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Oznaczenie Opis

AF, (0, z-) funkcja nieoznaczonosci

AFW (6,7) szerokopasmowa funkcja nieoznaczonosci

BID (t,w) transformata Borna-Jordana

BUD, (t,w) |transformata Butterworth’a

CBBD, (1,0) transformata Costa-Boudreaux’a-Bartelsa

CWD  (1,0) transformata Choi-Williamsa

e (1) chwilowa energia sygnatu (ang. instantaneous energy )

B, catkowita energia sygnatu

f czestotliwosé

E.E prosta transformata Fouriera wzgledem zmiennej wskazanej w indeksie

F{;' E ! odwrotna transformata Fouriera wzgledem zmiennej wskazanej w
indeksie

GCWD, ( , a)) uogoélniona transformata Choi-Williamsa

GWD, (;, a)) uogoélniona transformata Wignera

funkcje okien wygtadzajacych w czasie

funkcje okien wygtadzajacych w czestotliwosci

LD (t, w) transformata Levina

m_", moment zwykly rzedu r dla sygnatu

= moment zwykty rzedu r dla kwadratu sygnatu

0 globalny czasowy moment zerowego rz¢du dla reprezentacji Wignera
WD,

m® ( w) lokalny czasowy moment zerowego rzedu dla reprezentacji Wignera
WD

M. moment zwykty rzedu r dla widma
X

M’ moment zwykty rzedu r dla kwadratu widma
%[

M? globalny czestotliwosciowy moment zerowego rzedu dla reprezentacji
i Wignera

M, (1) lokalny czgstotliwosciowy moment zerowego rzedu dla reprezentacji
s Wignera

MHD  (t,0) transformata Margineau’a-Hilla

ND, (t,@) transformata Nutalla
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Oznaczenie Opis

P moc $rednia sygnatu

PD (1,0) transformata Page’a

PWD (t,@) |pseudo-transformata Wignera

r(7)

funkcja autokorelacji sygnatu

L (7)

chwilowa funkcja autokorelacji sygnatu

R(0) funkcja autokorelacja sygnatu zdefiniowana w oparciu o jego widmo
R, ( f, T) wygtadzona chwilowa funkcja autokorelacji
RD, ( t, a)) transformata Rihaczka
RGWD  (t,w) uogdblniona transformata Wignera o wartosciach rzeczywistych
SPEC, ( f, w) spektrogram
SWD, ( t, a)) wygtadzona wersja transformaty Wignera
SPWD, ([, a)) wygtadzona wersja pseudo-transformaty Wignera
t czas
t_"_ unormowany moment zwykty rzedu r dla sygnatu
. unormowany moment zwykty rzedu r dla kwadratu sygnatu
¢! globalny unormowany czasowy moment pierwszego rzedu dla
"o reprezentacji Wignera
thy (@) lokalny unormowany czasowy moment pierwszego rzedu dla
M reprezentacji Wignera
TF© (6,7) korelacyjna klasa biliniowych przeksztatcen CZasowo-
czestotliwosciowych
TE® (1,0) energetyczna klasa biliniowych przeksztalcen CZasowo-
czgstotliwosciowych
TEC'E) (1,0) uogélnione réwnanie Cohena opisujace energetyczng klas¢ biliniowych
przeksztatcen czasowo-czestotliwosciowych
u dodatkowa zmienna catkowania czasu
WD (t,w) transformata Wignera sygnatu x(7)
WD, (t,0) wzajemna transformata Wignera sygnatow x(7) 1 y(¢)
WD, (@ ) transformata Wignera sygnatu x(f) wyznaczona w oparciu o jego widmo
WD, , (w,1) wzajemna transformata Wignera sygnalow x(r) i y(f) wyznaczona w
' oparciu o ich widma
WVD (1, w) transformata Wignera-Ville’a
x (1) sygnat
X (o) transformata Fouriera sygnatu, widmo
‘X ( a))’ widmo amplitudowe
X wartos$¢ srednia sygnatu
ZAMD  (t,0) transformata Zhao-Atlasa-Marks’a
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Wykaz oznaczen

Oznaczenie Opis

& moment centralny rzgdu r dla sygnatu

8", moment centralny rzedu r dla kwadratu sygnatu

o unormowany moment centralny rzedu r dla sygnatu

o, unormowany moment centralny rzedu r dla kwadratu sygnatu

7 dodatkowa zmienna catkowania pulsacji

% przesunigcie pulsacji

A dodatkowa zmienna catkowania przesunigcia czestotliwosciowego

H przesunigcie czgstotliwosciowe

P, (a)) chwilowe widmo gestosci energii

9, (u,7) funkcja jadra — postac czestotliwosé-czas

., (0,7) funkcja jadra — posta¢ pulsacja-czas

¢, (1.7) funkcja jadra — postac¢ czas-czas

@, (1, f) funkcja jadra — postac czas-czestotliwosc

., (t.0) funkcja jadra — posta¢ czas-pulsacja

9, (u, f) funkcja jadra — postac czestotliwosc-czestotliwose

B (0, 0) funkcja jadra — posta¢ pulsacja-pulsacja

oo globalny unormowany czasowy moment centralny drugiego rzedu dla
' reprezentacji Wignera

S (a)) lokalny unormowany czasowy moment centralny drugiego rzedu dla
' reprezentacji Wignera

T przesunigcie czasowe

(p( a)) widmo fazowe
0] pulsacja
—_ unormowany moment zwykty rzedu r dla widma
X
r unormowany moment zwykty rzedu r dla kwadratu widma
|x[
I, moment centralny rzedu r dla widma
r|" p moment centralny rzedu r dla kwadratu widma
<P
At przedziat czasu
Aw przedziat czgstotliwosci
AtXAw przedziat czasowo-czestotliwosciowy (,.komorka”, ,kostka” czasowo-
czestotliwosciowa)
AT, szeroko$¢ sredniokwadratowa sygnatu
AQ, szerokos¢ sredniokwadratowa widma
3 unormowany moment centralny rz¢du r dla widma
2|" ’ unormowany moment centralny rz¢du r dla kwadratu widma
<P
= globalny unormowany czestotliwosciowy moment centralny drugiego

rzedu dla reprezentacji Wignera

Vil
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Oznaczenie Opis

el (1) lokalny unormowany czgstotliwosciowy moment centralny drugiego
' rz¢du dla reprezentacji Wignera

o (0).[X(0) 2 | widmo gestosci energii

Q. (t) lokalny unormowany czestotliwosciowy moment pierwszego rzedu dla
’ reprezentacji Wignera

Q. globalny unormowany czgstotliwosciowy moment pierwszego rzedu dla

reprezentacji Wignera

viil
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Przedmowa

Niestacjonarnos¢ sygnatow stawia metodom analizy widmowej szereg probleméw
i nowych wymagan. Wyznaczenie jedynie widma gestosci energii sygnatu
niestacjonarnego pozwala uzyska¢ ogélng informacj¢ o charakterze sygnatu, a cata
informacja o zmiennos$ci czasowej widma jest przy tym podejsciu tracona. Naruszenie
podstawowego zalozenia analizy fourierowskiej, warunku stacjonarnosci sygnatu, moze
by¢ rozwiazane poprzez poszukiwanie reprezentacji sygnatu opisanej w potaczonej
dziedzinie czasu i czgstotliwosci.

Pierwsze obszary zastosowan reprezentacji czasowo-czestotliwosciowych
dotyczyty probleméw mechaniki kwantowej. Prace Wignera, Gabora, Ville’a czy Moyala
z poczatku lat czterdziestych ubieglego stulecia, wskazaty pierwsze kierunki tworzenia
dziedziny czasowo-czgstotliwosciowej. Kolejne dwa dziesigciolecia przyniosty szereg
prac, takich autoréw jak Page, Rihaczek, Levin czy Mark, ktére zaowocowatly
wprowadzeniem  szeregu  nowych  reprezentacji  czasowo-czestotliwosciowych,
adoptowanych zwtaszcza dla potrzeb analizy sygnatéw. Jednak dopiero gwaltowny wzrost
mocy obliczeniowe] komputerow uczynit te metody bardzo atrakcyjnymi. W $lad za
nowymi mozliwosciami aplikacyjnymi pojawity si¢ publikacje, ktére poza wspomnianymi
wczesniej pracami, stanowig dzi§ baz¢ teoretyczna przeksztalcen czasowo-
czestotliwosciowych. Mowa tu o pracach Classena 1 Mecklenbriukera, szczegétowo
opisujacych przeksztatcenie Wignera wraz z problemami jego dyskretyzacji, czy pracach
Boashasha, wskazujacych na mozliwosci implementacji omawianej grupy przeksztatcen.
Na szczegdlng uwage, zwlaszcza z punktu widzenia niniejszej pracy, zastugujq publikacje
Leona Cohena, wprowadzajace uogolnione rownanie energetycznej klasy przeksztatcen
czasowo-czgstotliwosciowych. Do tej grupy zaliczy¢ mozna rowniez prace Hlawatscha
1 Boudreaux-Bartelsa. O znaczeniu przeksztalcen czasowo-czgstotliwosciowych swiadczyé
moze rowniez zwigkszajaca si¢ liczba pozycji ksigzkowych. Dzigki takim autorom jak
Quian 1 Chen, Papandrou-Suppappola, Poularikas, Boashash czy Zielinski, problemy
analizy czasowo-czestotliwosciowe] zostaly zebrane 1 opracowane catosciowo.

Wspéiczesne mozliwosci aplikacyjne pozwolity wykorzysta¢ metody analizy
czasowo-czgstotliwosciowe] w dziedzinie przetwarzani sygnatléw mowy [1, 23, 58, 60],
czy analizie danych sejsmicznych [10] 1 ekonomicznych [15]. Jedno z ostatnich
zastosowan dotyczy sygnatow biomedycznych, zwtaszcza badan elektroencefalogramow
[9,24,48,55,56]. Specjalna grupa przeksztalcen czasowo-czestotliwosciowych tzw.
korelacyjna grupa przeksztatcen, znalazta zastosowanie w technice radarowej [13].

Autor  dostrzega  mozliwosci  zastosowania  przeksztalcen — czasowo-
czestotliwosciowych réwniez w elektrotechnice. Giowna motywacje stanowia sygnaty,
jakie towarzysza pracy wspofczesnych uktadéw elektrycznych. Mozna tu wspomnied
o wplywie uktadéw przeksztattnikowych czy piecéw tukowych, gdzie oprécz sktadowych
charakterystycznych mozemy mie¢ do czynienia ze sktadowymi niecharakterystycznymi,
a nawet inter — oraz subharmonicznymi. Nie bez znaczenia pozostaja stany przejsciowe,
ktérych czas trwania np. w sieciach wysokiego napigcia, moze osiaga¢ nawet wartosci od
5 do 10 okresow sktadowej podstawowej. W takich przypadkach klasyczna analiza
Fourierowska moze okaza¢ si¢ niewystarczajaca. Inne nowoczesne metody estymacji
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widma, takie jak statystyki wyzszych rzedow czy grupa przeksztatcen parametrycznych,
wymagaja przyjecia pewnych poczatkowych zatozen. Problemy wyboru ilosci
estymowanych sktadnikéw badz szerokosci okna pomiarowego moga by¢ rozwiazane na
drodze wstgpnego przeksztatcenia sygnatu za pomoca omawianych nieparametrycznych
przeksztalcen czasowo-czestotliwosciowych.

W obszarze elektrotechniki podj¢to réwniez pierwsze proby wykorzystania
reprezentacji czasowo-czestotliwosciowych. Obecnie najpopularniejsza reprezentacja jest
krotkoczasowa transformata Fouriera, a coraz wigksze zainteresowanie wzbudza
transformata falkowa. Prace takich autoréw jak Lobos z zespolem [34,36,37,42,43],
Mindykowski  [47], Rosotowski [53], wskazuja na rosnace zainteresowanie
transformacjami czasowo-czgstotliwo$ciowymi rowniez wsrod elektrykow.

Ujeta w  niniejszej pracy proba adaptacji  przeksztalcen  czasowo-
czestotliwosciowych klasy Cohena dla potrzeb elektrotechniki wydaje si¢ zatem celowa.
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Cel pracy

Celem pracy jest zbadanie mozliwosci wykorzystania nieparametrycznych przeksztatcen
czasowo — czgstotliwosciowych klasy Cohena do badania niestacjonarnych sygnatow
wystepujacych w elektrotechnice 1 elektroenergetyce. Pozadanym jest wybdr optymalnych
reprezentacji, okreslenie obszaru ich zastosowan, cech charakterystycznych, zaréwno
korzystnych jak i ograniczajacych celowos¢ ich wykorzystania.

Teza pracy

Dzigki modyfikacji wtasciwosci badanej klasy przeksztalcen, poprzez doboér odpowiedniej
funkcji jadra, mozna uzyskac przeksztatcenia dopasowane do danej klasy sygnatu. Umozliwi
to doktadniejsze wyznaczenie parametrow mocno znieksztalconych sygnatéw oraz lepsza
diagnoze¢ stanu pracy uktadéw elektrycznych. Poprawa doktadnosci dotyczy parametrow
w dziedzinie czasu i dziedzinie czgstotliwosci, w poréwnaniu do parametrow wyznaczonych
z zastosowaniem algorytmu Fouriera.

Uktad pracy

Niniejsza pracg otwiera przeglad podstawowych parametrow sygnatu, zdefiniowanych
w  dziedzinie  czasu, oraz  parametrow  widma = sygnatu,  zdefiniowanych
w dziedzinie czestotliwosci. Podkreslone zostaja wzajemne relacje pomiedzy obiema
dziedzinami, a interpretacje niektorych parametréw, takich jak odcigta srodka cigzkosci czy
wariancja, sq szczegodlnie ukierunkowane na zdefiniowang p6zniej pofaczona dziedzing czasu
1 czgstotliwosci.

Rozdzial drugi poswigcony jest biliniowym nieparametrycznym przeksztatceniom
czasowo-czgstotliwosciowym. Nakreslono w nim dwa giéwne nurty interpretacyjne
omawianych przeksztalcen, ktére prowadza do korelacyjnej lub energetycznej klasy
przeksztatcen. Jako przyktad podejscia korelacyjnego opisano funkcje nieoznaczonosci.
Ze wzgledu na cel pracy, gtéwny nacisk potozono na szczegétowy opis energetycznej klasy
przeksztatcen.

W podrozdziale 2.1 zawarto opis przeksztalcenia Wignera, ktére mozna traktowaé
jako bazowe z punktu widzenia budowy innych przeksztalcen grupy energetycznej.
W podrozdziale 2.1.1 autor postanowil zebra¢ wszystkie witasciwosci przeksztatcenia
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Wignera wraz z ich interpretacja, majac na celu po6zniejsze powiazanie z pozadanymi
wilasciwosciami przeksztalcen czasowo-czestotliwosciowych. Podrozdziat 2.1.2 objat swoim
zakresem wplyw obcigzenia sygnatu funkcja okna, ktéra prowadzi do tzw. pseudo-
reprezentacji Wignera, wraz z jej wersja usredniong tzw. wygladzona wersja pseudo-
reprezentacji Wignera. Autor przytacza informacje istotne z punktu widzenia mozliwosci
ttumienia niepozadanych sktadowych krzyzowych, ktére sa charakterystyczna cecha
biliniowych reprezentacji czas-czgstotliwos¢. W  podrozdziale 2.1.3 ujeto réwniez,
szczegblnie wazna z punktu widzenia przetwarzania sygnaléw rzeczywistych, kwesti¢
reprezentacji Wignera sygnatu analitycznego, zwanej réwniez transformatq Wignera-Ville’a.
Jedna z proponowanych w niniejszej pracy mozliwosci wykorzystania omawianych
przeksztalcen polega na wyznaczaniu jednowymiarowych charakterystyk lokalnych
momentow reprezentacji czasowo-czestotliwosciowych. Podrozdziat 2.1.4 zawiera definicje
1 interpretacje momentéw transformacji Wignera, zarowno lokalnych jak i globalnych,
ze szczegblnym wskazaniem na mozliwos¢ wykorzystania uzyskanych charakterystyk jako
wskaznikéw niestacjonarno$ci. Wreszcie w podrozdziale 2.1.5 autor wyprowadza dwa
przyktady analitycznego wyznaczania transformacji Wignera sygnatéw ograniczonych,
ktore stuzy¢ maja uwidocznieniu natury omawianego przeksztatcenia.

Podrozdzial 2.2  poswigcono  opisowi  przeksztalcenia zwanego funkcjq
nieoznaczonosci. Cho¢ przeksztalcenie to nalezy do korelacyjnej grupy przeksztalcen i nie
znajduje wigkszego zastosowania w elektrotechnice, zagadnienie to stanowi podstawe
interpretacji uogdlnionego réwnania energetycznych reprezentacji czas-czgstotliwose.
W podrozdziale 2.2.1 zebrano wigc podstawowe wilasciwosci funkcji nieoznaczonosci dla
poréwnania z wlasciwo$ciami przeksztalcenia Wignera. Dla podkreslenia dualnosci obu grup,
w podrozdziale 2.2.2 przedstawiono wzajemne relacje pomig¢dzy funkcja nieoznaczonosci
a przeksztalceniem Wignera, wraz z przyktadem.

Podrozdziat 2.3 poswigcono zagadnieniu uogolnionego rownania nieparametrycznych
biliniowych przeksztalcen czasowo-czgstotliwosciowych, wprowadzonego przez Leona
Cohena. Idea uogolnionego rownania Cohena bazuje na tzw. funkcji jadra, charakterystycznej
dla konkretnego przeksztatcenia 1 majacej Scisty zwigzek z jego wiasciwosciami. Pierwszy
etap tej czesci pracy realizuje podrozdzial 2.3.1, w ktérym zebrano szereg pozadanych
wlasciwosci  przeksztalcen — czasowo-czgstotliwosciowych. W podrozdziale  2.3.2
przeanalizowano cztery alternatywne postacie funkcji jadra, powstate przez odpowiednia
zamian¢ zmiennych, wraz z wzajemnymi relacjami mi¢dzy nimi. Podazajac $ladem réznych
postaci funkcji jadra, w podrozdziale 2.3.3 przedstawiono cztery alternatywne postacie
rownania  Cohena, uzupelnione o ocen¢ numeryczng ich  wykorzystania.
W podrozdziale 2.3.4 zestawiono zwiazki pomig¢dzy pozadanymi wlasciwosciami
przeksztalcenia  czasowo-czgstotliwosciowego a  wiasciwosciami  funkcji  jadra.
W podrozdziale 2.3.5 rozszerzono przedstawiony przy opisie pseudo-reprezentacji Wignera
wplyw obcigzenia sygnatu funkcja okna oraz splotu reprezentacji z dodatkowa funkcja
wygtadzajaca, na ogodlna pseudo- i wygtadzona pseudo-reprezentacj¢ klasy Cohena.
W podrozdziale 2.3.6 autor usystematyzowal przeksztalcenia klasy Cohena poprzez
tabelaryczne zestawienie rownan definicyjnych, postaci funkcji jadra oraz wihasciwosci
uzyskanych przeksztatcen. Utatwia to podjecie decyzji o wstgpnym wyborze przeksztafcen,
choéby ze wzgledu na spetniane wlasciwosci. Analizujac rodzing przeksztatcen klasy Cohena,
autor zwrocit szczegdlng uwage na podgrupe, spetniajacq warunek afinicznosci. Mozliwosci
ttumienia sktadowych krzyzowych, jakie przynosi specjalna budowa funkcji jadra wskazanej
podgrupy, zostaly opisane w podrozdziale 2.3.7. To witasnie t¢ podgrup¢ autor uznaje za
szczegblnie uzyteczna do analizy sygnatéw z dziedziny elektrotechniki.

W rozdziale trzecim zawarto wyniki badan. Badania postanowiono skoncentrowac
w trzech grupach. Pierwsza grupa, ujeta w podrozdziale 3.1, dotyczy badan wstepnych.



Cel pracy, teza pracy, uktad pracy

Poréwnano tu reprezentacj¢ Wignera-Ville’a (WVD), pseudo-reprezentacj¢ Wignera-Ville’a
(PWVD) oraz jej wersj¢ wygtadzona (SPWVD) w celu okreslenia wptywu szerokosci funkceji
wygtadzajacych w czasie 1 czestotliwoscl na uzyskana reprezentacje. Dokonano rowniez
jakosciowej analizy wptywu funkcji jader przeksztalcen nalezacych do afinicznej podgrupy
klasy Cohena (np. Choi-Williams (CWD), Born-Jordan (BJD), Margineau-Hill (MHD)).
Badania wstepne przeprowadzono bazujac na symulowanych sygnatach sumy sktadnikow
cosinusoidalnych oraz pradu w gatezi RLC, zataczanej na napigcie sinusoidalne. Grupg drugg
stanowig badania wtasciwe, obejmujace swoim zakresem symulowane oraz rzeczywiste
sygnaty, odwzorowujgce problemy niestacjonarnosci w uktadach elektrycznych.
W podrozdziale 3.2 znalazty si¢ wigc analizy symulowanych sygnatow zataczania baterii
kondensatoréw, zwarcia w ukladzie przeksztattnika oraz sygnaléw pomiarowych zasilania
pieca tukowego. Poréwnano tu wplyw réznych funkcji  jadra reprezentacji
z podgrupy afinicznej w celu dokonania jakosciowej oceny uzyskanych reprezentacji. Dla
wybranych metod przeanalizowano celowos¢ dodatkowego wygtadzania reprezentacji
funkcjami okien (np. wygtadzona wersja pseudo-transformaty Choi-Williamsa (SPCWD),
transformata Zhao-Atlas-Marksa (ZAMD)). Autor przytoczyl réwniez wyniki badanych
sygnatéw uzyskane na podstawie metod jakosciowo innych od badanych w niniejszej pracy.
Mowa tu o reprezentacjach z grupy parametrycznej czy transformacji falkowej. Trzecia grupa
analiz, zawarta w podrozdziale 3.3, dotyczy badan rozszerzonych, obejmujacych swoim
zakresem  wyznaczanie lokalnych momentéw  czgstotliwosciowych.  Wyznaczone
jednowymiarowe charakterystyki momentéw autor proponuje traktowac¢ jako wskazniki
niestacjonarnosci, ktére mozna wykorzysta¢ w diagnostyce pracy uktadow elektrycznych.

Niniejsza prace zamyka rozdzial czwarty, w ktérym zawarto wnioski koncowe, oraz
dodatek, w ktéorym umieszczono wybrane analityczne wyprowadzenia wlasciwosci
transformaty Wignera.



Rozdziat 1:Opis sygnaléw w dziedzinie czasu i dziedzinie czgstotliwosci

1. Opis sygnalow w dziedzinie czasu i dziedzinie
czestotliwosci

W rozdziale tym dokonano przegladu podstawowych parametréow sygnatu, okreslonych
zarOwno w dziedzinie czasu jak 1 czestotliwosci. Zadaniem takiego przyblizenia jest
omoéwienie zaleznosci miedzy obiema dziedzinami, scisle poczatkowo rozdzielanymi, ktore
pozwolg na pdzniejsze wyeksponowanie warunkoéw koniecznych do stworzenia reprezentacji
sygnalu w potaczonej dziedzinie czasu 1 czg¢stotliwosci.

1.1. Parametry rzeczywistych sygnaléw deterministycznych w
dziedzinie czasu

W przypadku sygnatéw deterministycznych mozemy mowi¢ o opisie sygnatu dowolna,
rzeczywistg lub zespolong funkcja czasu lub dystrybucja czasu. Istnieje szereg parametrow
charakteryzujacych wtasciwosci sygnatu, pozwalajacych przypisa¢ sygnat do pewnych
wyodrgbnionych klas, takich jak klasa sygnalow o ograniczonej energii, o ograniczonej mocy
$redniej, zarowno gdy sygnat jest sygnatem o skonczonym lub nieskonczonym czasie trwania.
Niektore z podanych definicji, zwtaszcza dotyczace wlasciwosci energetycznych sygnatu czy
tez ksztattu i potozenia wzgledem Srodka osi czasu lub punktu skupienia, majq szczegolne
znaczenie ze wzgledu na relacje wystgpujace migdzy reprezentacja sygnalu w dziedzinie
czasu i dziedzinie czgstotliwosci [54,57,63].

e  Wartos¢ srednia sygnatu x(7) okreslonego w przedziale czasu <t, ,t2> :

1
t,—t

J'x(t)dt (1.1)

1

X =

e  Wartos¢ srednia sygnatu x(7) o nieskonczonym czasie trwania:

+7

x:li_r)zzlr:[x(t)dt (1.2)

e  Warto$¢ srednia sygnatu okresowego x(7) o okresie 7*
- 1
x=— | x(z)dt 1.3
- [ x(na (1.3)

gdzie 1y jest dowolnym punktem osi czasu
Druga grupa parametrow jest zwigzana z wlasciwosciami energetycznymi sygnatu.
e Energia sygnatu x(7)

oo

E = sz(t)dt (1.4)

—oo
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e Moc $rednia sygnatu x(7) okreslonego w przedziale <t] ,t2>
I
J.xz(t)dt (1.5)
3 “g
Dla wielu sygnatéw o nieskonczonym czasie trwania, w tym sygnaléw okresowych, energia
sygnatu jest nieskonczona. Dla energetycznego opisu tej klasy sygnaléw wprowadzono
pojecie mocy Sredniej.
e Moc s$rednia sygnatu x(f) o nieskonczonym czasie trwania

P(t,1,)=x"=

+T

p :F:limzi [x* (1.6)

X

e Moc srednia sygnatu okresowego x(7) o okresie T

tg+T

— 1
P =x’>=— | x*()dt 1.7
3 Tj () (1.7)

gdzie 1y jest dowolnym punktem osi czasu.
Bazujac na przedstawionej powyzej grupie parametrow mozna zdefiniowaé klase sygnatow
o ograniczone] energii, dla ktérych O<E <oooraz klas¢ sygnalow o ograniczonej mocy
sredniej, dla ktérych 0 <P <o,
Dla doktadniejszego opisu pewnych specyficznych cech sygnatu takich jak ksztatt
i potozenie wzgledem $rodka osi czasu lub punktu skupienia konieczne jest zdefiniowanie
dalszych parametréw.
e Momenty zwykte rzedu r:

m’ = [rxde,r=12,.. (1.8)

Dla przyblizenia interpretacji momentow zwyktych moze postuzy¢ moment zwykly rzedu
drugiego, czyli m’, nazywany momentem bezwladnosci sygnatu x(7), charakteryzujacy

rozktad ksztattu sygnatu wokot osi czasu.

2
I’rl\

= Jtzx(t)dt (1.9)
e Unormowane momenty zwykte rzedu r:

_ t"x(t)dt
== r=12,.. (1.10)

X +oo

jx(t)dt

-co

Proces normowania momentéw wzgledem pola ograniczonego wykresem sygnatu prowadzi
do wymiaru czasu w r-tej potedze. Ze wzgledu na interpretacj¢ praktyczna na szczegdlng

uwage zashuguje unormowany moment zwykty rzedu pierwszego, czyli t' , nazywany odcieta
srodka ciezkosci sygnatu, okreslajacy punkt osi czasu, wokot ktorego sygnat jest skupiony.

_ [x@de .
T M— (1.11)

X +o0

Jx(t)dt

-co
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Unormowany moment zwykty rzedu drugiego, czyli E nazywany jest srednim kwadratem

odcietej srodka ciezkosci, a pierwiastek 4/t> - promieniem bezwladnosci.

