ₂ —z ₂	55	950	2		-	
CII	a ² P ₁ -n ⁴ D ₁ ⁰	55	122	3	2.3	-	
CI	b4F4-b4F30	54	386	6	92.	.385	2,3,4,5,6)
CIII	a ⁶ F ₄ ⁰ -40C _{5,4}	51	159	3			1 1.10
CIII	$a^{6}F_{5}^{0}-37C_{4}$	50	381	2			1 2 2
CIII	a ⁶ F ₅ ⁰ -38C _{5,4}	49	528	2		16	A W
CII	a ² D ₂ —28	48	120	5	11.	.120	
CII	$a {}^{4}P_{2}$ —(m ${}^{2}D_{2}{}^{0}$)	46	321	2	-	-	
CII	$a^4P_2 - (m^2D_3^0)$	45	146	1		-	1
CII	$a {}^{2}D_{3}$ 15 ₂	44	230	2	1.0		1.1
CIII	a ⁶ F ₆ ⁰ -35C _{6,5}	43	530	1		-	10000
CII	a ² D ₃ —16 ₂	42	718	6	11.	.718	1 de la contra
CI	b ⁴ F ₅ —b ² G ₅ ⁰	37	175	3	6.4	.175	1 3 60
CI	b 4F5-b 4F40	34	151	5	100.	.151	4, 5, 6)
C _I , C _{II}	$b {}^{4}P_{1} - 13_{2}$	33	390	5	13.	.390	5, 6)
CIII	$a^{6}F_{6}^{0}-\beta^{4}H_{7}$	31	688	2	-		1
CII	a 4P3-c4	26	566	4	-		91.10
CII	$b {}^{4}P_{1} - z_{2}$	25	240	6	15.	.240	5)
-	-	22	206	1	15.	.202	6)

*) Druckfehler bei Catalán; das angegebene ν ist richtig.

Einordnung		annsti annt		Bouma [161] Intensität	Casper [181]	Bemerk.	
CTT	a 4D,-m 4D,0	3321	920	4	COMP.		1000
CII	a ⁴ P ₂ -(m ² D ₂ ⁰)	19	563	8	14.	edia and	1.0
CTT	a ⁴ P ₃ -(m ² D ₃ ⁰)	18	404	5	1.8	.405	5)
CII	a ⁴ P _o —i _o	14	077	9	9.9	.077	1
CIII	a 6F.º-39C.	12	838	5	1.6	_	1 Contraction
CII	a 2Pn 4D, 0	12	264	2	_	<u>10 12</u>	A State
CIT	a 4D16.	08	688	1	10 S.L. 95	a dia	1 - March
CII	b4P12,	07	154	7	7.9	.152	5)
Спт	a 6F, 0-43C,	3293	214	4	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phone _	1 500
CII	b4P,-14,	92	078	3	1.3	A DE	1.0.0
CII	a ⁴ P ₃ —i ₃	87	823	2	_	111	
CII	b4P13.	87	190	7	7.7	.195	
_	_	83	452	10	38.	11-11-1	2,6)
CT	a4F2-a2F40	81	581	2		the states	
CTT	b ⁴ P _a —z _a	79	250	5	4.2		5)
CII	b4P,-16,	78	840	7	5.1		1
CIT	b4P28,	71	778	4	9.8		-
CII	a 2D ₂ -m 4D ₂ 0	65	350	6			5)
W, CT	a ⁴ F ₂ -b ⁴ D ₄ ⁰	64	842	6	7.4		5)
CIT	b ⁴ P ₂ -(⁴ P ₂ ⁰)	54	201	10	20.		1
CT	b4Fb2F.0	49	994	7	10.		4,5)
Crr	b4P11.	47	176	7			2,4)
Crr	b4P14.	46	993	5			.,
CII	b4P12,	43	840	8	22.		5,6)
Cr	a4Fa2G.0	37	028	7	24.		3, 5, 6)
CII	b4P15.	35	535	7	9.2		
CII	b4P16.	34	130	2			1.35
CII	a 2D. m 4D.0	32	890	9	_		6)
CT	a 4Fa 2F.0	27	80	2	M		1
Стт	b4P13.	24	636	7	2.0		In the second
CT	b4Fa-b2Da0	23	147	2			A State
CT	a4F,-a2F,0	19	155	6	12.		3,6)
CIT	b ⁴ P ₂ —z _a	16	993	2	_		
CII	a 4Dm 4D.0	10	220	6	3.4		100
W, CT	a 4Fb 4D.0	03	030	3	2.0		Contraction of
W, Cr	a ⁴ F ₂ -b ⁴ D ₂ ⁰	3199	325	3	1.4		A STATE
CT	b4Fb2F.0	98	664	6	2.3		0.110
CI	b4F4-b2F4	93	162	5	3.2		1
CI	a 4F3-a 2G,0	91	300	5	1.8		10.1.1.1
W, CT	a ⁴ F _a -b ⁴ D _a ⁰	89	756	5	3.6		
CI	a 4Fa 2F.0	86	346	6	6.4		
CII	b4P14.	85	950	5	0.8		
CII	b4P1-m4D.0	82	122	7	6.6		5)
CII	a 2D,-m 4D,0	80	280	3	1.7		1
CII	a 2D3-n 4D,0	79	825	1	0.5		
CII	b ⁴ P ₃ -15 ₉	74	905	7	3.2		5)
CIT	a ⁴ P ₁ -(⁴ P ₂ ⁰)	73	140	1	0.6		1
CTT	b4Pm4D.0	61	650	5	4.6		
W, CI	$\left\{\begin{array}{c} b^{4}F_{3}-b^{2}F_{3}\\ a^{4}F_{2}-b^{4}D_{1}^{0}\end{array}\right\}$	59	660	6	16.		3, 4, 5, 6)

524

	<i>n</i>		
1.5			S .(
			-

Е	änordnung				Bouma [161] Intensität	Bemerk.
Cr	a4F,-b4G.0	3158	769	6	48.	4, 5, 6)
CT	a 4Fa 2D.0	58	293	1	All and and a second	
CIT	b4P3-m4D40	54	785	7	42.	2, 5, 6)
CT	a 4F5-a 2G50	53	692	1	11-1	
CTT	b4P1-m4D10	52	702	6	6.8	
W, CI	a 4F3-b 4D20	49	304	6	28.	3, 5, 6)
CI	a 4F3-b 4G40	47	060	7	56.	3, 4, 5, 6)
CII	a ⁴ P ₁ -13 ₂	45	013	2	1.8	0
CI	$b {}^{4}F_{2}$ — $b {}^{2}D_{2}{}^{0}$	43	812	1	0.6	
W, C_I, C_{II}	$b^{4}P_{2}$ — $m^{4}D_{2}^{0}$	39	943	7	42.	2, 3, 5, 6)
CII	a ⁴ P ₁ —z ₂	37	750	5	140.0-1	3)
CI	a 4F2-b 4G30	37	325	6	49.	3, 4, 5, 6)
CII	$a {}^{4}P_{2} - ({}^{4}P_{2}{}^{0})$	36	997	. 2	31	121 117
CI	a ⁴ F ₅ —a ² F ₄ ⁰	36	721	5	2.2	Page 1
CI	a ⁴ F ₄ —a ² G ₄ ⁰	32	212	1	2.4	and the second
CI	${\rm b}{}^{4}{ m F_{4}}{ m -b}{}^{2}{ m D_{3}}{}^{0}$	28	997	8	1.5	p
CI	$b {}^{4}F_{5}$ — $b {}^{2}F_{4}{}^{0}$	27	244	5	4.6	
CII	$a^{2}P_{2}$ — $n^{4}D_{3}^{0}$	26	710	4	3.4	
CI	$a {}^{4}F_{4}$ -b ${}^{4}F_{5}{}^{0}$	21	560	4	36.	2, 3, 4, 5, 6)
W, CI	a ⁴ F ₅ —b ⁴ D ₄ ⁰	21	414	4	30.	3, 4, 5, 6)
CI	a ⁴ F ₃ —a ² D ₃ ⁰	18	630	1.	0.4	Charles I.
CI	a ⁴ F ₃ —b ⁴ F ₄ ⁰	18	240	2	· 4.8	3, 6)
CII	$a^{4}P_{3}$ —($^{4}P_{2}^{0}$)	13	470	5	7.3	Contract of
CII	$b {}^{4}P_{2} - m {}^{4}D_{1}{}^{0}$	11	333	3	1.4	a la ser a
CI	$a {}^{4}F_{2}$ $b {}^{4}F_{3}{}^{0}$	10	817	4	3.3	3,6)
CII	$a^{4}P_{2}$ —13 ₂	09	504	4	8.3	
CII	a ⁴ P _a -11 ₄	07	041	3	2.5	
CI	${\rm b}{}^{4}{ m F_{3}}{ m -b}{}^{2}{ m D_{3}}{}^{0}$	06	136	1	1.5	
CI	b ⁴ F ₄ -b ² F ₃ ⁰	05	920	2	1.4	
C_{I}, C_{II}	$\left\{\begin{array}{c} b^{4}P_{2} - 30_{2,3} \\ a^{4}P_{3} - 12_{3} \end{array}\right\}$	03	990	2	4.0	5)
CII	b ⁴ P ₃ -m ⁴ D ₃ ⁰	03	735	4	7.2	
CII	$a^{4}P_{2}$ — z_{2}	02	400	3	4.0	2)
CI	a 4F3-b 4G30	3098	195	4	35.	3,6)
CII	$a^{4}P_{1}$ 16 ₂	96	400	2	2.9	1000
CII	$a^{4}P_{2}$ —28 ₃	95	710	2	2.7	
CII	$b {}^{4}P_{1}$ - $n {}^{4}D_{2}{}^{0}$	- 90	250	4	3.0	
CI	$a {}^{4}F_{4}$ $b {}^{4}G_{4}{}^{0}$	89	593	5	38.	3,6)
CI	$a^{2}F_{3}$ — $c^{4}D_{2}^{0}$	88	676	1	0.9	
CII	b ⁴ P ₁ —n ⁴ D ₁ ⁰	87	802	2	2.1	2)
CI	$a^{4}F_{2}$ — $b^{4}F_{2}^{0}$	86	778	6	71.	3, 5, 6)
CII	$a^{4}P_{3}$ —13 ₂	86	397	4	9.0	1
CII	$b {}^{4}P_{3}$ -m ${}^{4}D_{2}{}^{0}$	82	842	2	-	
CI	$\beta {}^{4}F_{5}$ —b ${}^{4}G_{6}{}^{0}$	82	614	5	42.	2, 3, 5, 6)
C_{I}, C_{II}	a ⁴ P ₃ —z ₂	79	390	4	4.9	
CII	$a^{4}P_{2}$ —14 ₂	73	520	4	3.3	2)
CI	a ⁴ F ₃ -b ⁴ F ₃ ⁰	72	346	5	56.	3, 4, 5, 6)
CI	$a {}^{4}F_{2}$ — $a {}^{2}D_{2}{}^{0}$	71	954	5	9.4	5)
CI	a ⁴ F ₄ —b ² G ₅ ⁰	64	375	5	16.	2, 3, 4, 5)
CI	a ⁴ F ₄ -a ² D ₃ ⁰	62	198	. 4	8.8	5)

Ei	nordnung				Bouma [161] Intensität	Bemerk.
Сп	a4P16.	3061	983	1		
CT	a4F4-b4F40	61	825	5	49.	3, 4, 5, 6)
CII	b4Pa-n4Da0	60	051	6	7.9	
CT	a4Fa-b2G40	54	724	2	4.4	3, 5)
CT	a 4F5-a 2G40	54	136	2	1	5)
CII	a 4P3-142	50	938	3		1.1.1
CII	b4P2-n4D20	50	500	3	3.6	3)
CI	a 4F3-b 4F20	48	892	6	46.	3, 4, 5, 6)
C _{II}	$b^{4}P_{3}$ $-30_{2,3}$	48	. 112	2	2.0	
C-	04F_h4F 0	44	007	8	50	2, 3, 4, 5, 6)
	$a^{4}F_{5} - b^{4}G_{5}^{0}$	49	482	6	30	3, 5, 6)
Cr	a 4P -15	40	809	2	14	,
Crr	a 4P 16	39	560	4	3.8	
Cr	a ² Fc ⁴ D. ⁰	38	304	2	2.1	3)
	a 4Fa 2D_0	34	426	6	15	3, 4, 5, 6)
	a 4 p m 4 p 0	00	364	2	3.0	
CII	$a^{4}F_{3}$ $b^{4}F_{0}$	17	559	5	31	2, 3, 5, 6)
	$a^{4}F_{4}$ $b^{4}G_{0}$	19	598	5	94	3, 5, 6)
	$h_{4}P_{-}n_{4}D_{0}$	05	768	4	29.	2,5)
CII	$p T_3 = h D_3$ $p 4F = h^2 G 0$	00	554	5	97	3, 5, 6)
C	a 4P m 4D 9	3000	945	1		1 ,
	$a^{-1}r_{2}$ - $m^{-1}D_{3}$	2000	558	9	1.0	1
CII	$D^{-}\Gamma_{3}$ $h^{2}C_{2}$	80	500	e	90	3 5 6)
	$a + \Gamma_5 - D + G_5$	87	179	5	22	2, 3, 4, 5, 6)
	$a r_5 - b r_4$	80	965	2	1.0	
	$a + r_3 - a + r_2$	77	468	1	0.5	121 100
CII	$a^{4}P_{2}$ m $4D_{2}$	75	469	1	0.6	1
CII	$a^{2}F$ $a^{4}F$ 0	40	620	1	0.5	1 0
C	$a - \Gamma_3 - C - \Gamma_2$	26	551	1	0.5	
	$a + F_3 - b + F_4$	98	819	2	4.4	6)
Car	$a + F_5 - D + O_4$ $a + P - n + D_0$	97	672	4	5.0	,
C	$a T_1 - h D_2$	16	041	1	0.0	20
	$a^{2}\Gamma_{2} - b^{2}D_{3}^{2}$	10	560	1	0.2	5)
	$a^{-1}3^{-0}$	05	100	1	0.1	,
C ₁	$a = r_2 - n = D_3$	2800	801	0	8.8	T
C	a 2F - a 4D 0	2005	483	3	1.6	2, 5)
C	a 4F - b 2F 0	86	448	5	20	3, 5, 6)
C-	$a + r_4 - b + r_4$	85	307	1	20.	
	$a^{4}F_{3}$ - $h^{2}D_{3}^{0}$	82	221	2	18	1 11
	$a^{4}F_{3} - b^{2}F_{3}$	62	610	4	7.0	
Cr	h4F04D_0	59	660	2	2.4	
Cr.	a4F b2D 0	50	956	0	11	2 5)
Cr	h4F - 04D 0	84	495	1	17	5)
Cr	$p_{12} - c_{2} - b_{3}$	22	998	1	19	4,5)
Cr Cr	$a^{2}F_{4} - b^{2}D_{3}^{2}$	- 20	003	2	3.6	5)
C, OI	$a^{2}\Gamma_{3}^{}(n^{2}D_{2}^{*})$	10	170	1	0.0	,
C	$a - \Gamma_3 - (m - D_3)$	19	500	0	0.0	
	b ⁴ F ₄ -c ⁴ D ₄ ⁰	15	557	4	16.	6)

Kobalt

Е	inordnung				Bouma [161] Intensität	Bemerk.
CT	a 4F,-b 2F.0	14	979	2	1.1	4,5)
CTT	b4F1.	2812	447	1	-	
Cr	b4Fc4D.0	03	775	3	11.	2, 5, 6)
Cr	b4Fe-c4De0	2796	236	3	5.4	5,6)
CIT	$a^{2}F_{*}$ (m ² F_{*}^{0})	92	442	2	2.2	
Crr	b4F1.	82	270	1		
-11		78	830	3	8.7	6)
Cr	b4Fc4D.0	74	964	2	4.4	5)
CII	$a^{2}F_{4}$ ($n^{2}F_{4}^{0}$)	68	300	1		1
Cr	b4Fc4D.0	f 66	37	21	4.2	
-1		66	225	4		6)
C-	h4F04D 0	64	102	4	10	3 5 6)
Cr I	$b_{4F} = c_{4D}^{4D} 0$	61	975	2	9.6	6)
or	D 14-0 D3	50	10	9	9.5	6)
1000		45	108	Ã	8.0	2 5 6)
NO	- 917 (- 917 0))	010	100	4	0.0	-, -, -)
C_{II}	$a + F_4 - (m + D_3) $ $b + F_4 - 1_3 $	40	470	3	7.2	6)
	- 11	31	116	4	5.7	6)
	-	15	993	3	13.	2, 5, 6)
CI	$b {}^{4}F_{4}$ -c ${}^{4}F_{5}{}^{0}$	2695	853	4	20.	5,6)
CI	$b {}^{4}F_{3}$ -c ${}^{4}F_{4}{}^{0}$	85	340	3	17.	2, 5, 6)
	-	79	758	2	12.	6)
CI	$b {}^{4}F_{2}$ -c ${}^{4}F_{3}{}^{0}$	75	987	4	10.	2, 5, 6)
CI	$b^{4}F_{2}$ — $c^{4}F_{2}^{0}$	50	271	4	11.	2, 4, 5, 6)
M, C _{II}	$a {}^{2}F_{3}$ —13 ₂	49	940	3	11.(?)	6)
CI	$ \left\{ \begin{array}{c} b^{4}F_{5} - c^{4}F_{5}^{0} \\ b^{4}F_{3} - c^{4}F_{3}^{0} \end{array} \right\} $	48	648	4	51.	2, 3, 5, 6)
CT	b4F4-c4F40	46	420	4	24.	5,6)
CII	b4F4-a4P20	42	890	1	2.1	. ,
CII	a 2F2-282	39	920	1	_	1.1.1.1.1.1.1.1
CT	b4Fs-c4Ge0	27	641	1	23.	6)
CTT	$b^{4}F_{2}$ —(a ² P ₁ ⁰)	27	041	1	3.5	1
CII	a ² F ₂ -14,	23	752	2	4.0	
Cr	b4Fa-c4Fa	23	450	1	11.	5)
CT	b4Fc4G.0	22	434	2	11.	16-
Cr	b4Fc4G.0	22	252	1	5.9	5,6)
Cr	b4Fc4G.0	22	064	8	14.	6)
M. CTT	$b^{4}F_{e}$ (m ² F _e ⁰)	19	279	2	5.0	6)
M. CTT	$b^{4}F_{a}$ —(a ² P _a ⁰)	17	865	1	6.7	6)
Сп	a ² F ₂ -15 ₂	16	265	1	4.1	1
Crr	a 2F16.	15	339	1	2.4	
Cr	84F-04D.0	14	199	2	5.4	6)
Cr	h4F04F.0	10	770	1	4.7	,
1	014-013	00	10	1	0.0	6)
C.	h4E	00	10	0	5.0	6)
Car	b4F. (m2D 0)	2500	001	0	4.0	1
Cr	$b_{12} - (m_{12})$	2000	000	1	0.6	
C	0 T3 -0 -03	50	150	1	0.0	6)
CI	$h_{2} = c^{4} D_{3}^{0}$	94	176	T	6.6	9
I UII	$D^{*}T_{3} - (m^{*}T_{3}^{0})$	93	093		-	

Einordnung					Bouma [161] Intensität	Bemerk.
Crr	a 2F12.	2592	578		all and a second	
M. Crr	$b^{4}F_{a}$ —(a ² P_{a} ⁰)	91	702	1	12.	6)
, ·11		90	61	3	11.	5,6)
Cr	b4Fc4G.0	85	36	3	11.	6)
CTT	$b^{4}F_{2}$ (n ${}^{2}F_{2}$)	80	841	2	16.	2, 5, 6)
M, CII	a4F9-13	75	73	1	4.2	6)
CT	a 4F4-c 4D40	74	36	3	18.	2, 3, 4, 5, 6)
CII	$b^{4}F_{2}$ —(m ² D ₃ ⁰)	73	471	2	Man-Par	6)
M, CII	$b^{4}F_{3}$ —(n ² F_{4} ⁰)	72	242	2	8.8	2, 5, 6)
Сп	a ² F ₃ -m ⁴ D ₃ ⁰	67	742	1	20.	1
CI	a4F3-c4D30	67	33	8	-	5,6)
CI	a ⁴ F ₂ -c ⁴ D ₂ ⁰	62	13		19.	3,6)
M, CII	$b^{4}F_{4}$ —(m ² F ₃ ⁰)	56	762	2	12.	6)
CI	b ⁴ F ₅ —a ₅	55	06		_	5,6)
Cr.	$b + F_2 - I_3$]	52	35	0		2, 5, 6)
C-	$b^4F = c$	53	00	0	16	5,6)
C	$0 - r_3 - c_4$ $0 + F_3 - 1$	49	98	1	14	6)
M C-	$a r_3 - r_3$ $a F_3 - r_5$	40	354	1	20	6)
m, OII	$h_{4}^{A} = 10_{3}^{A}$	40	903	1		,
C	$b T_3 - (m D_3)$	44	85	1	12	6)
C	$94F - (4D)^{0}$	44	25	2	20.	1, 3, 4, 5, 6)
C-	$h^{4}F_{-n}$	38	78	ī	2.7	5)
Cr	$p_{2} = n_{1}$ $p_{4} = -c_{4} = 0$	35	93	(1)	21.	1, 3, 5, 6)
M Car	$h_{4}^{A} = -93$	32	167	1	21.	3,6)
Cr.	b 4F.—i.	30	18	1	21.	6)
Cr	a 4F 4D _0	28	97	3	23.	1, 3, 4, 5, 6)
Cr	a 4F	21	40		22.	1, 3, 5, 6)
Cr	b ⁴ F.—c.	17	81		23.	3, 5, 6)
M. Crr	$b^{4}F_{4}$ (m ² D ₀ ⁰)	13	096	1	6.4	6)
M	b4F-24	12	92	2	and a second	6)
Cr	b4Fb.	. 11	03		18	2, 3, 5, 6)
Crr	b4F23.	07	687	1		6)
-11		07	17	1	1.0	6)
M. CII	$b^{4}F_{s}$ —(m ² F ₄ ⁰)	04	517	1	17.	6)
M. CII	a ² F ₄ -m ₄ D ₉ ⁰	02	281	1		1. 2
Cr	b4Fe-la	00	51	1	3.2	2,5)
M	a 4F4-215	2496	71	1	17.	6)
CI	b ⁴ F ₄ —i _a	95	56	1	13.	5,6)
M, CII	$b^{4}F_{5}$ —(n ² F ₄ ⁰).	94	737	1	9.5	6)
M, CII	a ² F ₃ —n ⁴ D ₂ ⁰	93	96	3	5.2	6)
M, CII	a4F2-a4P10	89	279	1	3.3	6)
M, CII	a4F2-a4P20	88	448	1	3.0	6)
М	$b^{4}F_{4}$ —25	83	61	1	and the second	6)
CI	b4F5-c4	70	6.4	1	17	3, 5, 6)
CI	b ⁴ F ₃ —l ₃	10	04	T	11.	1.1.1
CI	b ⁴ F ₄ —m	76	43	1	100-0-00	
CI	a ⁴ F ₁ C ⁴ F ₅ ⁰	73	92	1	8.7	5, 6)
	Table - Sa	72	94	1	-	6)
-		70	30	1	16.	3, 5, 6)

Kobalt

Ei	inor	dnungo				Bouma [161] Intensität	Bemerk.
Cr		a 4Fc4F.0	2467	71	3	11.	5,6)
M Car		a4Fa4P_0	64	627	1	4.5	6)
m, on			64	50	1	2.8	6)
Cre		a4Fa4P.0?	63	77	1	6.0	6)
Cr		a 4F 4F 0	60	81	3	11.	5,6)
M		b4F-21.	56	23	1	12.	6)
Car		a ² F.—n ⁴ D. ⁰	51	737	1	1.2	
Car		h4F-(4P-0)	48	507	1		and a second
Cr		b4Fla	43	55	1	5.1	6)
~ <u>1</u>			42	92	1	2:7	6)
M		b4F26	41	07	2	9.4	2, 5, 6)
Cr		a4Fc4F.0	39	03			1, 3, 5, 6)
Cr		a 4Fa-c 4Fa0	36	77			1, 5, 6)
Cr		b4Fm	36	58	1	1. St.	1, 3, 6)
OI I		_	36	43		H- (THO	6)
A CONTRACTOR			35	11	1	B- STER	6)
C-		a4Fc4F.0	32	20	10.2193	and a start	1, 5, 6)
		a 4Fa 4P.0	29	22	1		
Cn		h4F_(4P_0)	25	597	1	Par Par	Contract of
C		a4F4F_0	24	98	-	and the second	1, 3, 4, 5, 6)
		a 4F(a 2P 0)	19	320	1	and the	
M		$h_{12}^{a} = (a_{11})^{a}$	17	67	4		6)*)
C-	1	94F 4F 0]				and the second	
	1	a4F_c4G_0	15	32		and the second	1, 3, 5, 6)
	($a^{4}F_{-}c^{4}G_{0}^{0}$	14	47			1, 3, 5, 6)
	12	h4F_c4G.0	11	65		S	1, 3, 5, 6)
		$b_{4}F - 14$	09	650	1		1
		$b_{12} - 14_{2}$ $b_{4F} - 13$	09	125	1	and a second	NO. N
		$p + r_3 - r_2$ p + F - c + G = 0	07	27	3	Law Strate	1, 3, 4, 5, 6)
		a 15-04E 0	02	12	1		1, 3, 5, 6)
		h4F 98	00	826	1	1.4. 1. 1. 1. 1.	
CII	1	$0^{4}F_{3}-20_{3}$	00	010	-	1.1.1.1.1.1.1	
	1	$a^{4}F_{3}-c^{4}G_{3}^{0}$	2391	99	2		1, 3, 5, 0)
-	1	,	91	43	5	P. Maria	6)
M)	10	140. 44	ſ 90	01	1	and the state	16
CTT		D*F4-114	1 89	976	1		1
M		412 (412 6)	89	55	0	allow the second	5 6) *)
Crr		$a * F_3 - (m * F_3^0)$	1 89	526	2		-,))
M			88	. 93	1	1-2-2	6)*)
M, CIT		a4F3-(a2P20)	88	40	1		6)
M, CIT	0	b4F4-12a	88	174	1		1,
M, CIT		b4F3-149	87	47	1		6)
M			86	38	2	Page 4	6)*)
CT		a 4F5-c4F40	84	89	(6)	A State of the	1, 3, 5, 6)
M		-	83	47		A States	2, 5, 6) *)
CI,M,CII	1	$a^{4}F_{4}-c^{4}G_{4}^{0}$	80	52	1	T.m.	1, 3, 5, 6)
M			78	62		See State	*) 5, 6)

*) Eingeordnet bei Co II.

Kayser u. Konen, Spektroskopie. VIII.

I	Einordnung		1		Bemerk.
1	- a -	2377	22	-	6)
CII	$(a {}^{4}F_{2} - m {}^{2}D_{2} {}^{0})$	74	470	1	0.0
M, CII	$a {}^{4}F_{3}$ (m ${}^{2}P_{2}{}^{0}$)	72	816	1	6)
M, CII	a ⁴ F ₃ -(n ² F ₄ ⁰)	71	86	1	6)
13 - (* * 1	-	70	52		6)
M, CII	$b^{4}F_{4}-28_{3}$	69	68	2	6)
CI	a 4F5-c 4G50	65	04	(6)	1, 3, 5, 6)
M	-	63	81		6)*)
CI	a 4F2-i3	58	21	1	5, 6)
CI	a 4F3c4	55	50	1	1, 5)
A SAL		[54]	50		6) **)
C _I , M	a ⁴ F ₄ —b ₅	53	43	(2)	1, 3, 5, 6) *)
M, CII	$b^{4}F_{5}$ 11 ₄	52	873	3	6)
M, CII	a 4F3-(m 2D30)	51	41	1	6)
M, CII	$b {}^{4}F_{2}$ -m ${}^{4}D_{2}{}^{0}$	50	32	1	6)
M	a 4F2-25	47	43		6)*)
CI, CII	a 4F4-(n 2F30)	46	18	1	1, 5, 6)
	-	45	57		1,6)
C _I , M	a4F2-n1	44	29	1	5, 6) *)
M, CII	a4F4-(n2F40)	39	05	1	3,6)
M, CII	a ⁴ F ₂ -23 _{3, 2}	38	65	1	6)
1 100	_	38	0		6)
M	$b^{4}F_{4}$ —29	37	49		6)
CI	a ⁴ F ₃ —i ₃	35	98	1	1, 5, 6)
General F.		34	2		6)
M	b ⁴ F ₅ -28	33	1		6)
	-	32	2		6)
M, CII	. b ⁴ F ₂ -30 _{2,3}	29	97	1	6)
M, CII	b4F3-m4D20	29	12	3	2, 5, 6)
M	_	26	47		6)*)
M		26	15		3, 6) *)
M	a ⁴ F ₃ -25	25	55		6)
М		24	36		6)*)
CI	a ⁴ F ₄ -c ₄	23	18	1	1, 3, 5, 6)
M	a 4Fa-24	21	41		6)
	-	20	04		6) Ni?
CI	$a^{4}F_{3}$ —m (?)	19	27	2	5)
	-	17	15		6) Ni?
M, CII	a ⁴ F _a -23 _a	16	88	1	6)
		16	12		6)
М	_	14	99		6)*)
	_	13	67		5,6)
CI,M, CII	a ⁴ F ₄ -(² D ₉ ⁰)	11	65	2	3, 5, 6) *)
M, CII	b4F4-m4D0	11	38	1	1,6)
CI	a ⁴ F ₅ -b ₅	09	03	1	3, 5, 6)
M	_	07	89	-	6)*)
M	a 4F4-215			111	0
M, CII	b 4F2-n 4D30	05	18	1	6)

*) Eingeordnet bei Co II.

**) Druckfehler bei Meggers und Walters.

Kobalt

Е	Sinordnung	ns, section			Bemerk.
Cr	a ⁴ F ₄ —i _a	2304	22	1.50	5)
M, CTT	b4F5-m4D40	03	99	1	6)
	_	00	82		6)
CII	$b^{4}F_{2}$ — $n^{4}D_{2}^{0}$	2299	78	3	2, 5)
M, CII	b4F2-n4D10	98	39	1	6)
CII	b4F3-n4D40	96	74	1	6)
	-17	96	09		6)
M, CII	$a^{4}F_{5}$ —($n^{2}F_{4}^{0}$)	95	23	4	1, 3 ?, 5, 6)
М	$a^{4}F_{4}$ —25	94	04		6)
Arbeit w	a Harperland	91	50		6)
CI	a ⁴ F ₃ —l ₃	90	35	1	3?, 5, 6?)
CI	a ⁴ F ₄ —m	. 87	86	1	1?, 5, 6)
M	- 2	86	21		1,2,3,5,6)*)
CII	a 4F4-233, 2	85	50	3	6)
M, CII	b4F3-n4D30?	84	96	3	6)
M, CII	$b {}^{4}F_{3}$ -n ${}^{4}D_{2}{}^{0}$	79	53	4	6)
		76	56		1, 3, 6)
		75	92		1, 3?, 5, 6)
	-1223	74	60		1, 5, 6)
	10 57 to	68	83		6)
CII	b4F4-n4D40	68	24	3	6)
M, CII	$a {}^{4}F_{2}$ —(${}^{4}P_{2}{}^{0}$)	67	17	2	2, 5, 6)
	- 10 C - 10 C - 10 C	64	96	3	6)
М	a 4F5-215	62	63		5,6)
M	$a^{4}F_{4}$ —26	57	64		6)
M, CII	b4F4-n4D30	56	64	4	6)
		53	91		6)
subseitin p	nbernin - efficient	53	6		⁶) Ni?
M, CII	$a^{4}F_{2}$ 13 ₂	52	77	3	6)
CII	a ⁴ F ₂ -Z ₂	49	03	3	and the local
M, CII	a 4F3-(4P20)	46	61	3	6)
CII	$a^{4}F_{2}-28_{3}$	45	51	3	
CII	a 4F3-114	43	26	3	and the participation of the
CII	a ⁴ F ₃ -12 ₃	41	71	2	
		36	84		6)
CII	b 4F5-n 4D40	34	86	4	2, 5, 6)
M, CII	$a^{4}F_{2}$ 14 ₂	83	83	3	6)
M, CII	a ⁴ F ₃ -13 ₂	32	54	3	6)
M	a ⁴ F ₅ -27	29	87		6)
CII	a 4F3-z2	28	88	3	anna anna Cara
CII	$a^{4}F_{2}$ —15 ₃	28	41	1	
and the second second		27	84		5, 6)
Distances	anessei enellen.	25	77	and the second	6)
M, CII	$a^{4}F_{3}-28_{3}$	25	43	3	6)
Providenti	whether the third shade in	19	27	3	6)
M, CII	∫ a ⁴ F ₄ —11 ₄	18	92	6	6)
M, CII	a 4F3-142	10			
M, CII	a 4F4-123	12	38	4	2, 5, 6)

*) Eingeordnet bei Co II.

· E	inordnung		atteriore				
M, CII	a ⁴ F _a —15 _a ?	2208	59	3 5, 6)			
M, CII	a 4F3-162	07	89	5 5,6)			
16.042 (04	9	5,6)			
CII	1	2199	66	6)			
M, CII	a 4F3-m4D40	98	85	0			
M, CII	a 4F4-283	96	59	5 5,6)			
14 M		91	90	6)			
Mary Land		90	3	6)			
31.00	-10	86	79	6)			
	- 00 - 11 - 11 - 11 - 11 - 11 - 11 - 11	84	31	6)			
M, C _{II}	$a {}^{4}F_{2}$ -m ${}^{4}D_{2}{}^{0}$	82	57	3 6)			
Q. (84.74	111 - 111	. 81	77	6)			
Margaret 1		81	12	5,6)			
M, CII	a ⁴ F ₄ -15 ₃	80	01	3 3?,6)			
2 300 1		78	92	6)			
10		78	08	6)			
M, CII	a 4F5-114	74	67	3 6)			
	-31	74	44	6)			
I, CII	a 4F3-m 4D30	73	89	3 6)			
II	a 4F4-m 4D40	70	64	2			
I, CII	a 4F2-m 4D10	68	79	3 6)			
6.4.3	1 -11	66	86	6)			
I, CII	a ⁴ F ₂ -30 _{2,3}	65	14	2 6)			
I, CII	a 4F3-m 4D10	63	60	8 6)			
	-11	58	34	6) Ni?			
I, CII	4F4-m4D30	46	30	2 3?,6)			
^{III}	a 4F2-n 4D20	38	98	0			
I, CII	a 4F2-n 4D10	37	82	1 6)			
Л	a 4F5-m 4D40	32	87	0			
'n	a 4F4-n 4D40	09	09	3			
IT	a 4F n 4D.0	2098	92	1			

Wegen den Anmerkungen in der Spalte "Bemerk." siehe den folgenden Text sowie oben p. 505.

Wie bereits erwähnt, ist bisher nur für einen Teil der gemessenen Linien die Einordnung bei Co I gelungen. Wenngleich von den übrigen (es sind rund 500) ein Teil zu höheren Ionisationsstufen gehören wird — nur bei Co II und Co V ist einiges bekannt —, so bleibt unzweifelhaft noch eine ganze Anzahl Linien von Co I uneingeordnet. Deswegen wurden in Tab. 3 außer den bereits eingeordneten Linien auch verschiedene andere aufgenommen, deren Zugehörigkeit zu Co I aus irgendwelchen Gründen (z. B. Beobachtung in Absorption) plausibel erscheint. Wenn verschiedene Linien aus der Tabelle (durch *) gekennzeichnet) bei Co II bzw. bei Co I und Co II gleichzeitig eingeordnet sind, so ist zu bedenken, daß bei so linienreichen Spektren wie Co I (und vermutlich auch Co II) scheinbare Koinzidenzen nicht unmöglich sind.

Bevor wir nun die Absorptionsuntersuchungen besprechen, muß allerdings noch darauf hingewiesen werden, daß sich unter den umgekehrten Linien nicht nur Linien des Co I befinden, wie manche Autoren irrtümlich annehmen, son-

532

dern auch Linien des Funkenspektrums, welche zu den niedrigsten Energieniveaus gehören.

Abgesehen von einer älteren Arbeit von Finger [48] über den Unterwasserfunken untersuchten als erste v. Angerer und Joos [106] die Absorption des Kobaltdampfes (im elektrischen Ofen) zwischen λ 3530 und λ 2274. Ihre Arbeit ist bedeutsam als Grundlage der Einordnung von Catalán und Bechert [120]; die von ihnen angegebenen Linien (in Tab. 3 mit¹) versehen) konnten mit Ausnahme der folgenden sechs sämtlich bei Co I eingeordnet werden:

3530.9; 3454.4; 3044.15; 2412.85; 2345.05; 2293.05.

Die Arbeit von Hulburt [109] über Spektra des Unterwasserfunkens zwischen λ 4500 und λ 2000 enthält für Kobalt leider keine Zahlen; der Verfasser bemerkt lediglich, daß über 100 Linien umgekehrt erschienen. Dieselbe Gegend des Unterwasserfunkens untersuchen dann Buffam und Ireton [118]. Ein Teil ihrer 99 Linien ist bei Co I eingeordnet worden (vgl. Tab. 3, wo diese Linien durch ²) gekennzeichnet sind), die übrigen seien hier zusammengestellt, da die Arbeit schwer zugänglich ist.

3969.13	3491.99	2929.52	2559.41 Co II	2422.57	2311.94
3894.54	76.37	2811.53	53.37	04.17	2278.50
74.73	3374.31	2775.58	41.95 Co II	2371.76	58.65
45.32	3260.82	52.07	25.57	63.53	45.13 Co II
3530.55	3034.46	2694.68 Co II?	2464.21	50.78	37.63
06.52	26.27	29.98	23.63	44.75	24.16

Gleichzeitig untersuchten McLennan und McLay [123] denselben Spektralbereich in Absorption im elektrischen Ofen. Auch ihre Linien sollen, soweit sie noch nicht eingeordnet sind (Tab. 3³)), hier mitgeteilt werden, desgleichen die Linien, welche McLennan und Cooley [131] im ultravioletten Gebiet (λ 1928 bis λ 1455) ebenfalls im elektrischen Ofen umgekehrt gefunden haben.

3446.081	3019.110	2510.080	2413.610	2290.63
3390.797	2561.401	2436.663	12.877	75.44
3134.090	36.460	32.213	2346.678	14.80
01.580	21.361	24.938	2295.30	2180.18
041000	BREAK REAL PROVIDE	ED AS TO DE CALLAR		46.16

Vollständig absorbiert				Te	ilweise	absorbiert	
1928.0	2	1567.54 1	1480.87	2	1696.81	0	1523.99 1
1726.12	1	57.05 1	72.84	3	47.36	3	21.64 2
1673.71	1	20.47 00	66.19	3	1576.85	3	1479.45 00
72.17	1	13.02 1	55.78	1	74.52	1	78.28 0
49.12	2	11.64 0	48.06	1	72.62	2	54.96 1

Auch Sur und Majumdar [132] benutzen den Kingschen Ofen bei ihrer Untersuchung des Co-Spektrums zwischen λ 4190 und λ 2354. Die von ihnen in Absorption gefundenen Linien sind Tab. 3 mit ⁴) bezeichnet. Außer diesen 84 bereits eingeordneten Linien erhalten sie noch folgende:

3961.006; 3604.469; 2842.388; 2663.531; 2354.825.

Schließlich sind noch die umfangreicheren Untersuchungen des Unterwasserfunkens durch Smith und Muskat [145] mit über 300 Linien und von Meggers und Walters [139] mit 350 Linien zu besprechen. Die Mehrzahl der Linien von Smith und Muskat ist bei Co I eingeordnet, andere sind als Linien des Co II erkannt, aber es bleiben noch einige Dutzend, die vermutlich zu Co I gehören, und die deshalb hierunter zusammengestellt sind.

4320.37	2811.53	2578.93	2419.13	2350.78	2276.75
3922.76	2764.19	59.41 Co II	12.88	46.58	75.90
3801.23	52.07	41.95 Co II	08.74 Co II	45.05	74.70
3485.71	45.11	25.57	2396.24	24.80	65.82 Co II
76.37	15.99	06.92	83.45 Co II	21.26	62.63
36.97	05.86	2470.28	78.62 Co II	15.95	61.81
3390.80	2694.68 Co II	64.21 Co II	73.40	13.71	37.25
83.92	80.11	41.04	71.76	2292.05 Co II	29.12
46.94	63.53 Co II	27.00	71.40	88.84	27.84
2929.52	29.98	23.63 Co II	63.53	86.25 Co II	24.16
2842.39	2590.61	22.57	54.83	83.09	04.9
					2187.29 Co II?
			Photo Sec.		81.12

Ergebnisreicher ist die Arbeit von Meggers und Walters [139]. Auch sie fanden eine Anzahl von Linien, welche damals nicht eingeordnet waren, und bei einem Teil davon ist ihnen dann, wie schon oben erwähnt, die Einordnung gelungen. Außer denjenigen Linien, deren Zugehörigkeit zu Co II sichergestellt ist, sind alle Linien von Meggers und Walters in Tab. 3 aufgeführt, wo sie durch ⁶) gekennzeichnet sind, während ⁵) die Linien von Smith und Muskat bezeichnet.

Co II. Achtvalenzelektronensystem mit Triplett- und Quintett-Termen.

Nachdem zuerst Russell [142] durch Homologiebetrachtungen drei Linien dem Co II zugeordnet hatte, hat Meggers [151] die Aufsuchung und Ordnung der Terme ernstlich in Angriff genommen; endlich hat Findlay [162] die Arbeit von Meggers fortgeführt. Er benutzte dabei Platten und weitere Messungen von Meggers, machte auch selbst Aufnahmen bis λ 1940, wobei als Normalen Linien von Silber und Kupfer (nach Shenstones Berechnung) dienen mußten, da für diesen Teil des Spektrums noch immer keine genügenden Normalen beschafft worden sind; die Messungen von Meggers ändert er so, daß sie zu diesen Normalen passen.

Der wichtigste Fortschritt aber wird dadurch gemacht, daß Findlay zwischen 3700 und 2190 den Zeemaneffekt (an 15 Linien) untersucht, wodurch er einige von
Meggers' Termbestimmungen korrigieren kann. Wie man aus der folgenden Termtabelle ersieht, sind die beobachteten g-Werte der Terme mit der Annahme Landéscher g-Werte für alle Terme verträglich. Die Ionisierungsspannung ergibt sich, in Übereinstimmung mit Russells Voraussage [143], zu 17.1 V (für den Übergang von 3d⁸ zu 3d⁷).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e- ch- et
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75
$4s^{9}F_{4}$ 4028.9 1.30 1.30 4 $n^{3}F^{0}$ 912.8 0.65 0	08
1 17 1500 105 105 105 105	67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50
$48^{3}F_{4}$ 9812.7 1.28 1.25	
$4s^{3}F_{3}$ 10708.1 1.10 1.08	
$4s^{3}F_{2}$ 11321.5 0.60 0.67 $3d^{7}(4p) 4n 4n^{5}S_{2}^{0}$ 56010.6 1.99 2	.00
$4nv^{5}D_{a}^{0}$ 61240.8 1.51 1	50
3d ⁷ (⁴ P) 4s 4s ⁵ P ₃ 17771.5 1.70 1.67 4nv ⁵ D. ⁰ 260.1 1.51 1	.50
$48^{5}P_{2}$ 18031.5 1.86 1.83 $4nv^{5}D_{1}^{0}$ 348.5(?) - 1	.50
$4s^{5}P_{1}$ 18338.5 2.48 2.50 $4nv^{5}D_{1}^{0}$ 388.1 1.50 1	.50
$4 p y^5 D_{,0} = 457.9 = 0/0 = 0$	0/0
247(4E) 4n 4n 5E 0 45197 8 1 40 1 40 40 40 5P.0 63344.1 1.67 1	.67
$5a^{(1)}4p$ $4p^{5}F_{5}$ 40157.0 1.30 1.40 $4p^{5}P_{2}^{0}$ 366.9 1.86 1	.83
$4p^{5}F_{0} = 9791 = 1.96 = 1.25 = 4p^{3}P_{0} = 615.7 = 1.33 = 1$.50
$4p_{13}^{5} = 0.46390.8 = 1.48 = 1.50$ $4p_{2}^{5} = 0.665.0 = 2.62 = 2$.50
$4p_2 \cdot p_4$ 4526 $1.02 \cdot 1.00$ $-p \cdot 1$	
$4p T_2$ 402.0 1.02 1.00 4p 5E 0 786.3 00 00	
$4p^{-}F_1$ (10.0) 1.00 1.00 $3d^{7}(4P)$ 58 58 ⁵ F. 84012.3	
$4p_2 D_3 = 100.0 = 1.01 1.00 = 0.0 (1)00 = 58^5F_4 = 584.8$	
$4p^5G^0$ 3457 197 197 58 ⁵ F ₂ 85165.3	
$4n^{5}D.^{9}$ 537 1 1.52 1.50 58 ³ F. 479.2	
$4n^{5}G.9$ 807.2 1.15 1.15 55 ⁵ F. 593.9	
4nz ⁵ D 9 8485 1.53 1.50 5s ⁵ F, 874.1	
$4nz^5D^0$ 995.1 0/0 0/0 5s ³ F ₃ 86343.8	
4p ⁵ G ⁰ 48150.7 0.92 0.92 5s ³ F ₀ 937.7	

Tabelle 4. Terme des Co II nach Findlay.

Die folgende Tabelle enthält alle von Findlay eingeordneten Linien. Bei jeder Linie ist angegeben, von wem die Einordnung stammt; dabei bedeutet M = Meggers, $M^* = Meggers$ korrigiert von Findlay, F = Findlay.

0.0	Einordnung						Einordnung			
1)	V LINE DOLL VILLEY			41199	1101	-	allowanth the sh	C DOLDARD	100	0 0 50
M	4s ⁵ P ₉ -4p ⁵ F ₄ ⁰	3621	22	100		M	483F-4nz5D.0	2786	91	9
M	4s ⁵ P ₉ -4p ⁵ F ₉ ⁰	3578	03	30	1.15	F	4p3F.0-583F.	34	68	10
M	4s ⁵ P ₁ -4p ⁵ F ₂ ⁰	55	93	10		F	4p ³ F. ⁰ -5s ³ F.	27	91	20
M	4s ⁵ P _a -4p ⁵ F ₃ ⁰	45	03	25	1	1.1	(4s ³ F4p ⁵ G. ⁰)			
M	4s ⁵ P ₂ -4p ⁵ F ₂ ⁰	17	48	10		M	4s3F-4pz5D.0	14	40	15
M	4s ⁵ P ₁ -4p ⁵ F ₁ ⁰	14	21	5		F	4p3G30-5s3F.	09	12	10
M	4s ⁵ P ₃ -4pz ⁵ D ₄ ⁰	01	73	200	1000	F	4p3G50-5s3F4	07	55	30
M	4s ⁵ P ₂ -4pz ⁵ D ₃ ⁰	3446	40	100		F	4p 5G60-5s 5F5	06	72	50
M	$4s^{5}P_{1}-4pz^{5}D_{2}^{0}$	23	85	75		F	4p3G40-5s3Fa	02	19	20
M	$4s{}^{5}P_{3}$ -4pz $^{5}D_{3}{}^{0}$	15	78	75		M	4s ³ F ₂ -4p ⁵ G ₂ ⁰	2697	02	3
M	$4s{}^{5}P_{2}$ — $4pz{}^{5}D_{2}{}^{0}$	3388	18	50		M	4s3F3-4p5G40	94	65	25
M	$4s{}^{5}P_{1}$ — $4pz{}^{5}D_{1}{}^{0}$	87	72	60		F	4p ⁵ G ₂ ⁰ -5s ⁵ F ₂	86	97	1
M	$4s{}^{5}P_{1}$ — $4pz{}^{5}D_{0}{}^{0}$	70	94	50^{2})		F	4p 5G50-5s 5F4	84	50	50
M	$4s{}^{5}P_{3}$ — $4pz{}^{5}D_{2}{}^{0}$	58	59	10		F	4p 5G40-5s 5F3	76	03	20
M	4s ⁵ P ₂ -4pz ⁵ D ₁ ⁰	52	80	30		F	4p 5G30-5s 5F2	69	89	10
M	$4 p^{3} D_{3}^{0} - 5 s^{3} F_{4}$	2943	16	30		F	4p ⁵ G ₂ ⁰ -5s ⁵ F ₁	66	82	5
M	4p ³ D ₂ ⁰ -5s ³ F ₃	30	45	10		M	$4s^{3}F_{4}$ - $4p^{5}G_{5}^{0}$	63	52	60
F	$4s^{3}F_{3}$ - $4p^{5}F_{4}^{0}$	2883	43	1		F	4pz ⁵ D ₃ ⁰ -5s ⁵ F ₄	62	64	2
F	$4p^{3}D_{2}^{0}-5s^{3}F_{2}$	80	32	3		M	4s ⁵ P ₁ -4p ⁵ S ₂ ⁰	53	68	15
F	4p ³ D ₃ ⁰ -5s ³ F ₃	70	03	3		F	$4s^{3}F_{3}$ - $4p^{5}G_{2}^{0}$	53	16	1
F	4p ³ F ₃ ⁰ -5s ³ F ₄	48	36	5		F	4pz ⁵ D ₄ ⁰ -5s ⁵ F ₅	52	36	5
F	$4s^{3}F_{2}$ -4p $^{5}F_{2}^{0}$	45	64	2		F	4pz ⁵ D ₀ ⁰ -5s ⁵ F ₁	39	26	2
M	$4s^{3}F_{3}$ — $4p^{5}F_{3}^{0}$	34	92	2		M	$4s{}^{5}P_{2}$ -4p ${}^{5}S_{2}{}^{0}$	32	22	30
M	$4s^{3}F_{4}$ - $4p^{5}F_{5}^{0}$	25	22	8	3	F	4pz ⁵ D ₁ ⁰ -5s ⁵ F ₁	29	01	0
F	4p ³ F ₂ ⁰ -5s ³ F ₃	21	63	5		F	$4 pz {}^{5}D_{2}^{0} - 5 s {}^{5}F_{2}$	26	89	10
M	$4s^{3}F_{2}$ -4p ⁵ F ₁ ⁰	18	86	1		F	4pz ⁵ D ₃ ⁰ —5s ⁵ F ₃	22	06	5
M	4s ³ F ₄ -4p ⁵ F ₄ ⁰	10	85	5		M	$4s{}^{5}P_{3}$ - $4p{}^{5}S_{2}{}^{0}$	14	37	20
M	$4s^{3}F_{3}$ - $4pz^{5}D_{4}^{0}$	07	17	2		F	4pz ⁵ D ₄ ⁰ -5s ⁵ F ₄	12	63	10
F	$4s^{3}F_{2}$ - $4pz^{5}D_{3}^{0}$	2798	92	2	16.0	F	$4 pz {}^{5}D_{3}{}^{0}-5 s {}^{5}F_{2}$	2592	90	2
F	$4s^{3}F_{3}$ - $4p^{5}F_{2}^{0}$	96	86	2		[F	[4p ⁵ F ₃ ⁰ -5s ⁵ F ₄]	[82	37]	4] ³)
F	4p ³ F ₄ ⁰ -5s ³ F ₄	93	93	20	C. And	[F	$[4p {}^{5}F_{4}^{0} - 5s {}^{5}F_{5}]$	[80	93]	5] ³)
F	4p ³ F ₃ ⁰ -5s ³ F ₃	79	82	20		M	$4s^{3}F_{3}$ - $4p^{3}G_{4}^{0}$	87	23	60
F	4p ³ F ₂ ⁰ -5s ³ F ₂	75	11	20		M	$4s^{3}F_{2}$ - $4p^{3}G_{3}^{0}$	82	27	50 ³)
F	4p3G40-5s3F4	66	85	30	1	M	$4s^{3}F_{4}$ -4p $^{3}G_{5}^{0}$	80	35	1003)
F	4s ³ F ₄ -4p ⁵ F ₃ ⁰	64	75	1		F	4p ⁵ F ₅ ⁰ -5s ⁵ F ₅	75	61	5
F	4p ³ G ₃ ⁰ —5s ³ F ₃	58	38	10	1.1.1	M	$4s^{3}F_{3}$ - $4p^{3}F_{4}^{0}$	64	04	75
F.	4s ³ F ₄ -4pz ⁵ D ₄ ⁰	38	32	1		M	$4s^{3}F_{2}$ - $4p^{3}F_{3}^{0}$	59	41	40

1) Hier bedeutet M = Meggers, F = Findlay.

²) Zeemaneffekt gemessen von Findlay.

³) Wie man aus der unrichtigen Reihenfolge der Linien ersieht (die genau nach Fin dlays Tabelle wiedergegeben ist), liegt hier ein Versehen vor. Fin dlays Einordnung $4p \, {}^{5}F^{0}$ — $5s \, {}^{5}F$ ergibt ungefähr $\nu = 38612.5$ bzw. 38634.1 in Übereinstimmung mit den ν -Werten seiner Tabelle, während zu den angegebenen Wellenlängen 2582.37 bzw. 2580.93 die Werte $\nu = 38712.5$ bzw. 38734.1 gehören. Trotz der nicht unbedeutenden Wellenlängendifferenzen gegenüber den später ausgeführten beiden Linien von Meggers rührt das Versehen offenbar daher, daß Findlay das Linienpaar 2582, 2580, welches bereits von Meggers als 2582.27 bzw. 2580.35 gemessen und als $4s \, {}^{3}F$ — $4p \, {}^{3}G^{0}$ eingeordnet war, nochmals gemessen und, infolge eines Irrtums beim Aufsuchen der ν , fälschlich neu als ${}^{5}F^{0}$ — ${}^{5}F$ -Kombination eingeordnet hat.

	Einordnung	(6)					Einordnung			
F	4p ⁵ F ₂ ⁰ -5s ⁵ F ₂	2554	09	2		M*.	4s ⁵ P ₂ -4py ⁵ D ₂ ⁰	2312	55	10
F	4p ⁵ F ₃ ⁰ -5s ⁵ F ₃	50	69	5		M*	4s ⁵ F ₃ -4p ⁵ G ₄ ⁰	11	62	50
F	4p ⁵ F ₄ ⁰ -5s ⁵ F ₄	49	90	5		M*	$\left\{ 4s^{5}P_{2} - 4py^{5}D_{1}^{0} \right\}$	07	86	75
M	$4s^{3}F_{3}$ — $4p^{3}G_{3}^{0}$	41	95	50			$[4s^{\circ}F_4 - 4p^{\circ}G_5^{\circ}]$	01	40	15
M	$4s^{3}F_{4}$ - $4p^{3}G_{4}^{0}$	28	61	50		M ⁺	$4s^{\circ}F_2 - 4p^{\circ}G_2^{\circ}$	01	42	10
M	$4s^{3}F_{2}$ - $4p^{3}F_{2}^{0}$	24	98	80 1)		M ⁺	$4s^{\circ}P_{3}$ — $4py^{\circ}D_{3}^{\circ}$	2299	74	10
M	4s ³ F ₃ -4p ³ F ₃ ⁰	19	82	60		M ⁺	$4s^{\circ}P_3 - 4py^{\circ}D_2^{\circ}$	90	14	20
M	4s ³ F ₄ -4p ³ F ₄ ⁰	06	47	70		M*	$48^{\circ}\Gamma_3 - 4p^{\circ}G_3^{\circ}$	99	41	40
M	4s ³ F ₂ -4p ³ D ₃ ⁰	2487	43	4		M*	$48^{5}F_{3}$ $4p_{5}G_{0}$	86	17	150
M	4s ³ F ₃ -4p ³ F ₂ ⁰	86	45	35		M*	$45^{4}F_{4}^{-4}p^{-4}G_{6}^{-4}$	83	54	20
M	4s ³ F ₄ -4p ³ G ₃ ⁰	85	36	10		M*	$4s^{5}F_{-}4n^{5}G_{0}^{0}$	80	98	4
M	4s ³ F ₄ -4p ³ F ₃ ⁰	64	20	30		M*	$4s^{5}F_{3} - 4n^{5}G_{2}^{0}$	72	28	20
M	4s ³ F ₃ -4p ³ D ₃ ⁰	00	01	30		M*	48 ⁵ F4n ⁵ G. ⁰	65	76	6
M	4s°F ₃ -4p°F ₄ °	49	15	10		M*	4s ⁵ F4p ⁵ G. ⁰	48	68	8
M	4s ³ F ₂ -4p ³ D ₂ ⁰	43	77	40		M*	485F4p3G.0	45	13	100
M	4s°F ₂ -4p°F ₃ °	36	98	10		M*	4s ⁵ F4p ³ G. ⁰	32	08	50
M	45°F4-4p°F5°	28	29	10 1)		M*	485P,-4p5P.0	20	14	15
M	4s°F1-4p°F2°	25	01	10-)		M*	4s ⁵ F ₀ -4p ³ G ₀ ⁰	17	30	4
M	4s°F4-4p°F4	17	66	40 1)		M*	4s ⁵ F ₃ -4p ³ F ₄ ⁰	14	80	20
M	$4s^{a}F_{2}$ $-4p^{a}D_{1}^{a}$	16	90	30		M*	4s ⁵ F ₅ -4p ³ G ₅ ⁰	11	44	. 30
M	45°F3-4p°F3°	14	06	40 1)		M*	4s ⁵ P ₁ -4p ³ P ₂ ⁰	07	93	50
M	4s°F2-4p°F2°	08	76	20 -)		M*	4s ⁵ P ₂ -4p ⁵ P ₃ ⁰	06	21	75
M	$4s^{3}F_{3}$ - $4p^{3}D_{2}^{0}$	07	67	20		M*	4s ⁵ F ₄ -4p ³ G ₄ ⁰	05	88	10
M	4s°F ₁ -4p°F ₁ °	04	17	20 1)		M*	4s ⁵ P ₁ -4p ⁵ P ₁ ⁰	05	53	20
M	4s°F ₄ -4p°D ₃ °	2397	38	60		M*	$4s^{5}P_{2}$ -4p ⁵ P ₂ ⁰	05	09	20
M	4s ^s F ₃ -4pz ^s D ₄ ^o	93	91	10		M*	a ³ F ₃ -4 p z ⁵ D ₄ ⁰	03	44	5
M	4s°F ₂ -4p°F ₁ °	89	54	40 1)		M*	a ³ F ₄ -4p ⁵ F ₄ ⁰	02	96	100
M	4s°F ₅ —4p°F ₅ °	88	90	100 -)		M*	$4s{}^{5}F_{2}$ - $4p{}^{3}F_{3}{}^{0}$	00	42	25
M	$4s^{\circ}F_{3} - 4p^{\circ}F_{2}^{\circ}$	80	31	80		M*	$4s{}^{5}F_{3}$ - $4p{}^{3}G_{3}{}^{0}$	2198	30	20
M	4s°F ₄ —4p°F ₃ °	00	40	100	17	M*	4s ⁵ P ₃ -4p ⁵ P ₃ ⁰	93	61	100
M	4s°F ₅ -4p°F ₄ °	78	62	100		M*	$4s{}^{5}P_{3}$ - $4p{}^{5}P_{2}{}^{0}$	92	51	50
M	$4s F_2 - 4p z D_3^0$	75	19	10	13	M*	4s ⁵ P ₂ -4p ⁵ P ₁ ⁰	90	69	75
M	$4s^{\circ}F_4$ — $4pz^{\circ}D_4^{\circ}$	63	179	10.1)		M*	$4s^{5}F_{4}$ - $4p^{3}F_{4}^{0}$	89	00	25
M ⁺	$4s^{\circ}F_1 - 4pz^{\circ}D_2^{\circ}$	50	03	10-)	173	M*	$4s{}^{5}F_{1}$ - $4p{}^{3}F_{2}{}^{0}$	87	05	26
M	$48^{5}F_{3} - 4pz^{5}D_{3}^{9}$	03	40	20		F	$4s{}^{5}F_{3}$ - $4p{}^{3}F_{3}{}^{0}$	81	73	10
M	$4s^{\circ}F_2 - 4pz^{\circ}D_2^{\circ}$	41	41	05 1)	1.51	M*	$4s{}^{5}P_{3}$ - $4p{}^{3}P_{2}{}^{0}$	80	61	20
M*	$4s \circ F_1 - 4p z \circ D_1^\circ$	44	26	25 1)		M*	$4s^{5}F_{2}$ - $4p^{3}F_{2}^{0}$	74	94	2
M ⁺	$4s F_1 - 4p z D_0^\circ$	30	24	20 -)	10	F	a ³ F ₄ -4p ⁵ F ₃ ⁰	74	04	D
M ⁺	$4s^{\circ}F_2 - 4pz^{\circ}D_1^{\circ}$	30	31	30		M*	·4s ⁵ F ₅ -4p ³ G ₄ ⁰	13	33	60
M ⁺	$4s^{5}P_{1} - 4py^{5}D_{2}^{5}$	29	12	10		M*	4s *F4-4p *G30	12	90	
M*	$4s^{\circ}F_5 - 4pz^{\circ}D_4^{\circ}$	20	40	20		M*	a ^s F ₄ -4pz ^s D ₄	00	10	-
M+	$4s^{\circ}F_{3}$ $-4pz^{\circ}D_{2}^{\circ}$	20	10	20		M*	$48^{\circ}F_{5} - 4p^{\circ}F_{4}^{\circ}$	00	90	40
M*	$\begin{bmatrix} 4s {}^{5}F_{4} - 4p z {}^{5}D_{3} \\ 4s {}^{5}P_{1} - 4p y {}^{5}D_{1} \end{bmatrix}$	24	32	40		M*	$ \begin{bmatrix} 4s {}^{5}F_{4} - 4p {}^{3}F_{3} \\ 4s {}^{5}F_{3} - 4p {}^{3}F_{2} \\ \end{bmatrix} $	56	69	10
M*	$4s {}^{5}P_{1} - 4p y {}^{5}D_{0}{}^{0}$	18	43	81)		M*	a ³ F ₂ —4 p ⁵ G ₃ ⁰	47	38	2
M*	4s ⁵ F ₁ -4p ⁵ G ₂ ⁰	14	99	30		M*	4s ⁵ F ₂ -4p ³ D ₃ ⁰	46	99	10
M*	$4s {}^{5}F_{2} - 4p {}^{5}G_{3}{}^{0}$	14	05	40		M*	a ³ F ₂ -4p ⁵ G ₂ ⁰	36	50	4
M*	4s ⁵ P ₂ -4py ⁵ D ₃ ⁰	13	60	8		M*	a ³ F ₃ -4p ⁵ G ₄ ⁰	33	47	10

Die mit 1) bezeichneten Linien sind von Findlay auf Zeemaneffekt untersucht.

-	-				
		-	 -	а.	а.
		n	-		т
	×.	c.	42		
	-	~			

Einordnung		- and				particult			
M*	4s ⁵ F ₃ -4p ³ D ₃ ⁰	2129	17	1.	M*	a ³ F ₂ -4p ³ F ₃ ⁰	2049	19	2
M*	4s ⁵ F ₁ -4p ³ D ₂ ⁰	25	87	3	M*	a ³ F _a -4p ³ G _a ⁰	36	61	3
M*	a ³ F ₃ -4p ⁵ G ₃ ⁰	17	95	8	M*	a ³ F ₂ -4p ³ F ₂ ⁰	27	08	20
M*	4s ⁵ F ₂ -4p ³ D ₂ ⁰	14	40	2	M*	a 3F4-4p 3G40	25	80	10
M*	a ³ F ₄ -4p ⁵ G ₅ ⁰	11	46	50	M*	a 3F3-4p 3F30	22	35	20
M*	4s ⁵ F ₁ -4p ³ D ₁ ⁰	05	49	2	F	a 3F4-4p 3F40	11	52	5
M*	4s ⁵ F ₄ -4p ³ D ₃ ⁰	05	34	3	F	a ³ F ₃ -4p ³ F ₂ ⁰	00	80	10
M*	4s ⁵ F ₃ -4p ³ D ₂ ⁰	2097	12	5	F	a ³ F ₄ -4p ³ G ₃ ⁰	1997	93	3
M*	4s ⁵ F ₂ -4p ³ D ₁ ⁰	94	24	1	F	a ³ F ₄ -4p ³ F ₃ ⁰	84	21	1
M*	a3F4-4p5G40	91	09	6	F	a ³ F ₂ -4p ³ D ₂ ⁰	74	38	1
M*	a ³ F ₃ -4p ³ G ₄ ⁰	65	55	50	F	a ³ F ₂ -4p ³ D ₁ ⁰	56	78	30
M*	a ³ F ₂ -4p ³ G ₃ ⁰	63	80	35	F	a ³ F ₃ -4p ³ D ₂ ⁰	49	46	20
M*	a3F4-4p3G50	58	84	30	F	a ³ F ₄ -4p ³ D ₃ ⁰	40	64	50
F	a 3F. 4p 3F.0	50	75	10					

Von höheren Ionisationsstufen ist nur CoV bekannt.

Co V. Fünfvalenzelektronensystem mit Quartett- und Sextett-Formen.

In einer Arbeit, die dem Vergleich der "isoelektronischen" Spektra von VI, CrII, Mn III, Fe IV, COV und NiVI gewidmet ist, gibt Gilroy [173] u. a. für Linien

Konfigura- tion	Be- zeich- nung	Termwert	Konfigura- tion	Be- zeich- nung	Termwert	Konfigura- tion	Be- zeich- nung	Termwert
3d44d	⁶ G ₇	337.287 929	3d44p	⁴ P ₃ ⁰	431.976	3d44p	⁵ F ₃ ⁰	438.762 573
	⁶ G ₆	338.216 785		⁶ P ₃ ⁰	432.622		⁶ F ₂ ⁰	439.335 376
	⁶ G ₅	339.001 631		⁴ P ₂ ⁰	432.757		⁶ F ₁ ⁰	439.711
	⁶ G ₄	339.632 425	12 12	⁶ D ₄ ⁰	432.934	3d44s	⁴ D ₄	501.264 .626
	⁶ G ₃	340.057 312		⁴ P ₁ ⁰	433.306		⁴ D ₃	501.890 .428
	⁶ G ₂	340.369		⁶ P ₂ ⁰	433.437	3 - 12	⁴ D ₂	502.318 265
3d44p	4F50	426.409		⁶ D ₃ ⁰	434.130		⁴ D ₁	502.583
12.2	4F40	426.683		⁶ D ₂ ⁰	434.977	2 190%	⁶ D ₅	509.796
049 10	4F30	426.880		⁶ D ₁ ⁰	435.463		⁶ D ₄	510.647 677
	4F20	427.025		6F60	435.484	1 Date Parts	⁶ D ₃	511.324 524
3d44p	6D50	431.194	a name in	6F50	1.374 436.858		$^{6}\mathrm{D}_{2}$	511.848 314
	6P40	431.488	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6F40	1.073 437.931		$^{6}\mathrm{D}_{1}$	512.162
and a grade of the		and the second	Then the factor	(instant)	831	3d5	⁶ S ₃	673.859

Tabelle 6. Terme des Co V nach Gilroy.