]jtzx(t)dt
e —— (1.12)
jx(t)dz

Odcigta srodka cigzkosci sygnatu E moze jednak nie wyznacza¢ doktadnie punktu skupienia,

ze wzgledu na $cisty zwigzek tego parametru z catkgq sygnatu. Przy matych wartosciach catki
sygnatu, co jest mozliwe dla wielu typow sygnaléw np. sygnatow oscylacyjnych, parametr ten
przyjmuje duze wartosci. Dla uniknigcia tego typu rozbieznosci przyjeto charakteryzowac

punkt koncentracji sygnatu odcigta srodka ci¢zkosci kwadratu sygnatu tiﬂ , gdzie punkt

koncentracji wyznacza punkt koncentracji energii sygnatu:

B .ftxz(t)dt
;:_2 == (1.13)
[x*0ar
e Momenty centralne rz¢du r:
8 =(r-m) = [(r-m!) x()de (1.14)
e Unormowane momenty centralne rzedu r:
e j(t—t_?\_)rx(t)dt
o) =(t-t,) ==— (1.15)
j x(1)dt

—co

Podobnie jak w przypadku unormowanych momentéw zwyktych, wsréd unormowanych
momentéw centralnych mozna znalez¢ parametry, ktére zastuguja na szczegdlng uwage ze

wzgledéw interpretacyjnych. Takim parametrem jest moment rz¢du drugiego o., zwany

wariancjg sygnatu i bedacy miara rozrzutu sygnatu wokot odcietej srodka cigzkosci E :

o2 =(1-10) =i -(t]) - l(r—i)z o (1.16)
| | | Tx(t)dt

)

Dla sygnatéw, ktérych pole jest rowne lub bliskie zero, tak okreslona miara rozrzutu nie jest
wystarczajaca i prowadzi do zastapienia badania rozktadu sygnatu wzdtuz osi czasu badaniem

rozktadu jego energii wzdtuz osi czasu, czyli okreslenia wariancji kwadratu sygnatu 02‘,2 :

+oo

2 =1 7)2 2 —(t) -i(t_z)zxmdt (1.17)
c,=\I—-t,] =t,—|t,] = o .
' ’ Ixz(t)dt

—o0
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Unormowanie wariancji kwadratu sygnalu odbywa si¢ wzglgdem energii tego sygnatu
w odniesieniu do srodka ciezkosci kwadratu sygnatu. Mozna zatem méwié¢ o mierze rozrzutu
energii sygnatu wokot srodka cigzkosci kwadratu sygnatu lub o stopniu koncentracji sygnatu.
Im wartos¢ wariancji jest mniejsza tym szerokos¢ przedziatu czasu, w ktérym energia jest
zgromadzona, jest mniejsza. Jesli podobnie jak w przypadku promienia bezwtadnosci
zastosowac pierwiastek z wariancji kwadratu sygnatu, to otrzymana S$rednia szerokos¢
przedziatu koncentracji energii przyjmie wymiar czasu. Parametr ten nosi nazwe szerokosci
Sredniokwadratowe;.

e Szeroko$¢ sredniokwadratowa sygnatu x(7):

e —_—2

I(t—t]\_z) x?(r)de

AT, = |= =

X +o0

(1.18)

Przedstawienie powyzszych definicji parametrow sygnatu w dziedzinie czasu ma na
celu sprecyzowanie zagadnien potrzebnych do okreslenia warunkéw stworzenia lacznej
czasowo-czgstotliwosciowej reprezentacji sygnatu. Nastepnym krokiem ku realizacji tego
zadania jest oméwienie analogicznych parametrow sygnatu przedstawionego w dziedzinie
czestotliwosci. Niezbednym zatem jest wprowadzenie pojecia przeksztalcenia Fouriera
i zagadnien z nim zwiazanych.

1.2. Parametry rzeczywistych sygnalow deterministycznych w
dziedzinie czestotliwosci

Przeksztatcenie catkowe Fouriera czy trygonometryczny lub zespolony szereg Fouriera
sa pojeciami, na ktérych opieraja si¢ podstawy reprezentacji sygnatu w dziedzinie
czestotliwosei. Okreslone na ich podstawie czgstotliwosciowe charakterystyki sygnatu oraz
tzw. charakterystyki wtérne, ktérymi sa widmo gestos¢ energii — dla sygnaléw o ograniczonej
energii oraz widmo gestos¢ mocy — dla sygnaldéw o ograniczonej mocy, stanowig opis
struktury sygnatu w kategoriach czgstotliwosciowych [28,41,54,57].

Prosta transformat¢ Fouriera X() sygnatu x(#) nazwano widmem sygnatu:

X (@)= [x()edr (1.19)
Widmo sygnatu, bgdace miarg korelacji sygnatu z poszczeg6lnymi zespolonymi funkcjami
harmonicznymi w postaci e ’* = cos(2nft) — jsin(2nft) , okresla amplitude i faz¢ sktadowych
harmonicznych. Dla sygnatu transformowalnego w sensie zwyklym charakterystyke taka
mozna przedstawi¢ jako zespolona funkcj¢ zmiennej rzeczywistej @

X (@) =[X(@)|e""” =Re X (@) + jIm X () (1.20)

jot

gdzie funkcje |X(a))|,(p(a)),ReX(a)),ImX(a)) sg funkcjami zmiennej rzeczywistej @,

majace]j interpretacj¢ pulsacji, 1 nosza odpowiednio nazwy: widmo amplitudowe, widmo
fazowe, widmo rzeczywiste, widmo urojone, pomig¢dzy ktérymi zachodza nastgpujace
zwiazki:

X () :\/(ReX(a)))2 +(ImX(w)) ¢ (@)= arctg—R—;(— (1.21)
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Gdy mowa o sygnatach rzeczywistych transformowalnych w sensie zwyklym, widmo
amplitudowe 1 fazowe dla @ =0 opisuje odpowiednio gestosci rozktadu amplitudy i1 fazy
sygnatu wzdtuz osi pulsacji.

Warto podkresli¢, ze wprowadzone pojecie widma mozna rozszerzy¢ na sygnaty
transformowalne w sensie granicznym. Widma takich sygnatéw nalezy wowczas zdefiniowac
jako sume¢ czesci funkcyjnych i dystrybucyjnych. Cze¢sci funkcyjne widma opisuja zaleznosci
jak dla sygnatow transformowalnych w zwyktym sensie. Jezeli
za$§ w widmie sygnatu w punkcie ay wystepuje dystrybucja Diraca 2mcd(@w—a@,), gdzie
c=a+jb, to w czegsci dystrybucyjnej widma amplitudowego, rzeczywistego i urojonego
wystapia w punkcie @y odpowiednio dystrybucje Diraca: 2m|c|8(w-a,),2mad(w-a,),

; . . , b
2nbd (w— @,) . Wartos¢ widma fazowego w punkcie ay jest przy tym rowna argc = arctg—.
a

Odwrotne przeksztatcenia Fouriera definiuje wyrazenie:
17 i
x(t)=— | X(w)e""dw 1.22
(t)=5,; JX (@) (1.22)

ktére wskazuje na mozliwos¢ odtworzenia sygnalu w sposob jednoznaczny na podstawie
widma.

Traktujac wigc widmo jako réwnowazny sposob przedstawienia sygnatu, nalezy
spodziewac sig¢, ze wszystkie szczegdlne cechy jakie sygnat posiadal w dziedzinie czasu,
mozna réwniez opisa¢ uzywajac reprezentacji sygnatu w dziedzinie czgstotliwosci. Ponadto,
chcac scharakteryzowa¢ samo widmo sygnatu, poszukujac cho¢by punktu jego koncentracji
czy miary rozrzutu widma wokot srodka ci¢zkosci, mozna zdefiniowa¢ analogiczne parametry
widma, jak w przypadku przedstawionych wczesniej parametrow czasowych sygnatu.
Wzajemne relacje, jakie wystgpuja pomigdzy obiema dziedzinami, bazuja na wlasciwosciach
przeksztatcenia Fouriera. Podane ponizej zaleznosci maja na celu przyblizy¢ tok
rozumowania przyjety przy formalizowaniu zagadnien zwigzanych
z potaczong dziedzing czasu i czgstotliwosci. Pierwsze podejscie do omawianego problemu
bedzie zatem dotyczy¢ przedstawienia parametrow sygnatu na podstawie jego charakterystyk
widmowych.

Parametry sygnalu wyznaczone na podstawie charakterystyk widmowych [28,57,63]:
e Energia sygnatu x(7) ( twierdzenie Parsevala):

E = sz(z)drzé_ﬂx(w)rdw (1.23)

—oco

e Momenty zwykte rzedu r:
m’ = Tt'X(t)dt =({) X" (0),r=12,.. (1.24)
e Moment zwykty rzedu drugi_;go — moment bezwtadnosci sygnatu:
m__’;=+]°zzx(z)c1r=—x"(o) (1.25)
e Unormowane momenty zwykte rzqgu r
B +°qt"x(t)dt
== =)
" T x(t)dt V) Z

-oo

e Unormowany moment zwykty rzedu pierwszego — odcigta srodka cigzkosci sygnatu:

r=12,... (1.26)

10
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x(t)dt
t_‘=gi =jx((())) (1.27)
[ x(ar (0)
e Unormowany moment zwykty rzedu drugiego — $redni kwadrat odcigtej srodka cigzkosci:
£x(t)dt
s 1708 xq
L= =~ (1.28)
[x(de (0)
e Pierwiastek sredniego kwadratu odcigtej srodka cig¢zkosci — promien bezwtadnosci:
£7x(¢)dt
_ | X"(0)
xS |G = “X(0) (1.29)
[ x(ar

—oco

e Wariancja sygnatu:

— T(r—t__'\,)z x(t)dr

2 aY .2 iNe . ) .
ol=(1-t) =t-(4) = Tx(,)d, = 0 J{X(OJ (1.30)

—oo

Interpretacja zdefiniowanych teraz na podstawie charakterystyk widmowych
parametrow sygnatu zostata podkreslona przy omawianiu dziedziny czasu. Drugim
wspomnianym juz problemem jest okreslenie charakterystycznych cech samego widma,
poprzez zdefiniowanie cho¢by punktu koncentracji widma czy jego rozrzutu wokot srodka
ciezkosci. Celowym zatem wydaje si¢ przeniesienie definicji parametrow podkreslajacych
specyficzne cechy funkcji na grunt osi pulsacji i zwiazanego z nig widma sygnatu.

1.3. Parametry widma sygnatu

W wigkszosci przypadkéw mamy do czynienia z rzeczywistym zarejestrowanym
sygnatem, w praktyce zatem sygnatlem o skonczonym czasie trwania, czego konsekwencjq
jest rowniez ograniczenie energii. Ponizej zdecydowano wigc przedstawi¢ definicje oraz
interpretacje parametrow widma dla tej klas sygnatow.

Przed rozpoczeciem tego etapu nalezy jednak zdefiniowa¢ dodatkowa charakterystyke
czestotliwosciowa — widmo gestosci energii. Widmo gestosci energii definiowane jest jako
kwadrat widma amplitudowego:

o(0)=[X (o) (131)

Korzystajac z twierdzen dotyczacych transformacji Fouriera, kwadrat widma amplitudowego,
a co za tym idzie widmo gestodci energii, mozna zdefiniowac bazujac na funkcji autokorelacji

sygnatu r(7) :

11
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=+]: )x" (t—7)dt = J' (t+2')x*(t)dt=iIx(t+§jX*(l—%jdf,

= J'r(r)e"j“”d7:|X(a))|2:(D ®

(1.32)

Ponadto, dla sygnatéw rzeczywistych funkcja autokorelacji jest rzeczywista i parzysta, co
prowadzi do wniosku, ze 1 widmo gestosci energii jest rzeczywiste 1 parzyste. Warto
zauwazyc¢, ze dla 7 =0 funkcja autokorelacji wskaze wartos¢ energii catkowitej sygnatu:

J’|x dt— (1.33)

W koncu, wyrazenie funkcji autokorelaql jako transformaty odwrotnej widma gestosci
energii doprowadzi dla 7 =0 do twierdzenia Parsevala:

T):%Tq)(w)ejwrdw’ :>Ex :r(o):%T(D(a))da):iT‘X(a))rdw (134)

Wyprowadzenie powyzszych zaleznosci pozwala interpretowa¢ widmo gestosci energii jako
charakterystyke opisujaca rozklad energii wzdtuz osi pulsacji.

Wykorzystujac wprowadzong charakterystyke widma gestosci energii oraz stosujac
analogie do parametréw opisujacych sygnat w dziedzinie czasu, mozemy przejs¢ do definicji
parametréw widma sygnatu i widma gestosci energii.

Parametry widma sygnatu [28,57,63]:
e Momenty zwykle rzedu r dla widma:

——:Tw"x(a))dw (1.35)

e Momenty zwykte rzedu r dla kwadratu widma (widma gestosci energii):

(1.36)
e Moment zwykty zerowego rzgdu dla widma — warto$¢ srednia widma:
M = [X(0)do (1.37)
e Moment zwykly rzedu pierwszego dla \;\/idma:
M—lszaJIX(a))da) (1.38)
okreslajacy punkt skupienia widma bez jego normalizacji.
e Moment zwykty rzedu drugiego dla widma — moment bezwtadnosci widma:
M_§=Tafx(a))da) (1.39)

okreslajacy rozrzut widma wokot osi czgstotliwosci.

e Unormowany moment zwykly rzedu r dla widma:
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Rozdziat 1:Opis sygnatéw w dziedzinie czasu 1 dziedzinie czgstotliwosci

IwX o)dw
et (1.40)

j X(@

e Unormowany moment zwykty rzedu 1 dla widma — odcigta srodka ciezkosci widma:

8
>

I oX(w)do
colx = (1.41)
jX
charakteryzujacy punkt na osi pulsacji, woko% ktérego widmo jest skupione.

e Unormowany moment zwykty rzedu 1 dla kwadratu widma — odcigta srodka ciezkosci
kwadratu widma amplitudowego (widma gestosci energii) :

o J'a)‘X(a))‘2 dew
co‘lxlz == (1.42)
fixto
e Momenty centralne rzedu r dla widma:

o :(a)—M—;)" :T(w—M—;)rx(a))dw (1.43)

—oco

e Momenty centralne rzedu r dla kwadratu widma:

+oo

Iﬂ|x|v (a) M )r: J-(a) M|x| ) 'X(a))r do (1.44)

X’

e Unormowane momenty centralne rzedu r dla widma:

: +]:(a)—u)lx)'X(a))da)
z;:(a)—g‘x—)':*w - (1.45)

J'X(a) do

e Unormowany moment centralny rz¢du drugiego dla widma - wariancja widma:

T(a)(olx )ZX(a))da)

== (1.46)
bedacy miarg rozrzutu widma wokot odcigtej srodka ciezkosci widma.

e Unormowany moment centralny rzedu drugiego dla kwadratu widma — wariancja
kwadratu widma amplitudowego (widma gestosci energii):

Y
Dyejol|qig

T(a) ol )|X | do
_= (1.47)

Z o
||

e Szeroko$¢ sredniokwadratowa widma ( kwadratu widma amplitudowego czyli widma
gestosci energii):



Rozdziat 1:Opis sygnatéw w dziedzinie czasu i dziedzinie czestotliwo$ci

J(o-a.) X(@)f do
AR, = | (1.48)
_HX(a))lzda)

Waznym wnioskiem ptynacym z rozwazan nad interpretacja przytoczonych parametrow moze
by¢ fakt, ze szerokos¢ sredniokwadratowa widma sygnatu AQ, , jako pierwiastek wariancji

kwadratu widma amplitudowego czyli widma gestosci energii, jest miara koncentracji energii
sygnatu w dziedzinie czgstotliwosci, a doktadniej] méwiac, miarg sredniej szerokosci pasma
wokot odcigtej srodka cigzkosci kwadratu widma amplitudowego.

Przyjmujac szerokosci Sredniokwadratowe sygnatu A7, i widma A4, jako miary $redniego

czasu trwania i sredniej szerokosci jego widma mozna sformutowac zasad¢ nieoznaczonosci:
1
AT, - A2, 2 5 (1.49)
Z zasady nieoznaczonosci mozna wywnioskowaé, ze nie jest mozliwe jednoczesne
osiagnig¢cie dostatecznie duzej koncentracji energii sygnatlu w dowolnie matych przedziatach
czasu 1 czestotliwosci. Oznacza to, ze mozna skupi¢ energi¢ sygnatu w waskim przedziale
czasu, ale wowczas przedziat czgstotliwosci, w ktérym ta energia jest skupiona nie moze

przekraczaé progu AQ, > wynikajacego z zasady nieoznaczonosci.

X
Niniejszy rozdziat miat za zadanie przyblizy¢ pewne wyodrgbnione parametry zardéwno
sygnatu przedstawionego w dziedzinie czasu jaki i jego reprezentacji czgstotliwosciowej,
czyli widma. Wprowadzone pojgcia, takie jak energia 1 widmo gestosci energii, szerokos¢
Sredniokwadratowa sygnatu i jego widma czy odcigta srodka cigzkosci kwadratu sygnatu
i odcigta kwadratu widma amplitudowego, postuza do sformutowania zatozen, jakie powinna
spetni¢ czasowo-czgstotliwosciowa reprezentacja sygnatu.
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Rozdzial 2: Biliniowe reprezentacje czasowo-czestotliwosciowe

2. Biliniowe reprezentacje czasowo-czestotliwosciowe

W literaturze istnieje wiele definicji reprezentacji czasowo-czestotliwosciowych oraz
sposobow ich klasyfikacji [8,33,63]. Interesujacy podziat zaproponowano w pracy [62] biorac
pod uwage charakter  obliczeniowy  estymacji  (reprezentacje  parametryczne
1 nieparametryczne), struktur¢ rownania definicyjnego (liniowa lub nieliniowa operacja na
sygnale) wraz z wyst¢gpowaniem badz nie operacji skalowania argumentu czasu lub
czestotliwosci:  (odpowiednio: skalogram lub spektrogram). Powyzszy podziat ilustruje
rysunek 2.1 w catosci zaczerpniety z pracy [62].

W przeciwienstwie do liniowych przeksztatcen czasowo-czgstotliwosciowych, ktore
bazuja na rozkladzie sygnatu na sktadniki podstawowe (atomy), celem biliniowych
przeksztatcen (ang. bilinear) zwanych réwniez kwadratowymi (ang. quadratic) jest ujecie
niestacjonarnosci sygnatu w oparciu o funkcj¢ gestosci energii lub funkcje korelacji
[2,19,20,25,26,27,40]. Stad tez wywodzg si¢ dwa podstawowe kierunki interpretacji
biliniowych widm czasowo-czestotliwosciowych, pozwalajace zgrupowac¢ je w dwie odrgbne
klasy: energetycznag i1 korelacyjna. Pierwszy z nich dotyczy ujecia energetycznego i wskazuje
widmo czasowo-czestotliwosciowe jako przebieg tzw. chwilowego widma gestosci energii
(ang. instantaneous energy density spectrum), ktora jest kwadratowa forma reprezentacji
sygnatu. Mozna wigc mowic¢ o przejsciu z dziedziny czasu do potaczonej dziedziny czasu i
czestotliwosci. W przypadku korelacyjnej klasy przeksztatcen, uzyskiwana reprezentacja
okreslona jest na potaczonej dziedzinie przesunig¢¢ czasowych i czestotliwosciowych i moze
by¢ interpretowana jako czasowo-czestotliwosciowa funkcja autokorelacji. Niezaleznie
jednak od wspomnianej klasyfikacji, podstawowa wtasnoscia, jaka powinny spetniac
przeksztatcenia catkowe jest warunek zachowania energii. W pierwszym kroku nalezy wigc
okresli¢ warunki brzegowe dotyczace dwuwymiarowych reprezentacji, rozumianych zaréwno
w sensie energetycznym jak i1 korelacyjnym.

Nawiazujac do opisanych wczesniej parametrow sygnatlu w dziedzinie czasu
1 czestotliwosci mozna zdefiniowa¢ chwilowa energi¢ sygnatu (ang. instantaneous energy)

e",(t), wyrazajaca intensywnosc czy tez gestos¢ energii na jednostke czasu w chwili 7, oraz
chwilowe widmo gestosci energii (ang. instantaneous energy density spectrum) ¢_,_(a)),

rozumiane jako intensywnos$¢ energii na jednostk¢ pulsacji dla pulsacji o [19,26,27]:

e, =|x ()
9,(0)=[x(a)f

Przyjmujac pewien przedzial czasu 4t mozemy opisa¢ czgsciowa energi¢ (ang. fractional

2.1)

energy) zawartq w przedziale czasu At w chwili ¢ jako iloczyn ’x(t)‘zxAt. Analogicznie

czgs$ciowa energi¢ zawartq w przedziale 4w dla pulsacji @ wyraza iloczyn ‘X(a))ran).
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Czasowo-czestotliwosciowe
reprezentacje sygnatow

A

Parametryczne:

- Modele AR, MA, ARMA Nieparametryczne
o zmiennych
wspéiczynnikach

——

Liniowe Nieliniowe
P P
Spektrogramy: Skalogramy: Spektrogramy: Skalogramy:
- Gabor - transformata Biliniowe: Afiniczny Wigner
-STFT falkowa Klasa Cohena: - Bertrand-Bertrand
- max widmo - Wigner - Rioul-Flandrin
- max obwiednia - Wigner-Ville
- Page Dystrubucja Q
- Levin - Eichman-Marinovic
- Margenau-Hill - Altes
- Rihaczek
- Born-Jordan Szerokopasmowa
- Choi-Williams funkcja nieoznaczonosci

- Zhao-Atlas-Marks
- GED,TGD,MTED
- Butterworth

W askopasmowa
funkcja nioznaczonosci

Wieloliniowe:
Klasa Boashasha-
O'Shea'ego

Rys. 2.1. Uproszczony podzial czasowo-czgstotliwosciowych reprezentacji sygnalow ze
wzgledow obliczeniowych: rodzaj sposobu estymacji widma (parametryczny lub
nieparametryczny) i struktura réwnania definicyjnego (liniowa lub nieliniowa operacja na
sygnale) oraz wystgpowanie (skalogram) lub niewystgpowanie (spektrogram) operacji
skalowania czasu lub czestotliwosci

Z  energetycznego punktu widzenia gidwnym celem  reprezentacji = czasowo-
czestotliwosciowych jest wigc stworzenie funkcji dwoch zmiennych czasu 1 czestotliwosci

(pulsacji) TF(E)(I,(()), ktéra bedzie odwzorowywac energi¢ lub intensywnos¢ (gestosc)
energii w jednostce czasu na jednostk¢ czestotliwosci. Iloczyn TF(E)(t,a))xAtan)
wskazywaé bedzie czg$ciowq energi¢ zawarta w czasowo-czestotliwosciowej komorce
AtxAw o $rodku w punkcie (7,@). Powyzsze rozumowanie prowadzi do okredlenia

warunkéw brzegowych dowolnej reprezentacji czasowo-czgstotliwosciowej rozumianej w
sensie energetycznym [19]:
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Rozdziat 2: Biliniowe reprezentacje czasowo-czestotliwo$ciowe

+oo

ITF(E) (t.w)do=e, () =|x (f)’2
: (2.2)
[TEY (1,0)dt =, (@) =[X (o)

—o0

Spetnienie powyzszych warunkow pozwala na wyrazenie catkowite] energii zawartej
w sygnale za pomoca reprezentacji czasowo-czestotliwosciowe:

[TF" (t,0)deaxt = E, (2.3)

Odmienny kierunek wyznaczania czasowo-czestotliwosciowych —reprezentacji
wykazuje podejscie korelacyjne. W tym przypadku poszukiwana jest dwuwymiarowa funkcja

autokorelacji TR (9,1) , wyznaczona w oparciu o jednowymiarowe funkcje autokorelacji

zdefiniowane w dziedzinie czasu r(7) oraz czgstotliwosci R (8) [26,27]:

r(T):TX( )x (t—T)dt—J (t+7)x*(r)dt:Tx(ngx*(t—g)dt
- (2.4)
_[X (0-0)}o= IX o+0) *(a))da):IX(angX*(w—gjdw

Zmienne 7 oraz € oznaczaja przesunigcie (opdznienie) odpowiednio w dziedzinie czasu
i czestotliwosci. Korelacyjne warunki graniczne, ktore powinna spetni¢ poszukiwana

czasowo-czestotliwosciowa funkcja autokorelacji TF(C)(Q,T) przedstawiaja ponizsze
wyrazenia [26,27]:
°(6.0)=R (0)
TF9(0,7) =r(7)
Spetnienie powyzszych warunkéw oraz zwiazki pomigdzy funkcjq autokorelacji a energia
pozwalaja na wyznaczenie catkowitej energii sygnalu na bazie zdefiniowane]
dwuwymiarowej reprezentacji:

(2.5)

TFY (0,0)=E, (2.6)

Energetyczna klasa przeksztatcen czasowo-czgstotliwosciowych prowadzi wigc do uzyskania
funkcji opisujacej zmiany energii sygnatu bezposrednio na ptaszczyznie czas-czgstotliwosc.
Korelacyjna klasa przeksztalcen pozwala uzyska¢ funkcje, ktora nie jest bezposrednio funkcja
czasu 1 czestotliwosci (pulsacji) lecz przesunig¢¢, odpowiednio w dziedzinach czasu
i czgstotliwosci, wciaz zachowujac informacje o niestacjonarnosci sygnatu.

Wyodrgbniajac te dwie klasy przeksztalcen czasowo-czestotliwosciowych warto
rowniez wspomnie¢ o pewnego rodzaju uogoélnieniu, ktére niejako taczy w sobie zaréwno
podejscie energetyczne jak i korelacyjne. Uogélnienie to bazuje na jednowymiarowym
zwiazku pomigdzy funkcja autokorelacji sygnatu r(7) i jego widmem gestosci energii @ (@)

[57]:

O(w)= = Ir(r)e‘”‘”dr (2.7)

Wprowadzajac tzw. lokalna (chwilowa) funkcje autokorelacji r((”[) zalezng od chwili ¢
mozna uzyska¢ dwuwymiarowa funkcje czasu 1 czestotliwosci rozumiang w sensie
energetycznym TE" (t,w), definiujac ja jako transformat¢ Fouriera funkcji r, (7):
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TF" (t,w)= [r,()e7*dr (2.8)

oo

Przy wyborze funkcji 1, (7) nalezy jednak pamigtaé, ze naturalnym kierunkiem jest uzyskanie
rzeczywistej dwuwymiarowej funkcji TE"®) (t,), a co za tym idzie potrzeby spetnienia przez

chwilowg funkcj¢ autokorelacji warunku:
r,(7)=1 (-7) (2.9)

Rozwazajac ten aspekt rozwoju czasowo-czgstotliwosciowych reprezentacji warto wspomnie¢
o tzw. wygtadzonej wersji chwilowej funkcji autokorelacji, ktéra powstaje z wykorzystaniem
dodatkowej funkcji jadra. Kierunek ten prowadzi do wprowadzonej przez Leona Cohena [19]
wspélnej rodziny przeksztalcen czasowo-czgstotliwosciowych 1 zostanie szczegétowo
wyodrgbniony w dalszej czgsci pracy.

Wspomniana juz chwilowa funkcja autokorelacji moze postuzy¢ rowniez do wyznaczenia
korelacyjnej klasy przeksztatcen poprzez zmiang zmiennej catkowania z 7 na ¢, co prowadzi

do ogdlnego wyrazenia:

TF(8,7) = [r,(z)e"dt (2.10)

Przedstawione powyzej relacje miaty za zadanie przyblizy¢ podstawy i giéwne nurty
nieparametrycznych, biliniowych przeksztalcen czasowo-czestotliwosciowych. W dalszej
czesci pracy szczegbétowo omoéwiona zostanie transformacja Wignera, jako podstawowy
przyktad energetycznej klasy przeksztalcen, oraz symetryczna funkcja nieoznaczonosci, jako
przyktad klasy korelacyjnej. Wprowadzona funkcja chwilowej funkcji autokorelacji moze by¢
potraktowana jako pewnego rodzaju facznik pomiedzy dziedzinami (t,w) oraz (6,7), co
zostanie wykorzystane do wskazania wzajemnych relacji pomigdzy transformata Wignera
a funkcja nieoznaczonosci i nakresli cech¢ wzajemnej dualnosci przeksztatcen obu klas.