Die inneren Quantenzahlen wurden um 1/2 erhöht.

des Co V zwischen λ 1488 und λ 412 Wellenlängenmessungen und Einordnung, die in Tab. 7 mitgeteilt werden, während Tab. 6 die von der Verfasserin aufgefundenen Terme enthält. Der theoretische Inhalt der Arbeit (Gesetzmäßigkeiten in der Lage korrespondierender Terme, niedergelegt in dem bekannten Diagramm von Gibbs und White, sowie Prüfung des Gesetzes der regulären und irregulären Dubletts) ist hier nicht zu besprechen.

Einordnung				Einordnung			
3d44s 3d44p	- ALL SALE	a ini	i	3d44s 3d44p	1111-111-111-11		i
4D_4P.01)	1488	73	20	⁶ D ₂ -6P ₂ ⁰	1275	52	2
4D_4P_0	86	02	25	⁶ D ₆ — ⁶ D ₆ ⁰	72	23	20
4D,-4P,0	82	91	20	⁶ D ₃ — ⁶ P ₃ ⁰	70	70	20
4D4-4P20	82	62	25	⁶ D ₁ -6P ₂ ⁰	70	44	tr.
4D4P_0	76	65	30	$^{6}D_{4}-^{6}P_{4}^{0}$. 63	28	5
4D4P_0	68	98	35	⁶ D ₅ ⁶ D ₆ ⁰	58	61	6
4D ₂ -4P ₃ ⁰	59	77	15	tenti a puanti cangra	and the		
6D ₃ -6F ₂ 0	1389	11	32	3d34s2 3d34sp	Harris Canto		
6D1-6F10	80	21	10	4F4G.0	1246	91	8
⁶ D ₂ -6F ₃ ⁰	79	05	10	4F4G.0	39	85	2
⁶ D ₃ — ⁶ F ₃ ⁰	78	12	25	4F-4G-0	36	95	20
⁶ D ₄ — ⁶ F ₄ ⁰	75	20	30	4F4G.0	34	55	2
6D1-6F20	73	09	30	4F4G.0	31	73	15
⁶ D ₅ — ⁶ F ₅ ⁰	71	01	10	4F4G.0	28	19	8
${}^{4}D_{4} - {}^{4}F_{4}^{0}$	69	30	4	4F4G.0	26	31	3
⁶ D ₂ -6F ₃ ⁰	68	24	30	-2 -3	mablenov	1000	
${}^{4}\text{D}_{4}$ - ${}^{4}\text{F}_{5}{}^{0}$	64	17	30	9.444 9.4444		naoHa	
6D3-6F40	62	46	30	Su-4p Su-4u	1000	00	-
${}^{4}\text{D}_{3}$ - ${}^{4}\text{F}_{3}{}^{0}$	61	32	20	°F6°-6G6	1028	08	10
${}^{4}\text{D}_{3}$ — ${}^{4}\text{F}_{4}{}^{0}$	57	67	30	°F5°°G5	21	14	10
${}^{4}\text{D}_{2}$ $-{}^{4}\text{F}_{2}{}^{0}$	56	09	tr.	6F60_6G7	18	30	10
6D4-6F50	55	20	40	°F40-°G4	17	45	10
${}^{4}D_{9}-{}^{4}F_{3}{}^{0}$	53	42	15	⁶ F ₅ ⁰ — ⁶ G ₆	13	80	10
4D1-4F10	51	22	6	⁶ F ₄ ⁰ — ⁶ G ₅	10	94	10
⁶ D ₅ -6F ₆ ⁰	45	67	50	°F3°-°G4	09	02	10
⁶ D ₃ -6D ₃ ⁰	01	12	35	6F20-6G3	07	01	10
⁶ D ₂ -6D ₃ ⁰	1295	87	40	6F10-6G3	06	86	4
6D4-6D40	95	55	25		o otalion	IT TAL	
⁶ D ₅ - ⁶ D ₅ ⁰	86	95	28	3d5 3d44p	1.1.1.1.1	1 State	
6D3-6P20	84	00	15	${}^{6}S_{3} - {}^{6}P_{2}{}^{0}$	415	94	1
6D4-6P30	81	63	30	6S3-6P30	14	52	5
6D6P.0	77	01	50	⁶ S ₃ — ⁶ P ₄ ⁰	12	59	10

122.1	1.1	1.0	-	0.	37
Ta	bel	le	6.	- U0	V.

Zur Theorie vergleiche man die Arbeiten von Catalán [119, 122] und von Laporte [130).

1) Die inneren Quantenzahlen sind um 1/2 erhöht.

Mit dem Zeemaneffekt befassen sich nur zwei Arbeiten, die schon oben besprochen worden sind: Catalán und Bechert [120] diskutieren ältere Messungen von Rybár [58], und Findlay [162] untersucht einige Linien des Funkenspektrums; neuere Messungen für CoI fehlen anscheinend.

Auch über den Starkeffekt, der bereits von Takamine [90] genauer untersucht war, ist nicht viel Neues zu berichten: er wird von Nagaoka und Sugiura [113] in leider sehr summarischer Weise behandelt. Sie sagen, bei Kobalt seien die Linien in verschiedener Art beeinflußt, so daß sich keine allgemeine Regel geben lasse; die Spaltungen seien komplexer als bei Eisen und Nickel. Für vier Linien (λ 4132.30; 4072; 4045.56 und 3664.7) geben die Autoren Zahlen; sie finden die parallele Komponente etwas weniger verschoben. Sodann beobachten Kimura und Nakamura [105] für verschiedene Elemente die Verbreiterung der Linien im Starkstrombogen und suchen sie in Beziehung zu setzen zum Starkeffekt. Bei Kobalt gelingt ihnen das jedoch nicht, da die Linien scharf bleiben. Ferner verfolgen Nagaoka, Nukiyama und Futugami [140] den zeitlichen Verlauf einer kondensierten Funkenentladung (nach der Methode von Schuster und Hemsalech) und geben auch für Kobalt eine tabellarische Übersicht des Verhaltens einer Anzahl Linien. Leider gibt ihr Begleittext nur Andeutungen; genauere Beobachtungen werden in Aussicht gestellt.

Merrill [104] untersucht die Emissionsverteilung im Bogen und teilt die Linien in fünf Klassen ein je nach der Änderung ihrer Intensität vom negativen zum positiven Pol. Es zeigt sich, daß eine Beziehung zu den Temperaturklassen von King besteht, indem die Linien durchschnittlich desto reichlicher verstärkt werden, zu je höherer Temperaturklasse sie gehören.

Wie schon oben S. 496 erwähnt, hat Casper [181] das Spektrum des Kobaltbogens bei vermindertem und normalem Druck im Gebiet λ 4698 bis 3287 mit einer großen Bonner Konkavgitter aufgenommen und ausgemessen. Er fand bei vermindertem Druck eine geringere Aufspaltung der Vielfachterme als bei normalem Druck. Ferner gibt er eine Klassifizierung nach dem Aussehen der Linien und eine Gruppeneinteilung nach der Veränderung der Schwingungszahlen bei Druckänderung¹) und kommt so zu dem Resultat, daß der Kobaltbogen als Normalenlichtquelle ungeeignet sei. Ein Vergleich mit den Wellenlängen aus dem Sonnenatlas (Rowland's Preliminary Table rev. Washington 1928) verlief ergebnislos.

Neuere Untersuchungen der Feinstruktur liegen anscheinend nicht vor; Ruark und Chenault [124] geben lediglich eine Zusammenstellung und Diskussion bekannter Resultate (für Co ist nur die Linie 4629.5 nach Wali-Mohammad [62] als komplex bekannt).

Davidson und Stratton [137] besprechen das Auftreten der Multipletts im Spektrum der Chromosphäre.

Über Bandenspektra von Kobalt (vgl. dieses Handbuch Bd. V p. 335 [1910]) scheint seither nichts veröffentlicht zu sein.

¹) Man vergleiche dieses Handbuch Bd. **VII** p. 414 f. (1924), wo eine analoge Gruppierung nach Wellenlängenänderungen besprochen ist.

Lediglich erwähnt werde eine Anzahl Arbeiten von verschiedenem Wert, welche sich, meist unter chemischen Gesichtspunkten, mit der Absorption in Salzlösungen und Kristallen befassen: Hill und Howell [107], Brode [147], Brode und Morton [148], Vaillant [159] und [169], Châtelet-Lavollay [171], Samuel [175] und Vaillant [177].

Röntgenspektrum.

Das von Siegbahn und Thoraeus [115] neu aufgefundene L-Emissionsspektrum wurde von Kellström [156, 157] und Howe [155, 163] mittels Strichgittern untersucht. Dabei schloß Kellström seine Werte an Kristallmessungen an (man vgl. den entsprechenden Abschnitt bei Calcium), während Howe absolut mißt.

Geeignete Kristallgitter liefern in diesem Wellenlängenbereich eine größere Dispersion, so daß Thoraeus [133] und Karlsson [164] einige weitere Linien angeben konnten. Die Ergebnisse dieser Messungen bringt Tab. 8.

Mit Kristall Mit Liniengitter Bezeich-Siegbahn und Übergänge Thoraeus Kellström Howe Karlsson nung Thoraeus [155, 163] [115] [133] [164] [156, 157] 18.20 18.25 Z 18.28 18.34 LIII MI 17.86 17.77 $L_{II} M_{I}$ n 16.07 15.9415.9315.94 15.99 LIII MIV.V a1. 2 15.6215.63 15.6415..80 LII MIV β_1 14.24 LI MILLII \$3.4

Tabelle 8. Emission, L-Reihe. Wellenlängen in ÅE.

Mit der K-Emission beschäftigen sich eine größere Anzahl Arbeiten. K. Lang [110a] und Eriksson [150] geben Präzisionsmessungen, von denen die letztgenannten wenigstens noch in der ersten Dezimale richtig sein dürften. Die Übereinstimmung beider erstreckt sich auf vier Stellen. — Daran angeschlossen sind Untersuchungen schwächerer Linien von Ortner [141], Beuthe [160] und Kawata [165]. Diese Messungen sind in Tab. 9 zusammengestellt. Siegbahn und Ray [114] geben noch für den Wellenlängenabstand des $K_{a_{12}}$ -Dubletts den Wert 4.19 XE an, für die Linienbreite $a_1: 2.33, a_2: 1.79, a_{3, 4}: 1.58$ XE.

Es liegen ferner drei Untersuchungen über Linienstruktur vor. Seljakow, Krasnikow und Stellezky [144] geben an, daß die K_{a_i} -Linie eine Verbreiterung nach der langwelligen Seite zeigt, gleichzeitig mit dem Auftreten der β' -Linie. Nach Dolejšek und Filčaková [153] ist β' breit, zeigt keine Verschiebung mit der chemischen Bindung und kann somit nicht dem Übergang KM_{II} entsprechen. Zahlenangaben fehlen leider. Valasek [170] findet ebenso keine Struktur trotz größter Auflösung.

Die sorgfältigen Intensitätsmessungen nach photographischer Methode innerhalb der K-Reihe von Meyer [158] sind in Tab. 9 mit aufgenommen.

Tabelle 9.

Messungen mit Kristallgitter.

Wellenlängen in XE, bezogen auf Kalkspat: $d_{18}^{0} = 3029.45$ XE, Emission, K-Reihe.

Übergänge	Bezeich- nung	i ¹)	Lang [110a]	Ortner [141]	Eriksson [150]	Beuthe [160]	Kawata [165]
KLar		53.2	1789.48	_	1789,187	_	the Laber
KLII	a,	100	1785.28	1012500	1785.287	_	7.091
KM _I ?	n	[00]	all book		_	1641.7	PH HILL CAR
Funkenl.	β	[00]		1620.3	1620.11	- 17	for a month
KM _{II} , III	β_1	19.1	1617.13	[1617.13]2)	1617.436		[1617.13] ²)
Funkenl.	β''	[00]	Nort-No		init-stig	(βy)	1610.14
KMIV V	Br	0.23	THE ROAD	ALL DOMES	1605.62	1603.4	1605.4
Funkenl.	β'''	[00]	bd and	Alert - Cold	-	1000000 100	1602.68

Arbeiten über die L-Absorption mit Kristall- oder Strichgitter liegen noch nicht vor. Dagegen wurden folgende Werte für die K-Absorptionskante gefunden:

Dolejšek und Pestrekov [154]	1604.4
Åse (nach Siegbahn, Spektrosk. d. Röntgenstr.	
2. Aufl., p. 265)	1604.0
Kievit und Lindsay [166, 167]	1604.3 (XE)

also in recht guter Übereinstimmung. Auch Valouch [178] gibt für metallisches Co 1604.4, für CoCl₂ · 6 H₂O dagegen in wässeriger Lösung 1602.2, in alkoholischer Lösung 1602.5, doch ohne Angaben, ob die Meßgenauigkeit diese Differenzen überschreitet.

Schließlich finden Kievit und Lindsay [167] eine ausgeprägte Sekundärabsorption. Sie stellen dabei von der langwelligen Seite kommend auf den Beginn der Schwärzungsänderung ein. Ihre Ergebnisse finden sich in Tab. 10.

The	h al	1	3.0	<u>ــــــــــــــــــــــــــــــــــــ</u>
1.3	nei	16		
	0.01	40.		r

Sekundäre K-Absorptionskanten bei reinem Element nach Kievit und Lindsay [167].

NI CAN	Hamthanta	Nebenkanten							
	Hauptkante	Ι	п	III	IV				
λ	1604.3	1601.9	1595.4	1586.6	1557.0				
$\Delta \frac{\nu}{R}$	_	0.86	3.17	6.32	17.25				
ΔV	-	11.6	43	152	234				

Levi [112], Thomas [126, 127], Davies und Horton [129], sowie Andrewes, Davies und Horton [128] ermitteln "kritische Potentiale" weicher Strahlung, auf die aber hier nicht weiter eingegangen werden soll, vgl. die Bemerkung bei Kohlenstoff.

1) Nach Meyer [158]; die Werte in [] nur als ungefährer Anhalt.

²) Nach Siegbahn und Dolejšek [103].

Eine Zusammenstellung der Niveauwerte nach Siegbahn bringt Tab. 11. — Für die Linien gelten die Siegbahnschen Bezeichnungen, für die Niveaus die nach Bohr und Coster.

Röntgenniveau	K	L _{II}	LIII	MI	M _{11,111}	$M_{1V,V}$
Opt. Symbol	$1 \ {}^{2}S_{\frac{1}{2}}$	$2 \ ^{2}P_{\frac{1}{2}}$	2 ² P ₃	3 ² S ₁	$3 \ ^{2}P_{\frac{1}{2},\frac{3}{2}}$	3 ² D ₃ .§
v R	568.1 ²)	58.8	57.7	7.6	4.7	0.5

Tabelle 11.

Energiewerte des Röntgenniveaus nach Siegbahn¹).

1) Spektroskopie d. Röntgenstr. 2. Aufl. p. 348-349. Berlin 1931.

²) Experimentell. Die übrigen berechnet.

Abgeschlossen 15. 6. 1932.

Chrom (Cr = 52.01, Z = 24).

Isotopen (50, 52, 53, 54).

Nachtrag zur Literatur Bd. VII.

[100] N. Lockyer and F. E. Baxandall, Enhanced lines of titanium, iron and chromium in the Fraunhofer spectrum. Monthly Not. 65 App. 1 p. 2-14 (1904).

[101] H. Gieseler, Serienzusammenhänge im Bogenspektrum des Chroms. Ann. d. Phys. (4) 69 p. 147-160 (1922).

[102] A. de Gramont, Raies ultimes et séries spectrales. C. R. 175 p. 1025-1030 (1922).

[103] A. de Gramont, Sur l'emploi de l'annalyse spectrographique en métallurgie. Rev. de métallurgie **19** p. 90-100 (1922).

[104] C. C. Kiess, H. K. Kiess, Series regularities in the arc spectrum of chromium. Science (N. S.) 56 p. 666 (1922).

[105] A. Sommerfeld und W. Heisenberg, Die Intensität der Mehrfachlinien und ihrer Zeemankomponenten. Zs. f. Phys. 11 p. 131-154 (1922).

Literatur ab 1923 (2. Fortsetzung).

[106] H. D. Babcock, The Zeeman effect for iron, chromium and vanadium and determination of e/m. Phys. Rev. (2) 22 p. 201 (1923).

[107] H. D. Babcock, A determination of e/m from measurements of the Zeeman effect. Astrophys. J. 58 p. 149-163 (1923).

[108] M. A. Catalán, Sur la structure des spectres d'arc des éléments des colonnes VI et VII de la table périodique. C. R. 176 p. 84—85 (1923).

[109] M. A. Catalán, Séries spectrales et potentiels d'ionisation du chrome et du molybdène.
 C. R. 176 p. 216-217 (1923).

[110] M. A. Catalán, Sur la structure des spectres d'arc du molybdène, du sélénium et du chrome C. R. 176 p. 247-248 (1923).

[111] M. A. Catalán, Séries spectrales et potentiels d'ionisation et de résonance du chrome et du molybdène. C. R. 176 p. 1063-1065 (1923).

[112] M. A. Catalán, Estructura del espectro del átomo neutro del cromo. An. Soc. Españ. 21 p. 84—125 (1923). Ref. Ber. 4 p. 1252 (1923).

[113] M. A. Catalán, Series and other regularities in the spectrum of manganese. Phil. Trans. A 223 p. 127-173 (1923).

[114] F. Croze, Sur les rapports des raies ultimes et des raies de résonance dans les spectres qui comprennent plusieurs systèmes de séries. C. R. 177 p. 1285—1287 (1923).

[115] A. de Gramont, Observations sur la structure du spectre de chrome. C. R. 176 p. 216-217 (1923).

[116] J. Kettmann, Über die Intensität von Röntgenspectrallinien bei höheren Spannungen. Zs. f. Phys. 18 p. 359-371 (1923).

[117] M. Kimura and G. Nakamura, The broadening of spectral lines caused by increased current density and their Stark effects. Jap. J. Phys. 2 p. 61-75 (1923).

[118] A. Landé, Termstruktur und Zeemaneffekt der Multipletts. Zs. f. Phys. 15 p. 89-105 (1923).

[118a] A. B. McLay, Ultraviolet spectrum of chromium. Trans. Canada (3) 17 III p. 137-139 (1923).

[119] A. Sommerfeld, Über die Deutung verwickelter Spektren (Mn, Cr usw.) nach der Methode der inneren Quantenzahlen. Ann. der Phys. (4) 70 p. 32-62 (1923).

[120] G. Wentzel, Bemerkungen über Serienspektren, an deren Emission mehr als ein Elektron beteiligt ist. Phys. Zs. **24** p. 104—109 (1923).

[121] E. v. Angerer und G. Joos, Die Absorptionsspektren der Elemente der Eisengruppe. Ann. der Phys. (4) 74 p. 743-756 (1924).

[122] R. T. Birge, Spectral series of divalent elements. J. Opt. Soc. Amer. 8 p. 233-243 (1924).

[123] K. Chamberlain, Fine structure of X-ray absorption edges. Nature 114 p. 500-501 (1924).

[124] D. Coster, Über die Absorptionsspektren im Röntgengebiet. Zs. f. Phys. 25 p. 83-98 (1924).

[125] H. Gieseler, Das Bogenspektrum des Chroms. Zs. f. Phys. 22 p. 228-244 (1924).

[126] H. Gieseler und W. Grotrian, Die Absorptionsspektren von Chrom- und Eisendampf. Zs. f. Phys. 22 p. 245-260 (1924).

[127] E. O. Hulburt, The absorption lines in the spectrum of the metallic spark in water. Phys. Rev. (2) **24** p. 129-133 (1924).

[128] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Jap. J. Phys. **3** p. 197-215 (1924).

[129] A. S. King, The electric furnace spectra of vanadium and chromium in the ultra-violet. Astrophys. J. **60** p. 282-300 (1924).

[130] R. J. Lang, On the ultra-violet spark spectra of some of the elements. Phil. Trans. A 224 371-419 (1924).

[131] M. Levi, On the characteristic X-rays from light elements. Trans. Canada (3) 18 III p. 159-176 (1924).

[132] W. F. Meggers, C. C. Kiess, and F. M. Walters, The displacement law of arc and spark spectra. J. Opt. Soc. Amer. 9 p. 355-374 (1924).

[133] R. A. Millikan and J. S. Bowen, Extreme ultraviolet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[134] H. Nagaoka and Y. Sugiura, Distribution of electric field in metal arcs of Jap. J. Phys. 3 p. 47-73 (1924).

[135] M. Siegbahn and B. B. Ray, On the irregularity of the K α doublets in the elements of lower atomic number. The spark lines of copper. Arkiv f. Mat. Astr. o. Fys. **18** No. 19 (1924).

[136] L. et E. Bloch, Nouvelles recherches sur quelques spectres d'étincelle dans la région de Schumann. J. de Phys. et le Radium (6) 6 p. 154-166 (1925).

[137] K. Chamberlain, Fine structure of certain X-ray absorption edges. Phys. Rev. (2) 26 p. 525-537 (1925).

[138] R. Frerichs, Intensitätsmessungen in Multipletts. Zs. f. Phys. 31 p. 305-310, Ann. d. Phys. (4) 81 p. 807-845 (1925).

[139] F. Hund, Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. Zs. f. Phys. 33 p. 345-371 (1925).

[140] C. C. Kiess, An analysis of the arc and spark spectra of chromium. J. Opt. Soc. Amer. 10 p. 287 (1925).

[141] J. C. McLennan and A. B. McLay, Absorption spectra of various elements in the ultraviolet. Trans. Canada (3) **19** III p. 89-111 (1925).

[142] A. E. Lindh, Über die K-Röntgenabsorptionsspektra der Elemente Si, Ti, V, Cr, Mn und Fe. Zs. f. Phys. **31** p. 210-218 (1925).

Kayser u. Konen, Spektroskopie. VIII.

[143] N. Seljakow und A. Krasnikow, Ein neues K β_1 -Dublett der Elemente Mn und Cr. Zs. f. Phys. **33** p. 601-605 (1925).

[144] R. Thoraeus and M. Siegbahn, A high-vacuum spectrograph for X-ray measurements and some preliminary results. Ark. f. Mat. Astron. och Fys. (A) **19** p. 9 (1925).

[145] W. C. van Geel, Intensitäten der Zeemankomponenten der Mehrfachlinien. Zs. f. Phys. 33 p. 836—842 (1925).

[146] W. F. Meggers, The periodic structural regularities in spectra as related to the periodic law of the chemical elements. Proc. Nat. Acad. Sc. 11 p. 43-47 (1925).

[147] H. N. Russell, A list of ultimate and penultimate lines of astrophysical interest. Astrophys. J. 61 p. 223-283 (1925).

[148] H. Schmidt-Reps, Über das ultrarote Emissionsvermögen einiger Oxyde. Zs. f. techn. Phys. 6 p. 322-324 (1925).

[149] U. Andrewes, A. C. Davies and F. Horton, The soft X-ray absorption limits of certain elements. Proc. Roy. Soc. A **110** p. 64–91 (1926).

[150] A. C. Davies and F. Horton, Critical potentials and X-ray term values. Phil. Mag. (7) 2 p. 1253-1263 (1926).

[151] R. C. Gibbs and H. E. White, Extension of doublet laws in the first long period to chromium and manganese. Proc. Nat. Acad. **12** p. 675-677 (1926).

[152] C. C. Kiess and O. Laporte, Displaced series in the spectrum of chromium. Science (N.S.) 63 p. 234-236 (1926).

[153] R. J. Lang, Series spectra of the first long period. Nat. 118 p. 119 (1926).

[154] J. Schrör, Beitrag zur Messung von Röntgennormalen. Ann. d. Phys. (4) 80 p. 297-304 (1926).

[155] H. Schüler, Über elektrische Anregung von Metalldämpfen im Kingschen Widerstandsofen. Zs. f. Phys. 37 p. 728-731 (1926).

[155a] R. W. Zumstein, The absorption spectra of tellurium, bismuth, chromium and copper ... Phys. Rev. (2) 27 562-567 (1926).

[156] R. Thoraeus, The X-ray spectra of the lower elements Part I. Phil. Mag. (7) 1 p. 312-321 (1926).

[157] R. Thoraeus, The X-ray spectra of the lower elements II. Phil. Mag. (7) 2 p. 1007-1018 (1926).

[158] M. J. Druyvesteyn, Das Röntgenspektrum zweiter Art. Zs. f. Phys. 43 p. 707-725 (1927).

[159] R. C. Gibbs and H. E. White, Multiplets in two electron systems of the first long period. Phys. Rev. (2) 29 p. 426-432 (1927).

[160] R. C. Gibbs and H. E. White, Multiplets in three electron systems of the first long period. Phys. Rev. (2) 29 p. 655-662 (1927).

[161] R. C. Gibbs and H. E. White, Multiplets in the spectra of Cr (III) and Mn (III). Phys. Rev. (2) 29 p. 917 (1927).

[162] R. C. Gibbs and H. E. White, Displacement of certain multipletts and multiple levels of the first long period. Proc. Nat. Acad. 13 p. 525-531 (1927).

[163] F. L. Hunt, X-rays of long wave-length from a ruled grating. Phys. Rev. (2) 29 p. 919 (1927).

[164] F. L. Hunt, X-rays of long wave-length from a ruled grating. Phys. Rev. (2) 30 p. 227-231 (1927).

[165] M. Kimura, The number of easily detachable electrons in the atoms of various elements. Jap. J. Phys. 4 p. 71-74 (1927).

[166] W. F. Meggers and F. M. Walters, Absorption spectra of iron, cobalt and nickel. Sc. Pap. Bur. of Stand. 22 p. 205-226 (1927).

[167] H. Nagaoka, D. Nukiyama and T. Futagami, Instantaneous spectrograms of chromium, molybdenum, and tellurium. Proc. Imp. Acad. Tokyo **3** p. 403-408 (1927).

[168] G. Ortner, Die K-Linien der Elemente der Eisenreihe. II. Wien. Anz. (1927), p. 83-84. [169] R. Ritschl, Über den Bau einer Klasse von Absorptionsspektren. Zs. f. Phys. 42 p. 172--210 (1927). [170] H. N. Russell, Related lines in the spectra of the elements of the iron group. Astrophys. J. 66 p. 184-216 (1927).

[171] H. N. Russell, Series and ionisation potentials of the elements of the iron group. Astrophys. J. 66 p. 233-255 (1927).

[172] N. Seljakow, A. Krasnikow, T. Stellezky, Die Struktur der Linien Ka der Elemente Cu bis Ca. Zs. f. Phys. 45 p. 548-556 (1927).

[173] A. W. Smith and M. Muskat, The absorption spectra of Ga, In, Cr, Ni and Co in underwater sparks. Phys. Rev. (2) 29 p. 663-672 (1927).

[174] Th. Dunham and Ch. E. Moore, Predicted lines of Cr II in the spectra of the sun and of α Persei. Astrophys. J. 68 p. 37-41 (1928).

[175] S. Eriksson, Präzisionsmessungen in der K-Serie der Elemente Chrom bis Nickel. Zs. f. Phys. 48 p. 360-369 (1928).

[176] D. Foster, Wave-length in the arc spectrum of chromium in international units. Astrophys. J. 67 p. 16-23 (1928).

[177] G. Joos, Die Verlagerung der Reststrahlen im sichtbaren Spektralgebiet. Phys. Zs. 29 p. 117-118 (1928).

[178] C. C. Kiess, Interferometer measurements of wave-length in the vacuum arc spectra of titanium and other elements. Bur. Stand. J. of Res. 4 p. 75-90 (1928).

[179] T. Wetterblad, Über die K β_2 -Linie der Elemente K bis Mn. Zs. f. Phys. 49 p. 670–673 (1928).

[180] H. E. White, On the spectra of doubly ionized vanadium V III and triply ionized chromium Cr IV Phys. Rev. (2) **32** p. 318 (1928).

[181] V. Dolejšek and Filčáková, The complexity of the $K\beta_1$ -line of X-ray spectra. Nat. 123 p. 412-413 (1929).

[182] V. Dolejšek and D. Engelmannová, Sur les doublets d'étincelle dans la série K.
 C. R. 188 p. 318-320 (1929).

[183] R. C. Gibbs and H. E. White, Relations between doublets of striped atoms in five periods of the periodic system. Phys. Rev. (2) 33 p. 157-162, 551-558 (1929).

[184] P. R. Gleason, The reflecting power of some substances in the extreme ultraviolet. Proc. Nat. Acad. **15** p. 551-558 (1929).

[185] C. E. Howe, Wave-length measurements of L-lines. Zn—Ca. Phys. Rev. (2) 33 p. 1088 (1929).

[186] G. Kellström, Undersökning av L-serien hos elementen 29 Cu-20 Ca medelst plangitterspectrograf. Fysisk. Tidsskr. 27 p. 145-148 (1929).

[187] G. Kellström, Wellenlängenbestimmungen in der L-Reihe der Elemente 29 Cu bis 20 Ca mit Plangitterspektrograph. Zs. f. Phys. **58** p. 511—518 (1929).

[188] E. Krömer, Zeemaneffekt and Zuordnung im Spektrum des einfach ionisierten Chroms. Zs. f. Phys. 52 p. 531-548 (1929).

[189] H. T. Meyer, Über die Intensität der K-Linien des Röntgenspektrums in Abhängigkeit von der Ordnungszahl. Wiss. Veröff. a. d. Siemens-Konz. 7 p. 108-162 (1929).

[190] A. Poirot, Sur l'émission des rayons anodiques de sodium et de chrome. C. R. 189 p. 150-151 (1929).

[191] M. Siegbahn, On the methods of precision measurements of X-ray wave-lengths. Ark. f. Mat., Astron. och Fysik 21 A No. 21 20 pp. (1929).

[192] H. E. White, The spectra of trebly ionized vanadium and quadruply ionized chromium. Cr V. Phys. Rev. (2) 33 p. 286 (1929).

[193] H. E. White, Spectral relations between certain isoelectronic systems and sequences. Part. I. Ca I, Se II, Ti III, V IV and Cr V. Phys. Rev. (2) 33 p. 538-547 (1929).

[194] H. E. White, Spectral relations between certain isoelectronic systems and sequences. Part II. Sc I, Ti II, V III, Cr IV, Mn V. Phys. Rev. (2) **33** p. 672-683 (1929).

[195] H. E. White, Spectral relations between certain isoelectronic systems and sequences. Part III. Ti, V, Cr, Mn, Fe. Phys. Rev. (2) **33** p. 914-924 (1929).

[196] H. E. White, Spectral relations between certain iso-electronic systems and sequences in the "iron group". Phys. Rev. (2) 33 p. 1098 (1929).

[197] D. M. Yost, The K-absorption discontinuities of manganous and chromate ions. Phil. Mag. (7) 8 p. 845-846 (1929).

[198] H. Beuthe, Über neue schwache Linien in der K-Reihe der Elemente V bis Y. Zs. f. Phys. **60** p. 603-616 (1930).

[199] M. A. Catalán, Análisis parcial del espectro del Cr II. Anales Soc. Españ. Fís. Quim. 28 p. 611-631 (1930).

[200] K. Burns, Spectroscopic notes. Publ. Allegheny Observ. 8 No. 1 (1930).

[201] W. W. Coblentz and R. Stair, Reflecting power of beryllium, chromium and several other metals. Bur. Stand. J. of Res. 2 p. 343-345 (1930).

[202] H. Deslandres, Propriétés des raies et séries anormales dans les spectres atomiques.
 C. R. 191 p. 7—11 (1930).

[203] C. E. Hesthal, Intensity relations in some of the stronger multiplets of chromium II. Phys. Rev. (2) 35 p. 126 (1930).

[204] C. E. Howe, The L-series spectra of the elements from calcium to zinc. Phys. Rev. (2) 35 p. 717-725 (1930).

[205] A. Karlsson, Die Gitterkonstante hochmolekularer gesättigter Fettsäuren nebst den Röntgenspektren innerhalb der K- und L-Reihe bei einigen niedrigen Elementen. Ark. f. Mat. Astr. o. Fysik (A) **22** Nr. 9, 23 pp. (1930).

[206] S. Kawata, Satellites of the K-line of elements from Fe to Zn. Mem. Coll. Sci. Kyoto Imp. Univ. (A) 13 p. 383-387 (1930).

[207] C. C. Kiess, Terms of the arc and spark spectra of chromium. Bur. of Stand. J. of Res. 5 p. 775—779 (1930).

[208] B. Kievit and A. Lindsay, Fine structure in K X-ray absorption spectra. Phys. Rev. (2) 35 p. 292 (1930).

[209] B. Kievit and G. A. Lindsay, Fine structure in the X-ray absorption spectra of the K-series of the elements calcium to gallium. Phys. Rev. (2) **36** p. 648-664 (1930).

[210] L. Vegard, Neue Typen von Emissionsspektren. Avh. Oslo No. 2, 6 pp. (1930).

[211] F. Wisshak, Über das K-Ionisierungsvermögen schneller Elektronen. Ann. d. Phys. (5) 5 p. 507-552 (1930).

[212] F. W. Aston, The isotopic constitution and atomic weights of zinc, tin, chromium and molybdenum. Proc. Roy. Soc. A. **130** p. 302-310 (1931).

[213] J. A. Bearden, Absolute wave-lengths of the copper and chromium K-series. Phys. Rev.(2) 37 p. 1694 (1931).

[214] J. A. Bearden, Absolute wave-lengths of the copper and chromium K-series. Phys. Rev. (2) 37 p. 1210-1229 (1931).

[215] M. A.Catalán and P. M. Sancho, Estructura del espectro del cromo I. Anales Soc. Españ. Fís. Quim. 29 p. 327-365 (1931).

[216] M. Châtelet-Lavollay, Sur les spectres d'absorption comparés de sels complexes de chrome et de cobalt trivalents. C. R. **193** p. 30 (1931).

[217] O. R. Ford, Survey of the satellites of the $Ka_{1,2}$ doublet, the $K\beta_1$ and $K\beta_2$ lines. Phys. Rev. (2) **37** p. 1695 (1931).

[219] H. Gilroy, Certain spectra in the vanadium I iso-electronic sequence. Phys. Rev. (2) 38 p. 2217-2233 (1931).

[220] H. Neufeldt, Struktur von Absorptionskanten leichter Elemente gemessen mit dem Elektronenzählrohr. Zs. f. Phys. **68** p. 659—674 (1931); Bemerkungen zu meiner Arbeit: ... Zs. f. Phys. **71** p. 412 (1931).

[221] M. N. Saha and S. C. Dele, Colours of inorganic salts. Nat. 127 p. 485 (1931).

[222] M. Sawada, On the multiple structure in the X-ray absorption spectra of the metallic elements Cr, Mn, Fe, Co, Ni and Cu. Mem. Coll. Sci. Kyoto Imp. Univ. A. **14** p. 229-250 (1931).

[223] H. Schüler und J. E. Keyston, Über Beziehungen zwischen Mengenverhältnissen der Isotopen und zwischen Kernmomenten bei einigen Elementen. Zs. f. Phys. 68 p. 174—177 (1931).

[224] E. Z. Stowell, The oscillating arc: elements of group VI. Phys. Rev. (2) **37** p. 1452-1458 (1931).

[225] W. F. C. Ferguson, The chromium oxide and the vanadium oxide band spectra. Bur. Stand. J. of Res. 8 p. 381-384 (1932).

[226] H. Geiger, Bemerkung zur Arbeit Neufeldt über die Struktur von Absorptionskanten leichter Elemente. Zs. f. Phys. **76** p. 420 (1932).

Es liegt eine ganze Anzahl neuer Messungen für die Linienspektren des Chroms vor, freilich meist nur kurze Bereiche oder einzelne Linien als Ergänzung zu den bisher bekannten Messungen. Es seien genannt: Gieseler [125], Kiess [104]; King [129], der im elektrischen Ofen für den langwelligen Teil des Spektrums die Temperaturklassen bestimmt hatte, führt das jetzt auch für kürzere Wellenlängen durch und erhält dabei eine erhebliche Anzahl neuer Linien oder Aufspaltungen alter Linien. Auch Russell [170, 171] erhält beim Aufsuchen gesetzmäßiger Linien einige neue Linien. Foster [176] mißt mit erheblicher Genauigkeit das Bogenspektrum von 4351 bis 3358 und von 2894 bis 2663 I.Å. Seine Angaben stimmen sehr gut mit denen von Hall [93] überein. Burns [200] bestimmt vier Wellenlängen mit Interferometer, ebenso Kiess [178] drei Linien. Im allgemeinen sind die Erweiterungen der Kenntnisse nicht sehr groß, so daß es nicht lohnt, eine Liste dieser neuen Linien hier gesondert zu bringen, zumal die meisten von ihnen in Ionisationsstufen eingereiht sind; die einzelnen Messungen sollen auch dort mit aufgeführt werden. Die Messungen von Meggers, Kiess und Walters [132] finden sich ebenfalls dort.

Eine große Anzahl neuer Messungen ist für das Gebiet der kurzen Wellen ausgeführt worden. Für diese Messungen im Schumann-Gebiet sind zu nennen: Millikan und Bowen [133], Lang [130], die Brüder Bloch [136]. Ihre Arbeiten umfassen das Gebiet von 1926 bis 1505 Å. Es sind alles Spektren des Funkens oder hot sparks; allein es ist sehr merkwürdig, daß keine einzige der etwa 200 Linien bei zwei Autoren mit demselben Wert angegeben wird, daß auch die unter Cr II bis Cr VI von anderen eingeordneten Linien sich in diesen Tabellen nicht finden. Die Messungen von McLay [118a] sind uns nicht zugänglich gewesen. In der folgenden Tabelle sollen nun die Messungen im Schumann-Gebiet zusammengestellt werden, soweit sie nicht in die Tabellen der verschiedenen Ionisierungsstufen eingeordnet sind.

	Lang [130]	Bloch [136]		Lang [130]	Bloch [136]		Lang [130]	Bloch [136]
1926	-	6.20 0	1903	3 1	12 6	1878	894	8.06 1 Fe?
24		4.13 0	02	0 202 1	2.37 0	77	124	7.17 1
22		2.65 0	1899	0 124	9.92 0	76	2012	6.20 1
20	- 1	0.21 0	98	13-15	8.80 3	75	024	5.17 0
19	- 1	9.50 0	96	aline I	6.90 00	73	1912	3.88 2
17	11-11	7.60 0 u	95	0.24	5.11 1	70	- 1	0.13 1
16	-	6.16 00 u	93	1114	3.76 00	68	124	8.30 1
13	_	3.75 1 u	90	1912	0.52 2 Fe?	62	741	2.99 3
11	11-	1.35 2	87	-	7,39 1 Fe?	60	102	0.36 3
10	_	0.11 1	85	1.84	5.21 4 Fe?	59	214	9.61 1
07		7.62 0	83	-	3.17 0	58	004	8.60 3
05	-	5.89 0	81	-	1.50 0	54	192	4.92 3 Fe?
04	1022	4.13 1	78	-	8.82 1	52	102	2.14 3

Tabelle 1 (Messungen des Cr-Spektrums im Schumann-Gebiet).

550

Chrom

	Lang [130]	Bloch [136]		an an	Lang [130]	Bloch [136]			Lang [130]	Bloch [136]
1850	0 2	0.21 0 Fe?		1791	_	1.67 0		1711	_	1.68 0 Mn 2
48	_	8.82 0 Fe?		90	_	0.16 00		10	_	0.96 0
46	_	6.76 1		88		8.32 00		07	4 1	7.46 3
45	100000	5.86 00		87	100	7.65 00	1	01		1.43 2
44	Carl.	4.77 00		85	in and	5.11 0		00	in manual fill	0.02 0
43	-	3.71 1		84	-	4.47 0	10	1698	and - hand	8.51 0
42	-	2.95 1		83		3.40 0	6	96		6.48 2
41		1.92 1		81	-	1.68 00		94	_	4.66 00
40	-	0.33 4		80	-	0.48 00		92	-	2.70 2
39	_	9.21 2		79	0.000	9.18 1	12	90	_	0.27 0 u
87	70 1	7.71 1		78	non_main	8.18 2	3.0	88	1	8.40 0
36	1	6.75 1		77	nini-	7.34 1		87	10-10	7.12 00
36	-	6.20 1		76	- 10	6.10 0 Fe?		86		6.19 00 Fe?
34	-	4.13 2		74	-	4.99 1		84	-	4.21 00
33	-	3.15 1		73	-	3.10 2		81	-	1.65 0
31	an <u>a</u> la a	1.53 1	29	72		2.27 1		79	_	9.15 1 Fe?
30	a la serie de la s	0.80 2	-	69	110001.00	9.44 1uFe?		75		5.58 3 Fe?
29		9.99 2	-17	67	hin-int	7.88 2	110	73	nine no	3.70 0
28	-	8.78 0	The	67	-	7.23 1	(here	72	-	2.49 00
28	-	8.23 00		66	-	6.13 0		70	-	0.70 2
27	-	7.73 3		65		5.46 1		67	-	7.75 00 uFe?
27	_	7.12 3		64		4.12 1		64	_	4.03 00
26	100000000	6.51 3		63		3.08 1		60		0.52 0
25	7 1	5.22 1	111	62	leci-olin	2.42 1 Mn?	0	58	5 1	9.18 00 Fe?
23	-	3.62 00	19	61		1.02 2		52	8 1	1.41 0 Fe?
23	-	3.10 0		60	-	0.10 0	1	44	-	4.90 00 u
22	-	2.30 00 Fe?		58	-	8.64 0		39	-	9.33 00
21	-	1.69 0		57	_	7.53 0		36	_	6.16 00
21	NI LING	1.38 0		55	_	5.74 2		35	_	5.09 00
20	-	0.61 0 Mn?		54		4.97 2		29		9.09 0
19	-	9.43 2		53	-	3.91 0	16	09		9.70 Ou
18	-	8.45 0		52	-	2.68 1		03	5H 1	3.33 1 C?
17	-	7.18 00 u		50	-	0.94 1		02	-	2.52 1
16	4 40			49	_	9.51 0		1594	3 N? 1	-
15	-	5.49 Ou		47	-	7.98 3 Fe?		91	6 N? 1	-
12	-	2.82 3		47	-	7.09 1 Fe?		88	-	8.20 Ou
11		1.43 3	1	42	3 1	-		84	4 1	4.66 1 u
10	-	0.88 2		40		0.40 2 Fe?		82	0	2.67 0
09	-	9.26 0 Mn?	- 3	37	0 1	7.96 00 Mn?		81	-	1.47 1
08	-	8.05 0		36		6.67 00	-	80	2 1	
05	-	5.96 1 u		35	-	5.45 00		76	3 1	
03	-	3.06 3		33	(3.31 00 Mn?		74	-	4.22 00
02	5 1			31	1	1.95 00		73	0-	3.26 1
01	-	1.24 0		31	-	1.40 00		52	-	2.14 0
1798	6 1	8.07 0		25	-	5.02 2 d		40	0 1	
97	-	7.33 0 Fe?		21	-	1.70 1		32	4 1	3.43 2
96	-	6.18 0		18	in the start	8.46 3		28	9C? 1	000.00 107
95	-	5.00 00		16		6.57 0 Mn?		26	-	6.80 1
94	-	4.37 0		15		5.24 0 Fe?		19	4 1	
92	-	2.61 0		13	-	3.76 0		16	-	6.50 2

	Lang [130]	Bloch [136]	R	Lang [130]	Millikan u. Bowen [133]		Lang [130]	Millikan u. Bowen [133]
1516 13 08 05		$\begin{array}{cccc} 6.06 & 2 \\ 3.93 & 1 \\ 8.89 & 0 \\ 5.94 & 00 \end{array}$	1022 18 04 02 00	5 1 7 5 4 5 5 1 5 1 9 1		694 91 87 83 81	2 C 1 3 C 1	$\begin{array}{ccc} 7 & 5 \\ & - \\ 7 & 4 \\ & - \\ 8 & 5 \end{array}$
86 66 39 21	2 1 8 1 0? 3 8C? 1		970 69 66 58	6 H? 1 1 1 3 1 5 1		77 73 67 61		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1392 59 49 41 21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	an a	41 29 25 20 15	0 1 7 1 5 3 0 1 1 N? 1	Preside Hor of	54 52 50 48	$ \begin{array}{c} $	9 4 7 4
11 1291 67 55 54	1 1 0 1 6 1 7 1 1 H? 1	h pictif heidig Lise filmen (Lise circlardi Lise and liter	885 77 74 73 70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0	43 37 34 31 29		5 1 8 6 0 5 9 6
44 39 18 12		liet. ⁴ int (hrongles shift and sh	54 50 40 25	- 5 3 -		23 19 13 11	$egin{array}{ccc} 0 & 1 & & \ & - & & \ & - & & \ & 3 & 1 \end{array}$	9 6 8 5 -
10 02 1195 91 80	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nin Reining nin and 1899 nang a gala	18 15 08 03 796	1111	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	599 95 85 78	- - - 8 1	$\begin{bmatrix} 5 & 2 \\ 5 & 3 \\ 1 & 2 \\ 0 \end{bmatrix}$
69 67 54 51 45	$ \begin{array}{cccc} 6 & 1 \\ 1 & 1 \\ 9 & 1 \\ 8 & 0 & 1 \\ 6 & 1 \end{array} $	lideogramma antional doita data doita	90 86 81 80 80	$ \begin{array}{c} - \\ - \\ 6 \\ - \\ 0 \\ 1 \end{array} $	2 2 0 3 1 3D	75 63 56 53 47	- 3 1 -	
36 16 11 03	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dial com	68 65 64 54	50? 1		39 31 24 19	20? 1 	$ \begin{array}{ccc} 0 & 2 D \\ 1 & 3 D \\ 3 & 2 D \\ - \\ 7 & 9 D \end{array} $
1080 74 69 67 63	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	and socialized and A grown and A social social letters	49 45 28 26 24	4 C? 1		10 08 498 91	$ \begin{bmatrix} 1 & 1 \\ - & \\ 0 & 1 \end{bmatrix} $	$\begin{bmatrix} 1 & 2 \\ - \\ 0 & 2 \\ 0 & 2 \\ - \end{bmatrix}$
57 52 46 42			15 12 12 10		$\begin{array}{c} & - \\ 6 & 3 \\ 0 & - \\ 0 & - \end{array}$	87 83 75 72 69		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
40 35 32 29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		08 06 05 697	$\begin{vmatrix} 5 & 1 \\ - & \\ 3 & 1 \\ 5 & 1 \end{vmatrix}$		66 64 61	3 H 1 9 1	

551

	Lang [130]	Millika u. Bov [133	ren		Lang [130]	Millikan u. Bowen [133]			Mill u. H [1	likan Bowen .33]
456	_	8 4		369		7 iD	1 1 100	69	8	2
43	4 1	-		61		3 0	1.6	63	1	1
38		3 4		54	80? 1		19 197	53	8	1
34	-	6 4		52		2 2		38	6 0?	2
02		2 0		45		3 0? 0		31	7 0?	0
394	-	0 0	D	36	14 1188	3 3 D		26	4	1
86	4C? 1	-		28	1 4 1 4 4	40? 1		22	6?	0
84		1 1		22		0 0? 1		14	9	0
80	50? 1	- 1	14.	08	1 1 1 1	1 1		07	2	1
78	-	1 1		294		90 0		02	6	1
72	6C? 1	-		78		0 0 D			1 N.	

Cr I. Nach der Theorie soll das Spektrum ungerade Multiplizitäten enthalten, Singuletts bis Septetts. Die Serie der Singuletts ist noch nicht beobachtet worden, dagegen reichlich Tripletts, Quintetts und Septetts. Zuerst hat Kiess [104] 9 Tripletts gefunden, dann folgte Catalán [113] mit 3 Multipletts. Fast gleichzeitig hat Gieseler [101] dieselben Multipletts und noch einige mehr erhalten, und ihre Struktur unter Beobachtung der Zeemaneffekte erheblich weiter geklärt.

Nach diesen Anfängen hat sich Catalán eingehend mit Chrom beschäftigt [108] und schließlich [109] alles, was er gefunden, zusammengestellt und eine Termtabelle angegeben. Im folgenden Jahr hat Gieseler [125] das gleiche getan und noch etwas vollständigere Resultate erhalten. Schließlich hat noch Russell [170] eine Anzahl zu Cr I gehörender Linien angegeben, und Kiess [205] hat eine Termtabelle veröffentlicht. Den Abschluß bildet die Arbeit von Catalán u. Sancho [215], in der fast alle Linien mittels 202 Niveauwerten klassifiziert sind.

In der folgenden Tabelle sind alle diese Angaben zusammengestellt, wobei freilich die Zahlen oft voneinander abweichen. Gieseler nämlich benutzt die alten vorliegenden Messungen aus Handbuch V, die nach Rowlandschen Einheiten gemacht sind; Kiess gibt seine Zahlen reduziert aufs Vakuum. Hier sind aber alle Zahlen nach I.A. angegeben. Dabei haben wir meist die Messungen von Hall (Handbuch VII) zugrunde gelegt, aber auch Mittelwerte aus Hall, Foster, King berechnet. Die Linien, welche Gieseler allein gemessen hat nach Rowlands Skala, sind umgerechnet und in der Tabelle mit einem × bezeichnet, um sie als weniger zuverlässig zu kennzeichnen, während die übrigen Linien wohl bis auf 0.01 Å genau sein werden. Eine Schwierigkeit machte auch die Angabe der Intensität. Catalán nimmt die recht zuverlässigen Werte von King, die relativ groß sind, von 1 bis 500 gehen. Da aber King nicht alle Linien führt, finden sich dazwischen andere, die nach Skala 0—10 geschätzt sind. Wir haben auch soweit wie möglich Kings Zahlen eingesetzt, aber es ist nicht zu übersehen, daß das ganze Material unhomogen ist.

In der nun folgenden Tab. 2 geben wir die neueren Messungen des Cr I-Spektrums, soweit sie nicht im Handbuch VII p. 281 aufgeführt sind; dabei finden sich in der ersten Spalte die Wellenlängen und in der zweiten Spalte die Angaben der Autoren, wobei C = Catalán, G = Gieseler, K = Kiess und R = Russell bedeutet.

Tabelle 2. Cr I.

						y 1			
15860	5 30	G 2)	5295	66×1	G		4496	86 25	CG
15680	0 30	G*	76	03 200	СК		91	69 3 u	G
11157	6 90	CGK	75	66 15 u	СК		75	36 8 u	G
11016	0 80	CGK	75	17 20 u	CK		39	38×0	G
10906	2 60	CGK	65	72 25	CG		38	18×0	G
9021	69 4	CG	64	16 50	CG		36	48×1	G
17	10 5	CG	61	75 6	R		29	45×8	G
09	95 6	CGR	55	14 15	R		12	26 6	CG
7462	34 10	C KR	47	56 40	CG		4391	76 8	CG
00	22 10	CK	25	04 25	R		84	98 20	CG
7355	93 9	CK	16	13×0	G		73	27 8	CG
6981.	04 2	CK	14	12 6	G		71	28 20	CG
80	81 7	CK	12	23 3	G		. 59	63 20	CG
79	79 10	CK	08	43 300	CG R		51	77 60	CG R
25	96 3	CK	06	04 200	CG		51	06 20	CG
25	23 8	CK	04	52 150	CG		44	51 40	CG
24	16 9	CK	5123	46 6	CG R		39	72 20	C
6883	04 9	C K	22	11 4	R		39	45 40	C
82	41 9	CK	5093	25×2	G	1.2	37	57 30	CG
81	65 9	C K	91	85 3	CG		4289	73 350	CGK
6661	11 5	R	68	29 2	CG		75	99×3	G
30	03 3	C R	55	59 4	C		74	80 400	CGK
6572	90 2	C	48	76 2	CG		55	50 6	30 12
37	95 3	C	38	$87 \times 2 d$	G		54	34 500	CGKR
01	23 2	C	28	25 2	C		40	71 10	G
6362	88 15	C	27	54 3	C		38	96 8	G
30	12 25	C	25	62×2	G		24	51 4	G
5698	33 20	R	19	32×3	G		15	26×1	G
45	45×0	G	06	05 3	C		4129	36 200	C
5409	80 100	CG R	05	77 3	C		11	66]	С
5348	31 50	CG	05	24 2	C		11	35 20 u	C
45	80 70	CG	4964	92 6	C		10	86	С
29	74 5 u	CK	42	49 8	C		4099	80 3	C ³)
29	13 20 u	CK	4718	45 20	R		97	95 3	C ³)
28	35 50 u	CK	4665	45×6	G		97	39 2	C ³)
26	55×1	G	52	18 30	CG		3941	50 20	C
24	93×1	G	51	30 20	CG		28	65 25	C
21	25×1	G	46	17 40	CG. R	1030	21	02 20	C
19	80 × 0	G	26	18 20	CG	188	19	17 35	C R
17	33×1	G	16	13 25	CG	12.00	16	24 12	C
10	72 2	G 1)	13	36 15	CG	1	08	76 25	C R
08	42 3	G 1)	00	75 20	CG		03	16 8	C
00	74 25	CG	4591	41 20	CG	1911	02	88 12	C
5298	28 60	CK	80	06 20	CG	0.0.9	3894	04 15	C
98	02 15 u	CG	65	52 12	C	11/1 1	86	80 15	C
97	33 20 u	CK	45	96 20	C G R	1 see	85	22 15	C
96	69 50	CG	14	53 8	G	100	83	65 15	C

¹) Diese Linien werden von Eder und Valenta sowie von Exner und Haschek nur im Funkenspektrum gegeben, nicht im Bogenspektrum. Ihre Zugehörigkeit zu Cr I dürfte also zweifelhaft sein. — ²) Wahrscheinlich gehören auch 2 18716, 18661, 18585 von Randall u. Barker hierher. Siehe Zumstein [155a]. — ³) Hier liegt zweifellos ein Versehen vor; Catalán gibt diese Linien als von King beobachtet, aber der führt: 4099.04, 4098.16, 4097.96, 4097.65.

						-		
3870	27 3 u	R	3013	72 40	CG	2752	87 3	CG
53	19 3	G	13	04 15	CG	51	60 1	CG
32	35 2	C	05	07 35	C	48	29 3 u	G
31	03 5	CG	00	89 40	C	36	47 4	CG
14	62 4	G	2998	80 30	C	31	91 5	CG
06	83 4	G	96	58 40	C	26	51 5	CG
3797	71 12		95	79×3	G	10	46×2	G
89	72 4		94	08 15	CG	05	70 3	G
88	86 3		91	90 25	C	2696	73 × 1	G
32	03 12	C R	88	66 75	CG	90	24×1	G
30	80 10	C	86	47 100	C R	84	72×2	G
3615	65 4	R	86	13 10		84	30×2	G
05	33 140	CG	86	00 60	C	82	52×1	G
3593	49 160	C	85	85 30	C	81	41 3	G
78	69 200	C R	85	32 4		80	79 × 3	G
3379	37 10	C	80	79 20	C	78	17 6	G
51	96 10	C	75	48 25	C	76	44×0	G
3266	63 5	G	71	11 30	C	71	07 × 2	G
44	10 7	G	67	64 20	C	70	51×3	G
26	54 3	G	29	44 12	G	69	39 4	G
3192	10 5	G	11	15 15	C	62	78×2	G
3053	88 125	CG R	10	90 20	C	62	21×2	G
39	78 15	C	09	06 20	C	58	60 15	G 1)
37	05 40	CG	05	50 15	C	2591	86 15	CG
34	20 40	CG	2899	22 10	C	77	66 2	CG
31	35 12	CG	96	76 15	C	71	75 4	CG
30	25 60	CG	94	18 12	C	66	55 1	CG
29	17 20	CG	93	26 20	C	60	70 3	CG
24	36 70	CG	89	26 15	CG	57	14 2	CG
21	57 100	CG R	86	99 15	C	53	05 2	CG
20	67 50	CG	79	28 15	C	49	51 3	CG
18	83 25	CG	71	64 12	C	45	63 3	CG
18	50 40	CG	2780	70 8	CG	44	73×3	G
17	58 100	CG	69	91 6	CG	38	98×2	G
15	20 30	CG	64	36 3	CG	35	27×2	G
14	92 75	CG	61	75 3	CG	32	63×1	G 2)
14	77 50	CG	57	10 4	CG			C Aborton

Die Tab. 3 bringt in der ersten Kolonne die Einordnung der Linien mit wenigen Ausnahmen nach Catalán u. Sancho [215]; dann folgt die Wellenlänge und Intensität, wobei hauptsächlich von Catalán die Angaben der Messungen nach Handbuch VII verwandt wurden. Dabei sind die meisten Messungen nach Hall Ergänzungen aus Exner u. Haschek. Im extremen Ultraviolett wurden Messungen von Kiess, im Roten solche von Eder u. Valenta und andere von Kiess u. Meggers benutzt. Im Ultrarot stammen die Messungen von Randall u. Barker. Die Intensitäten beziehen sich auf King, wo dieser fehlt, auf Hall, obwohl dadurch die Zahlen inhomogen werden. Die dritte folgende Kolonne gibt den Namen des Autors, wobei C=Catalán, G=Gieseler, K = Kiess, R = Russell. Dann folgt die Temperaturklasse, in welche King die Linie einordnet, endlich der Zeeman-Effekt, falls er beobachtet ist, nach Babcock [106, 107].

¹) Gieseler gibt hier (reduziert) 2658.52. Sonst ist hier nur 56.60 beobachtet, aber das ist zweifellos Cr II. — ²) Zumstein [155a] findet noch bei Absorptionsversuchen: 2366.85, 2365.96, 2364.74.

554

Tabelle 3.

[215]	λ Catalán u. § [215] ¹)	Sancho	1	TempKl: King [77, 129]	Zeemaneffekt Babcock [106, 107]
.78	18717.9	90	C		12.000
$e^{r}S_{3} - x^{r}P_{2}^{o}$	10/11/2	20	C		
$e^{7}S_{3} - x^{7}P_{3}^{0}$	599.5	20	C		
e'S ₃ —X'P ₄	15900 5	20	G		
D°P2-D°S2	1000.0	20	G		_
$0^{\circ}P_{3} - 0^{\circ}S_{2}$	11157.6	00	CGK		
$e^{\gamma}S_3 - y^{\gamma}P_4^{\circ}$	016.0	80	CGK		_
$e^{7}S_{3}$ - $y^{7}P_{3}$	10906.9	60	CGK		_
$e^{x}S_{3}$ - $y^{x}P_{2}^{x}$	10500.2 \$10.0	40	C		
$D^{\circ}D_2$ — $a^{\circ}D_2^{\circ}$) 010.0	40	0		
$b {}^{5}D_{2}$ - $a {}^{5}D_{3}^{0}$ $b {}^{5}D_{3}$ - $a {}^{5}D_{3}^{0}$	673.4	30	С	-	and Townships
b 5D4-a 5D40	486.3	35	C	-	28 MILLION 100-006-000
a 5G2-z 5F10	9734.51	1	C	-	101.00 1.000 - 101 - 100
a ⁵ G ₃ —z ⁵ F ₂ ⁰	9670.46	1	C		0000 000 000-01-000
a 5G4-z5F30	9574.22	2	C	-	and the second
a ⁵ G ₃ -z ⁵ F ₃ ⁰	71.70	0	C	-	102 (0x 0x 51
a 5G5-z 5F40	9447.00	3	C	1	(Section 2010) 1 (Section 2010)
a 5G4-z 5F40	5 0441.00	0		0.02	N.05
a ⁵ G ₅ -z ⁵ F ₅ ⁰	9294.11	2	С	4	11.0%
$a^{5}G_{4}$ - $z^{5}F^{0}$	90.49	4	C		
a ⁻⁰ 6-2 ⁻¹ 5	9142 62	11	C	_	
0.7S w 7P 0	41 13	10	C	_	
0.75 w 7P 0	40.37	10	C		_
05S _75D 0	9021 69	4	CG		
0.5S - 75P 0	17.10	5	CG	_	
05S2 D_0	09.95	6	CGR	-	
0.52 - 2.13 0.7D - 2.5F 0	8718.78	1	C	-	-
$0 \frac{5}{2} - \frac{2}{3} \frac{1}{1}$	07.48	1	C		
a 5p5D_0	8643.02	1	C		- instanting
$a^{5}P_{7} = 7^{5}D^{0}$	36.32	1	C	_	
$a^{5}P_{-7}^{5}D_{-0}^{0}$	8555.55	î	C	_	-
a ⁵ P ₂ -z ⁵ D ₂ ⁰	48.82	2	C	-	
a ⁵ P ⁵ D_0	8455.22	2	C		- 94
a ⁵ P ⁵ D_0	50.25	2	C	-	
a ⁵ P ⁵ D_0	8348.27	2	C	-	_
a 78 7P.0	7726.00	1	C		and an open state of the state
a 7S 7P.0	24.63	1	C	-	-
a7S-v7P.0	22.88	2	C	-	
e7S-7P.0	7462.34	10	CKR	-	
e7S7P_0	00.22	10	CK		
e ⁷ S_7P_0	7355.93	10	CK	-	
	6981.04	2	CK	_	-
e7D7P_0	80.81	2	CK	-	_
e ⁷ D, -v ⁷ P.0	79.79	7	CK	-	
e ⁷ D-v ⁷ P.0	78,51	6	C	III	
e ⁷ D ₂ -v ⁷ P ₂ ⁰	25.99	1	CK	-	-

¹) Anmerkung am Schluß der Tabelle. Intensitäten nach King, z. T. nach Hall, bis 6330 nach Handb. Bd. VII.

[215]	λ Catalán u. S [215]	ancho		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
7D 7D 4		101.31			
$e^{7}D_{3}$ - $y^{7}P_{3}^{0}$	6925.20	9	СК	III	Reinel I The second
0.05 - 2.05	94.14	10	CK	III	and I and star
a_{1}^{7} a_{2}^{7} a_{3}^{7} a_{3	6883.03	9	CK	III	alten and anter sta
0.7D - y.7P 0	89.38	9	CK	III	Concerts - in the standard
o7D_y7P 0	81.61	9	CK	III	6006 11 840
e ⁵ D - 7 ⁵ D 0	6734.16	2	C		a Self
$e^{5}D_{3} - z^{5}D_{4}$	15.36	31	C		0.010
$e^{5}D_{2} - z^{5}D_{3}$	6669.25	4	c	IV	states the state
$e^{5}D_{3} - z^{5}D_{3}^{0}$	61.09	5	CR	IV	e.sm and automative
a5D z7P_0	30.01	3	CR	IA	And the Alter of the
a D4 2 T3	12.15	2	C	_	A Standard Stand
e ⁵ D z ⁵ D.0	6597.55	2	C	V	and a later of the
a 5D. 7P.0	80.96	1	C	_	A AND A TRACE
a 5D 7 7 P 0	72.90	2h	20	IA	10.00 miles
a 5D 7 7 P 0	87.95	2	C	IA	CARD - ANA
a 13-2 13	01.23	2	C	_	Real and a stranger and
a 5S 77P.0	6362.83	4	C	IA	and the strangers
a 52 - 7 7 P. 0	30.10	25 1)	C	IA	and the state of the second
h ⁵ Dv ⁵ D_0	5884 448	(1)	C		and the second
h ⁵ Dv ⁵ D_0	44.69	2	C	III	and the second
b ⁵ D-y ⁵ D.0	43.94	(1)			1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b ⁵ Dv ⁵ D. ⁹	38.66	2	C	III	to the set in provements
a 5D 7E 0	5798.46			_	SLIDE DE SALES
e7D 7F.0	97.890	1	C	_	Chicker and Antimodellar
5Dz5P.0	91.00	50	C	Ш	
h ⁵ D - v ⁵ D 9	88,388	4	C	III	DIVE ALL MARKEN
h ⁵ D ₂ -v ⁵ D ₂ ⁰	87.06	3	C	III	DRAD IS SHARAS
a 5D - 7 F 0)		C	IA	STREETS ALL STREETS
$a^{5}D_{1} - z^{7}F_{0}$	85.97	10			
b5D v5D.0	81.09	8	C	III	20.000 1 ACT + 10.00
h ⁵ D_v ⁵ D.0	19.87	2	C	III	10 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
h ⁵ Dv ⁵ D.0	12.75	6	C	II	(0) 1.520
e ⁵ D5F.0	5698.33	20	C	III	(0) 1.172
e ⁵ D_z ⁵ F_0	94.81	10	C	III	(0) 1.075
e ⁵ D ₂ -z ⁵ F ₂ ⁰	82.50	4n	C	III	
e ⁵ D ₂ -z ⁵ F ₂ 0	49.41	2	C	IV	
e ⁵ D ₂ -z ⁵ F ₂ ⁰	48.12	1	C	III	COLUMN TO A STREET OF
e ⁵ D75F.0	42.34	2	C	III	NO REALT ELECTRONICE STADE
e ⁵ D75F_0	28.64	8	C	III	(0) 0.913
47P67S	45.674	0	G		
a ⁵ D, -z ⁵ P.0	5409.798	100	RCG	I	komplex
a ⁵ D _a -z ⁵ P _a 0	5348 319	50	CG	I	(0.450) 1.605
a ⁵ D ₂ -z ⁵ P ₂ 0	45 796	70	CG	I	(0.209) (0.695) 0.793 , 1.34 .
a 13 - 2 1 2	40.100		Name	a series prom	1.768, 2.14
f7D7P 0	44 793	9	C	Ш	10.100
f7Dv7P_0	40.479	4	C	IV?	(0) (0.668) 1.635
e ⁷ D_77P_0	29.72	51	CK	П	
0 13 - 14		0.11			

1) Von hier ab Int. nach King.