2.1. Transformacja Wignera - energetyczna klasa czasowo-
czestotliwosciowych reprezentacji sygnatu

Transformacja Wignera jest podstawowym przyktadem czasowo-czgstotliwosciowych
reprezentacji w ujeciu energetycznym. Idea dwuwymiarowej reprezentacji Wignera zostata
wprowadzona w 1932 roku przez Wignera dla potrzeb mechaniki kwantowej. W 1948 roku
Ville podjat probe adaptacji transformaty Wingera w obszarze analizy sygnatéw. Splot
funkcji podcatkowej tej transformacji z dodatkowymi funkcjami jest rowniez kierunkiem do
wyznaczania innych transformacji czasowo-czgstotliwosciowych. Dlatego tez zdecydowano
poswieci¢ rozdzial niniejszej pracy szczegbélowemu omowieniu wiasciwosci reprezentacji
czasowo-czgstotliwosciowych na przyktadzie transformacji Wignera.

Podstawowe pytania o wlasciwosci przeksztalcenia czasowo-czgstotliwosciowego
dotycza zachowania energii sygnatu, wptywu podstawowych operacji na sygnale, takich jak
przesuniecie w dziedzinie czasu i czestotliwosci, czy tez obcigzenia sygnatu funkcja okna.
Pierwsza grupa wiasciwosci, przedstawiona w niniejszym rozdziale, ma za zadanie przyblizy¢
pozadane wtasciwosci przeksztalcenia oraz sposoby ich udowodnienia. Druga grupa
wlasciwosci skupiona zostala wokot parametrow przeksztalcenia, jakimi sa momenty
dwuwymiarowych reprezentacji. Dwuwymiarowos¢ przeksztalcenia, opisujaca doskonale
zmiany sygnatu, niesie ze sobg trudnosci aplikacyjne. Analiza momentéw, zwlaszcza
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rozumianych w sensie lokalnym, prowadzi do jednowymiarowych charakterystyk, ktore
traktowa¢ mozna jako wskazniki niestacjonarnosci.
Wzajemne przeksztatcenie Wignera sygnatow x(7) i y(7) definiuje réwnanie [16,51,52,59]:

i T T\ i
WD (t,w)= |x|t+—|y* t—— |e’“dT 2.11
LSto)= | ( Jy( 2) 2.11)

—co

Wtasne przeksztatcenie Wignera sygnatu x(7) przyjmie wigc postac:

oo
T :
WD (t,0)=WD_ (t,0)= Ix (z+%j x*(t _Ej e dy (2.12)
Powyzsze definicje odnosza si¢ do sygnatow traktowanych jako funkcje czasu. Spetnienie
wymogu dotyczacego zachowania energii, stawianego transformacjom czasowo-
czestotliwosciowym, pozwala wyrazi¢ przeksztalcenie Wignera w oparciu o widma
sygnatow:

175 n AN
WD, ,(0,1)=— | X| 0+= |Y*| o—= [e'"'d 2.13
m)zﬂi( 2)( 2] 7 (2.13)

LT AN ENE/AN
WD, (0,1) =— | X| o+—= | X*| o——= |e'"'d 2.14
x ( >2”_£( 2] ( 2} 7 (2.14)

co prowadzi do istotnej relacji:

WD, (1,0)=W, , (.1) (2.15)

Wyrazenie powyzsze podkresla mozliwos¢ wyrazenia przeksztalcenia Wignera widm
sygnatow jedynie poprzez zamian¢ zmiennych w postaci przeksztalcenia wyznaczonego na
bazie sygnatéw. Ilustruje to wzajemna symetri¢ pomig¢dzy definicjami w dziedzinie czasu
i dziedzinie czestotliwosci. Szereg pozostatych wlasciwosci przeksztatcenia Wignera, ujgtych
w ponizszym podrozdziale, pozwoli na gigbsze zrozumienie charakteru uzyskanych
reprezentacji.

2.1.1. Wilasciwosci przeksztalcenia Wignera i ich znaczenie

W. 1. rzeczywisty charakter przeksztatcenia Wignera
WD, (t,0)=W"  (1,0)
WD (t,0)=W" (t,0)

Zaréwno dla sygnaléw rzeczywistych jak i1 zespolonych przeksztatcenie Wignera jest funkcja

rzeczywista, a w przypadku sygnatow rzeczywistych jest dodatkowo parzysta funkcja
czgstotliwosci:

(2.16)

WD (1,0)=W. (1,—m) (2.17)
W. 2. zachowanie przesuni¢cia w czasie
Jesli x, (1) =x(t-1,), y,(t) =y(¢t—1,)to:
WD,  (t,0)=W, (t—1,,0)
WD, (1,0) =W, (t—1,,®)
W. 3. zachowanie przesunigcia w dziedzinie czestotliwosci
Jedli x, (1) =x(0)e™, y, (1) = y(1)e'™ to:

(2.18)
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WD,  (t,w)=W, _ (t,0-a,)

(2.19)
WD, (t,0)=W, (t,0-,)
W. 4.  zachowanie skalowania sygnatu w dziedzinie czasu
Jedli x,(1)= \/Hx(at), y,(2)= My(at) to:
WD, | (f,@)= WD, (m,ﬁj (2.20)
. ] P

W. 5. przeksztatcenie Wignera sygnatow o ograniczonym czasie trwania
Ograniczenie sygnaléw w czasie przejawia si¢ ograniczeniem czasowym reprezentacji
Wignera:

X([):O lub y(t):() d]a te (tu’tb) —> WD,\\ (t,a)) :0 dla & (ta’tl)) (2 21)

x(1)=0dlare (1,,1,) = WD _(r,0)=0dlare (t,.,)
Analogiczng relacj¢ mozna przedstawic dla sygnaléw przyczynowych:
x(1)=0dlar<0=WD (t,w)=0dlar<0,Va (2.22)
W. 6. przeksztatcenie Wignera sygnatow o ograniczonym pasSmie czestotliwosci
Ograniczenie widma sygnatu przejawia si¢ ograniczeniem czg¢stotliwosciowym jego
reprezentacji Wignera:
X(w)=01ub Y(w) =0 dla w¢ (@,,m,) = WD, (t,0)=0dla w¢ (o

X(w)=0dla w¢ (0,,®,) = WD (t,0)=0dla v¢ (@, ,)
W. 7. modulacja sygnatow a ich przeksztatcenie Wignera
Przeksztalcenie Wignera sygnatéw zmodulowanych przejawia si¢ splotem transformacji
Wignera  sygnatéw 1 fali  nosnych ~w  dziedzinie  czestotliwosci.  Dla
x, () =x(t)m (1), y, (@)= y(t)m,(t) wzajemne przeksztalcenie Wignera dane jest

m

1 a)h)
(2.23)

rOwnaniem:

X,

moeXm

WD (r,w)zzi [wp, WD, , (Lo-7)d7 (2.24)

W. 8. przejscie sygnatow przez liniowy system stacjonarny a ich przeksztatcenie Wignera
Sygnaty na wyjsciu liniowego systemu stacjonarnego opisuje splot sygnatéw i odpowiedzi
impulsowych systemu. Splot ten przenosi si¢ na splot w dziedzinie czasu przeksztatcen
Wignera sygnatéw i odpowiedzi impulsowych. Jesli wigc sygnaly na wyjsciu systemow
liniowych o odpowiedziach —impulsowych h (1) oraz h| (r) opiszemy jako
x,(t1)=x(1)*h (1), y.(1)=y(z)*h (z), to ich przeksztalcenie Wignera mozna okresli¢
splotem przeksztalcen w dziedzinie czasu:
1 +oo
WD, (t,a)):-é— [wD, (z,)WD, , (t-7.0)dz (2.25)
e Ve ﬂ_ = X)) x93y

W. 9. transformata Fouriera a przeksztatcenie Wignera
Réwnanie definicyjne przeksztalcenia Wignera pozwala traktowac je jako transformate

: : T\ = T : .. n .
Fouriera iloczynu x[t +5j y [t _Ej przyjmujac jako zmienna t przy ustalonym parametrze
t. Stad odwrotna transformata Fouriera przeksztatcenia Wignera oznacza:

177 » TY) . T
— | WD (t,w)x'“"do=x|t+— t—— 2.26
27ri 0P ( ij ( 2) (2:20
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W. 10. catkowita energia sygnatu
Jak juz wspomniano zachowanie chwilowej energii sygnalu i widmowej gestosci energii
owocuje zachowaniem catkowitej energii sygnatu. Podkresla to ponizsze rozumowanie.
Ry i 2
WD, ta)da)dt x x,x)=|x| =E.
gy [I >} H =(x.x)=|f =E,
, , (2.27)
L fwp, (1.0 |a- hx(t)‘zdtzE‘,|"’
27| 2 . e
Wyrazenia (2.27) okreslaja odpowiednio catkowitg energi¢ sygnatu x(7) oraz energi¢ zawarta
w przedziale czasu 7, <t <t, wyrazone na podstawie przeksztatcenia Wignera sygnatu.

! T [wp, ta))dt}da)——ﬂX do=(X,X)=|x| =E,

27

—co

(2.28)

21” HWD ta))dt}da)——”X ‘dr=E,[?

Analogicznie, catkowanie przeksztatcenia Wignera sygnatu x(z) po osi czasu od —oo < < o0
dla —ee<@<+ee oraz dla @, <@ <, wyznacza odpowiednio catkowita energie sygnatu

oraz energi¢ sygnatu zawarta w przedziale (@,,®, ) .

W. 11. twierdzenie Moyala — twierdzenie o iloczynie skalarnym (unitarnosc)
Twierdzenie to mozna traktowac jako pewna analogi¢ do twierdzenia Parsevala.

J'IWD (@) WD,  (r,w)ddo=(x, f)(y.g)

H [

(2.29)

j j WD, (1,0) WD’ (t,)dtdew = —”x“

W. 12. warunki brzegowe dla czasu

T T 1+,
Przyjmujac za t+5 =1, oraz I_E =1, mozemy wyrazic t, T jako = 5 L2 oraz 7=1,-t,
Stad réwnanie (2.26) przyjmie postac:

1 f+t A
— |WD,,| 20" P do=x(1)y (1, 2.30
- [, (S5 0 o= x(1)y (1) 230

W szczegblnoscidla 1, =1, =t uzyskujemy:

1 '
2 WD J(to)do=x(1)y (1)
(2.31)

1 2

o WD (t,o)o \x(t)[

Oznacza to, ze calkowanie przeksztalcenia Wignera po czestotliwosci dla okreslonego ¢
prowadzi do chwilowej energii sygnatu okreslonej w chwili 7. Wiasciwos¢ ta jest jedng
z pozadanych wtasciwosci jakie winny spetnia¢ nieparametryczne przeksztatcenia czasowo-
czgstotliwosciowe.

Przyjmujac dalej 7, =1,7, =0 mozliwe jest podjecie problemu odzyskania sygnatu z jego

transformacji Wignera:
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175 t -
E_NWDX“V (‘2‘,0)}&)—)((1‘)}/ (O)
| (2.32)
t *
E%WD_Y(E,a})da)—X(f)X (O)

Wyrazenie (2.32) podkresla mozliwos¢ odzyskania oryginatu sygnatu z jego transformaty

. . sz b
Wignera przez odwrotng transformat¢ Fouriera w chwili 2 wyskalowang przez staty

wspolczynnik x (0).

W. 13. warunki brzegowe dla czestotliwosci

Podobne rozumowanie jak w przypadku czasowych warunkéw brzegowych mozna
przeprowadzi¢ w dziedzinie czestotliwosci wykorzystujac wlasnos¢ symetrii przeksztatcenia
Wignera. Réwnanie (2.13) opisujace przeksztalcenie Wignera na bazie widm sygnaléw

pozwala traktowac¢ je jako odwrotng transformat¢ Fouriera skfadnika X(a)+gj Y (a)~gj

przyjmujac jako zmienna # przy ustalonym parametrze . Poszukujac zatem funkcji
podcatkowej nalezy:

[WD,, (@.ne7dr = x(w+-’21j Y' (w—%} (2.33)

Przyjmujac  za 0] +g =, oraz a)—% =w, mozemy  wyrazi¢ @, n  jako

a)l +w?. 2 : ‘
w= > oraz 11 = @, — @, , co prowadzi do:
e j * r + 2 (W, -
[wp,, (wl @, ,t]eﬂ““r“’z”dz =X()Y (0,)= [WD,, (;,%}1( vong,  (234)

W szczeg6lnoscei dla @, = w, = @ uzyskujemy:

[WD,, (0,1}t = [WD, (1,0} =X (0)Y" (@)

: +:° (2.35)
[WD, (@.1)it= [WD, (1.0}t =X (0)]

Oznacza to, ze catkowanie przeksztalcenia Wignera po czasie dla okreslonego @ prowadzi do
widma gestosci energii okreslonej dla przyjetej wartosci w. Powyzsza wlasciwos¢ wraz ze
wspomniang juz wtasciwoscia zachowania chwilowej energii sygnatu lezg u podstaw
wymagan stawianym nieparametrycznym czasowo-czestotliwosciowym  reprezentacjom
sygnatu, bowiem jedynie wtedy mozliwe jest by zachowana zostata catkowita energia
sygnatu.

Wybdr @, = w, @, =0 prowadzi do odzyskania widma sygnatu z jego transformacji Wignera:

o (5 oo e

”»

(2.36)

W. 14. iloczyn zmiennej ,,t” i sygnatow
Jesli x, (1) =tx(2), y, (1) =ty(r) to:
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WD,  (t,0)+WD, | (to)= 2tWD | (t,w) (2.37)
W. 15. iloczyn zmiennej ,,” i sygnatow
Jesli x, (1) =wx(1), y, (1) =wy(1) to:

WD, (1, @)+ WD, | (t,0)= 20WD (1,0) (2.38)
W. 16. biliniowa natura przeksztatcenia a sygnaty wielosktadnikowe
Jesli x, (1) =x,,(1)+x,,(1), y,(2) = 3, (1) + y, (1) to:

WD, (t,@)=WD,_  (t,0)+WD,  (1,0)+WD_  (t,0)+WD,  (t,0)

1:71 112211 11212 122711 M20712 (2‘39)
WD, (1,)=WD, (1,@)+WD_ (1,@)+2Re{WD,_ (1,0)}
Przeksztalcenie Wignera sumy sygnalow nie jest jedynie suma przeksztalcen Wignera
sktadowych sygnatu, lecz rowniez ich wzajemnych przeksztatcen Wignera. Pierwsze z nich
przyjeto nazywac¢ auto-sktadowymi (ang. auto-term), za$ sktadniki wzajemne nosza nazwe
sktadowych krzyzowych (ang. cross-term). Sktadniki krzyzowe maja charakter oscylacyjny
1 umiejscowione sa w czestotliwosciowych srodkach geometrycznych auto-sktadowych.

2.1.2. Pseudo-transformata Wignera oraz jej wersja wygltadzona

Z punktu widzenia zastosowania przeksztalcenia Wignera w numerycznych
obliczeniach, konieczne jest rozwazenie problemu obcigzenia sygnatéw funkcja okna.
Oznacza to, ze zamiast wyznaczenia transformacji sygnatow x(¢) oraz y(f) do rozwazan

przyjmuje si¢ rodzing funkcji x, (7)=x(r)h, (t—1) orazy,(7)=y(r)h,(7—1), powstata dla
réznych potozen okien h (7), h, () w zaleznosci od 7. Podazajac za macierzysta definicjg

transformacji Wignera, wzajemng oraz wtasng pseudo-transformate Wignera (ang. Pseudo-
Wigner Distribution, PWD) opisuje wyrazenie [16,27,50,51,61]:

T T T T 7ol
PWD (t,o)= |x|t+—|y*|t——|h | — h* 2 leirqr
o @0= (o2 )y r=Z)n () (-]

- (2.40)

PV\]])A (t,w) = J‘X [+Z Xk I_Z h\‘ 1 h*‘ __1 eI qr
’ e 2 2) \2) " 2

Dla ustalonego 7 obliczona transformata Wignera sygnatow x, (T) vy, (7) moze by¢ wyrazona

za pomoca splotu przeksztatcen Wignera sygnatow oryginalnych i funkcji okien zgodnie
z wyrazeniem (2.24):

WD, | (T,a)):zL J'WD“(T,U)WDh , (T-t,0-m)dn
191 7[_00 2 vty

(2.41)
1 +oo
WD, (7,0)= - IWD (7, mWD, (7-1,0-1)dn
1 7[ W X
W powyzszym réwnaniu ¢ pojawia si¢ jako parametr okreslajacy potozenie okna na osi czasu.

Dla 7 =t otrzymujemy pseudo-transformate Wignera wyrazona jako:

PWD_  (t,0)=WD, , (7,0)|,, :51— IWD“(Z,n)WDh . (0,0-n)dn
- (2.42)
PWD, (1,0) =WD, (r.0)|.., =5~ [ WD, (.)WD, (0.0-n)dn
1 ﬂ._m < X
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Zgodnie w powyzszym wyrazeniem wzajemna lub wtasna pseudo-transformata Wignera jest
splotem reprezentacji Wignera sygnaléw nieobciazonych z niezalezna od czasu funkcja

odpowiednio WD, , (0,w—7) badz WD, (0,0-7). Dla ustalonego ¢ przeksztatcenie

Wignera jest jedynie funkcjg @. Zatem okienkowanie mozna traktowac jako operacje filtracji
oryginalnej funkcji WDy, filtrem o odpowiedzi impulsowej WD, , (0,w) , gdzie rolg czasu

w charakterystyce impulsowej przejmuje @. Przyjmujac rzeczywista, parzysta funkcje okna
h.(7)=h,(7), omawiana odpowiedz impulsowa mozna opisa¢ zalezno$cia:

= [n Gj eI dr (2.43)

Stad funkcja transmitancji takiego filtru ma posta¢ kwadratu okna, a co za tym idzie filtr taki
bedzie zawsze filtrem dolnoprzepustowym. Przyjmujac okno prostokatne o diugosci T
uzyskamy efekt filtracji idealnym filtrem dolnoprzepustowym, ktory stlumi zmiany
czegstotliwosci w oryginalnym dwuwymiarowym widmie Wignera poza 7/2. Pseudo-
transformata Wignera jest wigc wygladzong wersja oryginalnej transformaty jedynie wzdtuz
osi czestotliwosci.

Kolejnym krokiem jest wygladzenie (usrednienie) wzdluz osi czasu. Nalezy dodac,
ze kierunek ten jest szczegdlnie wazny ze wzgledu na mozliwos¢ wyzerowania oscylacyjnych
sktadowych krzyzowych w reprezentacji Wignera. Omoéwione obecnie zagadnienie dotyczy
wygtadzonej wersji pseudo-reprezentacji Wignera (ang. Smoothed Pseudo-Wigner
Distribution, SPWD), ktéra niesie ze sobg mozliwos$¢ niezaleznego wyboru usrednienia
czasowego 1 czestotliwosciowego. Z punktu widzenia pseudo-reprezentacji Wignera
wygtadzenie po osi czasu uzyskane jest przez splot w dziedzinie czasu pseudo-reprezentacji

z dodatkowg funkcja okna g (7)[27,51,62]:
SPWD, (1,@) = [g(1—u)PWD, (u,w)du (2.44)

Wracajac do definicji PWD opartej na sygnale obciazonym funkcja okna h(), réwnanie

powyzsze mozna rowniez przedstawic’ jako:
T ¢ T ;
SPWD ( h(t t—u)x|u+— x| u——|du e ’"d7 2.45
j fg( ) ( 2) [ 2) (2.45)

a wykorzystujac H (@) jako transformate Fouriera funkcji h(r) [27,51,62]:

SPWD  ( j jg (1—u)H(w-17) WD, (u,7)dudn (2.46)

Podejscie to daje mozliwos¢ nlezaleznego wyboru stopnia usrednienia wzgledem
czestotliwosci i czasu, bowiem wygladzanie oparte jest na splocie z dwuwymiarowa funkcja

bedaca iloczynem niezaleznych, jednowymiarowych funkcji g(7)H (@). Cecha ta jest

szczegblnie uzyteczna jesli przywotamy na mys$l problemy krétkoczasowej transformaty
Fouriera, gdzie istnieje $cisty zwiazek pomiedzy rozdzielczosciq w czasie 1 rozdzielczoscig
w czestotliwosci. Omawiajac ten problem warto zauwazy¢, ze klasyczny spektrogram moze
by¢ wyrazony réwniez za pomoca reprezentacji Wignera. Mozemy wtedy mowic
o wygtadzonej reprezentacji Wignera (ang. Smoothed Wigner Distribution, SWD), ktéra nie
posiada juz cechy niezaleznosci rozdzielczosci czasowej 1 czgstotliwosciowe;.

SWD ( j j WD, (u—1,77—@)WD (u,7)dudn =SPEC, (1,0)  (2.47)

—c0 —o0
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Wygtadzanie jest tu wigc efektem splotu z dwuwymiarowq funkcjqg wygtadzajaca, ktéra
stanowi transformata Wignera WD, (—7,—®) funkcji okna h(r) z uwzglednieniem zmiany

znaku zmiennych. W tym przypadku catkowity zasieg czasowo-czgstotliwosciowy omawiane;j
funkcji wygtadzajacej podlega $cisle zasadzie nieoznaczonosci. Konsekwencja tego jest
z jednej strony staba koncentracja czasowo-czgstotliwosciowa, ale 1 wysoki stopien
ztagodzenia sktadowych krzyzowych.

2.1.3. Transformacja Wignera-Ville’a

Jedng z wtasciwosci przeksztatcenia Wignera jest ograniczenie pasma czgstotliwosci
reprezentacji sygnaléw o ograniczonym widmie. Pewnym szczegélnym przypadkiem takiego

sygnatu jest zespolony sygnal analityczny x, (t):x(t)+j;<(t) , ktérego czegs¢ urojona )A((t)
jest transformata Hilberta sygnatu rzeczywistego x (7). Zwigzek pomiedzy widmem sygnatu
analitycznego X, (@) a widmem pierwotnego sygnatu rzeczywistego X (@)opisuje ponizsze
rownanie [16,52]:
2X(w) dla >0
X, (@)=4 X(0) dlaw=0 = WD (t,w)=0dla @ <0 (2.48)
0 dla w<0

Omawiany przypadek adoptowany zostal przez Ville’a dla potrzeb analizy sygnatow
i zaowocowal pojeciem transformaty Wignera-Ville’a, gdzie przeksztalceniu Wignera
poddawana jest analityczna posta¢ sygnatu rzeczywistego [6,7,25,27,46,52,63].

WVD, (1,@)= WD, (t,0)= Jx” (t+%) X, *(;—gjetim,dz_ (2.49)
Efektem takiego wstepnego przygotowania sygnalu sa zerowe wartosci przeksztalcenia
Wignera-Ville’a dla ujemnej czgsci osi czgstotliwosci.

Warto tu zatem podkresli¢ znaczenie formy Wignera-Ville’a, ktora przez wyzerowanie
sktadnikéw w ujemnej czegsci osi czgstotliwosci, redukuje liczbg sktadowych krzyzowych,
wynikajacych z fluktuacji pomig¢dzy auto-sktadowymi widma, lezacymi w jego ujemnej
i dodatniej czegsci osi czestotliwosci. Ma to szczegélne znaczenie praktyczne, kiedy
przetwarzaniu poddawane sa sygnaty rzeczywiste, ktorych widmo jest parzyste, a calg
informacj¢ o S$ledzonych zmianach widma odczyta¢ mozna z dodatniej czesci osi
czestotliwosci. Istniejq jednak przypadki, kiedy uzycie formy Wignera-Ville’a mogtoby
spowodowa¢ utrat¢ informacji. Ma to miejsce wtedy, gdy przetwarzaniu poddawany jest
sygnat zespolony, jak na przyktad podczas analizy wektora przestrzennego. Wykorzystanie
reprezentacji czasowo-czestotliwosciowych do badania tego rodzaju sygnatu jest jednym
z proponowanych w niniejsze] pracy obszaréw zastosowan dla potrzeb elektrotechniki
Poza tym uzywajac analitycznej formy sygnalu nalezy by¢ $wiadomym pewnej
niedogodnosci. Nawigzujac do wilasnosci transformaty Wignera sygnalow ograniczonych
w czasie mozna spodziewa si¢ zachowania czasowego ograniczenia w reprezentacji
Wignera. Sygnat analityczny wprowadza niestety rozmycie czasowe nie zachowujac
wspomnianej wtasnosci. Zwiazek pomiedzy transformata Wignera a Wignera-Ville’a
podkresla ponizsze réwnanie [52]:
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WVDA-(”w)zzi J'M
b2 T

WVD, (1 —7,0)d7 (2.50)

Wczesdniejsze pojecia pseudo-reprezentacji 1 wygtadzonej pseudo-reprezentacji mozna
adoptowa¢ na gruncie réwnania Wignera-Ville’a. Wprowadzenie funkcji okna czasowego
h(¢) dla sygnatu rzeczywistego x(z) prowadzi do réwnan pseudo-reprezentacji Wignera-

Vill’a (ang. Pseudo-Wigner-Ville Distribution) [46,59]:

PWVD, (1.0) = [x, (r+3 x, ¥ == |b[ < |h*[ =< |t dr (2.51)
' 2 2) 2 2

—oo

i owocuje usrednianiem wzdtuz osi czgstotliwosci.
Uzyskanie wygtadzenia wzdluz osi czasu uzyskane jest przez splot w dziedzinie czasu

pseudo-reprezentacji Wignera —Ville’a z dodatkowa funkcja okna g(¢) i owocuje

wygtadzong pseudo-reprezentacjq Wignera-Ville’a (ang. Smoothed Pseudo-Wigner-Ville
Distribution) :

SPWVD, (1,0) = [g(t—u)PWVD (1, w)du (2.52)

co w polaczeniu z sygnalem obciazonym funkcja okna h(z), mozna réwniez przedstawi¢

jako:
T i T * 4 - jot
SPWVD (t,0) = j-h(f) Ig(t—u)xa (u+§]x” (u—gjdu e ar (2:33)

Podobnie jak w przypadku wygtadzonej pseudo-reprezentacji Wignera, wygladzona wersja
pseudo-transformaty  Wignera-Ville’a niesie mozliwos¢ wyzerowania oscylacyjnych
sktadowych krzyzowych w reprezentacji Wignera-Ville’a wraz z zachowaniem niezaleznego
wyboru stopnia usrednienia czasowego 1 czestotliwosciowego. Zredukowanie ilosci
sktadowych krzyzowych poprzez wykorzystanie analitycznej formy sygnatu oraz dalsze ich
wygtadzanie w czasie i czgstotliwosci, czynig omawiang posta¢ szczegOlnie uzyteczna dla
potrzeb analizy rzeczywistych sygnatéw wielosktadnikowych.

2.1.4. Globalne i lokalne momenty transformacji Wignera jako wskazniki
niestacjonarnosci

Omowione powyzej wlasnosci przeksztatcenia Wignera podkreslajg mozliwos¢ opisu
dystrybucji energii sygnalu w potaczonej dziedzinie czasu i czestotliwosci. Nie zawsze
konieczne jest wykorzystanie pelnej reprezantacji na plaszczyznie (7, @), zwlaszcza jesli
zmierzamy ku praktycznym zastosowaniom dwuwymiarowych przeksztatcen. Celom takim
stuzy¢ moga momenty przeksztatcenia Wignera.

Wprowadzajac definicj¢ lokalnych momentéw, reprezentacj¢ Wignera traktuje si¢ jako
funkcje czasu przy ustalonej czestotliwosci lub funkcje czestotliwosci przy ustalonym czasie.
Stad wuzyskane momenty lokalne s3a odpowiednio jednowymiarowymi funkcjami
czestotliwosei lub czasu, wcigz zachowujac informacj¢ o zmianach sygnatu w czasie lub
czestotliwosci. W przypadku momentoéw globalnych, uzyskanych przez catkowanie po catej
plaszczyznie (f,®), informacje o zmianach energii w funkcji czasu czy czgstotliwosci zostajq
utracone.

Dalsze réznice ujawniajg si¢ w przypadku wyznaczania momentéw lokalnych czy
globalnych nie dla przeksztalcenia Wignera, lecz dla jego kwadratu. Majac na uwadze fakt,

26



Rozdziat 2: Biliniowe reprezentacje czasowo-czestotliwosciowe

ze przeksztalcenie Wignera nie jest zawsze funkcja dodatnia, takie podejscie moze okazaé sie
konieczne ze wzgledow interpretacyjnych.

Rolg niniejszego rozdziatu jest wprowadzenie definicji i interpretacji momentéw
przeksztatcenia Wignera w nawiazaniu do definicji i interpretacji momentoéw sygnatu i jego
widma.

Lokalne momenty czestotliwosciowe [16] :
e lokalny czestotliwosciowy moment zwykty zerowego rzedu

MTw(t):iTWD‘(t,a))dwﬂx(t)

2

(2.54)

Dla ustalonego ¢ srednia z przeksztalcenia Wignera po czestotliwosci okresla chwilowa
energi¢ sygnalu. Niezerowa wartos¢ tego momentu pozwala zdefiniowa¢ unormowane
momenty wyzszych rzedow.

e Jokalny unormowany czgstotliwosciowy moment pierwszego rzedu
4o

J'a)WDX (r,0)dw

inp‘ (1)= (2:55)

T WD (t,0)dw

Pierwsza interpretacja tej charakterystyki wskazuje na Srednig cze¢stotliwos$¢ przeksztatcenia
Wignera w chwili 7. Korzystajac z wiasnosci przeksztalcenia powyzsza charakterystyke
mozna réwniez wyznaczy¢ z zaleznosci:

— x'(1) d
Q = —_— f— i
o (1)=1Im () Im 5 Inx () (2.56)

Przeksztalcenie Wignera sygnatow rzeczywistych jest parzysta funkcja czestotliwosci, czego

efektem jest zerowa wartos¢ parametru Q{VD“ dla tej klasy sygnatow. W przypadku sygnatow
zespolonych x(1)=v(1)e’", gdzie v(t) oraz ¢(f) sa funkcjami rzeczywistymi, Srednia
p y J ywisty

czestotliwos¢ przeksztatlcenia Wignera sygnatu stanowi pochodna fazy, co prowadzi do
interpretacji unormowanego czestotliwosciowego momentu pierwszego rzedu jako chwilowej
czestotliwosci sygnatu (ang. instantaneous frequency):

Q. (1)=0'(1) (2.57)
e Jokalny unormowany czgstotliwosciowy moment centralny drugiego rze¢du

T(“"Q—v]v;(f))z WD, (1,0)d@
B (1) == (2.58)
_[WDX(t,a))da)

Przeksztatcenie Wignera nie jest zawsze dodatnie, co powoduje, ze charakterystyka X, ( t)

roOwniez moze przyjmowa¢ wartosci niezerowe. Efektem tego jest pewna trudnosé
w bezposredniej interpretacji omawianego momentu jako miary rozrzutu czg¢stotliwosci wokot
punktu skupienia widma w chwili 7. Jednoczes$nie wiasnosci przeksztalcenia Wignera dajg

mozliwos$¢ wyrazenia me‘ () w nastgpujacej formie:
1 d ()

me‘ ([) =R

2 dr x (1)

(2.59)
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co w przypadku sygnatéw zespolonych x()=v(t)e™", ), prowadzi do:
1dv ( ) 1
Zop ()=————+=—==h|v(z 2.60

Globalne momenty czestotliwosciowe [16]:

Momenty globalne, uzyskane na drodze catkowania po calej ptaszczyznie (7,®), sq statymi
wskaznikami, charakteryzujacymi przeksztatcenie w sensie ogolnym.

e globalny czestotliwo$ciowy moment zwykty zerowego rzedu

+oo o0

m:—IIWD (r.o)ddo=|x(1)| =|X (o) =E, (2.61)

Moment ten okresla wigc calkowuq energi¢ zawarta w sygnale.
e globalny unormowany czgstotliwosciowy moment pierwszego rzgdu

400 400

[ JoWD, (1, 0)idw
Qup, === (2.62)

TTWD-\' (t,w)drdw

—00 —co

Wybér t jako pierwszej zmiennej catkowania prowadzi do wyrazenia:

+°qa)‘X | dw
== - (2.63)
”X(a)

— 27
WD

a wykorzystanie twierdzenia Parsevala pozwala wyznaczy¢ Q{VD‘ jako:

TED‘(tHx (t)|2 dt

WD
| <)
Powyzsze rownania pozwalaja  interpretowa¢  globalny  unormowany — moment
czestotliwosciowy pierwszego rze¢du jako Srednia czestotliwos¢ spektrum sygnatu lub jako
$redniag wazong chwilowej mocy sygnatu, gdzie chwilowa moc sygnatu jest funkcja wagi.
e globalny unormowany czgstotliwosciowy moment Centralny drugiego rzedu

)

[ (- Qle) WD, (1, a))da)dt — j(a) Q‘WD) X () do
S _ (2.65)
j j WD (t,0)dwdt [X (@)

(2.64)

5 , . . , 9 s -
Powyzsze rownanie wskazuje na dodatni charakter X, co pozwala interpretowac ten

moment jako miarg rozrzutu spektrum sygnatu wokot czgstotliwosciowego punktu skupienia.

Lokalne momenty czasowe [16]::
e lokalny czasowy moment zwykty zerowego rzgedu

mj, (©)= TWDX (o) =|X (o) (2.66)

Analogicznie do interpretacji czgstotliwosciowego momentu zwyklego zerowego rzedu,

0

Myp,

(@) opisuje chwilowe widmo gestosci energii dla ustalonej @.
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e Jokalny unormowany czasowy moment pierwszego rzedu
- [tWD, (1,0)dr
Gy, (@) =2 (2.67)
[WD, (1,0)dr

Interpretacja tego momentu jako sredniego czasu dla danej czestotliwo$ci moze byé
pogiebiona przy wykorzystaniu wiasnosci przeksztatlcenia Wignera:

X'(@ d

X(o) __ 4 1 x(0) (2.68)
X(w) do

Stad dla X(a)):|X(a))|e""’(”’), gdzie |X(a))) oraz () sa funkcjami rzeczywistymi,

Uy, (@) =—1Im

lokalny unormowany moment czasowy mozna traktowa¢ jako przeciwng pochodna
charakterystyki fazowej widma. Ma to szczegdlne znaczenie jesli poddanym przeksztatceniu
Wignera bedzie sygnat odpowiedzi impulsowej liniowego systemu stacjonarnego. Wtedy
przeciwna pochodna charakterystyki fazowej transmitancji widmowej takiego systemu
wskaze op6znienie grupowe systemu (ang. group-delay).
e lokalny unormowany czasowy moment centralny drugiego rzedu

[(1=ths, (@) WD, (r,0)ds

Opp, (@) ==—— (2.69)
[WD_ (1,0)dr

Wiasnosci przeksztatcenia Wignera pozwalaja dowies¢, ze moment ten zalezy jedynie od
charakterystyki amplitudowe;j.
X' X(w)' 2
62, (0)=—LRe-L (@) _1d[X(@]_ 1 L njx(w) @70
' 2 doX(w) 2do|X(e) 2de’

Globalne momenty czasowe [16]::

Momenty globalne, uzyskane na drodze catkowania po catej ptaszczyznie (7,@), sa statymi
wskaznikami, charakteryzujacymi przeksztalcenie w sensie ogdlnym.

e globalny czasowy moment zwykty zerowego rze¢du

m, = Jwn, (to)da =[x (@) =[x(1)

—o0 —o0

2

“=E 2.71)

X

Moment ten, podobnie jak globalny czgstotliwosciowy moment zerowego rzedu, okresla
catkowita energi¢ zawarta w sygnale.

e globalny unormowany czasowy moment pierwszego rzedu
+o0 4o0

[ [wp, (roxed
twp, = 2 (2.72)

| TWD_\, (1, 0)dadr

—oo

Wybdr wjako pierwszej zmiennej catkowania prowadzi do wyrazenia:

_ Tt’x(t)rdt

t =
T ke

(2.73)
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a wykorzystanie twierdzenia Parsevala pozwala wyznaczyc¢ tL,Dx jako:
o 2
1
J-twg (a))[X(a))’ dw
1 _ —oo

tWD
| X (@)
Powyzsze rdéwnania pozwalajg interpretowa¢ globalny unormowany moment czasowy
pierwszego rzgdu jako globalny s$redni czas sygnatu lub jako sSrednia wazona opdéznienia
grupowego, gdzie funkcja wagi jest widmo gestosci energii.
e globalny unormowany czasowy moment centralny drugiego rz¢du

+o0 oo

[J-o) wo. (s [ e

. (2.75)

(2.74)

—00 —0co

O-WD‘ - +o0 400

[ [WD, (1,0)dude ()

—co

Powyzsze réwnanie wskazuje na dodatni charakter oy, , co pozwala interpretowaé ten

moment jako miar¢ rozrzutu sygnatu wokét czasowego punktu skupienia.

Przedstawione zaleznosci, opisujace momenty przeksztalcenia Wignera oraz ich
interpretacje, sa pewnego rodzaju wprowadzeniem do zaproponowanego W niniejszej
rozprawie  kierunku  wykorzystania  przeksztalcen  czasowo-czgstotliwosciowych.
Dwuwymiarowos$¢ uzyskanych wynikoéw, cho¢ szalenie uzyteczna z punktu widzenia
okreslenia cho¢by rodzaju niestacjonarnosci, moze okaza¢ si¢ niekorzystng wiasnoscig tego
typu przeksztatcen, gdy zmierza¢ bedziemy ku praktycznym mozliwoscia ich wykorzystania.
Jednowymiarowe charakterystyki unormowanych lokalnych momentéw czgstotliwosciowych

pierwszego rze¢du Q]WQ () mozemy interpretowa¢ jako przebieg zmian w czasie punktu

skupienia widma Wignera. Jesli zatem w analizowanym sygnale nastgpifaby zmiana sktadu

jego spektrum, to skupienie uwagi na analizie zmian charakterystyki a.. (1) moze

zaowocowa¢ wyznaczeniem charakterystycznych punktow niestacjonarnosci na osi czasu.
Taki kierunek postgpowania moze by¢ jednak zaktécony podstawowa wiasnoscig wynikajaca
z parzystosci auto-reprezentacji Wignera wzgledem osi czestotliwosci dla sygnatow
rzeczywistych, a te przeciez sa materiatlem badan w wigkszosci przypadkow. Efektem
wspomnianej wtasnosci jest zerowa warto$¢ lokalnego momentu widma, a wigc zadna
uzyteczna informacja. Stad nalezaloby zastanowi¢ sig, czy charakterystyki Q'WDX_(I) nie
mozna by wyznaczaé na podstawie dodatniej jedynie cz¢Sci widma Wignera, definiujac w ten
sposéb pseudo-moment lokalny. Takie rozwigzanie wydaje si¢ nie wprowadza¢ biedu w
przyjetym kierunku rozumowania. Kiedy bowiem pominigcie czg¢sci ujemnej widma Wignera
moze okaza¢ si¢ niewtasciwym krokiem? Jedynie przypadek sygnatow zespolonych i to nie
analitycznych wymagatby rozpatrywania catej osi czgstotliwosci, a to ze wzgledu na réznice
widma w dodatniej i ujemnej czgs$ci. Ta wlasciwos¢ przeksztalcenia Wignera moze byc
uzyteczna przy badaniu wektora przestrzennego, ktoéry jako sygnal zespolony utworzony
z trzech sygnatéw uktadu tréjfazowego niesie ze soba informacje o sktadowych
symetrycznych takiego ukladu. Obserwacja reprezentacji czasowo-czgstotliwosciowej
wektora przestrzennego dla dodatniej osi czestotliwosci przyniesie informacje o zmianach w
czasie sktadowej zgodnej uktadu, ujemna zas oS czestotliwosci zawiera¢ bedzie informacje
o niestacjonarnosci sktadowej przeciwne;.

Zespolony sygnat analityczny charakteryzuje si¢ zerowymi wartoSciami reprezentacji
Wignera dla ujemnej czegsci osi czgstotliwosci. Ta wlasciwos¢ jest podstawa transformacji
Wignera-Ville’a, gdzie sygnal rzeczywisty najpierw poddawany jest transformacie Hilberta
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dla uzyskania sygnatu analitycznego, a dopiero pézniej transformacie Wignera. Swiadome
wyzerowanie ujemnej czesci widma pozwala na unikni¢cie dodatkowych sktadowych
krzyzowych pomigdzy sktadowymi widma dodatniej i ujemnej czesci osi czestotliwosci.
W przypadku wigc transformacji Wignera-Ville’a, zdefiniowanie lokalnych momentow
widma ma sens jedynie dla dodatniej czg¢sci osi czgstotliwosci.

W zwiazku z powyzszym, przyjecie kierunku wyznaczania lokalnych pseudo-
momentow czgstotliwosciowych na podstawie dodatniej jedynie czgsci osi czestotliwosci
reprezentacji Wignera badz Wignera-Ville’a pozwoli zredukowa¢ wielowymiarowos¢
przeksztatcen i traktowac¢ uzyskane jednowymiarowe charakterystyki jako pewnego rodzaju
wskaznik niestacjonarnosci. Ponizsze réwnania opisuja zaproponowane podejscie na
przyktadzie lokalnych unormowanych pseudo-momentéw czgstotliwosciowych reprezentacji
Wignera i Wignera-Ville’a, wskazujacych na srednia, lokalng czgstotliwos¢ badanego sygnatu
rzeczywistego:

J.a)WD,\, (t,0)dw

0 (1) =2

J’WD_r (t,o)dw

) (2.76)
_ J‘a)WVD,\, (t,0)dw
QlWVDx (1)="2

[wvD, (1,0)de

0

2.1.5. Przyklady analitycznego wyznaczania transformacji Wignera

W niniejszym rozdziale postanowiono zamiesci¢ dwa przyktady analitycznego wyznaczania
transformacji Wignera sygnaléw ograniczonych w czasie, w celu przyblizenia natury
omawianego przeksztatcenia. Transformacji poddano sygnat prostokatny oraz ograniczony w
czasie sygnat cosinusoidalny

Przyktad 1:
x(1)=A[1(t-1;)-1(t~1;)] 2.77)
A
x(1)
A
t
»
tl t2

Rysunek 2.2. Przyktadowy sygnal poddany transformacji Wignera.

Sktadniki podcatkowe mozemy opisac jako:
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(H%):A[ t+——t1 1("*%'[2)} (2.78)
x([+%):A ][T+2t_[])J_I[T+2([_l2)]} |
(-5 =Asm5-0)e=5-0]
(t__) { [ . 2(z—rl))]—1[—(7"2("%))]} (2.79)

Granice catkowania wzglgdem zmiennej t oraz niezerowe wartosci catki Wignera mozna
wyznaczy¢ na bazie analizy wzajemnego polozenia okien sygnatu.

a. t<f1

A

T
»

2(t-1t,) 2(t-t)) = 2(t - 1) ~2(t = L)

Rysunek 2.3. Ilustracja wzajemnego pofozenia okien sktadnikéw catki Wignera dla 7 <1

WD, (t,0)=0 (2.80)

b, 1 <t<%(t]+t2)

x(t- x(t+5)

2t=1,) = Z(t; {,) Z(t -1,) -2(f-1)

Rysunek 2.4. Ilustracja wzajemnego polozenia okien sktadnikéw catki Wignera dla
1
f<t<z(f+1,)
2(t-1)) 2(1-1,)
. _ o T B . B
WD, (r.0)= J- A% r= 4% L 37 :A__{eﬂw(f n) _ 2ot n)}
, i@

A
(=1 (1)
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2
WD (t,a)):%sm[.?a)(t—t] )] (2.81)
t:lz(t1+t2):t0 tj. gdy: 2(1-1,)=-2(r-1)
A

|

Rysunek 2.5. Ilustracja wzajemnego polozenia okien skfadnikow catki Wignera dla

’:lz(flﬂz):fo

2
WDX,X (fo,a)) :%Sln[a)(fz —tl ):' (2.82)
5 %(tl+r2)<t<t2
A
x(1+5) A o(r-3)
D —> T
>

S2t-t) 20t-1) '-20-1)  2-1)

Rysunek 2.6. Ilustracja wzajemnego potozenia okien sktadnikéw catki Wignera dla

/
S(t+0y) <<,

—2(t-1,) —2([—[2) . ‘
WD, (1,0)= A2e1OT 4= A2 1 mior :A—z eJZw(r—tz)_e—ﬁa)(t—rz)

X, X P e
2(t-ty) 2(t-1,)
2
__2A°
WDx’x(t,a))_— p Szn[Za)(t—tz)] (2.83)
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d. 3 +n)<i<n
A
x(r+5) x(r-%)
A
R >
T
S
2(t-1,) 2(t-t;) = 2(t=1;) =2(t-1,)

Rysunek 2.7. Tlustracja wzajemnego potozenia okien sktadnikow catki Wignera dla 7 > 17,

WD (t,0)=0 (2.84)

Ostatecznie transformacj¢ Wignera sygnatu prostokatnego ograniczonego w czasie od 7; do 1,
mozemy zapisa¢ w postaci:

0 dla r<g

24% [ 1

2 sin[ 20(1—1) | dla f << (f+1p)
WDA,A (t,(l)) = @

—Lﬁ)—zsin[Za)(t—tz)] dia L +6p) <1<y &%)

0 dla 121,

Dla zilustrowania charakteru otrzymanej postaci ponizej zamieszczono przykitad wyznaczenia
przebiegu wybranej sktadowej transformacji Wignera tj. przy okreslonym @ dla
A= 10,l1 = 0,f2 =0.2 oraz 15} =0.3.

-

0 dla r<g
lim (géz—sinpa)(t—tl)]j dla f<r<d(+1y)
w—0\ @ .
WDA,A([’O): 2A2 |
— lim | ==—sin| 20{t—t dla —(f;+1y)<t<t
iin (22 s[20(-1)]) da (n+n)<i<n
0 dla 121,
0 dla <1
4A%(1-1) dla n<t<5(n+1)
WDA,A(I,O):< 5 i
A% (1-1y) dla S +1y)<t<ty (2.86)
0 dla 121,
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Skad dla A=10,1; =0,1, =0.2 otrzymujemy:
0 dla <0

4A%1 = 400t dla 0<t<0.1
WDA,A (t,O) =

—4A%(1—15 )=—400(r-0.2) dla 0.1<7<0.2
0 dla 1>0.2

1
W szczeg6lnoscei dla ¢ :E(tl +1)=0.1s, WD 44 (0.1,0) =400x0.1=40

Podobnie dla A=10,/{ =0, =0.3 :
0 dla <0

4A% = 400t dla 0<t<0.15
WDA,A ([,O) =3

—4A%(t—1, )=—400(r=0.3) dla 0.1<r<0.3
0 dla =03

1
a w szczegdlnosci dla 1 :E([l +1,)=0.15s, WD 4,4(0.15,0) =400x0.15=60.

Podobnie mozna przeanalizowa¢ dowolne sktadowe @ = @y dwuwymiarowej reprezentaciji:

0 dla r<t
DA° . 1
w—osm[Qa)O(t—tl)] dla [1 <f§§([1+t2)
WD.4(to)= 242 . I (2.87)
—w—osm[2a)0(t—t2)J dla (1 +t2)<t<t2 :
\0 dla IZ[2
Skad dla A=10,f{ =0,t, =0.2 oraz wybranej ay, =107(fy =5Hz) otrzymujemy:
0 dla <0
Qsin[ZOﬂ'(t)] dla 0<r<0.1
WDA,A (f,l()ﬂ) = 7[20
——sin| 207 (t-0.2)] dla 0.1<r<0.2
T
0 dla r=0.2

~

W szczegblnosci  dla t:%(t1+tz)20.1s, WDAA(O.],O):QSiII(zﬂ'):O badz dla
Vs

t :l(,] +t2) =0.025s, WD 44 (0.025,0) :ﬁsin (Zj :g ~6.37
8 T 2 T

Rysunek 2.8 przedstawia transformaty Wignera omawianych sygnatéw oraz przebiegi
wybranych sktadowych (0,5,10)Hz
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%) <)

f[Hz) -20 0 t[s)

B) - )

03

‘ 01
fHz) 200 tls]

Rysunek 2.8. Transformata Wignera sygnatu prostokatnego dla
A=10,/{ =0,1, =0.2 (a) oraz t, = 0.3 (b), jak tez charakter przebiegu wybranych sktadowych

(0,5,10)Hz (c,d).

Przyktad 2
Niech zadanym sygnatem bedzie ograniczony w czasie sygnat cosinusoidalny:

x(1)=Acos(ayt+y)[1(t—1;) = 1(t—1,)]
x(1)= i;-[ej(wotw) +e_j(w0t+w)}[1(t—tl)—I(t—tz):l

Transformat¢ Wignera tak opisanego sygnatu mozna wyrazi¢ jako:

(2.88)

WD (z,m):%zoj' ooy ] Aale s ]| (5] deo-5)v]

X, X X
X[](t +%—t1)—](t+%—t2)][l(t—%—tl)—I(t—%—tzﬂe_jmdl' (2.89)
Ar+5) 4(1=5)

Dalsze przeksztatcenia prowadzg do ponizszych wyrazen:
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A2°° PRlagt+y) | i2(og+y) | joyr | oy ST
WDx,x(f’w):Tje v +e V0 +e’ 0% 4770 A(r+%)A(z—%)eJ dr=

—00

2 (e o]
_A o joyT | -jw,T T _r\. ot
= I{25052(a)0t+1//)+e 0% +e""0 }A(H—z)A(Z 2)e dr (2.91)

2 2
- (2.92)

+A72 o]e‘j(w—wo)fg(; +£)A(t_%)d1+%2 oj’e—j(ma)o)rA([+1)A(t_l)df

2 y .
WD, , (o) =A7ws2(a)0r+y/) IA({+1)A([_1)6-JwTdT+

2 2

—oco —oo

Auto-transformate WD, ,(f,®) ograniczonego sygnatu cosinusoidalnego mozna wigc zapisac
W postaci:
2 2

WD, (1,0) :%cosz(a)ow w)WD 4 4(t,@) +%—[WDAA (Lo—wy)+ WDy 4(1,0+ wO)J
(2.93)
a wykorzystujac wyrazenia (2.85) opisujace WD 4 4 (7,®) otrzymujemy :
0,dlar<g
%ZCOS Z(a)ot + l//)sin[Za)(t -1 )] +
3
A sin2(0-ap)(-n) ]+ e sin 2(0+a0) (=1
dla 1, <t£%([1 +15)
WD, . (t.@)=y (2.94)

—Aw—cos 2((001 + l//)sin[Za)(z‘ ) )] +

_%2{0) L sin[ 2(@—ay)(1—1y) |+ —L—sin[ 2(w+ a)o)(t—rz)]}

%0 0

dla —;—(t]+t2)<t<t2

0,dlat >ty
Dla zilustrowania charakteru otrzymanej postaci ponizej zamieszczono przyktad wyznaczenia
przebiegu WD, (#,0) sygnatu x(z)=10cos(1007t) [l (1)—1(t- 0.2)}

(0 dla t<0

1
2001 cos (2007t ) +— sin (2007t ) dla 0<r<0.1

n
WD, (1,0) =1

I
—200(7 —0.2) cos (2007t ) ——sin (2007 (1 —0.2)) dla 0.1<7<0.2
T

L0 dla 7>0.2
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W szczegblnosci dla ¢ = %(tl +1,)=0.1s5, WD, (0.1,0) = 20cos (207) +lsin(207z') =20,
T

Analogicznie wyprowadzi¢ mozemy zaleznos¢ opisujaca przebieg przeksztalcenia Wignera
dla wybranej pulsacji w:

0,dlar<g
g_zcos(za’ot)Si”(sz’)+A72{2f+ﬁ5i”[40)0(I)J}Z
_3A% G (aer) + A% dlat; <t <L(t +¢
0 1 1 5
4%y 2
WD, (t.009)= > (2.95)

—Ag)—o—cos(Za)Ot)Sin[za)O (t —i ):l +
2

_%{z(t—12)+ﬁsin[4a)o (t—tz)]}, dla %(rl +ip)<t<iy

0,dlat>1,y

Jesli rowniez t, = kT,,T, = 27 / @, to wyrazenie powyzsze upraszcza si¢ do postaci:
0,dlar<t

éA—sin(4a)0t)+A2t, dlar <t S%(tl +15)
e —EA—zsin(4a) t)—A2(t—t ), dla l(r +iy)<t<t
4 o, 0 2)-da{n+ 2

0,dlar>1,

a w przypadku omawianego przyktadu x (1) =10cos(1007¢) [] (t)—1(r- 0.2)]
0,dlat<0

2 Sin(40071) + 1001, dla0<7<0.1

WD, . (1,1007)={ 4"

—%sin(4007rt) ~100(7—0.2), dla 0.1<7<0.2
T

0, dlat>02
W szczeglnosci  dla t:%(t1+t2):0.ls, WD, (0.1,1007)=10  badz dla:

t =L (1 +1,)=0.0255, WD, (0.025,1007) =100x0.025 = 2.5

8
,zg(,l +1,)=0.1255, WD, (0.125,1007) =—100(0.125-0.2) = 7.5

Rysunek 2.9 przedstawia transformaty Wignera omawianego sygnatu oraz przebiegi
wybranych sktadowych (0,50,55,60)Hz
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2 . &)

f[Hz) -100 0

d)

b)

f[Hz]

0 0.05 0.1 0.15
t(s]

Rys. 2.9. Transformata  Wignera  ograniczonego  sygnatu  cosinusoidalnego
x(t):IOcos(lOOm)[](t)—](t—0.2)] (ab) oraz charakter wybranych sktadowych

(50,55,60)Hz (c) oraz OHz (d).

Dla poréwnania ponizej przyblizono réwniez charakter transformaty Wignera sygnatu
ograniczonego dla t,=0.3s, tj. x(t):lOcos(lOOm)[](t)—1([—0.3)] (rys 2.10). Wtedy:

(0 dla 1<0
1
200z cos (2007t ) +— sin (20071 ) da 0<r<0.15
T
WD, (1,0) =1
1
—200( —0.3) cos (2007t ) ——sin (2007 (1 - 0.3)) dla 0.15<1<0.3
T
0 dla 7>0.3
W szczegdlnosei dla 1 = %(tl +1y)=0.1s5, WD, (0.15,0) =30cos(307) +lsin(30ﬂ') =
T
0,dlar<0
isin(4007n)+100t, dla0<r<0.15

WD,  (1,1007) = "

—f—sin(4007zt)—100(t—0.2), dla 0.1<7<0.3
T

0,dlar>0.3
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W szczegdblnosdci dla t:%(tl +1,)=0.155, WD, (0.15,1007) =15..