	1 Catalán a Sanaha		TempKl.	Zeemaneffakt
[215]	A Catalan u. Sancho		King	Babcock [106_107]
They will be	[210]		[77, 129]	Dabcock [100, 101]
e 7D4-z 7P40	5900 10 00m	CV	1	(0) 1 507
e ⁷ D ₅ —z ⁷ P ₄ ⁰	0020.12 2011 00.07 50 m	CK	II	(2) 1 150
-	20.07 0011	G		(1) 1.100
1.00	20.00 1	G	01 3	10,000 A A A A A A A A A A A A A A A A A
bell and the	24.00 1	G	01 2	100-1-10 <u>1</u>
Lange and the second	19.80 0	G		1.11 - 11 <u>1.</u>
47D7D 0	18,810 4	C	IV	(0.700) 2.06
1.D ₂ —y.L ₂	17.99 1	G	1 1	(0.100) 2.00
\$7D7D 0	19 891 5	C	IV	(0.441) 0.896
1.D3—7.L3	10.79 9	G	1	(0.111) 0.000
A REAL PROPERTY.	08.42 3	G		Vality and a state
05D x 5D 0	07.988 1	C	and the	12.40 - 4"D- 12.40
f_{3} y_{3} y_{3}	04 991 4	C	IV	(0.386) 1.607
$1 D_4 - y T_4$	00.767 25	C	T	(0) 1.890
$a^{5}D_{2}$ $z^{5}P_{3}$	5298 27 60	CK	Ť	(0.695) 1.232, 1.715, 2.19
$a^{7}D_{2} - z^{7}P_{2}$	97.96 15n	C	П	
$e^{-}D_{3}$ $- 2^{-}T_{3}$	97.35 50n	CK	п	(0) 0.613
$e^{-D_4} - z^{-1} = z^{5} = 0$	96.69 50	CG	Î	(0) (0.994) 0.533 , 1.532 , 2.50
a -D ₂ -2 -1 ₁	95.66 1	G	1	(0)(0001)(0001)(0001)
f7D7D 0	87 209 4	C	IV	
$1^{1}D_{3}$ y 1_{2}	76.03 20n	CK	II	(0.973) 1.347
$e^{-D_1-2}r_2$ $e^{7D}-7P^0$	75.66 15n	CK	II	(0.010)
$0^{7}D_{2} - 2^{7}P_{2}$	75.17 20n	CK	п	vi (0) 1.333
$f_{1}^{0} = f_{1}^{0} = f_{1$	73 458 6	C	III	(0) 1.480
$f^{7}D_{4} - z^{7}D_{5}$	72 032 8	C	III	(?) 0.942
$1 D_4 - y T_3$ 2 5D - 7 5P 0	65 792 95	CG	I	(0.226) 1.688, 2.15
$f_{7D} = 7D^{0}$	65 175 8	C	III	(0) 1.492
$1 D_3 - 2 D_4$ 2 5D - 75P 0	64 145 50	CG	I	(0.983) 1.508, 2.54
$a^{5}D - v^{5}D^{0}$	61 763 6	CR	IV	(0) 1.155
$f_7D = v_7P_0$	55,143 15	C	IV	
$f^{7}D_{-}z^{7}D_{-}0$	54.934 10	С	IV	$\left(\begin{array}{c} 0 \\ \end{array} \right) $ (0) 1.350
a ⁵ D ₋ z ⁵ P ₋ ⁰	47.567 40	CG	I	(0) 2.53
$f^7D_{2}-z^7D_{2}^{0}$	43.382 7	С	III	(0) (1.010) 0.978, 1.945
a ⁵ Px ⁵ P.0	42.467 1	С	IV	
e ⁵ D ₂ -v ⁵ P ₂ ⁰	40.468 3	С	IV	
a 5P x 5P.0	38.974 5	С	III	(0) (0.660) 1.155
a 5Pv 5F.0	30.226 2	С	III	_
a ⁵ Px ⁵ P. ⁰	26.898 4	С	IV	r (0.434) 1.397
f7Dz7D.0	25.050 25	С	III	1 (0) 1 649
f ⁷ D ₂ -z ⁷ D ₂ ⁰	24.956 25	CR	III	(0) 1.042
a ⁵ P _o -x ⁵ P _o ⁰	24.530 3	С	IV	-
f ⁷ D ₉ -z ⁷ D ₉ ⁰	24.094 3	С	IV	(0) 1.795
f ⁷ D ₉ -z ⁷ D ₉ ⁰		a	TV	and and the state of the second state
a 5P3-x 5P20	22.667 2	U	IV	
f ⁷ D ₁ -z ⁷ D ₁ ⁰	20.918 3	С	IV	-
_	16.13 0	G	-	-
-	14.12 6	G	-	- Alter and - Alter and
f 5S2-z 5P30	12.23 3	CG	IV	-
a 5S2-z 5P30	08.429 300n	CGR	II	(0) 1.587
a 5S2-z 5P20	06.037 200n	CG	II	(0) 1.935

101173	λ Catalán u. Sai	ncho		TempKl.	Zeemaneffekt
[215]	[215]			[77, 129]	Babcock [106, 107]
- 5D 0	5904 511 15	0.0.1	CG	П	(0) 1 865
$a S_2 - z P_1$	00.906	G	C	IV	(0) 1.000
$1^{\prime}D_2 - x^{\prime}D_1^{\circ}$	5100.200	5	C	III	(0) 1 551
a ^o P ₂ —x ^o P ₃ ^o	00.000 1		C	III	(0) 1.351
1'D ₃ —z'D ₂ °	92.020 1		C	III	(0) 1.486
$f^{\prime}D_4 - z^{\prime}D_3^{\circ}$	84.093 1		C	IV	(0) 0.519
f ⁷ D ₅ —z ⁷ D ₄ ⁰	77.440	-	C	IV	(1,015) 1,507, 9,59
a ^s P ₁ -y ^s D ₁ ^o	44.678	1	0	III	(1.015) 1.007, 2.55
a ^s P ₂ —y ^s D ₁ ^o	42.272		CCP	T	24.51
a ⁵ D ₄ -y ⁷ P ₃ ⁰	23.466	6	UGR	1	PDy-197.
a ⁵ D ₄ —z ⁷ D ₅ ⁰	22.114	4	CR	1	17.0%
a ⁵ P ₁ —y ⁵ D ₂ ⁰	13.133	5	0	III	(3)-40)
a ⁵ D ₃ —z ⁷ D ₄ ⁰	12.490	1 u	C	110	(0.050) 1.795
a ⁵ P ₂ —y ⁵ D ₂ ⁰	10.754	7	C	11?	(0.652) 1.755
-	5093.2	2	G		1000 Thereadly and
a ⁵ D ₃ —y ⁷ P ₂ ⁰	91.89	3	C	IIA	(0.000) 1.000
a ⁵ S ₂ —z ⁷ D ₁ ⁰	72.927 1	12	C	1	(0.992) 1.022
a ⁵ D ₃ —y ⁷ P ₃ ⁰	68.295	2	CG	IIA	
a 5P2-y 5D30	67.718 1	10	C	III	(0?) 0.896
a 5P3-y5D30	65.912	5	С	III .	(0.472) 1.533
-	55.59	4	С	-	Triby_veller
a ⁵ S ₂ —z ⁷ D ₂ ⁰	51.892	8	С	I	(0) 2.01
a 5D2-y7P20	48.750	2	CG	IIA	anas
	38.87	2d	G	TIM	The second states
-	28.25	2	С	-	arr Tur
	27.54	3	С	-	There are a second second
R	25.62	2	G	Tank	
a ⁵ S ₂ —z ⁷ D ₃ ⁰	21.903	2	С	IIA	Trans Transmit
ALCO TARSAN	19.32	3	G	The	LI AN THE TANK
b ⁵ D ₄ -w ⁵ P ₃ ⁰	13.322	6	С	-	(0) 1.145
a *P ₃ —y *D ₄ *	06.05	8	C	_	ALIG TOTAL
	05.77	3	C	1 STOR	PARA A AND A AND A
Provide and a	05.94	9	c	A DECEMBER	WAR TO BE THE REAL PROPERTY OF STREET,
- 5C - 7D 0	1) 4964 918	6	C	IIA	(0.339) 2.11
a 52 y 72	42 490	8	č	IIA	(0) 1.830
a 50 y 13	03 999	8	c	III	(02) 0.853
$a^{5}C_{2}$ y T_{1}	4888 534	4	C	III	
$a^{5}G_{3}$ $y^{5}F_{2}$	87.70	1	C	III	
$a = G_2 - y = \Gamma_2$	85 774	4	C	III	The second se
$a^{5}G = x^{5}P^{0}$	84 945	1	C	IIIA	Torse de la company
a G2	61 837	15	C	III	(1.511) 0.967
a 5G5F 0	61 192	4	C	III	
a 5P 3D 0	57.87	(1)	C	_	
a 5P 5D 0	55 153	11	_	_	
a 5Gx 5P 0	36 851	2	C	III	(0) 1.228
a 02 x 13	29.860	18	C	П	(0?) 0?, 0.920, 1.583
a 5P 5D 9	06.954	1	C	IIIA	
a 5P - x 5D 0	04.70	(1)	C	_	
h5D - y5P 9	4799.95	(1)	C		Caracter and Carac
D'D4-V'F3	1 100.20	(1)	100	8.60	1.1.00

1 11	
	e
nran	a
CIII OIL	٠

[215]	λ Catalán u. S [215]	ancho		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
e ⁵ D_v ⁷ P_0	4796.9	(1 u)	C	-	
a ⁵ G-v ⁵ F. ⁰	90.348	2	С	III A	_
a 5G v 5F.0	89.354	20	C	III	(?) 1.075
b ⁵ Dx ⁵ F. ⁰	79.93	(1)	C	_	_
b ⁵ D ₂ -x ⁵ F ₂ ⁰	77.63	(1)	C	_	_
b ⁵ D,-x ⁵ F. ⁰	74.568	1	С		
b ⁵ D ₂ -x ⁵ F ₂ ⁰	71.61	(1)	С	-	
b 5Dx 5F_0	70.682	1	С	-	
b 5D,-x 5F,0	66.651	2	С	III	(0) 0.772
b5D-x5F.0	64.655	2	С	III	_
e ⁵ D ₄ -z ⁷ D ₅ ⁰	60.78	(1)	С	-	
b ⁵ D,-x ⁵ F. ⁰	59.92	(i)	С	-	
b5D,-x5F.0	55.144	2	С	IV	
a 5P - x 5D,0	45.301	2	С	III	(?) 1.155
f7D-z7F.0	18,453	20	CR	III	(?) 1.133
f7D,-z7F.0	08.058	15	С	III	(?) 1.055
a 5Gv 5D.0	02.475	1	С	-	_
a 5G-v 5D,0	01.95	(1)	С	-	
a 5P z 5S.0	00.619	4	С	IV	(0) (0.458) 1.476
a 5P-z 5S-0	4698,618	20	c ·	III	
f7D-z7F.0	98,482	20	С	III	\$ (?) 0.776
85P-25S-0	97.060	5	С	III	(?) 1.005
f ⁷ D ₂ —z ⁷ F ₃ ⁰	89.396	8	С	III	(0.492) (0.983) 0.494, 0.998, 1.50
f7Dz7F.0	80,55	4	С	Ш	
f7Dz7Z-0	69.358	6	С	III	(0.423) 1.480
f ⁷ Dz ⁷ F. ⁰	66.517	7	С	III	(0.438) ?
	65.45	6	G	-	
f7D,-z7F,0	64.814	8	С	III	(0.680)
f ⁷ D ₀ -z ⁷ F ₀ ⁰	63.852	8	С	III	(0.988) ?
f ⁷ D ₁ —z ⁷ F ₁ ⁰	63.345	7	С	IV	(1.465) () () 0.258, 0.791, 1.487
f7D,-z7F.0	54.756	3	С	IV	
a 5D3-y 5P20	¹) 52.166	30	C G	I	$(0) (0.324) (0.686) 0.797, \\1.172, 1.507, 1.848, 2.22$
a 5D_v -v 5P.0	1) 51,297	20	CG	I	(0) (0.992) 0.487, 1.487, 2.48
f7Da-z7F.0	46.804	3	C	IV	_
a 5D	46.172	40	CGR	I	(?) 1.053
$f^7D_a - z^7F_a^0$	39,538	2	C	IV?	_
f7D,-z7E,0	33,288	2	C	IV	_
f7D	28,494	2	C	-	
a 5D,v5P_0	1) 26,186	20	CG	I	(0.993) 1.508, 2.50
a 5D0-y 5P20	16.135	25	C G	I	(0.313) (0.675) 1.144, 1.510, 1.888, 2.20
a 5D v 5P.0	1) 18 871	15	CG	I	(0) 2.50, 1.144
a ⁵ D ₂ -v ⁵ D ₂ 0	1) 00.754	20	CG	I	(0.428) 1.517
a ⁶ D,v ⁵ D,0	1) 4591 400	20	C	I	(0) (0,339) 1.50, 1.85, 2.20
b ⁵ D _a -v ³ D _a ⁰	90.60	(1)	C		
b ⁵ D ₁ —y ³ D ₁ ⁰	87.88	(1)	C	-	Level 7 June 1

560

Chrom

[215]	λ Catalán u. Sand [215]	cho	TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
h5D_v3D_0	4584.940 2	C		adora mili international
$h^5D_{-}v^3D_{-}0$	83.94 (1	C		E.96
9 5S y 5P 0	1) 80.058 20	CG	I	(0) (0.496) 1.485, 2.01, 2.51
$h_{2}^{a} - y_{1}^{a}$	71 103 1	C	IV	(0) (0.100) 1.100; 1.01; 1.01
$b^{5}D_{3} - b_{3}^{5}$)		1	
$e^{5}D_{2}$ $-z^{5}P_{3}^{0}$	70.34 (1) C	-	ally chart -pre-parts
b 5D4-3D30	66.61 (1) C	_	attend the Solar - Sugar
a 5D9-y 5P30	65.510 12	C	I	(?) 1.873
a 5S v 5P.0	¹) 45.959 20	CG	I	(0.303) 1.900
a 5G3-z 5G90	45.338 5	C	IV	The second
a 5Gz 5G.0	44.622 12	C	II	(?) 9.354
a 5G4-z 5G20	· 41.069 5	C	III	
a 5Gz 5G.0	40.504 12	C	II	Classed when Vie working
a 5G z 5G.0	39,789 5	C	III	Superior and a superior
a 5G z 5G.0	35,723 15	C	II	1.12
a 5G	35,146 6	C	III	OWNERS THE STATE OF THE STATE O
a 5G z 5G.0	30,755 20	C	п	1.20 <u></u> 0**,0**
a 5G - z 5G 0	30,688 3			1100 000 100 100 00 00
$a^{5}G = z^{5}G^{0}$. 29 852 5	C	III	(0.203) 1.586
$a G_6 - z G_5$ a 5 G - z 5 G 0	97 851 6	C	III?	(2) 1.278
$a^{5}G_{5} - 2^{5}G_{6}$	96 469 15	C	II.	(0) 1 399
4-G6-2-G6-	1) 14 599 9	CG	III	(0) 1.000
$1^{\circ}S_3 - z^{\circ}\Gamma_0^{\circ}$	1) 14.020 0	P CG	I	(0) (0.328) (0.665) 0.980
a so2-y P2	*) 4490.009 20	n cu	1	1 340 1 688 9 01 9 25
870 -7D 0	01 000 0		III	1.540, 1.000, 2.01, 2.55
$1^{1}S_{3} - 2^{1}P_{3}^{0}$	91,009 0		III	HARD AND A CONTRACT OF A CONTR
$1^{\circ}S_2 - Z^{\circ}P_2^{\circ}$	90.0 2		TILA	100. 100 100 100 100 100 100 100 100 100
a ^s P ₁ —w ^s P ₂ ^s	77.05 2	n C	IIIA	(2) 1 470
$1^{\prime}S_3 - z^{\prime}P_2^{\prime}$	70.308 8	00	III	(7) 1.470
a "P3-w"P2"	73.762 4	0	III	(?) 1.205
b *D ₃ -w *P ₂ *	68.38 1	0	IV	177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 17
b ^o D ₂ -w ^o P ₂ ⁰	67.564 4	C	m	_
b ^o D ₃ -w ^o F ₃ ^o	66.163 3	C	IV	TANK AND
b ⁵ D ₂ -w ⁵ F ₃ ⁰	65.354 5	C	III	South and the second sea
b ⁵ D ₁ -w ⁵ F ₂ ⁰	64.910 4	C	III	-
b ⁵ D ₁ -w ⁵ F ₁ ⁰	64.667 2	C	IV	anter and anter the
b ⁵ D ₀ —w ⁵ F ₁ ⁰	62.769 3	C	III	-
a ⁵ P ₂ -w ⁵ P ₃ ⁰	60.760 4	C	III	and an internal states
b ⁵ D ₃ —w ⁵ F ₄ ⁰	59.741 6	C	?	-
a ⁵ P ₃ -w ⁵ P ₃ ⁰	59.40 4	C	III	-
b ⁵ D ₄ -w ⁵ F ₅ ⁰	58.535 1	C	III	(0) 1.092
b 5D4-w 5F40	55.45 (1) C	-	
-	39.38 0	G	-	-
-	38.18 0	G		
-	36.48 1	G	-	
-	1) 29.45 8	G	-	_
b 5D3-w 5P30	28.509 5	C	III	
b 5D2-w 5P30	27.76 (1) C	-	and the family of the second s
b ⁵ D ₄ -w ⁵ P ₃ ⁰	24.284 10	C	III	(?) 1.137

8

[215]	λ Catalán u. Sancho		TempKl. King	Zeemaneffekt
	[215]		[77, 129]	Babcock [106, 107]
	4101.00.41	0		
g ⁷ D ₃ —z ⁷ F ₂ ⁰	4421.02 (1)	C		and the second sec
⁷ D ₅ —z ⁵ F ₅ ⁰	14.39 0	0		(2) 2 00
a ⁵ D ₄ -z ⁵ F ₃ ⁰	12.208 6	CG	IA	(1) 2.05
b ⁵ D ₃ -w ⁵ P ₂ ⁰	11.094 5	C		Line and the
b ⁵ D ₂ -w ⁵ P ₂ ⁰	10.309 4	0		
$g^{7}D_{1}$ — $z^{7}F_{1}^{0}$	06.29 2	C	IV	(2) 0 575
b ⁵ D ₂ -w ⁵ P ₁ ⁰	4399.827 3	C	III	(r) 0,575, -, -
b ⁵ D ₁ -w ⁵ P ₁ ⁰	97.248 3	C	III	(7) 0.19, 1.270
b ⁵ D ₀ —w ⁵ P ₁ ⁰	95.413 2	C	IV	(1) 2.40
b ⁵ D ₁ —x ⁵ G ₂ ⁰	92.33 1	0	IV	(0) (0 400) (0 002) 0 070
a ⁵ D ₃ —z ⁵ F ₂ ⁰	¹) 91.757 8	CG	1	(0) (0.490) (0.995) 0.970 , 1.505, 2.00, 2.50
a 5D4-z 5F40	1) 84.979 20	CG	I	(0.537) 1.415
a 5P1-v 5P10	82.858 2	С	III	KINA THE AVERAGE
a 5P v 5P. 0	81.112 6	С	III	(0) (0.665) 1.140
b 5D x 5G.0	. 79.780 2	С	-	- /
a 5D z 5F,0	1) 73.271 8	С	I	
a ⁵ D ₃ —z ⁵ F ₃ ⁰	1) 71.280 20	С	I	$\begin{array}{c} (0) & (0.235) & (0.486) & (0.742) \\ & 0.740, 0.993, 1.240, 1.496, \\ & 1.752, 0.00 \end{array}$
				1.756, 2.00
b ⁵ D ₃ —x ⁵ G ₄ ⁰	68.269 2	С	IV	is nen in side Tota, and den
b 5D4-x 5G40	64.1 (1)		-	
a ⁵ D ₂ —z ⁵ F ₂ ⁰	59.631 20	C G	1	(0.488) (0.998) 0.490 , $0.9961.510$, 2.03
b ⁵ D ₄ -x ⁵ G ₅ ⁰	56.762 4	С	III	(?) 0.532
a 5D4-z 5P50	¹) 51.770 60	CG	I	(0) 1.232
a 5D1-z 5F10	51.058 20	CG	I	(1.485) 0, 1.251
a 5D3-z 5F40	¹) 44.510 40	CG	I	(?) 1.024
a 5P1-v 5P20	43.176 4	C	III	(?) 1.127, 1.927
a 5P2-v 5P20	41.44 (1)	-	-	-
a 5P3-v 5P20	40.134 8	C	III	-
a 5D0-z 5F10	1) 39.718 20	C	I	(0) 0
a ⁵ D ₂ -z ⁵ F ₃ ⁰	39.452 40	С	I	(0) (0.256) (0.516) 0.725, 0.995, 1.258, 1.510, 1.775
a ⁵ D ₁ —z ⁵ F ₂ ⁰	¹) 37.565 30	C G	I	(0) (0.515) 0.487, 0.995, 1.510
$f^7D_2 - z^7P_3^0$ $f^7D_2 - z^7P_4^0$	20.602 4	C	III	(?) 1.847
f7D,-z7P.0	19.651 8	C	III	(?) 1.683, 2.30
f7Dz7P_0	05.465 5	C	III	(0.728) 2.17
f7Dz7P_0	99.728 4	C	III	-
a 5P v 5P.0	97.058 5	C	III	(0) 1.432
a 5Pv 5P_0	95.762 15	C	III	(0) 1.662
f7D,-z7P,0	93.573 4	C	III	(?) 1.672
a 7S3-z 7P20	89.726 350 R	C G K	II	$\begin{array}{c} (0) & (0.345) & (0.695) & 1.670, \\ & 2.01, 2.34, 2.70 \end{array}$
b5D-v5F.0	1) 84,903 2	C		(?) 1.015, 1.305
f ⁷ D ₃ —z ⁷ P ₂ ⁰	4284.65 2	C	III	Man and - the att

Linien in Absorption nach [173].
 Kayser u. Konen, Spektroskopie. VIII.

561

[215]	λ Catalán u. Sancho [215]		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
a ⁷ S ₃ —z ⁷ P ₃ ⁰	1) 4274.802 300 RK	CGK	п	(0.17) (0.33) möglicherweise Umkehrlinien, 1.67, 1.83, 2.00, 2.17
	FF 00 0	a		2.00, 2.11
-	70.99 8	G		Contrin States and a state of
f'D ₄ —z'P ₃ ⁰	72.921 6	C		(1) 1 050
f'D ₅ —z'P ₄ °	61.366 8	C		(?) 1.258
b ^o D ₂ -w ^o D ₁ ^o	59.16 2	C	IV	
b ^o D ₃ -w ^o D ₂ ^o	57.366 2	C	IV	
b ^o D ₂ —w ^o D ₂ ^o	56.64 (1)	-		
a 'S ₃ —z 'P ₄ °	*) 54.341 1000 R	UGKR	11	(0), (0.258), (0.50), (0.750) 0.994, 1.255, 1.512, 1.770, 2.01, 2.27, 2.50
b 5D3-w 5D30	52.245 2	С	III	ICE (
b 5D4-w 5D30	48.349 2	С	IV	2010 - 2010
b 5D3-w 5D40	42.85 1	С	IV	1118
	40.71 10	G		17.00 · 1 2.00 k
b 5D4-w 5D40	38.961 8	CG	III	(0) 1.495
b ⁵ D ₁ —u ⁵ P ₂ ⁰	37.721 2	С	IV	and the state
$e {}^{5}D_{4}$ - $z {}^{7}F_{3}{}^{0}$ $b {}^{5}D_{2}$ - $u {}^{5}F_{2}{}^{0}$	} 32.863 2	С	IV	
b5D1-u5P20	30.483 4	С	III	(?) 0, 1.108
b 5D3-u 5F30	23.48 (1)	С	-	
b 5D2-u 5F30	22.740 6	С	III	(0) 1.176
b 5D4-u 5F50	17.626 15	С	III	(?) 1.148
b 5D3-u 5F40	16.367 8	С	III	(?) 0.708
-	15.26 1	G	_	
b 5D4-u 5F40	12.65 4n	С	IV	(0) 0.973
a 5G3-y 5G20	04.27 3	С	III	
a 5G2-y 5G20	03.587 10	С	III	(0)? 0.345
a 5G4-y 5G30	4191.746 4	С	III	
a ⁵ G ₃ -y ⁸ G ₃ ⁰	91.267 10	С	II	(0) 0.928
a 5G2-y 5G30	90.69 (1)	С	-	
a 5G4-y 5G40	74.947 15	С	III	10.708 0.00
a 5G5-y 5G40	74.801 15	С	III	3 0.728, 2.06
a 5G3-y 5G40	74.37 1	С	IV	_
a ⁵ G ₅ -y ⁵ G ₅ ⁰	53.819 20	С	III	(?) 0.360, 2.14
a 5G5-y 5G50	53.068 4	С	III	(?) 1.540
g7D5-z7P40	29.368 20n	С	III	-
a 5P1-y3D10	27.640 5	С	III	(1.252) 1.203
a 5G6-y 5G60	27.298 4	С	IV	(0) 0?, 1.346
a 5G6-y 5G60	26.518 18	С	II	(0) 1.340
a 5P1-y 3D20	22.165 5	С	III	(?) 0.227, 1.352
$a {}^{5}P_{2} - y {}^{3}D_{2}{}^{0}$	20.620 8	С	III	(0.830) 0.842, 1.353, 1.846,
(058.4 (058.0) F		1 23	10000	2.04
a ⁵ P ₃ —y ³ D ₂ ⁰	19.45 (1)	С	T	—
g ⁷ D ₂ —z ⁷ P ₃ ⁰	11.67 20n	С	III	komplex
g ⁷ D ₃ —z ⁷ P ₃ ⁰	11.36 20n	C	III	komplex

-70

[215]	λ Catalán u. San [215]	cho .	TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
g ⁷ D ₄ —z ⁷ P ₃ ⁰	4110.87 20	n C	III	komplex
$a {}^{5}P_{2}$ — $y {}^{3}D_{3}{}^{0}$	09.583 8	C	III	(0), (0.435), (0.938), 0.457, 0.935, 1.414
a ⁵ P ₂ -v ³ D ₂ ⁰	08.396 8	C	III	(0.834) 1.50
g ⁷ D ₁ -z ⁷ P ₁ ⁰	4098.18 20	n C	III	
g ⁷ D ₉ —z ⁷ P ₉ ⁰	97.96 20)n C	III	NUTLES TO THE PARTY OF A
g7D3-z7P90	97.65 20	n C	III	
a 5G x 5F10	50.05	e c	IV	and the second s
a 5G3-x 5F20	46.767	B C	IV	Propagation - Construction
a 5G4-x 5F30	42.250	I C	III	and and a construction
a 5G3-x 5F30	41.82	c C	V	-
a 5G5-x 5F40	37.300	3 C	III	
a ⁵ G ₅ —x ⁵ F ₅ ⁰	33.97 (:	l) C	-	
a 5G6-x 5F50	33.272	3 C	III	(0) 0.898
a ⁵ P ₂ -w ⁵ F ₃ ⁰	24.58 (1) C	-	
a ⁵ P ₃ -w ⁵ F ₃ ⁰	23.45 (1) C	-	
a ⁵ P ₃ -w ⁵ F ₄ ⁰	18.216	B C	III	
a ⁵ P ₂ -u ⁵ P ₃ ⁰	3993.972	4 C	III	(0) 1.442
a ⁵ P ₃ -u ⁵ P ₃ ⁰	92.851 1	5 C	III	(0) 1.652
a ⁵ G ₃ —z ⁵ H ₃ ⁰	91.677 1	0 C	III	(0.205)? 0.730
a 5G2-z 5H30	91.124 2	0 C	п	(0) 0.646
a ⁵ G ₄ -z ⁵ H ₄ ⁰	84.342 1	0 C	III	an entrance and
a ⁵ G ₃ -z ⁵ H ₄ ⁰	83.905 2	0 C	П	
a ⁵ P ₁ -u ⁵ P ₂ ⁰	81.241	5 C	III	(0), (0.662) 1.190, 1.812
a ⁵ P ₂ —u ⁵ P ₂ ⁰	79.798	3 C	III	(0) 1.780
a ⁵ P ₃ -u ⁵ P ₂ ⁰	78.686	4 C	m	(0) 1.413
a 5G4-z 5H50	76.667 2	5 C	II	unsymmetrisch
a ^o P ₁ -u ^o P ₁ ^o	72.693		III	(0) (0 (00) 1 100 1 999
a ⁵ P ₂ -u ⁵ P ₁ ⁰	71.262	5 U	III	(0) (0.602) 1.196, 1.626
a°G ₅ —z°H ₆ °	69.750 2		III	(0.945) 2.19
a ^s G ₆ —z ^s H ₆ ^o	69.060		III	(0) 1 166
a °G ₆ —z °H ₇ °	52 100		II	(0) 1.100
$D^{\circ}D_2 - U^{\circ}P_1^{\circ}$	59 208		III	(0) 0.989
$D^{\circ}D_3 - t^{\circ}P_2^{\circ}$	51 765	4 0 0 C	III	(0) 0.002
$b^{5}D_{2} - b^{2}P_{2}^{2}$	51.097	2 C	IV	(0.998) 2.21
	01.007			(0.000) 2.22
$\begin{array}{c c} b * D_1 - t * P_2 \\ b * D_0 - t * P_1 \\ \end{array}$	} 49.56	2 C	IV	
a ⁵ P ₃ -x ⁵ G ₄ ⁰	43.63	(1) C	-	
a 5D4-z 5D30	1) 41.494 2	20 C	I	(0) 1.516
a 5D3-z 5D20	1) 28.641 2	25 C	I	(0) 1.505
a 5D2-z 5D10	21.023 2	20 C	I	(0) 1.508
$a^{5}D_{4}$ - $z^{5}D_{4}^{0}$ $b^{5}D_{3}$ - $s^{5}P_{2}^{0}$	} 19.160 8	35n C	II	(0) 1.503
b 5D 5 5 P.0	17.603	4 C	III	- Iter State
b ⁵ D ₀ -s ⁵ P ₀ ⁰	16.978	2 C	III	
a 5D1-z 5D00	16.238 1	2 C	I	(0) 1.518

1) Linien in Absorption nach [173].

36*

564

Chrom

[215]	λ Catalán u. Sanc [215]	ho	TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
h5D	2915 857 6	0	III	(0) 1.233
$D^{\circ}D_4$ $-S^{\circ}\Gamma_3^{\circ}$	11 89 10	C	III	(0) 1.200
$a G_2 - y D_1$	08 757 95	0	II	(0) 1 508
$a \circ D_3 - z \circ D_3 \circ$	02.107 20	C	I	(0) 1.000
$a \circ D_1 - z \circ D_1 \circ$	00.100 0	C	II2	(0) 1.514
$a^{\circ}D_2 - z^{\circ}D_2^{\circ}$	02.00 12	C	II. IV	(0) 1.014
$a G_4 - y D_3$	04.040 15	C	T	(0) 1.496
$a^{\circ}D_0 - z^{\circ}D_1^{\circ}$	01.02 1	C	-	(0) 1 190
$a^{5}U_{3}$ $y^{5}D_{2}$	86 797 15	i C	I	(0) 1.533
$a^{5}D_{3}$ $z^{5}D_{4}^{0}$	85.918 15	C	Ť	(0) 1.533
$a \circ D_1 - z \circ D_2^\circ$ h 5D + 5E 0	95.095	C	-	(0) 1.000
$b^{\circ}D_1 - b^{\circ}F_1^{\circ}$	00.000	C		and the second se
$D^{\sigma}D_{0} - t^{\sigma}\Gamma_{1}^{\sigma}$	00.000	C	T	(0) 1 533
$a \circ D_2 - Z \circ D_3 \circ$	00.200 10	C		(0) 1.000
$D^{\circ}D_3 - t^{\circ}\Gamma_2^{\circ}$	01.000 4	C	III	and the second s
$D^{\sigma}D_2 - t^{\sigma}\Gamma_2^{\sigma}$	01.240 01		III	
$D^{\sigma}D_1 - t^{\sigma}\Gamma_2^{\sigma}$	77.95 (1)	C	m	
a P2-V P2	(1) (1)	U		
$D^{\sigma}D_{3}$ — $t^{\sigma}\Gamma_{3}^{\sigma}$	75.234 4	n C	IV	
$a \sigma P_3 - v \sigma P_4$	74.570 10	C	III	(2) 1.087
$D^{*}D_{2} - U^{*}F_{3}^{*}$	1) 70.979 2	CR	III	(.) 1.001
$a^{-5}2^{-2}D_1$	58.9 10		III	
$D^{\circ}D_3 - U^{\circ}\Gamma_4$	57 641 15	a C	III	(1 218) 1 304 2.43
$a^{5}P_{1} - w^{5}D_{1}^{0}$	56 985 5	C	III	(0) 2.18
$a^{5}P_{2}$ w D_{1}	00.200 0			(0) 2120
$h^{5}D_{1}$ $h^{5}F_{0}^{0}$	55.582 8	C	III	
a ⁵ Pw ⁵ D. ⁰	55.293 5	C	III	(0) 2.41
a ⁵ Pa-w ⁵ Da ⁰	54.232 12	C	III	(0.903) 1.606
a ⁵ P _a -w ⁵ D _a ⁰	53,189 3	CG	III	_
a 5D - z 3P 0	52.214 8	C	I	(0) 1.566
a ⁵ P_w ⁵ D_0	50.041 20	C	III	(?) 0.863
a ⁵ D ₂ -z ³ P ₂ ⁰	49,535 8	C	I	(0) 1.456
h ⁵ Dt ⁵ F. ⁰	49.35 20	n C	III	(?) 1.160
a ⁵ P_w ⁵ D_0	48,996 10	C	III	(0.750) 1.603
a 5Pw 5F.0	42.07 4	N C	IV	-
a ⁵ P _a -w ⁵ D _a ⁰	41.295 20	C	III	(?) 0.888
a ⁵ P_u ⁵ P_0	36.087 4	C	III	-
a 5P_15F_0	34.748 8	C	III	(1.298) ?
a ⁵ Dz ³ P.0	32.35 2	C	III A	_
$a^{5}D_{2}-z^{3}P_{2}^{0}$	1) 31.030 5	CG	IIA	(0) 1.575
$7D_{2}-z^{7}D_{2}^{0}$	30.027 15	NC	V	(0) 1.292
a5p15F_0	26.434 10	C	III	_
a 5P_15F_0	25.408 10	C	III	(0.917) 1.544
a 5D - 7 3P.0	23.521 8	C	II	(0) 1.522
a 5G-w5F.0	22.10 (1		_	_
a 5G w 5F 0	21.587 2	C	-	188.90
a ⁵ Gw ⁵ P.0	20.875 2	C	_	perdenuited
a 5G2-w 5F20	19.99 (1) C	-	Contraction - The Obs

[215]	λ Catalán u. Sa [215]	ancho		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
a 5P	3819.578	15	С	III	1.000
a 5G-w5F.0	18,480	8	C	III	CONT AN AN ANTIMATIN
a 5G-w 5F.0	17.848	4	C	III	(0) 1.372
a 5Gw5F.0	1		1.00	1000	(D) 0.015
a 5Gw 5F.0	16.175	2	С	-	(?) 2.015
	1) 14.62	4	G	-	10.01 - CT- 20.61
b ⁵ Dv ⁵ D. ⁰	07.925	6	С	III	(0) 1.514
	1) 06.83	4	G	Let Total	- man and
b5D,-v5D,0	04.802	15	С	III	(0) 1.612
b 5Dv 5D.0	3797.711	12	С	III	(0) 1.614
b 5D	97.127	7	С	III .	(0) 1.590
b 5D,-v 5D,0	94.608	5	С	III	(0) 1.421
b 5D3-v 5D90	93.875	7	С	III	(0) 1.58
b 5Dv 5D.0	93.289	7	С	III	(0) 1.510
b 5D v 5D,0	92.136	7	C	III	(?) 1.393
b 5D1-v 5D20	91.378	7	C	III	(0) 1.436
b 5D1-v 5D00	90.451	5	C	IV	(0) 1.508
b ⁵ D ₁ -v ⁵ D ₁ ⁰	90.224	2	C	IV	(?) 1.378
a 5D1-z 3P20	89.722	4	C	IIA	(0) 1.527
b 5D0-v 5D10	88.862		C		(1.613) 1.613
a 5G3-x 5G20	68.733	5	C	III	
a 5G2-x 5G20	68.241	12	C	II	(0) 0.450
a 5G4-x 5G30	58.047	6	C	III	-
a 5G3-x 5G30	57.661	12	C	·III	(0) 0.962
a 5G2-x 5G30	57.170	5	C	III	
a 5G4-x 5G40	49.001	20	C	III	(0.818) 2.14
a 5G3-x 5G40	48.604	5	C	III	(1.880) 1.382, 2.41
a 5G5-x 5G60	44.490	5	C	III	_
a 5G6-x 5G60	43.878	20	C	II	(0) 1.436
a 5G5-x 5G50	43.561	20	C	II	
a 5G6-x 5G50	42.963	5	C	III	(0.823) 1.643
a 7S3-z 5P30	32.029	12	CR	I	(1.011)
a ⁷ S ₂ —z ⁵ P ₃ ⁰	30.802	10	C	1	(0) 2.33
a 5G3-v 5F20	3687.546	4	C	III	-
a 5G4-v 5F30	87.260	5n	C	111	
a 5G4-v 5F40	86.836	6n	C	111	(0) 1.234
a 5G6-v 5P50	85.570	5n	C	III	
a 5G2-w 5D10	68.035	2	C	-	- 191-102
a 5G3-w 5D20	66.646	3	C	IV	The second
a 5G2-w 5D20	66.17	(1)	C		
a 5G4-w 5D30	63.216	5	C		T
a 5G3-w 5D30	62.848	2	C	III	(0) 0.2 0.625 1.409
a 5G5-w 5D40	56.265	10	0	111	(0) 07, 0.675, 1.403
a 5G2-u 5F10	53.930	8	C	TIT	(0) 0.003
a 5G3-u 5F20	49.017	10	0	III	(1) 0.112
a G2-u F2	48.546	2	C	TIT	(0.304) 01, 0.303
a G4-u F30	41.844	8	C	III	-
a or -u or o	41.479	3	0	111	

¹) Linien in Absorption nach [173].

565

566

Chrom

	1 Catalán n Se	maha		TempKl.	Transa R. 14
[215]	A Catalan u. Sa	incho		King	Zeemanenekt
	[210]	11.12		[77, 129]	Babcock [106, 107]
10 1110	0010 10				A SAL SER AND AND
a °G5-u °F50	3640.40	4	C	III	
a ^o G ₆ —u ^o F ₅ ^o	39.798	15	C	п	(0) 1.235
a ⁵ G ₅ —u ⁵ F ₄ ⁰	36.588	10	C	п	terre - terre Dea
a ⁵ G ₃ —u ⁵ F ₄ ⁰	36.25	(1)	C	-	
a ⁷ S ₃ —z ⁷ D ₃ ⁰	35.278		C	-	-2" a - 2" a
$a^{7}S_{3}$ — $z^{7}D_{4}^{0}$	15.646	4	C	IIA	(?) 0.623
a 7S3-y7P20	1 10 05 990 1	10 D		II	width and added
b ⁵ D ₃ —u ⁵ D ₃ ⁰	5 -) 00.000 1	A 04	U	п	nicht aufgelöst
a 5P,-t5P.0]			1	
a 5Pt 5P.0	6 03.739	3	C	III	12.1028 - Contraction
a 5Pt 5P_0	02 564	1	C	ш	(0) 1 878
a 5p 5p 0	01.654	6	C	III	(0) 1.570
a 13-0 12 a 75 - 17 0	1) 2502 482 1	COP	C	II	(f) 1.420 night onfoolSet
$a^{7}S_{3}$ $y^{7}T_{3}$	1) 70 600 0	OOR	C	II	nicht aufgelöst
a S ₃ —y P ₄	-) (0.000 2	JUOR	C	III	desgi.
a P2-SP3	74.940	4	0	111	2.13
a "P1-S"P2"	74.805	8	C	111	(?) 1.528
a °P3-s °P3 °	74.039	7	C	III	(0) 1.835
a ^o P ₂ —s ^o P ₂ ^o	73.642	10 -	C	III	(?) 2.025
a ⁵ P ₃ —s ⁵ P ₂ ⁰	72.743	5	C	IV	nicht aufgelöst
⁷ D ₅ —z ⁷ F ₆ ⁰	50.636	15	C	V	
$^{7}D_{5}$ —z $^{7}F_{5}$	22.8	3n	C	IV	- the local states
a ⁵ P ₃ -v ⁵ D ₄ ⁰	3481.299	20	C	II	(0) 1.250
b ⁵ D ₁ —s ⁵ F ₁ ⁰	80.30	3 .	C	III	
b ⁵ D ₃ —s ⁵ F ₂ ⁰	79.30	5n	C	V	train the state of the
b 5D0-s 5F10	79.10	3	C	III	
b 5D2-s 5F20	78.76	5	C	III	
b 5D1-85F20	77.160	4	C	III	
b 5D3-5F30	75.127	2	C	IV	
b 5D2-s 5F30	74.85	5	C	III	
a ⁵ P ₂ -v ⁵ D ₃ ⁰	73.614	8	C	III	
a 5P v 5D.0	1			in the second	
b 5D,-85F.0	72.766	8	C	III	
a 5P 5D_0	71 50.	4	C	ш	A REAL PROPERTY AND A REAL PROPERTY AND A
$a^{5}P - v^{5}D^{0}$	70.530	4 5	C	m	_
$a \stackrel{1}{}_{1} \rightarrow D_{1}$	70.401	8	C	III	
hangev Dg	60 599	10	C	III	
b 5D s 5F 0	09.000	10	C	III	(0) 0.636
b ^s D ₄ —s ^s F ₄ ^o	67.024	10	0.		(7) 1.112
D°D4-s°F5	60.430	12	C	m	(?) 1.265
a G3-w G20	53.743	8	C	II	(0) 0.527
a G2-WoG20	03.328	20	C	11	nicht aufgelöst
⁷ D ₅ —y ⁷ P ₄ ⁰	48.19	2	C ·	III	
a •G4-w •G30	47.761	12	C	II	
a 6G3-w 5G30	47.428	20	C	II	
a 5G2-w 5G30	47.015	8	C	II	
a 5G4-w 5G40	41.446	20	C	II	(0.486) 2.26
a 5G3-w 5G40	41.113	6	C	II	(?) 1.208
a ⁵ G ₅ -w ⁵ G ₅ ⁰	36.185	20	C	II	anormal, unsymmetrisch

1) Linien in Absorption nach [173].

[015]	λ Catalán u. S	ancho		TempKl.	Zeemaneffekt
[215]	[215]			[77, 129]	Babcock [106, 107]
		100 100		[, xao]	
a 5G6-w 5G50	3435.680	6	С	II	
a 5G5-w 5G60	34.110	7	C	II	(0)? 0?, 1.213
a 5G6-w 5G60	33.596	25	C	II	(0) 1.347
a 5G2-t5F10	3388.68	8	C	III	15 400 CSH - 192- CAS
a 5G3-t 5F20	84.66	8	C	III	16.15 (1) - The
a 5G2-t5F20	84.26	4	C	III	12.000 6.00 - 10- ,000
a 5G4-t5F30	79.823	10n	C	III	and the second second second
a 5G3-t 5F30	79.55	5n	C	III	Billio Hall Hereiter
a ⁷ S ₃ —y ⁵ P ₂ ⁰	79.169	10	C	IA	10 1 - Pro- 10 Pr
a 5G5-t5F40	67.516	20 n	C	II	(0) 1.237
a 5G5-t 5F50	62.73	5n	C	II	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
a ⁵ G ₆ -t ⁵ F ₅ ⁰	62.225	20 n	C	II	The second se
a ⁷ S ₃ -y ⁵ P ₃ ⁰	51.960	10	C	IA	and the state of the
b 5D2-r 5F10	43.338	6 .	C	III	
b ⁵ D ₂ -r ⁵ F ₂ ⁰	37.21	1	C	V	- 16 y - 16 y - 16 y
b 5D2-r 5F30	29.050	8	C	III	- 1°h - (1°h
b 5D4-r 5F30	27.23	2n	C	IV	-14x-2**
b5D4-r5F40	1 10.00		0	V	AND B L CELEVAN
a 5P,-u 5D.0	16.495	3	C	Y	TEAR.
0.5P_1.5D_0	1		0		and the second se
$a^{5}\Gamma_{1}$ $u^{5}D_{1}^{0}$	15.16	1	C	V	The second s
	1110		C	IV	
a ^s P ₂ —u ^s D ₂ ^o	14.10	1	C	III	
a ^s P ₂ —u ^s D ₃ ^o	12.00	2	C	V	the set of
a ^s P ₃ —u ^s D ₃ ^o	11.27	1	C	II	Photos and a start of the second start of the
a ^s P ₃ —u ^s D ₄ ^o	01.149	0	C	V	a state of the second states
b°D4-r°F5	1) 9966 699	1 5	C	TTA	and a second second second
a °D ₄ —z °D ₃ °	*) 5200.052	0	C	IIA	BAR PARTY STREET
$a^{\circ}D_2 - z^{\circ}D_1^{\circ}$	17 979	4 5	C	TA	and a strength lines
$a^{\circ}D_1 - z^{\circ}D_1^{\circ}$	41.210	5	C	TA	
a °D ₂ —z °D ₂ °	40.400	0 7	C	IA	and the second second
a ^s D ₃ —z ^s D ₃ ^o	44.10	e.	C	IIA	
$a^{\circ}D_0 - z^{\circ}D_1^{\circ}$	40.002	5	C	IIA	100 M
$a^{\circ}D_1 - z^{\circ}D_2^{\circ}$	00.202	0	C	IIA	
$a \circ D_2 - z \circ D_3^\circ$	20.04	5	C	IIA	
a S2-Z D3	60.54	2	C	IVA	
a bD abb o	2024 97	0	C	IT A	_
a "F3-r"F2"	0004.27	10	0	TIT	(0) 0.977
a 5P2-r 5F30	77.832	10	-	III	(0) 0.011
a 5G2-55F10	76.54	2	0	IV	
a 5G5-5F50	71.30	4	0	IV	(0) 1 180
a 5G6-5 P50	61.651	6	C	III	(2) 1 284
a 5D4-x 5P30	1) 53.882	125 R	0	II	(1) 1.004
a 5D4-y 5F30	49.80	4	C	11	
a 5D3-y 5F20	40.849	50 r	C	II	(c) 1.066
a 5D3-x 5P20	39.784	15	C	I	(0)? 1.900
a 5D4-y 5F40	1) 37.051	40 r	C	II	(0.560) 1.571
a ⁵ D ₃ —x ⁵ P ₃ ⁰	¹) 34.198	40 r	C C	II	(0.488) 1.830

1) Linien in Absorption nach [173].

[215]	λ Catalán u. Sancho [215]		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
a 5D y 5F, 0	3031.360 12	С	I	(0) (1.596) 0, 1.646, 3.27
a Da-v5Fa	¹) 30.249 60 R	С	п	(0.682) 1.503
a 5D x 5P.0	1) 29.169 20	С	II	(0) (1.026) 0.584, 1.640, 2.63
a 5D x 5P.0	1) 24.355 70 R	С	II -	(0.453) 1.550
a 5D4-v 5F50	¹) 21.565 100 R	С	II	(0.413) 1.410
a 5D,-v 5F,0	¹) 20.671 40 R	С	II	(0) 1.643, 0, 1.628
a ⁵ D ₉ -x ⁵ P ₉ ⁰	¹) 18.827 25r	С	II	(0) 2.022
a 5D,-x 5P,0	¹) 18.500 50 R	С	II	(0.994) 1.705, 2.705
a 5D2-v 5F40	17.580 100 R	С	П	(0.443) 1.368
a 5D v 5F. 0	¹) 15.199 30r	C	II	
a 5D v 5F.0	¹) 14.920 75 R	С	II	A-00,
a 5D,-v 5F.0	¹) 14.767 50 R	С	II	and the second s
a 5D,-x 5P.0	¹) 13.720 40 R	C	II	(0)? 1.304
a 5Do-x 5P,0	1) 13.040 15	C	I	(0) 2.67
a 5D,-v 5D.0	05.068 35r	C	II	(0) 1.627
a ⁵ D _o -v ⁵ D _o ⁰	00.894 40r	C	II	(0) 1.624
a 58 -x 5P.0	2998.796 30r	C	II	(0) (0.575) 1.644, 2.24
a 5D - v 5D,0	1) 96.585 40r	C	II	(0) 1.628
a 5S 5F _0	95.110 30r	C	· · ·	(0,516) (1,090) 2,690, 2,20
	94.79 3	G	-	(0.010) (1.000) 2.000, 2.00
$a {}^{5}S_{2}$ - $x {}^{5}P_{2}{}^{0}$	¹) 94.077 15	С	п	(0.683) (1.485) 0.648 , 1.465, 2.218
a 5Dv 5D.0	1) 91.895 25r	С	П	
a 5S-x 5P.0	1) 88.654 75r	C	II	
a 5D,-v 5D,0	86.474 100 R	C	II	(0) 1.624
a 5D,-v 5D,0	86,142 10	C	12	(0) 1011
a 5D_0-v 5D_0	86.002 60 R	C	II	(0) (0) 1.672, 1.660
a 5D-v5D-0	1) 85.856 30 R	C	II	(0) (0)
a ⁵ D ₀ -v ⁵ D ₁ ⁰	1) 80.795 20r	C	II	(0) 1.642
a 5D,-v 5D.0	1) 75.489 25r	C	II	(0) 1.607
a ⁵ D _a -v ⁵ D _a ⁰	1) 71.118 30r	Č	II	(0) 1.616
a ⁷ S ₂ -z ⁵ D ₂ ⁰	68.98 1	C	IIA	(0) 1010 -
a 5G-r5F.0	68.18 5n	C	IV	
a 5D-v5D.0	1) 67.653 20r	C	I	(0) 1.596
a ⁵ G_r ⁵ F_0	63.68 Sn	C	III	(0) 1.000
a 5G4-r 5F30	57.2 10n	C	V	
$a^{7}S_{3}$ - $z^{5}D_{4}^{0}$ $a^{5}S_{6}$ - $v^{5}D_{6}^{0}$	} 48.85 12n	С	III	
a 5S v 5D.0	41.890 3	С	IIA	
a 5D,-z 5G.0	16,166 4	C	II	
a 5D4-x 5D.0	¹) 11.146 15	C	II	(0) 1.582
a 5Da-x 5Da0	1) 10.907 20	C	II	(0) 1.570
a 5Dx 5D.0	09.058 20	C	II	(0) 1.608
a 5D, -x 5D.0	1) 05,496 15	C	II	(0) 1.618
a 5D - z 5 G 0	02.46 1	C	IIIA	
a 5D,-z 5G,0	00.27 2	C	IIA	
a 5D1-x 5D10	1) 2899.216 10	C	II	freining har - throughter

1) Linien in Absorption nach [173].

568

[215]	λ Catalán u. [215]	Sancho		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]
a ⁵ D _o -x ⁵ D _o ⁰	2896.757	15	C	п	Const. 1. Later States
a 5D0-x 5D,0	94.178	12	C	II	and the state of the state of the
a 5D,-x 5D,0	1) 93.260	20 r	C	II	(0) 1.705
a 5D4-x 5D40	1) 89.267	8	C	II	(0) 1.626
a 5D2-z 5G30	88.38	2	C	III	and the manufactures
a 5D,-x 5D.0	1) 87.001	15	C	п	(0) 1.577
a 5D,-x 5D,0	1) 79.279	15	C	п	(0) (0) 1.736, 1.624
a 5Dx 5D.0	1) 71.641	12	C	II	(0) 1.648
a 5D4-w 5P30	1) 2780.702	150	C	II	
a 5D2-w 5P20	1) 69.915	100	C	п	? 1.278
a 5D3-w 5P30	¹) 64.364	50	C	II	(0.60) ?
a 5Dw 5P10	1) 61.745	50	C	II	(0) (1.244) ?
a 5Dw 5P.0	1) 57.100	60	C	II	
a 5D,-w 5P,0	1) 52.878	60	C	II	and a state of the
a 5D2-w 5P30	51.604	6	C	I	
$a^{5}D_{1} - w^{5}P_{2}^{0}$ $a^{5}D_{0} - w^{5}P_{1}^{0}$	¹) 48.292	50	C	II	and - He-date
a 5S w 5P.0	36,478	60	C	II	
a 5S_w 5P_0	31.914	60	C	II	(0.354) 2.003
a 5S. w 5Pa0	26.524	80	C	II	(0)? 1.320
a 5D4-v 5P30	16.188	6	C	II	The second second second
a 5D4-x 5F40	03.491	5	C	I	Millione and All Street Street
a 5D4-x 5F50	02.000	12	C	II	
a 5D3-v 5P30	00.604	4	C	I	-
a 5S2-v 5P10	2696.548	3	C	I	—
a 5D3-x 5F30	1) 90.261	5	C	I	
a 5D -x 5F40	88.050	8	C	I	start of the second own
	¹) 84.72	2	G	-	Harris Harrison Inter
-	84.30	2	G		Development of the second second
-	¹) 82.52	1	G	-	-
a ⁵ S ₂ -v ⁵ P ₂ ⁰	81.472	8	C	II	-
-	80.79	3	G	-	-
a 5D2-x 5F20	80.352	4	C	I	(0.467) 0.920
a 5D2-x 5F30	1) 78.173	6	C	I	-
a 5D1-x 5F10	73.663	3	C	II	-
a ⁵ D ₁ -x ⁵ F ₂ ⁰	71.989	5	C	II	-
-	1) 71.07	2	G	-	-
-	70.51	3	G		_
a ⁵ D ₀ —x ⁵ F ₁ ⁰	1) 69.378	4	C	111	-
- 101	62.78	2	G	-	
100	62.21	2	G	-	A STATE OF THE STA
	58.60	15	G		
a ^b D ₃ —y ³ D ₂ ⁰	29.829	5	C	III	-
a ^o D ₃ —y ^o D ₃ ^o	25.330	6	C		
a ^o D ₂ —y ^o D ₁ ^o	20.486	6	C	III	
a ^o D ₂ —y ^o D ₂ ^o	18.280	10	C	III	
a "D1-y"D2"	10.31	2	1 0	1 11	_

1) Linien in Absorption nach [173].

569

[215]	λ Catalán u. S [215]	ancho		TempKl. King [77, 129]	Zeemaneffekt Babcock [106, 107]		
a 5D, -w 5F.0	2603.585	5	C	П	an man and an an an an an an		
a 5D,-u 5P.0	1) 2591.861	15	C	II	an and the second second second		
a 5D,-w 5F,0	88.217	6	C	II	the second s		
95D 5F 0	79.16	G	C	II	(0) 1 000		
a 5D5D 0	1) 77.66	10	C	II	(0) 1.000		
a ⁵ Dw ⁵ F _0	72.14	7	C	II	the safety work of the safety of the same		
a ⁵ D ₂ -u ⁵ P ₂ ⁰	1) 71.76	15	C	I	the set of the set of the set of		
a 5D,-x 5G,0	68.53	3	C	ÎI	an est blan i the second second		
a 5D0-w 5F,0	68.09	4	C	II	the manager of the second s		
a 5Du 5P_0	¹) 66.56	4	C	II			
a 5Do-u 5Po	1) 60.71	12	C	II	_		
a 5D2-u 5P10	1) 57.15	10	С	II			
a 5D1-u 5P20	1) 53.06	6	C	II			
a ⁵ D ₁ -u ⁵ P ₁ ⁰	¹) 49.51	12	C	II			
a ⁵ D ₀ -u ⁵ P ₁ ⁰	¹) 45.64	6	C	II			
	44.73	3	G	_	-		
a ³ D ₄ -v ⁵ F ₄ ⁰	· 41.66	4	C	II	的现在分词 计算法 网络公司		
a ⁵ D ₄ -v ⁵ F ₅ ⁰	41.37	12	С	II			
	39.98	2	G	_			
-	35.27	2	G	_			
-	32.63	1	G	_			
a 5D4-w 5D30	30.45	7	- C	II	and a state of the second of		
a 5D3-v 5F30	28.23	4	C	II	_		
a 5D3-v 5F40	28.02	6	C	II	-		
a ⁵ D ₄ -w ⁵ D ₄ ⁰	27.11	10	C	II			
a ⁵ D ₄ -u ⁵ F ₅ ⁰	19.52	15	С	II	(?) 1.320		
a 5D3-w 5D20	18.71	8	C	II			
a 5D2-v 5F30	17.56	5	C	II	1 18 11		
a 5D3-w 5D30	16.90	10	C	II			
a 5D3-w 5D40	13.62	7	С	II			
a 5D1-v 5F20	10.61	5	С	II	13 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		
a ⁵ D ₂ -w ⁵ D ₁ ⁰	08.99	8	C	II	- 1 AC		
a 5D2-w 5D20	08.12	8	C	II	12.08 14 16 A		
a ⁵ D ₃ —u ⁵ F ₄ ⁰	04.31	15	C	II	Tat a manufacture		
a ⁵ D ₁ -w ⁵ D ₀ ⁰	00.66	3	C	II	- 2 ¹ /2		
a ⁵ D ₂ -u ⁵ F ₂ ⁰	2499.86	5	C	II	-102 - 10 m		
a ⁵ D ₂ —u ⁸ P ₃ ⁰	96.31	20	C	II	1.17 0		
a ⁵ D ₁ —u ⁵ F ₁	95.06	7	C	II	18.00		
a ⁵ D ₁ —u ⁵ F ₂ ⁰	92.55	15	C	II	19.78 (19.19) - TY 2- (19.2		
a ⁵ D ₀ —u ⁵ F ₁ ⁰	91.34	10	C	II			
a ⁵ D ₃ —t ⁵ P ₂ ⁰	08.75	10	C	III			
a ^b D ₄ —s ^b P ₃ ^o	08.66	15	C	III	- · · ·		
a ^b D ₂ —t ^b P ₁ ⁰	2399.57	7	C	III	and the second s		
a ⁵ D ₂ —t ⁵ P ₂ ⁰	99.06	8	C	III			
a ^s D ₃ —s ^s P ₃ ^o	96.37	10	0	III			
a ^o D ₃ —s ^o D ₂ ^o	95.78	0	0	III	and the second s		
a D1-t P10	92.88	8	C	III	1E.01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
[215]	λ Catalán u. [215]	TempKl. King [77, 129]	Bal	Zeemaneffel bcock [106,	ct 107]		
---	-----------------------	------------------------------	-----	----------------------------	------------	--------	--
a 5D1-t5P20	2392.38	1	C	_			
a 5D0-t 5P10	89.42	5	С	III			
a 5D2-85P30	86.76	(2)	С	-			
a 5D2-s 5P20	86.17	4	С	III		7 427	
a 5D4-t5F40	85.72	4n	С	III		1 41	
a 5D4-t5F50	83.29	20	С	III		1 100	
a 5D3-t5F30	78.02	10	С	III		-	
a 5D3-t5F40	73.72	15	С	III		-	
a 5D2-t 5F30	70.41	10	С	III		1 4	
a 5D1-t 5F10	68.50	1	С	1015-11		1	
a 5S2-s 5P30	67.90	1	С				
a ⁷ S ₃ -x ⁷ P ₂ ⁰	66.85	15n	С	II		1. 1-1	
a 5D1-t 5F20	66.32		С				
a 5D4-v 5D40	66.17		С				
a ⁷ S ₃ -x ⁷ P ₃ ⁰	65.96	12n	С	II		1 - /	
a7S3-x7P40	64.74	20n	С	II			
a 5D4-v 5D30	62.22	1	С	-		1 -1	
a 5D3-v 5D30	54.34	1	С	-		-	

Anmerkung. Die Buchstaben der dritten Spalte bezeichnen den Autor, der die betr. Linie eingeordnet hat. Die Intensitätsangaben in Spalte 2 sind inhomogen und nur bedingungsweise zu benutzen, sie sind hier nach King, aushilfsweise nach Hall bzw. Bd. VII (Bogen) gegeben. Man vgl. die anderen von King angegebenen, der je nach der benutzten Lichtquelle (Bogen, Ofen in 3 Temperaturstufen) vier verschiedene Intensitäten abschätzt. Es bedeutet ferner b =Bandenlinie, n = unscharf, d = diffus, R = stark umgekehrt, r = schwach umgekehrt.

Cr II. Kimura und Nakamura [128] haben bei manchen Elementen eine Trennung der Ionisationsstufen durchgeführt, indem sie die verschiedenen Längen der Linien gemessen haben. Für Cr geben sie nur an, daß alle Linien gleiche Länge haben, also alle zu Cr II gehören, geben aber nicht an, welche Linien das sind. Dagegen haben Meggers, Kiess und Walters [132] eine größere Anzahl Linien zwischen 3470 und 2650 Å als zu Cr II gehörig festgestellt und eingeordnet. Dazu führt Russell [170] noch 9 Linien, und Kiess und Laporte [152] haben noch drei kürzere Wellenlängen. Krömer [188] untersucht den Zeeman-Effekt für die Linien und gibt Terme; er findet auch neue Multipletts. Krömer hat die Multipletts mit Nummern von 1 bis 9 versehen; in der Tabelle sind bei den Linien in einer eigenen Spalte diese Zahlen mit aufgeführt.

Die Arbeit von Catalán [199] ist, was die Tabellen angeht, weitgehend mit aufgenommen, da sie die neueste und vollständigste Arbeit ist. Die Einordnung soll nur nach [199] gegeben werden. Sie beruht auf 67 Niveaus.

In der nun folgenden Tab. 4 geben wir wieder zuerst die neuen Messungen, soweit sie nicht im Band VII enthalten sind.

	[13 14	32, 52]	[188]	Foster [176]			[1: 1!	32, 52]	[188]	Foster [176]		125	[13 13	82, 52]	[188]	Foster [176]
3433	31	5	71)	3.313		3128	68	5	3	_		2750	72	10	4	0.720
22	75	20	7	-		24	97	20	3	-	-	48	98	8	4	8.983
21	19	10	7	2.212		20	36	15	3			43	64	8	4	3.640
08	76	20	7^{2})	8.770		18	65	10	3	-		42	02	5	4	1-
03	35	15	7	3.323		2889	19	3	2	9.279		40	10	3	4^{2})	0-
03	32	2	9	-		80	89	4	2	0.905		22	73	5	8	-
02	46	4	9	-		78	44	2	6 ²)	-01		17	49	4	8	10-
3394	37	4	9	-		77	98	3	6	-		12	31	6	8	-
93	88	4	9			76	25	3	6	-		03	85	2	8	-
93	06	5	9	-		75	99	5	2	-		2698	66	4	8	8.690
91	47	5	7			73	83	2	2	-		98	42	4	8	8.410
82	68	10	7	2.684		73	48	3	6	-		87	08	8	8	-
79	88	5	9	-		70	43	5	2			78	78	10	8 ³)	-
79	40	3	9	-		67	64	5	6	7.647		72	84	6	5	-
68	04	20	1	8.056		67	09	2	2	-		71	82	8	5	1.811
63	78	2	7	-		66	75	5	6			68	72	6	5	1-
61	82	4	9	-		65	33	2	2	-		67	07	8	8	-
60	30	20	7	0.300		65	11	4	6	-		63	68	3	5	-
58	50	10	1	8.500		62	59	10	6	-		61	74	3	5	
47	83	6	1	_	100	60	93	5	6	0.931	108	58	60	4	5	
42	58	10	1	- 1	11	58	91	4	6			53	59	3	5	as-fai
39	80	10	1	-		58	62	2	2			31	23	1	8	
36	33	5	1	-	1	57	40	3	2	-		1			in the second	1.00
34	93	2	7	-		56	76	3	2	-						
28	34	3	1	1	- 1	55	67	10	6	5.675		1000				
24	06	3	1	_	372	49	84	10	6	/		173	0.0		Amili	as becel
07	66	2	7	-		43	24	15	6	3.248		KI	less 1	u.		indexist.
3159	10	1	3	-		35	64	20	6 ²)	5.650		La	iport	e		
47	22	5	3	-		2766	54	15	4 ²)	6.536			100]			1
45	07	2	3	_		62	59	10	4	-		2065	43	6		
36	69	5	3	-	1	57	71	8	4	7.721		61	50	7	an su	hader.
32	04	20	32)	-		51	86	10	4	1.860		55	51	8	1. 191	111 22

In der Tab. 5 finden sich Einordnungen und Zeeman-Effekte. In der ersten Spalte ist die Einordnung nach Catalán [199], in der zweiten die Nummer des Multipletts, in der dritten Spalte finden sich Angaben über den Autor, der die Linie gemessen hat. Dabei bedeutet 1 = Exner u. Haschek, 2 = Hall, Diss. Bonn 1925, 3 = auch in Sonne gefunden, 4 = Piña. An. Soc. Esp. 15 p. 110 (1917); in der vierten Spalte findet man die Wellenlängen in Å.E., in der 5. die Intensität und dann folgen in 6 die Zeeman-Effekte.

¹) Russell [170] gibt noch: 3511.8.

²) Diese Linie hat auch Russell.

³⁾ Russell [170] gibt noch: 2677.1.

Tabelle 5.