2) e

~=L___

@

T

I

|

|
| N

WD

fHz] 100 0

t[s] t[s]

b) d)

t ts]

Rys.  2.10.  Transformata  Wignera  ograniczonego  sygnalu  cosinusoidalnego
x (1) =10cos(1007r) [l (e)—Ir- 0.3)] (a,b); charakter wybranych sktadowych (50,55,60)Hz
(c) oraz sktadowej krzyzowej (OHz) (d).

2.2. Funkcja nieoznaczonosci - korelacyjna klasa czasowo-
czestotliwosciowych reprezentacji sygnatu

W klasie korelacyjnych przeksztalcen czasowo-czestotliwosciowych —podstawowym
przyktadem jest tzw. funkcja nieoznaczonosci (ang. ambiguity function). Wprowadzona przez
Ville’a i Moyal’a zostata w latach pig¢cdziesigtych adoptowana przez Woodward’a do analizy
sygnatéw techniki radarowej [19,27] . Jak juz wspomniano efektem przeksztatcenia czasowo-
czestotliwosciowego rozumianego w sensie korelacyjnym jest dwuwymiarowa funkcja
przesunigc czasowych i czgstotliwosciowych. W technice radarowej glownym problemem jest
estymacja odlegtosci i predkosci przesuwajacego si¢ obiektu. Przeniesienie sygnatu do
potaczonej dziedziny przesunig¢ pozwala powigza¢ zmienng przesunigcia czasowego
z odlegloscig oraz zmienna przesunigcia czgstotliwosci z predkoscia czy tez opdznieniem
Dopplerowskim.

Wspomniano juz, ze czasowo-czestotliwosciowa reprezentacj¢ mozna uzyskac
poprzez transformacj¢ Fouriera tzw. chwilowej funkcji autokorelacji (wyrazenie (2.8)).

Przyjecie symetrycznej postaci chwilowej funkcji autokorelacji r[(r):x(wrgjx*[t—%j
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oraz zmiana zmiennej catkowania z 7 na t prowadzi do korelacyjnej klasy przeksztatcen,
a doktadnie do wyrazenia opisujacego symetryczng funkcj¢ nieoznaczonosci (ang. symmetric
ambiguity function) [2,26,27,51,52,62]:

AF.(8,7) = Tx[r+%)x*(f—§je'jg’dt (2.96)

—oo

Podobnie jak transformat¢ Wignera, funkcj¢ nieoznaczonosci mozna wyrazi¢ réwniez za
pomoca widma sygnatu X ( jo), tj.

AF,(6,7) = | X(mg]x*(w—gjeﬂ”dw (2.97)

Funkcja AF, rozumiana jest jako czasowo-czestotliwosciowa korelacja, wskazujac stopien
podobienstwa sygnatu x(7) i jego czasowo-czestotliwosciowej reprezentacji. W odréznieniu
od zmiennych czasu t oraz pulsacji @ jako wartosci bezwzglednych, zmienne 7 oraz 0 sa
wartosciami  wzglednymi  skojarzonymi  odpowiednio z przesunieciem czasowym
1 czestotliwosciowym. W literaturze spotka¢ mozna wyodrebnienie powyzszej definicji jako
waskopasmowej funkcji nieoznaczonosci [62], ze wzgledu na klasyczne zastosowanie tego
przeksztalcenia w waskopasmowej radiolokacji powietrznej. Wprowadzenie dodatkowego
wspotczynnika do definicji (2.96), majacego na celu zamodelowanie wplywu srodowiska na
rozchodzenia si¢ sygnatu, prowadzi do szerokopasmowej funkcji nieoznaczonosci [62]:

4o [
1 T 1 (Al
AFW_ (8,7)= |x —(H—j y —(r——j eI dt
o= N3 w2

AFW,_ (0.7)= [x L(sz X L[r—fj SE (2.98)

SN NN

W powyzszym réwnaniu # oznacza wspOtczynnik skalujacy bliski 1, x() oraz y(7)
reprezentuja impulsowy sygnat odebrany 1 wysytany. Dla y(7)=x(7) analizie jest poddawany
tylko sygnat odebrany. Jako przyktad znaczenia szerokopasmowej funkcji nieoznaczonosci
mozna podac jej zastosowanie w radiolokacyjnych systemach nawigacji morskiej. Skalowanie
wspotczynnikiem # dotyczy w tym przypadku sygnatu wysytanego i ma na celu fizyczne
modelowanie efektu Dopplera w srodowisku wodnym [62].

Warto w tym miejscu wspomnie¢, ze w literaturze napotka¢ mozna na definicj¢ funkcji
nieoznaczonos$ci opartg na odwrotnej transformacie Fouriera [19,21,25,29,30,40]:

B 1 T . TY o
AF.(0,7) = AF_(6,7) _le(HEJ x*(t—ajej dt (2.99)

*

*

Przyjecie takiej definicji ma pewien wpltyw na sformutowanie uogélnionego réwnania
reprezentacji czasowo-czestotliwosciowej. W niniejszej pracy zdecydowano pozostaé przy
wprowadzonej przez Woodwarda, oryginalnej wersji rownania definicyjnego funkcji
nieoznaczonosci (rownanie (2.96)).

2.2.1. Wlasciwosci funkcji nieoznaczonosci

Ponizej podano kilka wtasciwosci funkcji nieoznaczonosci (2.96) tak, by mozliwe
byto poréwnanie ich z whasnosciami transformacji Wignera [27,51]:
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A. 1. zespolony charakter funkcji nieoznaczonosci
W przeciwienstwie do auto-transformacji Wignera, ktéra jest funkcja rzeczywista, funkcja

nieoznaczonosci jest funkcja zespolong i nie speinia réwnania AF (6,7)# AF, (6,7). Dla
sygnatéw rzeczywistych funkcja ta spetnia Hermitowski warunek parzystosci:
AF (6,7) = AF. (-0.-7) (2.100)

A. 2. przesuniecie w czasie
Jedli x, () =x(t—1,)to:

AF, (6,7)= AF,(6,7)e "™ (2.101)
A. 3. przesunigcie w dziedzinie czestotliwosci
Jesli x, (1) = x(t)e’™ to:

AF, (0,7)= AF, (6,7)e’™" (2.102)

A. 4. skalowanie sygnatu w dziedzinie czasu
Jedli x,(¢) = \/|;|x(at) to:
AF, (0,7)=AF, (—q,afj (2.103)
a

A. 5. funkcja nieoznaczonosci sygnatow o ograniczonym czasie trwania
Ograniczenie sygnatéw w czasie przejawia si¢ ograniczeniem funkcji nieoznaczonosci wzdtuz
0si przesunigcia czasowego T:
x(t)=0dlate (t,,t,)=> AF (6,7)=0dla |7|> (1, —1,) (2.104)

A. 6. funkcja nieoznaczonosci sygnatow o ograniczonym pasmie czestotliwosci
Ograniczenie spektrum sygnaléw przejawia si¢ ograniczeniem funkcji nieoznaczonosci
wzdtuz osi op6znienia Dopplerowskiego:

X(w)=0dla we (o,,0,) = AF, (6,7)=0dla |6 > (0, - o,) (2.105)

[¢ a

a?’

Warto zauwazy¢, ze w przypadku sygnatéw analitycznych funkcja nieoznaczonosci nie osigga
wartosci zerowych dla ujemnej czgsci osi przesunigcia czgstotliwosci.

A. 7. modulacja sygnatu a posta¢ funkcji nieoznaczonosci

Przeksztatcenie AF sygnatu zmodulowanego przejawia si¢ splotem funkcji nieoznaczonosci

m

sygnatu i fali nosnej w dziedzinie czgstotliwosci. Dla x,, (1)=x(r)m, (1) auto-funkcje

nieoznaczonosci mozna wyrazi¢ rownaniem:

(6-4,7)dA (2.106)

I”)

AF, (6.7) :i [ AE. (2, WD

A. 8. biliniowa natura przeksztatcenia a sygnaty wielosktadnikowe
Jesli x, (1) =x,,(0)+x,,(1) to:
AF, (6,7) = AF, (6,7)+AF, (6,7)+AF, . (6,7)+AF_, (6,7) (2.107)

Podobnie jak w przypadku przeksztatcenia Wignera, funkcja nieoznaczonosci sumy sygnatow
jest suma przeksztatcen sktadowych sygnatu oraz skfadowych interferencyjnych.
W odréznieniu jednak od przeksztalcenia Wignera sktadniki wlasne umiejscowione beda
w $rodku uktadu wspotrzednych ptaszezyzny (6,7), a potozenie sktadnikéw interferencyjnych
zaleze¢ bedzie od wzajemnych przesuni¢¢ czasowo-czgstotliwosciowych. Doktadnie
zagadnienie to oméwione zostanie nieco pdézniej, kiedy podany zostanie przyktad funkcji
nieoznaczonosci oraz transformacji Wignera-Ville’a sumy sygnatow Gaussowskich.
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2.2.2. Funkcja nieoznaczonosci a przeksztalcenie Wignera — dualnos¢ klas
energetycznej i korelacyjnej

Réwnanie definicyjne symetrycznej funkcji nieoznaczonosci (2.96) pozwala traktowaé
- ; T T . : . .
je jako transformat¢ Fouriera sygnatu x[1+5j y (t—aj, przyjmujac jako zmienng

catkowania ¢ przy ustalonym parametrze 7. Stad odwrotna transformata Fouriera pozwala
wyrazi¢ funkcje podcatkowa jako:

17 : il 7T

— | AF,(0,7)'"d0=x| t+— |x"| t—= 2.108

5 { R @oetao=x(s )i (1) 2109
Podobne rozumowanie zastosowane do transformacji Wignera, gdzie zmienna catkowania jest

7 przy ustalonym parametrze ¢, prowadzi do wyrazenia funkcji podcatkowej poprzez:

177 : T .. T

— | WD, (t,ox"do=x|t+—|x | t—— 2.109

27r_°[ o ( 2j ( 2j S
Wykorzystujac powyzsze réwnania mozliwe jest znalezienie zwiazku pomigdzy

transformacjq Wignera a funkcja nieoznaczonosci [27,52]:
1 +oo o0

WD, (1,0)=— [ [AF.(6,7)e"e " dodz
T
o (2.110)

1 +o0 oo - _

AF, (0.7)=—— [ [WD_ (r,0)e """ daxs
2% 2

Rownania powyzsze wskazuja na pewien dualny charakter przeksztatcen Wignera i funkcji

nieoznaczonosci, a co za tym idzie mozliwos¢ ,,przenoszenia” pomig¢dzy dziedzinami (7,w)

i (#,71). Wzajemne relacje pomigdzy transformacja Wignera a funkcja nieoznaczonosci

przedstawia ponizszy rysunek [52] .

AF(,7) ‘_—> x(mgjx*(t—f] z WD (1,0)

FE,
Rys. 2.11. Wzajemne relacje pomigdzy transformacja Wignera a funkcja nieoznaczonosci.

Dla przyblizenia zwiazkéw pomiedzy energetyczng a korelacyjng klasa przeksztatcen ponizej
przedstawiono przyktad transformacji Wignera-Ville’a 1 funkcji nieoznaczonosci
dwusktadnikowej funkcji Gaussa [25,57]:
1 _M 1 (’7'21):
x(t)=x,(2)+x,(¢)= e % e/ t—e (2.111)
I 270t} 27

Sktadniki powyzszej funkcji skupione sa odpowiednio wokét (t;, ;) oraz (t, ®,). Biliniowy
charakter omawianych przeksztatcen objawi si¢ istnieniem sktadowych wtasnych (ang. auto-
terms) i krzyzowych (ang. cross-terms). Ich potozenie na ptaszczyznach czas-czg¢stotliwosc,
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w przypadku transformacji Wignera-Ville’a, czy przesuni¢c czasowych
i czestotliwosciowych, dla funkcji nieznaczonosci, mozna $cisle okresli¢c wprowadzajac
parametry opisujace wzajemne relacje pomigdzy punktami skupienia sktadnikow
Gaussowskich [52]:

L+,
[’: 5 [12[7—[1
8 2 a 2
(2.112)
w, + ,
= 2, @, =0, —a),
8 2 <

gdzie: 1, oraz @, wyznaczaja srodki geometryczne, a 1, oraz @, odstgpy pomiedzy

sktadnikami Gaussowskimi, odpowiednio na osi czasu i czgstotliwosci (pulsacji).
Zgodnie z przedstawionymi wiasciwosciami dotyczacymi transformacji Wignera-Ville’a oraz
funkcji nieoznaczonosci sygnatéw wielosktadnikowych, poszukiwane reprezentacje dla
omawianego przyktadu mozna opisa¢ wyrazeniem:

WVD  (1,0) = WVD, (t,0)+ WVD (t,0)+ WVD, (t,0)+WVD,_  (1,0)

AF,(6,7)= AF, (6.7)+AF,_(6,7)+AF, (0,7)+AF,_, (6,7)

Rys. 2.12 przedstawia potozenie skiadnikéw wiasnych i krzyzowych kwadratu modutéw
WVD oraz AF dla réznych punktéw skupienia sktadnikéw Gaussowskich. Warto zauwazy¢,
ze przedstawienie sygnatu na plaszczyznie czas-czgstotliwos¢ (WVD) wskazuje bezposrednio
punkty skupienia sktadnikéw sygnatu, a sktadowe krzyzowe skupione sa w geometrycznym
srodku  (tg,my). Reprezentacja sygnalu na plaszczyznie przesunig¢ czasowych
i czestotliwosciowych (AF) skupia sktadniki sygnatu w srodku uktadu wspotrzednych,
wyraznie wskazujac wzajemne potozenie migdzy nimi (tg, wg) oraz (-tq, -q).

(2.113)
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a) 300 s d)

250

0 0.05 0.1 0.15 -300 -200 -100 0 100 200 300
t(s] teta[Hz)

Punkty skupienia skfadnikéw Gaussowskich: (0.08s,50Hz), (0.16s,250Hz) - t, =0.12s,f, =150Hz,t, =0.08s,f, = 200Hz

S

b)300 i ; s ; s e : C)

XXz

0 0.05 0.1 0.15 -300 -200 -100 0 100 200 300
t[s] teta[Hz]
Punkty skupienia sktadnikéw Gaussowskich: (0.04s,50Hz), (0.16s,50Hz) - t, =0.1s,f, =50Hz,t, =0.12s,f, =0Hz
©) 300 f)

250

0o 005 04 0.15 200 -200  -100 0 100 200 300
tfs] teta[Hz)

Punkty skupienia sktadnikéw Gaussowskich: (0.1s,50Hz), (0.15,250Hz) - t, =0.1s,f, =150Hz,t, = 0s,f, = 200Hz

Rys. 2.12. Kwadrat modutu transformacji Wignera-Ville’a (WVD - ab,c) oraz funkcji
nieoznaczonosci (AF —d,e,f) dla r6znych punktow skupienia sktadnikow Gaussowskich.
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2.3. Przeksztalcenia klasy Cohena - uogdlnienie energetycznej
klasy przeksztalcen czasowo-czestotliwosciowych

Dotychczas,  rozwazajac  biliniowe  nieparametryczne  czasowo-cze¢stotliwosciowe
reprezentacje, oméwiono transformacj¢ Wignera i Wignera-Ville’a oraz symetryczng funkcje
nieoznaczonos$ci sygnatu. Powyzsze przeksztatcenia maja kluczowe znaczenie w obszarze
transformacji czasowo-czestotliwosciowych. Jak niedlugo zostanie pokazane nie sg to jedyne
transformacje tego typu, ale wyznaczenie innych nieparametrycznych transformacji czasowo-
czestotliwosciowych w wielu przypadkach mozna oprze¢ wiasnie o transformacj¢ Wignera
badz funkcj¢ nieoznaczonosci. Intensywne prace w tym kierunku prowadzit w latach 70-80
Leon Cohen, czego efektem bylo uogdlnienie pewnej klasy biliniowych czasowo-
czestotliwosciowych reprezentacji, zwanej pozniej klasa Cohena [19,20]. Gléwna idea
uogolnienia Cohena bazuje na wprowadzeniu w réwnaniu definicyjnym tzw. funkcji jadra
(ang. kernel function), odpowiedzialnej za wlasciwosci uzyskanego przeksztatcenia,
prowadzacej do znanych przeksztalcen czasowo-czestotliwosciowych czy tez stwarzajacej
mozliwo$¢ uzyskania nowych transformacji o okreslonych wtasciwosciach. Uogdlnienie tego
typu niesie za soba szereg pytan, na ktoérych odpowiedz postarano si¢ zawrze¢ w niniejszym
rozdziale. Jak juz wspomniano, pomig¢dzy funkcja jadra a wilasciwosciami uzyskanego
przeksztatcenia istnieje Scisty zwigzek. Po wprowadzeniu definicji uogdlnienia Cohena
podane  zostang  podstawowe  pozadane  wilasciwosci  przeksztalcen = czasowo-
czestotliwosciowych.  Wprowadzone réwnanie  definicyjne, rozumiane w  sensie
energetycznym, rozszerzone zostanie o wskazanie czterech mozliwych postaci uogélnienia
Cohena, w zaleznosci od przyjetych definicji funkcji jadra, jak rowniez od wyboru budowy
réwnania, opartego na transformacji Wignera badz tez na funkcji nieoznaczonosci sygnatu.
Dalszym krokiem begdzie powigzanie postaci funkcji jadra z wiasciwosciami uzyskanego
przeksztatcenia czasowo-czestotliwosciowego. W slad za przedstawionymi przyktadami
funkcji jadra opisane zostang podstawowe znane przeksztalcenia czasowo-czgstotliwosciowe
nalezace do klasy Cohena oraz ich wlasciwosci.

Pozostajac przy definicji funkcji nieoznaczonosci wprowadzonej przez Woodwarda
(rownanie (2.96)) oraz wynikajacych z niej zwigzkéw pomigdzy funkcja nieoznaczonosci
i transformacja Wignera (réwnanie (2.110)), uogélnienie nieparametrycznych biliniowych
reprezentacji  czasowo-czgstotliwosciowych — opisuje  réwnanie Cohena w  postaci
[2,26,27,49,51 52,62]:

+oo 400 400

TFC J.J.J.X(u+ j ( J¢”(‘u 2’) jomut o =j27 T ’z”"”dudrd,u
(2.114)

+oo 400 +oo

TEC'” j”x[m ) (u—5j¢(u,(9 T)e e e ™ dudzd @

Jesli przyja¢ zmodyfikowana definicj¢ funkcji nieoznaczonosci jako odwrotnej transformaty
Fouriera chwilowej funkcji autokorelacji wzgledem zmiennej ¢ (réwnanie (2.99)),
to w réwnaniu opisujacym uogolnienie Cohena nalezy zmieni¢ znak przy skfadnikach
exp(jOt) oraz exp(- jOu) oraz uzupetni¢ wzor o wspoélczynnik 1/27 [14,25,29,30,40]:

+00 400 400

TFC" (1, f) =L I I JX[H ZJX (u‘_j% (p,7)e /e e dud rdu
LR (2.115)

+o0 400 400

TFC (1,0) = — j | Ix(u+ j ( 2]@,(9 T)e e e dud 7d O

—c0 —oco
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2.3.1. Pozadane wlasciwosci reprezentacji czasowo-czestotliwosciowych

W  poprzednich rozdziatach, dotyczacych transformacji Wignera oraz funkcji
nieoznaczonosci, przytoczono kilka podstawowych wiasnosci tych przeksztalcen. Niektore
z nich, takie jak zachowanie przesunigcia w czasie czy czestotliwosci, sa bardzo uzyteczne.
Omawiajac klas¢ Cohena nalezy pamigta¢, ze wszystkie transformacje uzyskane droga
uogélnionego  réwnania powinny  spetnia¢  wilasciwos¢  przesunigcia  czasowego
i czestotliwosciowego. Cho¢ rézne funkcje jadra mogaq zaowocowa¢ uzyskaniem lub utratg
szeregu innych wiasciwosci, tak warunek przesuni¢¢ zostaje zachowany. Stad w literaturze
klasg Cohena okresla si¢ czasem mianem klasy zachowujacej przesunigcia (ang ,,shift-
invariant™) [27]. W tabeli 2.1 , w calosci zaczerpnigtej z prac [27] 1 [62], zamieszczono szereg
pozadanych witasnosci przeksztalcen czasowo-czgstotliwosciowych. Warto by¢ swiadomym,
ze wybrana do badania konkretnego sygnatu reprezentacja czasowo-czgstotliwosciowa nie
musi spetnia¢ wszystkich wymienionych wiasnosci. Zbior wtasnosci, oprécz wspomnianej juz
wtlasnosci  zachowania przesunigcia czasowo-czgstotliwosciowego, mozna ograniczy¢
w zaleznosci od celu przetwarzania sygnatu i w duzej mierze od charakteru niestacjonarnosci
badanego sygnatu.

Tabela 2.1 Zestawienie pozadanych wiasciwosci reprezentacji czasowo-czestotliwosciowych
rozumianych w sensie energetycznym [27,62]

Nr | Wiasnos¢ Wyrazenie

P1 |rzeczywisty charakter przeksztatcenia TE®) (t, w)= TRE" (1, )

P2 | zachowanie przesuni¢cia czasowego Jesli x, (1) =X (t “to) to:

TR (t,0) =TE" (t-1,,0)

X

P3 | zachowanie przesuniecia | Jedli x, (t)=x(t)exp(jw,t) to
czestotliwosciowego -
TEf_l")(t, ) =TE" (1,0—w,)
P4 | zachowanie skalowania w dziedzinie| jegdli x,(t): ax(at) to:
czasu

a

TFS,E><r,w>:TFfﬁ>[m,ﬂj

P5 |zachowanie ograniczenia w dziedzinie | Jedli x( ):() dlatre (tlatv) to:
czasu

) (t,w)=0dlare (1,1,)

P& [zachowanie ograniczenia w daiedzinie | el x( 0)=0dl 0% (0,0,) o
czestotliwosci ( ) 0dl e( )
a w

P7 |reakcja na iloczyn sygnatu (modulacja) Jesli Xm(;) = x(t)m(t) to:
splotem  reprezentacji w  dziedzinie

czestotliwosci T (1,0) j TE" (1, WTE® (t,0-1) dA

"‘I

P8 |reakcja na splot sygnatu (przejscie|Jesli x,(f) = x ( ;) +h(t) to
sygnatu przez SLS) splotem
reprezentacji w dziedzinie czasu TF( )(t w) J.TF (t, a))TF (t—z‘,a))dz'
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Tabela 2.1 c.d Zestawienie pozadanych wilasciwosci reprezentacji czasowo-
czestotliwosciowych rozumianych w sensie energetycznym [27,62]

Nr | Wiasnos¢ Wyrazenie
P9 |spetnienie réownosci Moyala| | +z*= .
(unitarnosc) pys I J‘TFA(E‘) (t, @) TF;EB (t, a))dtda) =

P10 | zachowanie energii chwilowej (warunki | *= () 2
brzegowe dla czasu) ITF\- (to)do= ‘X (t)‘

P11 |zachowanie widma gestosci energii (E) 5
(warunki brzegowe dla czestotliwosci) J.TFr (1, w)dr = ’X(a))‘

P12 | zachowanie momentow czasowych n-|*3*% -
feganzeds g [ [rTE? (1 0)ddw = o |x () de
P13| zachowanie momentow | *a ] 'y 5
czestotliwosciowych n-tego rzedu _[ _[w TFSE)(t’w)dtda): Iw ‘X(a))l do
P14 | mozliwos¢ wyznaczenia czestotliwosci| *< ()
chwilowej sygnatu zespolonego J‘a)TFx (t.0)de 1 d
= =§Zarg{x(f)}
[TE? (1,0)de
P15 | mozliwos¢  wyznaczenia — opdznienia| *< ()
grupowego sygnatu jtTF.\- (r.)dt
= -y o {X (o)}
2r dw

[ TR (1,0)di

P16 |reakcja na zamiang zmiennych w|Jedlj X(jw)= F{x(t)} ay() :\/ZX(at) o’
transformacie Fouriera sygnatu

T8 1.0) =152,

: a

P17 |reakcja na iloczyn sygnatu z liniowq| . " € '
modulacjq czestotliwosci Jesli x; (1) = x(#)exp ]2”§t =

TE" (1, f)=TE" (1, f —ct)

P18 |reakcja na splot sygnatu z liniowq| . € 5 '
modulacjq czestotliwosci Jesli x, (1) = x(z) *exp "ZEEI to:
TR, (1, ) =TE" (r—i,fj
a

Wszystkie reprezentacje nalezace do klasy Cohena zachowuja przesunigcie czasowe
i czestotliwosciowe (wtasnosci P2,P3 , tabela 2.1). Jesli dodatkowo jadro przeksztatcenia

¢, (60.7) zalezy tylko od iloczynu zmiennych ¢ i 7, czyli jest spetniony warunek

., (6.7)=9¢,(07), to reprezentacje te spetniaja réwniez whasciwos¢ skalowania

w dziedzinie czasu, zgodnie z wtasciwoscig P4.
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2.3.2. Alternatywne postacie funkcji jadra

Poza przedstawiong podstawowq definicja klasy Cohena (2.114) istniejq jeszcze cztery
alternatywne postacie tego réwnania, ktére mozna otrzymac przez odpowiedni wybor
zmiennych w funkcji jadra. Warto podkresli¢, ze pomigdzy réznymi postaciami funkcji jadra
istniejq relacje oparte na jedno lub dwuwymiarowej transformacie Fouriera. Chcac wyraznie
wskaza¢ kierunki formutowania postaci rownania klasy Cohena, funkcje jadra opisano
dodatkowymi indeksami, ktére odpowiadajq interpretacji ich zmiennych: 7-czas, w-pulsacja,
7-przesunigcie (opdznienie) czasowe, O-przesunigcie (opdznienie) pulsacji. W tabeli 2.2
zebrano oznaczenia oraz wzajemne relacje pomiedzy tak zdefiniowanymi funkcjami jadra,
zaczerpnigte z prac Hahna [25] oraz Hlawatsha [27].