Catalán	tt-	-		nsit.	Temp	Zeeman	-Effekte
[199]	ful	1)	A A	ter	Klassen		đ
[roo]	A			P	[199]		0
b4F4-z6Da	34	_	6053.53	2	-	10 - 1	_
b4Fo-z4Po	33	3	5979.311	-		14 1	
b4F4-z4Pa	33	3	26.205	-	-	11 - 1	Du-110
a ⁴ F _a -z ⁶ P _a	32	3	5742.815		_		Par Par
a ⁴ Fz ⁶ P.	32	3	07.922	1.	-	-	_
a ⁴ P ₂ -z ⁶ D ₂	29	1	5510.71	1	4	(0)	1.46
b ⁴ G ₄ -z ⁴ F ₂	31	1	08.61	1	_	(0)	0.96
b4Ge-z4Fe	31	1	03.18	1	_	(0)	0.77
b4G-z4F.	31	1	02.08	1	-	(0)	1.06
b4G-z4F	31	1	5478.37	1	- 1	(0)	1.14
a ⁴ F _e -z ⁴ P _e	30	1	30.368	1	-	_	-0.d.
a ⁴ P ₂ -z ⁶ D ₂	29	1	20.94	1	_	(0.56)	1.29; 2.30
a ⁴ F ₂ -z ⁴ F ₂	30	3	19,425			-	
a 4P	29	1	07.59	1	_	(0)	1.70
a 4FZ4P_	30	3	5368.122			-	The second
a 4P 4P	27	3	46.092	-	10_		Ph_ Ph
$h_{4}F_{-}z_{4}F_{-}$	28	1	37.81	1	_	_	-
$b_{4F} = 74F$	28	1	34.90	1		(0)	0.42
$b T_2 - z T_2$ b 4F - z 4F	28	1	13.62	1		(0)	1.04
b 4F - 74F	20	1	10.74	1		(0.10): (0.89)	1.01
$D^{-}\Gamma_{2}$ $Z^{-}\Gamma_{3}$	00	1	08.49	1		(0.10), (0.00)	1.60
$D^{*}\Gamma_4 - Z^{*}\Gamma_3$	20	1	05.85	1		(0)	1.64
$a r_3 - z r_3$ b 4F = a 4F	00)	1	05.05	1		(0)	1.01
$b^4F - z^4F$	20	3	5279.880	-	-	-	
$b_{4F} = 74F$	28	3	74.980	_	_		The The second
$p T_4 - z T_4$ p 4P - z 6D	20	8	49.587			_	1242-044
a 1 2 2 D3	20	2	46 783		_	100 -	no-the
$h_{1}^{A} = \frac{1}{2} h_{1}^{A} = \frac{1}{2} h_{1}^{A}$		1	37.33	2	_	(0)	1.36
$b + F_5 - 2 + F_5$	98	2	32 517	-		(0)	
$D^{-}\Gamma_4 - Z^{-}\Gamma_5$	97	2	10.943	In Home			100 (TE 1
$a r_2 r_2 r_1$	07	2	5116 192				
a F ₁ -Z F ₁	96	2	4876 486				
a T ₄ -Z T ₃	20	1	76.42	2		(0)	0.41 diffus
a - r ₂ - z - r ₂	20	1	64.33	0		(0)	1.87
a T ₃ -Z T ₃	20	1	60.94	1		(2)	1.48
a * F 5 Z * F 4	20	1	49.95	9		(.)	1.95
a*F4-Z*F4	20	1	40.20	0		(0)	1.20
a *F ₃ —Z *F ₄	20	1	00.20	10		(0)	1.96
a *F ₅ —z *F ₅	26	1	10.97	10	-		1.50
a "F4-z"F5	26	1	12.57	2	-	(1)	1.07
a ^a P ₃ —z ^a F ₃	25	3	05.102	-	-	-	-
a ⁴ P ₃ —z ⁴ F ₄	25	8	4777.731	-	-	-	_
a ⁴ P ₂ —z ⁴ F ₂	25	3	4698.778			-	
b ⁴ F ₂ —z ⁴ D ₁	24	1	34.12	10	-	-	
a ⁴ P ₁ —z ⁴ F ₂	25	3	21.481	-	-		-
b^4F_3 — z^4D_2	-	1	18.84	10	-	(?)	0.82
$ b^{4}F_{2} - z^{4}D_{2}$	24	1	16.67	3r	- 1		-

 1 = Exner und Haschek. — 2 = Hall, Diss. Bonn 1925. — 3 = Rev. Rowland's Table. — 4 = Piña. An. Soc. Esp. 15 p. 110 (1917). 574

Chrom

Catalán	tti-		1.	nsit.	Temp	Zeem	an-Effekte
[199]	Mul	-)	A A	Inter	[199]	π	σ
1.412			4500.07				
$D T_3 - Z D_3$	24	1	4092.07	4	-		1.00
$D^{*}F_2 - Z^*D_3$	24	1	89.93	1	-	(?)	1.06
b ⁴ F ₄ —z ⁴ D ₃	24	1	88.25	20	-	(?)	1.02
b ^a F ₃ —z ^a D ₄	24	3	58.779	-	1		-
b 4F5-z 4D3	24	1	58.71	20	-	(?)	1.13
b ⁴ F ₄ —z ⁴ D ₄	24	. 1	55.02	10	Bogen	(0.60)	1.28
b ⁴ D ₂ —z ⁶ F ₃	23	3	44.699		-	-	
b ⁴ D ₄ —z ^o F ₃	23	3	42.847	1.000	-	-	
b ⁴ D ₃ —z ⁶ F ₄	23	3	07.232	-	-	-	10-01
b ⁴ D ₄ —z ⁶ F ₄	23	3	04.544		-	-	-
a ⁴ F ₂ —z ⁴ D ₁	21	1	4284.23	1000	-	(0.20)	0.19; 0.64
b 4D ₃ —z 6P ₃	22	3	81.108		-	-	
$b {}^{4}D_{2} - z {}^{6}P_{2}$	22	3	80.343			-	- 12.4
b ⁴ D ₁ —z ⁶ P ₂	22	3	79.00	10-	-	-	Non-The
a ⁴ F ₃ -z ⁴ D ₂	21	1	75.52	1	-	(?)	0.96
$a {}^{4}F_{2}$ — $z {}^{4}D_{2}$	21	1	62.29	1	-	D -	
a ⁴ F ₄ -z ⁴ D ₃	21	1	61.99	1	-	(0)	1.03
a ⁴ F ₃ -z ⁴ D ₃	21	1	52.65	1		-	- 91
a ⁴ F ₅ -z ⁴ D ₄	21	1	42.35	5	-	(0)	1.15
a 4F4-z 4D4	21	1	33.24	1	-	(?)	1.37
a^4P_3 — z^4D_2	20	3	29.776	-	-	-	
b ⁴ D ₂ -z ⁶ D ₁	18	3	17.062	-	-	-	- Hall
b ⁴ D ₁ -z ⁶ D ₁	18	3	15.813	-	-	-	
a ⁴ P _a -z ⁴ D _a	20	3	07.409	-	_	_	-
b ⁴ D ₃ -z ⁶ D ₉	18	3	4172.590	-	_	-	_
b ⁴ D ₉ -z ⁶ D ₉	18	3	71.909	-	_	-	- DI
b ⁴ D ₁ -z ⁶ D ₂	18	3	70.639	-	-		and the second
a ⁴ P ₂ -z ⁴ D ₁	20	3	46.500	_	_	_	11-11-1
a ⁴ Pa-z ⁴ Da	20	1	32.45	1		(0.81)	1.48
b ⁴ D ₉ -z ⁶ D ₉	18	3	12.570	_	_	_	111-11-0
b ⁴ D ₂ -z ⁴ P ₁	19	3	4088.852	_	_	_	
b4D,-z4P,	19	3	87,607	-	_	_	
a 4P, -z 4D,	20	1	86.19	1	_	(1.43)	1.31
b ⁴ D ₂ -z ⁴ P ₂	19	3	77.582	-	_	(2.20)	
h4D-z4P	19	3	76.884			_	
h4Dz4P.	19	3	75,708		_	_	
a ⁴ Pz ⁴ D.	20	3	72.514			_	
$h^4D_{-}z^6D_{-}$	18	3	64.054				
h4D	19	1	54 12		(the first set	_	
$b^4D_3 = z^4P_3$	19	3	53 434		the Lord A		
b 4D - z 6D	18	8	30,850				the second little
$b D_4 - z D_5$ $b 4 D_{-7} 4 F_{-7}$	17	3	3767 906				
h4D	17	3	66 668				and the second second
$b_2 = 2 T_2$ $b_4 D = -74 F$	17	1	65.60	1		(2)	0.59
$b_4D_4 = \pi 4F$	17	2	55 126	I		(.)	0.00
$b_{3} - z_{3}$	17	0	54.60	0		(0)	0.89
$b_2 - z_3$	17	1	29.99	0		(0)	0.00
$b + D_3 - z + F_4$ b 4D = $a + F_4$	17	1	90.00	2		T	A REAL PROPERTY.
$D^4D_4 - Z^4F_4$	17	0	15 10	-	_	(0)	1.04
D*D4-Z*F5	17	1	10.18	2	-	(0)	1.24
a D2-ZOD1	16	1	12.97	6		ko	omplex

Catalán	tt-			Int.	Temp	Zeema	n-Effekte [199]
[199]	Mul	1)	λA	[199]	[199]	π	σ
9 2D76D_	16	1	3677 89	Ar		(0.61)	1 18 . 2 20
$a^{2}D_{2} - z^{6}D_{2}$	16	1	77.70	2		(2)	1.43, 2.00
$a 4D_3 - z 6E_2$	17	1	51.69	1		(.)	1.10, 2.01
$a D_1 - 2 T_2$ $a 4 D_1 - 2 6 F_1$	17	1	47.37	1			
$a D_2 - 2 T_3$ a 4D - 76F	17	1	44.69	1			in the second second
$a 4D_3 - z 6F_4$	17	1	43.90	1		(0)	1.57
$a^{2}D_{4} - z^{6}D_{5}$	16]		10.20	-		(0)	1.01
$a^{2}D_{2} - z^{6}D_{3}$	16	1	31.61	10d?	-	(0)	1.60
$a^2D_s - z^4P_s$	15	3	13,781				-
$a^2D_2 - z^4P_2$	15	3	03.782	_	_		
$a^2D_2 - z^4P_2$	15	3	03.622		100_	nicht	angeregt?
$a^2D_2 - z^4P_2$	15	2	3585 504	(3)	_		ungerege.
$a^2D_2 - z^4P_2$	15	1	85.39	(4)	V		
a 13 a 13	10		00.00	(*)		((0.26)	0.29 . 0.81
a ⁴ G ₅ —z ⁶ P ₄	14	1	56.10	3	VE	(0.76)	1 32 • 1 81
a ⁴ D ₄ —z ⁶ P ₃	13	1	11.85^{1})	6	VE	(1.31)	9.99
a ⁴ D ₂ -z ⁶ P ₂	13	1	3495.38	6	VE	(0.57): (1.67)	02 0.92
a ⁴ D ₄ -z ⁶ P ₄	13	1	94.53	(1)	_	(0.01), (1.01)	
		-	01.00	(1)		((2) (2)	0.65: 1.22
a ⁴ D ₃ —z ⁶ P ₃	13	1	84.14	3	VE	1 (1.41)	1.72: 2.30: 2.89
a 4Do-z6Po	13	1	75.13	2	Bogen	(1.95)	0.64; 1.95; 3.22
a 4Da-z 6PA	13	3	67.136	-	_	0.00 - 1	Charles Shares
a ⁴ D ₂ -z ⁶ P ₃	13	1	64.01	(1)	-	10.80 - UN	A REAL PROPERTY AND A
a ⁴ D ₁ -z ⁶ P ₂	13	1	62.73	(1)		_	
a 4Do-z 6D1	12	1	33.31	7	VE	(0.97)	0.38; 2.20
a ⁴ D ₂ -z ⁶ D ₂	12	1	22.75	15	VE	(0.24); (0.78)	0.72: 1.27: 1.78: 2.27
a 4D, -z 6D,	12	1	21.19	10	VE	(1.56)	1.56
a 4D4-z 6D3	12	1	08.76	15	VE	komplex	
b ⁴ D ₉ -z ⁴ D ₁	13)	1.00	00.05		17.73	(0.07) (0.00)	0.05 1.00 0.10
a ⁴ D ₉ -z ⁶ D ₉	12	1	03.35	15	V.E	(0.27); (0.98)	0.97; 1.66; 2.40
$b^4D_1 - z^4D_1$	13	1	02.46	3	VE	asymmetrisch	
b ⁴ D ₃ -z ⁴ D ₂	13	1	3394.37	4	VE	10.11 (- 111
b^4D_2 — z^4D_2	13	1	93.88	4	VE	(0)	1.32
$b^4D_1 - z^4D_2$	13	1	93.06	3	VE	(0.64)	0.66; 1.97
a ⁴ D ₁ -z ⁶ D ₂	12	1	91.47	6	Bogen	(0.99)	0.98; 2.98
Con Canyon S			Pagener	100	schwach	N. 85 (0) 6	
a 4D3-z 6D3	12	1	82.68	8	VE	(?); (0.66)	1.67 und 2 weitere
im unsur	1	1	ment	10	1 18 18 14	and the second	Kompon.
b 4D3-z 4D3	13	1	79.88	5r	Bogen	(0)	1.52
		19			schwach	2.00001 1	
${\rm b}{}^{4}{ m D}_{2}$ -z ${}^{4}{ m D}_{3}$	13	1	79.40	2	VE	(0)	1.63
b 4D4-z 4D3	13	-	78.37	2	VE		19
a 4D4-z 4P3	11	1	68.05	20	VE	(?)	1.24
a 4D2-z 6D3	12	1	63.73	(2)	-	(0.23); (0.76)	?? 2.04; 2.54
b 4D3-z 4D4	13	1	61.82	1	V	(0)	1.66
b 4D4-z 4D4	13	1	60.36	6	VE	(0)	1.58
a^4D_3 — z^4P_2	11	1	58.49	8	VE	(0.25); (0.78)	0.74; 1.28; 1.78; 2.29
a ⁴ D ₄ -z ⁶ D ₅	12	3	53.130	-	-	(?)	2.03

1) Russell gibt ebenfalls: 3511.8.

575

576

Chrom

7

Catalán	Mult.		11	Int.	Temp	Zeeman	-Effekte [199]
[199]	[199]	1)	AA	[199]	[199]	π	σ
a ² D _o -z ⁴ F _o	11	3	3349.653	_	_	LCT28	
a 4Dz 4P.	11	1	47.85	6	VE	(1.08)	0.29; 2.38
a ⁴ D ₂ -z ⁴ P ₂	11	1	42.64	3	VE	(0.60)	Crist President
a ⁴ D _a -z ⁴ P _a	11	1	39.86	7	VE	(0.42); (1.02)	1.00; 1.66; 2.33
a 4D,-z 4P,	11	1	36.35	4	VE	(1.73)	1.73
a 4D	11	1	28.36	2	VE	(0.99)	0.99: 3.02
a ⁴ D _a —z ⁴ P _a	11	1	24.08	3	V	(?)	1.51; 2.00; 2.49
a 4G7	_	1	12.23	(3)	_	(0)	0.88
a 4G4-6	-	1	11.96	(3)	17	(0)	1.00
a ⁴ G ₅ —5	-	1	07.07	(8)	-	$\begin{cases} r (0) \\ y (0) \end{cases}$	1.12
94G -4		1	3995.47	2	VE	(0)	1.23
a 4G4F	10	2	17.39	8	VE	(2)	0.88
$a^{4}G_{3} - z^{4}F_{2}$	10	0	09 183	19	VE	asymmetrisch	
$a^{4}G_{4} - z^{4}F_{3}$	10	2	08,589	3	VE	asymmetrisch	1000
$a + G = z + F_3$	101	-	00.000			(r (?))	1.07
$a^4G_4 - z^4F_4$	10	2	3197.081	10	VE	v kompl.	200
a 4G -z 4F.	10	2	81.427	4	VE	-	the stranger
a ⁴ G _e -z ⁴ F _e	10	1	80.75	10	_	(0?)	1.26
a 4D, -z 4Fa	9	(1)	59.10	10	-	(?)	?? 2.46
a 4D,-z4F,	9	2	47.224	12	VE	(0.63)	1.46
a 4D,-z4F.	9	1	45.07	2		(0.50); (1.56)	0; 1.00; 2.04; 3.05
a ⁴ D ₉ -z ⁴ F ₉	9	2	36.682	8	VE	(0.89)	0.48; 0.89; 1.32; 1.75;
	1			in an			2.12
a 4D4-z 4F5	9	2	32.050	20	VE	(0?)	1.38
a^4D_2 — z^4F_2	9	2	28.695	8	VE	(0.42); (1.35)	0; 0.88; 1.77
a 4D3-z 4F4	9	2	24.971	20	V	(0?)	1.29
$b^{4}G_{6}-5_{5}$	-	2	22.596	3	-	(0)	1.39
a 4D2-z 4F3	9	2	20.363	15	VE	(0?)	1.08
$a {}^4D_1 - z {}^4F_2$	9	2	18.645	15	VΕ	(?)	0.72
$b^{4}G_{5} - 3_{5}$	-	1	15.28	2	-	(0)	1.72
b ⁴ G ₃ -2 ₄	-	1	11.95	(1)	Bogen?	(0?)	0?; 1.72
b4F5-15	-	1	3073.25	(1)		(0.92)	1.31
b4F4-15	-	1	71.58	(2)	-	(0)	0.99
a ² D ₂ —z ⁴ D ₁	8	1	67.16	(2)	-	asymmetrisch	11 1 1 H - CU
$a {}^{2}D_{2}$ — $z {}^{4}D_{2}$	8	2	59.523	2	-	(0.89)	? Kompl.
a ² D ₃ —z ⁴ D ₂	8	3	59.377	-	-		and the second
$b^{4}F_{5}-2_{4}$ $b^{4}F_{3}-2_{4}$	-	1	58.35	(1)	-	(0)	0.79
$b^{4}F_{4}-2_{4}$	-	1	56.7	(1u)	-	(0?)	1.17
a ² D ₂ -z ⁴ D ₃	8	1	47.74	(1)	-	-	12 14 19 19 19
a ² D ₃ —z ⁴ D ₃	8	1	47.62	(1)	-	-	ET
a ² D ₃ —z ⁴ D ₃	8	1	42.78	(1)	-	(0)	1.24
a ² D ₃ —z ⁴ D ₄	-	2	32.927	2	VE	(0.34)	1.13
a ⁴ F ₅ —1 ₅	-	2	2926.156	(2)	-	(0.85)	1.24
a 4F4-15	-	2	21.816	3	VE	(0)	0.98
a 4F4-24	-	1	08.31	(1)	-	(1.12)	1.13
a 4F3-24	-	2	03,973	(2)	-	(0?)	0.80
a ⁴ F ₅ —5 ₃	-	2	2898.539	(5)	-	(0)	1.24
a 4F4-35		1	94.27	(2)	-	ALT IS - Rained	A Selection - all (*

.

Catalán	Mult			Int	Temp	- Zeeman-Effekte [199]	
[199]	[199]	10	λÅ	[199]	Klassen	Zeema	ar-mekto [100]
[100]	[100]	10	285	[100]	[199]	π	σ
a ⁴ D _a -z ⁴ D _a	7	2	2880.876	5	VE	(0)	1.61
a ⁶ Dz ⁶ F.	6	2	77.983	7	VE	(2)	2.29 kompl.?
a 6D - z 6F	6	2	76,250	10	VE	(0)	1.32
a 4D - z 4D	7	2	75.998	10	VE	(0)	1.59
$a ^{4}D_{4} - z ^{4}D_{4}$	7	2	73,822	4	VE	(0.67)	22 1.81
$a D_2 - 2 D_1$ a 6D - 76F	ß	0	73 493	19	VE	(1.41)	3.98
$a D_2 - z T_1$ a 4D - z 4D	6	9	70.442	6	VE	(0)	1.48
$a^{0}D_{3} - a^{0}D_{3}$	6	0	67 655	15	VE	(2) (2) (9.91)	22140
$a^{6}D_{1}$	6	2	66 748	15	VE	(0.41); (1.35)	0.62. 1.54. 2.50
$a^{6}D_{2}$	ß	0	65 119	20	VE	(0.41), (1.55)	170 0
a D ₃ -Z T ₃	G	0	69.575	20	VE	(0.50)	1.10 0
a ⁶ D ₄ -z ⁶ F	e	4	62.070	15	VE	(0.72)	0.9.94
$a \circ D_1 - z \circ F_2$	e	4	52.01	10	VE	(1.21)	0; 2.54
a D ₅ -z F ₅	0	1	58.91	20	VE	(0.51)	1.71 67
$a * D_1 - z * D_2$	1	2	58.659	(2)	-	(0.70)	1.01
a ^a D ₃ —z ^a D ₄	1	2	57.405	(3)	-	(0)	1.61
a ⁴ D ₂ —z ⁴ D ₃	1	2	56.768	(3)		(0)	1.65
a ⁶ D ₂ —z ⁶ F ₃	6	2	55.682	25	VEr	(0.33); (1.08)	0.44; 1.22; 1.85; 2.49
a ⁶ D ₃ —z ⁶ F ₄	6	2	49.842	30	VEr		-
a ⁶ D ₄ -z ⁶ F ₅	6	2	43.254	35	VEr	(?)	1.45
a ⁶ D ₅ —z ⁶ F ₆	6	2	35.640	40	VEr	(3)	1.45
a ⁶ D ₅ —z ⁶ P ₄	5	2	2766.542	30	VE	(?)	1.59
a ⁶ D ₄ -z ⁶ P ₃	5	2	62,596	25	VE	(?)	1.56 kompl.
a ⁶ D ₃ —z ⁶ P ₃	5	2	57.728	12	VE	(0.43); (1.30)	0.47; 1.34; 2.20; 3.04
a ⁶ D ₄ -z ⁶ P ₄	5	2	51.873	12	VE	(0.51)	1.81 kompl.?
a ⁶ D ₃ -z ⁶ P ₃	5	2	50.731	15	VE	(0.57)	1.97
$a^{6}D_{2}$ — $z^{6}P_{2}$	5	2	48.993	15	VE	(0.90)	1.73; 2.42; 3.08
a ⁶ D ₁ -z ⁶ P ₂	5	2	43.647	12	VE	(0.56)	2.01; 3.11
a ⁶ D ₂ -z ⁶ P ₃	5	2	42.040	12	VE	(0)	1.97
a ⁶ D ₃ -z ⁶ P ₄	5	2	40.101	7	VE	(0)	1.90
a ⁶ D ₂ -z ⁶ D ₁	4	2	22.758	10	VE	(0.51)	1.48; 2.56
a ⁶ D ₁ -z ⁶ D ₁	4	2	17.520	4	VE		
a ⁶ D ₃ -z ⁶ D ₂	4 .	2	12.314	12	VE	(0)	1.65
a ⁶ D ₂ -6D ₂	4	2	03.862	3	VE	(0)	1.92
a ⁶ D ₁ -z ⁶ D ₂	4	2	2698.695	10	VE	(0.87)	1.22
a ⁶ D ₄ -z ⁶ D ₃	4	2	98.417	10	VE	(0)	1.64
a ⁶ D ₅ -z ⁶ D ₄	4	2	91.050	12	VE	(0)	1.62
a ⁶ D ₂ -z ⁶ D ₂	4	2	87.098	10	VE	(0)	1.78
a 6D2-z 6D2	4	2	78.802	15	VE	(?)	1.61
a ⁶ D ₄ -z ⁶ D ₄	4]	~		05	1173	(0.2)	1.00
a ⁶ D ₅ -z ⁶ D ₅	4	2	77.171	25	VE	(0?)	1.69
a ⁶ D,-z ⁴ P,	3	2	72.838	12	VE	(0)	1.67
a ⁶ D ₉ -z ⁴ P ₉	3	2	71.818	15	VE	(0?)	1.66
a ⁶ D _o -z ⁴ P	3	2	68,722	15	VE	(0.66)	1.35; 2.68
a ⁶ D ₂ -z ⁶ D.	4	1	66.02	15	VE	(0)	1.63
a ⁶ D _a -z ⁴ P _a	8	2	63,683	6	VE	(0)	3,50
a ⁶ D ₄ -z ⁶ D ₇	4	2	63,430	15	VE	(0)	1.62
a ⁶ D ₂ -z ⁴ P ₂	3	2	61.735	5	VE	(0)	1.77
a 6D,	3	2	58 603	15	VE	(0.89)	1.17: 2.52
a ⁶ D ₂ -z ⁴ P ₂	3	2	53 594	15	VE	(0)	1.59
a 6D-z4F.2	2	1	2544.32	(1)		(v)	-
0 - d.		-	Sector Sector	(*)			Statement of the second s

Kayser u. Konen, Spektroskopie. VIII.

37

Catalán [199]	Mult. [199]		λÅ	λ [199]	Int. [199]	TempKlasse [199]
a ⁶ D ₅ -z ⁴ F ₅	2	1	2534	33	4	V
a 6D4-z4F4	2	1	31	85	(1)	_
a4G6-35		1	2211	83	(1)	
a ⁶ S-z ⁶ P ₂	1	-	2065	42	3R	-
a ⁶ S-z ⁶ P ₃	1	-	61	49	4R	-
a ⁶ S-z ⁶ P ₄	1		55	51	5R	- 10

CrIII. Gibbs und White [162] haben zuerst im Multiplett gefunden, dann fügt White [195] noch 10 hinzu. Die Nummern der Multipletts nach White sind in der Tabelle angegeben. Tabelle 6. Cr III.

	2000	White	e [195]	Multiplett				White	[195]	Multiplett
b 3F4'-3D3'	2483	79	25	1		5F4'-5F5	2104	05	20	5
b3F3'-3D2'	80	53	22	1		5P3'-5F4	03	90	20	5
b ³ F ₂ ' ³ D ₁ '	73	56	20	1		5G6'-5H6'	1735	89	25	6
$b^{3}F_{2}'-^{3}D_{2}'$	59	69	6	1		⁵ G ₅ '-5H ₅ '	30	16	20	6
b 3F3'-3D3'	57	54	7	1		5G6'-5H7'	27	19	100	6
b 3F4'-3G4'	2343	18	6	2		5G4'-5H4'	24	31	15	6
b ³ F ₃ ' ³ G ₃ '	23	80	4	2		⁵ G ₅ '-5H ₆ '	21	82	90	6
$b^{3}F_{4}'-^{3}G_{5}'$	25	60	80	2		5G3'-5H3'	19	51	15	6
b ³ F ₃ ' ³ G ₄ '	19	78	70	2		5G4'-5H5'	17	54	80	6
b ³ F ₂ ' ³ G ₃ '	15	35	60	2		5G3'-5H4'	14	08	70	6
⁵ F ₃ ' ⁵ G ₂ '	2275	99	2	3		5G2'-5H3'	11	74	60	6
5F4'-5G3'	75	93	2	3		a 3F2'-3D1'	1271	90	15	7
5F5'-5G4'	74	47	2	3	1	a ³ F ₃ ' ³ D ₂ '	69	19	20	7
⁵ P ₂ ' ⁵ G ₂ '	65	65	15	3		a ³ F ₂ ' ³ D ₂ '	68	23	0	7
⁵ F ₄ '— ⁵ G ₃ '	62	40	15	3		³ G ₄ ' ³ G ₄ '	66	06	0	8
⁵ F ₁ ' ⁵ G ₂ '	58	70	50	3		a 3F4'-3D3'	64	27		7
5F4'-5G4'	58	11	15	3		³ G ₃ ' ³ G ₃ '	63	65	20	8
b 3F4'-3F3	56	17	6	4		a 3F3'-3D3'	63	11	5	8
⁵ F ₅ '— ⁵ G ₅ '	52	70	15	3		³ G ₄ ³ G ₄ '	61	91	30	8
⁵ F ₂ '— ⁵ G ₃ '	52	18	60	3		³ G ₃ — ³ G ₄ '	59	52	8	8
b ³ F ₃ '— ³ F ₂	49	62	8	4		³ G ₅ ³ G ₅ '	59	10	40	8
5F3'-5G4'	44	83	70	3		³ G ₄ ³ G ₅ '	56	85	2	8
b 3F4'-3F4	38	25	60	4		${}^{3}G_{3}$ — ${}^{3}F_{2}$	38	60	40	9
⁵ F ₄ ' ⁵ G ₅ '	36	62	80	3		${}^{3}G_{4}$ $- {}^{3}F_{3}$	36	23	50	9
b ³ F ₃ '— ³ F ₃	34	45	50	4	11.1	³ G ₃ — ³ F ₃	33	99	0	9
b ³ F ₂ '— ³ F ₂	32	46	40	4		³ G ₅ — ³ F ₄	33	04	60	9
⁵ F ₅ '- ⁵ G ₆ '	27	40	100	3		${}^{3}G_{4} - {}^{3}F_{4}$	30	84	0	9
b ³ F ₂ ' ³ F ₂	17	53	2	4		a ³ F ₃ ' ³ G ₃ '	29	52	10	10
b3F3'-3F4	16	92	2	4		a ³ F ₂ ' ³ G ₃ '	28	65	15?	10
°F5 - °F4	2129	95	2	5		a *F4'-*G4'	26	81	8	10
°F4-°F3	26	31	0	D		a 3F3 -3G4	25	69	20	10
°F3-°F2	23	50	0	D		a ³ F ₄ — ³ G ₅	21	97	20	10
°F2'-°F1	21	09	10	D		a 3F3'-3F2	05	79	2	11
5P 5P	18	27	60	D		a "F2 - "F2	04	97	30	11
sp/ sp	10	60	00	D		a "F4 - "F3	02	49	8	11
P1-P1	15	00	20	D		a "F3 - "F3	01	41	40	11
SEC SE	14	50	60	D		a "F2 - "F3	00	61	2	11
SE (SE	14	10	10	0		a ar - r 4	1197	42	50	11
SE (3E	08	43	10	0		a "F3 - "F4	96		2	11
r2-r3	00	101	10	0						1. The 1. S. S. T. S. L.

578

Cr IV. Nur White [194] hat sich mit dem Spektrum beschäftigt und gibt 13 Multipletts oder Teile davon.

		White ¹ [194]	Multiplett				W [1	hite 94]	Multiplett
2F4'-2F4	1990	28 100	1	1.900	4G4'-4H4'	.25	83	10	7
2F3'-2F3	85	62 100	1		4G5'-4H6'	25	08	40	7
2F3'-2F4	60	63 (1		4G4'-4H5'	19	71	30	7
b4F3'-4G3'	1883	22 3	2		${}^{4}\text{G}_{3}' - {}^{4}\text{H}_{4}'$	15	86	25	7
b4F4'-4G4'	76	15 60) 2		${}^{2}\mathrm{H_{5}'}-{}^{2}\mathrm{G_{4}'}$	695	19	130	8
b4F2'-4G3'	73	97 100	2		${}^{2}\mathrm{H_{6}'}-{}^{2}\mathrm{G_{5}'}$	93	87	140	8
b4F5'-4G5'	68	42 4	2		${}^{2}\mathrm{H_{5}'}-{}^{2}\mathrm{G_{5}'}$	92	68	12	8
b4F3'-4G4'	63	14 12	2	1.117	${}^{2}G_{4}$ — ${}^{2}F_{3}$	88	46	90	9
b4F4'-4G5'	51	96 15) 2	and a	${}^{2}G_{5}$ — ${}^{2}F_{4}$	87	12	100	9
${}^{2}F_{4}'-{}^{2}G_{4}'$	44	73	3 4	0.000	${}^{2}G_{4}$ — ${}^{2}F_{4}$	85	44	6	9
b4F5'-4F4	43	51 1	5 3		${}^{2}G_{5}$ — ${}^{2}G_{4}$	68	90	20	10
b4F4'-4F3	43	01 2	5 3		${}^{2}G_{4}' - {}^{2}G_{4}'$	67	31	110	10
b4F3'-4F2	42	77 2	5 3		² G ₅ '-2G ₅ '	66	55	120	10
b4F5'-4G6'	40	20 18) 2		${}^{2}G_{4}$ — ${}^{2}G_{5}'$	64	97	6	10
b4F2'-4F2	33	85 4) 3		a 4F3'-4G3'	36	43	0	11
b4F3'-4F3	30	44 5) 3		a4F2'-4G3'	35	51	25	11
b4F4'-4F4	27	53 8) 3		a4F4'-4G4'	35	47	0	11
${}^{2}F_{4}'-{}^{2}G_{5}'$	27	00 10) 4		a 4F5'-4G5'	34	22	0	11
b4F5'-4F5	26	30 10) 3		a 4F3'-4G4'	34	12	60	11
b4F2'-4F3	21	62 2) 3		a4F4'-4G5'	32	65	60	11
2F3'-2G4'	19	37 9) 4		a 4F3'-4F2	31	78	15	12
b4F3'-4F4	15	19 3) 3		a4F4'-4F3	31	60	15	12
b4F4'-4F5	10	56 3) 3		a 4F5'-4F4	31	33	15	12
b4F5'-2F4?	1791	82 3	0 5		a 4F5'-4G6'	30	93	100	11
b4F3'-2F4?	65	15 1	5 5		a 4F2'-4F2	30	86	100	12
b4F5'-4D4'	55	66 6	0 6		a 4F3'-4F3	30	32	90	12
b4F4'-4D4'	41	09 1	5 6	1.0.0	-	-		120	12
b4F2'-4D1'	38	26 1	0 6	1000	a4F2'-4F3	29	40	40?	12
b4F3'-4D2'	36	68 2	0 6		a4F5'-4F5	29	29	150	12
b4F4'-4D3'	34	07 2	0 6	19.1	a 4P3'-4F4	28	52	60	12
b4F3'-4D4'	29	95	3 6	1971	a 4F4'-4F5	27	76	45	12
b4F2'-4D2'	28	76	3 6		a 4F5'-4D4'	20	69	100	13
b4F3'-4D3'	22	94 3	0 6		a4F4'-4D4'	19	17	60	13
4G6'-4H5'	1346	60	2 7		a 4F2'-4D1'	19	17	60	13
4G6'-4H6'	39	65 1	7 0	-	a 4F3'-4D2'	18	81	60	13
4G5'-4H4'	38	20	2 7		a 4F4'-4D3'	18	27	60	13
4G6'-4H7'	32	51 5) 7		a 4F2'-4D2'	17	92	6?	13
· 4G5'-4H5'	31	94 1	7 0		a 4F3'-4D3'	17	04	30	13

111-1	1	1	-	12-1	137
Ta	per	le	6.	Ur.	ιν.

Cr V. Auch dieses Spektrum ist nur von White [193] untersucht, der eine Reihe von Linien zwischen λ 1820 und λ 433 gibt.

1) Krömer [188] fügt nach dem Zeemaneffekt zu Cr IV hinzu: 3369.06, 3391.76, 3172.08.

37*

173.3	11	1.0	0	61.	37
Ta	Dell	e	8.	Or	٧.

•		White [193]	Gibbs u. White [159]			WI [15	nite 93]
b ¹ D ₂ — ¹ D ₂ '	1820	28 60	_	³ F ₃ ³ G ₄	1117	55	8
³ D ₂ -1D ₂ '	1656	42 1	-	³ F ₂ ³ G ₃	12	47	6
³ D ₃ -3D ₂ '	55	55 25	5.60 2	³ P ₁ ' ³ D ₁ '	471	03	4?
³ D ₂ -3D ₁ '	52	52 20	2.63 2	³ P ₂ '-3D ₂ '	70	75	5
³ D ₁ -1D ₂ '	47	71 0		³ P ₀ ' ³ D ₁ '	70	56	10
³ D ₁ - ³ D ₁ '	44	00 40	4.05 4	³ P ₁ '-3D ₂ '	69	95	20
³ D ₂ -3D ₂ '	39	35 50	9.40 5	a 1D2-1D2'	69	65	30
³ D ₃ ³ D ₃	38	42 70	8.51 6	³ P ₂ '-3D ₃ '	69	34	30
³ D ₁ -3D ₂ '	.30	-	0.96 1	¹ G ₄ — ¹ F ₃	64	03	100
³ D ₂ -3D ₃ '	22	53 5	2.64 0	¹ S ₀ — ¹ P ₁	62	26	5
³ D ₂ -3P ₂	11	27 0	-	³ P ₂ '-3P ₁	57	56	15
³ D ₃ — ³ F ₃	07	04 0	-	³ P ₂ '-3P ₂	57	08	40
³ D ₁ -3F ₂	03	17 60	-	³ P ₁ ' ³ P ₁	56	79	15
-	1596	-	6.59 2	³ P ₁ ' ³ P ₀	56	68	15
-	95		5.64 1	³ P ₀ ' ³ P ₁	56	36	10?
³ D ₂ ³ F ₃	91	70 70	-	³ P ₁ ' ³ P ₂	56	31	30
-	88		8.57 2	a 1D2-1F3	46	71	5
-	80	-	0.62 4	a ¹ D ₂ -1P ₁	41	11	40
³ D ₃ -3F ₄	79	67 80	-	a 3F4'-3D3'	38	66	50?
-	73	- 1	3.16 7	a 3P3'-3D2'	38	65	40?
$b^{1}D_{1}-F_{3}$	19	02 70	-	a 3F2'-3D1'	38	62	30?
³ D ₃ -3P ₂	1498	02 70	7.97 8	a 3F2'-3D1'	37	69	20
³ D ₂ -3P ₁	89	75 50	9.75 6	a 3F3'-3D3'	37	43	20
³ D ₂ -3P ₂	84	67 15	4.67 5	a3F3'-3F2	36	61	20
³ D ₁ - ³ P ₁	82	89 15	2.81 3	a 3F4'-3F3	36	37	25
³ D ₁ -3P ₀	81	69 30	1.68 3	a3F2'-3F2	35	66	25
	77	-	7.75 0	a 3F3'-3F3	35	16	30
b1D2-1P1	55	27 30		a 3F4'-3F4	34	33	40
3F4-3G4	1131	16 2		a 3F2'-3F2	34	22?	?
³ F ₄ -3G ₅	23	62 10		a 3F3'-3F4	31	13	5
³ F ₃ -3G ₃	21	98 0			and the second second		1997

Cr VI. Hier sind nur 8 Linien in der Schumann-Region gefunden: Lang [153] gibt ein Paar, Gibbs und White [151] erst eine Linie, dann [183] ein Triplet.

		Lang [153]	Gibbs u. White [183]	
_ 14	1498	0 2	-	_
$4^{2}S_{1} - 4^{2}P_{1}$	55	-	5.3	-
	46	7 4		
_	337		-	7.28
_	36	-	_	6.30
-	35	1	in - 2	5.20

Tabelle 9. Cr VI.

Absorption. Die Absorption des Chroms haben Gieseler und Grotrian [126] zuerst untersucht. Sie untersuchten den Dampf des Chroms in einem elektrischen Ofen, der Temperaturen bis zu 1200° C lieferte. In ihrer Arbeit [126] finden sie folgendes: "Der größte im Cr-Spektrum vorkommende Term ist der Term 43 des Septettsystems. Demzufolge sind in Absorption vor allem zu erwarten die Hauptserienlinien, die Übergängen von dem Term 43 nach den dreifachen p-Termen 4 pi und 4 pi des Septettsystems entsprechen. Es sind dies die beiden Tripletts $\lambda = 4289.92$, 4275.01, 4254.52 und $\lambda = 3605.49$, 3593.64, 3578.81 Å. Tatsächlich haben wir diese beiden Tripletts bei 1230^o auch schwach aber deutlich in Absorption erhalten. Außerdem wären in Absorption zu erwarten die Linien, die von dem Term 4 s des Septettsystems zu den Termen 4 p, und 4 pi des Quintettsystems führen. Es sind dies die Wellenlängen $\lambda = 3732.18$, 3730.95 und 3351.97, 3379.18 Å. Diese Linien haben wir aber nicht in Absorption erhalten. Die Ursache ist darin zu sehen, daß sie auch in Emission zu den schwächeren Linien des Spektrums gehören, woraus zu schließen ist, daß die Übergangswahrscheinlichkeit für diese Linien zu klein ist, um bei den bei 1230° C sicher sehr kleinen Dampfdrucken des Cr-Dampfes schon merkbare Absorption zu geben. Außer den oben genannten Linien haben wir keine weiteren Linien des Cr-Spektrums in Absorption beobachtet." Zumstein [155a] findet die Linien

 $4289.726, 4274.802, 4254.341 (4^7S-4^7P), 3605.330, 3593.483, 3578.688 (4^7S-4^7P), 2366.85, 2365.96, 2364.74 (4^7S-4^7P)$

bei 1600° C in Absorption. Die ersten beiden dieser Tripletts wurden schon vorher von Grotrian und Gieseler und von McLennan und McLay [141] gefunden. Außerdem hat King [129 p. 291] diese 9 Linien schon gefunden (2600° C). King erhielt Absorption vom Normalzustand und von einigen der angeregten Zustände. Daher stammen die Linien des Triplett 2366, 2365 und 2364 nicht sicher von Übergängen zum Normalzustand, was aus den vorliegenden Untersuchungen von Zumstein auch hervorgehen sollte.

Im Unterwasserfunken untersuchen Hulburt[127] und Smith und Muskat[173]. Hulburt findet die Chromtripletts bei 4200 und 3600 Å stark umgekehrt. Smith und Muskat[173] finden außer den in der Tab. 2 mit x bezeichneten Linien noch die Linien $\lambda = 4829.36$, 4565.53, 4514.53, 3991.12, 3983.91, 3822.08, 3615.65, 3510.53, 3494.96, 3481.30, 3460.43, 3065.07, 2985.99, 2766.54, 2638.90 und 2618.28 Å.

Den Stark-Effekt untersuchen Nagaoka und Sugiura [134]. Den Zeeman-Effekt untersuchen Sommerfeld und Heisenberg [105], Landé [118], Babcock [107, 106], Gieseler [101], van Geel [145] und Krömner [188]. Die Zeeman-Werte finden sich bei den einzelnen Linien in der letzten Spalte.

Intensitätsmessungen liegen von Sommerfeld und Heisenberg [105] und Frerichs [138] vor.

Zur Theorie des Chromspektrums siehe Sommerfeld und Heisenberg [105], Sommerfeld [119], Wentzel [120] und Hund [139].

Letzte Linien finden sich bei Gramont [102, 103].

Linienverbreiterungen untersuchen Kimura und Nakamura [117].

Die Isotopie untersucht Aston [212] und findet die Isotopen 50, 52, 53 und 54, wobei 50 mit Ti_{50} und 54 mit Fe_{54} isobar ist.

Zu den Bandenspektren des Chroms ist uns nur eine neue Messung von Ferguson [225] bekannt geworden.

Röntgenspektrum.

Die L-Reihe des Emissionsspektrums wurde aufgefunden. Es seien auch hier wieder zunächst die Messungen mit Liniengitter genannt: Kellström [186, 187] schließt seine Werte an die AlK α -Linie an (vgl. den entsprechenden Abschnitt bei Calcium), während Howe [185, 204] absolut mißt. Das gleiche gilt auch für die zeitlich früher liegende Arbeit von Hunt [163, 164].

Thoraeus [156, 157], siehe auch [144], und Karlsson [205] erhielten mit Kristallgittern von Fettsäuren ebenfalls L-Spektren, die bei dem letzteren infolge der nach dieser Methode hier erzielbaren größeren Dispersion einige von den anderen Autoren nicht gefundene Linien zeigen.

Bo			Mit Liniengitt	Mit Kristall		
Übergänge	zeichnung	Hunt [163, 164]	Kellström [186, 187]	Howe [185, 204]	Thoraeus [156, 157]	Karlsson [205]
LIII MI	1	_	24.73		_	23.84
L _{II} M _I	η		-	-	-	23.28
LIII MIV.V	a_{12}	21.5	21.74	21.73	21.53	21.53
L _{II} M _{IV}	β_1	-	in Fall and	hall- The	21.19	21.19
LI MILIII	β3, 4	ning - alian	chiel+ 0 ph	in 1	COR-BA	19.39

fabelle 1	. 1	Emissie	on,	L	-Reihe.
Well	enl	ängen	in	Å	E.

Über die K-Reihe liegt eine Anzahl von neuen Arbeiten vor: Präzisionsmessungen von Siegbahn und Dolejšek [99], Schrör [154] und Eriksson [175]. Daran schlossen sich Untersuchungen neuer schwacher Linien von Dolejšek, Druyvesteyn [158], Wetterblad [179] und Beuthe [198] an. Bearden [213, 214] findet mit Hilfe von absoluten Strichgittermessungen für β den Wert 2.08478, für α_{12} 2.29097. Er gibt Fehlergrenzen von \pm 0.01% an. Auch einige speziellere Arbeiten liegen vor: Siegbahn und Ray [135] geben für den Abstand des Dubletts den Wert 3.89 XE. Seljakow und Krasnikow [143] konnten bei großer Dispersion die Linie β' , $\lambda = 2085.01$ XE, von β_1 trennen. Dolejšek und Filčaková [181] halten die gleiche Linie für ein nicht aufgelöstes Dublett, bei dem sie vergeblich nach einem Einfluß der chemischen Bindung suchen. Zahlenangaben fehlen leider, ebenso bei einer ähnlichen Arbeit von Ford [217]. Beuthe [198] findet dagegen für Cr₂O₃ eine zweite Linie neben 2061.1 von 2063.0 XE. Dolejšek und Engelmannová [182] geben den

Abstand des irregulären Dubletts $a_{3,4}$ zu 1.8 XE entsprechend $\Delta \left| \frac{\nu}{R} \right| = 0.0074$ an.

Sorgfältige Intensitätsmessungen für die Hauptlinien der K-Reihe finden sich bei Meyer [189], sie sind in Tab. 2 aufgenommen. Kettmann [116] und Wisshak [211] untersuchen die Intensität der K a_1 -Linie als Funktion der Spannung.

			Tabelle	2.	Messungen	mit	Kristallgitter.		
Wellenlängen	in	XE,	bezogen	auf	f Kalkspat:	d180	= 3029.45 XE.	Emission,	K-Reihe.

Über- gänge	Be- zeichnung	i ³)	Siegbahn und Dolejšek [99]	Schrör [154]	Druy- vesteyn [158]	Eriksson	Wetter- blad [179]	Beuthe [198]
KLII	a_2	50.2	2288.95 ¹)	288.91		2288.907	- 10 M	_
KLIII	<i>a</i> ₁	100.	2284.84	2284.84		2285.033		-
-	a _{3, 4}	-	2273.3 ²)			-	-	η 2111.6
- 10	β	-	2085.7	-		the second		
KM _{II, III}	β_1	29.3	2080.45^{1})	280.43	-	2080.586	[2080.6]	
-	β''	-	ala - Ita	1500- US			2073.0	-
KM _{IV} , v	β_5	0.96	2067.0	-	[2067.0]	2066.71	2067.7	[2067.0] βy
-	β'''	-	a charten a	-	2061.7	-	-	2061.1

Für die K-Absorptionskante des freien Elements sind die Angaben der folgenden Autoren zu nennen:

Lindh [142]	2066.3 (XE)
Chamberlain [123]	2064.9
Åse ⁴)	2065.9
Kievit und Lindsay [208, 209]	2066.1.

Coster [124] und Lindh [142] stellen Einfluß der chemischen Bindung auf ihre Lage fest, der aus Tab. 3 und 4 hervorgeht. Die Versuche von Yost [197] ergaben innerhalb der Meßfehler keinen Unterschied in der Kantenlage, wenn eine Verbindung statt in festem Zustand in Lösung absorbierte. Endlich finden Kievit und Lindsay [208, 209] auch hier eine ausgeprägte Sekundärabsorption bei Ver-

Tabelle 3. K-Absorptionsgrenzen verschiedener Verbindungen	nach Coster	124
--	-------------	-----

	λ in XE				
Verbindung	(Kante) K	(AbsorptLinie) Ka			
Na2Cr2O2	2059.5	2065.0			
K ₂ CrO ₄	2059.1	2065.2			
Cr_2O_3	2060.6				
[Cr(NH _a) ₆] (NO _a) ₃	2063.8	-			
CrCla	2063.0	-			

- 1) Nach Siegbahn, Spektroskopie der Röntgenstrahlen, 1. Aufl., p. 101.
- 2) Nach Dolejšek [96].
- ³) Nach H. Th. Meyer [189].
- 4) Nach Siegbahn, Spektroskopie d. Röntgenstr., 2. Aufl., p. 265.

Verbindung	λ in	XE	11	11
rerbindung	K	K'	4.4	
Cr	2066.3		0	0
Cr ₂ S ₃	2063.9	-	2.4	6.9
Cr(OH) ₃	2061.9	_	4.4	12.7
Cr ₂ (SO ₄) ₃	2062.2	-	4.1	11.9
K2CrO4	2060.0	2066.0	6.3	18.2
Bi2(CrO4)3	2059.7	2065.7	6.0	19.1
K2Cr2O7	2059.5	2066.0	6.8	19.7

Tabelle 4. Desgl. nach Lindh [142].

Tabelle 5.	Sekundäre	Absorptionskanten	nach Kievit	und	Lindsay	[208,	209	
------------	-----------	-------------------	-------------	-----	---------	-------	-----	--

2	2066.1	2060.5	2049.1	2040.0	2030.5	2019.9	2009.3	1984.9	1958.6
ĄV	-	16.2	49.8	76.7	105.	139.	169.	245.	329.

wendung des reinen Elementes, wobei sie von der langwelligen Seite kommend auf den Beginn der Schwärzungsänderung einstellen. Die Ergebnisse sind in Tab. 3 enthalten.

Auch Sawada [222] findet Sekundärabsorption (Original nicht zugänglich; siehe Jap. J. of Phys., 1931, Abstr. No. 106). Neufeldt [220] hat seine mit Elektronenzählrohr erhaltenen Ergebnisse später wieder zurückgenommen, es sei darum nicht weiter darauf eingegangen. Vgl. hierzu auch die Bemerkung von Geiger [226], daß er die Kurven Neufeldts nicht habe reproduzieren können.

Auf die Bestimmung von "kritischen Potentialen" weicher Strahlung sei hier nicht weiter eingegangen, vgl. die entsprechende Bemerkung bei Kohlenstoff.

Zum Schluß bringt Tab. 6 die Niveauwerte nach Siegbahn. Für die Linien werden seine Bezeichnungen hier allgemein benutzt, dagegen für die Niveaus die Bohr-Costerschen.

Röntgenniveau	K ·	LII	LIII	M _{II} , III	MIV, V
Opt. Symbol	$1^{2}S_{\frac{1}{2}}$	$2^2 P_{\frac{1}{2}}$	2 ºPa	3ºP1, 3	32Da, a
$\frac{\nu}{R}$	441.1 ²)	43.0	42.3	8.1	0.2

Tabelle 6. Energiewerte der Röntgenniveaus nach Siegbahn¹).

¹) Spektroskopie der Röntgenstrahlen, 2. Aufl., Berlin 1931, p. 348.

²) Experimentell. Die übrigen berechnet.

Abgeschlossen 1. 6. 1932.

Casium (Cs = 132.91, Z = 55).

Literatur.

1. Nachtrag.

[142] Chr. Füchtbauer und H. Bartels, Gesetzmäßigkeiten bei der Absorption von Cäsiumlinien. Zs. f. Phys. 4 p. 337-342 (1921).

[143] D. Coster, On the spectra of X-rays and the theory of atomic structure. Phil. Mag.
 (4) 43 p. 1070-1107 (1922); ib. 44 p. 546-573 (1922).

[144] L. Dunoyer, Recherches sur la luminescence des gaz dans la décharge sans électrodes.
Spectres d'induction du césium et du rubidium. J. de Phys. et le Rad. (6) 3 p. 261-292 (1922),
(6) 3 p. 81-85 S (1922).

[145] A. de Gramont, Raies ultimes et séries spectrales. C. R. 175 p. 1025-1030 (1922).

[146] G. A. Lindsay, Sur les limites d'absorption L des élements Ba-Sb. C. R. 175 p. 150-151 (1922).

[147] D. S. Roschdestwensky, Simple relations in the spectra of the alkaline metals. J. Russ. Phys.-Chem. Ges. **50** p. 11-50 (1922); Trans. Opt. Inst. Petrograd **2** No 13 (1920).

[148] A. Sommerfeld und W. Heisenberg, Die Intensität der Mehrfachlinien und ihrer Zeemankomponenten. Zs. f. Phys. 11 p. 131-154 (1922).

2. Fortsetzung.

[149] H. Bartels, Intensitätsverteilung, Termfolge und Anregungsfunktion bei den Alkalispektren. Zs. f. Phys. 20 p. 398-412 (1923).

[150] H. B. Dorgelo, Die Intensität der Mehrfachlinien. Zs. f. Phys. 13 p. 206-210 (1923).

[151] L. Dunoyer, Spectres d'induction et spectres d'étincelle. C. R. 176 p. 590-953 (1923).

[152] J.C. McLennan and D. S. Ainslie, On the fluorescence and channelled absorption spectra of caesium and other alkali metals. Proc. Roy. Soc. A **103** p. 304-314 (1923).

[153] F. H. Newman, Relative visibility of spectra when an electric discharge is passed through the vapours of alkali amalgams. Phil. Mag. (6) 45 p. 181-189 (1923).

[154] F. H. Newman, The visibility of individual spectra. Phil. Mag. (6) 45 p. 293-294 (1923).

[155] F. S. v. Wisniewski, Caesiumdubletts. Phys. Zs. 24 p. 294-295 (1923).

[156] C. E. Bleeker und J. A. Bongers, Intensitätsmessungen in Flammenspektren. Zs. f. Phys. 27 p. 195-202 (1924).

[157] H. B. Dorgelo, Die Intensität mehrfacher Spektrallinien. Zs. f. Phys. 22 p. 170-177 (1924).

[158] H. B. Dorgelo, The intensities of the components of multiple spectral lines. Diss. Utrecht (1924).

[159] E. Fues, Eine spektroskopische Bestätigung der Bohrschen Besetzungszahlen beim Caesium. Zs. f. Phys. 21 p. 265-281 (1924).

[160] A. Ll. Hughes and C. F. Hagnow, Low voltage excitation of the spectrum of caesium. Phys. Rev. (2) **24** p. 229-233 (1924).

[161] W. W. Shaver, On the extreme ultra-violet spectra of the alkali metals. Trans. Canada (3) 18 III p. 23-34 (1924).

[162] L. W. Sommer, Über das Funkenspektrum des Cäsiums. Ann. d. Phys. (4) 75 p. 164-181 (1924).

[163] R. C. Tolman, Duration of molecules in upper quantum states. Phys. Rev. (2) 23 p. 693-709 (1924); Proc. Nat. Acad. 10 p. 85-87 (1924).

[164] F. S. v. Wisniewski, Les doublets des metaux alcalins. C. R. 179 p. 1316-1317 (1924).

[165] S. Barratt, The absorption spectra of mixed metallic vapours. Proc. Roy. Soc. A 109 p. 194-197 (1925).

[166] K. Chamberlain and G. A. Lindsay, Determination of certain outer X-ray levels. Phys. Rev. (2) 25 p. 106 (1925).

[167] F. Dannmeyer, Bemerkungen zu den Arbeiten von Frl. C. E. Bleeker und J. A. Bongers ..., sowie H. B. Dorgelo ... Zs. f. Phys. **31** p. 76-80 (1925).

[168] P. D. Foote and F. L. Mohler, Photo-electric ionization of caesium vapour. Phys. Rev.(2) 26 p. 195-207 (1925).

[169] H. Jacob, Das Intensitätsverhältnis der Hauptseriendubletten der Alkalimetalle. Naturw.13 p. 906-907 (1925).

[170] A. Leide, Experimentelle Untersuchungen über Röntgenspektra. K-Serie. Diss. Lund (1925).

[171] F. L. Mohler, Critical potentials associated with excitation of alkali spark spectra. Bur. Stand. Sc. Pap. No 205; Vol. 20 p. 167-191 (1925).

[172] Y. Nishina, On the L-absorption spectra of the elements from Sn [50] to W [74] and their relation to the atomic constitution. Phil. Mag. (6) 49 p. 521-537 (1925).

[173] F. W. Oudt, Messungen von Intensitätsverhältnissen von Dubletten von Alkalimetallen in der Hauptserie. Zs. f. Phys. 33 p. 656-657 (1925).

[174] G. Balasse et O. Goche, Le spectre de luminescence du césium produit dans la décharge sans électrodes. Bull. de Belg. (5) **12** p. 621-630 (1926).

[175] G. Balasse et O. Goche, Etude de la luminescence de la vapeur de césium dans la décharge sans électrodes. Bull. de Belg. (5) 12 p. 835-839 (1926).

[176] J. M. Cork and B. R. Stephenson, The K-emission spectra for elements tin [50] to hafnium [72]. Phys. Rev. (2) 27 p. 530-537 (1926).

[177] J. M. Cork and B. R. Stephenson, The K-series emission spectra for elements from atomic number 50 (Sn) to atomic number 83 (Bi). Phys. Rev. (2) 27 p. 103 (1926).

[178] A. Filippov, Bemerkungen zu den Intensitätsvergleichungen von Burger und Dorgelo.
 Zs. f. Phys. 36 p. 477-480 (1926).

[179] Chr. Füchtbauer und Herm. Meier, Über das Intensitätsverhältnis der Hauptseriendubletts von Alkalimetallen. Phys. Zs. 27 p. 853-856 (1926).

[180] R. C. Gibbs and H. E. White, Rubidium and caesium like doublets of stripped atoms. Proc. Nat. Acad. 12 p. 551-555 (1926).

[181] Hedwig Kohn und Hans Jacob, Über das Intensitätsverhältnis der Hauptseriendubletts der Alkalimetalle. Phys. Zs. 27 p. 819-825 (1926).

[182] Arvid Leide, Messungen in der K-Serie der Röntgenspektra. Zs. f. Phys. 39 p. 686-710 (1926).

[183] E. M. Little, Ionisation efficiency of ultra violet light in caesium vapour. Phys. Rev.(2) 28 p. 848 (1926).

[184] F. L. Mohler, P. D. Foote and R. L. Chenault, Photo-ionization and relative probabilities of caesium vapor. Phys. Rev. (2) 27 p. 37-50 (1926).

[185] F. L. Mohler, Photo-ionization of a gas by a discharge in the same gas. Phys. Rev. (2) 28 p. 46-56 (1926).

[186] H. F. Newman, The low voltage arc in caesium vapour. Phil. Mag. (7) 1 p. 705-711 (1926).

[187] A. L. M. Sowerby and S. Barrat, The line absorption spectra of the alkali metals. Proc. Roy. Soc. A 110 p. 190-197 (1926).

[188] G. Balasse, Décharge sans électrodes en ondes amorties et en ondes entretenues. Spectres continus du césium et du potassium. C. R. **184** p. 1002-1005 (1927).

[189] G. Balasse, Spectres d'étincelle du césium. J. de Phys. et le Rad. (6) 8 p. 311-320 (1927).

[190] A. E. Brodsky, Über die Intensität der Spektrallinien. Zs. f. Phys. 42 p. 899-904 (1927).

[191] Katherine Chamberlain and George A. Lindsay, The determination of certain outer X-ray energy levels for the elements from antimony [51] to samarium [62]. Phys. Rev. (2) 30 p. 369-377 (1927).

[192] A. Filippov und E. Gross, Über Feinstruktur im Spektrum des Cäsium. Zs. f. Phys. 42 p. 77-80 (1927).

[193] A. Filippov, Intensitätsmessungen in den Spektren des Cäsiums und Kaliums. Zs. f. Phys. 42 p. 495–498 (1927).

[194] C. F. Hagenow and A. Ll. Hughes, The intensity ratio of the blue caesium dublet. Phys. Rev. (2) **30** p. 284-287 (1927).

[195] H. Kohn und H. Jacob, Das Intensitätsverhältnis der Hauptseriendubletts der Alkalimetalle. Naturw. 15 p. 17 (1927).

[196] Edward Milton Little, Ionization efficiency of ultra-violet light in caesium vapour. Phys. Rev. (2) **30** p. 109-118 (1927); Errata Phys. Rev. (2) **30** p. 963-964 (1927).

[197] F. H. Newman, The flash arc spectrum of caesium. Phil. Mag. (7) 3 p. 843-848 (1927).

[198] G. M. Shrum, N. M. Carter, H. W. Fowler, On the 1s-md series of caesium and the other alkali metals. Phil. Mag. (7) 3 p. 27-31 (1927).

[199] D. A. Jackson, Hyperfine structure in the arc spectrum of caesium and nuclear rotation. Proc. Roy. Soc. A **121** p. 432-447 (1928).

[200] H. Jacob, Über das Intensitätsverhältnis der Hauptseriendubletts der Alkalimetalle. Ann. d. Phys. 86 p. 449-493 (1928).

[201] J. M. Mathews, The absorption spectrum of caesium. Proc. Roy. Soc. A 120 p. 650-654 (1928).

[202] F. L. Mohler, Recombination spectra of atomic ions and electrons. Phys. Rev. (2) 31 p. 187-194 (1928).

[203] F. L. Mohler and C. Boeckner, Recombination spectra of ions and electrons in caesium and helium. Bur. Stand. J. of Res. 2 p. 489-500; Res. Pap. No 46 (1928).

[204] S. Sambursky, Eine neue Gesetzmäßigkeit in den Intensitätsverhältnissen der Hauptseriendublets der Alkalien. Zs. f. Phys. **49** p. 731—739 (1928).

[205] J. M. Walter and S. Barratt, The existence of intermetallic compounds in the vapour state. The spectra of the alkali metals and of their alloys with each other. Proc. Roy. Soc. A 119 p. 257-275 (1928).

[206] A. Filippov and E. Gross, Feinstruktur der Hauptseriendublets des Cäsiums und Rubidiums. Naturw. 17 p. 121 (1929).

[207] Chr. Füchtbauer und H. W. Wolf, Messungen von Intensitätsverhältnissen in der Hauptserie des Cäsiums. Ann. d. Phys. (5) **3** p. 359-372 (1929).

[208] D. A. Jackson, A. Filippov und E. Gross, Feinstruktur der Hauptseriendubletts des Cäsiums. Naturw. 17 p. 364 (1929).

[209] D. A. Jackson, Feinstruktur der Hauptseriendubletts des Cäsiums. Naturw. 17 p. 164 (1929).

[210] E. O. Lawrence and U. Edlefsen, The ionisation by light of frequency greater than the series limit. Phys. Rev. (2) 33 p. 265 (1929).

[211] E. O. Lawrence and U. E. Edlefsen, The photoionisation of the vapours of calcium, rubidium and potassium. Phys. Rev. (2) 33 p. 1086-1087 (1929).

[212] E. O. Lawrence and U. E. Edlefsen, Photoionisation of the vapours of caesium and rubidium. Phys. Rev. (2) 34 p. 233-242 (1929).

[213] F. L. Mohler, C. Boeckner, R. Stair, and W. W. Coblentz, Photoionisation of caesium vapour. Science 69 p. 479 (1929).

[214] F. L. Mohler and C. Boeckner, Photoionisation of alkali vapours. Phys. Rev. (2) 33 p. 1087 (1929).

[215] F. L. Mohler and C. Boeckner, Ionisation of caesium vapour by line absorption. Phys. Rev. (2) 33 p. 1099-1100 (1929).

[216] J. O. Okubo and H. Hamada, On the spectra of alkali metals excited by active nitrogen. Phil. Mag. (7) 7 p. 729-736 (1929).

[217] W. Prokofjew, Über die Wahrscheinlichkeit der verbotenen s, d-Übergänge der Alkalimetalle. Zs. f. Phys. 57 p. 387-393 (1929).

[218] K. Sommermeyer, Ein neues Spektrum der Alkalihalogenide und seine Deutung. Zs. f. Phys. 56 p. 548-562 (1929).

[219] F. Waibel, Absorptionsmessungen in der Cäsiumhauptserie, Druckverbreiterung durch Eigendampfdruck. Zs. f. Ph. 53 p. 459-482 (1929).

[220] W. Weizel und M. Kulp, Über die Bandensysteme der Alkalidämpfe. Ann. d. Phys. (5) 4 p. 971-984 (1929).

[221] C. Boeckner, Resonance and quenching of the third principal series line of caesium. Bur. of Stand. J. of Res. 5 p. 13-18 (1930).

[222] C. Boeckner and F. L. Mohler, Photoionisation of caesium vapour by absorption between the series lines. Bur. of Stand. J. of Res. **5** p. 831-842 (1930).

[223] E. Fermi, Sul rapporto delle intensità nei doppietti dei metalli alcalini. N. Cim. (N. S.) 7 p. 201-207 (1930).

[224] E. Fermi, Über das Intensitätsverhältnis der Dublettkomponenten der Alkalien. Zs. f. Phys. 59 p. 680-686 (1930).

[225] E. Minkowski, Bemerkungen über den Einfluß der Selbstabsorption auf Intensitätsmessungen von Spektrallinien. Zs. f. Phys. 63 p. 188-197 (1930).

[226] R. Minkowski und W. Mühlenbruch, Die Übergangswahrscheinlichkeiten in den beiden ersten Dubletts der Hauptserie des Cäsiums. Zs. f. Phys. **63** p. 198–209 (1930).

[227] F. L. Mohler and C. Boeckner, Photoionisation of caesium by line absorption. Bur. of Stand. J. of Res. 5 No 1 p. 57-71 (1930).

[228] Wilhelm Schütz, Intensität und natürliche Breite des blauen Cäsiumdubletts. I. Zs. f. Phys. 64 p. 682-969 (1930).

[229] G. H. Visser, Notiz zur optischen Dissoziation des Caesiumjodids. Zs. f. Phys. 63 p. 402-403 (1930).

[230] F. W. Aston, Atomic weight of caesium. Nat. 127 p. 813 (1931).

[231] C. Boeckner, Probabilities of recombination into the 1²S state of caesium. Bur. of Stand. J. of Res. 6 p. 277-285 (1931).

[232] F. W. Cooke, Ionisation of caesium vapour by light. Phys. Rev. (2) 38 p. 1351-1357 (1931).

[233] K. Freudenberg, Über Photoionisation des Caesiumdampfs durch Absorption von Linien der Hauptserie. Zs. f. Phys. 67 p. 417-432 (1931).

[234] D. A. Jackson, The nuclear moments of caesium, rubidium and indium. Nat. 127 p. 924-925 (1931).

[235] H. Kopfermann, Über die Kernmomente von Caesium u. Blei. Naturw. 19 p. 675-676 (1931).

[236] O. Laporte, G. R. Miller, R. A. Sawyer, Spark spectrum of caesium (Cs II). Phys. Rev. (2) 37 p. 845 (1931).

[237] O. Laporte and G. R. Miller, On the spectra of singly ionised rubidium and caesium. Phys. Rev. (2) **37** p. 1703 (1931).

[238] E. Ramberg, Upper atomic number limit of the satellites of the X-ray lines L_{a_1} . Phys. Rev. (2) **37** p. 457 (1931).

[239] H. D. Schmidt-Ott, Über Absorptionsspektren der Alkalihalogenide. Verh. D. Phys. Ges. (3) 12 p. 17-18 (1931).

[240] H. D. Schmidt-Ott, Über kontinuierliche Absorptionsspektren der gasförmigen Alkalihalogenide im Ultraviolett. Zs. f. Phys. 69 p. 724-734 (1931). [241] N. G. Whitelaw and A. F. Stevenson, Intensity of forbidden transitions in the alkalies. Nat. 127 p. 817 (1931).

[242] E. F. S. Appleyard, An attempt to detect high photoelectric absorption in caesium vapour at double the series limit. Phil. Mag. (7) 13 p. 300-306 (1932).

[243] O. Laporte, G. R. Miller and R. A. Sawyer, First spark spectrum of caesium. Phys. Rev. (2) 39 p. 458-467 (1932).

Cs I. Zu den bisher bekannten Serien von Cs I ist eine "verbotene" Serie, 1S—mD, hinzugekommen. Shrum, Carter und Fowler [198] finden im gewöhnlichen Bogen die Paare: $\lambda\lambda$ 6894/48, 4425/17, und λ 3838, 3594, 3467, 3391. Im Flammenspektrum erscheinen sie nicht.

Eine Untersuchung über Absorption in Cäsiumdampf bringen Sowerby und Barrat [187]. Im Gegensatz zum Selektionsprinzip vermögen die Alkalimetalle bei Abwesenheit eines elektrischen Feldes die Kombinationslinien 1S—mD zu absorbieren. Die beiden ersten Paare der Cäsiumserie 1S—mD werden sowohl in Emission als auch in Absorption beobachtet. Die Cäsiumhauptserie untersucht auch Waibel [219] vom 5.—14. Serienglied. Bei hohem Eigendampfdruck von 10—32 mm werden die Linien genügend breit zur Ausmessung bei Aufnahmen mit Plangitter und Quarzprismenspektrograph. Innerhalb einer einzelnen Linie und innerhalb der Serie wird der Intensitätsverlauf sowie das Gesetz der Druckverbreiterung diskutiert. Bei den niedrigen Seriengliedern wird eine starke Unsymmetrie des Absorptionsverlaufs festgestellt; etwa vom 10. Glied ab verschwindet die Unsymmetrie allmählich. Die Verbreiterung der Spektrallinie scheint ungefähr der Quadratwurzel aus der Dampfdichte proportional zu sein.

Ferner hat Mathews [201] die Hauptserie $1 \text{ S} - \text{mP}_2$ in Absorption gemessen und ist um 1 Glied weiter gekommen, als Bevan [90]. Er benutzt ein Rowlandsches Konkavgitter von 10 Fuß; aber es scheint von geringer Qualität zu sein, denn er muß mehr als ein Drittel abdecken; dennoch sind die Linien der veröffentlichten Photographie unscharf. Es ist daher unwahrscheinlich, daß seine Schätzung der Genauigkeit auf 0.02 berechtigt ist. Vom 9. Paare an erhält er nur einfache Linien und meint, das liege daran, daß die Komponente größerer Wellenlänge zu lichtschwach gewesen sei. — Die von ihm gemessenen Linien sind:

m = 3: 3888.622	m = 9:3288.605	m = 21: 3205.457
76.184	m = 10: 3270.499	m = 22: 3203.478
m = 4:3617.296	m = 11: 3256.696	m = 23: 3201.820
11.448	m = 12: 3245.881	m = 24: 3200.411
m = 5:3480.106	m = 13: 3237.354	m = 25: 3199.124
76.825	m = 14: 3230.46	m = 26: 3198.014
m = 6: 3399.979	m = 15:3224.838	m = 27: 3197.027
97,996	m = 16: 3220.065	m = 28: 3196.046
m = 7:3348.720	m = 17: 3216.133	m = 29: 3195.217
47.549	m = 18: 3212.831	m = 30: 3194.455
m = 8: 3314.125	m = 19: 3209.960	m = 31: 3193.794
13.149	m = 20: 3207.509	m = 32: 3193.172.

Mathews sieht außerdem noch "Satelliten" zu den Gliedern der Hauptserie, die ungefähr gemessen werden: bei 4: λ 3610, bei 5: λ 3484 und λ 3475, bei 6: λ 3402, bei 7: λ 3351.

Cs II und Cs III. Die einzigen Arbeiten, welche die verschiedenen Ionisationsstufen zu trennen suchen, also auch die Linien von Cs II festzustellen, stammen von Balasse und Goche [174, 175, 188, 189]. Sie benutzten die elektrodenlose Erregung. Um ein Quarzrohr von 3 cm Durchmesser leiten sie oszillierende Entladungen mit Funkenstrecken von 20, 37, 54 mm Länge, so daß sie das Potential erheblich ändern können. Das Quarzrohr liegt in einem elektrischen Ofen, der auf die Temperaturen 155°, 190°, 215°, 240° C gebracht wird. Steigerung der Temperatur wirkt ebenso wie Abnahme der Funkenlänge. Sie finden drei Stufen: bei hoher Temperatur, kleiner Funkenstrecke ist die Farbe blau, aber das Spektrum so lichtschwach, daß sie es nicht photographieren können. Bei höherer Erregung ist die Farbe gelb, das Spektrum noch reich an Bogenlinien. Bei stärkster Erregung (niedrige Temperatur, lange Funkenstrecke) ist das Licht grün und sehr stark, am hellsten bei 170°. Dann sind nur noch sehr wenig Bogenlinien sichtbar. Bei höherer Temperatur zeigt sich in der Achse des Rohres ein kontinuierliches Band, und die Bogenlinien verdicken sich stark nach diesem Bande hin, so daß sie dadurch leicht von den Funkenlinien zu unterscheiden sind.

Unter den Funkenlinien unterscheiden sie nach ihrer Länge und ihrem Verhalten bei Änderung von Temperatur und Funkenlänge - nach dem Verfahren der Brüder Bloch - zwei Arten, also Cs II und Cs III. Die Messungen sind wenig genau; sie geben bei den Linien teils nur Zehntel, teils auch Hundertstel an, sagen bei ersteren betrage die Genauigkeit etwa 0.1 Å, bei letzterem 0.07 Å. Aber sie überschätzen ihre Genauigkeit; auch unter letzteren Linien finden sich viele, bei denen der Fehler weit über 0.1 Å geht. Die einzige Möglichkeit, das abzuschätzen, gibt die schon in Band VII erwähnte Arbeit von Sommer [162], der mit größtem Rowland-Gitter gemessen hat und Tausendstel angibt. Daß eine solche Angabe berechtigt ist, zeigt die Konstanz der Schwingungsdifferenzen bei den von Sommer gefundenen Gesetzmäßigkeiten. So kann man bei Sommer im allgemeinen die Hundertstel als sicher ansehen.-Balasse gibt 3 Listen: etwa 450 Linien, die er Cs II zuschreibt, von 2 4864 bis 2 2337; etwa 200 Linien, welche zu Cs III gerechnet werden, von λ 5048 bis λ 2333; endlich etwa 110 Linien zwischen λ 6724 und λ 2325, von welchen er nicht weiß, wozu sie gehören. In der Tab. 1 sind die Zahlen von Balasse mit denen von Sommer zusammengestellt; wo Sommer aufhört, sind die wenigen Messungen von Exner und Haschek [87] beigefügt, die ja auch auf wenige Hundertstel richtig zu sein pflegen. -Es liegt noch eine Messung des Funkenspektrums vor, von Dunover. Im Band VII dieses Handbuchs sind seine Zahlen nach [128] veröffentlicht; seitdem ist ein ausführlicher Bericht erschienen [144], der mehr Linien enthält. Aber seine Zahlen sollen hier nicht angeführt werden, da sie größtenteils schon in Band VII stehen, dann auch, weil sie so große Fehler aufweisen - bis zu einigen Å -, daß sie bei einem so linienreichen Spektrum bedeutungslos werden.

Bei 90-100°erhält Dun oyer eine gut sichtbare, weiß-bläuliche Lumineszenz; diese nimmt mit steigender Temperatur an Intensität zu und verändert fast plötzlich ihre Farbe, so daß die Röhre bei etwa 250° in rosa-purpurnem Licht leuchtet. Weitere Temperatursteigerung hat zunächst Schwächung und schließlich Verschwinden der

Tabelle 1. Cs II nach Balasse [189].

	Balasse [189]	Sommer [162]		Balasse [189]	Sommer [162]		Balasse [188]	Sommer [162]
5048	87 1	_	4384	51 4	4,428 5	3959	53 3	9,495 5
43	82? 4	3.800 6	73	00 3	3.018 6	25	54? 4	5.583 6
4870	08? 4	0.024 0	68	77 2	-	07	00 3	6.933 4
65	18 1	-	67	66 2	_	03	02? 1	_
57	57? 2	1.583 1	63	24 4	3.275 9	00	05? 2	0.09 0
39	80? 1	-	59	02 2	-	3896	96 3	6.978 7
35	03? 3		30	19 3	0.239 4	93	09 2	-
30	18? 4	0.161 6	07	88 2	7.942 1	88	42 2	8.867 2
25	42? 2		00	63 2	0.636 6	76	22 2	6.190 0
04	61? 2	-	4292	00 2	2.008 3	61	53 2	1.489 3
4786	5? 3	6.363 3	88	32 4	8.350 7	05	14 3	5.096 6
68	41? 2		84	13 2	4.229 0	3785	52 3	5.424 5
63	62? 4	3.616 5	82	59 2	-	34	39 3	4.337 4
58	92? 2	-	81	31 2		32	7 2	2.539 2
57	87? 2	-	77	06 4	7.100 9	24	9 2	4.750 1
39	63? 2	-	72	87 2	10012-00	3682	6 1	2.46 0
37	73? 2		71	76 2	1.744 2	3531	35 2	1.376 0
33	06? 4	2.975 4	68	89 2	-	13	87 3	4.022 2
28	18? 2	-	64	66 4	4.675 10	3488	71 1	-
23	27? 1	3.12 0	60	43 1	-	31	4 1	-
4695	60 3	5.610 1	58	97 1	-	3368	50 4	8.555 1
70	28? 4	0.280 4	42	05 2	1.973 2	24	5 2	a section a
56	6? 2	6.538 3	34	41 3	4.408 5	3271	52 2	Tinta Marina
51	1? 2		32	24 4	2.188 6	50	58 3	[ample[5]]
46	60? 4	6.508 5	28	05 2		19	1? 2	then divel
08	49? 1		21	14 8	1.119 3	01	09 2	1000
03	85? 4	3.755 10	19	61 2	9.516 0	3173	3 1	
4594	57 1		08	98 1		51	14 3	
44	54 1	the second	4151	29 3	1.267 4	41	46 2	and sold
43	71 2	8010 0	32	01 3	2.003 2	3080	8 2	metal nor
39	06 4	8.942 6	24	18 2	0.000 0	67	87.2	And hand a month
33	89 1	-	08	20 2	8.232 0	67	21 2	
34	04 2	_	4068	80 3	8.773 0	40	0 0	
31	40 0	6.795 7	01	98 3	1.908 0	20	0 0	
20	02 4	0.120 1	60	09 2		2001	78 9	a sea a se
22	50 5	1 595 7	00	90 0	0.050 0	. 50	12 0	a light mich
1400	Q1 0	6 759 2	17	10 2	7 184 4	70	8 9	-
4400	72 0	7 680 2	90	10 D	0.104 4	68	3 9	Section Constructions
14	09 2	4 004 2	2080	062 1	0.041 0	54	1 1	
25	78 9	5 708 4	78	07 4	8.000 5	49	8 9	a maria
94	11 2	4 046 9	74	25 9	4.239 6	40	92 3	and topic
05	23 3	5.253 7	69	20 0	4.000 0	31	11 41	
4399	58 3	9.495 4	67	30 2	7.212 1	2883	7 9	
96	98 2	6.909 3	65	22 3	5.187 6	65	12 3	
88	85 2	8.764 2	61	25 1	-	59	32 42)

1) und 2). Diese Linien haben auch Exner und Haschek im Funkenspektrum. Sie geben: 2931.04, 2859.39.

	Bala [18	isse 9]		Bal	asse 39]		Bal	asse 39]		Bala [18	asse 39]		Bal [15	asse 89]
2846	12	21)	2761	9	2	2699	16	3	2596	14	1	2429	6	1
45	67	4	49	8	1	74	0	2	90	2	2	25	15	4^{5})
41	5	2	33	9	2	66	4	1	88	5	1	15	0	2
26	8	2	31	8	2	44	7	4	76	8	1	2392	88	3^{6})
20	2	2	30	0	1	41	0	2	46	1	2	79	54	27)
17	03?	22)	26	9	2	37	6	2	42	92	4	73	4	2
2793	3	2	23	95	3	27	84	3	42	1	2	66	2	1
89	77	3	21	6	2	27	9	2	2480	7	2	58	7	1
84	7	2	19	0	2	21	1	2	49	2	2	57	9	2
79	9	3	15	8	2	13	6	2	37	1	2	45	93	1
71	12	1	04	1	2	09	43	44)	34	8	1	43	3	1
66	0	2	01	18	43)	01	1	1	32	6	3	33	42	3

592

Lumineszenz zur Folge, wobei noch weitere Farbänderungen erfolgen. Die Lumineszenzfarben sind scheinbar von der Temperatur, der Dampfdichte und der Intensität und Verteilung des erregenden Feldes abhängig. Bei 125° werden ungefähr 630 Linien gefunden. Sämtliche Linien des Funkenspektrums sind in beträchtlicher Intensität vorhanden, außerdem aber eine größere Anzahl sehr intensiver Linien, die im Funkenspektrum fehlen. Die Nebenserien fehlen vollständig. Die Linien der Hauptserie sind nur in sehr geringer Intensität vorhanden und fehlen wahrscheinlich auch bei niedrigeren Temperaturen vollständig. Bei 250° treten die Linien der Hauptserie stark hervor. Das bei 300° aufgenommene Absorptionsspektrum, wobei als Lichtquelle ein kondensierter Funken zwischen Aluminiumelektroden unter Wasser dient, zeigt nur die Linien der Hauptserie.

Die von Balasse benutzte Methode, um die verschiedenen Ionisationsstufen zu trennen, hat sich schon in manchen Fällen als sehr nützlich erwiesen. Aber sie ist nicht ganz zuverlässig. Das zeigt sich auch hier: Sommer hat eine ganze Anzahl von Linien als gesetzmäßig gelagert nachgewiesen, als Multipletts oder sonstwie. Vergleicht man diese Linien mit den Tabellen von Balasse, so sieht man sofort, daß es sich um Linien von Cs II handelt. Aber es sind auch einige darunter, die Balasse zu Cs III rechnet; dies muß also falsch sein. Weiter haben Laporte, Miller und Sawyer [236, 237, 243] eine Reihe Linien des Cs II gemessen und klassifiziert. Man sehe weiter unten.

Für das Zahlenmaterial von Cs III gilt das bei Cs II Gesagte. Wir bringen nur die Tabelle von Balasse, deren Genauigkeit durch die entsprechenden Zahlen von Sommer geprüft werden kann, während die Zahlen von Dunoyer ganz beiseite zu lassen sind.

Wie schon bemerkt, gibt Balasse eine dritte Tabelle für die Linien, die er nicht mit Sicherheit bei Cs II oder Cs III einordnen kann. Diese Zahlen folgen in Tab. 4.

¹) bis ⁷) Diese Linien haben auch Exner und Haschek im Funkenspektrum. Sie geben: 2846.0, 2816.94, 2701.21, 2609.48, 2425.20, 2392.92.

Tabelle 2. Cs II (nach	Laporte, Miller	und Sawyer	[237, 243]).
------------------------	-----------------	------------	--------------

Klassifikation	2	Int.	Klassifikation λ	Int.
(² P ₁ , 5d)3 ₃ -(² P ₁ , 6p)2 ₂	6955.519	4	4363.69	0
$({}^{2}P_{1\frac{1}{2}}5d)2_{2}-({}^{2}P_{1\frac{1}{2}}6p)2_{2}$	6536.440	3	$({}^{2}P_{1\frac{1}{6}}6p)5_{2}$ — $({}^{2}P_{1\frac{1}{6}}6d)5_{3}$ { 4363.275	9
$({}^{2}P_{1\frac{1}{2}}5d)3_{3}-({}^{2}P_{1\frac{1}{2}}6p)3_{3}$	6495.528	3	4362.70	0
$({}^{2}P_{1\frac{1}{2}}5d)1_{1}-({}^{2}P_{1\frac{1}{2}}6p)1_{1}$	6419.541	2	$({}^{2}P_{1\frac{1}{2}}6p)1_{1}-({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{1}$ 4330.239	4
$({}^{2}P_{1\frac{1}{2}}5d)2_{2}-({}^{2}P_{1\frac{1}{2}}6p)3_{3}$	6128.619	4	$({}^{2}P_{1\frac{1}{2}}6p)6_{0}-({}^{2}P_{1\frac{1}{2}}6d)6_{1}$ 4300.636	6
$({}^{2}P_{1\frac{1}{2}}6p)6_{0}-({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{1}$	6076.738	2	4288.755	1
$({}^{2}P_{1\frac{1}{2}}5d)3_{3}-({}^{2}P_{1\frac{1}{2}}6p)5_{2}$	5863.701	1	$({}^{2}P_{1\frac{1}{2}}6p)4_{1}-({}^{2}P_{1\frac{1}{2}}6d)3_{2}$ { 4288.350	7
$({}^{2}P_{1\frac{1}{2}}5d)1_{1}-({}^{2}P_{1\frac{1}{2}}6p)2_{2}$	5831.159	5	4287.80	0
$({}^{2}P_{1\frac{1}{2}}5d)2_{2}-({}^{2}P_{1\frac{1}{2}}6p)4_{1}$	5814:181	3	$(^{2}P_{-1}6_{8})^{3}P_{-}(^{2}P_{-1}6_{n})5_{-}\int 4277.100$	9
(² P,15d)2,-(² P,16p)5,	5563.73	0	$(1_{1_{2}}^{+}03) 1_{2}^{-}(1_{1_{2}}^{+}0p) 0_{2}$ 4276.56	0
(1110 a) -1 (1110 p) -1	5563.019	7	$(^{2}P_{,1}6p)3_{,-}(^{2}P_{,1}6d)2_{,-}$ $\int 4221.119$	3
$({}^{2}P_{1\frac{1}{2}}6p)5_{2}-({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{2}$	5419.687	5	(11g 01) ² g (11g 01) ² g [4220.571	0
$({}^{2}P_{1\frac{1}{2}}6s){}^{3}P_{1} - ({}^{2}P_{1\frac{1}{2}}6p)1_{1}$	5370.979	6	$({}^{2}P_{1\frac{1}{2}}6p)2_{2}-({}^{2}P_{1\frac{1}{2}}6d)1_{1}$ 4151.267	4
$({}^{2}P_{1\frac{1}{2}}6p)5_{2}-({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{1}$	5306.609	3	$({}^{2}P_{1\frac{1}{2}}6p)3_{3}$ — $({}^{2}P_{1\frac{1}{2}}6d)3_{2}$ 4132.003	2
$({}^{2}P_{1\frac{1}{2}}5d)1_{1}-({}^{2}P_{1\frac{1}{2}}6p)4_{1}$	5249.373	6	$(^{2}P_{,1}6p)3_{,-}(^{2}P_{,1}6d)5_{,-}$ $\int 4069.19$	0
$({}^{2}P_{1\frac{1}{2}}6s){}^{3}P_{2}-({}^{2}P_{1\frac{1}{2}}6p)1_{1}$	5227.002	8		6
$({}^{2}P_{1\frac{1}{2}}6p)4_{1}-({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{1}$	5096.604	4	$({}^{2}P_{1\frac{1}{2}}6p)2_{2}-({}^{2}P_{1\frac{1}{2}}6d)2_{2}$ 4047.184	4
$({}^{2}P_{1\frac{1}{2}}5d)1_{1}-({}^{2}P_{1\frac{1}{2}}5p)5_{2}$	5043.800	6	$(^{2}P_{11}6p)2_{2}-(^{2}P_{11}6d)3_{2}$ $\begin{bmatrix} 3965.54\\ 2007.107 \end{bmatrix}$	0
$({}^{2}P_{1\frac{1}{2}}6p)3_{3}-({}^{2}P_{1\frac{1}{2}}7s){}^{\circ}P_{2}$	4972.593	D		6
$({}^{*}P_{1\frac{1}{2}}6s){}^{*}P_{1}-({}^{*}P_{1\frac{1}{2}}6p)2_{2}$	4952.835	6	$(^{2}P_{11}6s)^{3}P_{1} - (^{2}P_{11}6p)6_{0}$ 3959.870	0
$({}^{e}P_{1\frac{1}{2}}0s){}^{e}P_{2}-({}^{e}P_{1\frac{1}{2}}0p)Z_{2}$	4830.161	0	(3959.495	D
$({}^{2}P_{1\frac{1}{2}}0p)Z_{2}-({}^{2}P_{1\frac{1}{2}}(s){}^{3}P_{2}$	4/32.970	4	(2D - C=) 2 (2D - C-1) 4 2005 592	0
$({}^{2}\Gamma_{1\frac{1}{2}}Op)O_{2} - ({}^{2}\Gamma_{1\frac{1}{2}}Od)\Gamma_{1}$	4070.200	4	$({}^{*}\Gamma_{1\frac{1}{2}}\circ p)2_{2}$ $({}^{*}\Gamma_{1\frac{1}{2}}\circ d)4_{3}$ 3920.085	0
$(-r_{1\pm}op) z_2 - (-r_{1\pm}op) z_1$	4040.000	. 0	(2D, 5m)9 (2D, 6d)5 9000 099	1
(2D , 6a)3D (2D , 6n)2	4004.24	10	$({}^{2}\Gamma_{1\frac{1}{2}}Op)2_{2}-({}^{2}\Gamma_{1\frac{1}{2}}Od)0_{3}$ 3906.935 (2P, 6p)5 (2P, 6d)6 9000.00	4
$(-r_{1\pm}0s)-r_{2}-(-r_{1\pm}0p)s_{3}$	4003.100	0	$({}^{-r_{1\frac{1}{2}}}op)b_{2} - ({}^{-r_{1\frac{1}{2}}}od)b_{1}$ 3500.05	0
0	(4539.40	0	(2P, 6p)1 (2P, 6d)1 2896.078	7
$({}^{2}P_{1\frac{1}{2}}6p)5_{2}-({}^{2}P_{1\frac{1}{2}}6d)2_{2}$	4538 949	G	$(-1_{1_{2}}^{+}0p)1_{1}^{-}(-1_{1_{2}}^{+}0d)1_{1}$ 2806.570	Ó
	(4597 19	0	3805.42	0
$(^{2}P_{1}6s)^{3}P_{2} - (^{2}P_{1}6n)^{4}$	4526 725	7	(² P, 16p)1_(² P, 16d)23805.096	6
	4526 12	0	$(1_{1_{2}}^{+},0_{1}^{+})_{1_{1}}^{-} ((1_{1_{2}}^{+},0_{1}^{+})_{2_{2}}^{-})$ 3804.66	0
(² P,16n)4,-(² P,16d)1,	4506.834	2	$(^{2}P_{1}6n)4 - (^{2}P_{1}6d)6 = 3785.424$	5
	f 4502.56	0	$(^{2}P_{1}6p)1_{1} - (^{2}P_{1}6d)3_{2} = 3732.539$	2
(2P,15d)1,-(2P,16p)6	4501.98	0	$(^{2}P_{1}, 6p)^{2}n$ $(^{2}P_{1}, 6d)^{6}$ $(^{3}S31, 376)$	0
(-12/-1 (-12-1/-0	4501.525	7		1
(² P,16p)5,-(² P,16d)3,	4436.06	0	5p ⁶ ¹ S ₆ —(² P ₁ 6s) ³ P ₁ 926.75(vac)	20
$({}^{2}P_{1}{}^{1}6s){}^{3}P_{2} - ({}^{2}P_{1}{}^{1}6p)4$	4424.046	2	$5p^{6} {}^{1}S_{6} - ({}^{2}P_{1} {}^{1}5d)1_{1} = 901.34$	20
	f 4405.69	0	5p ⁶ ¹ S ₀ —(² P ₁ 5d, 6s)1, 813.85 ,	20
$({}^{2}P_{1\frac{1}{2}}6p)1_{1} - ({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{0}$	4405.253	7	$5p^{6} {}^{1}S_{0} - {}^{2}P_{1}5d, 6s)2_{2} = 808.77$	20
(2P116p)52-(2P116d)42	4386.566	0	$5p^{6} {}^{1}S_{0} - ({}^{2}P_{1\frac{1}{2}}7s){}^{3}P_{1} = 668.43$	12
$({}^{2}P_{11}6p)4_{1}-({}^{2}P_{11}6d)2_{2}$	4384.428	5	$5p^{6} {}^{1}S_{0} - ({}^{2}P_{1\frac{1}{2}}6d)1_{1} = 657.15$	5
(2D + Ca)3D (2D + Ca)5	f 4373.43	0	$5p^{6} {}^{1}S_{0} - ({}^{2}P_{1\frac{1}{2}}6d)6_{1} = 639.42$,	12
$(r_{1\frac{1}{2}}0s)r_{1}-(r_{1\frac{1}{2}}0p)b_{2}$	1 4373.018	6	$5p^{6} {}^{1}S_{0} - ({}^{2}P_{\frac{1}{2}}6d, 7s)1_{1} = 612.82$,	'7

Um das Zahlenmaterial vollständig zu machen, seien auch die Zahlen angegeben, die Shaver [161] in der Schumann-Region mißt. Die Zahlen sind mit Quarzspektrograph gewonnen, er gibt als Genauigkeit 0,2 Å an (siehe Tab. 5).

Kayser u. Konen, Spektroskopie. VIII.

Tabelle 3. Cs III nach Balasse [189].

	Bala [18	sse 9]	Sommer [162]	Balasse S [189]		Sommer [162]			Bala [18	sse 9]	Sommer [162]	
4864	24	2	4.08 0	3955	96	2	5.923 4		3571	9	1	
4716	19	2	6.09 0	51	94	1			69	28	2	9.39 0
4676	30?	1	— ¹)	38	25	1	8.263 1	1	65	10	4	5.111 4
74	89?	2	-	30	25	1	00	193	62	05	1	2.17 0
67	03?	1	6.887 1	29	46	1	-		59	80	2	9.798 5
65	91?	1	5.51 0	21	69	2	-		46	1	1	-
23	16?	2	3.091 4	13	37	1	-		41	45	2	1.556 1
4599	22	3	-	10	21	1	0.305 0	10	33	40	3	3.364 1
72	69	2	2.611 2	04	81	2	4.806 3		24	58	1	-
23	00	3	2.846 3	01	47	1		0.000	18	15	3	8.312 1
06	83	3	6.834 2d	00	82?	2		110	16	03	2	000
4493	70	2	3.660 2	3892	23	2	2.206 2		04	80	2	0.07 0
89	30	1	9.27 0d	64	36	2	4.367 30	1	03	62	2	3.67 0
50	88	1	0.785 1	37	40	2	7.449 3		3499	2	1	
47	73	2	7.649 2	23	04	1	3.610 1		97	0	1	_
25	73	2	5.708 4d	22	03	1	2.307 1		94	00	1	
10	26	3	0.208 4	19	01	2	7 400 1		70	00	1	
03	94	2	3.804 4	9707	00	0	7.900 1		74	6	1	-94 7
4398	150	2	1.994 2	5191	50	4	1.000 2	1903	79	2	1	
80	101	1	-	20	06	0	1.402 0		70	0	0	
05	41 90	0	5 411 1	10	78	0	0.774 9	-	69	81	2	
00	20	0	6 215 9	2699	55	4	9 475 5		65	21	2	5.20 0
10	66	0	9.778 1	80	48	2	0.454 2		63	36	3	3,435 3
06	54	0	6 477 1	61	6	3	1.391 6		57	18	2	
4997	40	1	7.514 2	55	73	2	5.42 0		55	48	2	
96	34	1	6 070 1	51	10	2	1.073 3		50	39	3	0.36 0
13	18	4	3.129 6d	44	0	1	3.77 0		43	89	2	_
4193	25	1	3.198 2	41	40	2	1.332 4		30	4	2	_
73	52	3	3.533 3	34	75	3	_		29	47	2	-
63	30	3	3.243 3	30	8	1	0.710 10	a	19	49	1	-
58	57	3	8.610 4	26	05	1	-		18	16	3	8.11 0
19	29	2	9.288 1	24	56	2	4.44 0		11	44	4	1.313 3
4089	60	1	_	22	80	3	2.691 2		06	70	4	6.626 2
85	41	1	_	18	30?	3	8.161 3		01	0	1	-
81	49	1	1.471 4	 15	05?	2	4.989 2		3397	23	3	7.187 1
77	38	1	_	08	34	4	8.285 5		93	25	2	-
43	44	3	3.422 5	05	60	2	5.535 2	-	89	15	3	-
85	83	2	-	02	94	3	2.852 4		83	5	1	-
31	10	2	-	3598	97	2	8.931 3		79	0	3	-
14	99	2	5.058 1	97	42	4	7.430 6		75	1	1	-
10	54	2	-	92	48	2	2.45 0		72	0	1	-
06	52	4	6.537 6	84	2	1		0.000	68	52	2	8.555 1
01	68	4	1.682 4	81	3	2	-		60	18	1	-
3993	87	2	3.863 1	73	24	2	-	1	58	8	2	-

¹) Ein ? hinter λ bedeutet, daß der Autor nicht sicher ist, ob die Linie zu Cs II oder Cs III gehört.

	Balass [189]	e	Sommo [162]	er			Bala [18	asse 39]			Bala [18	asse 39]		Bala -[18	usse 9]
3357	71	3	7.687	1		3192	1	2		3056	04	3	2927	42	2
53	88	2	-		1.5	89	20	2		54	56	2	24	48	2
49	39	4	9.445	4	121	83	4	1		54	20	2	23	98	1
47	5	1	-		12 (81	4	1	-	53	5	2	22	21	2
44	07	4	4.004	3	10	80	8	1		50	8	3	21	83	1
40	62	4	0.574	3		78	61	4		47	8	1	21	03	4
31	9	1	-			72	56	4		47	2	1	20	1	1
30	33	2	-			69	73	2		45	9	2	18	24	2
26	6	1	-			60	31	1		42	3	2	14	62	3
22	8	2	-			59	7	1		41	0	1	13	2	1
20	5	1	-			58	0	1		39	31	2	10	82	2
15	50	4	5.498	2	100	54	55	2		32	41	2	10	3	1
11	52	2	-			53	88	3		31	5	2	06	17	2
03	72	2	-			52	30	3 ²)		30	35	2	01	1	2
3299	83	2	9.86	0		49	36	4^{3})		29	15	2	2899	7	2
96	56	1	-			46	53	1		28	25	2	95	32	2
95	0	1	-			45	2	2		23	3	1	94	85	2
82	1	2	-			39	1	1		17	0	1	93	81?	2
81	2	1	-			36	6	1		15	8	2	91	75	3
78	26	2	-			34	8	2		02	88	3	90	4	1
75	69	2	-			33	7	1		01	26	4	86	67	4
70	2	1	-			30	7	2	11	2999	44	3	84	42	3
68	30	4	8.314	21)		29	1	2		98	20	2	81	16	4
64	3	1			1	24	3	2		96	15	2	80	0	4
63	06	2				23	9	1		95	34	4	79	25	3
62	29	3				18	33	2		86	89	2	77	29	3
58	65	1				12	18	2		85	3	2	75	30	3
55	35	4				09	3	2		83	91	2	72	33	3
34	6	1	10.10			03	9	1		82	5	2	71	32	2
47	5	2				02	5	1		82	03	2	68	32	3
42	28	2	1836.2		11	01	4	1		76	81	25)	66	90	2
35	71	1	088		100	3097	38	4		75	65	2	65	45	2
35	1	1			1	95	77	3		72	8	2	62	40	3
34	16	3				94	82	2		69	0	3	60	85	3
31	0	1				91	6	2		65	4	2	60	3	2
28	8	1	117.01			88	9	2		65	0	3	57	82	3
27	2	2	cohen i			84	4	2		62	8	2	54	45	3
23	88	1	in the			78	09	3		62	4	2	52	40	4
13	7	3	Cont and			72	7	2		56	61	1	50	4	2
10	4	1				69	73	2		52	9	1	47	19	2
09	65	4				66	62	44)		51	59	2	44	48	2
07	07	2	1 121-122			63	7	2		47	85	2	40	42	1
04	27	2	midala		1	62	7	2		44	1	2	39	8	1
3198	7	2	interes.			61	24	3	100	42	81	1	38	09	4
95	5	2	Section.			60	12	3		42	21	3	35	01	3
93	6	2				58	6	3		38	5	4	34	24	1

1) Exner und Haschek geben 3268.31.

2) bis 5) Für diese Linien geben Exner und Haschek: 3152.45; 3149.39; 3066.7; 2976.90.

595

38*

596

Cäsium

	Bal [1	Balasse [189] 8 2			Bal [1	asse 89]			Bala [18	asse 39]	2011	1.154	Bal [1	asse 89]
2829	48	2		2691	83	3		2582	5	2	2.045	2453	2	1
24	12	2		29	48	2	2.1	75	1	1		51	4	1
23	03	3		89	42	2	11	74	59	2	and the	49	3	1
19	28	2		86	64	3	1.1.1	73	03	46)		39	8	2
17	98	4		81	99	3	1	71	41	2	100.10	27	65	411)
15	33	2		81	34	3	18.1	68	71?	3	10.874	26	41	3 12)
10	82	4 ¹)		78	92	4	2.51	60	37	3		22	9	2
2799	47	2		77	01	2	2.1	57	2	1		21	4	2
94	50	3		74	62	2		54	8	2		20	1	2
92	16	3		73	22	2	1	51	17	2		14	7	2
88	81	2		71	70	2	100	42	1	1	-	11	9	2
88	22	4		69	74	3	1. 15 - 1	40	52	2	bab-a)	06	9	2
87	02	3		68	76	3	Rut	38	67	2	- 18	01	7	2
84	10	3		65	44	1	00.0	33	44	4		00	1	1
80	81	2		58	71	2	PER	28	8	3	100.00	2394	9	2
79	1	3		56	82	2	1.1	25	68	47)		93	6	2
76	42	4		56	2	1	2	20	8	2		80	2	2
74	46	3		50	7	4	1	16	7	1		65	5	1
72	2	1	1	49	0	1		14	7	1		64	8	2
69	5	2		46	20	3	1.2	11	51	3	-	59	2	1
64	42	3		42	63	4	11	02	2	2	415	56	1	1
61	3	1	1	40	27	3	1 2 1	2496	9	2	Ter a	54	42	2
57	4	2		35	98	2	12.1	95	04	4	1.18.2	51	8	2
55	20	3	1.1.9	34	17	2	1 2 2 1	89	5	2		44	37	1
51	11	2	10.3	19	22	2	1.1	85	42	48)		42	7	1
50	65	1		16	27	3	125.8	2483	0	2		40	47	213)
48	18	4	1.1	14	62	2	1.8.8	78	4	1	21	37	9	1
40	67	3		10	11	4 ³)		77	58	49)		1		Pag.
34	85	2		05	40	4	1.2.1	76	0	1		1		
27	80	2		02	72	2	6.1	72	2	1		2.5	2	
14	0	2		02	5	1		71	5	1		12		
11	6	2		00	36	44)	1.1.1	68	0	1		D. F.		
10	5	2		2598	7	1	1.1	66	8.	2		1.2.		
09	0	2		96	95	45)	1	66	3	2		1.00	1	
06	79	4		91	17	4	1 2 3	62	0	2		5.1	0.1	
02	3	2		89	3	2		59	23	2			14	
00	30	3 2)		86	5	2		55	80	310)				

Über den Bau der Spektren Cs II und Cs III ist folgendes bekannt. Für Cs II geben Laporte, Miller und Sawyer [235] zunächst 6 eingeordnete Linien, die am Schluß der Tab. 2 angegeben sind. Ferner gibt Sommer [162] 4 enge Tripletts bis $\lambda\lambda$ 5349, 5209, 4879, 4616 (die Zahlen siehe in Band VII), von welchen die beiden ersten Glieder nach Aufspaltung und Intensität umgekehrt gelagert sind wie die beiden letzten. Ob diese Linien zu Cs II oder Cs III gehören, ist unbekannt. Sommer scheint sie zu Cs II rechnen zu wollen, wie auch die übrigen von ihm gefundenen Ge-

¹) bis ¹³). Für diese Linien geben Exner und Haschek: 2810.89; 2700.6; 2610.15; 2600.36; 2596.93; 2573.12; 2525.75; 2485.50; 2477.62; 2455.89; 2477.74; 2426.4; 2340.57.

6724	59	11)	5370	98	4 ¹)		4947	94	2		3933	43	1
6646	62	21)	65	51	2		4898	62	1		10	84	1
6536	42	41)	58	50	21)		95	22	11)		3883	77	2^{1})
6495	54	41)	54	62	1		90	73	1	19 ² 2004	74	32	2
19	59	21)	49	07	4 ¹)		84	92	1	States &	70	24	2^{1})
6128	77	31)	43	81	1		80	12	4 ¹)	t makes	68	31	1
6076	77	21)	06	57	21)		74	92	11)	1000 10	66	30	1
5984	37	21)	74	08	3		4616	20	41)		3629	45	3
77	16	11)	49	41	31)	C. LUIS	4517	76	1		3493	25	2
81	43	1	5232	21	1	0.000	10	63	1	SCHOOL	3394	45	1
25	41	41)	26	98	41)	100	06	05	1		3267	64	2
19	71	1	21	77	1		4499	26	11)		15	8	2
5886	53	11)	09	50	21)	-	77	16	1		3092	25	3
63	65	91)	5096	67	21)		69	12	1^{1}		2994	7	1
87	17	1	91	21	2	Contraction of the	53	57	1	Contra la	27	07	1
31	21	41)	81	85	21)	h	31	24	1	- Child	2894	30	1
95	30	1	59	91	21)	der D	00	90	2	Dierel	76	77	1
14	08	31)	53	18	2	-	4378	84	1	1.0	74	19	1
5698	16	11)	52	77	21)		60	99	2	1.000	65	02	3
5585	56	11)	49	21	21)		60	12	1		29	16	2
70	04	11)	38	8	1	Ross	54	79	1	22.25	2778	3	1
60	04	1)	19	99	31)		39	14	11)		00	70	1
57	11	9	01	69	21)	in second	20	41	1	ar die	2678	58	1
07	15	11)	4981	21	11)		4107	53	1		51	99	4
5410	10	41)	4001	61	91)		4028	62	11)		30	51	4
0419	00	4-)	12	76	1		11	60	1		2325	90	2
02	19	4-)	50	01	11)		11	00	-	100.00			
0376	23	1	02	02	±)	1				-		1	

Tabelle 4. Cs, Funkenlinien nach Balasse [189].

setzmäßigkeiten. Er führt weiter 24 Linien an, die zwei schwache Satelliten haben (bei einigen Linien ist nur der eine gemessen), welche nach kurzen Wellenlängen um 3 cm⁻¹, nach langen um 2,2 cm⁻¹ abstehen. Es sind die Linien: $\lambda\lambda$ 5925.6, 5563.0, 4603.7, 4538.9, 4526.7, 4501.5, 4405.2, 4373.0, 4363.2, 4288.3, 4277.1, 4264.0, 4221.1, 4047.1, 4039.8, 3978.0, 3965.1, 3959.4, 3925.5, 3897.0, 3805.1, 3661.3, 3597.4. Balasse hat auch alle diese Linien: die beiden ersten führt er unter denen, deren Zugehörigkeit zu Cs II oder Cs III er nicht hat entscheiden können. Die folgenden 20 Linien rechnet er ausnahmslos zu Cs II, die beiden letzten zu Cs III. Man wird also wohl kaum fehl gehen, wenn man in dieser Gruppe eine noch ungeklärte Gesetzmäßigkeit von Cs II sieht. — Ferner hat Sommer einige Multipletts. Die beiden ersten enthalten 51 Linien; davon fehlen bei Balasse 4, für 16 kann er nicht entscheiden zwischen Cs II und Cs III, 21 rechnet er zu Cs II, keine einzige zu Cs III. Man wird also auch hier wieder annehmen müssen, daß die Multipletts zu Cs II gehören.

Durch Vergleich seiner Resultate mit denen für Neon sucht Sommer tiefer in den Bau des Spektrums — nach seiner Meinung Cs II — einzudringen. Aber es gelingt ihm nicht Terme festzustellen. Man sehe dazu auch [235].

Zu der Einordnung der Linien bei Cs II und Cs III ist noch eine Arbeit zu besprechen. Mohler [171] benutzt die Methode der Anregung durch Elektronenstöße.

¹⁾ bedeutet, daß auch Sommer diese Linien hat. Siehe Bd. VII p. 323ff.

Tabelle 5. Cs	, Funk	enlinien	nach	Shaver	[161]	
---------------	--------	----------	------	--------	-------	--

a number of the second s				-											
2298	4	8		2182	9	4]	2080	6	8		1983	17	1	
91	3	4		81	9	0		77	9	7		81	5	1	
86	8	9		80	2	9		76	9	7		76	8	1	
85	8	9		78	0	3		75	0	0		74	5	1	
83	1	8		76	4	4		74	0	0		71	6	0	
80	6	6		75	1	0		72	1	1		68	1	0	
74	5	10		72	1	1		69	5	2		66	7	0	
68	3	10		70	0	1		66	6	2		62	3	0	
62	9	0		66	6	4		64	6	1	1.000	61	4	2	
59	3	5	1.1	64	3	7		61	5	2		55	3	1	
58	5	5		60	5	2		60	4	1		45	1	1	
56	8	1		59	5	2		59	1	6		42	3?	4	
55	2	8		57	7	7		58	2	6		41	2	0	
46	4	8		54	8	1		57	0	6		38	8	2	
42	7	2u		53	5	1		55	8	6		37	4	1	
39	2	5	1999	51	3	1 d?		53	2	2		36	0	0	
35	2	2u		47	5	10u		51	9	2	0.5	35	2	8	
34	0	2		42	2	10u		50	2	3	1	30	9	1	
31	8	2u		39	9	1		48	3	2	1	25	0	0	
29	6	6		37	7	2		46	5	2		23	4	2	
28	6	1		36	5	2		42	1	2		20	0	1	
27	7	1		35	2	1		37	4	2		19	3	1	
26	2	1u		32	4	10		35	7	8u		15	6	3	
23	1	1	1.2.51	28	4	8		30	6	6		14	6	4	
21	3	10		26	7	0		29	5	5		10	2	0	
18	3	3		17	6	1u		28	8	5		08	1	1	
13	8	3		14	7	7		27	2	1		00	7	1	
12	7	3		12	7	4	1.25	25	4	6		1897	7	0	
10	4	4	1	10	9	7		23	7	3		97	1	0	
06	3	10	odpuse.	09	8	7	moint	21	5	6		96	8	0	
02	6	.1	diam'r.	02	4	10 d?	Conserver	15	6	1		89	2	6	
01	4	6	t conh	00	1	1u	multi	09	5	4	a mini	84	0	6	
2199	2	5	CODA.	2098	9	1		07	3?	0	in the second	77	6	1	
97	8	3		96	7	1	20100	06	3	0	1.020	73	2	2	
97	0	3	1.00	95	3	1		01	5	0	187.65	61	3	0	
92	0	1	and unit	94	0	2	skind ;	00	1	0	pila de	59	3	2	
90	4	7	niano;	92	4	7	d his	1996	5	5	FIN	40	6	2	
88	6	5	IT-O'	89	2	8	16 11	91	9	1		1775	5	1	
86	8	2	In Tel annual	84	5	5		90	1	1		73	2	1	
86	2	2		83	6	5	100 100	85	1	1	- Course	69	5	1	

Indem die Geschwindigkeit der Elektronen durch verschiedene Potentialdifferenzen geändert wird, und die gleichzeitige Intensitätsänderung der einzelnen Linien verfolgt wird, kann man vielfach die Zugehörigkeit zu den verschiedenen Ionisationsstufen ermitteln. Für Cs findet Mohler folgendes: Bei sehr geringer Stromstärke, 0.01 bis 0.05 Amp. erscheinen Funkenlinien bei einer Geschwindigkeit von 20 V. Bei 22–28 V nimmt ihre Intensität rasch zu im Vergleich zu den Bogenlinien, bleibt bis etwa 32 V unverändert. Aber zwischen 32 und 40 V und zwischen 40 und 80 V ist wieder erhebliche Verstärkung der Funkenlinien sichtbar, und im letzten Intervall tritt ein neues Spektrum auf. Mohler schließt, Cs II werde erregt etwa bei 21.5 V durch sehr schwache

598

Ströme, durch starke schon bei 8 V weniger. — Er gibt eine Tabelle, in welcher für 51 von den Linien Sommers bei 21, 24, 32, 40, 80 V die Intensitäten angegeben sind. Eine Anzahl der Linien treten erst bei 80 V und höherer Spannung auf. — Im allgemeinen wird die Einordnung von Balasse bestätigt.

In neuster Zeit haben Laporte, Miller und Sawyer [236, 237, 243] eine Klassifikation der Linien des Cs II-Spektrums von λ 6955 bis λ 612 gegeben, durch die die lückenhafte Einordnung von Sommer [162] erheblich ergänzt wird. In einer Hohlkathode aus Molybdän wird Cäsiummetall verdampft und das Spektrum in einer Heliumatmosphäre angeregt. Es wurde mit einem 1 m-Vakuumspektrograph aufgenommen und die Linien gegen Kohle und Heliumnormalen ausgemessen. Tab. 2 enthält die klassifizierten Linien von Cs II.

Newman [197] untersucht das Spektrum des Cäsiums im intermittierenden Bogen. Die Cäsiumlampe hat drei Elektroden, zwei bestehen aus Cäsiummetall, die dritte aus Eisen; sie dient zum Zünden des Bogens. Der Bogen brennt zwischen den Cäsiumelektroden und kann mit Hilfe eines Kommutators dauernd unterbrochen werden. Die Spannung betrug 100 V, der Druck 10⁻⁴ mm. Der Vorteil bei der Benutzung einer solchen Lichtquelle liegt darin, daß hauptsächlich Funkenspektren erzeugt werden. Ein großer Teil der gebrachten Linien läßt sich mit den von Balasse [189], Sommer [162] und Laporte, Miller u. Sawyer [237, 243] identifizieren.

Über die Hyperfeinstruktur liegen Untersuchungen für die drei ersten Paare der Hauptserie von Cs I vor. Zuerst haben Filippov und Gross [206] diese Linien untersucht, aber mit ungenügender Dispersion. Sie sehen die Linien zwar doppelt, halten dies aber für Selbstumkehr. Dann hat Jackson [199] eine sehr sorgfältige Prüfung vorgenommen; er findet alle Linien doppelt, die Abstände beim ersten Paar: 0.294 cm^{-1} und 0.315, beim zweiten 0.300 und 0.308, beim dritten 0.299 und 0.305 cm^{-1} . Er sucht dann auch etwas über den spin des Kerns zu ermitteln, aber da die Aufspaltung sich doppelt so groß findet, wie die Theorie sie berechnen läßt, so gelingt das nicht. — Man sehe auch noch [199, 202, 203, 204, 208, 209, 233].

Mit Funkenlinien haben sich Filippov und Groß [192] beschäftigt. Sie finden als einfach: 4786, 4502, 4436, 4363, 4288, 4265. Dies sind alles Linien von Cs II nach Balasse. Dagegen sind sehr viele Linien komplex; sie machen folgende Angaben, die sie aber selbst als unsicher bezeichnen, weil bei dem Stufengitter sich verschiedene Ordnungen übereinanderlagern: 5371 dreifach, $\Delta \nu$ 0.139, 0.097. — 5271 dreifach, $\Delta \nu$ 0.129, 0.115. — 5249 doppelt, $\Delta \nu$ 0.134. — 5227 sechsfach, $\Delta \nu$ 0.179, 0.132, 0.128, 0.088, 0.132. — 4953 vierfach, $\Delta \nu$ 0.171, 0.159, 0.147. — 4830 vierfach, $\Delta \nu$ 0.266, 0.129, 0.180. — 4604 vierfach, $\Delta \nu$ 0.189, 0.137, 0.104. — 4527 dreifach, $\Delta \nu$ 0.177, 0.083. Die Intensitäten aller Komponenten sind ungefähr gleich, außer bei 4830. Auch 5043.8, 4870.0, 4763.6, 4277 sind komplex. — Auch unter diesen sämtlichen Linien findet sich keine, die zu Cs III gerechnet wurde.

In neuster Zeit hat Kopfermann [235] aus Hyperfeinstrukturuntersuchungen an Cäsiumlinien das Kernmoment bestimmt. Mit Hilfe eines Perot-Fabry-Etalons konnten die im Sichtbaren liegenden Linien des Cs vollkommen aufgelöst werden. Besonders einfache Hyperfeinstruktur zeigen die Linien λ 5371, λ 4953, λ 4527 und λ 5274. Aus der Zahl der jeweiligen Aufspaltungen folgt, daß der Drehimpuls des CsKernes i ≥ 2 ist. Aus der Intervallregel ergibt sich i = 7/2 oder 9/2. Daraus ergibt sich für das magnetische Moment des einzelnen Protons aus der von Fermi angegebenen Beziehung für die Aufspaltung der Wert $\mu_0/10^4$.

Eine ungewöhnlich große Anzahl von Arbeiten ist durch die Frage nach dem Intensitätsverhältnis der Paare des Spektrums von Cs I hervorgerufen worden, die zuerst von Füchtbauer und Hofmann [91] behandelt war (siehe Band VII p. 314). Die Frage ist darum schwierig zu lösen, weil die Absorption der verschiedenen Linien durch den leuchtenden Dampf verschieden groß ist. Je heller man das Spektrum macht durch Steigerung der Dampfdichte oder der Dicke der emittierenden Schicht, desto mehr wird die stärker absorbierbare Linie geschwächt. Man müßte also eigentlich bei unendlich geringer Dichte oder Dicke der Schicht messen; aber wenn man mit diesen Größen heruntergeht, wird auch das Spektrum lichtschwächer und damit wachsen die Meßfehler. - Die Messungen sind in sehr verschiedener Weise ausgeführt: in Emisson, in Absorption (Füchtbauer), durch die anormale Dispersion (Roschdestwenski [147]), durch die magnetische Drehung der Polarisationsebene (Minkowski u. Mühlenbruch). Die Angaben sind auch für denselben Beobachter sehr schwankend, nur für das erste Paar der Hauptserie scheint das Verhältnis 2 sicher zu sein, für das zweite 5555/93 ist das Verhältnis 4 schon weniger sicher. Für die folgenden Paare wird es immer unsicherer. Die meisten hat Samburski [204] angegeben. Seine Zahlen lauten: 4555/93 = 5, 3876/88 = 10, 3611/17 = 15.5, 3476/80 = 25, 3398/00 = 15.8, 3147/48 = 5.7, 3313/14 = 4.5.

Es lohnt zur Zeit nicht, alle gefundenen Zahlen und die angebrachten Korrektionen im einzelnen anzuführen. Nur sei die Literatur zusammengestellt. Theoretisches sehe man bei Sommerfeld u. Heisenberg [148], Minkowski [225], Fermi [223, 224], Experimentelles bei Füchtbauer u. Bartels [142], Bartels [149], Dorgelo [150, 157, 158], Bleeker u. Bongers [156], Dannmeyer [167], Filippov [178], Oudt [173], Füchtbauer u. Meier [179], Jakob [169, 200], Kohn u. Jakob [181], Brodsky [190], Filippov [193], Hagenow u. Hughes [194], Kohn u. Jakob [195], Samburski [204], Füchtbauer u. Wolf [207], Minkowski u. Mühlenbruch [226], Schütz [228].

Über Potentiale sind nur wenige Angaben vorhanden. Als Ionisationspotential geben Mohler u. A. [113] 3.9 V, als Resonanzpotential Laporte, Miller u. Sawyer [236] 13.32 und 13.70 für λ 926.75 und 901.34, als Potential für Cs II Mohler [171] 21.5 V, Laporte u. Miller [237] 23.4 V.

Röntgenspektrum.

Mit der L-Reihe des Emissionsspektrums beschäftigen sich nur drei neue Arbeiten. Coster [143] mißt im Anschluß an die Hjalmarschen Messungen [127] eine größere Anzahl schwacher Linien, während Nishina [172] die von ersterem nicht gefundene l-Linie angibt. Ihre Werte dürften wohl im allgemeinen in der vierten Ziffer noch richtig sein, man findet sie in Tab. 6. Ramberg [238] suchte bei Cäsium vergeblich nach Satelliten der L α_1 -Linie.

	Conditional Providence	-Tike	all train at		$n = \infty$		1111	Attendented.
Übergänge	Be- zeichnung	i	Coster [143]	ite J Ingi	Übergänge	Be- zeichnung	i	Coster [143]
LIII MI	1	0	3259.6 1)	in .	L _{III} N _V	β2	2	2506.4
LII MI	17	0	2983.3		Funkenl.	$\beta_{\circ}^{I,II}$	00	2483
LIII MIV	a_2	1	2895.60 ²)		L _{III} O _I	β_7	00	2480
LIII My	a1	10	2886.10 ²)		L _{II} N _I	2'5	00	2411.1
Funkenl.	. a ₃	00	2870.8		L _{II} N _{IV}	1 2/1	1	2342.52 ²)
LII MIV	β_1	6	2677.84 ²)		Funkenl.	710	00	2236.9
L _I M _{II}	β_4	1	2660.5 ²)	ailed	L _I N _{II}	72	0	2232.2
L _I M _{III}	β_3	1	2622.93°)	int	L _I N _{III}	2/3	0	2227,0
L _{III} N _I	β_6	00	2587.5	Ling	LI OII. III	24	0	2169.1

Tabelle 6. Messungen mit Kristallgitter. Wellenlängen in XE, bezogen auf Kalkspat: $d_{18^0} = 3029.45$. Emission. L-Reihe.

In der K-Reihe machen Leide [170, 182] und Cork und Stephenson [176, 177] neue Messungen. Letztere benutzen durchgehende Strahlung, legen der Berechnung jedoch die Gitterkonstante 3029.04 XE zugrunde, während unter Berücksichtigung der Brechung hier 3029.45 XE zu nehmen wäre, um mit den anderen Messungen vergleichbare Resultate zu erhalten (Siegbahn). — Die Werte bringt Tab. 7.

Übergänge	Be- zeichnung	i	Leide [170, 182]	Cork und Stephenson [176, 177]
KLII	a	5	404.11	403.98
K LIII	a1	10	399.59	399.48
K M _{II}	β_3	1	19.050 (Mar)	354.36
K M _{III}	β1	2	- I want - I want	353.62
K NII. III	β_2	1	-	345.16

Tabelle 7. Emission. K-Reihe.

Die Absorptionskanten der L-Reihe wurden von Coster [173], Lindsay [176] und Nishina [172] erneut gemessen (Tab. 8).

Für die K-Absorption liegt nur eine neue Bestimmung der Kante vor durch Leide [170, 182]. Er findet 344.07 XE.

Kante	i	Coster [173]	Lindsay [176]	Nishina [172]
LI	st.		2160.5	1000
LII	m.	_	2307.3	2307.5
LIII	schw.	2466	2467.8	2467.4

Tabel	lle	8 A	hsorn	tion.	L-Reihe.
Tanc	116	0. 1	LUSUIL	LIUII.	L-Iteme.

¹) Nach Nishina [172].

²) Bezugslinien nach Hjalmar [127].

Schließlich erhalten Chamberlain und Lindsay [166, 191] die Energiewerte der äußeren Niveaus relativ zu der Kante bzw. dem Endniveau des betreffenden Übergangs. Wird dieses = 0 gesetzt, so lassen sich die Differenzen der Wellenlängen zwischen Linie und Kante und damit die Energiedifferenzen aus der nur ungefähr bekannten Dispersion viel genauer bestimmen, als es auf Grund der Kombinations-

beziehungen	möglich	ist.	Sie finden	so in	$\frac{\nu}{R}$ für	
			NIV			6.04
			Nv			5.73
			O _{II, III}			1.08.

Den Schluß bildet die Zusammenstellung der Energieniveauwerte nach Siegbahn, Seine Linienbezeichnungen werden durchgehend benutzt. Für die Niveaus dagegen gelten diejenigen von Bohr und Coster.

Röntgenniveau	K	$\mathbf{L}_{\mathbf{I}}$	LII	L _{III}	MI	MII	MIII	M _{IV}	Mv
Opt. Symbol	$1^2\mathrm{S}_{\frac{1}{2}}$	$2 {}^2\mathrm{S}_{\frac{1}{2}}$	$2 {}^{2}P_{\frac{1}{2}}$	2 2Pa	$3 \ ^2S_{\frac{1}{2}}$	$3 {}^{2}\mathrm{P}_{\frac{1}{2}}$	3 2P3	$3 {}^{2}\mathrm{D}_{\frac{3}{2}}$	3 ² D _§
ν 	2649.8	420.3	394.8	369.31)	89.5	77.8	72.9	54.6	53.6
Röntgenniveau	NI	N _{II}	N _{III}	NIV	N _V	01	0 _{II, III}		
Opt. Symbol	$4^2\mathrm{S}_{\frac{1}{2}}$	$4\ ^{2}\mathrm{P}_{\frac{1}{2}}$	4 ² P ₂	4 2Dg	$4\ ^{2}\mathrm{D}_{\frac{5}{2}}$	$5^2\mathrm{S}_{rac{1}{2}}$	$5 {}^{2}P_{\frac{1}{2}, \frac{3}{2}}$		Porn
- v R	17.0	12.1	11.1	5.8	5.7	1.9	0.2	15-10-10	hour

Tabelle 9. Energiewerte der Röntgenniveaus nach Siegbahn.

Bandenspektra.

 Cs_{2*} Die erste Angabe über ein Bandenspektrum von Cs_2 in Absorption machen McLennan und Ainslie [152]. Sie geben an Kanten bei $\lambda\lambda$ 7778, 7749, 7706, 7659, 7585 gefunden zu haben, und bringen auch eine Photographie des Spektrums. Allein diese Photographie beweist, daß die Angabe wertlos ist. Daß man auf ihr von den Kanten nichts sieht, könnte man schlechter Reproduktion zuschreiben. Aber sie zeigt, daß in der angegebenen Gegend etwa 75 A auf 1 mm kommen, und schon dadurch wird die Messung von Kanten auf 1 A unmöglich. Die Photographie zeigt aber noch mehr: das Einzige, was man auf ihr sieht, sind Hg-Linien, die etwa 1 mm breit sind. Also haben die Autoren mit enorm breitem Spalt gearbeitet, und daß unter solchen Umständen Bandenspektra völlig verzerrt, die Kanten ausgelöscht, die Maxima verschoben werden, haben schon in älterer Zeit die Kometenaufnahmen gelehrt²). Wenn also im Original etwas wie Kanten zu sehen war, so können doch

602

¹) Experimentell, die obigen Werte berechnet.

²) Siehe dazu Kayser, Astron. Nachr. 135. Nr. 3217 p. 1-10 und Nr. 3229 p. 222-224 (1894).

die Zahlenangaben um 50 A falsch sein. Die Autoren wollen aber sogar Zahlenbeziehungen aus ihren Angaben ableiten. — Übrigens hat niemand sonst hier Banden angegeben.

Die nächsten und einzigen Angaben über das Spektrum von Cs_2 machen Walter und Barratt [205]. Auch sie beobachten die Absorption. Sie finden 4 schmale Bänder bei λ 7100, dann ein ausgedehntes Band mit vielen Köpfen, das von λ 6265 nach Rot läuft, endlich zwei strukturlose Bänder. Die Zahlen sind:

7187	. 6890.7	6636.3	6489.8	6354	5224
7126	43.8	15.8	68.0	35	4718
7071	10.3	6593.5	49.3	21	anninett.
7051	6767.3	72.3	28.5	01	
	25.5	52.0	08.5	6282	Palory and
	6682.5	31.5	6389.0	65	Selvens
	59.3	10.0	71.0	er verbolden.	anen 1.8-

Eigentümliche Bandenspektra werden in Absorption durch Gemische von Metallen erzeugt. Barratt [165] hat für Cäsium zuerst ein solches Spektrum erhalten; wenn Dämpfe von Cäsium und Magnesium gemischt sind, werden zwei Bänder sichtbar. Das erste, mit der Mitte bei λ 5706, ist nach beiden Seiten abschattiert, das zweite bei λ 4839 nach kurzen Wellenlängen. — Dann haben Walter und Barratt auch Absorptionsbanden von Cäsium mit den übrigen Alkalien erhalten [205]. Cs + Li zeigt Banden bei $\lambda\lambda$ 6255 (4), 6217 (3), 6180 (4), 6146 (4), 6116 (3), 6084 (1), 6055 (0), 6029 (0).

Cs + Na hat Banden bei: 5732 (1), 5710 (1), 5701 (1), 5672 (5), 5642 (7), 5631 (10), 5610 (1), 5602 (10), 5591 (3), 5571 (10), 5563 (3), 5542 (10), 5521 (5), 5512 (7), 5492 (10), 5483 (3), 5473 (3), 5463 (10), 5444 (10), 5425 (10), 5406 (2), 5388 (0), 5307 (5), 5353 (5), 5338 (5). Dies Spektrum haben schon Liveing und Dewar gesehen, waren aber über den Ursprung nicht sicher (Proc. Roy. Soc. **27**, 350, 1878). — Bevan [73] hatte geglaubt, im Ultraviolett ein zu dieser Verbindung gehörendes Bandensystem zu finden; es gehört aber zu Na₂. Dagegen finden Walter u. Barratt hier ein anderes System, welches zu Na + Cs gehört. Sie messen:

4315	0	4190	4	4125	6	4061	4	3980	6
4296	0	80	6	19	6	53	2	74	4
4275	0	74	2	08	6	34	4	66	1
58	1	63	6	02	6	26	4	60	1
42	2	52	6	4098	10	15	4	52	1
24	4	47	4	87	6	06	6	45	0
08	4	36	10	79	6	3998	6	38	0
4197	1	29	4	76	6	89	6	31	6

Mit diesen beiden Bandensystemen haben sich auch Weizel und Kulp [220] beschäftigt und Kantenschemata aufgestellt. Für das gelbe System gilt:

v	0	.1	2	3	4	5
0	5483	5463	5444	5425	5406	5388
1	5512	5492	5473	_		_
2	5542	5521		State to the	10.10	
3	5571	191-1	the work	ni-nin	deb-ena	nio asab
4	5602	-	5562		No.	
5	5631	5610	5591	-	-	
6	_	5642	-	_	_	_
7	-	5672	-	-	_	-
8		5702	-	-	-	_
9	-	5732	5730		-	-

Die violette Gruppe besteht jedenfalls aus 2 Systemen, von welchen aber nur eines in ein Schema eingeordnet wird, während das andere zu unsicher ist:

v	0	1	2	3	4	5	6	7
0		198	4102	ary more	4079	4070	4061	4053
1	-	4129	4119	4108	4098	Ser o There a	Change Asso	m Cloud
2	an and sh	4147	4136	4125	_	A loci bill	Cosh tin	111111
3	4174	4163	4152	101-000	- 111	110-2011	and the second	and Analy
4	4190	4180	Alleria				- has	-
5	4208	4197	-	-		-	_	-
6	4224	-	-	_	'	_		_
7	4242	-	-	-		_	-	TT A

K-Cs zeigt nur ein diffuses Band mit Maximum bei 25387.

Rb—Cs gibt ebenfalls nur ein diffuses Band mit Maximum bei λ 5640: Es ist schon von Dunoyer [94] bemerkt.

In den Dämpfen von CsJ und CsBr beobachtet Sommermeyer [218] bei höheren Dampfdrucken diffuse Banden in Absorption. Da bei den Salzen stets nur eine Serie der diffusen Banden auftritt, und da die Frequenzabstände nach Rot zu abnehmen, muß es sich um Übergänge von den verschiedenen Schwingungsniveaus des Normalzustandes zu einem Endniveau handeln. Die aus den Daten der Spektren errechneten Dissoziationsarbeiten und Werte von Grundschwingungsquanten stimmen gut mit den theoretisch berechenbaren überein und bestätigen die Klassifizierung der Alkalihalogenide als Ionenmoleküle.

Im Ultravioletten beobachtet Schmidt-Ott [239, 240] einige kontinuierliche Absorptionsspektra von CsJ, CsBr und CsCl. Es wird nachgewiesen, daß die Cs-Halogenidmoleküle im Gaszustand durch Lichtabsorption in einem Elementarakt in Atome verschiedener Anregung dissoziieren können. Aus der besonderen Art des Elektronenübergangs, sowie aus der relativen Lage der beobachteten Dissoziationsmaxima wird geschlossen, daß als Dissoziationsprodukte die Cs-Atome in P, D oder S-Zuständen und die Halogenatome in einem der Dublettzustände des Grundniveaus sich vorfinden. Die Zuordnung der Maxima ist im Einklang mit Fluoreszenzbeobachtungen. Okubo u. Hamada [216] finden, daß Cs-Dampf mit aktivem Stickstoff purpurn oder gelblich-purpurn leuchten könne.

Über Fluoreszenz des Dampfes findet sich eine Angabe von McLennan und Ainslie [152] in derselben Arbeit, die oben als ungeeignet für Untersuchung von Banden bezeichnet wurde.

Visser [229] findet bei Anregung mit Licht zwischen λ 2600 bis λ 2100 in Fluoreszenz das rote Dublett des Cäsiums (λ 8521), während bei Bestrahlung von Cäsiumjodid mit Licht $\lambda < 2100$ das blaue Cäsiumdublett (λ 4593, 4555) erhalten worden war. Während das Auftreten des blauen Dubletts eine optische Dissoziation des CsJ in normales Jod und Cäsium im 3P-Zustand nachweist, zeigt das Auftreten der roten Linien die optische Dissoziation in J + Cs im 2P-Zustand.

Die Dublettaufspaltungen der Termfolgen mp und md des Cäsiumspektrums versucht Wisniewski [155, 164] als Funktion der Laufzahl m durch eine empirische Formel darzustellen.

Das Verhältnis der Übergangswahrscheinlichkeiten der verbotenen Linien 1 S - 3 Dzu denen der ersten Glieder der Hauptserie bestimmt Prokofjew [217] durch Untersuchung der anomalen Dispersion. Die erhaltenen Werte liegen zwischen 10^{-5} und 10^{-6} . Beim Cäsium ist die Übergangswahrscheinlichkeit für 1 S - 4 D nahezu gleich der von 1 S - 3 D. Das Intensitätsverhältnis der Komponenten des 1 S - 3 D-Dubletts wird zu 1.4 bestimmt; der errechnete Wert beträgt 1.5. Whitelaw u. Stevenson [241] können die Resultate von Prokofjew bestätigen. In Übereinstimmung mit der Theorie finden sie für das Intensitätsverhältnis $1 \text{ S} - 3 \text{ D} \cdot 1 \text{ S} - 2 \text{ P}$ 1 bis 2×10^{-6} .

Eine spektroskopische Bestätigung der Bohrschen Besetzungszahlen beim Cäsium führt Fues [159] durch. Berechnet man mit Benutzung der den Bahnen nach Bohr zukommenden Quantenzahlen ein Zentralfeld, in welchen den Quantenbahnen die Energiestufen des Cäsiumspektrums zukommen, so ergeben sich hieraus Bahnabmessungen sowie die mit dem Kernabstand wachsende Abschirmung der Kernladung durch Rumpfelektronen.

Die mittlere Lebensdauer der Moleküle in höheren Quantenzuständen berechnet Tolman [163] für Cäsium zu 10⁻⁷, indem er aus der absorbierten Lichtmenge auf die pro Sekunde stattfindenden Anregungsvorgänge schließt.

and a state of an and an and an an an and an an an and an and an and a state of a state

and a minimum discount of a start of and a start of a start ostart of a start
Abgeschlossen 1. 5, 32.

Isotopen: 63, 65.

Literatur.

[210] E. H. Kurth, Soft X-rays of characteristic type. Phys. Rev. (2) 18 p. 99-100 (1921).

[211] E. H. Kurth, The extension of the X-ray spectrum to the ultraviolet. Phys. Rev. 18 p. 461-476 (1921).

[212] A. Campetti e A. Corsi, Sugli spettri di scintilla mediante la fiamma. N. Cim. (6) 24 p. 117-127 (1922).

[213] A. Dauvillier, Analyse de la structure électronique des éléments. J. de phys. et le Rad.
(6) 3 p. 221-251 (1922).

[214] A. Dauvillier, Nouvelles recherches sur les spectres de rayons Röntgen. Bull. Soc. Franc. p. 115 (1922); J. de Phys. et le Rad. 3 No 6 (1922).

[215] V. Dolejšek, Sur les lignes Ka des éléments légers. C. R. 174 p. 441-443 (1922).

[216] Walter Gerlach, Das K-Dublett, nebst einer Neubestimmung der Gitterkonstanten einiger Kristalle. Phys. Zs. 23 p. 114—120 (1922).

[217] F. L. Mohler and P. D. Foote, X-ray limits beyond the range of spectroscopic measurements. Phys. Rev. (2) 20 p. 82-83 (1922).

[218] E. Back, Zur Kenntnis des Zeemaneffektes. Ann. d. Phys. (4) 70 p. 333-372 (1923).

[219] N. Bohr, Emissionsspektren und Atombau. Ann. d. Phys. (4) 71 p. 228-288 (1923). Siehe p. 268.

[220] Ernst Bengtsson, Die Kombinationsbeziehungen bei den Bandenspektren der Cu-Flamme. Zs. f. Phys. 20 p. 229-236 (1923).

[221] R. Frerichs, Untersuchungen über das Bandenspektrum des Kupfers. Zs. f. Phys. 20 p. 170-187 (1923).