Tabela 2.2 Cztery postacie funkcji jadra uogélnienia Cohena (2.114) 1 ich wzajemne relacje

Cztery alternatywne postacie funkcji jqdra:

Posta¢ 1 Postac 2 Posta¢ 3 Postac 4
o, czas- s o
czestotliwosc-czas ) R czestotliwosé-czestotliwose
(pulsacja-czas) cras-cras S (pulsacja-pulsacja)
p (czas-pulsacja)
¢./i (:‘U’T) ¢ (t T) ¢’f(t’f) ¢/f (ﬂ,f)
¢wt (H’T) ! ¢rw (t’a)) ¢ww(9’a))

Wzajemne relacje pomiedzy roznymi postaciami funkcji jqdra oparte na jednowymiarowej
transformacie Fouriera:

+oo

Postac 1 00 (ur)= o, (o)™ o, () Jo, (o r)e™"af
¢(ur (9’7) = F; {¢n (I’T)} _0100
¢, (6.7)=F,"{¢,,(0.0)}| ¢, (6,7)= J'gz)“ (t,7)e”""ds; ¢, (0.7)= J'¢ww(6,a))e"”’da)

Postac 2

¢, (t.7)=F;' {9, (6.7)}

8, (1.7) J &, (44,7) e du;

7)= [, (1. 1) df

¢" ( - F;"_l {¢’[" (f,(())} ¢n (I’T) = I¢(ut (H’T)e.iﬁfdg; ¢n (t’ T) = T¢t(u (t, a))ejw’da)
Pastacs & (t.f)= I¢/f (w, f)e™du; ¢, (1,f)= j¢,, (1,7)e " "dg
¢rw (t a)):FH {¢(um(6 (U)} :: :
¢’(” {¢” 2 T } ¢ra) (t a)) = J.¢w(u (0’ C()) C'ierde; ¢m) (f,(l)) = J.¢” (I,T) e‘"“”dz’
Postaé 4 ¢/f H f .[¢f/ (£.f)e e Py (. f)= J-¢fl (u,7) e/ 7d
¢ww( ) F {¢m} (t Cl))} o . - |
¢tuw F {¢(‘” } ¢a)w (0, CU) - J¢’{” (t’ C()) e’ ’dt; ¢u)a) (0,(0) - _i ¢mt (0, T) e '"dr

—co
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Tabela 2.2 c.d. Cztery postacie funkcji jadra uogélnienia Cohena (2.114) 1 ich wzajemne
relacje

Cztery alternatywne postacie funkcji jadra:

Posta¢ 1 Postac 2 Postac 3 Postac 4
czestotliwosé-czas Cza?' ., czestotliwosc-czestotliwose
(pulsacja-czas) CPASCZAS czestotliwose (pulsacja-pulsacja)
P (czas-pulsacja)
¢f' (IU’T) ¢ (t T) ¢’f(t’f) ¢ﬂ (’u’f)
¢(u{ (9’1) ! ¢lw (t’a)) ¢a)[u (H’ a))

Wzajemne relacje pomiedzy réinymi postaciami funkcji jadra oparte na dwuwymiarowej
transformacie Fouriera :

8, (14,7) I j 8, (1. f) e dfdr;

—co —co

P (0,7) = j I 9, (1. @)e" e dewdr

Postac 1

8, (0.7)=FF,'{4,(t.0)}

+oo +oo

27 ( fr+ut) {
dfdu;
Postac 2 ¢" _l_o'[¢// - f s
¢lr t’T :F_IF;;] ¢(uw(0’a) S : z
( ) 6 { )} ¢” (I,T) _ J‘ J'¢wm (H,a))e"‘”’e"ﬁ'da)dﬁ
t T T /27r (pr—f1) de .
Postac 3 b (.1)= J. J‘% # &

—o0 —o0

l :FH_IFT wt 9’ i i i
¢rw( 0)) {¢ ( T)} ¢,[U(1‘,T)= J‘ J';bw,((9,1')6_”’”6-’9'de9

— b —j2r(fr+ut) .
Postaé 4 Py (/"f)—llfi’,,(hf)e / dzdr;
¢a}(u 0’60 =EF1 ¢1r 1,7 +oo 400 ) .
( ) { ( >} ¢a)w (6’ CU) — J. J.¢,, (l, 7«-) e_jwre_’mdfdt

Sprawdzenie:
Postac 1 6, (0,7) :F,Faj'{¢,w(t,a))}

6, (0,7)= [ [, (1.0)e" e "dwdi = | { [9.(1.0) dw} e "di= [¢,(1,7)e " di =4, (6.7)

badz: ¢, (0.7)=F,'F {4, (1.0)}

+oo 400

0, (6.7)= [ [, (1.0)e e " dideo= | { [0 (1) d}dw [0 (6,0) ™ dw=9,,(6,7)

Postaé 2: ¢,(t,7)=F,'F,'{¢,,(6.0)}

6,:1)= ] Jont0.0leemaono= || To (o )00 o4 [o.(0.010%00 9,7

—co —oo —oo

bacdi ¢n (I’T) = Fw FB {¢w(u (9,&))}
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¢n ([’ T) = J. J‘¢w(u (8’ w) e-i(‘)re-"g’dgda) = |: J‘¢(uw (9, a)) e.fgfd9:| e‘,‘(urda) = I¢I(u (t’ Cl)) e./wfda) :¢II (t’ T)

—00 —co —c0

Posta¢3: ¢, (t,0)=F,'F.{¢,(6.7)}

¢r(u (t’ T) - J. J-¢!Ul (9’ T) e‘-"(‘”ejmd'[dﬁ - J‘{ .[¢(‘” (9’ T) e_i{urd,[}ewlde - J-¢!(u (0’ a))'ejelde :¢m) (t’ Cl))

—c0

quz ¢r(u (f,(()) = FTFH—I {¢(ur (0’1)}

¢r(u (t’ T) - j J-¢w! (9’ T) e—f’”’efo’dgdf[ - .[l: J-¢(u, (Q’T)e_/g,d9:|e—f“’rdf = J¢Ii (t’T)e_jwrdT :¢1(u (I,C())

—oo | —oo

Postaé 4: &, (6.0)=FF.{9,(1.7)]

., (0,0)= TTQ, (1,7)e’ e "drdt = T T 9, (1, T)e'-”‘”df} e Pdt = TQM (t,w)e*dt =g, (0,0)
bads: o (6,0) = EE {8, (1,0)]

4oo | oo

buo (0.0)= [ [, (1.7)e e didz= [| [g, (w)e‘"""dt}e”“’dr= [8. (6.7)e dT =4, (6,0)

—c0 |_—oco

Graficznie wzajemne relacje pomigdzy omawianymi czterema postaciami jadra przedstawia
rysunek 2.13.

a) ‘ b)
¢(w (0’7) H— ¢(ur (9,’[)
Bl [F E|[E AEE,
F,F,
¢n (I’T) ¢w(u(6’w) ¢u (l,T) ~ ¢ww(9’a))
EF

F;)l FT E Fazl FB_IFT'
— > 4, (10) J b (1.0)

Rys. 2.13. Relacje pomigdzy czterema alternatywnymi postaciami funkcji jadra oparte na
jednowymiarowej (a) i dwuwymiarowej transformacie Fouriera (b)

2.3.3. Alternatywne postacie rownania Cohena

Nawiazujac do odpowiednich relacji pomig¢dzy zmiennymi funkcji jadra, mozna zapisa¢
gtéwne réwnanie klasy Cohena w czterech alternatywnych postaciach: czgstotliwosc¢-czas
(pulsacja-czas), czas-czas, czas-czg¢stotliwos¢ (czas-pulsacja) oraz czestotliwosc-czestotliwosé
(pulsacja-pulsacja).
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Posta¢ I rownania Cohena - czestotliwosc-czas (pulsacja-czas):
Wychodzac bezposrednio z réwnania (2.114) oraz przyjmujac u jako pierwsza zmienng

catkowania, otrzymujemy wyrazenie na TEC" (1,f) badz TFC" (t,®), jako wynik
dwuwymiarowej transformaty Fouriera iloczynu funkcji jadra ¢, (u,7) 1 funkeji
nieoznaczonosci AF(,7)lub odpowiednio ¢, (6,7) i AF(6,7) [26,27,49,51,52,62]:

TFC" (1, f) = _[ IAF(ﬂ,T)(b_,, (u, 7)™ e drdu

TFCE\E) ([,a)) = J- J-AF(Q’ T) ¢a)/ (H,T)e'ig'e_jmdz'dﬁ
T (2.116)
gdzie: AF(lu,z') = ix(u +%)x* [u _gj o iy,

AF(Q,'Z'): jx(u_*,z)x* (M_Zje—jﬁudu
2 2

—oo

lloczyn ¢, (4, 7)AF(u,7) czy ¢, (6.7)AF(6,7) przyjeto nazywaé uogélniona funkcja

nieoznaczonosci (ang. generalized ambiguity function) [7,19,21].

Posta¢ 2 rownania Cohena — czas-czas:

W réwnaniu definicyjnym (2.114) , ze wzgledu na zmienng u (), mozna wyodrebnic
podcatkowy czton:

_[¢ff (ﬂ,z-)e./br/ue—ﬂﬂ/ludﬂ _ J.¢_,, (,U,T)eﬂ”/’("")d,u
s B 2.117)

[0 (6.0)e e a0 = [g, (6.)e" a0
Nawigzujac do tabeli 2.2 oraz mozliwosci zapisu funkcji jadra w postaci ¢, za pomoca @,
] ] p ) \

(4,) jakog, (1,7)= Iqﬁﬂ(;{,z')e-’z”’”dﬂ: J'¢,U,(¢9,T)e”9’d¢9, réwnania powyzsze mozna

—co —oco

traktowac jako @, (f—u,7), skad uzyskiwana jest druga alternatywna forma réwnania Cohena
[26,27,49,51,52,62]:

TFCY (1, f) = iix (u +%) X (u —%j ¢, (t—u,7)e " dudz
(2.118)

TEC'Y) (1,0) = x| u+—|x"|u—— t—u,7)e ' dudrt

D)= | [x|u+y S J.(1-u7)

Jesli dodatkowo przypomnimy wprowadzone wczesniej pojecie lokalnej (chwilowej)
. 5e - T « T .

symetrycznej funkcji autokorelacji r[(z'):x[H—E)x (t—aj, to omawiang alternatywna

posta¢ rownania Cohena traktowa¢ mozemy jako przeksztalcenie Fouriera wzgledem
zmiennej T wygtadzonej, chwilowej symetrycznej funkcji autokorelacji [27,62]:
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TFCY) (1, f)= [R, (t,7)e > dz

TEC”) (1, w) = J‘Rv\, (t,7)e ™ dr

—co

. i 7) » 4
gdzie: R (1,7)= J‘x(u+§JX (M—EJQ/(Z_“’T)d“ (2.119)

—co

o, (t —u,r) = .[¢.f" (lu’,z.)ejbr,u(l—u)dﬂ _ J‘¢ﬁ (ﬂ,,l.)ejllr/ne—jzmmd#

quz’ ¢n (t —u, T) = I¢(u/ (Q’T)ejg(r'“)de . J¢lz)l (Q’T)ejme_jgude

Postac¢ 3 rownania Cohena — czas-czestotliwos¢ (czas-pulsacja):

+o0 400

Wykorzystujac relacje ¢, (t.f)= I I¢,, U.T)e

—oc0 —co

,uz /r

dzdu oraz

., (1,7)= '[ j(;ﬁw,(Q,T)e"‘”re’g’drdﬁ, reprezentacje  klasy Cohena mozna réwniez

przedstawi¢ jako wyniki dwuwymiarowego splotu reprezentacji Wignera (Wignera-Ville’a)
sygnatu z funkcja jadra ¢, badz ¢,,, jako [26,27,49,51,52,62]:

TFC!" HWD (4,A), (1—u, f —A)dudA=WD (1, f)*@, (1, f)
(2.120)

TFC\" (1, ) ”WD 1)@, (t—u,0—n)dudn=WD, (1,0)*9, (1,0)

Posta¢ 4 rownania Cohena — czestotliwosc-czestotliwos¢ (pulsacja-pulsacja):
Ostatnia alternatywna forma réwnania Cohena oparta jest na zwiazku pomiedzy funkcja jadra
w postaci @, czy tez ¢, a funkcja jadra wyrazong w formie ¢, czy tez ¢,, , w oparciu

o widmo sygnatu XQ'a)) [27,49,51]:

TFC!* Hx( -—j (1-%)@, (4, f = A)e™dudA
- ) (2.121)
TEC (@)= | | X( -—] *[n;)%(aw—n)e-’“dﬂdn

Nalezy podkresli¢, ze wszystkie oméwione postacie sa jedynie alternatywna forma
gtéwnego réwnania definicyjnego (2.114) 1 opisuja t¢ sama rodzin¢ przeksztatcen czasowo-
czestotliwosciowych. Wskazanie jednak réznych mozliwosci opisu klasy Cohena pozwala
zastanowi¢ si¢ nad wyborem postaci, ktére moze by¢ najbardziej efektywna np. z punktu
widzenia budowy algorytmu przetwarzania sygnatu, mozliwosci optymalnego, adaptacyjnego
doboru ksztattu funkcji jadra ¢, (u,7) czy tez ¢, (6,7) w zaleznosci od rodzaju sygnatu
i zwiazang z tym redukcja pasozytniczych interferencji [6,14,29].

Ocen¢ numeryczng omawianych postaci dokonano w pracach [3,7,62]. Wyznaczenie
reprezentacji Cohena bezposrednio z rownania definicyjnego (2.114) jest sposobem najmnie;j

53



Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwo$ciowe

efektywnym, wymagajacym wykonania trzech transformat Fouriera 1 nie stwarzajacym
mozliwosci adaptacyjnej optymalizacji funkcji jadra. Posta¢ 1 (réwnanie (2.116)), choc
ztozona obliczeniowo, dzigki wtasciwosciom funkcji nieoznaczonosci daje mozliwosé¢
adaptacyjnej analizy. Sktadowe wtasne sygnatéw wystepujace w funkcji nieoznaczonosci

AF(H,T) skoncentrowane sa w  S$rodku uktadu  wspéhrzednych  (0=0,7=0),

a sktadowe interferencyjne w pewnym oddaleniu od niego. Stad mozliwe jest takie
ksztattowanie funkcji jadra ¢, (6,7) by przepuszczato ono z funkcji AF(6,7) jedynie

sktadowe wtasne sygnatu przy jednoczesnym tlumieniu interferencyjnych sktadowych
wzajemnych [3,4,5,31].

Niniejsza rozprawa nie obejmuje swoim zakresem problemu automatycznej adaptacji
funkcji jadra do rodzaju sygnatu, a kfadzie nacisk na mozliwos¢ wykorzystania znanych
reprezentacji czasowo-czestotliwosciowych, a wigc o okreslonych funkcjach jadra, do analizy
niestacjonarnych sygnatéw elektrycznych. W zwiazku z powyzszym bardzo interesujaca
wydaje si¢ by¢ posta¢ 2, traktujaca reprezentacj¢ jako przeksztatcenie Fouriera wygtadzonej
wersji chwilowej funkcji autokorelacji, rownanie (2.119). Przy zadanej funkcji jadra ¢, (,u,f)

czy @, (6,7) jej alternatywna postaé @, (¢,7) obliczana jest tylko raz na poczatku i jest stata

podczas obliczen. Kolejnym krokiem tej metody jest wyznaczenie chwilowej funkcji

- T\ = T . i i ;
autokorelacji 1'[(T):x(t+—2—jx (t_Ej’ a nastgpnie jej  wersji  wygtadzone]

R (1,7)= .[x (u +%j ¥ Eu —gj ¢, (t—u,7)du, usrednionej wzgledem 1, by ostatecznie
wynikowa reprezentacj¢ czasowo-czgstotliwosciowa uzyska¢ jako transformat¢ Fouriera
R, (I,T) wzgledem zmiennej 7. Posta¢ ta wydaje si¢ by¢ najwygodniejsza z punktu widzenia

budowy algorytmu wyznaczania reprezentacji klasy Cohena.
I wreszcie posta¢ 3, réwnanie (2.120), bazujaca na dwuwymiarowym splocie
reprezentacji ~ Wignera z  funkcja jadra w  postaci ¢, badz ¢, gdzie

+o0 400

o, (t.f)= J-J.gbﬁ (1, 7)e”™™ " dzdy  czy ez 4, (1,7)= j _[q’)m,(ﬁ,r)e"""’e-"“”drde,

—0c0 —co

przynosi jasny kierunek co do mozliwosci redukcji wptywu skfadowych interferencyjnych na
uzyskana reprezentacj¢ czasowo-czgstotliwosciowa. Poniewaz sktadowe interferencyjne majq
charakter oscylacyjny, istnieje mozliwos¢ ich wygladzenia czy tez sttumienia poprzez
odpowiedni dobér funkcji jadra. Kierunek ten jest na tyle istotny, ze w literaturze mozna
napotka¢ na wlasng nazwe¢ omawianej postaci 3, jako wygtadzonej reprezentacji Wignera
(ang. smoothed Wigner distribution) [27,46,62].

2.3.4. Whasciwosci funkcji jadra a wlasciwosci reprezentacji

Po przedstawieniu uogdlnionej idei biliniowych przeksztatcen czasowo-czestotliwosciowych
nasuwa si¢ pytanie o wptyw funkcji jadra na wlasciwosci uzyskanej transformacji. Wczesniej,
w tabeli 2.1, zestawiono szereg pozadanych witasciwosci jakie powinny spetnia¢ reprezentacje
czasowo-czestotliwosciowe. Nalezy by¢ jednak s$wiadomym, ze obciazenie dodatkowa
funkcja moze spowodowac utrat¢ niektérych z nich. Z drugiej jednak strony funkcja jadra
przynosi redukcje sktadowych krzyzowych. Wybér zatem funkcji jadra jest pewnego rodzaju

54



Rozdziat 2: Biliniowe reprezentacje czasowo-czestotliwosciowe

otransakcja wigzang”, gdzie przedmiotem sporu jest rodzaj niestacjonarnosci wystepujacy
w badanym sygnale i jako$¢ uzyskanej reprezentacji. Niemniej jednak warto zastanowic sig,
jakie warunki musi spetnia¢ funkcja jadra, by dana wtasciwo$¢ transformaciji zostata
zachowana. Tabela 2.3 zawiera zestawienie warunkéw dla funkcji jadra, powodujacych
zachowanie omowionych wczesniej, pozadanych wilasciwosci transformacji czasowo-
czgstotliwosciowych.

Tabela 2.3 Zestawienie warunkéw dla funkceji jadra, powodujacych zachowanie pozadanych
wtasciwosci transformacji czasowo-czestotliwosciowych

Nr | Wiasciwosc¢ transformacji ( tabela 2.1 ) | Warunek dla funkcji jadra
Pl |rzeczywisty charakter przeksztatcenia 4, (0,7) =g, (0,7)
P2 |zachowanie przesunigcia czasowego brak warunku, wlasciwos¢ zawsze zachowana
P3 | zachowanie przesuniecia | brak warunku, wtasciwos¢ zawsze zachowana
czestotliwosciowego
P4 | zachowanie skalowania w dziedzinie 2l
o ?,, Z,a‘[ =¢,(0,7), dlaa#0
P5 | zachowanie ograniczenia w dziedzinie t 1 _ 1 1
czasu ¢, (1,7)=0dla o > = . re _ET’ET
P6 | zachowanie ograniczenia w dziedzinie 0] 1) . 11
czestotliwosci 000 (6.0)=0 dla e —5 %57
P7 | reakcja na iloczyn sygnatu é,, (91 +¢92,7) =g, (9] ,1) 3, (92,1—)
(modulacja) splotem reprezentacji w
dziedzinie czestotliwosci
P8 |reakcja na splot sygnatu (przejscie ¢, (60,7, +7,)=9,(0,7,)9, (6.7,)
sygnatu przez SLS) splotem
reprezentacji w dziedzinie czasu
P9 | spetnienie rownosci Moyala ) (H’T)l -1
(unitarnosc)
P10 | zachowanie energii chwilowej| ¢ (6,0)=1
(warunki brzegowe dla czasu)
P11 |zachowanie widma gestosci energii| ¢ (0,7)=1
(warunki brzegowe dla czestotliwosci)
P12 | zachowanie momentow czasowych n- 4, (9,()) =1
tego rzedu
P13 | zachowanie momentow 3, ((),1) =1
czestotliwosciowych n-tego rzedu
P14 | mozliwos¢ wyznaczenia czestotliwosci ¢ ( 9’0) —
chwilowej sygnatu zespolonego 3
—0,.(0,7 =0
50 (07)
P15 | mozliwos¢  wyznaczenia opoznienia 9, (0,7)=1
grupowego sygnatu 3
— 0,7 =)
ae ¢(UI ( ) i
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Tabela 2.3 c.d. Zestawienie warunkéw dla funkcji jadra powodujacych zachowanie
pozadanych wtasciwosci transformacji czasowo-czgstotliwosciowych

Nr | Wiasciows¢ transformaciji ( tabela 2.1 ) | Warunek dla funkcji jadra

P16 | reakcja na zamiane zmiennych w 2]
transformacie Fouriera sygnatu Pun CT’_; =0, (6.7), dlac#0

P17 |reakcja na iloczyn sygnatu z liniowq G (0—ct,7)=¢,(60,7), dlac#0
modulacjq czestotliwosci

P18 |reakcja na splot sygnatu z liniowq ]
modulacjq czestotliwoSci P | 0> T_—c_ =0, (6.7)

2.3.5. Pseudo — reprezentacje klasy Cohena oraz ich wersje wygladzone

Konczac omawianie rodziny przeksztalcen Cohena warto réwniez odwotaé si¢ do
wspomnianego juz przy okazji pseudo-reprezentacji Wignera i jej wersji wygladzonej
problemu obciazenia sygnatu funkcja wygladzajaca i splotu otrzymanej reprezentacji
z dodatkowa funkcja wygtadzajaca. Wskazane relacje pomigdzy funkcjg wagi sygnatu
a wygtadzaniem w dziedzinie czgstotliwosci oraz splotem reprezentacji z dodatkowa funkcjg
wygtadzajaca a wygtadzaniem w dziedzinie czasu, mozna réwniez przenies¢ na grunt
uogdlnienia Cohena, wprowadzajac pojecia pseudo-reprezentacji klasy Cohena badz jej wersji
wygtadzonej. Nalezy jednak ponownie podkresli¢, ze omawiane podejscie ma szczegllne
znaczenie z punktu widzenia ttumienia sktadowych krzyzowych i wigze si¢ ze swiadomag
zgoda na pogorszenie rozdzielczosci czasowej badz czestotliwosciowej. W przypadku
wykorzystania funkcji jadra, ktérej podstawowym zadaniem jest utrzymanie pozadanych
wlasnosci  przeksztalcenia przy jednoczesnym tlumieniu sktadowych krzyzowych,
wprowadzenie dodatkowych funkcji wygltadzajacych moze okazac si¢ niepotrzebne. Niemniej
jednak  ujmujac  calo$ciowo  problematyke  biliniowych  przeksztalcen —czasowo-
czestotliwosciowych, zagadnienie pseudo-reprezentacje klasy Cohena badz jej wersji
wygtadzonej powinno zosta¢ poruszone.

Uogo6lnione réwnanie pseudo-reprezentacji klasy Cohena opisuje ponizsze wyrazenie:

PTFC@(r,w):l Jo i x(u+§jx*(u—%)h(%)h*(—gj%,(6’,T)e"g’e'-"”’e_-’e"dudTdt9

(2.122)
Obciazenie sygnatu dodatkowa funkcja okna h('[) ujawni si¢ wigc splotem w dziedzinie

czestotliwosdcei, ktérego efektem jest dodatkowe uSrednianie reprezentacji wzdiuz osi
czestotliwosci:
175 :
PTFC\” (1,0) = = [TEC" (¢, TFC? (0,0~ 17)d7y (2.123)
T
Dodatkowe wygtadzenie wzdluz osi czasu uzyskane jest przez splot w dziedzinie

czasu pseudo-reprezentacji z dodatkowg funkcja okna g (1) :
SPTFC” (1,0) = [g(1—u)PTFCY (u, 0)du (2.124)

Wykorzystujac widmo funkcji wagi H(@) powyzsze réwnanie mozna wyrazi¢ jako:
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SPTFC" (r,w) = | [g(t—u)H(w-n)TFC" (u,7)dudn (2.125)
Podejscie to nawiazuje do omawianej juz w przypadku transformacji Wignera mozliwosci
niezaleznego wyboru stopnia usrednienia wzgledem czgstotliwosci 1 czasu, bowiem
wygtadzanie oparte jest na splocie z dwuwymiarowa funkcjq bedacq iloczynem niezaleznych,
jednowymiarowych funkcji g (1) H (@). Scisty zwiazek pomiedzy rozdzielczoscia w czasie
1 rozdzielczoscia w czestotliwosci, tak charakterystyczny dla krétkoczasowej transformaty
Fouriera, zostaje tu przerwany.

Ostatnig kwestig istotng z punktu widzenia ttumienia skfadowych krzyzowych jest
wstepne przetransformowanie sygnatéw rzeczywistych do zespolonej postaci analitycznej
podobnie, jak w przypadku transformacji Wignera-Ville’a. Wczesniej podkreslono juz
parzystos¢ widma sygnatéw rzeczywistych oraz zerowe wartosci widma postaci analitycznej
w ujemne] czegscl osi czestotliwosci. Zatem uogolnione rownanie Cohena dla sygnatéw
analitycznych bedzie charakteryzowaé si¢ redukcja sktadowych krzyzowych pomigdzy
sktadnikami dodatniej 1 ujemnej czgsci osi czgstotliwosci. Ponownie nalezy podkreslic,
ze wspomniane podejscie moze okazac si¢ niekorzystne w przypadku reprezentacji sygnatow
zespolonych. W obszarze analizy sygnaléw rzeczywistych, wstepne przygotowanie sygnatu
w postaci analitycznej nalezy uzna¢ za wskazane.