[222] W. Grotrian, Die Absorptionsspektren einiger Metalldämpfe. Zs. f. Phys. 18 p. 169-182 (1923).

[223] Fr. Horton, U. Andrews and A. C. Davies, The excitation of characteristic X-rays from certain metals. Phil. Mag. (6) 46 p. 721-741 (1923).

[224] J. Kettmann, Über die Intensität von Röntgenspektrallinien bei hohen Spannungen.Zs. f. Phys. 18 p. 359-371 (1923).

[225] M. Kimura and G. Nakamura, The broadening of spectral lines caused by increased current density and their Stark effects. Jap. J. of Phys. 2 p. 61-75 (1923).

[226] R. Mecke, Neuere Beiträge zur Kenntnis der Bandenspektra. Naturw. 11 p. 637 (1923).

[227] Sisir Kumar Mitra, Détermination des étalons spectroscopiques dans la région des petites longueurs d'onde. Thèse, faculté de Paris 1923; Ann. de Phys. **19** p. 315—339 (1923).

[228] H. Nagaoka and Y. Sugiura, Spectroscopic evidence of isotopy. Japan. J. of Phys. 2 p. 167-278 (1923).

[229] T. Royds, The effect on wave length in arc spectra of various substances into the arc. Kodaik. Bull. **73** p. 53-61 (1923).

[230] A. G. Shenstone, Ionisation potentials of oxygen and silver. Nat. 112 p. 100 (1923).

[231] M. Siegbahn und A. Žáček, Über die relative Intensität der K-Linien in Röntgenspektren. Ann. d. Phys. (4) 71 p. 187-198 (1923).
[232] Emory Carl Unnewehr, An experimental investigation on the energy of the characteristic K-radiation from certain metals. Phys. Rev. (2) 22 p. 525-538 (1923).

[233] Xavier Waché, Recherches quantitatives sur le spectre d'étincelle ultraviolet du cuivre dans l'aluminium. C. R. 177 p. 39-41 (1923).

[234] K. K. Darrow, Excitation potentials for characteristic X-rays of Al, Fe, Ni, Cu, Zn. J. Opt. Soc. Amer. 8 p. 645-646 (1924).

[235] E. O. Hulburt, The absorption lines in the spectrum of the metallic spark in water. Phys. Rev. (2) 24 p. 129-133 (1924).

[236] M. Kimura and G. Nakamura, Cathode spectra of metals and their salts. Japan. J. of Phys. 3 p. 29-41 (1924).

[237] M. Kimura and G. Nakamura, A classification of enhanced lines of various elements. Japan. J. of Phys. 3 p. 197-215 (1924).

[238] A. Landé, Die absoluten Intervalle der optischen Dubletts und Tripletts. Zs. f. Phys. 25 p. 46-57 (1924).

[239] K. Lang, Messung von Röntgennormalen. Ann. d. Phys. (4) 75 p. 489-512 (1924).

[240] H. Lowery, Pole lines in the interrupted arc spectra of silver, gold and copper. Phil. Mag. (6) 48 p. 1122-1131 (1924).

[241] R. A. Millikan and J. S. Bowen, Extreme ultra-violet spectra. Phys. Rev. (2) 23 p. 1-34 (1924).

[242] R. S. Mulliken, The exitation of the spectra of the copper halides by active nitrogen, and the application of the isotope effect to the interpretation of band spectra. Phys. Rev. (2) 23 p. 767 (1924).

[243] R. S. Mulliken, The isotope effect as a mean of identifying the emitters of band spectra: application to the bands of the metal hydrides. Nat. **113** p. 489 (1924).

[244] H. Nagaoka and Y. Sugiura, Distribution of electric field in metal arcs of silver ... Japan. J. of Phys. 3 p. 47-73 (1924).

[245] St. Procopiu, Sur les spectres de l'arc entre métaux dans différents milieux et dans le vide. Ann. de Phys: (10) 1 p. 89-133 (1924); C. R. 176 p. 385-388 (1923).

[246] A. G. Shenstone, Low voltage arc spectra of copper. Nat. 114 p. 934 (1924).

[247] M. Siegbahn and B. B. Ray, On the irregularity of the Ka doublets in the elements of lower atomic number. The spark lines of copper. Ark. f. Mat. Astron. och Fysik 18, No 19 (1924).

[248] M. Siegbahn und R. Thoraeus, Eine Erweiterung des Röntgenspektroskopischen Gebietes. Ark. für Math. Astron. och Fysik. 18 6 pp. (1924).

[249] F. Simeon and E. S. Dreblow, Spectrum observations on the copper arc. Nat. 114 p. 751 (1924).

[250] L. A. Turner, Quantum defect and atomic number. Phil. Mag. (6) 48 p. 384-395 (1924).

[251] Samuel K. Allison and Alice H. Armstrong, Experiments on the relative intensities of some X-ray lines in the L-spectrum of tungsten and the K-spectrum of copper. Phys. Rev. (2) 26 p. 714-723 (1925); Proc. Nat. Acad. Amer. 11 p. 563-566 (1925).

[252] Herbert Bell, The CuH molecule and its band spectrum. Phil. Mag. (6) 49 p. 23-32 (1925).

[253] L. et E. Bloch, Nouvelles recherches sur quelques spectres d'étincelle dans la région de Schumann. J. de Phys. et le Rad. (6) 6 p. 105-120, 154-165 (1925).

[254] M. C. W. Buffam and H. J. C. Ireton, The under-water spark of a number of elements. Trans. Canada (3) **19** III p. 113-118 (1925).

[255] C. T. Chu, Soft X-rays from metals. Phys. Rev. (2) 25 p. 883 (1925).

[256] D. R. Hartree, Doublet and triplet separations in optical spectra as evidence whether orbits penetrate into the core. Proc. Cambridge Phil. Soc. 22 p. 904-918 (1925).

[257] J. Holtsmark und B. Trumpy, Über die Verbreiterung von Spektrallinien. Zs. f. Phys. 31 p. 803-812 (1925).

[258] F. Hund, Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel. Zs. f. Phys. 33 p. 345-371 (1925).

[259] A. S. King, Spectroscopic phenomena of the high current arc. Astroph. J. 62 p. 238-264 (1925).

[260] A. Leide, Experimentelle Untersuchungen über Röntgenspektra. K-Serie. Diss. Lund. 1925. Zs. f. Phys. 39 p. 686-710 (1925).

[261] A. Leide, Recherches sur la série K des raxons X. C. R. 180 p. 1203-1204 (1925).

[262] J. C. McLennan and A. B. McLay, On the series spectrum of gold. Proc. Roy. Soc. A. 108 p. 571-582 (1925).

[263] J. C. McLennan and A. B. McLay, Absorption spectra of various elements in the ultraviolet. Trans. Canada (3) **19** III p. 89-111 (1925).

[264] H. Lowery, The broadening of lines in arc spectra and the Stark effect. Phil. Mag. (6) 49 p. 1176—1183 (1925).

[265] R. S. Mulliken, The isotope effect in band spectra. III. The spectrum of copper jodide as excited by active nitrogen. Phys. Rev. (2) **26** p. 1–32 (1925); Phys. Rev. (2) **25** p. 119–138 (1925).

[266] A. E. Ruark and Roy L. Chenault, Fine structure of spectrum lines. Phil. Mag. (6) 50 p. 938-956 (1925); ib. (7) 1 p. 937-956 (1925).

[267] H. N. Russel, A list of ultimate and penultimate lines of astrophysical interest. Astroph J.61 p. 223-283 (1925).

[268] G. Shenstone, The arc spectra of silver and copper. Phil. Mag. (6) 49 p. 951-962 (1925).

[269] A. G. Shenstone, Analysis of the arc spectrum of copper. Nat. 116 p. 467 (1925).

[270] Sinclair Smith, A study of electrically exploded wires. Astrophys. J. 61 p. 186-203 (1925).

[271] Hildegard Stücklen, Das Linien- und Bandenabsorptionsspektrum des Kupfers und seine Feinstruktur. Zs. f. Phys. **34** p. 562-585 (1925).

[272] J. Sugiura, On the doublets and triplets in the spectra of different elements. Scient. Pap. Inst. Phys. Chem. Res. 3 p. 1—32 No 28 (1925).

[273] Ch. H. Thomas, Soft X-rays from iron, cobalt, nickel and copper. Phys. Rev. (2) 26 p. 739-748, 25 p. 833 (1925).

[274] A. P. Weber, Über die Brauchbarkeit der Seemannschen Schneidenmethode zu Messungen von Röntgennormalen. Zs. f. wiss. Phot. 23 p. 149-183 (1925).

[275] R. V. Zumstein, The absorption spectra of copper, silver and gold vapors in the ultraviolet. Phys. Rev. (2) 25 p. 523-526 (1925).

[276] U. Andrews, A. C. Davies and F. Horton, The soft X-ray absorption limits of certain elements. Proc. Roy. Soc. 110 p. 64-91 (1926).

[277] C. S. Beals, Quartet terms in the arc spectrum of copper. Proc. Roy. Soc. A 111 p. 168-181 (1926).

[278] C. G. Bedreag, Sur le spectre d'arc du cuivre. C. R. 182 p. 1209-1211 (1926).

[279] C. G. Bedreag, Sur la structure complexe du spectre de cuivre. C. R. 182 p. 1331—1333 (1926).

[280] K. T. Compton and C. H. Thomas, Soft X-rays: Improvements in technique and new results for C, Cu and W. Phys. Rev. (2) 28 p. 601-612 (1926).

[281] A. Dauvillier, Spectrographie des rayons X de grande longueur d'onde. C. R. 183 p. 529-530 (1926).

[282] A. C. Davies and F. Horton, Critical potentials and X-ray term values. Phil. Mag. (7) 2 p. 1253-1263 (1926).

[283] R. Déchène, Étude des spectres de fils explodés. J. de Phys. et le Rad. (6) 7 p. 59-64 (1926).

[284] E. Eisenschitz und A. Reis, Über die Zuordnung von Bandenspektren zu chemischen Stoffen auf Grund von Flammenversuchen. Zs. f. Phys. **36** p. 414-425 (1926).

[285] W. M. Hicks, The analysis of the copper spectrum. Phil. Mag. (7) 2 p. 194-236 (1926).

[286] Takeo Hori, On the explosion spectra of Hg, Cu and Fe. Mem. Coll. Sci. Kyoto Univ. A 9 p. 379-403 (1926).

[287] T. Hori, On the absorption spectra produced by the explosion of various elements. Sc. Pap. Inst. phys. chem. res. 4 p. 59-78 (1926).

[288] E. Hulthén and K. V. Zumstein, The absorption spectra of some hydride compounds in the ultra-violet. Phys. Rev. (2) 28 p. 13-24 (1926).

[289] Pratap K. Kichlu, Über das Bogenspektrum des Kupfers. Zs. f. Phys. 39 p. 572-587; Proc. Ind. Ass. for the Cultiv. of Science 9 p. 187-192 (1925).

[290] O. Laporte, Über die Grundterme der Spektren der ersten und zweiten großen Periode. Zs. f. Phys. **39** p. 123-129 (1926).

[291] Arvid Leide, Recherches sur la série K des rayons X. C. R. 180 p. 1203-1204 (1926).

[292] Arvid Leide, Messungen in der K-Serie der Röntgenspektra. Zs. f. Phys. 39 p. 686-710 (1926).

[293] R. S. Mulliken, Electronic states and band spectrum structure in diatomic molecules.
 I. Statement of postulates. Interpretation of CuH, CH and CO band types. Phys. Rev. (2) 28 p. 481-506 (1926).

[294] R. L. Petry, Secondary electron emission from tungsten, copper and gold. Phys. Rev. (2) 28 p. 362 (1926).

[295] R. Ritschl, Die Bandenspektren der Kupferhalogenide in Absorption. Naturwiss. 14 p. 1035 (1926).

[296] J. Schrör, Beitrag zur Messung von Röntgennormalen. Ann. d. Phys. (4) 80 p. 297-304 (1926).

[297] Hermann Schüler, Über eine neue Lichtquelle und ihre Anwendungsmöglichkeiten. Zs. f. Phys. 35 p. 323-337 (1926).

[298] A. G. Shenstone, The arc spectrum of copper. Phys. Rev. (2) 28 p. 449-474 (1926);
 (2) 27 p. 511-512 (1926).

[299] A. G. Shenstone, Quartet and doublet terms in the copper spectrum. Science 63 p. 641--642 (1926).

[300] F. Simeon and E. S. Dreblow, The principal series of the copper arc spectrum. Nat. 117 p. 17 (1926).

[301] L. A. Sommer, Über den Zeemaneffekt und die Struktur des Bogenspektrums von Kupfer. Zs. f. Phys. **39** p. 710-750 (1926).

[302] H. Stumpen, Über die Intensität von Röntgenspektrallinien in Abhängigkeit von der Erregungsspannung. Zs. f. Phys. 36 p. 1-17 (1926).

[303] Robert Thoraeus, The X-ray spectra of the lower elements. Phil. Mag. (7) 1 p. 312-321 and 2 p. 1007-1018 (1926).

[304] J. Thibaud, Determination en valeur absolue des longueurs d'onde de rayons X au moyen d'un réseau par réflexion tracé sur verre. C. R. **182** p. 55—57 (1926).

[305] G. Wolfsohn, Über das Bogenspektrum des Kupfers bei vermindertem Druck. Ann. d. Phys. (4) 80 p. 415-435 (1926).

[306] E. Zschimmer, C. M. Grisar und G. Meess, Signalgrün und die Absorption des Kupferoxyds in verschieden zusammengesetzten Gläsern. Zs. f. techn. Phys. 7 p. 290-300 (1926).

[307] R. V. Zumstein, The absorption spectra of tellurium, bismuth, chromium and copper in the visible and ultraviolet. Phys. Rev. (2) 27 p. 562-567 (1926).

[308] A. Dauvillier, La spectrographie des rayons X de grande longueur d'onde. Séries N et O, et jonction avec l'ultraviolet extrème. J. de phys. et le Rad. (6) 8 p. 1-12 (1927).

[309] O. S. Duffen dack and J. G. Black, Energy level studies on metallic vapors using a high temperature tungsten furnace. Phys. Rev. (2) 29 p. 358 (1927).

[310] W. Ehrenberg und G. v. Susich, Über die natürliche Breite der Röntgenemissionslinien.
 II. Zs. f. Phys. 42 p. 823-831 (1927).

[311] Yoshio Fujioka und Sunao Nakamura, Stark effect for the spectra of silver, copper and gold. Sc. Pap. Inst. phys. chem. res. 7 p. 263-276 (1927). ; Astroph. J. 65 p. 201-213 (1927).

[312] M. Fukuda, Reversed spectra of metals produced by explosion under increased pressure. Sc. Pap. Inst. phys. chem. res. 6 p. 1-47 (1927).

[313] R. Hamer and S. Singh, Critical potentials of copper. Phys. Rev. (2) 29 p. 901-902 (1927).

[314] W. M. Hicks, The analysis of the copper spectrum. II. Complex separation and quartet relation. Phil. Mag. (7) 4 p. 1161—1227 (1927).

Kayser u. Konen, Spektroskopie. VIII.

[315] Franklin L. Hunt, X-rays of long wave-length from a ruled grating. Phys. Rev. (2) 30 p. 227-231 (1927); Phys. Rev. (2) 29 p. 919 (1927).

[316] P. K. Kiehlu, Arc spectrum of copper. Ind. J. of Phys. 1 p. 401-412 (1927).

[317] O. Laporte, Screening constants from optical data. Phys. Rev. (2) 29 p. 650-654 (1927).

[318] Hantaro Nagaoka, Daizo Nukiyama, Tetsugoro Futagami, Instantaneous spectrograms of copper, silver and gold. Proc. Imp. Acad. Tokyo, **3** p. 319-323 (1927).

[819] D. Nasledow und P. Scharawsky, Zur Frage nach der Abhängigkeit der Intensität der Röntgenspektrallinien von der Spannung. Zs. f. Phys. 43 p. 431-441 (1927).

[320] T. H. Osgood, X-ray spectra of long wave-length. Phys. Rev. (2) 30 p. 567-573 (1927).

[321] R. Ritschl, Über den Bau einer Klasse von Absorptionsspektren. Zs. f. Phys. 42 p. 172-210 (1927).

[322] H. N. Russell, Related lines in the spectra of the elements of the iron group. Astroph. J. 66 p. 184-216 (1927).

[323] H. N. Russell, Series and ionization potentials of the elements of the iron group. Astroph. J. 66 p. 233-255 (1927).

[324] N. Seljakom, A. Krasnikow, T. Stellezky, Die Struktur der Linien Ka der Elemente Cu bis Ca. Zs. f. Phys. **45** p. 548-556 (1927).

[325] A. G. Shenstone, Spark spectrum of copper. Phys. Rev. (2) 29 p. 380-390 (1927).

[326] A. Smakula, Einige Absorptionsspektra von Alkalihalogenidphosphoren mit Silber und Kupfer als wirksamen Metallen. Zs. f. Phys. **45** p. 1—12 (1927).

[327] G. v. Susich, Über die natürliche Breite der Röntgenemissionslinien. Die Struktur von Borsäure. Auszug a. d. Diss. d. Techn. Hochschule Berlin (1927) 4 S.

[328] J. Thibaud, Spectrographe à réseau dans le vide pour l'ultraviolet de Millikan et les rayons X. J. de Phys. et Rad. (6) 8 p. 13-24 (1927).

[329] J. H. van der Tunk, Über die Röntgen-L-Spektra der leichteren Elemente. Zs. f. Phys. 41 p. 326-331 (1927).

[330] B. Davies and H. Purks, Note on the effect of chemical combination on the structure of the K absorption limit. Phys. Rev. (2) **32** p. 336-338 (1928).

[331] K. Frerichs, Stoß zweiter Art, Anregung und Wiedervereinigung in der Glimmentladung. Ann. d. Phys. (4) 85 p. 362-380 (1928).

[332] E. Hund, Über Zuordnungsfragen, insbesondere über die Zuordnung von Multiplettermen zu Seriengrenzen. Zs. f. Phys. 52 p. 601—609 (1928).

[333] S. Kalandyk, L. Kozlowski und T. Tucholski, Die Metallspektren in Explosionsgasgemischen. Sprawozdania i Prace Polskiego Towarzystiva Fizycnego **3** p. 241-255 (1928).

[334] C. C. Kiess, Interferometer measurements of wave-lengths in the vacuum arc spectra of titanium and other elements. J. Bur. Stand. 1 p. 77–90 (1928).

[335] V. Kondratjew, Über den Mechanismus einiger Leuchtreaktionen. Zs. f. Phys. 48 p. 310-322 (1928).

[336] R. J. Lang, The lowest terms in the spark spectra of nickel and copper (Ni II and Cu II). Phys. Rev. (2) **31** p. 773-775 (1928).

[337] A. C. Menzies, Shifts and reversals in tube-spectra. Proc. Roy. Soc. A. 117 p. 88-100 (1928).

[338] A. C. Menzies, The spark spectrum of copper. Proc. Roy. Soc. A 119 p. 249-256 (1928).

[339] H. Nagaoka and T. Futagami, Time lag in the emission of spectral lines excited in vacuum. Proc. Imp. Acad. 4 p. 361-363 (1928).

[341] H. Purks, Fine structure in the K-series of copper and nickel and the width of spectral lines. Phys. Rev. (2) **31** p. 931-939, 1118-1119 (1928).

[342] O. W. Richardson and F. C. Chalklin, The soft X-ray levels of iron, cobalt, nickel and copper. Proc. Roy. Soc. A **121** p. 215-236 (1928).

[343] A. P. R. Wadlund, Absolute X-ray wave-length measurements. Proc. Nat. Acad. 14 p. 588-591 (1928); Phys. Rev.(2) 32 p. 841-849 (1928).

[344] H. S. Waklin, The critical potentials in metallic vapours. I. Copper. Phys. Rev. (2) 32 p. 277-283 (1928).

[345] Miss Warga, Magnesium triplets in arc and solar spectra. Publ. Allegheny Observ. 6 p. 151--157 (1928).

[346] Ivor Backhurst, The absorption of X-rays from 0.63 to 2 A.U. Phil. Mag (7) 7 p. 153-173 (1929).

[347] J. A. Bearden, Wave-length of the K-lines of copper using ruled gratings. Proc. Nat. Acad.15 p. 528-533 (1929); Phys. Rev. (2) 33 p. 1088 (1929).

[348] E. Bengtsson and E. Hulthén, Band spectra and electronic states of some metal hydrides. Trans. Farad. Soc. 25 p. 751-757 (1929).

[349] A. H. Compton, A new wave-length standard for X-rays. J. Franklin Inst. 208 p. 615-616 (1929).

[350] D. Coster and M. Wolf, The fine structure of X-ray absorption edges. Nature 124 p. 652-653 (1929).

[351] V. Dolejšek und K. Pestrecov, Über die Feinstruktur des K-Niveauverlaufs. Zs. f. Phys.
53 p. 566-573 (1929).

[352] V. Dolejšek et K. Pestrecov, Sur l'allure des valeurs des discontinuités d'absorption K des corps simples. C. R. 188 p. 164—166 (1929).

[353] V. Dolejšek et D. Engelmannová, Sur les doublets d'étincelle dans la série K. C. R. 188 p. 318-320 (1929).

[354] O. S. Duffendack and J. G. Black, Studies on the spectra of Cu I, Cu II and Mn II by means of a vacuum tungsten furnace. Phys. Rev. (2) **34** p. 35-43 (1929).

[355] B. Edlén and A. Ericson, Vacuum spark spectra in the extreme ultra-violet down to 100 Å. Nature **124** p. 688-689 (1929).

[356] H. Fesefeld und Z. Gyulai, Zur Lichtabsorption in Silber- und Kupferhalogenidkristallen. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse p. 226-230 (1929).

[357] R. C. Gibbs and A. M. Vieweg, Some multiplets in the spectrum of doubly ionized copper, Cu III. Phys. Rev. (2) 33 p. 1092 (1929).

[358] A. Hollaender und J. W. Williams, The molecular scattering of light from solides: crystalline sulfates and their water solutions. Phys. Rev. (2) **34** p. 994-996 (1929).

[359] C. E. Howl, Wave lengths measurements of L-lines (Zn to Ca). Phys. Rev. (2) 33 p. 1088(1929).
[360] G. Kellström, Wellenlängenbestimmungen in der L-Reihe der Elemente 29 Cu bis 20 Ca

mit Plangitterspektrograph. Zs. f. Phys. 58 p. 511-518 (1929); Fysisk Tidskr. 27 p. 145-148 (1929). [361] G. Kruger, An extension of the spark spectrum of copper Cu II. Phys. Rev. (2) 34 p. 1122-1131 (1929).

[362] H. Lundegårth, Investigations on quantitative spectral analysis. I. Determination of potassium, magnesium and copper in flame spectra. Ark. f. Kemi Min. och Geol. (A) 10 26 S. (1929).

[363] J. E. Mack, The vector coupling in the nickel-, palladium-, and platinum-like spectra. Phys. Rev. (2) **34** p. 17-34 (1929).

[364] H. Th. Meyer, Über die Intensität der K-Linien des Röntgen-Spektrums in Abhängigkeit von der Ordnungszahl. Wiss. Veröffentl. a. d. Siemens-Konz. 7 p. 108-162 (1929).

[365] S. K. Mukherjee und R. N. Sen Gupta, The Raman spectra of sulphuric acid and the sulphates. Ind. J. of Phys. 3 p. 503-505 (1929).

[366] W. B. Nottingham, Probe and radiation measurements in the copper arc. J. Franklin Inst. 207 p. 299-314 (1929).

[367] E. W. H. Selwyn, Arc spectra in the region 2 1600-2100. Proc. Phys. Soc. London 41 p. 392-403 (1929).

[368] M. Siegbahn, On the methods of precision measurements of X-ray wave-lengths. Ark. f. Mat., Astro. och Fysik **21** A No 21 (1929).

[369] A. G. Shenstone, An unusual spectrum series. Phys. Rev. (2) 34 p. 1623 (1929).

[370] H. Beuthe, Über neue schwache Linien in der K-Serie der Elemente V bis Y. Zs. f. Phys.60 p. 603-616 (1930).

[371] Keivin Burns and Francis M. Walters jr., Wave-lengths in the spectra of the vacuum copper arc. Publ. Allegheny Obs. 8 p. 27-35 (1930); ib. p. 37-38 (1930).

[372] F. C. Chalklin, Some series in the extreme ultraviolet spark spectra of copper. Phil. Mag.
 (7) 10 p. 711-721 (1930).

[373] W. Gerlach, Ramanspektra von kristallisierten und gelösten Nitratsalzen. Ann. d. Phys. (5) 5 p. 196-204 (1930).

[374] J. B. Green, Incomplete Paschen-Back effect. Phys. Rev. (2) 36 p. 157-160 (1930).

[375] C. E. Howe, L-series spectra of the elements from calcium to zinc. Phys. Rev. (2) 35 p. 717-725 (1930).

[376] A. Karlsson, Die Gitterkonstante hochmolekularer gesättigter Fettsäuren nebst den Röntgenspektren innerhalb der K- und L-Reihen bei einigen niedrigeren Elementen. Ark. f. Mat., Astr. o. Fysik (A) 22 No 9, 23 S. (1930).

[377] S. Kawata, Satellites of the $K\beta_1$ -line of elements from Fe to Zn. Mem. Coll. Sc. Kyoto Imp. Univ. (A) **13** p. 383–387 (1930).

[378] Ben Kievit and G. A. Lindsay, Fine structure in the X-ray absorption spectra of the K-series of the elements calcium to gallium. Phys. Rev. (2) **36** p. 648-664 (1930), **35** 292 (1930).

[379] J. v. Koezkás, Die ultraviolette Absorption der anorganischen Salzlösungen. I. Die Absorption der Chloride. Zs. f. Phys. 59 p. 279—288 (1930).

[380] O. Laporte und D. R. Inglis, Resonance separations in configurations of type p⁵s and d⁹s. Phys. Rev. (2) **35** p. 1337-1341 (1930).

[381] Axel E. Lindh, Zur Kenntnis des K-Röntgenabsorptionsspektrums der Elemente Ni, Cu und Zn. Zs. f. Phys. 63 p. 106-113 (1930).

[382] P. C. Mahanti, Band spectra of copper oxide. Nat. 125 p. 819 (1930).

[383] L. S. Ornstein und D. Vermeulen, Intensitätsmessungen im Kupferbogen. Zs. f. Phys.
 64 p. 657-659 (1930) und ibid. 66 p. 490 (1930).

[384] F. K. Richtmyer und E. Ramberg, Satellites of Ka for the elements Ni (28) to As (33). Phys. Rev. (2) 35 p. 661 (1930).

[385] F. K. Richtmyer and L. S. Taylor, The intensity of X-ray satellites. Phys. Rev. (2) 36 p. 1044-1049 (1930).

[386] A. G. Shenstone, Note on wavelengths in the vacuum copper arc. Phys. Rev. (2) 36 p. 602-603 (1930).

[387] H. Stücklen, Temperatur im Unterwasserfunken. Naturw. 18 p. 248 (1930).

[388] J. Valasek, The fine structure of certain X-ray emission lines. Phys. Rev. (2) 36 p. 1523-1530 (1930).

[389] J. Valasek, The structure of certain K-series emission lines. Phys. Rev. (2) 35 p. 291 (1930).

[390] Ina Wennerlöf, Präzisionsmessungen in den K- und L-Serien der Elemente ... Ark. f. Mat. Astr. och Fysik 22 A No 8 (1930).

[391] F. Wissleak, Über das K-Ionisierungsvermögen schneller Elektronen. Ann. d. Phys. (5) 5 p. 507--552 (1930).

[392] D. Coster und J. Veldkamp, Bestimmung des Absorptionskoeffizienten für Röntgenstrahlen in der Nähe der Absorptionskanten der Elemente Cu und Zn. Zs. f. Phys. **70** p. 306—316 (1931).

[393] S. Frisch, Zur Hyperfeinstruktur in den Spektren einiger Elemente. Zs. f. Phys. 71 p. 89-92 (1931).

[394] J. B. Green and J. Wulff, Hyperfine structure in the spectrum of copper. Nat. 127 p. 891-892 (1931).

[395] C. E. Howe and M. Allen, Absolute measurement of the CuLa-line. Phys. Rev. (2) 37 p. 1694 (1931).

[396] Sechi Kato, On the absorption spectra of salt-solutions. Appendix. Sc. Pap. Inst. Phys. Chem. Res. Tokyo 15 p. 161-162 (1931).

[397] S. Kawata, Absorption of some X-ray diagram lines by the screen of the same element as the radiator. Proc. Phys. Nat. Soc. Japan (3) 13 p. 317-320 (1931).

[398] S. Kawata, Relation between the K-absorption edge and the $K\beta_2$ line of Ni, Cu and Zn. Mem. Coll. Sci. Kyoto Imp. Univ. (A) 14 p. 55-57 (1931).

[398a] S. Kawata, X-ray diagram lines strongly absorbed in the absorption spectra. Mem. Coll. Sci. Kyoto Imp. Univ. (A) 14 p. 227-228 (1931).

[399] A. S. King, The spectra of high current vaccum arcs. Phys. Rev. (2) 38 p. 590 (1931).

[400] R. G. Loyarte et A. T. Williams, Les spectres d'absorptions des vapeurs de Cu, Ag et Au. Publ. La Plata 5 p. 392-398 (1931).

[401] P. C. Mahanti, A new band system of copper hydride. Nat. 127 p. 557 (1931).

[402] R. Mecke, Bandenspektra negativer Ionen. Zs. f. Phys. 72 p. 155-162 (1931).

[403] W. B. Nottingham, Intensitätsmessungen im Kupferspektrum. Zs. f. Phys. 68 p. 824-833 (1931).

[404] L. S. Ornstein und D. Vermeulen, Intensitätsmessungen im Kupferbogen. Zs. f. Phys.
 68 p. 824 (1931); 70 p. 567-606 (1931).

[405] G. Ortner, Untersuchung der Linien Kupfer a_1, a_2, β_1 und Eisen K a_1, a_2, β_1 mit einem Doppelkristallspektrometer. Wiener Ber. **140** Ha p. 403-417 (1931).

[406] J. Palacios und M. Velasco, Die Feinstruktur der Absorptionskanten der Röntgenstrahlen: Ni 7,6 μ , Cu 8,5 μ , Fe 7 μ . Anales Soc. Españ. Fis. Quim. **29** p. 120–130 (1931).

[407] R. Ritschl, Über Hyperfeinstruktur in den Spektren von Kupfer und Gold. Naturwiss. 19 p. 690 (1931).

[408] S. Sambursky, Über die Intensitätsverhältnisse der durch innere elektrische Felder erzwungenen Mehrfachübergänge. Zs. f. Phys. 68 p. 824-833 (1931).

[409] S. Sambursky, Anomale Dublettstruktur des 4²F-Terms von Kupfer. Naturwiss. **19** p. 309—310 (1931).

[410] M. Sawada, On the multiple structure in the X-ray absorption spectra of the metallic elements Cr, Mn, Fe, Ni and Cu. Mem. Coll. Sc. Kyoto Imp. Univ. (A) 14 p. 229-250 (1931).

[411] A. G. Shenstone, The Auger effect in atomic spectra. Phys. Rev. (2) 37 p. 1701 (1931).

[412] A. G. Shenstone, Hyperfine structure in the copper spectrum. Phys. Rev. (2) 37 p. 1023 (1931).

[413] R. C. Spencer, A study of the shape of the AgL, MoK and CuK lines. Phys. Rev. (2) 38 p. 630-641 (1931).

[414] A. T. Williams, Chemische Valenz und Eigenschaften der Spektralterme. Phys. Zs. 32 p. 870-875 (1931).

[415] C. W. Allen, Broad lines in the arc spectrum of copper. Phys. Rev. (2) 39 p. 42-54 (1932).

[416] C. W. Allen, The intensity of quartet lines in the arc spectrum of copper. Phys. Rev. (2) **39** p. 55-63 (1932).

[417] E. Bäcklin, Absolute value of X-ray wave lengths and e/m as calculated from X-ray dispersion measurements. Phys. Rev. (2) 40 p. 112-113 (1932).

[418] J. A. Bearden, X-ray wave lengths by the dispersion in quartz. Phys. Rev. (2) 39 p. 1-7 (1932).

[419] J. A. Prins, Absolute Wellenlängenbestimmungen von Röntgenstrahlen II. Physica 12 p. 15-18 (1932).

[420] J. A. Prins und J. D. Hanawalt, Absolute Wellenlängenmessungen von Röntgenstrahlen. I. Physica 12 p. 1-14 (1932).

[421] R. Ritschl, Eine lichtstarke Anregung von Spektren im elektrischen Vakuumofen durch Elektronenstoß kleiner Energie. Ann. d. Phys. (5) **13** p. 337—357 (1932).

[422] A. G. Shenstone and H. Russell, Perturbed series in line spectra. Phys. Rev. (2) 39 p. 415-434 (1932).

[423] A. T. Williams, Die Zahl der angeregten Atome und die Absorptionsspektren verschiedener Metalldämpfe. Phys. Zs. **33** p. 152-158 (1932).

1. Linienspektra.

Seit den in Bd. VII dieses Handbuchs angeführten Messungen des Cu-Bogens, ist dessen Spektrum mehrfach gemessen worden, sowohl im Hinblick auf die Einordnung der Linien wie in Absicht auf die Gewinnung von Normalen. Dabei ist mehrfach der Bogen bei niedrigem Luftdruck benutzt worden. Wie weiter noch zu erwähnen sein wird, kehren sich die Linien des Kupfers vielfach sehr leicht um. Außerdem sind sie bei Atmosphärendruck unscharf und verbreitert und endlich zeigen sie, namentlich im Ultraviolett Feinstruktur. Hierzu kommt, daß ihre Intensität in Richtung der Bogenachse nach der Mitte zu vielfach schnell abnimmt und daß in der Nähe der Elektroden besondere Verbreiterungen auftreten. Dies alles ist im Vakuumbogen weniger ausgeprägt, so daß die Linien für Messungen günstiger werden. Immerhin bleibt eine nicht unbeträchtliche Unschärfe, so daß bei den Interferometermessungen System Fabry-Perot nur relativ kleine Plattenabstände von wenigen Millimetern verwendet werden können. Wir führen zunächst die Interferometermessungen an. Kiess [334] mißt 26 Linien, Miss Warga [345] 10 Linien, Burns und Walters [371] messen zwischen 2104 und 8092 eine große Zahl und untersuchen zugleich den Bau, worauf weiter unten noch eingegangen wird. In [386] macht Shenstone auf ein Versehen bei der Bestimmung der Ordnungszahl bei einigen Linien aufmerksam, das Burns [371 II] korrigiert. Auf die Messungen und den Inhalt der vorgenannten Arbeiten soll sogleich eingegangen werden. Zunächst ist eine zwei Jahre vor Kiess [334] erschienene Arbeit von Wolfsohn [305] zu nennen, der mit großem Gitter gegen Normalen des Eisenbogens Linien des Cu-Bogens im Vakuum und in Luft im Bereiche 5782 bis 2148 gemessen hat. Es wurden zwei Serien von Aufnahmen gemacht. In der ersten Reihe wurde auf jeder Platte das Eisenspektrum mit dem Vakuumbogen verglichen. Bei der zweiten Reihe wurde in dritter und vierter Ordnung gemessen und ein direkter Vergleich des Luftbogens mit dem Vakuumbogen durchgeführt; die Linien des Eisenbogens waren außerdem noch als Referenzlinien mit aufgenommen. Während nun die Messungen im Luftbogen innerhalb der Fehlergrenzen sehr gut mit den sorgfältigen Messungen von Hasbach [154a] übereinstimmen und auch die Kombinationsbeziehungen an den aus dem Vakuumbogen ermittelten Schwingungszahlen streng erfüllt sind, zeigt sich für die Wellenlängen des Vakuumbogens eine systematische Verschiebung nach längeren Wellen, im Mittel von etwa 14 Tausendstel, gegenüber den Interferometermessungen von Kiess, Warga, Burns und Walter, die auch im Mittel sehr gut übereinstimmen. Kiess [334] hat dies zuerst bemerkt und auch hervorgehoben, daß sich durch diesen Umstand die unwahrscheinliche und zu den übrigen Erfahrungen nicht passende scheinbare Violettverschiebung erklärt, die Wolfsohn an dem Luftbogen, wenigstens an einer Reihe von Linien zu finden glaubt. Wie groß in Wahrheit die Druckverschiebung ist, läßt sich nicht mit Sicherheit feststellen, da der Betrag für eine Atmosphäre offenbar klein ist, zum Teil von anderen Einflüssen überdeckt wird und die Linien des Luftbogens nicht sicher genug gemessen werden können. Indes schließen die Interferometermessungen trotz des Passens der Kombinationsbeziehungen die Wolfsohnschen Werte aus, die wir daher in den Tabellen nicht mit führen¹).

Die Messungen von Burns reichen hinab bis zu λ 2104. Damit ist neben Fe ein zweites Element gewonnen, dessen ganzes Spektrum von λ 8000 bis 2100 interferometrisch ausgemessen ist. Burns benutzt das, um die Terme der Einordnung von Shenstone genauer zu berechnen, als das bisher möglich war. Er verwendet dann

¹) Es liegt nahe, anzunehmen, daß trotz der von Wolfsohn angeführten Vorsichtsmaßregeln eine systematische Verfälschung der Messungen am Vakuumbogen durch einen Fehler bei den Aufnahmen eingetreten ist, der sich bei der Messung in verschiedenen Ordnungen und bei zweizeitiger Aufnahme verschiedener Lichtquellen bekantnlich leicht einschleicht. Inwieweit dies möglich ist, wird eine zur Zeit in Gang befindliche Untersuchung ergeben, von der uns Herr W. Mitteilung macht. Als Stichprobe ausgeführte sorgfältige Nachmessungen einzelner Linien an dem Material von Wolfsohn ergaben fast genau die von W. angeführten Werte.

1986	Burns [371]	Kiess [334]	Warga [345]	1.15		Bui [37	rns [1]	Kiess [334]
8092	634 300				8126	109	5	
7933	130 160	_		1.0	3099	928	15	
5782	132 200	.132 Sr		1000	93	989	40	_
00	240 30	.239 Sr			73	798	40	_
5292	517 15	.519 6	_ 20	-	63	411	80	411 7
20	070 25	.070 6	.069		36	101	100	.101 8
18	202 80	.202 10	.200		22	608	4	
5153	235 100	.237 8			21	544	10	
11	913 5	_			10	838	100	.838 7
05	541 300	.542 7	.538	ente.	2998	384	7	_
5076	173 2		_	-	97	364	80	_
16	611 15	_	.612		79	367	2	_
4704	594 60	.593 4	.598	C. treat	78	274	5	enon Lonois
4651	124 150	.124 8	.123	11 100	61	165	100	.164 4
4530	785 110	.785 6	.786	diamo	2882	934	80	
09	374 60	.374 6	.375		77	698	15	_
4480	350 100	.360 7	.350		58	734	5	_
4275	107 150	entrest	.116	Pool 1	58	225	2	and Training
48	956 50	h nim niti	.955	100	37	364	4	_
4104	218 8	A			24	370	120	.369 4
4075	572 5	_			2769	666	15	
63	238 20		_		66	371	50	and the second
62	641 300	.639 10	.643	0666	21	675	4	1. 18 THE 19 10
22	629 200	.627 10	.630	101	18	775	12	Mousingen a
3861	747 15	_	.746		13	505	15	(bur I u)
25	047 8	and the state of the	.048	-	03	184	10	Tis mere
3609	295 5	_			00	963	15	
02	032 20	-		121	2689	299	30	
3599	132 15	ALL			66	288	8	
98	011 1	al spectration		and a	20	675	2	C. Andreita S.
30	383 80	.382 7		Page 1	18	366	100	1000 2065 TO
- 24	231	averal	in management	S cont	00	266	15	e Rall aver
3457	850 15	-	LEDGET IN MARK		2598	813	12	and the second se
40	507 6	-			90	526	4	
3365	342 2	_	Castino Incola		71	746	2	
37	845 100	.845 8	out maintain	10120	44	802	40	THE REAL PROPERTY.
35	215 1	-			29	302	15	A CLASS CONTRACTOR
19	682 8	mandal	antes river	-	26	589	8	P. 140 101
17	218 10	-			06	270	20	-
07	948 80	-	- And - Party		2492	146	150	
3292	827 15	NA NA TANK	in anno		89	652	60	
90	541 15		1978S (190)	1000	85	787	15	
79	815 100	.815 5			73	332	8	
73	957 600	956 10R	STATE OF	1 and	41	637	120	of ann 17
47	540 1000	.540 10 R	in the second	1.10	24 .	436	2	
31	178 5	-			06	665	8	
08	231 60	.230 6	a and serves		03	335	60	
3194	099 100	.096 8	1 2 100	12.022	00	112	35	Charles and Charles
56	629 8	hair - mai	tone in the	1.00011	2392	627	100	and the second

443	Bu [37	rns 71]			Bu [37	rns 71]		Bu [37	rns 71]		Bu [37	rns 71]
2370	885	_		2263	079	110	2218	100	120	2165	093	100
69	887	120	0.00	60	528	40	15	654	70	48	974	100
56	638	30	1 2 2	46	995	120	14	581	80	38	533	2
55	155		0	44	265	130	10	259	120	35	976	140
19	561	5		42	613	100	2199	752	100	34	355	30
03	116	130	AL.	38	454	40	99	583	200	30	762	10
2294	364	80		36	278	30	92	260	160	26	028	100
93	842	120		30	084	160	89	621	120	22	966	90
92	681	5		28	863	120	81	720	120	12	090	80
76	253	100		27	775	100	79	399	100	05	112	2
74	870	-		25	697	150	78	944	90	04	782	60

diese Terme, um Linien von kürzerer Wellenlänge zu berechnen, bis λ 1703, die wohl ohne große Bedenken als Normalen in diesem Gebiet benutzt werden können. Diese berechneten Wellenlängen sollen nachher in der Tabelle für kurze Wellen angegeben werden; ein großer Teil derselben ist von Selwyn und Kichlu gefunden worden, in guter Übereinstimmung mit den theoretischen Werten.

Über sonstige Messungen im Gebiet bis λ 2200 ist nicht viel zu sagen. Alle diejenigen, welche sich mit der Ordnung der Spektra Cu I und Cu II beschäftigt haben, haben dazu vorhandene Messungen benutzt, nämlich für die längsten Wellen Meggers, für die kürzeren Hasbach; aber sie haben auch gelegentlich eigene Messungen ausgeführt und neue Linien gefunden, die weiterhin in den Tabellen für Cu I und Cu II eingereiht sind.

Dagegen sind zahlreiche Messungen bei kurzen Wellen neu gemacht. Zuerst sei Millikan und Bowen [241] genannt, welche Linien zwischen λ 900 und 155 geben; dann haben die Brüder Bloch [253] eine neue Messung veröffentlicht, λ 1930—1358. Zwischen λ 1320 und λ 1000 hat Thibaud [328] sechs neue Linien gefunden, für die er aber nur vorläufige ungenaue Messungen angibt. Größere Strecken geben Selwyn [367] und Kichlu [289]. Dazu kommen eine ganze Anzahl bei Cu I oder Cu II eingeordnete Linien, namentlich Kruger [361], die man in den betreffenden Tabellen findet, und endlich die theoretisch berechneten Linien von Burns. — Alle diese Linien, die nicht direkt von den Autoren in einem Spektrum eingeordnet sind, enthält die Tab. 2.

Es sei noch eine Arbeit von Mitra [227] genannt, welcher 9 Linien des Kupferbogens in Luft mit Interferometer gemessen hat. Seine Zahlen sind gelegentlich als Normalen in diesem Gebiet benutzt worden, z. B. von Shenstone. Die Zahlen sind: 2369.891, 2303.134, 2276.261, 2242.622, 2218.107, 2189.631, 2148.897, 2126.047, 2112.105.

Wenn man die Zahlen mit denen von Burns vergleicht, so sieht man zunächst, daß bei 2148 ein Versehen vorliegt, die Zahl ist fast um 0.1 A falsch. Im übrigen sind die Zahlen alle größer, als die von Burns, die Differenzen liegen zwischen 4 und 19 Tausendstel A, der Mittelwert beträgt 0.011 A. Man kann darin vielleicht die Größe der Druckverschiebung für 1 Atmosphäre in diesem Gebiet sehen.

616

.

853	Burns berechnet λ vac [371]	Burns berechnet λ Luft [371]	Selwy [367	yn 7]	Kichh [289]	a	Bloch [253]	
2126		6 60 3	6.05	10	-		_	
22			2.95	9	_		-	
17	_	_	7.33	1	-	10	-	
12	_	- <u>-</u>	2.06	8	2.02	2		
09	_		_		9.80	0		
04	_	_	4.80	7	4.75	2	-	
02	_	_	-		2.19	0	-	
2098		an and a	8.41	0	8.30	0	-	
93	-	_	-		3.52	0	-	
91	_		-		1.12	0 .	-	
87	-	_	7.98	8	7.74	2		
85	_	5.295	5.33	1	5.09	2	-	
82	-	-	-	-	2.57	0	-	
81	-	-	-	-	1.97	0		
79	-	9.43 4u		-	9.31	0	-	
78	-	-	-	-	8.51	1	-	
76	-	-	-	-	6.80	0	-	
66	-	-	-	-	6.07	1		
62	-		-	-	2.29	1	-	
54	-	4.969	4.98	4	4.82	3	-	
54	-		-	-	4.18	0	-	
43	-	3.791	3.80	6	3.69	3	-	
37	-	7.116	7.13	6	7.01	3		
35	-	5.84	5.86	6	5.71	3	-	
31	-	-	1.07	0	0.95	0	-	
25		5.475	5.49	4	5.33	2	-	
24	-	-	4.40	5u	4.20	1	-	
16	-	6.885	6.89	1	6.85	1	-	
15	-	5.576	5.61	1	5.55	1	-	
12	-	-	2.69	0	3.02	0	-	
00	337	-	0.35	6	9.68	3	-	
1989	844	-	9.85	3	9.20	1	1	
79	947	-	9.97	2	9.26	1		
70	489	-	0.52	2 .	-		-	
44	586	-	4.63	2	3.86	1	0.00	
30	-		-			mal	0.66	3
30	-	-	-	-	14.9. 17	i data di	0.05	0
28	-		-	The st	1	80.5	0.094	0
20	-		-	To a re	1	ara N	0.68	1
14	-	-	-	-	0.8	-	4.79	0
07	-	-	-	T	1	10.04	8.44	ou
01	-	Se 571 1			141 1 7	112.4	1.28	00
00	-	Ta I		TO R W	100 5		0.03	00
1887	-	100 100		TRAN	-		7.00	4
85	-	The The last	-	T	0.1		0.20	4
82	-	The second		Tearn	10.8 5	-	2.29	1
74	-	100		The second	12.		4.92	1
67	-	-		-	-		1.80	4

Tabelle 2. Kurze Wellenlängen.

Kupfer

1 1 4

 $\begin{array}{c}
 00 \\
 2 \\
 00 \\
 1 \\
 1 \\
 1
 \end{array}$

1 00

1u 1u 00

		Burns berechnet λvac[371]	Selwyn [367]	Bloch [253]			Blo [25	och 53]			Blo [25	ch 3]
	1858	-	-	8.59 2U		1676	30	1		1560	70 C?	
	41	-	-	1.08 5		75	64	1		60	36C?	1
	25	348	5.42 2u	6.54 2		.74	43	6		58	36	-
	17	265	7.35 0	-		71	74	6		55	65	1
	1798	-	-	8.94 0		69	97	6		55	13	1
	84	-	-	4.00 3		69	21	0		53	85	1
	80	-	-	0.26 00		60	60	1		52	64	
	76	-	-	6.47 2		58	19	4		51	45	00
	74	82	4.91 2u	5.07 00		56	84C?	1		50	68C?	1
	73	-	-	3.95 0		54	30	6		49	26]
	72	-	-	2.72 0		53	15	1		48	84	4
	69	-	-	9.15 4		51	71	6		48	15C?	-
	62	-	-	2.66 3		42	00	8		44	78	1
	60	-	-	0.97C? 2u		39	70	1		44	11	1
	55	-	-	5.15 1		38	70	4		43	43	4
	51	-	-	1.76C? 4	1000	31	15	1		41	97	2
	50	-	-	0.45 6	1.4	28	00	6		40	65	2
	47	-	-	7.93 3		26	07	4		39	73	(
	41	574	1.63 1u	1.36 6		25	88	4		37	54	1
	40	-	-	0.36 1		21	54	0		34	13	00
	39		-	9.54 5	1	18	16	1		33	91	(
	38	- 1	-	8.05 3		16	32	5	3	32	14	2
	28	-	-	8.15 4		15	89	1		31	65	00
	26		-	6.34 00		10	32	3		14	54	2
	25	664	5.51 lu	4.88 1		09	49	4		1489	00	00
	22	-	-	2.27 6		07	22	3		86	64	1
	18	- 1	-	8.50 2		06	50	4		83	77	1
	16	-	-	6.46 1		05	76	3		81	11	1
	13	364	3.46 1u	-	100	02	95	4		75	00	1
	11	-	-	1.26 3		00	02	4		72	30	1
	08	-	-	8.87 6		1597	21	1		70	84	00
	05 ·	-		5.39 6		93	62	5		69	60	00
	04	-	-	4.02 0		90	87	0	2	59	82	00
1	03	843	3.84 0	2.92 5		88	37	1		49	61	1
	02		-	2.06 5		84	94	00		46	21	1
	00		-	0.91 4		83	54	0		43	60	00
	1696		-	6.17 0		81	79	00		43	00 ·	00
	91		1.10 0 .	2.57 4		81	22	2u		42	30	00
	88	E.S. Ok	8.80 00	8.89 3		79	27	2		41	44	00
	88	Same Chi	8.03 00	8.63 1		75	20	00		37	42	00
	86	Non in	6.78 0	6.99 6		74	12	00 u		36	73	00
1	86		-	6.03 4		73	01	00		35	95	00
	85		5.52 0	-		71	10	1		31	90 C?	2
	84		4.80 0	4.41 5		70	11	3		29	35	00
	82			2.54 3		68	64	1		27	87	00
	81	1961113		1.94 0	5	67	31	00		26	70	0
	81			1.36 4	1	65	11	2		25	32	00
	79			9.03 6		71	76	1		23	29	00
	77			7.20 3		61	45 C?	1		17	41	00
1				The second second second		ALC: NOT A				Sector Sector		

	Blo [25	och 53]		Millik u. Bov [253	an wen 5]		Millik u. Bo [253	can wen 3]		Mill u. B [24	ikan owen 53]
1414	35	00	858	10?	2	573	1	1	364	0	2
10	37	1	44	4	2	68	1	0	61	0	4
07	39	00U	40	7	1	59	5	1	58	0	5
03	22	00	36	00?	2	 55	8	1	55	3	1
01	32	00	33	10?	2	53	1	1	53	6	1
1398	93	00	13	3	2	50	8	2	50	5	3
95	23	00	08	7	2	48	5	2	. 48	3	3
91	94	00	03	2	3	47	1	2	45	• 4	3
90	24	00	01	0	3	42	4	2	42	6	3
87	64	00	797	5	2	40	7	2	39	8	3
82	63	00	92	8	2	36	8	0	35	8	4
81	04	00.	91	4	4	31	8	0	33	2	4
77	78	0	88	3	6	26	9	0	29	2	5
76	76	1	77	3	5	23	8	0	24	5	6
75	67	0	67	4	0	21	0	0	12	4	1
74	08	00	. 58	6	1	16	5	0	10	1	1
69	67	00	53	9	0	13	7	0	06	7	1
67	97	00	50	7	0	09	1	1	04	2	1
58	90	2u	43	4	2	05	4	8	299	0	1
			. 35	0	2	499	6	4	97	2	0
			31	9	2	96	9	3	86	0	0
			30	3	3	94	4	1	83	6	1
	Thi	hand	23	6	1	91	8	4	81	0	2
	13	281	19	4	2	84	5	4	18	0	0
and a second	10		15	3	3	81	9	1	14	9	0
1318			12	2	1	76	2	3	72	0	1
1286		-	00	1	3	72	0	3	10	1	1
1184		-	693	0	1	67	2	2	00	0	1
57		-	91	2	3	64	3	0	50	1	1
1056		-	87	60?	3	59	201	0 7	55		2
27	10.12		82	1	3	50	0	0	59	9	1
me			76	D	3	00	0	2	18	5	1
			12	1	1	40	0	2	41	9	ō
			00	4	0	29	9	1	- 37	9	0
1000	10.30		57	G	0	22	0	1	35	4	0
dentilla	Mil	likan	40	1	0	96	1	1	19	7	0
(Indhi	u. E	Bowen	40	302	0	20	6	õ	15	5	0
in and in the	[5	241]	94	9 .	0	18	1	1	10	9	1
000	1	9	02	1	0	13	5	0	07	2	0
800	1 7	1	19	9	2	11	2	0	03	8	0
000	e le	9	15	8	2	08	8	0	00	6	0
90	0	4	11	2	0	05	9	2	198	5	0
87	2	1	09	4	0	387	5	1	89	2	0
84	0	1	06	0	1	79	3	3	86	1	0
78	4	2	02	7	1	77	6	2	69	7	0
75	1	2	598	4	1	74	7	1	64	6	0
72	3	2	88	4	0	71	4	2	59	4	0
	-	-	0.1	0		07	0	-	55	7	0

Cu I. Einvalenzelektronensystem mit Dubletts. Zweites System mit Dubletts und Quartetts. Nachdem im Vorhergehenden das neue Zahlenmaterial einigermaßen zusammengestellt ist, berichten wir über die Untersuchungen über den Bau der Spektren Cu I und Cu II. Sie sind besonders schwierig gewesen, weil der Bogen ein Gemisch beider Spektren gibt, und keine Erregungsart bekannt war, etwa Cu I ziemlich isoliert zu erhalten; ferner weil das Spektrum besonders kompliziert gebaut ist und vielfach von den früher geltenden Annahmen abweicht. - Schon Rydberg und Kayser u. Runge hatten angenommen, daß das stärkste Linienpaar 3274/47. das man außerordentlich häufig als Verunreinigung in Spektralaufnahmen erhält, das erste Paar einer Hauptserie und der scharfen Nebenserie sei. Aber schon das zweite Paar der Hauptserie ließ sich nicht auffinden. Randall (Astroph. J. 34, 1, 1911) berechnete, es müsse bei 2025.75, 2024.42 liegen; als nun Piña de Rubies [163] ein Linienpaar erhielt (2025.1 und 2024.11), meinte man, damit das gesuchte Paar zu haben. Allein die Schwingungsdifferenz ist nicht richtig, und es tritt oft nur eine Linie auf (siehe dazu z. B. [58]). Kurz, es hat sich herausgestellt, daß die Linie größerer Wellenlänge eine Funkenlinie ist. Die andere, 2024.33 nach heutiger Angabe, wurde noch als Teil des zweiten Paares betrachtet; aber man sieht, daß das wenig befriedigend ist. Daneben waren einige (4) Glieder der beiden Nebenserien gefunden, und von Randall eine Reihe von Kombinationen und ein Glied der Bergmann- oder Fundamentalserie. Diese Angaben sind in den bekannten Büchern von Paschen u. Götze und von Fowler als Summe der Kenntnisse für die Kupferspektra gegeben; damit waren indes nur etwa 5% der gemessenen Cu-Linien eingeordnet.

Die weitere Entwicklung ist kaum darzustellen, ohne zu sehr ins Detail zu gehen, da sich die Diskussion auf zahlreiche einzelne Linien erstreckt, wie man schon oben am zweiten Paar der Hauptserie sieht. Auch müßten vielfach theoretische Erörterungen herangezogen werden. So kann nur kurz das Wesentliche berichtet werden.

Shenstone, dem wir die Hauptentwicklung verdanken, erzeugt zunächst [268] das Spektrum, indem er dichten Dampf durch Elektronenstoß anregt. Er zieht das Absorptionsspektrum heran, und es gelingt ihm zu zeigen, daß neben dem Spektrum der bekannten Dublettserien ein zweites System vorhanden ist. Er kann eine Reihe von Termen nP und mD aufstellen und Kombinationen finden. - In zwei Notizen [269, 299] wird das Niveausystem erweitert. Mit Hilfe einer Untersuchung der Zeeman-Effekte gelingt es dann Beals [43], Quartette zu finden und Kombinationen zwischen den Quartetten und Dubletten des zweiten Systems. Gleichzeitig stellt auch Bedreag [278, 279] einige Quartette auf. Im übrigen bringt er nichts Neues, erkennt aber richtig den Aufbau des Spektrums aus zwei Systemen und Kombinationen. Auch Kichlu [289] behandelt im gleichen Jahre das Spektrum. Er macht Aufnahmen mit Schwachstrom- und Starkstrombogen, mit dem Unterwasserfunken. Zunächst gibt er von den alten Dublettserien einige weitere Glieder; dann gibt er eine lange Liste von Kombinationen, die als Grundniveau 1S, 3D2, 3D3 haben. Er macht dann auch Messungen im Anfang des Schumann-Gebietes zwischen λ 2112 und 1943. Bald darauf [316] gibt er noch eine Reihe von Linien aus dem Starkstrombogen, die er für zu Cu I gehörig hält; sie sind in die weiterhin folgende Tabelle aufgenommen, wenn sie auch nicht eingeordnet sind.

Alle diese Arbeiten stimmen in der Hauptsache überein, wenn sie auch in Einzelheiten differieren. Dasselbe gilt auch von einer abschließenden Arbeit von Shenstone [298]. Er gibt hier lange Tabellen von Termen, gibt Multipletts, erörtert zahlreiche einzelne Linien und Terme, beschäftigt sich auch mit der Erweiterung des ersten Dublettsystems, und gibt schließlich eine Tabelle aller in Cu I eingeordneten Linien. Er benutzt dabei fremde Messungen des verschiedensten Ursprungs, fügt nur wenige eigene Linien hinzu. Es werden Angaben von Aretz [119], Crew und Tatnall [53], Eder u. Valenta [114], Exner u. Haschek, Kayser u. Runge [49, 55], Randall [116], besonders aber die von Meggers [166] und Hasbach [154a] herangezogen. Daneben befinden sich einige sonst nicht veröffentlichte Zahlen von Mulliken [265]. Dieser hatte zum Studium der Banden der Haloidverbindungen des Kupfers Anregung durch aktiven Stickstoff verwandt: dabei zeigte sich, daß auch Linien von Cu I gut auftreten, und diese Platten standen Shenstone zur Verfügung. Er bemerkt ferner, daß unterhalb 2 2300 die Messungen von Hasbach aus Mangel an guten Normalen vom geraden Wege abgewichen sind, - ebenso ist es bei Eder und bei Piña de Rubies [163], und hier korrigiert er deren Angaben mit Hilfe der Messungen von Mitra [227]. Man sieht, daß ein sehr inhomogenes Material vorliegt, und es ist zweifelhaft, ob immer die berechneten Linien den beobachteten entsprechen.

Noch eine Arbeit über Cu I von Sommer [301] ist zu erwähnen. Er untersucht für mehr als 100 Linien den Zeeman-Effekt und nimmt danach eine Einordnung vor. Im großen ist das Resultat wieder das gleiche, aber im einzelnen sind Abweichungen vorhanden, namentlich in betreff der höher liegenden Niveaus des zweiten Systems. Sommer gibt eine Tabelle seiner 67 Terme dieses Systems und der von ihm eingeordneten Linien. Dabei finden sich manche Linien, die bei Shenstone fehlen und umgekehrt.

Die Terme des Kupferspektrums bestehen nach Sommer aus einem ersten alkaliähnlichen Dublettsystem mit der Seriengrenze ${}^{1}S_{0}$. Dieser tiefste Term des Cu II entspricht einer Elektronenkonfiguration von 10 Elektronen in 3d-Bahnen. Durch Übergang eines dieser Elektronen in eine 4s-Bahn entstehen die tiefsten Terme ${}^{3}D_{3,2,1}$ und ${}^{1}D_{1}$, welche die Seriengrenzen eines zweiten Termsystems mit Dublett- und Quartettermen bilden. Zu dem ersten Termsystem gehört die Ionisierungsspannung 7.6 V, zu dem zweiten 9.5 V.

Hier ist noch eine Abhandlung von Menzies [337] zu nennen. Er läßt dünne Kupferdrähte vor dem Spalt explodieren, indem er starke, aber nicht hochgespannte (110 oder 200 V) Ströme plötzlich durch den Draht schließt. Die Methode ist seit Andersons Vorgang oft benutzt, um leicht umkehrbare Linien aufzufinden. So findet auch Menzies etwa 50 umgekehrte Linien, daneben aber vielfache Verbreiterungen und Verschiebungen, die etwa 0.3-0.6 A betragen. Diese Verschiebungen gehen teils nach Rot, teils nach Violett, und zwar kommen die nach Rot verschobenen Linien alle, nach der Einordnung von Sommer, von (Kern + s)-Konfigurationen, die nach Violett verschobenen von (Kern + d)-Konfigurationen. Nach diesem Kennzeichen nimmt er eine Einordnung von Linien vor, die aber schon früher von Shenstone eingeordnet wurden, was dem Verfasser entgangen zu sein scheint. Nur bei

wenigen Linien weicht die Einordnung von der von Shenstone gegebenen ab. Sechs Linien wurden neu gefunden und in das Termsystem von Sommer eingereiht. Ein neuer mit X_2 bezeichneter Term, scheint der bei Sommer fehlende Term b^2D_3 zu sein. Die neuen Linien seien hier angeführt:

5143.16	² P ₁ -X ₂	4354.6	${}^{4}F_{2}$ —X ₂
4794.0	⁴ D ₃ —X ₂	3454.70	$^{2}D_{2}' - ^{2}P_{1}'$
4642.6	${}^{2}\mathrm{F}_{3}\mathrm{X}_{2}$	2124.1 R	$^{2}\mathrm{D}_{3}-\mathrm{f}_{2}$

Ebenso möge hier eine Arbeit von Duffendack und Black [354] erwähnt werden, die ein Rohr aus Wolfram als elektrischen Ofen benutzen. Es wird einerseits zur Beobachtung der Absorption gebraucht, andererseits zu der der Emission, wobei auch Zusätze von seltenen Gasen gemacht werden. Neon erregt dann stark das Cu II-Spektrum, während Argon es nicht tut. Es werden mancherlei Betrachtungen über den Bau von Cu I und Cu II angeknüpft. Die Absorption des Cu-Dampfes wurde in jüngerer Zeit noch von Williams [423] untersucht.

Weiter sei noch eine Arbeit von Russell [322] genannt, der durch Vergleich einer Reihe von Spektren Linien von Cu I und Cu II heraussucht und einordnet.

Endlich erwähnen wir noch eine Arbeit von Stücklen [271], die zu völlig unrichtigen Ergebnissen kommt. Frl. Stücklen untersucht den Unterwasserfunken und erhält einige 30 Linien umgekehrt, die bei wachsender Stärke der Entladung allmählich auftreten. Danach ordnet sie sie in sechs, wie es scheint, willkürlich begrenzte Gruppen. Von der oft ausgesprochenen, aber unrichtigen Annahme ausgehend, daß alle umgekehrten Linien zu Cu I gehören, sucht sie nach gesetzmäßig gebauten Gruppen und stellt auch einige Multipletts auf. Da aber dabei Linien von Cu I und von Cu II verwandt werden, sind es zufällige angenäherte Zahlenkoinzidenzen. Ihre Resultate werden denn auch von Kichlu und Shenstone lebhaft abgelehnt. Frl. Stücklen oringt noch ein zweites wunderbares Resultat: Alle Linien ihrer ersten Klasse findet sie doppelt, mit $\Delta \nu = 1.8 \text{ cm}^{-1}$; viele von den übrigen Linien haben auf einigen Platten, — nicht allen —, Satelliten. Sie gibt eine Liste von 20 solcher Linien mit bis zu 18 Satelliten.

Es folge nun die Liste der Linien von Cu I in Tab. 3. Bei ihrer Aufstellung ist die Tabelle von Shenstone zugrunde gelegt, aber die von anderen — Kichlu, Beals, Sommer — zugefügten Linien sind eingeschaltet. Bei jeder Linie ist in der ersten Kolonne der Name derer angegeben, die sie eingeordnet haben, dann folgt die Klassifikation nach Shenstone und nach Sommer. Die Kombinationen nach Sommer sind nur in soweit angeführt, als sie mit denen von Shenstone nicht übereinstimmen. In der nächsten Spalte folgen die Wellenlänge und Intensität, endlich der Name dessen, der die Linie gemessen hat. Dabei bedeutet: A = Aretz, B = Beals, C = Crew und Tatnall, Ed = Eder u. Valenta, Ex = Exner u. Haschek, H = Hasbach, Hu = Huppers, K = Kichlu, Ka = Kayser u. Runge, M = Meggers, Mu = Mulliken, R = Randall, Sh = Shenstone, HM u. PM = Hasbach oder Piña korrigiert nach Mitra. — Dann folgen die Zeeman-Effekte, wie sie Sommer und Beals, zum Teil auch Shenstone, gemessen haben.

Tabelle 3. Cu I.

Eingeordnet von	Shenstone [298]	Sommer [301]		N.I.	Mess. von	Sommer [301]	Beals [277]
Sh	32D52F4	1 ML 191.091	18229.	5	R	_	18 <u>1</u> 18
Sh	32D52F	19.00	18194.	7	R	-	-
Sh	32P42D.		16653.	4	R		_
Sh K	22S-32P.	101-12.56	16008.	5	R	_	2
K	22S-X	1012_10571	13274.		L		-
Sh K So Ru	22P22S.	19-1_ 250 kg	8092.74	10	M		10 - 31
Sh K So	2 2P,-22S,	- 11 _ 201.04	7933.20	10	M	_	-
Sh K	22S,-c.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7570.09	5	M	_	-
Sh	b2Da'-d4Ga	01_28.SC	7427.26	1	M	-	4
Sh So	b,'-d4P,'	a 2Fa-4Ga	7193.56	2u	M	_	_
Sh So	b2Da'-d4Fa'	a 2F_4F4	54.29	1	M		-
Sh So	b ² Da'-d ⁴ Ga	a ² F ₈ —a ⁴ D ₉	24.66	1	M	_	-
Sh So	$b^{2}F_{3}$ — $d^{4}S_{2}$] $b^{2}P$ — $d^{4}G_{2}$ [a ² D ₃ —c ² D ₂	7039.34	3	M	-	ar/ - 18
Sh K	22S_a'	C rait	00.02	11	M		and the second
Sh	$h^{2}D' - c^{2}S$	1 1932	6935.80	21	M		AN TO A
Sh K So	$b^2F_{-}d_{-}$	a 2D_'_c 2D_	20.09	4u	M	Thom The I	S. MILLER
Sh So	$b^2F_3 - c^2G_4$	a 2D_'-2G.	05.90	6	M	Barn Life	06_18
Sh	h2D'_h	a D3 04	6890.90	2	M	19-1-20-2	8171 13 13 1
Sh	c'-d4S	Land Land	89.92	2	M	20.00	
Sh So	$h^{2}E - d^{4}P'$	a 2D. '_2F.'	81.94	2	M	1 (i = 1)	AR EAS
Sh So	h2D'_d4F'	a 2F_4P'	4099.	11	M	10-10	1 62 <u>2</u> 60
Sh	$b^2D' - d^4F'$	a 13 12	35.46	1	M	Stand Street	
Sh So		9 2P _2F /	21.86	11	M	man inter 1	WE LOU
Sh SO	$c_2 - c_3$ h 2D - c 2S	a 12 13	6781.90	0	A	State Internet	
Sh	c'-d		75.64	211	M		
Sh K	$b' - d^{4}E'$	a sense santa	10101				12 11 22 1221
Sh	225h2P		49.29	2u	M	TER TRE	
Sh	$h^2 F_1 - c^2 G_2$	- NE AL	41.42	7	M	THE MENT	
Sh K	h2D.'-9.		6672.23	3	M		AR CLARS
Sh So	h^2D_3 h^2	a 2F_4F.	29.67	1	M	(1	No. 11. AR
Sh K So	b ² F.—c ² G.	a 2F2G.	21.61	4	M		- 14
Sh So	h2Fd4P.'	a 2F2F.'	6599.68	5	A		100 000
Sh So	h2D.'-d4F.'	a 2F_4F.	83.54	2	A		108-10-112
Sh K	22Sb2P.		65.54	3u	M	and the second second	11
Sh So	b2F	a 2F -4Gs	50.98	1	M	-	
Sh So	b2Fd4P.'	a 2D.'-4S.	44.51	1u	M	-	
Sh So	b2Fd4G.	a 2D.'-4G.	06.14	2u	A	-	-
Sh So	b ² F ₂ -d ⁴ D ₂	a 2D,'-a 4D,	6485.18	2	M	-	-
Sh So	b ² Fd ⁴ F.'	a 2D, '-4F,'	74.20	3	M	-	1.500
Sh K	22S,-b2D,		27.57	1	M		
Sh So	c.'-d4P.'	a ² Po-4So	15.18	1	A	-	-
K			00.59	1	A	-	_
Sh So	c.'-d4D.	a ² P _a -a ⁴ D _a	6358.09	2u	A	-	
Sh So	a 2D,-c4D,	2D3'-4D,	25.45	4	A	-	00 -00
Sh	a,'-d4F.'		6292.86	2	A		
Sh So	b2F4-d4G5		00.00	6	A .	Port State	19 A.
Sh So	b 2P1-e 4D2?	a r4-r5	05.30	ou	A	20-20	108 8 6 8
Sh	b2F4-d4G4	a 2F4-4G4	53.37	2u	A		P

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
So $d_2' - d^4 F_3'$ $a^2 D_3 - {}^4 P_2'$ 16.38 2 A $$ Sh $d_2' - d^4 F_3'$ 6147.31 $4u$ A Sh $e_3' - d_3^2$ 27.73 $2u$ A Sh $e_3' - d^4 D_4$ 6064.69 $1u$ A Sh $e_3' - d^4 D_4$ 6064.69 $1u$ A Sh $e_3' - d^4 D_4$ 6064.69 $1u$ A Sh $b^2 D_3' - c^4 D_3$ 5857.03 1 Ed Sh $s^2 D_3' - c^4 D_4$ 5782.158 8 H Sh So $n^2 F_2 - e^4 D_4$ 32.35 $2u$ A Sh So $n^2 D_3 - e^2 D_2$ 00.249 6 H Sh $B So$ $a^4 D_3' - c^4 D_3$ - 557.83 <td< td=""></td<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
K 62.73 1u A Sh b ${}^{2}D_{3}'-c^{2}P_{3}'$ 32.33 2u A Sh So a ${}^{2}P_{2}-c^{4}D_{3}$ 5857.03 1 Ed Sh K So m ${}^{2}D_{2}-2{}^{2}P_{1}$ 5782.158 8 H Sh K So m ${}^{2}D_{2}-2{}^{2}P_{2}$ 00.249 6 H Sh K So m ${}^{2}D_{2}-2{}^{2}P_{2}$ 00.249 6 H Sh K So m ${}^{2}D_{2}-2{}^{2}P_{2}$ 00.249 6 H Sh So a ${}^{2}D_{3}-c^{4}D_{4}$ 5554.94 3 H Sh So a ${}^{2}D_{3}'-c^{4}D_{3}$ 5554.94 3 H Sh So a ${}^{2}D_{3}'-c^{4}D_{3}$ 32.05 2u H Sh B So a ${}^{2}D_{3}'-c^{4}D_{3}$ 5391.67 2u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
K - 51.29 1 Ed - - Sh K So $a^2P_2 - 2^2P_1$ - 5782.158 8 H - - Sh So $a^2F_4 - c^4D_4$ - 32.36 1u H - - - Sh K So $m^2D_2 - 2^2P_2$ - 00.249 6 H - - - Sh K So $m^2D_2 - 2^2P_2$ - 00.249 6 H - - - - Sh So $a^2D_2 - c^2D_3$ - 5554.94 3 H -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh Nu 350 $a^2D_2'-e^4D_1$ 535.75 510 H Sh So $a^2D_2'-e^4D_1$ 5462.97 2 Ed Sh B K So $a^2D_2'-e^2D_3$ 08.46 1u H Sh B So $a^2D_2'-e^2D_3$ 08.46 1u H Sh B So $a^4D_1'-e^4D_3$ 60.045 1 H Sh B So $a^4D_1'-e^4D_2$ 55.0 1u H Sh B So $a^4D_1'-e^4D_2$ 52.68 2 H (0.00), 2.15 (0.00), 2.14 K $2^2P_2-3^2P_2^{-2}^2P_2^{-2}^2$ - 5205.57 1 H Sh KB So a $^4D_2'-e^4D_4$ - 92.539 4 H (0.00), 1.42 (0.00), 1.44 Sh K So $2^2P_2-3^2D_2$ - 20.041 6 H Sh K So $2^2P_2-3^2D_3$ - 18.170 10 H (0.00),
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh B 50 $a^{2}P_{3} = b^{2}P_{4}$ $a^{2}P_{2} = 3^{2}P_{2}^{2}$ $a^{2}D_{3} = b^{2}P_{4}^{2}$ $a^{2}D_{3}^{2}P_{4}^{2} = b^{2}P_{4}^{2}$ $a^{2}D_{3}^{2}P_{4}^{2} = b^{2}P_{4}^{2} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh B So $a^4D_1' - c^4D_1$ - 11.945 2 H (0.00), 0.00 (0.00), 0.00 Sh K So Ru $m^2D_3 - 2^2P_2$ - 05.551 8u H (0.00), 1.10 - Sh Ru $a^2F_4 - c^2D_3$ - 5076.2 3u H - - Sh B So $a^2F_3 - c^4D_9$ - 34.3 2u H - -
Sh K So Ru $m^2D_3 - 2^2P_2$ - 05.551 8u H (0.00), 0.00 (0.00), 0.00 Sh Ru $a^2F_4 - c^2D_3$ - 05.76.2 3u H - - Sh B So $a^2F_3 - c^4D_2$ - 34.3 2u H - -
Sh Ru a^2F_4 — c^2D_3 — 5076.2 3u H — — Sh B So a^2F_3 — c^4D_9 — 34.3 2u H — —
Sh B So $a^{2}F_{3}$ — $c^{4}D_{2}$ — 34.3 2n H
Sh K B So a4D, - c4D - 16 634 3 H (0.54) 1.62 (0.55) 0.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sh So $a^2D_2' - a_2$ $^2D_2' - b^2D_2$ 4866 4 3n H
K $2^{2}P_{e}-Y_{e}$ - 43.37 1 Ex
Sh B So $a^{4}F_{9}-c^{4}D_{n}$ - 42.2 1µ Ex
Sh K So B a4E c4D 4707.042 2 H (0.00) 2.05 (0.00) 2.05
Sh K So $a^{2}F_{a} = c^{2}D_{a}$ 76.9 1n H
Sh B So $a^2D_a' - a_a = 2D_a' - b^2D_a^2 = 67.5 - 2n H (0.00) 0.69$
Sh B So $a^{4}E = c^{4}D$ $a^$
Sh B So $a^{4}F_{-} = c^{4}D_{4}$ - 4697.49 An H (0.05), 1.42 (0.64), 1.40
Sh B So $a^{4}F_{2}-c^{4}D_{2}$ - 74.76 6n H

Eingeordnet von	Shenstone [298]	Sommer [301]	sumois (00)	Mess. von	Sommer [301]	Beals [277]
Sh B So Ru	a ⁴ F _s —c ⁴ D ₄	There are real	4651.13 8	H	(0.00), 1.30	(0.00), 1.20
Sh B So	a 4Fc4D.		4586.97 6u	н	(0,00), 0.88	10 10 1
Sh B So	$a^{4}F_{4} - c^{4}D_{3}$	1_ BARR	39.70 4u	H		12
Sh K So	$2^{2}P - 3^{2}S$	1 mi_41.18	30.843 Gr	H	(0.33), 1.00,	oB_dR
Sh R So	2 12 0 NI		001010 01	1 6	1.69	38
Sh K So	a ² P.—b.	² P, -a ² D.	13.20 1u	H		108 21.18
Sh B So	a ⁴ F ₂ -c ⁴ D.		09.386 4	H	(0.21), 0.45	(0.23), 0.23,
04 2 50		nowie	1 21,545- 5	1 In C		0.64
Sh So	a ² F ₄ —a ₃	² F ₄ —b ² D ₃	07.5 1u	M	210-22	00-40
Sh K So	22P1-32S1	1.000	4480.376 6r	H	(0.65), 1.33	100 40
Sh B So	a4P1-c4D2	101-0021	15.60 3u	H		
Sh So	a 4D3'-a3	4D3'-b 2D3	4397.0 1u	Ex		100
Sh B So	a ⁴ P ₂ -c ⁴ D ₃	11	78.2 6u	H	-	100 - 200
Sh So	a4D1'-b2	4D1'-a 2D2	36.0 1u	Ex		1 A A
Sh So	a 4F3-c 2D3	1 12 m - 19 0 19	28.7 1u	Ex	20-2-	/
Sh B So Ru	a ⁴ P ₃ -c ⁴ D ₄	111 (0.55	4275.131 6	H	(0.00), 1.13	(0.00), 1.18
Sh	a 4D2'-b2	1 1 _ 0000	67.2 1u	Ex	1.0- Tox 1	1924
Sh B So	a 4P2-c 4D2		59.43 2u	H	-	
Sh So	a 4F4-c 2D3	-	53.34 1u	Ex	(0.00), 1.14	-
Sh B So	a 4P,-c 4D,		48.969 4	H	(1.31), 1.31	(1.30), 1.30
Sh So	a 4Da'-ba	4D3'-a2D2	42.26 1u	H		1
Sh So	a 4D4'-a3	4D4'-b 2D3	31.0 1u	Ex		-
Sh B So	a 4P3-c 4D3		4177.758 4u	H	-	-
Sh K So	a ² F ₃ -b ₂	² F ₃ —a ² D ₂	23.27 2u	H	-	-
Sh So	a 2D3'-d4S2	² D ₃ '-c ² D ₂	21.7 1u	H		-
Sh B So	a 4P2-c 4D1	-	04.233 2	H	(0.87), 2.62,	(0.87), 0.87,
			i istice		0.87	2.62
Sh So	a 2D3'-d3	² D ₃ '-c ² D ₃	4080.534 1v	H		-
Sh K So	a 2D3-c 2G4	1	75.592 3	H	10 II	100 - 1 0
Sh	a ⁴ P ₂ -c ² D ₃	-	73.27 1	Ex	-	-
B	⁴ P ₃ -4D ₂	-	69.44 0	B	-	-
Sh K So	$2^{2}P_{2}-4^{2}D_{2}$	-	63.296 41	I H		-
Sh K So	$2^{2}P_{2}-4^{2}D_{3}$	-	62.694 61	I H	(0.00), 1.06	-
Sh	$2^{2}P_{2}-4^{2}F$	-	56.7 1) 21	R H	-	
Sh So	$a^{2}D_{2}'-d^{4}S_{2}$	² D ₂ '-c ² D ₂	50.656 1	H		00 00
Sh K So	$2^{2}P_{1} - 4^{2}D_{2}$	-	22.667 61	I H	(0.00), 0.82	1
Sh K	$2^{2}P_{1} - 4^{2}F_{3}$		15.8 11	I H	The second	1
Sh So	a 2D2'-d3	² D ₂ '-c ² D ₃	10.85 1	Ex	-	08.08
Sh So	a^2P_2 — d^4S_2	² P ₂ —b ² D ₂	03.038 2	H		-
Sh	a 2D2'-d4P3'	-	3997.93 11		In The	102 M2
Sh So	a ² P ₂ -d ₃	² P ₂ —c ² D ₃	64.15 1	Ex	THE ALL AND R	02 2018
Sh	a ² P ₂ -d ⁴ P ₃ '	(m / 10	51.48 1	0	NG	-
Sh So	a 2D3'-d4P2'	1 2D3 - 3S2	46.88 1	Ex	.0 mm	-
CL C.	240 / dag	[γ ₃ -a=P ₂]	93.00 1	Er	B- Pal	(Balls)
Sh So	$a^2D_3 - d^3G_4$	A STREET	25 974 1	H	Bo-Da.	and the
oc no	a-D ₃ -d-D ₃	I. STREET	1 20.214 1	1	Alberton I	- Stuffe

¹) Diese früher für selbstumgekehrt gehaltene Linie besteht nach Sambursky [409] aus zwei gut separierbaren Komponenten: 4056.78 $2 \,{}^2P_2 - 4 \,{}^2F_4$ 4056.38 $2 \,{}^2P_2 - 4 \,{}^2F_3$

Kayser u. Konen, Spektroskopie. VIII.

625

Eingeordnet von	Shenstone [298]	Sommer [301]	reality [2]		Mess. von	Sommer [301]	Beals [277]
Sh So	a 2D,'-d 4F,'	- 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	3921.274	1u	H	19-14-14-14-14-14-14-14-14-14-14-14-14-14-	
Sh So	a 4P c 2D.?	and an and	3899.1	11	Ex		
Sh	a 2D,'-d4P'?		88.58	1	C		-
Sh So	a 2Da'-d4Pa'	2D.'-4S.	81.71	1u	Ex	-	
Sh	32Pc2P.'?	_	62.75	1	Ex	_	_
Sh K So	22P42S	- man	61.755	3u	H	-	
Sh	a 2F c 2G.	-	60.467	3	H	-	-
Sh K So	22P,-42S	_	25.050	3	H	_	-
Sh So	a 2F, -c 2G,		20.879	2	H		-
Sh So	a ² P ₂ -d ⁴ D ₂	-	17.50	2	H		
Sh So	a 2F4-d4Pa	² F ₄ —a ² F ₄	13.54	1	H		-
Sh So	a ² Pa-d ⁴ Ga	² P _o —a ⁴ D _o	05.30	2u	H		-
Sh So	a 2Fd4D.	_	00.499	2	H		
Sh So	a 4D.'-d4S.	4De'-c 2De	3799.88	1	H	_	-
Sh	a 2F		97.19	1	C		_
Sh	a ⁴ F ₂ —b ₂	-	85.60	1u	C		-
Sh So	a 4D.'-d4S.	4D,'-c2D,	80.05	1	Ex	_	_
Sh	a 2D,'-g.		71.902	2	н	-	_
Sh So	a 4Da'-da	4Da'-c2Da	64.82	1	Ex	_	_
Sh So	a 4Da'-ca	4D,'-2F,'	59,495	2	H	_	_
Sh	a 4Da'-da		45.38	1	C	_	
Sh	a 2Da'-d4Fa'	_	43.38	1	C		_
Sh So	a 4D,'-c 2G.		41.247	3	H	- 10 million	
Sh So	a 4D'-d4P'	4D.'-2F.'	34.23	2	H		02 11 02
Sh So	a 4D,'-d4D,		21.70	11	H		_
Sh K B So	m ² D _a —a ⁴ P _a '		20.770	2	H	_	_
Sh So	a 2D.'-c 2S.	2D.'-4P.'	12.00	1	H		
Sh	a 4D.'-d4P.'	-2 -1	07.16	11	C		_
Sh So	a ² F ₄ —d ⁴ G ₅	$\left\{\begin{array}{c} {}^{2}F_{4}-{}^{4}F_{5}'\\ \delta,-a{}^{2}P_{2}\end{array}\right\}$	00.532	2	н		
Sh So	a 2Da'-ha	² D ₂ -4F ₂ '	3699.1	11	H	_	_
Sh	a ² Fd ⁴ G.	-2 -3	95.33	11	C		_
Sh K So	2ºP-5ºD		87.5	31	H		_
Sh K So	a 2F		84.925	1	H	_	
Sh So	a 2Da'-d4Fa'	² D ₉ '-4F ₉ '	84.671	2	H	_	_
Sh So	a 2P c 2S.	2P4P.'	71.969	2	H	_	_
Sh So	a ² F ₂ —c ₂	2F. 2F.	65,740	2	H	_	_
Sh	a 2P c 2S.		64.06	1u	C	_	_
Sh So	a ² Pa—ha	2P4F.	59,358	2	H	-	_
Sh	a 4D, '-d 4P.'	_	56,787	11	Н	_	_
Sh So	a 4D,'-c 2G.	a ² Pa—Ea	55,865	2	H	_	_
Sh K So	2ºP,-5ºD		54.3	21	Н	_	_
Sh So	$\left\{ \begin{array}{c} 2^2 P_1 - 5^2 F? \\ a^2 F - d \end{array} \right\}$	² F ₃ —c ² D ₃	52.40	1u	н	-	-
Sh So	a4D'_d4P'	4D.'-4S	50.864	1	Н		
Sh So	a ² F c ² G		48 385	2	H	(0.00) 1.05	
Sh So	a 2P4E.'	2P_4F.	45.236	2	H		- 1)
Sh	a4Da'-d4G.2	-1 -4	44.05	211	Ka	-	

1) Bedreag gibt hier noch als eingeordnet: 3645.7, 3639.6.

Eingeordnet von	Shenstone [298]	Sommer [301]			Mess. von	Sommer [301]	Beals [277]
Sh	a ² P_d ⁴ F_		3643.65	1	C		_
Sh So	a ² F _a -d ⁴ P _a '	2F2F.	41.693	2	H	_	
Sh	a ² P-d ⁴ Fa'		35.923	3	H		-
Sh So	a 4Da'-d 4Pa'	4D.4S.	32.56	1	H		-R +- 69
Sh So	a ² F ₂ -d ⁴ D ₄		29.794	1	H		
So		4D. '-4P.'	27.33	2u	H	-	+ + 12
Sh K So	a4D4'-da	4D4'-c 2D3	24.236	2u	H		-
Sh So	a 4Da'-d4Ga	4D2'-a4D2	21.248	3	H	(0.00), 1.10	-
Sh So	a 4D4'-c 2G4		20.346	2	H		
Sh So	a 4D3'-d4D3		14.216	2	H	(0.00), 1.43	-
Sh So	a 4D4'd 4P3'	${}^{4}D_{4}' - {}^{2}F_{4}'$	13.755	3	H		100 m-12
Sh So	a 4D3'-d 4F4'		10.806	2	H	-	(R-+)
Sh K B So	m ² D ₂ —a ⁴ P ₁	$({}^{4}P_{3}' - {}^{4}D_{3}')$	09.300	2	H	(0.97), 0.00	(0.91), 0.00
Sh So	a 4D4'-d 4D4	- 600	02.038	6	H	(0.00), 1.48	-
Sh Ru So	a 4D4'-d4F5'	$2{}^{2}P_{2}$ — $5{}^{2}S_{1}$	3599.135	6	H		-
Sh K	$2^{2}P_{2}-5^{2}S$	- 19.05	98.01	2u	H	PD	15-8
Sh B Ru So	m ² D ₃ —a ⁴ P ₃	1-01.00	. 94.025	2	H	1 = Jan	0.99
Sh K So	$2^{2}P_{1}-5^{2}S$	⁴ D ₁ '-a ⁴ D ₁	66.14	1u	H	10 h	or the
Sh So	a 4D1'-c 2S1		46.45	1u	H	10	
Sh So	a ² F ₃ -d ⁴ P ₂ '	${}^{2}F_{3} - {}^{4}S_{2}$	44.966	2	H	10 Ca ++ Ca ++	-
Sh So	a ² F ₃ d ⁴ G ₄	SATCHES IN	33.744	4u	H		-
Sh K B So	m ² D ₂ —a ⁴ F ₃	- 22	30.388	6	H	(0.00), 1.14	(0.00), 1.20
Sh So	a ² F ₃ -d ⁴ D ₃	- 82.15	27.487	4	H		
Sh So	a ² F ₃ -d ⁴ F ₄ '	101-722.00	24.240	4	H	(0.00), 1.50	
Sh	a 4D1'-d 4F2'		20.032	4	H		-
Sh K So	a ² F ₃ -d ⁴ G ₃	² F ₃ —a ⁴ D ₂	17.029	2	н		-
Sh K So	$\begin{bmatrix} 2^{2}P_{2} - 6^{2}D_{3} \\ a^{4}D_{4}' - d^{4}G_{5} \end{bmatrix}$	4D4'-4F5'	12.122	4u	H	-	— ¹)
Sh So	a 4D4'-d4G4	1-200	07.38	1	Ex		-
Sh So	a^4F_2 - d^4S_2	⁴ F ₂ —c ² D ₂	01.52	1	Ex	-	00-00
Sh So	a 4D4'-d4D3		01.31	1	Ex	-	
Sh So	a 4D2'-c 2S1	4D2'-4P1'	00.314	2	H		-
Sh So	a 4D4'-d4F4'	${}^{4}D_{4}'-{}^{4}F_{4}$	3498.063	2	H	101 - 1	-
Sh So	a 4D2'-h2	4D2'-4F3'	88.864	2	H	111 - 1	-
Sh	a 2D3'-c 2P2'		87.565	2u	H		
Sh	a 4D3-g4	1 m- mu	83.760	4	H	1.1.1.1.1.1.1	100 - 10
Sh K	$2^{2}P_{1}-6^{2}D_{2}$		81.9	1u	Ex	1-1	-
Sh So	a 4D2'-d 4F3'	${}^{4}D_{2}'-{}^{4}F_{2}'$	75.998	4	H	100 T A	101 +12
Sh	a 4D2'-d4F2'	-	74.574	1	H	Alter Treat	
Sh So	a 4D3'-h2	⁴ D ₃ '- ⁴ F ₃ '	72.136	3	H		0
So		² D ₃ '-d ² D ₂	65.40	2u	H		1000-010
Sh K	$2^{2}P_{2}-6^{2}S$		63.5	11	H		-
Sh So	a 4D3'-d 4F3'	"D3'-"F2'	59.424	1	H		(0.05.0.00)
Sh K B So	m ² D ₃ —a ⁴ P ₂	- Topo In	57.856	3	н		(0.25, 0.79), 0.33, 0.84
Sh So	a 2D.'_n	2D.'-2 2F.'	50.335	6	H	-	_
Sh K B So	m ² D ₂ -a ⁴ F ₂		40,52	3	H	-	0.60
Sh So	a 2D2'-c 2P2'	$^{2}D_{2}'-^{2}S_{1}$	36.53	1u	H	-	-

1) Bedreag gibt hier noch als eingeordnet: 3514.4, 3513.26, 3512.11, 3511.36.

627

40*

Eingeordnet von	Shenstone [298]	1	Sommer [301]		142	Mess. von	Sommer [301]	Beals [277]
Sh K	2°P,-6°S		- 10.000	3433.98	1	Ex	11	112
Sh So	a 2P1,		2P2P.'	20.16	1u	H	The start is	
Sh	2 ² P ₉ -7 ² D ₃			14.2		Mu	196 - 44	1-
Sh K So	a 2P1-11		² P ₁ - ² P ₁ '	13.34	2	H	Plan Server 1	
Sh So	a 2Po-c 2Po'		2P2S_	02.222	3	H	Distance in the	00-10
Sh K So	a 4Fa-ca		4Fa-2Fa'	3396.324	1	H	_	<u> </u>
Sh So	a 2P1-c 2P2'		² P ₁ — ² S ₁	95.473	2	H	20-22 ha	1 4 1 1 1 K
Sh	a 2P1-e 4D2?		2F3-4F3	92.95	2	Ka	The set a	
Sh So	a ² F ₃ —h ₂			92.01	1u	H	199- 199 A	
Sh	$2^{2}P_{1} - 7^{2}D_{2}$			85.4		Sh	The second second	
Sh K So	a ⁴ F ₃ -d ₃		⁴ F ₃ —c ² D ₃	84.815	2u	H	Contraction of the	07125
Sh So	a 4F3-c 2G4	3	- and	81.425	3	H		
Sa			$^{2}P_{2}$ —d $^{2}D_{2}$	81.13	1	Ex	1	12 11 - 11
So	and reactions		² D ₂ '-2P ₂ '	80.89	2	Ex	101- 1-0×	1 - N
Sh	a 4F2-d 4P1'			79.69	1	Ex	The second s	of an in
- Sh So	a 4F3-d4P3'		4F3-2F4	75.671	2	H	20 22 5	
Sh K	a 4F4-c 2G5			. 65.353	4r	H	Par an	is an <u>imi</u> talis
Sh So	$a {}^{4}F_{2}$ - $d {}^{4}D_{3}$		- 14.00	58.76	1	Ex		0872-18
Sh	$a {}^{4}D_{2}$ — $e {}^{4}D_{3}$		-	58.31	1	Ex		100-100 L
К	$2^{2}P_{1}$ — $7^{2}S$		- 444	56.7	0	K		Contract (
Sh So	a 4D4'-d 4F2'?		${}^{4}F_{2}$ — ${}^{4}P_{3}'$	54.475	2u	H	-	
Sh	$2 {}^{2}P_{2} - 8 {}^{2}D_{3}$			53.8		Mu	The second second	10 10 10
K So	$2 {}^{2}P_{2} - 7 {}^{2}D_{3}$		${}^{4}F_{5}$ — ${}^{2}G_{5}$	51.23	1	Ex	Par	01-12
Sh So	$a^{4}F_{2}$ - $d^{4}G_{3}$		${}^{4}F_{2}$ — $a {}^{4}D_{2}$	49.287	4u	H		
Sh	a 4D3'-e 4D3		- 20.02	42.85	1u	Ka		-
So	-		${}^{2}P_{1} - {}^{2}P_{2}'$	41.18	1	H	1 h = 1	-
Sh B Ru So	$ \left\{ \begin{array}{c} m {}^{2}D_{3} - a {}^{4}F_{4} \\ a {}^{4}F_{5} - c {}^{2}G_{5} \end{array} \right\} $		in_min	37.850	6	н	(0.00), 1.28	(0.00), 1.26
Sh K So	a 4F4-c2G4		4F4-a2F4'	35.235	3	H	100 - 40° A 1.	$(0), 1.16^{1}$
Sh So	a4F4-d4P3'		4F4-2F4	29.638	4	H		
Sh	$2^{2}P_{1} - 8^{2}D_{2}$	5	- 11	26.2		Mu	1	-
K	$2^{2}P_{1}$ — $7^{2}D_{2}$		- 12.00	23.6		K		
Sh So	a 4F4-d 4D4			19.691	4	H	1 1	
Sh So	a 4F4-d4F5'		${}^{4}F_{4}$ — ${}^{4}G_{5}$	17.225	4	H	1 - 1 - 1 - 1	* 03
Sh K	$2 {}^{2}P_{2} - 9 {}^{2}D_{2}?$		-	13.2		Mu	100	
Sh K So	a 4D1'-11		⁴ D ₁ '-2P ₁ '	11.00	1u	H	-	
Sh Ru K	a 4F5-d4G6	ž.		07.952	8	H	-	$(0), 1.11^{1}$
Sh K So	a 4F5-d 4D4		$^{2}\mathrm{D}_{3}-^{4}\mathrm{F}_{3}$	3292.903	3 R	H		
Sh	m ² D ₃ —a ⁴ F ₃		-	92.81	2	Ka		
Sh So	a 4F3-d 4P2'		${}^{4}F_{3}$ — ${}^{4}S_{2}$	92.392	2	H	10	-
Sh So	a 4F5-d 4F5'		${}^{4}F_{5}$ — ${}^{4}G_{5}$	90.549	4	H	-	$(0), 1.31^{1}$
K	$2 {}^{2}P_{1} - 8 {}^{2}D_{2}$		a	87.3	3	K	-	-
Sh So	a 4F3-d 4G4			82.716	4	Н		-
Sh K B So	$ \left\{ \begin{array}{l} \mathrm{m}^{2}\mathrm{D}_{2}\mathrm{a}^{2}\mathrm{F}_{3} \\ \mathrm{a}^{4}\mathrm{D}_{4}^{\prime}\mathrm{e}^{4}\mathrm{D}_{4} \end{array} \right\} $		-	79.823	3	н	-	(0.00), 1.56
Sh So	a 4F3-d 4D3			77.311	2	H	the total	
Sh K So	1 ² S—2 ² P ₁		-	73.967	10R	Н	$(0.06), 1.34^2)$	-

1) Diese Zeeman-Aufspaltungen sind einer Tabelle von Shenstone [298] entnommen.

²) Hier ist wahrscheinlich ein Druckfehler in der Originalarbeit unterlaufen und es muß heißen : (0.66).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh So a^4F_4 — d^4G_5 4F_4 — $^4F_5'$ 43.160 4u H (0.00), 1.30 (0), 0 Sh So a^4F_4 — d^4G_4 — 39.16 1u H — — Sh So a^4F_4 — d^4G_4 — 39.16 1u H — — Sh So a^4F_2 — h_2 4F_2 — $^4F_3'$ 35.712 4 H 0.61 — Sh So a^4F_2 — d^4D 22.89 2 H — —
Sh So a^4F_4 — d^4G_4 — 39.16 1u H — — Sh So a^4F_2 — h_2 4F_2 — $^4F_3'$ 35.712 4 H 0.61 — Sh So a^4F_2 — h_2 4F_2 — $^4F_3'$ 35.712 4 H 0.61 —
Sh So $a^{4}F_{2}$ —h ₂ $^{4}F_{2}$ — $^{4}F_{3}'$ 35.712 4 H 0.61 —
91 So 4E 44D 22 SO 9 H
5n 50 a*r ₄ -a*D ₃ - 55.65 2 n
Sh So $\left\{ \begin{array}{ccc} a {}^{4}F_{4} - d {}^{4}F_{4}' \\ a {}^{4}P_{-} - d {}^{4}P_{-}' \end{array} \right\} - 31.17 4 H - (0), 1$
Sh So $a^{4}P_{,-}d^{4}P_{a'}$ $^{4}P_{,-}d^{4}S_{a}$ 26.60 2u H
Sh So $a^{4}F_{a}-d^{4}F_{a}'$ ${}^{4}F_{a}-{}^{4}F_{a}'$ 24.653 3 H - (0), 1
Sh So $a^{4}F_{9}$ $d^{4}F_{9}'$ $^{4}P_{9}$ $^{2}G_{4}$ 23.424 3u H - (0), 0
Sh a ⁴ F ₅ -d ⁴ P ₂ '? - 23.044 1u H
Sh So $a^{4}P_{2}$ $d^{4}P_{3}'$ $4P_{2}$ $2F_{4}'$ 18.23 1u H
Sh So a ⁴ F ₅ -d ⁴ G ₅ 4F ₅ -4F ₅ ' 17.64 1u H
Sh So $a^{4}D_{1}'-e^{4}D_{1}$ $^{4}P_{1}-^{4}F_{4}'$ 09.47 1u H
Sh K B So $m^2 D_2 - a^4 D_3'$ - 08.236 4 H - (0.19, 1.6
Sh K B So $m^2 D_0 - a^4 D_0'$ - 3194.103 6 H (0.44), 1.05 (0.39)
Sh a ⁴ D _a '-e ⁴ D ₁ - 71.658 1u H
Sh a ⁴ F ₃ -g ₄ - 69.690 4u H
Sh So a ⁴ F ₃ —h ₂ ⁴ F ₃ — ⁴ F ₃ 60.047 2 H
Sh K B So $m^2D_2 - a^4D_1'$ - 56.623 3 H - (0.31)
So $ {}^{2}F_{3}-d^{2}D_{2}$ 51.61 1u H $ -$
Sh K So $a^{4}F_{3}$ $d^{4}F_{3}'$ ${}^{4}F_{3}$ ${}^{4}F_{2}'$ 49.501 2 H
Sh $a^{4}P_{2}$ - $d^{4}P_{1}'$ - 46.821 4u H
Sh So $a^{4}P_{2}$ — $d^{4}P_{2}'$ $^{4}P_{2}$ — $^{4}S_{2}$ 42.434 6 H 0.40 —
Sh So $a^{4}P_{3}$ — $d^{4}S_{2}$ $^{4}P_{3}$ — $c^{2}D_{2}$ 40.318 4 H —
Sh So $a^{4}P_{2}-d^{4}D_{3}$ - 28.692 4 H - (0), 0
Sh So $a^{4}P_{3}-c_{3}$ ${}^{4}P_{3}-{}^{2}F_{3}'$ 26.106 6 H
Sh So $a^{4}P_{2}-d^{4}G_{3}$ $^{4}P_{2}-a^{4}D_{2}$ 20.452 2u H
Sh So $a^{4}D_{4}'-n_{4}$ $a^{4}D_{4}'-a^{2}F_{4}'$ 18.355 1 H
Sh So $a^{4}P_{3}-d_{3}$ $a^{4}P_{3}-c^{2}D_{3}$ 16.345 40 H -
Sh So $a^{4}P_{3}-c^{2}G_{4}$ - 13.405 2 H - 09.002 Gz H 0.51 (0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh So $a^{4}P_{3}-d^{4}D_{4}$ - 3099.922 4 H - (0.00)
Sh B So $m^2D_3 - a^4D_4 - 93.993$ 6 H - (0.00)
Sh $a^{4}P_{1} - d^{4}F_{2} - 88.121 3 H - 65.00$
CL IZ D C2 272 - (3.4) H 0.64 1.51 (0.20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sh K B So $m^2D_2 = a^2\Gamma_1$ = 00.012 2 11 Sh K B So $m^2D_2 = a^2\Gamma_1$ = 2D = 4D (1) 63.416 6 H (0.52) 1.18 (0.50)
Sh $a^{4}E_{-}e^{4}D_{a}$ - 52.52 1 Ex -

1) Diese Zeeman-Aufspaltungen sind einer Tabelle von Shenstone [298] entnommen.

Eingeordnet von	Shenstone [298]	Sommer [301]			Mess. von	Sommer [301]	Beals [277]
Sh	a 4F,-e 4D,	_	3044.032	2	н	_	
So		2Fa 2G.	39.48	1	Ex		_
Sh K B So	m ² D _o —a ² D _o '	² D ₉ -4D ₉ ' ¹)	36,105	6	H	-	(0.42)
Sh So	a 4P c 2S.	4P_4P1'	30.25	2u	H	_	(0.11)
Sh B So	a ⁴ P _a -d ⁴ D _a	-	24.993	2	H		_
Sh K So	a ⁴ P ₃ -d ⁴ F ₄ '	_	22.608	3	H	_	5 5 <u>7</u> 6
Sh So	a4F5-e4D4	4P3-4P3'	21.56	3r	H	-	_
Sh	a 4F4-e 4D3		14.84	2u	H	-	-
Sh So	a 4P2-d 4F3'	${}^{4}P_{2}$ — ${}^{4}F_{2}'$	12.02	3u	H		_
Sh K B So	m ² D ₃ —a ⁴ D ₃ '	-	10.840	5	H	(0.00), 1.15	(0.00), 1.19
Sh K B So	m ² D ₃ —a ⁴ D ₂ '	-	2998.384	2	H	-	-
Sh B So	m ² D ₂ —a ² D ₃ '	1- selle	97.363	4	H	(0.21), (0.68),	(0.21, 0.68),
						1.85	1.85
Sh So	a 4D4'-04	4D4-a2G4	82.77	1u	H	_	_
Sh So	a 4D4'-p4	4D4'-a2F3'	79.38	2u	H	- 1	-
Sh So	a 4D4'-q4	⁴ D ₄ 'd ² D ₃	78.293	2u	H	-	-
Sh B So	$\left\{\!\!\!\begin{array}{c} \!$	1 - 12.41	61.177	6	н	(0.00), 1.17	(0.00), 1.22
Sh K	$2^{2}P_{2}$ — $c^{2}D_{3}$	117-72.00	51.3	1u	H		
So	_	4D4'-a4	25.44	1	Ex		10 11 - 10 T
So	_	4F3-2P2'	24.90	1u	H	-	-
Sh K	a 4P2-e 4D3	2-01.102	23.27	1	Ex	Par-mailer	10 11
Sh So	a ⁴ P ₁ —e ⁴ D ₂ ?	4D4'-a 2G5	11.21	1u	Η		
Sh K B So	m ² D ₃ —a ² P ₂	² D ₃ — ⁴ D ₂ ' ¹)	2882.937	4	H	(0.00), 1.16	(0.00), 1.22
So	- 1	${}^{4}F_{2}$ —d ${}^{2}D_{3}$	74.59	1	Ex		2 <u>-</u> 2
Sh K B So	m ² D ₃ —a ² D ₂ '		58.737	2	Η	The straight of	
Sh	a ⁴ P ₃ —e ⁴ D ₄	111 - 17.18	58.233	1	H	-	-
Sh	a ⁴ P ₁ —e ⁴ D ₁	-	46.49	1	Ex	P-1	1
Sh K B So	m ² D ₃ —a ² D ₃ '		24.375	8	Н	(0.00), 1.23	(0.00), 1.24
K	m ² D ₂ —Z	-	02.66	1	Ex		
Sh So	a ⁴ F ₄ —o ₄	⁴ F ₄ —a ² G ₄	2786.52	1	Ex	-	-
Sh K So	a ⁴ F ₄ —p ₄	^a F ₄ —a ² F ₃	83.55	2u	H		-
Sh So	a aF4-q4	^a F ₄ —d ² D ₃	82.61	2u	H		
50 D.C.	-	$^{*}P_{2} - \gamma_{3}$	69.14	1	H		-
B SO		*D ₂ -3*P ₁	08.89	3	H	(0.00), 0.96	-
Sh K D SO	m-D ₂ 5-P ₂	412	51.9	0	H H	in the second	
K SO	m2D 92D 2	-r ₃	15 49	1	п	The second	T
So	m-D ₂	4F2G	92.95	9	н		
K	m2D_95	-r ₃ a-0 ₅	20.00	1	Ev		
So		4F	02.60	11	Ex		
K	m 2D26	-5 -04	01.00	1	Ex		
K	m ² D ₂ -27	_	2671.20	1	Ex	_	_
Sh So	a4P	4Pa-a 2G.	30.002	2	H		-
Sh So	a ⁴ P ₃ —p ₄	4P2-a 2F2	27.37	1	H		
Sh So	a ⁴ P ₃ -q ₄	⁴ P ₃ -d ² D ₂	26.6	11	Ex		
Sh K B So	$m^{2}D_{3}$ - $3^{2}P_{2}$		18.381	10r	H	(0.00), 1.12	-

¹) Einordnung nach Beals [277].

630

1	1	1		1	1		
Eingeordnet	Shenstone	Sommer		-	Mess.	Sommer	Beals
von	[298]	[301]			von	[301]	[277]
			1.1.1	1			
So	31 . A - 1 150	⁴ D ₁ 'δ ₁	2600.43	3u	H		10-10 T
K So	MAN / MAN / XC	4D4'	2598.86	1	Hu	A CONTRACTOR	10 10 <u>1</u> 00
So	(h (/ <u>111</u> 4) K.	4D3'-82	44.96	4	H1)	Can the lite	2 <u>1</u> 10
Sh So	92P2	1284P	2494.88	2	Ka	Advanta in	08 30 08
Sh K B So	12S_94P		92.142	8	Ha	$(0.00), 1.80^4)$	(0.39), 1.52
SILKDSU	1.5-4.12	4P	90.34	1	Hu	-	
50	the second of	-1 /2	82.60	1	K2)	Pala and	NOL R
		1 22 (2) (2)	80.13	3	K2)	Man ()	al all
So		4F	73.47	1	H2)		1
50		-3 /3	70.94	1	K2)	Respective 1	19 1 19
a second		in the second	61.85	1	K2)	-	Sec. 18
	_	_	61.25	1	K2)		_
		Lanner I	55.20	1	K2)	The second second	-
Sh K B So	12S-a4P.	The second	41.625	6	H	$(0), 2.34^3)$	(0.00), 2.27
So		4Pβ.	39.89	1u	H		1/1-
So	the state of the	4D 20. 0	35.88	1u	H		8/ 2 4/ 18
Sh K B So	m ² D _a —e _a '	-3 52, 5	06.661	6	H	Notes of all	103-
Sh K So	m ² D_d'	and an and the second	2392.629	8r	H	The state of the second	01112
SILK SU	m-D ₂ —u ₂	and the second	84.97	1	K ²)	makes menning -	100 2 19
			83.04	1	K2)	and the second	1.1.1
K So	100	4 P	76.35	2	-	and the out of	of Lie
K SU		-3 12	74.48	2	K2)	10 sind	_
Sh B So	m2D-42F-	and	69.891	6	Mi	(0.00), 1.13	(0.00), 1.33
51 5 50	12S_a4F		63.21	11	HM	_	-
So		4P,δ,	56.80		-	5 - m	-
		-1 -1	55.93	1u	H	_	_
	_	_	45.20	3	K2)		
So	_	4P,ε.	38.69		-		-
_	_	_	37.41	2	K ²)	-	-
_	L	-	29.92	2	K2)	-	-
_	_	-	25.74	3	K2)	-	-
Sh K B So	m ² D ₂ —c ₂ '	$^{2}D_{2}$ —a $^{2}P_{2}$	19.575	4	HM	-	-
_	1	-	12.39	3	K	-	
Sh K B So	m 2D2-b 2F3	² D ₂ —a ² D ₃ '	03.134	6	Mi	-	
-	-	_	00.78	1	K ²)		
Sh K B So	m ² D ₂ —e ₂ '	_	2293.847	3R	HM	-	-
Sh K So	m ² D ₃ -d _a '		81.09	2	PM	_	-
So	_	4F3-22.3	78.02	1	Hu	-	-
	-	_	76.05	2	K 2)		-
Sh K So	m 2D2-a1	² D ₂ —a ² P ₁	63.11	6R	HM	(0.00), 0.79	-
Sh K B So	m 2D3-42F	² D ₃ -4 ² F _{3,4}	. 60.51	4	HM		-
Sh K B So	12S-a4D2'		44.26	2	HM	$(0.45), 0.66^3)$	-
Sh K So	m ² D ₂ -5 ² F ₃	-	38.45	2u	HM	-	-
Sh K	$m^{2}D_{2}$ — $b^{2}P_{2}$	-	36.24	11	I H M		

1) Sommer gibt noch 2526.59.

²) Diese Linien gibt Kichlu [316] als zu Cu I gehörig.

³) Diese Zeeman-Aufspaltungen gibt Shenstone [298].

4) Shenstone [298] gibt hierfür die Aufspaltungen (0), 1.69.

632

Kupfer

Eingeordnet von	Shenstone [298]	Sommer [301]	10	fermaned (201)		Sommer [301] [298]	Beals [277]
Sh Ru So Sh K So	$m^{2}D_{3}$ — $b^{2}F_{4}$ $m^{2}D_{2}$ — $b^{2}D_{3}'$	 2D ₂ —a ² F ₃	2230.10 27.77	6R 6R	HM HM	(0.00), 1.05 (0.00), 0.79	
Sh K So	1^{-5} — $a^{+}D_1$ $m^{2}D$ $h^{2}D$	2D - 2D /	20.091	ZR	HM	$(0.91), 1.11^{\circ})$	-
Sh K B So	$m^2D_2 - b^2P_1$	$^{2}D_{2}$ — $a^{2}D_{2}$	10.08	4R cD	HM	(0.00), 0.96	Cos The
Sn K D So	m-D ₃ C ₂	$^{-D_3}$ $-a - r_2$	07.98	on	пм	(0.00), 1.18	R H T IR
Sh F P	m2D h2D /	$D_2 - C_2$	01.20	910	CL	(0.00) 1.17	015
Sh So	$m^{2}D - h^{2}F$	$^{2}D_{3}$ $-a^{2}D_{3}$	2199.70	2D	Sh	(0.00), 1.17	_
51 50		-D ₃ —a -D ₃	89.78	on	K		- 4)
Sh K B So	12S_a2P.		81.71	111	HM	(0.77) 1.915)	
Sh K B So	125_92D		78.05	1	HM	(0.12) 0.70	3)
SI K D SU	1-5-a-r ₂	1 10.10	10.00	IU	нм	$(0.43), 0.70, 1.5^{5})$	_ ")
K	$m^{2}D_{2}-6^{2}P_{2}?$	1-09.00	75.01	3	Ed	_	
So	Martin	² D ₂ —e ₂	71.75	3u	Н	De -	2.8 - 12
Sh	m ² D ₃ —b ₄ '		69.53	2u	HM	-	
Sh K B So	$1^{2}S$ — $a^{2}D_{2}'$	101-100	65.10	1u	HM	$(0.45), 0.66^{5})$	-
Sh So	$m^{2}D_{a}$ — $5^{2}F$?	² D ₃ -5 ² F _{3,4}	40.66	2	РМ		
Sh K	$m^{2}D_{3}$ — $b^{2}P_{2}$		38.50	1u	HM		-
Sh K So	m ² D ₃ —b ² D ₃ '	² D ₃ —a ² F ₃	30.76	1	HM	-	—
K	m ² D ₂ —42	1-10.6	28.22		Р	-	— ³)
Sh K So	m ² D ₃ —b ² P ₁ ??	$^{2}D_{3}$ —a $^{2}D_{2}'$	19.87	0	PM	-	-
B So	-	${}^{2}S_{2}$ — c_{2}	12.02	2	H	-	-
Sh	$m^{2}D_{3}$ — $b^{2}D_{2}'$	- (- (- (BB(0))	05.12		Sh		— ³)
B So		² D ₃ —e ₂	2079.47	4u	P	-	-
K	m ² D ₂ -43	- 0-24	69.88	12	K	-	-
K	² S ₁ -21		43.71		H	-	— ³)
Sh K B So	$1^{2}S_{1} - 3^{2}P_{2}$	6- Marte	24.33		Sh	-	-
K	$^{2}S_{1} - 3 ^{2}P_{2}?$	- 22	13.00	19	-	-	-
K	$^{2}S_{1}$ —25	-	1999.59	1.4	-		-
K	² S ₁ —26		89.07		-	-	-
K	² S ₁ —28	-	43.86		-	÷ .	-
K So	$1 {}^{2}S_{1} - d_{2}' {}^{1})$	-	(1817.2)		-		
K So	$1^{2}S_{1}-c_{2}'^{1})$	$1 {}^{2}S_{1}$ — $a {}^{2}P_{2}$	1774.8		-	-	
So	-	1 ² S ₁ —a ² P ₁	41.6	2)	-		-
K	$1^{2}S_{1}$ — $b^{2}D_{3}^{\prime 1}$)	-	21.8		-	-	
So	-	1 ² S ₁ —a ² D ₂ '	13.0	2)	-		-
S0 V	190 190 (1)	12S1-c2	08.5	2)	-	And the second second	- 18
K	$1 = S_1 - D^2 D_2^{(1)}$		03.7		-	_	-
So	-	$1^2S_1 - b_2$	1692.8	2)	-	-	-
So		$1^{2}S_{1}-e_{2}$	87.2	2)	-	10000	
K	² S ₁ -42	-	61.2		-		_
-		12S1-f2	58.4	2)	-	-	

1) Diese von Kichlu angegebenen Linien sind in das Termsystem von Shenstone eingereiht.

²) Diese Zahlen sind von Handke gegeben.

³) Sommer gibt noch als eingeordnet: 2178.13, 2124.1, 2085.22, 2035.74.

4) Ist Cu II nach Shenstone.

⁵) Diese Zeeman-Aufspaltungen gibt Shenstone [298].

SI	nenstone [298] w	nd Sommer [301]		Somme	r [301] ²)
62308.0	2S,	-95.2	c ⁴ D ₄	31772.8	22P1
51105.5	m ² D ₃	640.2	c ⁴ D ₃	31524.4	2 2P2
49062.6	m ² D ₂	-1276.4	c^4D_2	19171.1	2 2S1.
168, <u>1</u> 883 he	_	-2164.2	c ⁴ D ₁	12957.7	32P1
23289.4	a ⁴ P ₂	-2349.5	c ² D ₃	12925.0	32P2
22194.0	a ⁴ P ₉	-4834.3	aa	12372.8	32D2
21364.3	a4P1	5663.9	b ₂	12365.9	3 2D3
21398.9	a ⁴ F ₅		d ⁴ S ₂	9459.5	32S1
21154.6	a ⁴ F ₄		c ² G ₅	6920.8	$4^{2}D_{2}$
20745.2	a ⁴ F ₂		C3	6917.1	$4^{2}D_{3}$
20005.6	a ⁴ Fa		da	6879.3	$4^{2}F_{3,4}^{1}$
18794.1	a 4D.'		c ² G ₄	5964.1	a ² P ₂
17901.8	a 4D.'		d ⁴ G ₆	5656.4	a 2D3'
17763.9	a 4Da'		d ⁴ Pa'	5636.7	42S1
17392.3	a 4D,'		d ⁴ D ₄	4888.9	a ² P ₁
_	_		d4Fs'	4415.5	$5^{2}D_{2}$
18581.9	a 2Fa	-9574.9	d ⁴ P ₁ '	4413.4	$5^{2}D_{3}$
17344.8	a ² F.		d4P.'	4402.4	52F3. 4
16487.2	a 2P.		d ⁴ G _s	4188.1	42Fa
16428.8	a ² Pa	-9708.6	d ⁴ G ₄	3943.1	a 2D2'
16135.2	a 2Da'	-9758.9	d ⁴ D ₉	3772.1	C ₂
15709.7	a 2D'	-9785.0	d4F	3747.9	52S1
12925.0	3ºP.		d ⁴ G ₂	3166.2	b ₂
7523.9	e'	-10794.6	g,	3031.2	e ₂ (² P _{2, 1})
7280.3	ď.'		c2S,	1998.7	fe
6278.3	b ² F.	-10890.7	ha	_	_
5964.7	c' /	-19996.5	d4F.	-4834.4	b ² D ₃
5656.7	b ² F.	-11008.4	d4F.	5664.0	a ² D ₂
5027.3	b.'	-11687.0	e ⁴ D,		2G5
4889.4	a.' /	-12004.6	e ⁴ D ₂		c ² D ₂
4358.8	b ² Pa	-12801.3?	e,		2F3'
4188.7	b ² D.	-12955.4	c ² P.'		c ² D ₃
3944.8	b ² P.	-12975.5	e ⁴ D _o		2F4
3617.2	b ² D ₂	-13264.8?	n.		4G5
-		-13756.4	e ⁴ D,	-9619.1	4S2
		-14722.0?	0,	9670.6	4F5'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	-14760.1?	p.	-9796.7	4Pa'
toto - to gen	al to the state	-14772.4?	q4	-9843.1	a 4D2
Sommer [301]	Som	mer [301]	Sommer [8	301]	Sommer [301]
-10425.3 4P.	-128	01.3 ² P ₂ '	-14722.0	a ² G ₄	$-18778.1 \beta_2$
-10641.4 a4D	-129	55.5 2S.	-14760.1	a ² F ₃	-19673.7 %

Termtabelle Cu I.

¹) Sambursky [409] konnte die Werte der Terme 4²F₃ und 4²F₄ einzeln bestimmen zu: 6878.7 und 6881.2.

-14772.3

-15545.9

-15591.1

c²D₃

a 2G5

 a_4

a⁴D₁

⁴P₁' ⁴F₃'

4F2'

-10641.4

-10796.9

-10890.7

-10996.5

-12955.5

-13138.8

-13264.8

-13434.1

 $^{2}S_{1}$

c²D₂

a ²F₄

 $^{2}P_{2}'$

2) Die Buchstaben a, b, c sind statt der Indizes 1, 2, 3 verwandt, die Sommer rechts oben an den Term setzt.

 δ_1

E2

\$2,3

-20052.4

-21381.4

-23138.6

Kichlu [289]							
13393.2	21						
12314.	25						
12050.	26						
11637.	27						
10881.	28						
3100.	62P2						
2089.	42						
766.	43						

Cu I. Tabelle der g-Werte. Sommer [301].

Term	beobachtete Mittel	ber.	Term	beobachtete Mittel	ber.
² S ₁	1.99	2.00	4D1	0.00	0.00
² P ₁	0.68	0.67	4D1'	0.00	0.00
² P ₂	1.33	1.33	a ⁴ D ₂	1.10	1.00
$^{2}D_{2}$	0.85		· 4D2'	1.09	1.20
2D2'	0.69	0.80	4D3	1.43	
a 2D2'	0.96		4D3'	1.43	1.37
b ² D ₃ ?	0.69	0.80?	a ⁴ D _a	1.43	
² D ₃	1.20)		4D4	1.42	
2D3'	1.22	1.20	4D4'	1.46	1.43
a 2Da'	1.17		a 4D4	1.48	
4P1	2.62	2.67	4Fg	0.44	0.40
4Pa	1.75	1.73			

Auch Shenstone [298] erhält einige von den theoretischen Werten abweichende g-Werte:

⁴ P ₁ :	$2.5 \pm .1$	4D ₁ :	0.21	$\pm .01$
² P ₁ :	$0.51 \pm .02$	⁴ D ₂ ':	1.1	\pm .1.

Zur Theorie dieses Spektrums siehe außer den hier besprochenen Arbeiten: Bohr [219]. Unregelmäßige Serien behandeln Shenstone u. Russell [422]. Die Theorie von Hicks [285, 314], die von ganz anderen Anschauungen ausgeht, kann hier nicht besprochen werden.

Shenstone [325] sagt, es seien Anzeigen dafür vorhanden, daß außer den beiden bisher gefundenen Systemen, bei welchen 10 bzw. 9 Elektronen sich auf 3_3 Bahnen befinden, noch ein drittes existiere, bei welchem nur 8 Elektronen vorhanden seien.

Cu II. Zehnvalenzelektronensystem mit Singuletts und Tripletts. Auch für die Auffindung von Cu II ist die Hauptarbeit von Shenstone [325] geleistet. Er wird geleitet durch die theoretischen Untersuchungen von Hund, durch die Resultate für

Cu I mit seinen beiden Systemen, endlich durch die Scheidung von Funken- und Bogenlinien und durch Zeeman-Effekte. Die Abhandlung gibt eine Termtabelle und eine Liste von Linien, die aber etwa mit λ 2300 aufhört. Es folgen nur noch einige Linien von Wolfsohn und Mitra, vor allem aber berechnete Linien, die bis λ 1944 heruntergehen. Interessant ist, daß er drei Linien ausrechnet, die bei etwa λ 1466, 1363, 1353 liegen sollen, mit einem möglichen Fehler von 1500 cm⁻¹. Sie sind dann von Lang [336] und von Menzies [338] bei λ 1472, 1368, 1358 gemessen. Auch die übrigen berechneten Linien sind in ausgezeichneter Weise bestätigt worden durch Selwyn [367].

Shenstones Arbeit wird bestätigt und fortgeführt durch Menzies [338]. Er erzeugt das Spektrum durch Explosionen von Kupferdrähten, nimmt als Normalen gut bekannte Linien von C und H, die als Verunreinigungen auftreten, mißt bis zu λ 1911. Es gelingt ihm, den tiefsten Term zu finden und noch einige andere, so daß er noch etwa 50 Linien dem Spektrum anfügen kann. — Es ist schon früher berichtet, daß Burns [371] durch interferometrische Messungen das Kupferspektrum genauer festgestellt hat, daß er hieraus die Terme genauer bestimmt, daß er endlich aus diesen Termen kürzere Wellenlängen berechnet hat. Darunter befinden sich viele der von Shenstone berechneten Linien, und die Übereinstimmung ist vollkommen. Auch Kichlu [289] hat eine große Anzahl kurzwelliger Linien gemessen, ohne zu entscheiden, ob es Cu I oder Cu II sei. Viele erweisen sich nun als Cu II und passen gut zu den von Shenstone und Burns berechneten und von Selwyn gemessenen Linien, nur unter λ 2000 macht sich das Fehlen guter Normalen bei ihm geltend.

Noch eine wesentliche Erweiterung erfährt das Spektrum durch Kruger [361] in der Schumann-Region. Auch er geht wieder von den theoretischen Schlüssen Hunds [258] aus. Zur Erzeugung des Spektrums benutzt er eine Hohlkathode aus Kupfer (nach Schüler), durch welche dauernd He fließt; er photographiert mit Vakuumgitter, welches etwa 12 Å pro Millimeter Dispersion gab. Als Normalen werden Linien von He und H genommen. Er kann eine ganze Menge neuer Terme aufstellen und mehr als 100 Linien zwischen λ 1663 und 724 einordnen. Aus dem Abstand des Grundterms $3d^{10}$ ${}^{1S}_{0}$ von der Seriengrenze $3d^{9}$ ${}^{2}D_{\frac{6}{2}}$ erhält er das Ionisationspotential des Cu II zu 20.2 V.

Alle die besprochenen Resultate sind in der folgenden Tab. 4 zusammengestellt. Für die längeren Wellen ist wieder in der ersten Kolonne angegeben, von wem die Linie gemessen und eingeordnet ist, wo Sh = Shenstone, M = Menzies. Dann folgt die Einordnung, die Wellenlänge, wobei wieder meist die Zahlen von Hasbach von den Autoren benutzt wurden, — nur Menzies hat zum Teil eigene Messungen, dadurch kenntlich, daß keine Intensität angegeben ist, — endlich die Zeeman-Effekte, soweit sie beobachtet sind. Bei den kürzeren Wellen sind die Messungen und Rechnungen von Burns, die sich auch in Tab. 1 und 2 finden, herangezogen, ferner Selwyn u. Kichlu. Den Schluß macht Kruger.

esinis doon	aaqdhaac gild allo dhiin iis felgen nuc	n 1005 k light suite	Burns vac. Bogen [371]	Zeeman-Effekt [325]
М	a ¹ P ₁ —72026.7	4910.325 2u	_	_
М	a ¹ D ₂ -72029.5	4851.8 1u		
М	a ³ D ₁ -72027.8	4793.800 2u		
М	a ¹ F ₃ -73636.9	4227.93 2	nad von Menzeel	BUR STREET
М	a ³ D ₃ —73636.6	4043.50 2	brittin Linkin noter	dorige objind f
М	a ³ P ₀ -72024.6	3982.4 1u	-	SHO-TWAR
М	a ³ P ₁ -72028.3	3839.08	-	_
М	a ³ F ₃ —73636.9	3686.57 2	and the Toury as	
Sh	a 1D2'-b 3D3	2884.38 1	and and the second second	ods representation
Sh	a ¹ P ₁ -b ³ D ₂	77.89 5	7.698	(0), 1.19
Sh	a ¹ D ₂ '-b ³ D ₂	57.9 0	den del-ta l'ent	umit s ur ing in
Sh	a ³ D ₁ '-b ³ D ₂	37.56 4	7.364	(0), 1.48
Sh	a ¹ F ₃ —b ³ D ₃	2769.85 6	9.666	(0), 1.22
Sh	a ¹ F ₃ —b ³ D ₂	45.43 5	-	(0), 1.31
Sh	a ¹ P ₁ —b ³ D ₁	39.9 1	ar an ar mural	100.00 <u>-</u> 000803
Sh	a ³ D ₂ '—b ³ D	37.5 1		
Sh	a ¹ D ₂ '-b ³ D ₁	21.84 5	1.675	(0), 1.31
Sh	a ¹ P ₁ —b ¹ D ₂	18.96 6	8.775	(0), 1.04
Sh	a ³ D ₂ '—b ³ D ₂	13.66 7	3.505	(0), 1.02
Sh	a ³ D ₁ '-b ³ D ₁	03.34 6	3.184	(0), 0.47
Sh	a ¹ D ₂ '—b ¹ D ₂	01.12 7	0.963	(0), 1.02
Sh	a ³ D ₃ '-b ³ D ₃	2689.46 7	9.299	(0.57), 1.17
Sh	a ^a D ₃ '—b ^a D ₂	66.44 3	6,288	(0), 0.99
Sh	a ³ F ₂ —b ³ D ₃	20.78 0	0.675	-
Sh	a ¹ F ₃ —b ¹ D ₂	00.43 6	0.266	(0), 1.30
Sh	a ³ F ₂ —b ³ D ₂	2598.96 5	8.813	(0.82), 0.89
Sh	$a^{a}D_{2}'-b^{a}D_{1}$	90.68 4	0.526	(0), 1.40
Sh	$a^{3}D_{2}'-b^{1}D_{2}$	71.91 0	1.746	Kaplet Tuech
M	a ¹ F ₃ -88943.8	66.46 lu	-	
Sh	a ³ F ₄ —b ³ D ₃	44.96 10	4.802	(0), 1.11
M	a ³ D ₂ '88942.1	38.78 lu	_	-
Sh	a ^a D ₃ '-b ¹ D ₂	29.48 6	9.302	(0), 1.03
Sh	a ³ F ₃ —b ³ D ₃	26.73 4	6.589	(0.67), 1.12
Sh	a ^a F ₃ —b ^a D ₂	06.41 8	6.270	(0) 0.98
Sh	a ¹ D ₂ —a ³ P ₂	2489.64 7	9.652	(0.86), 1.21
Sn	a [°] F ₂ —b [°] D ₁	80.90 6	0.787	(0), 0.72
Sn	a ^s P ₁ —b ^s D ₂	73.47 0	3.332	(0), 0.83
Sn	$a^{a}r_{2}$ — $b^{1}D_{2}$	68.08 1	ar serier - aris serie	Therefore a state
M	a ¹ P ₁ —92240.4	63.93? 1u	did Weather Sugar	and the second second
M	a °r ₂ 88944.9	37.90	next worthing	Inst Autorea Ner
Sh	a *D2*-92000.8	00.49 IU 04.50 1	1 490	Interior officer and
M	a "r ₀ —0 "D ₁	24.00 1	4.430	
M	a 3D 1 00550 C	21.047 1		
SP	a 3D - 3D	10.03	0.005	(0) 1.09
Sh	$a T_2 = 0 D_3$	00.47 4	0.110	(0), 1.08
Sh	$a^{3}D_{2}$ — $a^{3}P_{1}$	00.10 2	0.112	(0), 0.64
Sh	$a^{2}P_{2} = 0^{2}D_{2}$	2000.00 0	0.995	
on		10.00 0	0.000	

Die Wellenlängen in Klammern sind nur berechnet.