2.3.6. Przeksztalcenia klasy Cohena, ich funkcje jadra oraz wlasciwosci

By podsumowac przedstawione rozwazania, w tabelach 2.4, 2.5, 2.6 zebrano funkcje jadra
wybranych reprezentacji czasowo-czestotliwosciowych ~w  czterech — alternatywnych
postaciach, wyrazenia definiujace wybrane reprezentacje czasowo-czestotliwosciowe oraz
wilasciwosci uzyskanych reprezentacji [27,51,62]. Celem takiego usystematyzowania jest cheé
katalogowego wregcz zestawienia réznych reprezentacji z klasy Cohena, co usprawni¢ ma
poréwnanie ich wiasciwosci czy uwypukli¢ podstawowe réznice.
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Tabela 2.4 Cztery alternatywne postacie funkcji jadra (tabela 2.2) wybranych reprezentacji klasy Cohena

L.p. Transformacja Funkcja jadra Funkcja jadra Funkcja jadra Funkcja jadra
Jja] J
Posta¢ 1 - ¢, (6,7) Postac 2 - ¢, (1,7) Posta¢ 3 - ¢, (1,@) Posta¢ 4 - ¢, (6,w)
! Wigner (WD) 1 10 5(1)6(w) S(w)
2 Uogodlniony Wigner P S(t+ar) 1 /% S(w-ab)
(GWD) Me
3 Uog6lniony Wigner o cos (Ot | %) 1
wartoéciach tzeczywistych (ab7) E[5(r+ar)+5(r—ar)] —cos ;t —2—[5(a)—a¢9)+5(a}+a9)]
(RGWD)
4 | Pseudo-Wigner (PWD) h(zjh* (_gj 5(:)}{3)/1*(1) §(t)WD, (0,®) WD, (0,0)
2 2 2 2
S Wygtadzony pseudo- AP APEE; WD, (0,m) g (t WD, (0,0)G ()
6 Levin (LD) g™ = 01, S ;+m F{¢,(1.7)} 1(5(f +£j+5(f—£j]+
O=2nu,w=2rxf 2 2 2 2
I
2\ m(fP-pt14)
7 Page (PD) oI IO, S(,_Hd F.g,(1,7)] 1(5(/ +y_j+(5[f _ﬁ)j+
0=2nmu,w=2rf 2 2 T2 2
+l #
2\ m(f2 - 14)
8 Rihaczek (RD) eI = IO De im0 pmi2en

0=2ru,w=2rf

ot
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Tabela 2.4 c.d. Cztery alternatywne postacie funkcji jadra (tabela 2.2) wybranych reprezentacji klasy Cohena

L.p. | Transformacja Funkcja jadra Funkcja jadra Funkcja jadra Funkcja jadra
Posta¢ 1 - ¢, (6,7) Postac 2 - ¢, (1,7) Posta¢ 3 - ¢, (1,0) Posta¢ 4 - ¢, (6,®)
9 Margineau- o 2 4 =2 2
e A e ) I e I 7
0=2nu,w=2rf
10 | Born-Jordan (@ 1 T 7 F{¢ (t 2')} 1 0] 6 6
. sin| —7 e — i = ELF A — <=t - =
(BID) sm(ﬂ,ur): (2 j |T|,dla < tJ-fe( 2,2j |6",dla o= tJ.te( i
T o_
21’ 0,dal|—->=1¢ te(—%,%) 0 , dla %>—tj.zg(_g,g
0=2mu,w=2rxf g 22
11 | Zhao-Atlas- i
Marks h(T)|T| S'—mfgﬁfr) = h(T), dla ; <—tj.te (—ggj F’{¢” (r’T)} F’{(D“” (0’7)}
(ZAMD) H
sin(grj 0, dla|—|>—1tj te(—z,zj
_ 2 ). 22
=h(7)jd—5—=;
=7
2
0=2mu,w=2rf
12 | Spektrogram AF (-6,-7 AN T WD, (~t,—w 6 Pl
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Tabela 2.4 c.d. Cztery alternatywne postacie funkcji jadra (tabela 2.2) wybranych reprezentacji klasy Cohena

L.p. Transformacja Funkcja jadra Funkcja jadra Funkcja jadra Funkcja jadra
Posta¢ 1 - ¢, (6,7) Postac 2 - ¢n (t 2') Posta¢ 3 - ¢,w(t o) Postac 4 - ¢ww(0 a))
13 | Choi-Williams (CWD) (o) \/7 \/7
e 9 —qudq
[N 7 Vit
14 | Uogdblniony Choi-Williams 4

(GCWD)

_[i]w [i]m
e & Ty

9 {¢a)r (0 T)}
np. dla N=1:

M s
TO

Hy |To
2\/;1'

0 =2mu; 6, = 2mu,

2
4r?M
2

F{¢,(1.7)]

F.{0..(6.7)}

np. dla M=1:

M gfg/‘ngz
(2 & ¢ 42N
Wr | u
0 =2mu, 6,="2mu,

b

15 Nutall (ND) e{‘”[“%bz”mb]}- FH_I {¢a}f (0’7)} Fr {¢n (I’T)} Fr {¢wr (9,1’)}
O T
HO TO
16 | Costa-Boudreaux-Bartels P F'1a, (0,7 Fio, (1,7 F.i9,(0,7
e [esart} 5 {0.(6,7)] {0, (7)) {..(0.7)]
L
00 TO
A Zabz, B — 2b2ar
C=2r((ab)")
17 BUtterworth (BUD) 1 F.S:1 {¢(ur (0 T)} Fr {¢rf (Z’T)} FT {¢(ut (0’7")}
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Tabela 2.5 Wybrane reprezentacje z klasy Cohena i ich wyrazenia

L.p. Transformacja Wyrazenie TFC'" (1, f)badz TFC") (1) , gdzie @ =27f,0 =27u
1 Wigner (WD) = 7). T] .
WD (t,f)= |x|t+= Kk'| t—= |e*dT
WD (1,0)= Ix t+Z | =L |edr
- 2 2
2 Uogélniony Wigner (GWD) e ,
¢ y e GWD (1, f)= Jx(t+[%+a)r}\*[t—(%—aj1]e’2”f1d2'
T 1 * 1 —jot
GWD, (1,0)= Ix t+| =+ |7 t—(——a T|edr

= 2 2

3 Uogo6lniony Wigner o wartosciach b 3 o
rzeczywistych RGWD, (1. f) = I '[cos(27z;ua'z') AF (p1.7)e dzdu
(RGWD) -
RGWD (t,w)= I Jcos(a@r)AF_\, (6,7)e"e " drdO
4 Pseudo-Wigner (PWD) e 7). T N (T o 1 Fie
PWD (1,f)= |x|t+=k'|t—=|h| = |h'| —= |e/""dr=— [ WD, (t, h)WD, (0,f-1)dA
S (S R R S
e . T\ (7). 7)_; 177
PWD (t,f)= |x|t+=K |t—=|h| = |k | —= |e’"dT=— | WD _(¢,7)WD, (0,0-77)d
O 5 S L Ry ey e
Legenda zmiennych | czas czestotliwos¢/pulsacija przesunigcie czasowe rzesunigcie czestotliwosciowe
TFC®(1,f) |b | | T 2,
= u- dodatkowa zmienna catkowania A - dodatkowa gmienna catkowarnia

TFC®) (o) | © @ g 6,

u- dodatkowa zmienna catkowania

1 - dodatkowa zmienna catkowania
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Tabela 2.5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrazenia

L.p. Transformacja Wyrazenie TFC") (1, f ) badz TFC" (1,w) , gdzie =27 f,0 =27u
5 Wygtadzony pseudo-Wigner (SPWD) e i *2
SPWD, (1, f)= .[g(t—u)PWDx(u,f)du:Z— [2(t-u)WD, (u, YWD, (0.f-1)dudA
—o0 ﬂ.-—oo
SPWD (1,0) = Jg(t—u)PWDx(u,w)du =2L J.g(t—u)WD_‘_(u,n)WDh (0,0-17)dudn
—— 7[_00
6 Levin (LD) gl 2
LD"(t’f):_E JX(T)€‘j2”deT
LD,\_(z,a)):—E ,Ix(r)e""‘”dr
7 Page (PD) _ ' o
PD, (¢, f)=2Reqx"(t)e*"” J.x(‘[)e_"””dz'
PD (t,w)=2Re {x* (1)e™™ _[x(f) e_”‘”dz}
8 Rihaczek (RD) RD (1, f)=x(t)X"(f)e "
N e X (@) =F{x(1)]
RD (1,0)=x(1)X"(w)e
9 Margineau-Hill (MHD) MHD, (1, f) = Re{x(t)X* (f) —,mn}
MHD  (t,w)=Re{x(t) X" (w)e "}
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Tabela 2.5 c.d. Wybrane reprezentacj

e z klasy Cohena i ich wyrazenia

L.p.

Transformacja

Wyrazenie TF C‘E,E)

(1, f)badz TFC')

(t,0), gdzie w=2rf,0=2mu

10

Born-Jordan (BJD)

BID. ( TT sin (7ut) X

; "I ¢d [ —3}-1'2"-’%1 dr
e Y AN

ot

BID ( TT

6?
2

Ut

NI%

o

151 —-jotr : T _1 —jot
T) drd@ = I|T| Jx(u+2j (u 2} dudt

9]

11 Zhao-Atlas-Marks (ZAMD)

+o0 o0

ZAMD ( j _[h
ZAMD _( TT h(t

sm 7r,ur)

‘T

2

i
AF, (u,7) e/ gdy = jh (7) _f (u +§j x (u —%je'-"z”'”dudf
= G|

7|
2

sm(e Tj - f%’
(7)|e|—=—=AF, (6,7) "¢ ""d7d6 = ;[h (7) L x(u +%) x (u —%}"’mdudr

Legenda czas czestotliwosé/pulsacja przesunigcie czasowe przesuniecie czgstotliwos$ciowe
zmiennych
TEC® (1, 1) |t | f T 7
U= dodatk.owa AHCIHi A - dodatkowa zmienna catkowania
catkowania
TFC (r,w) |1 @ ’ 0.

u- dodatkowa zmienna
catkowania

1 - dodatkowa zmienna catkowania
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Tabela 2.5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrazenia

+oo

—oco

SPEC, (1,0) =|STFT, (1.0) =| [x(r)h(z~1) ""’Tdr

L.p. Transformacja Wyrazenie TFC") (1, f ) badz TFC'") (1, o), gdzie w=2rf,0=2ru
12 Spektrogram (SPEC) oo oo ¢
SPEC, (1, f) =|STFT, (1, f)[ = fx —,errdz. IX (A)H (A-f)e™™dA

2

jl]!d 77

13 Choi-Williams (CWD)

tootoo  (27ut)’

+oo 400 (’__")’
g T T i
CWD, (t,f)= | [e 2 7)e ™ drd ——e xlut= x| u—= e dudr
(1) i i AF, (u.7)e = f f : :
+oo +oo _ﬂ / ;jz r T .
CWD  (t,m)= J. Ie AF (6,7)e’"e '™ d7d6 = j I ———e x(u +—jx* u——)e_"“”dudf
‘ 22 4r 1| 2 2
14 | Uogdlniony Choi-Williams e Hijw [A]”}
(GCWD) GCWD‘ (f,f) it J' J‘e Ty Hy AF‘_ (lU,T) j2n(ut-£t) dfdﬂ
|: [ T]ZM( HT.\}
Tt ) (& o
GCWD, (r,0)= | [e AF, (8,7) e e ™ d7d
Legenda zmiennych | czas czgstotliwosé/pulsacja przesunigcie czasowe przesunigcie czgstotliwosciowe
TFC® (5,1} | ¥ f T 7
' u- dodatkowa zmienna catkowania A - dodatkowa zmienna catkowania
TFC" (1,0) & . | @ 4 0.
u- dodatkowa zmienna catkowania 1 - dodatkowa zmienna catkowania
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Tabela 2.5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrazenia

L.p. Transformacja Wyrazenie TFC'") (1, f) badz TFC\") (1, ) , gdzie w=27xf,0=27u
15 Nutall (ND) L [w—[i]z{i]zw{lﬂ}
NDX ([,f) _ J- Ie L% Ho Toky AF_\, (ﬂ’z_)ejzzr(/n—fr)dz_dlu
(Y.(oY., (0
i { (4] { m L
ND, (r,o)= [ [e' AF,(6,7)e" e d7d @
16 Costa-Boudreaux-Bartels (CBBD) o0 oo {*”[(Aww)z]‘} 5 —ﬁ_ﬁ b—i
CBBD, (1.f)= [ [e AR (2)e™ " ardy | A=y b
i {—n[(A+B+C)Z] JL . . A= azabz,B =a'b*
CBBD (1,0)= j je AF, (0,7)e" e " d7d6 C:Zr((ab)ﬂ)
17 Butterworth (BUD) b
BUD, (1.f)= | | LI AF, (u,7) e drdu
s 0 T
T .
@) )
BUD, (r.0)= [ | AR (6.7)e"e " drdd
oo oo 0 T
L+[ — —
[%j [%J

Legenda zmiennych | czas czestotliwosé/pulsacja przesunigcie czasowe przesunigcie czgstotliwosciowe
E
TFCE‘)(I’f) t’dd k j th j / ‘ i
UnBpGaliowa Eryenig cairkowania A - dodatkowa zmienna catkowania
E
TFC® (t,w) |t ‘ L z 0.
u- dodatkowa zmienna catkowania 11 - dodatkowa zmienna catkowania
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Tabela 2.6 Wtasciwosci (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

Lp

Transformacja/Warunek

Posiadane wtasciwosci (tabela 2.1)

Pl | P2 | P3| P4 | P5|P6|P7 | P8 | P9 |PIO|PIl|PI2|PI3|PI4|PI5|PI6|PI7|PIS
1 Wigner (WD) VIVIVIVIVIVIVIVIVIVIVIVIVIVIY VIV
2 Uogdlniony Wigner (GWD) ~ .
R Y A Y -]
3 Uogo6lniony Wigner o
wartosciach rzeczywistych _ _ _ _
(RGWD) VIV iV Y oYY Y Y YV
lo|<1/2 VIV
4 Pseudo-Wigner (PWD) _ _ —
EEMAMAMEM SRR R -
5 Wygtadzony pseudo-Wigner
(SPWD) il IV IRV S R A N A A N N N R U o
g(r)e R v

Legenda wiasciwodci:

P —rzeczywisty charakter przeksztalcenia
P2 — zachowanie przesunigcie w dziedzinie czasu

P3 — zachowanie przesunigcia w czestotliwosci

P4 — zachowanie skalowania w dziedzinie czasu

P5 — zachowanie ograniczenia w czasie

P6 — zachowanie ograniczenia w czestotliwosci

P7 —reakcja na iloczyn sygnatu z funkcja modulujaca
P8 — reakcja na splot sygnatu z funkcja modulujaca
P9 - spetnienie rownos$ci Moyala (unitarnosc¢)

P10 - zachowanie energii chwilowej sygnatu

P11 - zachowanie widma gestosci energii sygnatu
P12 — zachowanie momentéw czasowych

P13 - zachowanie momentéw czestotliwosciowych

P14 — wyznaczenie czestotliwosci chwilowe;j

P15 — wyznaczenie op6znienia grupowego

P16 - reakcja na zamiane zmiennych

P17 —iloczyn z liniowa modulacja czestotliwosci

P18 — splot z liniowa modulacja czestotliwosci
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Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwosciowe

Tabela 2.6 c.d. Wtasciwosci (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

Posiadane wtasciwosci (tabela 2.1)

L.p.| Transformacja/Warunek =50 T 52T ps T p5 | P6 | P7 | PS | P9 | P10| P11 | P12 | PI3| Pi4]PI5]| PI6| P17] PIS
6 Levin (LD} VIVIV]I V] VoIV I oo
7 Page (PD) VIV IV - VIV IV IV VI T ]-
| mmem® | VY Y Y VIV -]
9 Margineaw-Hil(MHD) | | V |V [V IV IV IV IVIVIVIVIV IV | _ | _|_|_
10 Born-Jordan (BJD) VIVIVIVIVIV]I | _IVIVIVIVIVIVIV] -
11 Zhao-Atlas-Marks (ZAMD) _ _

h(7) - funkcja parzysta v VIV V- - -] -]-1-]-1-1-]-1-]-/-
12 Spektrogram (SPEC) V IV \/ [ N I A R A I A I S S o _ _
13 Choi-Williams (CWD) \/ \/ \/

VA S O I I Vi

VIVIVIVIVIV] |-

Legenda wiasciwosci:

P1 —rzeczywisty charakter przeksztalcenia
P2 — zachowanie przesunigcie w dziedzinie czasu

P3 — zachowanie przesunigcia w czestotliwosci

P4 — zachowanie skalowania w dziedzinie czasu

P5 — zachowanie ograniczenia w czasie

P6 — zachowanie ograniczenia w czestotliwosci

P7 —reakcja na iloczyn sygnatu z funkcja modulujaca
P8 — reakcja na splot sygnatu z funkcja modulujaca
P9 — spelnienie réwno$ci Moyala (unitarno$¢)

P10 - zachowanie energii chwilowej sygnatu

P11 - zachowanie widma gestosci energii sygnatu
P12 — zachowanie momentéw czasowych

P13 - zachowanie momentéw czestotliwosciowych
P14 — wyznaczenie czestotliwosci chwilowej

P15 — wyznaczenie opéznienia grupowego

P16 — reakcja na zamiang zmiennych

P17 —iloczyn z liniowa modulacja czestotliwosci
P18 — splot z liniowa modulacja czestotliwosci
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Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwosciowe

Tabela 2.6 c.d. Wiasciwosci (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

L.p.

Posiadane wtasciwosci (tabela 2.1)

Transformacja/Warunek

Pl

P2

P3 | P4 | P5| P6| P7|P8| P9 |PIO

P11 | PI2|PI3|PI4|Pl5|PI6|PI7|PIS

14

Uogo6lniony Choi-Williams
(GCWD)

M >1/2

N>1/2

M=1/2

N=1/2

M =N

v

15

Nutall (ND)

v

YA I e e e

Legenda wiasciwodci:

P1 - rzeczywisty charakter przeksztalcenia
P2 — zachowanie przesunigcie w dziedzinie czasu

P3 — zachowanie przesunigcia w czestotliwosci

P4 — zachowanie skalowania w dziedzinie czasu

P5 — zachowanie ograniczenia w czasie

P6 - zachowanie ograniczenia w czestotliwosci

P7 - reakcja na iloczyn sygnatu z funkcja modulujaca
P8 - reakcja na splot sygnatu z funkcja modulujaca
P9 — spetnienie réwnosci Moyala (unitarno$¢)

P10 - zachowanie energii chwilowej sygnatu

P11 - zachowanie widma gestosci energii sygnatu
P12 — zachowanie momentéw czasowych

P13 — zachowanie moment6éw czestotliwosciowych
P14 — wyznaczenie czestotliwosci chwilowe;j

P15 — wyznaczenie op6Znienia grupowego

P16 — reakcja na zamiane zmiennych

P17 —iloczyn z liniowa modulacja czestotliwosci
P18 — splot z liniowa modulacja czestotliwosci
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Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwosciowe

Tabela 2.6 c.d. Wtasciwosci (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

L.p.| Transformacja/Warunek

Posiadane wtasciwosci (tabela 2.1)

Pl

P2

P3| P4 | P5|P6| P7| P8 | P9 |PIO

Pl1l|PI2|PI3|PI4|Pl5|PI6|Pl7|PI8

16 Costa-Boudreaux-Bartels
(CBBD)

oa#0

o=1
a=lr=04=1/4

v

VIV

17 Butterworth (BUD)

M>1/2
N>1/2
M=N

v

\/ M| |
oY

Legenda whasciwosci:

P1 —rzeczywisty charakter przeksztatcenia

P2 — zachowanie przesunigcie w dziedzinie czasu

P3 — zachowanie przesunigcia w czestotliwosci

P4 — zachowanie skalowania w dziedzinie czasu

P5 — zachowanie ograniczenia w czasie

P6 — zachowanie ograniczenia w czestotliwosci

P7 - reakcja na iloczyn sygnatu z funkcja modulujaca
P8 - reakcja na splot sygnatu z funkcja modulujaca
P9 — spetnienie réwnosci Moyala (unitarno$¢)

P10 - zachowanie energii chwilowej sygnatu

P11 - zachowanie widma gestosci energii sygnatu
P12 - zachowanie momentéw czasowych

P13 — zachowanie momentéw czestotliwo$ciowych
P14 — wyznaczenie czestotliwosci chwilowej

P15 - wyznaczenie op6znienia grupowego

P16 — reakcja na zamiane zmiennych

P17 —iloczyn z liniowa modulacja czestotliwo$ci
P18 - splot z liniowa modulacja czgstotliwosci
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Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwosciowe

2.3.7. Afiniczne przeksztalcenia czasowo-czestotliwosciowe a klasa Cohena

Obserwujac  wplyw jadra na wlasciwosci uzyskanych przeksztalcen czasowo-
czestotliwosciowych, wsréd opisanych wyzej reprezentacji wyodrebni¢ mozna podgrupe
przeksztatcen o bardzo istotnej wiasciwosci. Mowa tu o przeksztatceniach zachowujacych
jednoczesnie wilasciwosci przesunigcia i1 skalowania w czasie (P2,P4, tabela 2.1) oraz
zachowujacych przesunigcie w czestotliwosci (P3, tabela 2.1). Warto podkresli¢,
ze spelnienie przez reprezentacje jedynie pierwszych dwoéch wiasciwosci tj. zachowania
przesunigcia i skalowania w czasie, pozwala przyporzadkowac¢ je do grupy tzw. afnicznych
przeksztatcen (ang. affine). Jednoczesnie wspomniano juz, iz domeng klasy Cohena jest
zachowanie przesunigcia nie tylko w czasie ale 1 czestotliwosci, co w literaturze
anglojezycznej przyjeto okresla¢ mianem ,shift-invariant class”. Wyodrgbnienie zatem
reprezentacji spetniajacych jednoczesnie trzy omawiane wiasciwosci prowadzi do afinicznej
podgrupy klasy Cohena (ang. ,shift-scale invariant class”). Podkresla to ponizszy rysunek,
przedstawiajacy klas¢ Cohena wraz z wyodrebniong podgrupa przeksztatcen afinicznych.

Klasa Cohena

Uog6lniony Wigner (GWD)
Pseudo-Wigner (PWD)
Wygtadzony pseudo-Wigner (SPWD)
Levin (LD)

Page (PD)

Zhao-Atlas-Marks (ZAMD)
Spektrogam (SPEC)

Wigser (
Uogalniony Wigner o wartodci
Rihaczek (R)

Margineau-H (MIID)

Horn-Jordan (B3
Choi-Wiltiams (CWD}
togbiniony Choi- Willians (GOWD)Y tviko dia N=M
Butterworth (BUDY tylho dia Ne=M

Wi
ch reeczywistych (RGWD)

Nutall (ND)
Costa-Boudreaux-Bartels (CBBD)

Afiniczna podgrupa klasy
Cohena

Rys. 2.14. Wyodrgbnienie reprezentacji afinicznych wsrdd reprezentacji klasy Cohena

Reprezentacje klasy Cohena, nalezace do podgrupy afinicznej, zastuguja na
szczegolng uwage nie tylko ze wzgledu na spetnienie jednoczes$nie trzech, istotnych wtasnosci
przeksztatcen czasowo-czgstotliwosciowych, ale rowniez ze wzgledu na budowe funkcji
jadra, opartej na iloczynie zmiennych 0 i t:

~ ~

0 (0.7)=0,,(67)=0,,(8)|0:s (2.126)

Taka budowa funkcji jadra stwarza mozliwosci tlumienia sktadowych krzyzowych. Jesli

bowiem za ¢, (f) przyjac funkcje taka, ze . (0)=1, co przektada si¢ na posta¢ ¢, (6,7)
jako ¢,,(0,7)=¢, (6,0)=1, uzyskana reprezentacja spetnia¢ bedzie warunki brzegowe dla
czasu i czestotliwosci. Jesli dodatkowo funkcja ;7)‘0,( B) bedzie funkcja malejaca, a Scislej
rzecz ujmujac, skupiong wokét B =0, to odpowiadajaca jej funkcja ¢, (6,7) bedzie
w rownaniu Cohena odpowiedzialna za tlumienie sktadowych krzyzowych [2,27]. Typowym

przyktadem moze by¢ transformacja Choi-Williamsa, gdzie zastosowano funkcje jadra

- G A i
o  charakterze  funkcji  Gaussa ¢, (6,7)=¢,(0r)=¢ ° =9¢,(F) o

or=p =€
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Rozdziat 2: Biliniowe reprezentacje czasowo-czgstotliwosciowe

Im mniejsza jest warto$¢ parametru ¢ tym wigkszy jest stopien ttumienia sktadowych
krzyzowych. I odwrotnie, dla 0 — +e uzyskujemy bogata w udziat sktadowych krzyzowych
reprezentacj¢ Wignera.

Omoéwione w niniejszym podrozdziale zagadnienie afinicznej podgrupy klasy Cohena
ma szczegllne znaczenie dla niniejszej pracy. Giownym bowiem celem rozprawy jest
okreslenie mozliwosci zastosowania klasy Cohena do badania sygnatow elektrycznych.
Sygnaty takie charakteryzuja si¢ w wigkszosci przypadkow udziatem wielu sktadnikow
czestotliwosciowych, a co za tym idzie, zaktéceniem uzyskanych reprezentacji przez znaczng
iloscig niepozadanych sktadowych krzyzowych. Autor wyodrebniajac afiniczng podgrupe
klasy Cohena, kieruje si¢ mozliwosciami tlumienia sktadowych krzyzowych juz na poziomie
rownania definicyjnego. Nalezy pamigtac, ze dodatkowa redukcje¢ sktadowych krzyzowych
moze przynies¢ obciazenie sygnatu funkcja okna czy splot reprezentacji z dodatkowym
oknem wygtadzajacym (pseudo i wygtadzona pseudo-reprezentacja). Jednak dziatania te
sztucznie wplywajq na poprawe interpretacji uzyskanych wynikéw 1 majq niebagatelny
wplyw na rozdzielczosci czasowe 1 czgstotliwosciowe uzyskanych reprezentacji.
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Rozdziat 3: Wyniki badan

3. Wyniki badan

W niniejszej pracy postanowiono skoncentrowa¢ badania w trzech grupach. Pierwsza grupa,
ujeta w podrozdziale 3.1, dotyczy badan wstegpnych. Porownano tu reprezentacje Wignera-
Ville’a (WVD), pseudo-reprezentacj¢ Wignera-Ville’a (PWVD) oraz jej wersj¢ wygtadzong
(SPWVD) w celu okreslenia wplywu szerokosci funkcji wygtadzajacych w czasie
i czestotliwosci na uzyskana reprezentacj¢. Dokonano rowniez jakosciowej analizy wplywu
funkcji jader przeksztalcen nalezacych do afinicznej podgrupy klasy Cohena (np. Choi-
Williams (CWD), Born-Jordan (BJD), Margineau-Hill (MHD)). Badania wstgpne
przeprowadzono bazujac na symulowanych sygnatach sumy sktadnikéw cosinusoidalnych
oraz pradu w gatezi RLC zalaczanej na napigcie zmienne. Grupe druga stanowia badania
wlasciwe, obejmujace swoim zakresem symulowane oraz rzeczywiste sygnatly,
odwzorowujace problemy niestacjonarnosci w uktadach elektrycznych. W podrozdziale 3.2
znalazty si¢ wiec analizy symulowanych sygnaléw zalaczania baterii kondensatoréw, zwarcia
w uktadzie przeksztattnika oraz sygnaléw zarejestrowanych w uktfadzie zasilania pieca
tukowego. Poréwnano tu wptyw réznych funkcji jadra reprezentacji z podgrupy afinicznej w
celu dokonania jakosciowej oceny uzyskanych reprezentacji. Dla wybranych metod
przeanalizowano celowos¢ dodatkowego wygtadzania reprezentacji funkcjami okien (np.
wygtadzona wersja pseudo-transforamty Choi-Williamsa (SPCWD), transformata Zhao-
Atlas-Marksa (ZAMD)). Trzecia grupa analiz, zawarta w podrozdziale 3.3, dotyczy badan
rozszerzonych, obejmujacych swoim zakresem wyznaczanie lokalnych momentow
czestotliwosciowych  uzyskanych — reprezentacji.  Zaproponowane  przez  autora
jednowymiarowe charakterystyki ~momentow mozna traktowa¢ jako  wskazniki
niestacjonarnosci.

Dla usystematyzowania badan w niniejszej pracy zdecydowano wykorzysta¢ system
kart informacyjnych sygnatéw i analiz. Karty informacyjne sygnatéw zawieraja podstawowe
informacje numeryczne, przebieg sygnatu oraz opis matematyczny badz charakterystyke
symulowanego obwodu. Karty te umieszczone sq na poczatku kazdego podrozdziatu,
dotyczacego wspomnianych juz trzech grup analiz. Karty analiz zawieraja plaszczyzny
czasowo-czestotliwosciowe oraz przebiegi chwilowe sktadnikéw wiasnych (a-t) 1 krzyzowych
(c-t), zgrupowane w kolumnach nazwanych skroétem uzytych reprezentacji. W razie potrzeby
nazwa reprezentacji uzupetniona jest o informacje dotyczace rodzaju i szerokosci okien
wygtadzajacych. W nagtéwku kazdej karty analizy odnalez¢ mozna temat analizy oraz
informacje dotyczace wykrytych sktadowych wtasnych oraz krzyzowych.

Kluczowe znaczenie dla usprawnienia poruszania si¢ po prezentowanych wynikach
ma przyjete nazewnictwo kart i ich lokalizacja (rys. 3.1 ). Struktura nazwy sygnalu zawiera
informacje o grupie oraz numerze kolejnym sygnatu. W nazwie analizy powt6rzona zostaje
informacja o badanym sygnale wraz z kolejnym numerem analizy. Nazwa sygnalu oraz
analizy przewidziana zostala w prawym goérnym rogu karty kazdej karty. Pozwala to na
usprawnienie korzystania z prezentowanych wynikow. Dodatkowo kazdy podrozdziat
podsumowuje zwig¢zle oméwienie wynikow.
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Rozdziat 3: Wyniki badan

a) b) w

| Gst 7 [Gi1SI1AT

Rys. 3.1. Fragment karty sygnatu (a) oraz karty analizy (b) z przyktadowa struktura nazw.