- Canada Salada Tabab		Constant Second Second Second Second Second Second Second Second Second	Burns vac. Bogen [371]	Selwyn [367]	Kichlu [289]	Zeeman- Effekt [325]
Sh	a ¹ D ₂ -a ³ F ₂	2369.88 6	9.887			(0), 1.12
М	b ³ D ₁ -130531.2	59.00? lu	-	-		-
Sh	a ³ D ₁ -a ³ P ₂	(56.65 2)	6.638	-	-	-
Sh	a ³ P ₁ -b ¹ D ₂	(55.15 0)	5.155	-	101 - OF	- 42
М	a ¹ F ₃ —92553.2	48.80 lu	-	-		
М	a ¹ P ₁ -94457.4	36.26 2u	-	-	m-m	0.0- 20
М	$a^{3}P_{1}$ —88942.1	27.343 1		10, - O.A.	(1) (
M	a ¹ D ₃ ¹ —94457.0	23.10 1u	10 -0.75		11-11	-
M	a ³ D ₁ ¹ —94457.3	09.61 1u	-	-	10-01	Т Р
Sh	a ³ D ₂ —a ³ P ₂	2294.374 5		- '	1	(0.66). 1.37
Sh	a ¹ D ₂ —a ³ P ₂	(92.68 0)	O		1.1.	
M	a ¹ P ₁ —95301.2	91.083 2u	10 - 18	-	100-10	
M	a. ¹ D ₂ ¹ 95300.2	78.449 lu	10 70 10	-	ALC: MARKEN	
Sh	a ³ D ₁ —a ³ P ₁	76.261 5	10 779.07	-		(1.0), 0.48, 1.52
Sh	a ³ P ₂ -b ¹ D ₂	(74.86 0)	-	-		121-20
M	a 3D, 1-95300.8	65.46? 1u	_	- 1		
M	b ³ D ₃ -130531.5	49.13? 2u		-	-	100-2
Sh	a ³ D ₃ -a ³ P ₂	47.003 10	1		-	(0), 1.15
Sh	a 1D2-a 3D3'	42.621 9	1000		-	(0), 1.16
M	a ³ F ₂ -92555.7	40.63	-	-	19-11	March - March
M	a 1D21-96232.5	31.04 1u	-	-		100 - 61
Sh	a ³ D ₁ -a ³ P ₀	(28.88 5)	-		90-00	10150-172
M	a ³ D ₂ ¹ -94457.5	26.84 1u	-	-	-	-
M	a ¹ P ₁ -96604.2	24.75? 1u				
Sh M	a ³ D ₁ ¹ -a ³ P ₀	18.107 8	- 77		-	(0), 0.86
M	a ¹ P ₁ -96796.5	15.16 2u	-	-	-	-
M	a 1D21-96600.8	12.85? 1R	-	-	-	
Sh	a 1D2-a 3D2'	(10.27 7)	0.295	-	-	-
M	a ³ P ₀ -92245.7	05.62?	-	-	-	-
M	a ³ D ₁ 96601.8	00.57? 1u	-	-	-	-
M	a ³ P ₀ -92449.5	2195.75? 2u	-		-	-
Sh	a ³ D ₂ —a ³ F ₃	(92.27 10)	2.260	-	-	
Sh	a ¹ D ₂ —a ¹ F ₃	89.631 6	9.621	-	-	(0), 1.50
Sh	a ³ D ₁ —a ³ F ₂	(79.41 8)	9.399	-		-
M	a ³ P ₁ —92242.5	61.356 2u	-	-	-	
M	a ³ P ₁ -92445.4	51.83 1u	-	-	-	-
Sh	a ³ D ₃ —a ³ F ₃	(48.98 4)	8.974	-	-	-
M	a ³ P ₁ —92551.4	46.93	-	-	-	
Sh	a ³ D ₃ —a ³ F ₄	(35.98 10)	5.976	_	_	-
Sh	$a^{1}D_{2} - a^{3}D_{1}'$	(34.36 4)	4.300	-	-	(0.99) 0.99
Sh	a ³ D ₂ —a ³ F ₂	25.047 4	0.000	0.05	_	(0.82), 0.89
Sh	a D2-a D2	(22.98 5)	2.900	2.00	2 02	C. The Course
Sh	$a^{1}D_{2}$ — $a^{1}P_{1}$	(12.09 5)	4.799	1.80	4.02	in the line of
Sh	a ^a D ₁ —a ^a D ₂	(04.81 3)	4.702	5.99	4.70	and the state of the second
Sh	a ³ D ₃ —a ³ F ₂	(2085.30 3)	(0.200)	0.00	0.21	a section of
M	a P2-92002.8	79.94	(3.45)	_	0.51	and the second second
M	a "F2-96231.6	1 10.06	-	-	-	

Die Wellenlängen in Klammern sind nur berechnet.

indi indi			Burns vac. Bogen [371]	Selwyn [367]	Kichlu [289]	Zeeman- Effekt [325]
М	a ³ P ₀ -95301.1	2066.31 1u		-	6.07	
Sh	a ³ D ₂ —a ³ D ₂ '	(54.99 8)	(4.969)	4.98	4.82	_
М	$a^{3}F_{2}$ —96797.5	46.08			-	-
Sh	a ³ D ₃ —a ³ D ₃ '	(43.81 8)	(3.791)	3.80	3.69	-
Sh	a ³ D ₂ —a ¹ F ₃	(37.13 6)	(7.116)	7.13	7.01	-
Sh	a ³ D ₁ —a ³ D ₁ '	(35.85 7)	(5.84)	5.86	5.71	- 1
М	a ³ P ₀ -96234.6	27.19		- 1		
Sh	a ³ D ₁ —a ¹ D ₂ '	$(25.50 5)^{1})$	(5.475)	5.49	5.33	_
Sh	a ³ D ₃ —a ³ D ₂ '	(16.90 1)	(6.885)	6.89	6.85	- 1
Sh	a ³ D ₁ —a ¹ P ₁	(15.58 1)	(5.576)	5.61	5.55	- 12
Sh M	a ³ D ₃ —a ¹ F ₃	(00.348 7)		0.35		
Sh	a ³ D ₂ —a ³ D ₁ '	(1989.860 2) ²)	01 <u>19</u> 0.16	9.85	9.20	
Sh	a ³ D ₂ —a ¹ D ₂ '	(79.971 2)	100 <u>- 1</u> 125	9.97	9.26	
Sh	a ³ D ₂ —a ¹ P ₁	(70.497 0)	- <u>- 1</u> 9,91	0.52	- 11-	_
М	a ³ P ₁ -96795.6	68.20		-	_	-
Sh	a ³ D ₃ —a ¹ D ₂ '	(44.606 2)	10	4.63	3.88	- 19
М	a ³ P ₂ —96794.7	11.87	10 10 10	-	- · · ·	-
inter State	2	Lang [336]	Menzies [338]			
LM	I ¹ S ₀ -a ¹ P ₁	1472.48	2.38	_		- 19
LM	I ¹ S ₀ -a ³ D ₁ ¹ .	1368.00	7.92	-	-	-
LM	I ¹ S ₀ —a ¹ P ₁	58.84	8.76	-	-	

	Kruge [361]	er	A THE STATE	Kruge [361]	er
3d95p1P10-3d96s3D23)	1663.01	10	3 d ⁹ 5p ³ F ₂ ⁰ -3D ₃ 6s ³ D ₂	1569.21	1
¹ D ₂ ⁰ ³ D ₃	60.02	5	¹ F ₃ ⁰ — ¹ D ₂	66.45	7
¹ D ₂ ⁰ — ³ D ₂	56.35	2	3d ⁹ 4p ³ F ₂ ⁰ -3d ⁹ 6p ³ D ₂	65.94	6
³ D ₁ ⁰ — ³ D ₂	49.44	9	³ D ₂ ⁰ ³ D ₁	58.38	5
¹ F ₃ ⁰ _3D ₃	21.39	10	³ D ₂ ⁰ _1D ₂	(56.05)
¹ F ₃ ⁰ -3D ₂	17.94	2	³ F ₄ ⁰ _3D ₃	41.77	15
¹ P ₁ ⁰ _3D ₁	(11.16)	³ D ₃ ⁰ — ¹ D ₃	40.51	5
³ D ₂ ⁰ — ³ D ₃	10.30	1	³ F ₃ ⁰ _3D ₃	35.03	8
¹ P ₁ ⁰ — ¹ D ₂	08.66	4	³ F ₃ ⁰ _ ³ D ₂	31.91	15
³ D ₂ ⁰ — ³ D ₂	06.87	9	³ F ₂ ⁰ ³ D ₁	19.90	6
¹ D ₂ ⁰ -3D ₁	04.88	3	³ P ₁ ⁰ _3D ₂	19.53	6
¹ D ₂ ⁰ — ¹ D ₂	02.40	9	³ F ₂ ⁰ — ¹ D ₂	17.65	1
³ D ₁ ⁰ — ³ D ₁	1598.41	9	³ P ₀ ⁰ — ³ D ₁	1496.72	6
³ D ₁ ⁰ -1D ₉	(96.00)	³ P ₂ ⁰ _3D ₃	88.72	12
³ D ₃ ⁰ — ³ D ₃ ³ D ₋ ⁰ — ³ D ₋	93.56	13	$\left\{\begin{array}{c} {}^{3}P_{2}^{0}-{}^{3}D_{2} \\ {}^{3}F_{2}^{0}-{}^{1}D_{2} \end{array}\right\}$	85.67	1

Die Wellenlängen in Klammern sind nur berechnet.

¹) Diese Linie haben Simon und Dreblow [300] an den Polen des Bogens gefunden und zu 2025.34 gemessen.

²) Von hier an λ vac.

³) Die Elektronenkonfiguration gilt auch für die jeweils nachfolgenden Kombinationen.

638

14	10.00	2	۰.	n	
n	11	L.E.	Ľ		E.
	-		•		۰.

	Kruger [961]		Kruger [361]
	[301]		[001]
3d94p3P.0_3D.6p3D.	1476.10 2	3 d ⁹ 4 p ³ D ₁ -3F ₂ ⁰ 6 p ³ D ₂ ⁰	1066.15 2
³ P.0_1D.	74.03 2	1D9-3P90	65.74 6
3P.0_3D.	(44.16)	3D_3-3F_30	58.82 2
3P.0_1D.	42.11 1	³ D ₃ -3F ₄ ⁰	55.81 6
3d94p1P.0-3d97s3Da	02.80 1	1D9-1F30	54.67 12
1Da0_3Da	1399.41 0	³ D ₁ ³ D ₂ ⁰	52.16 4
3D,0_3D,	93.13 1	³ D ₉ -3D ₃ ⁰	49.28 2
1F.0_3D.	71.88 5	³ D ₂ -3D ₂ ⁰	39.56 5
1F.0_3D.	(70.58)	³ D ₃ ³ D ₃ ⁰	39.28 5
1P,0_3D,	(64.49)	¹ D ₂ -3D ₁ ⁰	36.45 10
3D20_3D3	(63.91)	³ D ₁ -1P ₁ ⁰	31.76 1
1P10_1D2	63.54 2	³ D ₃ -3D ₂ ⁰	29.74 1
³ D ₂ ⁰ _3D ₂	62.61 5	³ D ₂ -3P ₂ ⁰	28.31 4
¹ D ₉ ⁰ _3D ₁	59.94 2	³ D ₁ -3P ₁ ⁰	22.11 1
4D_0_1D_	59.04	³ D ₂ -1P ₁ ⁰	19.65 1
3d ¹⁰¹ S ₀ -3d ⁹ 4p ¹ P ₁ ⁰	58.81 17	³ D ₃ -3P ₂ ⁰	18.69 11
3d94p3D10-3d97s3D1	55.35 2	³ D ₂ — ¹ F ₃ ⁰	18.04 3
³ D ₃ ⁰ -3D ₃	51.88 6	³ D ₁ ³ P ₀ ⁰	12.61 8
³ D ₃ ⁰ _3D ₂	50.61 4	³ D ₂ -3P ₁ ⁰	10.29 7
³ F ₂ ⁰ _3D ₃	(34.33)	³ D ₃ — ¹ F ₃ ⁰	08.62 7
3F20-3D2	99.00	³ D ₂ ³ D ₁ ⁰	01.00 3
1F ₃ 0_1D ₂ ∫	55.05	$3d^{9}4s^{1}D_{2}$ - $3d^{9}6p^{3}F_{3}^{0}$	992.95 9
³ D ₂ ⁰ _3D ₁	26.46 2	$^{1}D_{2}$ — $^{3}F_{2}^{0}$	97.41 1
³ D ₂ ⁰ — ¹ D ₂	25.57 7	³ D ₂ -3F ₃ ⁰	60.38 8
³ F ₄ ⁰ ³ D ₃	14.40 16	³ D ₁ ³ F ₂ ⁰	58.13 9
³ D ₃ ⁰ — ¹ D ₂	(14.18)	³ D ₃ ³ F ₄ ⁰	48.66 6
³ F ₃ ⁰ — ³ D ₃	09.51 4	³ D ₂ -3F ₂ ⁰	47.68 1
³ F ₃ ⁰ _ ³ D ₂	08.35 10	³ D ₃ — ³ F ₂ ⁰	39.47 3
³ P ₁ ⁰ — ³ D ₂	1299.30 6	³ D ₁ ³ P ₂ ⁰	10.48 3
³ F ₂ ⁰ _3D ₁	98.47 6	³ D ₂ ³ P ₂ ⁰	01.10 9
³ F ₂ ⁰ _1D ₂	97.59 1	³ D ₁ ³ P ₁ ⁰	899.77 9
³ P ₀ ⁰ — ³ D ₁	81.49 2	¹ D ₂ ¹ P ₁ ⁰	94.26 2
³ P ₂ ⁰ — ³ D ₃	75.62 8	³ D ₃ ³ P ₂ ⁰	93.65 16
³ P ₂ ⁰ — ³ D ₂	(74.48)	³ D ₁ ³ P ₀ ⁰	92.40 9
³ F ₃ ⁰ — ¹ D ₂	74.06 0	³ D ₂ -3P ₁ ⁰	90.60 12
³ P ₁ ⁰ — ³ D ₁	66.38 2	³ D ₂ -1P ₁ ⁰	67.78 2
³ P ₁ ⁰ — ¹ D ₂	65.53 3	³ D ₂ 1F ₃ ⁰	65.42 5
³ P ₂ ⁰ — ³ D ₁	(42.78)	3d ¹⁰ ¹ S ₀ -3d ⁹ 5p ¹ P ₁ ⁰	27.05 10
³ P ₂ ⁰ — ¹ D ₂	42.01 1	¹ S ₀ — ³ D ₁ ⁰	23.98 9
3d ⁹ 4p ¹ D ₂ -3d ⁹ 6p ³ D ₃ ⁰	1088.39 2	3d ¹⁰ ¹ S ₀ -3d ⁹ 6p ¹ P ₁ ⁰	724.62 2
³ D ₂ -3F ₃ ⁰	69.18 5	the production of the state	The second s

Cu III. Neunelektronensystem mit Dubletts und Quartetts. Über dies Spektrum ist noch sehr wenig bekannt. Nur Kimura u. Nakamura [237] wenden darauf ihre Methode an, im Funkenspektrum die Länge der Linien von der Kathode aus zu messen. Sie finden Linien von zwei verschiedenen Längen, die also Cu II und Cu III zugeschrieben werden, und geben Listen dieser Linien. Leider sind die Angaben nur angenähert, in ganzen A.E., und das genügt bei einem so linienreichen und doch noch

Termtabelle Cu II.

roc	051	[261] 1		[361] 1)	
[5:	.0]	[001] -		[001])	
a ³ D _a	0,0	3 d10 1S0	163634.2	3d95p3D30	45490.3
a ³ D _a	918.5	3d ⁹ 4s ³ D ₃	141709.2	3d95p3D20	44596.8
a ³ D ₁	2069.7	3d ⁹ 4s ³ D ₂	140790.7	* 3d95p3P20	43543.3
a ¹ D ₂	4335.7	* 3d94s3D1	139639.5	* 3d95p1P10	42717.7
a ³ P.	44489.9	* 3d94s1D2	137373.5	* 3d95p1F30	42563.3
a ³ P ₁	45987.8	* 3d94p3P20	97219.3	* 3d95p3P10	41806.0
a ³ Po	46921.2	* 3d94p3P10	95721.4	3d95p3D10	40888.6
a ³ F.	46802.1	3d94p3F30	95190.1	* 3d95p3P00	40884.8
a ³ Fa	46519.1	3d94p3F40	94907.1	3d ⁹ 6p3F ₃ ⁰	36664.4
a ³ F.	47939.3	* 3d94p3P00	94788.0	3d96p3F40	36297.4
a 3D,'	48912.5	3d94p3F.0	93769.9	3d96p3F20	35268.7
a 3D.'	49564.9	3d94p3D30	92796.7	3d96s3D3	30044.7
a 3D,'	51173.3	3d94p3D20	92144.3	3d96s3D2	29910.8
a ¹ Fa	49991.3	* 3d94p1F30	91717.9	* 3d96p3P20	29810.4
a 1D.'	51424.3	3d94p3D10	90535.9	* 3d96p3P10	28503.4
a ¹ P ₁	51667.1	* 3d ⁹ 4p ¹ D ₂ ⁰	90284.9	* 3 d ⁹ 6s ³ D ₁ ⁰	27975.1
b ³ D ₃	86083.7	* 3d94p1P10	90042.1	* 3d96s1D2	27879.4
b ³ D,	86404.6	3d ⁹ 5s ³ D ₃	55625.5	* 3d ⁹ 6p ³ P ₀ ⁰	27582.1
b ³ D ₁	88153.3	3d ⁹ 5s ³ D ₂	55304.6	* 3d ⁹ 6p ¹ P ₁ ⁰	25551.7
b ¹ D ₂	88435.0	* 3d95s3D1	53555.9	* 3d ⁹ 6p ¹ F ₃ ⁰	25236.8
		* 3d95s1D1	53274.2	* 3d97s3D3	18825.9
		3d95p3Fa0	47263.0	3d97s3D2	18756.3
		3d95p3F40	46995.2	* 3d97s3D1	16754.7
		3d95p3F20	45844.1	* 3d97s1D2	16703.6

Der Term 3d¹⁰ ¹S₀ ist der Grundterm, wurde aber von Shenst one nicht gefunden.

recht unvollkommen gemessenen Spektrum in vielen Fällen nicht, um sagen zu können, welcher genauer gemessenen Linie ihre Angabe entspricht.

Indessen kann man doch folgendes schließen: Von den 34 für Cu II gegebenen Linien liegen 27 so nahe bei eingeordneten Cu II-Linien, daß man sagen kann, die Auswahl von Cu II ist richtig. Für Cu III werden sogar 53 Linien angegeben, die sich in der folgenden Tab. 5 finden. Vergleicht man sie mit der Liste der Cu II-Linien, so finden sich nur 3 Linien, die Cu II-Linien entsprechen können. Vergleicht man mit der allgemeinen Liste des Cu-Spektrums, wie solche in Bd. VII gegeben ist, so findet man, daß man für die große Mehrzahl entsprechende Linien angeben kann, die von Exner u. Haschek oder Hasbach ausschließlich im Funkenspektrum als schwache Linien gemessen sind. Einige sind überhaupt sonst nicht gemessen. Es ist also sehr wahrscheinlich, daß es sich wirklich um Funkenlinien handelt, und da sie bei Cu II

¹) Die Termwerte sind bezogen auf den Term $3d^{92}D_{2\frac{1}{2}}$ des Cu III. Die mit * bezeichneten Terme haben die Seriengrenze $3d^{92}D_{1\frac{1}{2}}$, die übrigen die Grenze $3d^{92}D_{2\frac{1}{2}}$. Später hat Lang [336] mit dem Vakuumspektrographen drei Linien gefunden, die Kombinationen der Terme $a^{3}P_{1}$ bzw. $a^{3}D_{1}'$ und $a^{1}P_{1}$ mit dem Grundterm $d^{10} \, {}^{1}S_{0}$ darstellen. So konnte er den Termwert von ${}^{1}S_{0}$ zu —21925 berechnen. Hiernach sind die Shenstonschen Termwerte um diese Zahl zu vermehren.

noch keinen Platz gefunden haben, ist es möglich, daß sie zu Cu III gehören. — In der Tabelle sind ein paar langwellige Linien, die wohl noch ungenauer gemessen sind, für die man jedenfalls keine Repräsentanten unter den schon gemessenen Linien findet, fortgelassen. Bei den kurzwelligen aber sind die ihnen vielleicht entsprechenden Messungen von Exner u. Haschek (E) und Hasbach (H), manchmal Eder, beigefügt.

Über die Termanalyse des Cu III liegt nur eine kurze Notiz von Gibbs u. Vieweg [357] vor. Sie geben an, einige Dubletts, Quartetts und Interkombinationen, die einem $3d^{8}4p \rightarrow 3d^{8}4s$ -Übergang entsprechen, identifiziert zu haben. Ferner haben sie Übergänge von $3d^{8}4p$ in die tiefste Konfiguration $3d^{9}$ (²D_{2,3}) an mehreren Linien bei 800 Å festgestellt.

Kimura u. Nakamura	Bemerkungen	Kimura u. Nakamura	Bemerkungen
2644	3.90 E, 3.93 H	2509	8.6 E, 8.6 H
09	9.30 E, 9.31 H	05	5.62 H
2593	unbekannt	03	3.10 H
87	unbekannt	01	0.77 H
86	unbekannt	2496	6.11 E, 6.14 H
81	unbekannt	86	6.51 E, 6.56 H
72	1.9 ist Cu II nach Shen.	82	2.34 E, 2.33 H
54	4.4 H	81	unbekannt
53	3.24 E, 3.21 H	78	8.43 H
39	8.8 ist Cu II nach Menz.	66	5.92 E, 5.92 H
35	5.39 H	65	unbekannt
32	2.96 E, 2.90 H	63	3.08 H
31	1.1 E, 1.11 H	62	2,06 H, 2.07 Eder
25	5.0 E, 5.04 H	60	9.37 E, 9.35 H
23	3.16 E, 3.20 H	53	3.05 E, 3.06 H
22	2.36 E, 2.39 H	52	unbekannt
21	1.06 E, 1.07 H	50	unbekannt
19	8.9 E, 8.93 H	47	7.61 H, 7.63 Eder
18	8.46 E, 8.43 H	. 36	5.872, 5.88 H
17	8.46 E, 8.43 H	31	?
16	6.96 E, 6.94 H	12	2.10 E, 2.11 H
15	6.4 E, 6.46 H	03	Cu II ?
13	3.07 H	2346	6.14 E, 6.17 H
11	1.41 E, 1.39 H		

Tabelle 5. Cu III nach Kimura und Nakamura [237].

Damit sind alle eingeordneten Linien des Cu behandelt. Wir sind aber noch weit von einer völligen Aufklärung der Cu-Spektra entfernt: nicht nur, daß für Cu I und Cu II viele Linien strittig sind, es bleiben noch etwa 400 Cu-Linien übrig, über deren Einordnung nichts bekannt ist. Wenn man selbst annimmt, daß 25% davon keine Cu-Linien sind, ist die Zahl der noch aufzuklärenden Linien doch sehr groß.

Zu den Hilfsmitteln zur Erklärung der Spektra gehört die Untersuchung der umgekehrt erscheinenden Linien, und davon ist gerade beim Kupfer in sehr ausgedehntem Maße Gebrauch gemacht worden. Die Literatur darüber ist so ausgedehnt,

Kayser u. Konen, Spektroskopie. VIII.

und die Verzeichnisse der beobachteten Linien sind so lang — haben doch einzelne mehr als 300 Linien gefunden —, daß nur in aller Kürze die hierher gehörenden Arbeiten zusammengestellt werden können. Man hat, wie immer, sowohl die wirkliche Absorption eines kontinuierlichen Spektrums durch den Dampf benutzt, als die Umkehrungen, die beim Unterwasserfunken und bei explodierenden Drähten auftreten.

Die erste hier zu nennende Arbeit stammt von den Brüdern Bloch [198], welche den Unterwasserfunken untersuchen, dann folgt Grotrian [222]; er erhitzt Cu im Quarzrohr, erreicht daher nur mäßige Temperaturen, etwa 1000°, und erhält nur das Paar 3274, 3247. – Hulburt [235] findet im Unterwasserfunken schon sehr viele L. - Smith [270] läßt Drähte explodieren, kompliziert aber die Erscheinungen dadurch, daß er auf rasch bewegtem Film photographiert, so daß er das Verhalten bei den einzelnen Oszillationen beobachten kann. - Hori [286, 287] findet bei Explosionen schon an 100 umgekehrte Linien. - Zumstein [275] erhält im Kohlerohr zuerst 3274, 3247, bei steigender Temperatur weitere, bei der höchsten Temperatur tritt 2244 auf. Alles sind Linien von Cu I. - Fukuda [312] läßt unter erhöhtem Druck explodieren und findet 296 umgekehrte Linien. - Auch Déchène [283] nimmt explodierende Drähte, untersucht das Gebiet zwischen λ 3600 und 2100. Die Arbeiten von Menzies [337], sowie Duffendack u. Black [354], Stücklen [271] sind schon oben besprochen, ebenso ist gesagt, daß auch Shenstone solche Beobachtungen heranzieht. Auch McLennan und McLay [262] nennen einige Linien, die sie im Gebiet der kurzen Wellen umgekehrt erhalten haben. Eine Reihe weiterer Arbeiten über Unterwasserfunken machen gelegentliche Angaben über Kupferlinien und sollen hier nicht berücksichtigt werden.

Daß der Zeeman-Effekt zur Erkennung der Struktur herangezogen ist, versteht sich von selbst; die Arbeiten von Shenstone, Menzies, Beals, Sommer in dieser Richtung sind bei Besprechung von Cu I und Cu II erwähnt, die Resultate in den Tabellen angeführt. Dazu sind noch zu fügen Arbeiten von Back [218] und Green [374].

Den Starkeffekt haben Nagaoka und Sugiura [244] untersucht, ohne aber wesentlich Neues zu bringen. Sie beobachten an der Anode eines Bogens und finden Verschiebungen nach Violett, außer bei den Linien λ 4022 und 4062, die nach Rot verschoben sind. Bei λ 3654 und 3687 finden sie, im Gegensatz zu allen anderen Autoren, auf der kurzwelligen Seite eine abgelöste Komponente. Dann haben Fujioka und Nakamura [311] die älteren Messungen von Takamine erweitert und einige verbotene Linien gefunden. Nachfolgende Tabelle zeigt ihre Messungen (S. 643).

Von sonstigen Arbeiten über die Linienspektra seien noch erwähnt: Lowery [240] sucht "Pollinien" auf, d. h. Linien, die im oft unterbrochenen Bogen nur in der Nähe der Pole sichtbar sind, wahrscheinlich höherer Ionisation entsprechen. Er findet dabei drei sonst nicht gemessene Linien 3597.8 (2), 3595.3 (1), 3539.1 (0). Shenstone (369] macht auf eine merkwürdige Serie von Termen aufmerksam, die sich aus Messungen von Selwyn ergibt. Chalklin [372] sucht unter den von Millikan u. Bowen [241] gemessenen Linien solche heraus, die eine Serie in der Form $A - \frac{b}{n^2}$ bilden und findet sieben solche. Er bemerkt aber selbst, daß die Intensitäten in ihnen absolut unregelmäßig sind. Diese Serien sind wohl gänzlich bedeutungslos.
Kupfer

Serie	λ	s-Kor 2 à	np. i	p-Kon Δλ	np. i	$E = 10^4 \text{ V/cm}$
92p	4063	+0.90	10	+0.90	10	5.1
2 1 2 4 2F	4056.5	-0.90	3	-0.90	3	5.1
$_{92D} \int 4^{2}D_{2}$	4022.67	+0.71	8	+0.80	8	5.1
2-11 42F3	4015.7	-1.24	2	-0.77	2	5.1
(5 °D ₃	3687.5	+3.0	3	+5.6	2	5.1
$2^{2}P_{2} - 5^{2}F$	3686.0	+0.2	3	+0.4	3	5.1
52G	3679.7			-2.9	2	5.1
$5^{2}D_{2}$	3654.3	+2.8	2	+4.8	1	5.1
$2^{2}P_{1} - 5^{2}F$	3652.1	0.0	3	0.0	2	5.1
52G	3649			-2.7	1	4.2
62D3	3512.0	+7.6	1	+8.7	1	4.2
$2^{2}P_{2} - 6^{2}F$	3511.8	+1.3	1	+1.4	0.5	4.2
[62G	3510.0	-2.1	0.5			_

Über kritische Potentiale finden sich viele Angaben. Shenstone [230] nennt als Ionisationspotential 7.8 V, Wahlin [344] 9.42 V, sonst viele kritische Potentiale zwischen 1.38 und 19.86 V; Russell [323] 7.64, 9.15, 9.41. Für Cu II gibt Russell 17.30, 17.56, 20.06, Krüger 20.2 V. Ritschl [421] hat eine neue Anordnung verwandt, bei der die Kingsche Ofenapparatur so verändert ist, daß die Kathode den Potentialabfall des Heizrohrs abschirmt und so günstige Anregungsbedingungen auch für Linien mit kleiner Anregungsspannung gegeben sind. So hat er die Anregungsspannungen einer Anzahl von Cu I-Linien der beiden Systeme bestimmt und den geschätzten Intensitätsanstieg der Linien mit anwachsender Spannung angegeben.

Zur Hyperfeinstruktur der Linien liegt einiges vor. Janicki (Ann. d. Phys. 29, 833, 1909) hat mit gekreuzten Lummerplatten untersucht, Wali Mohammad ([133] und Astrophys. J. 39, 185, 1914) mit Stufengitter. Sie fanden die meisten Linien einfach, einige wenige von zwei (oder einem umgekehrten) Satelliten begleitet. Es sind die Linien λ 5782, 5700, 3248, 3274, 4704, 4275. Über diese Aufspaltungen machen Ruark u. Chenault [266] einige Bemerkungen. Siehe dazu auch Back [218], Green u. Wulff [394] und Frisch [393]. Die verwunderlichen Angaben von Stücklen [271] sind schon oben besprochen. Shenstone [412] berichtet von vier Komponenten bei mehreren Linien mit dem oberen Zustand d⁹s, s⁴D_{3^{1/2}} und schließt auf ein Kernmoment $I = \frac{3}{2}$.

In jüngerer Zeit hat Ritschl [407] die Hyperfeinstruktur einiger Kupferlinien mit einer Schülerschen Hohlkathode und Fabry-Perot-Etalons untersucht. Er findet, daß die Linien λ 5782 und 5700 aus je 5 und λ 5105 aus 4 Komponenten, ferner die Linien λ 2492 und 2441 aus je 4 Komponenten bestehen. Die Resonanzlinien 3274 und 3247 sind doppelt. Man sehe auch Frisch [393] und Ritschl [407, 421]. Dieser gibt auch die Aufspaltung des 2²P-, des a⁴P₁-Terms und des Grundterms 1²S an.

Einige Arbeiten beschäftigen sich mit Intensitätsmessungen. Nottingham [366] mißt das Intensitätsverhältnis der Linien 3248:3274, findet: 2:1. — Ornstein u. Vermeulen [383] erhalten zunächst einen anderen Wert, dann aber finden sie das gleiche, ebenso Nottingham [403]. — Auch Samburski [408] führt

41*

643

solche Messungen aus. Allen [416] hat die Intensitäten der a⁴D¹—c⁴D, a⁴F—c⁴D, a⁴P—c⁴D-Quartetts gemessen und ihre Abhängigkeit von der Stromstärke des Bogens bestimmt.

Die anomale Druckverbreiterung einzelner Linien des Kupferbogenspektrums wurde ebenfalls von Allen [415] untersucht.

Röntgenspektrum.

Mit dem Röntgenspektrum von Kupfer beschäftigen sich eine große Anzahl von Arbeiten.

In der bereits von Hjalmar [182] aufgefundenen L-Reihe der Emission messen Siegbahn und Thoraeus [248] und Dauvillier [308] die Hauptlinien neu. Thoraeus [303] und Karlsson [376] erhalten Spektren mit 9 Linien bei recht guter Übereinstimmung. Alle bisher genannten benutzten Fettsäurekristalle, die in diesem Gebiete eine bedeutend größere Dispersion ermöglichen als Strichgitter, mit denen Hunt [315], Kellström [360], Howe [375], sowie Howe und Allen [395] nur die stärksten Linien erhielten. Die bei Allen angegebene Fehlergrenze ist natürlich keine absolute, sondern nur aus der Streuung der Einzelwerte berechnet, wobei der methodische Fehler wesentlich größer sein kann. Dieser Unterschied wird gelegentlich nicht genügend beachtet, vgl. hierzu auch die Notiz von Bäcklin [417]. In diesem Zusammenhang muß auch die Arbeit von Prins und Hanawalt [420] genannt werden, die bei der Änderung des reflektierenden Bereiches, der Ordnung und des Glanzwinkels eine Variation der gemessenen Wellenlänge um ungefähr 5% of feststellen, die jedenfalls nicht durch ungenaue Ausmessung der Platten vorgetäuscht sein könne. Prins [419] begnügt sich darum mit der Angabe der 2. Dezimale für seinen Wert der La-Linie.

Trotzdem ergibt sich auch hier das Bild, daß die Strichgittermessungen etwas höhere Werte liefern, als die mit Kristallgittern, welche auf der üblicherweise be-

Kristallgitter							S	trichgitt	er	
Übergänge	Be- zeich- nung	Siegbahn und Thoraeus [248]	Tho- raeus [303]	Dau- villier [308]	Karls- son [376]	Hunt [315]	Kell- ström [360]	Howe [375]	Howe Allen [395]	Prins [419]
LIII MI	1	_	15.19	-	15.26	_	15.26	15.33		_
LIII MI	η	_	14.83	-	14.87	-	-	14.95	_	-
LIII MIV. V	a12	13.39	13.308	13.4	13.311	13.6	13.32	13.37	13.326	13.32
Funkenl.	a	-	13.24	1 4 1	13.23		- 1	n n-mark	± 0.001	-
Funkenl.	a''	-	13.172	-	13.19		-	-	,	-
LTI MIV	β_1	13.10	13.029	-	13.027	-	-	-	-	-
Funkenl.	β	_	12.99	_	12.96	_	_	-	_	
Funkenl.	β''	-	12.96	_	12.90	-	-			141
LI MIL III	$\beta_{3,4}$	- 19	12.10	-	12.07	-				nh-da

Tabelle 1. Emission, L-Reihe.

Wellenlängen in Å.E.

nutzten Gitterkonstante von Kalkspat ($d_{18^\circ} = 3029.45$) beruhen. — Die Angaben von Osgood [320], der mittels Konkavgitters einige Linien erhielt, sind wegen ihrer Unsicherheit hier nicht wiedergegeben.

Präzisionsmessungen in der Emission der K-Reihe mit Kristallgitter liegen vor von Lang [239], Weber [274], Leide [291, 292], Schrör [296], Siegbahn [368], Eriksson¹) und Wennerlöf [390]. Der Wert von Wennerlöf für die Ka₁-Linie stimmt mit dem Siegbahnschen sehr gut überein. Siegbahn empfiehlt in [368] seinen Wert wie auch den entsprechenden von Fe und Mo als Referenzlinie 1. Ordnung. — Beuthe [370] und Kawata [377] geben noch schwache Linien neu an.

Auch hier wurde das Spektrum in einigen Fällen mit Strichgitter aufgenommen. Nach der ersten orientierenden Aufnahme von Thibaud [340] erhält Wadlund [343] die Wellenlänge der Ka1-Linie nach Vorzerlegung durch Kristallreflexion in völliger Übereinstimmung mit obigen Kristallmessungen innerhalb der angegebenen Fehlergrenzen. Bearden [347] findet dagegen ohne Vorzerlegung für den Schwerpunkt des Dubletts und die β_1 -Linie, ähnlich wie die meisten neueren Strichgittermessungen, einen um 0.23% größeren Wert als die besten neueren Messungen mit Kristallen. Diese Diskrepanz ist immer noch nicht eindeutig geklärt; Bearden versuchte in [418] durch eine dritte Methode zu entscheiden, nämlich durch Messung des Brechungsexponenten. Die durch ein rechtwinkliges Quarzprisma erzeugten Spektren — nach Larsson, Siegbahn und Waller, sowie Larsson — dürften jedoch bei so geringer Dispersion trotz kleiner zufälliger Fehler (vgl. obige Bemerkung zur Arbeit Prins u. Hanawalt) kaum zu der von Bearden gezogenen Folgerung berechtigen: "These results thus indicate that the grating measurements of X-ray wave-lengths are definitely in error". Hinzu kommt noch, daß die in der Dispersionsformel benutzten Konstanten nicht mit der erforderlichen Genauigkeit bekannt sind. Es sei hierzu auf die scharfe Kritik Bäcklins [417] verwiesen. Eine Übersicht über sämtliche Messungen bringt Tab. 2 (S. 646).

Ferner befassen sich eine Anzahl Arbeiten mit Einzeluntersuchungen. Siegbahn u. Ray [247] geben für das $a_{1,2}$ -Dublett die Wellenlängendifferenz 3.86, Gerlach [216] 3.84, Spencer [413] für den gleichen Wert 3.80 (3.84) X.E. in 1. (2.) Ordnung an. Einige der von Dauvillier [188] angegebenen Funkenlinien wurden von Siegbahn u. Ray [247] nicht wieder aufgefunden und durch Kristallfehler erklärt. Die Linien a_3 und a_4 wurden jedoch von Richtmyer u. Ramberg [384] sowie Richtmyer u. Taylor [385] mit Hilfe eines Doppelkristallspektrometers erneut aufgefunden und getrennt. Auf gleiche Weise wurde die $\beta_{1,2}$ -Linie durch Spencer [413] aufgelöst. Auch Dolejšek und Engelmannová [353] geben für den Abstand

$$a_{3,4}$$
 0.9 XE entsprechend $\Delta \left| \frac{\nu}{R} \right| = 0.007$ (3) an.

Für die Untersuchung der Linienstruktur kommen besonders zwei Methoden in Betracht, die beide für die K-Reihe Anwendung fanden. Seljakow, Krasnikow und Stellezky [324], ferner Valasek [388, 389] photometrieren das durch einen guten Kristall bei großer Dispersion erzeugte photographische Spektrum. Die so erhaltenen Ergebnisse stimmen mit denen überein, die mittels aufeinanderfolgender

1) Siehe p. 646, Fußnote 3).

	ei.
esi.	R
9	K.
pe	i.
I.a.	sion
	iis
	En

ne.

Quarz- prisma A.E.	Bearden [418]	1.536 ₅ ±0.001 - 1.388 ±0.001 -
r i A.E.	Bearden [347]	± 0.0002 ± 0.0002 ± 0.0002 ± 0.0002
Strichgitte nlängen ir	Wadlund [343]	+0.0008
Welle	Thi- baud [304]	11540
., istall	Spen- cer [413]	
Doppelkr	Richtmyer und Taylor (385)	
X.E.	Wennerlöf [390]	$\left \begin{array}{c} 1541.232^{4} \\ 1537.395 \\ 1530.91 \\ - \\ 1389.35 \\ 1378.24 \\ 1378.24 \\ \end{array} \right $
= 3029.45	Kawata [377]	
all at: $d_{18^{\circ}}$ $n = \infty$	Beuthe [370]	1407.3
r, Einkrist uf Kalksp	Siegbahn [368]	1541.243 [*]) 1537.396
Kristallgitte bezogen a	Schrör [296]	1541.15 1537.30°) 1389.35
h X.E.,	Leide [291, 292]	1541.02 1537.29 1389.29 1377.98
enlängen i	Weber [274]	1541.18 1537.30 ⁶) 1389.34
Well	Lang [239]	1541.19 1537.32
m= mbm	······································	$\begin{array}{c} 46.0^{1} \\ 100^{1} \\ 0.25^{2} \\ 3.5 \\ 56 \\ 0.15^{1} \\ 13 \\ 0.15^{1} \\ \end{array}$
ethode	Be- zeich- nung	α ² α ² α ³ α ³
W	Über- gänge	K L _{TI} K L _{TII} Funkenl. Funkenl. K M _{II} Funkenl. K M _{III} Funkenl. Funkenl. Funkenl.

¹) Nach Meyer [364]. Für $\beta_{2\cdot3}$ gibt es 15.8. ²) Nach Richtmyer und Taylor [385]. ³) Dieser Wert von Eriksson, nach Siegbahn, Spektroskopie d. Röntgenstr. 2. Aufl. p. 175. ⁴) Desgl. von Wennerlöf, wie bei ³). ⁵) Als Normale nach Siegbahn und Dolejšek [206].

6) Nach Spencer [413].

646

Kupfer

Reflexion an zwei Kristallen von Susich [327], Ehrenberg u. Susich [310], Purks [341], Ortner [405] und Spencer [413] erhalten wurden. Die Ergebnisse sind in Tab. 3 zusammengestellt, mit Ausnahme der von Purks, dessen Angaben — mehrere Feinstrukturkomponenten der Linien sowie weit größere Linienbreite — von keinem der anderen Autoren bestätigt werden konnten. Für die β_1 -Linie sind aus gleichem Grunde nur die zuverlässigeren Werte von Spencer aufgeführt. Ortner gibt noch an, daß α_2 etwas breiter und unsymmetrisch sei; noch stärker sei dies bei β_1 der Fall, die auch eine — von Spencer aufgelöste, vgl. Tab. 2 — Struktur zu besitzen scheine. Die Breite sei von der Spannung unabhängig.

and the state of the state	a		a	2	β	
	X. E.	Volt	X.E.	Volt	Х.Е.	Volt
Susich [327]	0.35	1.8		-	0.58	3.7
Valasek [388, 389]	0.19	0.9	0.19	0.9	-	_
Spencer [413]	0.30	1.5	0.38	1.9	0.49	2.6

Tabelle 3. Linienbreiten (Halbweiten) der K-Reihe.

Die relativen Intensitäten des K-Spektrums werden von mehreren Autoren genauer gemessen. Siegbahn u. Žaček [231] erhalten für $a_1:a_2:\beta_1$ die Intensitätsverhältnisse 100:51.2:25 nach photographischer Methode. Allison u. Armstrong [251] finden mit Ionisationskammer $\beta_1:\beta_2 = 100:2.4$. Am genauesten dürften wohl die Ergebnisse von Meyer [364] sein, ebenfalls nach photographischer Methode, die in Tab. 2 mit aufgenommen wurden. Spencer [413] erhält mit Doppelkristall die Spitzenintensitäten $a_1:a_2 = 2.44$, für die Flächen dagegen 2.06. Kettmann [224], Stumpen [302], Nasledow u. Scharansky [319] sowie Wißhak [391] untersuchen die Linienintensitäten als Funktion der Spannung.

Von den Absorptionsspektren des Kupfers ist bisher nur das Gebiet der K-Kante untersucht worden. Die neueren Arbeiten ergaben meist, daß die Kante nicht ein einfacher Absorptionssprung ist, sondern bei Absorptionsschichten geeigneter Dicke eine ausgeprägte Struktur besitzt. Diese günstigsten Dicken untersuchen Palacios u. Velasco [406], für Cu finden sie 8.5 μ .

Doch seien zunächst die Werte für die Hauptkante zusammengestellt (in XE):

Leide [260, 261]	1377.65
Dolejšek u. Pestrecov [351, 352]	1377.5
Kievit u. Lindsay [378]	1377.8
Lindh [381]	1378.08
Åse (nach Siegbahn, Spektroskopie	e d.
Röntgenstr. 2. Aufl. p. 265)	1377.4.

Ferner benutzt noch Kawata [397, 398] die Absorption von Linien des gleichen Elementes, um die Lage der Kante genauer messen zu können, und findet auf diesem Wege, daß die $K\beta_2$ -Linie gerade mit der Kante zusammenfalle.

Maxima	Minima	nardi	Lin	dh [381]	allai a gina	Coster und Wolf [350]
Jutania	Junnina	2	۵ ک	⊿ V (Volt)	$\Delta \frac{\nu}{R}$	$\Delta \frac{\nu}{R}$
ŀ	K1	1378.08		-		_
F	K2	1377.0	1.1	7.2	0.5	-
A		-	-	-	-	1.7
	a	1373.3	4.8	31.2	2.3	2.5
В	1200	-	-	-		3.6
	β	1368.7	9.4	61.1	4.5	4.7
C		-	-	-		6.9
1	2	1360.1	18.0	117.0	8.7	8.9
D	1.5.2	-	-		-	12.4
	δ	1350.8	27.3	177.5	13.3	13.1
E		-		-		15.5
1.3 - 1	8	1345.3	32.8	213.2	16.1	16.3
F		-	-		F1	17.9
	η	1339.4	38.7	251.6	19.1	20.0

Tabelle 4. Sekundärabsorption im Gebiet der K-Kante. Reines Element.

Von den oben erwähnten Strukturuntersuchungen seien genannt: Coster u. Wolf [350], sowie Lindh [381] finden eine Anzahl weiterer Minima auf der kurzwelligen Seite, die sie mit griechischen Buchstaben bezeichnen; erstere Arbeit bringt auch die zwischenliegenden Maxima der Absorption, mit großen lateinischen Buchstaben bezeichnet. Lindh findet dabei außer der normalen Kante K_1 noch eine schwächere K_2 . Beider Ergebnisse bringt Tab. 4. Ihre Photometerkurven stimmen sehr gut überein. Die Zahlen von Kievit u. Linds ay [378] sind damit nicht unmittelbar zu vergleichen, da hier von der langwelligen Seite kommend die "Sekundärkanten", also der jeweilige Schwärzungsanstieg, gemessen wird. Man findet sie in Tab. 5.

$ \begin{array}{c} \lambda \\ $	1377.8 —	1375.8 0.96 13.0	1374.2 1.74 23.6	1372.4 2.64 36	1365.3 6.06 82	1363.2 7.09 96	1857.0 `10.11 137
$\frac{\lambda}{\Delta \frac{\nu}{R}}$	1354.1 11.56 157	1349.5 13,9 188	1348.0 14.6 191	1342.2 17.5 238	1337.0 20.2 273	1329.1 24.3 330	1 1

Tabelle 5. Desgl. nach Kievit und Lindsay [378].

Die folgende Tab. 6 gibt den Befund von Lindh hinsichtlich des Einflusses der chemischen Bindung wieder. Schließlich finden Davis und Purks [330] mit Doppelkristallspektrometer für die Weite des Absorptionssprungs 0.70 X.E., was mit der obengenannten doppelten Halbweite der K α_1 -Linie nach Ehrenberg und Mark übereinstimmt.

Auf die Untersuchungen weicher Strahlung auf indirektem Wege soll hier nicht weiter eingegangen werden, da diese Methoden einerseits bereits bei Elementen

Verbindung	Stelle (vgl. Tab. 4)	2	Δλ ¹)	⊿ V ¹)	$\left(\Delta \frac{\nu}{R} \right)^{1}$
CuCl ₂	Κ α' β'	1377.00 1371.9 1362.2	$1.08 \\ 6.2 \\ 15.9$	7.0 40.3 103.4	0.52 3.0 7.7
$CuSO_4$	K a'	1376.58 1372.0	$\begin{array}{c} 1.50\\ 6.1 \end{array}$	9.8 39.7	0.72 2.9

Tabelle 6.	Absorptio	nsspektren	chemischer	Verbindungen,	nach	Lindh	[381]	1.

mittlerer Ordnungszahl nicht sehr zuverlässige Ergebnisse liefern, andererseits sie durch die neuere Entwicklung nur noch historischen Wert haben. Sie seien nur kurz genannt. Petry [294] mißt die Geschwindigkeit ausgelöster Sekundärelektronen. Eine größere Anzahl Arbeiten beschäftigt sich mit der Bestimmung von "kritischen Potentialen". So Kurth [210, 211], Mohler u. Foote [217], Horton, Andrewes u. Davies [223], Thomas [273], Compton u. Thomas [280], Chu [255], Andrewes, Davies u. Horton [276], Davies u. Horton [282], Hamer u. Singh [313], Richardson u. Chalklin [342].

Zum Schluß bringen wir in Tab. 7 die Zusammenstellung der Energieniveaus nach Siegbahn, wobei die Namen der Niveaus nach Bohr und Coster gewählt sind, während für die Linienbezeichnungen allgemein die nach Siegbahn benutzt werden.

Röntgenniveau	K	LI	L _{II}	L _{III}	MI	M _{II, III}	M _{IV} , v
Opt. Symbol	$1^2S_{\frac{1}{2}}$	$2^2S_{\frac{1}{2}}$	$2^{2}P_{\frac{1}{2}}$	$2 {}^{2}P_{\frac{3}{2}}$	$3^{2}S_{\frac{1}{2}}$	$3^{2}P_{\frac{1}{2}}, \frac{3}{2}$	$3{}^{2}\mathrm{D}_{\frac{3}{2}}, {}_{\frac{5}{2}}$
$\frac{\nu}{R}$	661.6 ³)	81.0	70.3	68.9	8.9	5.7	0.4

Tabelle 7. Energiewerte der Röntgenniveaus nach Siegbahn²).

2. Bandenspektra.

Cu-Banden. Obwohl mehrere neue Untersuchungen über die in der älteren Literatur als Kupferbanden bezeichneten Spektren gemacht worden sind, steht auch jetzt noch nicht eindeutig fest, welche Moleküle Träger der im Cu-Bogen und in Cu-Flammen auftretenden Banden sind. Sicherlich gehört ein Teil der in Band VII p. 360 u. 361 aufgeführten Wellenlängen zum CuH-Molekül, dessen Spektrum im nächsten Abschnitt genauer behandelt wird, während die übrigen Kanten wahrscheinlich teils CuO-Banden und teils Cu₂-Banden sind. Mulliken [265] findet, daß neben den von ihm aufgenommenen Cu-Halogenbanden stets im Roten ein Bandensystem auftritt, das entweder zu CuO oder Cu₂ gehört. Die Banden treten meist paarweise auf und sind nach Rot abschattiert. Die kurzwellige Komponente ist relativ schwach im Gegensatz zu den Angaben älterer Autoren, die keinen bemerkenswerten Intensitäts-

¹⁾ Gegenüber dem reinen Element.

²) Spektroskopie der Röntgenstrahlen, 2. Aufl., Berlin 1931, p. 348.

³) Experimentell. Die übrigen berechnet.

unterschied gefunden haben. Die Wellenlängen der gemessenen Kanten sind: 2 6046 (Intens. 1); 6060 (7); 6148 (2); 6163 (8); 6283 (0?); 6296 (2); 6381 (0); 6403 (1); 6435 (3); 6490 (1); 6530 (1); 6547 (2). Außer den drei vorletzten stimmen diese Messungen relativ gut mit denjenigen von Hertenstein [132] überein. Eisenschitz u. Reis [284] experimentieren mit gespaltenen Flammen und stellen fest, daß das Flammenspektrum des Cu aus zwei verschiedenen Spektren besteht, von denen das eine einem Cu-Oxyd und das andere einem sauerstofffreien Träger zuzuordnen ist. Das Oxydspektrum besteht aus diffusen Banden im Violett und Grün mit kontinuierlichem Untergrund und ferner einigen roten Banden. Das O-freie Spektrum dagegen besteht aus scharfen, deutlich aufgelösten Banden im Blau und Violett. Damit sind offenbar die früher nicht richtig gedeuteten CuH-Banden gemeint, wie im folgenden noch näher erörtert werden soll. Mahanti [382] erhält im Cu-Bogen in Luft dieselben Banden, die Mulliken (siehe oben) bei Anregung mittels aktiven Stickstoffes erhielt. Er beschreibt sie genau so wie Mulliken, hält sie für ${}^{2}\Sigma \rightarrow {}^{2}\Sigma$ -Übergänge und gibt als Kernfrequenzen für den Anfangs- und Endzustand 620 bzw. 345 cm⁻¹. Endlich sei hier noch eine Arbeit von Zschimmer, Grisar u. Mees [306] erwähnt, die Messungen über die Lichtdurchlässigkeit mit CuO gefärbter Gläser enthält.

CuH-Banden. Das die früher fast allgemein als Cu_2 -Banden gedeuteten Spektren in Wirklichkeit Cu-H-Banden sind, wurde erst durch Mulliken [243] eindeutig festgestellt, dem die von Frerichs [221] gemachten Messungen, insbesondere die von Frerichs nicht als solche erkannten Isotopieaufspaltungen, eine sichere Handhabe für die richtige Zuordnung boten. Zwar hat bereits Basquin [72], der die (0.0) Bande 4280 im Bogen in Wasserstoffatmosphäre fand, die richtige Meinung vertreten, doch wurde seine Ansicht von den zahlreichen anderen Autoren [13; 16; 21; 33; 52; 79; 84; 101], die diese Banden für CuO- oder Cu₂-Banden hielten, nicht geteilt. Von den neueren Arbeiten über das CuH-Spektrum sind zweifellos die von Frerichs [221] und von Bengtsson [220] die besten. Zwar sind beide Arbeiten bei Anwendung großer Dispersion mit großer Sorgfalt durchgeführt worden, doch scheint Frerichs neben größerer Vollständigkeit auch noch genauer gemessen zu haben. Im allgemeinen differieren die Messungen der beiden Autoren nur weneige Zehntel Frequenzeinheiten. Da die Einordnung der Kanten in Niveauschemata bei den beiden Autoren nicht übereinstimmt, seien hier beide angeführt.

v'	v"	Bande	ν ₀
0	0	4280	23311.15
0	1	4650	21444.85
1	0	4006	24922.25
1	1	4328	23055.90
1	2	4690	21264.02
2	0	3777	and mentals
2	1	4063	24577.63
2	2	4380	22786.11
2	3	4734	1.1.
3	2	4124	_

Nach Frerichs [221]

Nach Bengtsson [220]

v'	v''	Bande	20
2	3	4690	21264.8
1	2	4650	21445.4
0	1	4607	_
3	3	4456	1440.400 .
2	2	4379	son huis
1	1	4280	23311.3
0	0	4328	
2	1	4006	24922.2
3	1	3777	26444.8

Nach den bereits erwähnten Isotopieeffektuntersuchungen von Mulliken [243] ist zweifellos die Einordnung von Frerichs die richtige. Mulliken berechnet die Rotationsenergie-Isotopieaufspaltung Cu⁶⁷H \rightarrow Cu⁶⁵H für einige höhere Glieder (-22 bis -28) des P-Zweiges der (0.0) Bande 4280 und findet gute Übereinstimmung mit den aus den Messungen Frerichs ermittelten Werten; das gleiche gelingt ihm für die Aufspaltung der Bandenlinein m = -17 bis m = -21 des P-Zweiges der Bande 4328, wo zu der Rotationsenergie- noch eine Oszillationsenergieaufspaltung hinzukommt, die für diese (1.1) Bande etwa 0.06 cm⁻¹ beträgt. Bell [252] wiederholt Mullikens Diskussion des Isotopieeffektes und kommt zu gleichen Resultaten wie dieser. Ferner ermittelt er die Größe des Kernabstandes im CuH-Molekül für den Grundzustand zu $r_0 = 1.467 \cdot 10^{-8}$ und für den angeregten Zustand 1.578 $\cdot 10^{-8}$ cm. Das hier besprochene Kupferhydridspektrum im Blau und Violett ist nach Rot abschattiert und läßt sich durch folgende Nullinienformel darstellen:

$$v(v'v') = 23311.15 + (1658.81 v' - 44.71 v'^2) - (1903.48 v'' - 37.18 v''^2).$$

Da jede Teilbande dieses Systems nur einen P- und R-Zweig zeigt, ohne jede Multiplettaufspaltung, handelt es sich hier um einen ${}^{1}\Sigma \rightleftharpoons {}^{2}\Sigma$ -Übergang. Um die von Frerichs und Bengtsson angewandte Bezeichnung der Rotationslaufzahlen in die heute übliche Bezeichnungsweise zu übersetzen, muß man bei R-Zweigen K = m - 1und bei P-Zweigen K = m setzen.

Ein zweites Kupferhydridbandensystem, das in Absorption auftritt, scheint im Ultravioletten bei 2240 zu liegen, wo Frl. Stücklen [271] eine nach Rot abschattierte Cu-Absorptionsbande im Spektrum des Cu-Unterwasserfunkens gemessen hat. Es gelingt ihr, die Bande in R- und P-Zweige aufzulösen. Sie mißt 58 R-Linien und 42 Glieder des P-Zweiges. Im Cu-Bogen in Luft und bei vermindertem Druck sucht sie diese Bande vergeblich; auch in Wasserstoff von Atmosphärendruck und in der Wasserstoffflamme erscheint sie nicht. Weitere Versuche, diese Bande beim Zünden des Bogens unter Wasser zu erregen, schlugen ebenfalls fehl. Den Bogen in Wasserstoff von vermindertem Druck brennen zu lassen hat sie leider nicht versucht. Die Frequenz der Nullinie berechnet sie zu 44629.1 cm⁻¹ und die Trägheitsmomente J₀ und J₁ des normalen und des angeregten Moleküls zu $J_0 = 12.7 \cdot 10^{-40}$, $J_1 = 14.2 \cdot 10^{-40}$ g cm². Danach würde das Trägheitsmoment der Bande 2240 etwa dreimal so groß sein als das aus den sichtbaren CuH-Banden nach Frerichs' Angaben berechnete $J_0 = 3.5 \cdot 10^{-40}$, $J_1 = 4.1 \cdot 10^{-40}$. Stücklen glaubt daher als Träger dieser Absorptionsbande ein anderes Kupferhydridmolekül (CuH_o?) annehmen zu müssen, als für die sichtbaren Emissionsbanden. Es ist jedoch wahrscheinlicher, daß die Ursache dieser Diskrepanz in der Bandenanalyse zu suchen ist. Nach Bengtsson u. Hulthén [348] besteht diese ultraviolette Absorptionsbande aus je einem P-, Q- und R-Zweig und ist als ein $^{1}\Pi \rightleftharpoons ^{2}\Sigma$ -Ubergang zu deuten, wobei der Endterm 12 mit demjenigen der sichtbaren Emissionsbanden identisch ist.

Weiter berichtet Mahanti [401] über ein neues CuH-Bandensystem, das aus sechs Bandenköpfen besteht im Spektralbereich $\lambda\lambda$ 2900—2200. Es besitzt eine andere Struktur als die beiden oben erwähnten. Die Bandenköpfe sind hier nämlich doppelt, woraus hervorgeht, daß der Träger dieses Spektrums ein Molekül mit ungerader Valenzelektronenzahl sein muß; daher deutet der Verf. dieses System als CuH⁺-Banden, die

aus neun Zweigen, sechs Hauptzweigen und drei Satellitenzweigen bestehen. Ferner ergaben Intensitätsbeziehungen der Bandenlinien niedriger Quantenzahlen innerhalb der Zweige, daß Q > R > P, das System also einem ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ -Übergang zuzuordnen ist, wobei das ${}^{2}\Pi$ -Niveau umgekehrt ist. Die Analyse ergab ferner folgende Molekülkonstanten: $w_{0}^{"} = 1874 \text{ cm}^{-1}$, $B_{0}^{"} = 3.30 \text{ cm}^{-1}$ und $D_{0}^{"} = -4.16 \cdot 10^{-5}$.

Kupferhalogenidbanden. Die in Band VII1 dieses Werkes besprochenen stark differierenden Messungen von Kupferhalogenidbandenkanten sind durch eine Arbeit von Ritschl [295; 321] völlig überholt worden. Ritschl photographiert die ganze Gruppe CuF, CuCl, CuBr, CuJ in Absorption an einem 3.5 m-Konkavgitter. Als Absorptionsgefäße dienen ihm neben offenen Porzellanrohren evakuierbare Quarzrohre von 15 cm Länge, die bis auf etwa 1200º C elektrisch geheizt werden. Als kontinuierliche Lichtquelle benutzt er eine Wolframpunktlampe. Die teils im Vakuum, teils bei Atmosphärendruck verdampften Cu-Salze zeigen gleiche Absorptionsspektren, einerlei ob Cupri- oder Cuprosalze verwendet werden. Die Vermutung, daß der Träger dieser Banden zweiatomig ist, wird durch die gemessenen Isotopieaufspaltungen der Kanten bestätigt. CuJ-Banden lassen sich nur bei Verdampfen im Vakuum rein erzeugen, da bei Luftzutritt sofort die J2-Banden neben dem CuJ-Spektrum auftreten infolge teilweiser Zersetzung von CuJ. Auch die Br2-Banden erscheinen bei Luftzutritt schwach, ohne allerdings zu stören. Eine Auflösung der Bandenkanten in einzelne Linien gelingt selbst bei Anwendung größter Dispersion nicht, wie die bereits früher schon erwähnten Versuche von Frerichs zeigten, der in der zweiten Ordnung eines 6 m-Gitters photographierte.

Da die Tabellen der von Ritschl gemessenen Kanten sehr umfangreich sind, beschränken wir uns hier auf die Angabe der von Birge (Int. Critical Tables V p. 409, 1929) nach den Messungen Ritschls aufgestellten Kantenformeln in moderner Schreibweise:

	Cu ⁶³ F,	A:	$v(v', v'') = 17556.7 + (638.33 v' - 3.488 v'^2) - (612.84 v'' - 3.625 v''^2)$
	Cu ⁶³ F,	B:	$v(v', v'') = 19752.9 + (647.62 v' - 3.725 v'^2) - (612.84 v'' - 3.625 v''^2)$
	Cu ⁶³ F,	C:	$v(v', v'') = 20270.9 + (640.88 v' - 4.188 v'^2) - (618.70 v'' - 3.950 v''^2)$
1)	Cu ⁶⁵ F,	B:	$v(v', v'') = 19752.9 + (645.31 v' - 3.698 v'^2) - (610.65 v'' - 3.599 v''^2)$
1)	Cu ⁶⁵ F;	C:	$v(v', v'') = 20270.0 + (638.59 v' - 4.158 v'^2) - (616.49 v'' - 3.922 v''^2)$
-	Cu63Cl35,	A:	$v(v', v'') = 18997.7 + (407.9v' - 1.90v'^2) - (415.7v'' - 1.90v''^2)$
	Cu63Cl35,	B:	$v(v', v'') = 20479.7 + (399.04v' - 1.668v'^2) - (415.22v'' - 1.682v''^2)$
	Cu63Cl35,	C:	$v(v', v'') = 20626.0 + (397.45v' - 1.654v'^2) - (415.53v'' - 1.648v''^2)$
	Cu63Cl35,	D:	$v(v', v'') = 22961.7 + (393.16v' - 1.839v'^2) - (415.57v'' - 1.679v''^2)$
	Cu ⁶³ Cl ³⁵ ,	E:	$v(v', v'') = 23071.2 + (404.07 v' - 1.818 v'^2) - (414.90 v'' - 1.278 v''^2)$
1)	Cu65C]35	R.	$r(s', s'') = 20470.7 + (206.94 s', -1.640 s'^2) (419.02 s'', -1.664 s'')$
-)	Ch 65(135	C.	r(v', v') = 20415.1 + (350.64v - 1.049v') - (412.95v - 1.004v')

1) Cu⁶⁵Cl³⁵, C: $v(v', v') = 20626.0 + (395.26v' - 1.636v'^2) - (413.24v'' - 1.630v''^2)$ 1) Cu⁶⁵Cl³⁵, D: $v(v', v') = 22961.7 + (390.94v' - 1.819v'^2) - (415.28v'' - 1.656v''^2)$ 1) Cu⁶⁵Cl³⁵, E: $v(v', v') = 23071.2 + (401.84v' - 1.798v'^2) - (412.61v'' - 1.264v''^2)$

1)	Cu63Cl37,	B: 1	v (v'.	v'') =	20479.7	+(3)	392.05 v	' - 1	.610 v'	2)-(-	407.94	v" -1	1.624 v'	⁽²⁾
1)	Cu63Cl37.	C: 1	v (v'.	v'') =	20626.0	+ (3	390.48 z	i - 1	.596 v	2)-(408.25	v" -	1.591 v'	12)
1)	Cu63C]37	D: 1	v (v':	v'') =	22961.7	+ (3	386.271	i - 1	.775 v	2)-(408.29	v" -	1.616 v'	"2)
1)	Cn63C]37	E.	v (n'	v'') =	23071.2	+ (3	396.99 7	' - 1	.755 v	2)-(407.63	v"	1.234 v'	"2)
'	ou or ,		. (0,	•)-	Loonin	1 (5		11000		, ,			TT STORE	1
1)	Cu65C137	R.	n (al	a") -	90479 7	- (5	389.81	1-1	591 %	2)_(405 62	·"	1 605 v	(2)
1)	Cn65C137	C	v (0',	a") -	20410.1	1 (5	388 26	1-1	578 %	2)_(405 92	»" —	1 573 0	12)
1)	Cu-65C137	D. 1	v (0',	0)-	99061 7	+ (384.07	1	755	2)(405.96		1 597 1	12)
7)	Cuescis, Cuescis,	D: 1	v(v)	0)=	22501.1	+ (204.72	/ 1	725	2) (405.30		1.990 .	12)
-)	Cuoscis,	E: 1	v(v)	v)=	25071.2	+ (6	594.151) - 1	1.159 0	-)-(405.50	v —	1.2200	-)
	0 000 00				00400.0	1 16	005 10	, ,	000	2) /	919 70	,,,	0 000	119
	CuºaBr'a,	A: :	v(v)	$v^{(\prime)}) =$	20489.2	+ (2	295.121		1.008 0	-)-(010.10	v —	0.800 0	-)
	Cu ⁶³ Br ⁷⁹ ,	B:	v(v',	$v^{\prime\prime}) =$	23029.3	+(2)	282.904	<u> </u>	1.323 v	²)-(²	313.16	v -	0.908 v	-)
	Cu ⁶³ Br ⁷⁹ ,	C:	v(v',	$v^{\prime\prime}) =$	23452.4	+ (:	294.78	v — 1	1.423 v	²)-(313.83	v'' —	0.888 v	(**)
													-	
1)	Cu ⁶⁵ Br ⁷⁹ ,	A:	v(v',	$v^{\prime\prime}) =$	20489.2	+(2)	292.59	v' = 0	0.991 v'	(2) - (310.01	$v^{\prime\prime} -$	0.786v	" ²)
1)	Cu65Br79,	B:	v(v',	$v^{\prime\prime}) =$	23029.3	+(:	280.47	v' - 1	1.300 v'	(2) - (310.42	v''-	0.892v	('' ²)
1)	Cu ⁶⁵ Br ⁷⁹ ,	C:	v(v',	$v^{\prime\prime}) =$	23452.4	+ (292.25	v [′] — 1	1.398 v	$^{\prime 2})-($	311.13	v''-	0.873v	('' ²)
1)	Cu63Br81,	A:	v(v',	v'') =	20489.2	+ (293.50	v' — ().997 v'	²)-(310,98	$v^{\prime\prime}-$	0.791 v	(* ²)
1)	Cu63Br81,	B:	v (v'.	v'') =	23029.3	+ (281.34	v' - 1	1.309 v	²)-(310.44	v''	0.898 v	(" ²)
1)	Cu63Br81.	C:	v (v'.	v'') =	23452.4	+(3)	293.16	v' — 1	1.407 v	⁽²⁾ —(312.10	v''-	0.878 v	('2)
				,										
1)	Cu65Br81	A:	(1.	v'') =	20489.2	+ 6	290.95	v' - (0.980 v	⁽²⁾ —(308.28	v''	0.778 v	/'2)
1)	Cu65Br81	B	(1)	v'') =	23029.3	+ 0	278.89	· - 1	1.286 v	⁽²⁾ —(308.73	v"	0.883 v	(12)
1)	Cu65Br81	C.	(1)	v'') =	23452.4	+ 6	290.61	·	.383 v	(2) - (309.39	v''	0.863 v	(12)
1			(0)	- /		. (.				, ,				
	Cu63.I	Α.	(2)	n'') =	19708.2	+ (211.05	v' - 5	2.215 0	⁽²⁾ —(264.93	v" -	0.719 v	(12)
	Cu63.I	R.	(1)	21') -	21748 9	+ (241.8	1-1	1.88 1	(2)(265.4	21'-	1.0 0'2	0
	Cu63 T	D.	(0)	~ ~	91859 9		220 17	1-1	1 528	(2)	263 90	11' -	0.728	12)
	C. 63 T	D.	(0,	~)=	00021	+ (011 96		0.017	(2)	962.92		0.704	(12)
	Cu ^o .	Di	10.	v =	44901.0		411.001	-	0.0110	-)(200.00	0	0.1010	

¹) Diese Formeln sind aus den beobachteten Banden des Hauptisotops berechnet worden; z. B. Cu⁶³Br⁷⁹ ist das Hauptisotop von CuBr für jedes der drei Systeme A, B, C.

 $(v', v'') = 23982.7 + (228.28 v' - 0.954 v'^2) - (263.81 v'' - 0.671 v''^2)$

²) Nach Birge (Bull. Nat. Res. Counc. 11 Nr. 57 p. 69, 1926).

2) Cu63J,

E:

Ferner sei noch bemerkt, daß alle diese Banden nach Rot abschattiert sind, und daß alle Systeme desselben Moleküls den gleichen Grundzustand haben.

Bereits vor den Untersuchungen von Ritschl hat Mulliken [265, 242] diese Spektren verschiedentlich zur Prüfung des Isotopieeffekts bei Bandenspektren herangezogen. Mulliken photographiert die Banden bei Anregung mit aktivem Stickstoff in Emission. Die Kanten von CuJ ordnet er ein und verfolgt in diesem Spektrum den Isotopieeffekt quantitativ. Bei CuCl und CuBr weist er auf sein Vorhandensein hin. Die Wellenlängenangaben Mullikens sind im Mittel alle um etwa 0.25 Å.E. größer als die von Ritschl, was darauf zurückzuführen ist, daß Ritschl den äußersten Rand

der Kante mißt, während Mulliken das Fadenkreuz der Meßmaschine auf die intensivste Stelle der Kante einstellt.

Ramaneffekt: Smekal-Ramaneffektuntersuchungen sind von Gerlach [373] an Kupfernitrat, von Mukherjee und Sen-Gupta [365], sowie Hollaender u. Williams [358] an Kupfersulfat ausgeführt worden. Gerlach findet für wasserfreies $Cu(NO_3)_2$ keine meßbaren Ramanlinien, während er für $Cu(NO_3)_2 + 6H_2O \Delta \nu = 1052.9$ und für $Cu(NO_3)_2 + 9H_2O \Delta \nu = 1044.4 \pm 0.9$ cm⁻¹ erhält, die wahrscheinlich dem NO_3 -Ion zukommen. Die Messungen an kristallinem und wässerigem Kupfersulfat liefern für $CuSO_4 \cdot 5H_2O$ (kristallin) $\Delta \nu = 1671$; 975; 853; 980 cm⁻¹ und für $CuSO_4 \cdot 5H_2O$ (wässer. Lös.) $\Delta \nu = 1671$; 1472; 975; 607; 980 und 729 cm⁻¹, die wohl dem SO_4 -Ion zuzuordnen sind.

Abgeschlossen 1. 6. 1932.

654