3.1. Grupa 1 - badania wst¢pne

Celem badan opartych na sygnatach wstepnych jest poréwnanie reprezentacji Wignera-Ville’a
1 ich modyfikacji w swietle spektrogramu, uzyskanego drogg algorytmu Fouriera. Przejscie
z oryginalnej reprezentacji do tzw. pseudo-reprezentacji zostaje naswietlone zwtlaszcza
z powodu uzyskania mozliwosci Sledzenia tzw. unormowanej energii sygnatu. Dalsza
modyfikacja pseudo-reprezentacji, w celu jej wygtadzenia z jednoczesnym sttumieniem
sktadowych krzyzowych, zostaje sprawdzona zwtaszcza ze wzgledu na wptyw zastosowanych
okien wygtadzajacych h(z) oraz g(f). Omoéwiona we wstepie teoretycznym wilasciwosc
niezaleznego wplywu na rozdzielczos¢ czasowq 1 czgstotliwosciowa zostaje tu sprawdzona
1 potwierdzona.

Zestawienie wynikow przynaleznych do danej grupy rozpoczynaja zawsze analizy
z wykorzystaniem algorytmu Fouriera, co w przypadku Grupy 1 dotyczy analiz ,,GISI1A0”
1,,GIS2A0”. W kartach analiz zamieszczono badany sygnat, jego transformat¢ Fouriera oraz
spektrogramy z dwoma szerokosciami funkcji okien h(z). Analizy te maja stuzy¢ jako punkt
odniesienia do jakosciowego poréwnania z badanymi reprezentacjami klasy Cohena.

Analizy ,,GISIAI” oraz ,,GIS2A1” majq na celu przyblizy¢ charakter reprezentacji
Wignera-Ville’a (WVD), pseudo-reprezentacji Wignera-Ville’a (PWVD) oraz jej wersji
wygtadzonej (SPWVD). W kartach omawianych analiz wyr6zni¢ mozna trzy kolumny.
W nagléwku kazdej z nich znajdujq si¢ skroty nazw uzytych reprezentacji, wraz
z dodatkowymi informacjami dotyczacymi rodzaju 1 dtugosci uzytych funkcji wygtadzajacych
i wykrytych sktadowych wilasnych (a-t) 1 krzyzowych (c-t). Pierwsza kolumna kart, wiersze
»a~1,,d”, przedstawia plaszczyzng czasowo-czestotliwosciowa reprezentacji Wignera-Ville’a
oraz przebiegi chwilowe sktadnikéw wiasnych 1 zwigzanych z nimi sktadnikéw krzyzowych.
Przebiegi te uzyskuje si¢ poprzez ,cigcie” wzdluz osi czasu dla wybranej czestotliwodci.
W przypadku sygnatu ,,G1S57” mowa tu o sktadnikach wtasnych 5S0Hz i 250Hz oraz sktadowe;j
krzyzowej 150Hz. Dla sygnatu ,,G152”, sktadniki wtasne reprezentacji tworza sktadowa 50Hz
oraz zanikajaca sktadowa 160Hz, czego efektem jest pojawienie si¢ sktadowej krzyzowej
105Hz. Druga kolumna kart, wiersze ,,b” 1 ,,e”, pokazuje wplyw obciazenia sygnatu oknem
Hamminga, o szerokosci rownej pigciu okresom sktadowej podstawowej, co prowadzi do
pseudo-reprezentacji Wignera-Ville’a. Trzecia kolumna, wiersze ,c” 1 ,f7°, zawiera
plaszczyzng czasowo-czestotliwosciowa oraz przebiegi chwilowe sktadnikéw, po
dodatkowym wygtadzeniu pseudo-reprezentacji wzdluz osi czasu oknem Hamminga
o szerokosci réwnej dwém okresom sktadowej podstawowej, czyli sktadniki wygtadzone;j
wersji pseudo-reprezentacji Wignera-Ville’a.

Wygtadzona wersja pseudo-reprezentacji Wignera wykazuje duzy stopien tlumienia
sktadowych krzyzowych. Wyrazny jest jednak wptyw okien na otrzymang reprezentacje.
Analizy ,,GI1S1A2” oraz ,,GIS2A2” stuza uwypukleniu wptywu szerokosci okna h(z), ktérego
zadaniem jest wygtadzenie reprezentacji wzdluz osi czgstotliwosci. Zachowujac statg
szerokosci okna g(f), rowna dwu okresom sktadowej podstawowej, w trzech kolumnach
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omawianych analiz, zawarto plaszczyzny czasowo-czestotliwosciowe oraz chwilowe
przebiegi sktadnikow wtasnych i krzyzowych, odpowiednio dla szerokosci okna h(r) réwnej
trzem, czterem 1 pigciu okresom sktadowej podstawowej. Analogicznie kolejne dwie analizy,
»G1S1A3” oraz ,,GIS2A3”, pokazuja wptyw szerokosci okna g(7), usredniajacego pseudo-
reprezentacj¢ Wignera-Ville’a wzdluz osi czasu, przy ustalonej szerokosci okna h(7), rownej
pi¢ciu okresom sktadowej podstawowej. W kolumnach kart analiz zamieszczono ptaszczyzny
czasowo-czestotliwosciowe oraz chwilowe przebiegi sktadnikéw wtasnych i krzyzowych, dla
trzech szerokosci okna g(7): jeden, dwa oraz trzy okresy sktadowej podstawowe;j.

Kolejne analizy ,,GISIA4” oraz ,GIS2A4” dotycza poréwnania transformacji
Wignera-Ville’a oraz Choi-Williamsa (CWD). Wplyw jadra wyktadniczego objawia sie¢
mozliwosciami ttumienia sktadowych krzyzowych juz na poziomie réwnania definicyjnego.
Sita redukcji sktadowych krzyzowych oraz wptyw na sktadniki wtasne jest tu podkreslony na
podstawie reprezentacji dla dwéch réznych wspétczynnikéw ttumienia 6=1.0 oraz ¢=0.05,
odpowiedzialnych za ksztatt funkcji jadra.

Analizy ,,GISIA5S” oraz ,,GIS2A5” zawieraja pozostale reprezentacje zwigzane
z podgrupg afiniczng : reprezentacj¢ Margineau-Hill (MHD) z jadrem cosinusoidalnym, Born-
Jordan (BJD) z jadrem typu ,,sinc” oraz jej wersja wygtadzong wzdtuz osi czgstotliwosci
Zhao-Atlas-Marks (ZAMD). Celem tych analiz jest nakreslenie charakteru omawianych
przeksztatlcen zwlaszcza ze wzgledu na przebiegi sktadnikéw wilasnych i1 krzyzowych.
Niekorzystne z tego punktu widzenia potozenie sktadnikéw krzyzowych reprezentacji
Margineau-Hill zostaje tu podkreslone.

Podane ponizej karty informacyjne sygnaléw dotycza zatem omawianej pierwszej
grupy analiz. Pierwszy sygnal, oznaczony jako ,,G1S1”, bazuje na sumie ograniczonych
sygnatéw cosinusoidalnych, gdzie druga sktadowa pojawia si¢ w badanym fragmencie z
op6znieniem. Drugi z sygnatéw, ,,G1S2”, opisuje sygnal pradu w gat¢zi szeregowej RLC,
zalaczane] na zr6dto sinusoidalne. Symulacje zjawiska wykonano w $rodowisku
oprogramowania EMTP i sprawdzono analitycznie.
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Rozdziat 3: Wyniki badan

KARTA SYGNALU: Suma sktadnikow cosinusoidalnych G1S1

Parametry numeryczne sygnatu:

Przebieg sygnatu:

£ 5kHz

% (0,0.2)s
N, 1001
ts 0.1s

Legenda parametréw:

czestotliwo$¢ probkowania w [Hz]
dtugos¢ sygnatu w [s]

dhugos¢ sygnatu w prébkach
poczatek niestacjonarnosci w [s]

amplituda

Opis matematyczny:

x(t) =10cos(1007zt)[1(z) —1(r—0.2)]+

+5cos (5007[1‘) [1(t—0.1)—1(z - 0.2)]

KARTA SYGNALU: Zatqczanie gatezi RLC na wymuszenie sinusoidalne G1S2

Parametry numeryczne sygnatu:

Przebieg sygnatu:

for 5kHz
Tx (0,0.3)s
N, 1501

t, 0.0s

Legenda parametréw:

for - czestotliwos$¢ probkowania w [Hz]
Ty-  dlugos¢ sygnatu w [s]
N, -  dhigos¢ sygnatu w probkach
tp - poczatek niestacjonarnosci w [s]
4 i 1 i I i
0 005 01 015 02 025 03
ts]
Model: Parametry modelu: Opis matematyczny:

R L € i(1)=1.13-(sin(27-50-1) = 3.18-¢ " sin (27 160 1) )1(1)
— e(t) = 23082 sin(wr —90° )V
=0 R=4Q, L=0.1H, C=10uF
L o0
i(t) :>R<2\/:, p=y,=-90
e C
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Rozdziat 3: Wyniki badan

SKOROWIDZ ANALIZ GRUPY 1

Nazwa
analizy

GISTAO
Rys. 3.2

GIS2A0
Rys. 3.8

G1S1A1
Rys. 3.3

G1S2A1
Rys. 3.9

GIS1A2
Rys. 3.4

G1S2A2
Rys. 3.10

GIS1A3
Rys. 3.5

G1S2A3
Rys. 3.11

GIS1A4
Rys. 3.6

G1S2A4
Rys. 3.12

G1S1A5
Rys. 3.7

GI1S2A5
Rys. 3.13

Temat i zawartos$¢ analizy

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnal wraz z widmem ggstosci energii, plaszczyzny
czasowo-czgstotliwosciowe spektrogramu z oknem Hamminga o

szerokosci réwnej odpowiednio dwém oraz pigciu okresom sktadowej
podstawowej; przebiegi sktadnikow wiasnych.

Temat: Transformacje Wignera-Ville’a (WVD) i jej wersje wygtadzone
(PWVD, SPWVD)

Poréwnanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji
Wignera-Ville’a 1 jej wersji wygladzonej na podstawie plaszczyzn
czasowo-czestotliwosciowych  oraz chwilowych przebiegdéw
sktadnikéw witasnych oraz krzyzowych.

Temat: Wptyw szerokosci funkcji okna h(t) przy ustalonym oknie g(t)
na reprezentacje SPWVD

Poréwnanie wptywu funkcji h(r) na wygtadzong pseudo-reprezentacje
Wignera-Ville’a, przy stalej szerokosci funkcji wygtadzajacej g(1):
ptaszczyzny  czasowo-czestotliwosciowe,  chwilowe  przebiegi
sktadnikow witasnych oraz krzyzowych dla szerokosci h(r) réwnej
odpowiednio dwém, czterem oraz pigciu okresom skladowej
podstawowej.

Temat: Wptyw szerokosci funkcji okna g(t) przy ustalonym oknie h(t)
na reprezentacje SPWVD

Poréwnanie wptywu funkcji g(f) na wygtadzong pseudo-reprezentacje
Wignera-Ville’a, przy statej szerokosci funkcji wygladzajacej h(r):
plaszczyzny  czasowo-czgstotliwosciowe,  chwilowe — przebiegi
sktadnikow wtasnych oraz krzyzowych dla szerokosci g(f) réwnej
odpowiednio jednemu, dwom oraz trzem okresom sktadowe;j
podstawowej.

Temat: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa
(CWD)

Ptaszczyzny czasowo-czestotliwosciowe transformacj Wignera-Wille’a
i Choi-Williamsa z réznymi wartosciami wspoétczynnika ttumienia o

oraz przebiegi sktadnikéw wiasnych i krzyzowych

Temat: Transformacje Margineau-Hilla (MHD), Born-Jordana (BJD),
Zhao-Atlas-Marksa (ZAMD)

Plaszczyzny czasowo-czgstotliwosciowe transformacji  Margineau-
Hilla, Born-Jordana i Zhao-Atlas-Marksa z wygladzajacym oknem
Hamminga o szerokosci pigciu okreséw sktadowej podstawowej;
przebiegi  sktadnikéw  wilasnych 1 krzyzowych uzyskanych
reprezentacji.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC) G1S1A0

Sktadniki wiasne (a-t): —( 50Hz 250Hz

FFT SPEC h(r)l Hamming 0.04s SPEC h(7) [ Hamming | 0.1s

2) 15 : , b) 300 & 300

amplituda

0 0.05 0.1 0.15

d)

e) f)

widmo gestosci energii
SPEC
SPEC

; i 1 i AN
0 50 100 150 200 250 300
flHz]

Rys. 3.2. Analizowany sygnal wraz z widmem ggstosci energii (a,d); ptaszczyzny czasowo-czestotliwosciowe spektrogramu (b,c) oraz przebiegi
sktadnikow wiasnych (e,f) z wygladzajacym oknem Hamminga o szerokosci réwnej odpowiednio dwém oraz pigciu okresom sktadowej
podstawowej, na przyktadzie analizy sygnatu ,,G1S1".
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i jej wersje wygtadzone (PWVD, SPWVD)
Sktadniki wtasne (a-t): I 50Hz 250Hz Sktadniki krzyzowe (c-t): 150Hz
WVD PWVD h(7) Hamming | 0.1s SPWVD h(7) Hamming 0.1s
g(t) Hamming 0.04s
a) b) c)

300

d) e) f)

PWVD
SPWVD

— 50Hz(a-t) [| — 50Hz(a-t) [| — 50Hz(a-t)

sl —- 150HzcY 8l — - 150Hz(cY) | % gl] ===~ 150Hz(cY ‘
»  250Hz(a-t) ‘ . ; * 250Hz(?»t) ; el HERD . = 250Hz(a-t) : |
2 I = 1 T
"% 0.05 01 015 02 % 005 01 0.15 0.2 0 005 0.1 0.15 0.2
t[s] t[s] t[s]

Rys. 3.3. Por6wnanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji Wignera-Ville’a i jej wersji wygtadzonej na podstawie ptaszczyzn
czasowo-czgstotliwosciowych (a,b,c) oraz chwilowych przebiegéw sktadnikéw wtasnych oraz krzyzowych (d,e,f) na przyktadzie analizy sygnatu
»GIST”.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Wptyw szerokosci funkcji okna h(t) przy ustalonym oknie g(t) na reprezentacje SPWVD
Sktadniki wtasne (a-t): 50Hz 250Hz Sktadniki krzyzowe (c-t): 150Hz
h(7) Hamming 0.04s h(7) Hamming 0.08s Hamming 0.1s
a(t) Hamming 0.04s g(t) Hamming 0.04s Hamming 0.04s
2 300 2) 300
250 250 250
200 200 200
2150 5150 gwo """
100 100 100

% 005 01 015 % 005 01 015 % 005 01 015
t[s] t(s) tis)
d e
) 12 ! T : 4 12 T : T B 12 ! : ;
(1] POPESRET SO, A (o sociead 10 : \— L10] ' i .
S N . N S | 8/ _______________________________________________________________ 8/ _______ SO NS S \
g ] e . % ] T IR IR S . g B .
g : ; z z = s : L = 5
e T S R B B . & 4t — 50rz(ay i
=== 150Hz(ct) : “=== 150Hz(c-t) E : ~=== 150Hz(c1) :
+  250Hz(a) i ' x  250Hz(a) : ; » 250Hz(a) :
2}- : 2 : 2 : :
0 0 0 f
2 i i i B i j i 2 i i i
0 005 01 015 02 0 005 01 015 02 0 005 01 015 02
t[s] t[s] t[s]

Rys. 3.4. Poréwnanie wptywu funkcji h(r) na wygtadzong pseudo-reprezentacj¢ Wignera-Ville’a, przy stalej szerokosci funkcji wygtadzajacej
g(0): (a),(b),(c) - ptaszczyzny czasowo-czestotliwosciowe, (d),(e),(f) — chwilowe przebiegi sktadnikéw wiasnych oraz krzyzowych dla szerokosci
h(7) réwnej odpowiednio dwom, czterem oraz pigciu okresom sktadowej podstawowej, na przyktadzie analizy sygnatu ,,G1SI”.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Wptyw szerokoSci funkcji okna g(t) przy ustalonym oknie h(t) na reprezentacje SPWVD
Sktadniki wiasne (a-t): 50Hz 250Hz Sktadniki krzyzowe (c-t): 150Hz

h(7) Hamming 0.1s h(7) Hamming 0.1s Hamming 0.1s

Q) Hamming 0.02s a(1) Hamming 0.04s Hamming 0.06s

250 250
200 0 2005 200
Fis0 ‘ gwso ?50
100 '  100

% 005 01 0.15 % 005 01 015 % 005 0.1 0.15
t[s) t[s] t(s]
e
? 12 : T T ) 12 z : : D 12 T
""" - 10/ \‘\*
_____________________________________________________________________ | i \_ N (SR S S SR
a) e e e a ] S S R B
Y B T e S E a1 Tl S S E & 4l-[— sorzat) i
-nm- 150Hz(c-t) : 5 ~=== 150Hz{c-t) ; ; === 150Hz(c-1) :
*  250Hz(a) i : » 250Hz(a-1) : : x  250Hz(a-t) ;
2| : 2 : : 2 : :
or— f 0 0
-2 1 i i ) i i i D, i ] ;
0 005 01 015 02 0 005 01 015 02 0 005 01 015 02
t[s] t[s] t[s]

Rys. 3.5. Por6wnanie wptywu funkcji g(f) na wygtadzona pseudo-reprezentacj¢ Wignera-Ville’a, przy statej szerokosci funkcji wygtadzajacej
h(7): (a),(b),(c) - ptaszczyzny czasowo-czgstotliwosciowe, (d),(e),(f) — chwilowe przebiegi sktadnikéw wtasnych oraz krzyzowych dla szerokosci
g(r) rownej odpowiednio jednemu, dwom oraz trzem okresom sktadowej podstawowej, na przyktadzie analizy sygnatu ,,G1S1”.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Transformacje Wignera-Ville'a (WVD) i Choi-Williamsa (CWD)

Sktadniki wtasne (a-t): ‘ 50Hz 250Hz I Sktadniki krzyzowe (c-t): 150Hz
WVD CWD c=1.0 CWD o =0.05

2) 2 300 ; . & 300
250 250
200 200
£150 =1
100

0 005 0.1 015 0 0.05 0.1 0.15
t[s] t[s)

o ) )

@]
(@]
§ % 0 WU e
; e
S | N SRR RS
P A O IT—50rz(at) | 50Hz(a-1)
8l — - 150Hz(cY) |.oo..cc USSR SO i 8} - 150Hz(c-Y) 8} === 150Hz(cY
x  250Hz(a-t) : : > 250Hz(a-t) : ; »  250Hz(a-t) : :
210 I 1 1 -10 e m————— (——— 1 1 -10 I 1 1
0 005 0.1 0.15 02 0 005 0.1 0.15 02 0 005 0.1 0.15 02

t[s] t[s] t[s)

Rys. 3.6. Plaszczyzny czasowo-czestotliwosciowe transformacji Wignera-Wille’a (a) i Choi-Williamsa z ré6znymi wartosciami wspétczynnika
thumienia o (b,c) oraz przebiegi sktadnikéw wtasnych i krzyzowych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy sygnatu ,,G1S1”.
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KARTA ANALIZY: Transformacje Margineau-Hilla (MHD), Born-Jordana (BJD), Zhao-Atlas-Marksa (ZAMD)

GI1S1AS

| sony

l Sktadniki krzyzowe (c-t):

Sktadniki wtasne (a-t): 250Hz 150Hz
ZAMD
MHD BJD h(7) Hamming 0.1s
BJD|,
(7)
a c
) ) i
25
20
s
10
5
d) 12 . ; . 12 . . . Y 12 . . :
— 50Hz(a-t)(c-t) : : i — 50Hz(a-t) : i — 50Hz(at)
== 150HZ ; ; 5 === 150HzZ(c-t) i === 150Hz(c-t)
101 »  250Hz{a-ty(ct) | FOSTITARNEINTRRunT] T 1Qprsessnrernennies R N «  250Hz{a) ] 1o : = 250Hz(a) ||
TR IR B lessusesasnnss ................................................. i
N ER—T— N I S SRSV SN, S5 S a z
: o] H :
z g 3 E a 5
Alrmme e dtvmmrnm s e e | S e - N
| _________________ Iggl!l! EBEERER !lll&i ) " AAAAAAAAAAAAAAA B
BpEiEreiRizaaasiaas a2 SIIZES] | = a :
0 A kA A 0 ;
sppnsmmmem e S REREIREIRERERTINERR i : i ;
N LR CH ; > ; ; i 5 ; : :
) 005 0.1 015 02 ) 005 0.1 015 02 ) 0.05 0.1 0.15 02
ts] t[s] tls)

Rys. 3.7. Plaszczyzny czasowo-czestotliwosciowe transformacji Margineau-Hilla (a), Born-Jordana (b) i Zhao-Atlas-Marksa z wygtadzajacym

oknem Hamminga o szerokosci pigciu okreséw sktadowej podstawowej (c) oraz przebiegi sktadnikéw wihasnych i krzyzowych uzyskanych
reprezentacji (d,e,f), na przyktadzie analiz sygnatu ,,G1S1”.
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KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC)

G1S2A0

Sktadniki wtasne (a-t):

a)

50Hz

160Hz

b)

SPEC h(z) I Hamming 0.04s

300

250

200

f[Hz]

100

50

0.15 02
t[s)

025

9)

I Hamming | 0.1s

0 0.05

0.1 015 02
tis]

025

d)

=)

Mo gestosci ener

wid

o
o
=]

02
018
0.16

5014

012}

o
o @
-

0.04|---mmmmeefiloeeee

002

1 L

50 100

1
150
flHz]

200

250 300

e)

50Hz(a-t)
160Hz(a-t]

SPEC

]

015 02

n
025 03

025 03

01 0.15 02

Rys. 3.8. Analizowany sygnat wraz z widmem gestosci energii (a,d); ptaszczyzny czasowo-czgstotliwosciowe spektrogramu (b,c) oraz przebiegi
sktadnikow wtasnych (e,f) z wygladzajacym oknem Hamminga o szerokosci réwnej odpowiednio dwém oraz pieciu okresom sktadowej
podstawowej, na przyktadzie analizy sygnatu ,,G152”.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i jej wersje wygtadzone (PWVD, SPWVD)

Sktadniki whasne (a-t): 50Hz 160Hz Sktadniki krzyzowe (c-t): 105Hz
h(t Hammin 0.1s h(t Hammin 0.1s
WVD pwvDp (|12 g spwvp [|—@ g
g(1) Hamming 0.04s
C
2) ) 300
250
200
% 005 01 015 02 025
t[s]
4) 08 . , . . . 08 . . . . . b . .
: : : | — 50Hz(a-t) : : i —— 50Hz(a-t) i[ —— 50Hz(a-t)
Y| A e | e 105HZ () | Y W S o] e 105HZ(C) | i ===~ 105Hz{ct) |]
' : : : |« 160Hz(a-) : v ~ 160Hz(a-t) »  160Hz{a-)
i 1% S8, 1 SO SO SOSS SO S SSUHUEIN: SSR: S _
i é%l ; ] i
0ol Bl IR E T i —
7 H ; Q
o kil N 3 |
g Ofyimn * o :
& i : 2 ;
021 3 - TR S SO y DR §
04 J:i e . .......... 4
0.6 fee=cd 5 ecfeceencans e e S s .......... .
i i : ; : : : i i 1 : : i i :
085 005 o1 015 02 05 03 8 005 o1 055 02 025 03 08 005 01 o5 02 05 03
t[s] t[s] t[s]

Rys. 3.9. Por6wnanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji Wignera-Ville’a i jej wersji wygtadzonej na podstawie ptaszczyzn
czasowo-czestotliwosciowych (a,b,c) oraz chwilowych przebiegéw sktadnikéw wiasnych oraz krzyzowych (d.e,f), na przyktadzie analizy
sygnatu ,,G152”.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Wptyw szerokosci funkcji okna h(t) przy ustalonym oknie g(t) na reprezentacje SPWVD

G1S2A2

Sktadniki wtasne (a-t): 50Hz 160Hz Sktadniki krzyzowe (c-t): 105Hz
h(7) Hamming 0.04s h(7) Hamming 0.08s Hamming 0.1s
0] Hamming 0.04s g(1) Hamming 0.04s Hamming 0.04s
250 250 250
200 200 200
Fis0f RGN
100 100 100
. __ 500
0 0 0
0 005 0.1 015 02 025 0 005 0.1 015 02 025 0 005 01 015 02 025
t[s) t[s] t[s]
d) e) f)
: : : i[— 50Hz(a-) : : : i[— 50Hz(a) : i[— 50Hz(a)
; : ; i[ ==== 105Hz(c-t) : i| ===~ 105Hz(c-t) : i ===~ 105Hz(c-t)
"""""" jrooeede el 160Hz(a) [ L R A S M 160Hz(a-t) [ [l L 460Hz(a )
o 06l R SN WS S . T A N T I VO U S A S 1 40 YRR SRS ORI, WU SO S
> s 5 ; 5 i :
5 oal\ SO S S T . ] % W Y S S S S ] SO0 (N WU SRS S S
: ! : o ! H
: : 2 i :
= \ """"""""""""""""" S e ] =
02 i ] i I i 02 i I i i i i i
0 005 01 015 02 025 03 0 005 01 015 02 025 03 02 025 03

t(s]

Rys. 3.10. Por6wnanie wptywu funkcji h(z) na wygtadzona pseudo-reprezentacj¢ Wignera-Ville’a, przy stalej szerokosci funkcji wygladzajacej
g(1): (a),(b),(c) - ptaszczyzny czasowo-czgstotliwosciowe, (d),(e),(f) — chwilowe przebiegi sktadnikéw wiasnych oraz krzyzowych dla szerokosci
h(z) réwnej odpowiednio dwom, czterem oraz pigciu okresom sktadowej podstawowej, na przyktadzie analizy sygnatu ,,G152”.
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KARTA ANALIZY: Wptyw szerokosci funkcji okna g(t) przy ustalonym oknie h(t) na reprezentacje SPWVD

G1S2A3

Sktadniki whasne (a-t): 50Hz 160Hz Sktadniki krzyzowe (c-t): 105Hz
h(7) Hamming 0.1s Hamming 0.1s h(z) Hamming 0.1s
g(1) Hamming 0.02s Hamming 0.04s g(n) Hamming 0.06s
b) "tf-real wx"
300
250 250 250
200 200
Fis0
100 100
0 ' 0 0
0 0.05 0.1 0.15 02 025 0 005 01 015 02 025 0 0.05 01 0.15 02 025
ts] t[s] t[s]
d) e)
: : ' { —rey : 5 ' ‘— 50rz(an : : : e
i i =men 105HzZ(C-1) : i === 105Hz(c-t) : i === 105Hz(c-t)
11 N M— ettt UL x  160Hz{at) H 0 S 160Hz(a-t) H e A o L e RVl
é i i | a
H H H . =
; o | A VA e s sy i n I e W A St At A A 7
: : : : o
; & : : @
! ; 1 1 ; 1 i ; /] 1 1 l I 1 1
02 0.05 0.1 0.15 02 025 03 025 005 0.1 0.15 02 025 03 025 0.05 0.1 015 02 025 03
t[s] t[s] t[s]

Rys. 3.11. Poréwnanie wptywu funkcji g(f) na wygtadzona pseudo-reprezentacj¢ Wignera-Ville’a, przy statej szerokosci funkcji wygtadzajacej
h(7): (a),(b),(c) - ptaszczyzny czasowo-czestotliwosciowe, (d),(e),(f) — chwilowe przebiegi sktadnikow wtasnych oraz krzyzowych dla szerokosci
g(t) réwnej odpowiednio jednemu, dwom oraz trzem okresom sktadowej podstawowej, na przyktadzie analizy sygnatu ,,G1S2”.
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KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa (CWD) G1S2A4

Sktadniki whasne (a-t): | 50Hz 160Hz | Sktadniki krzyzowe (c-t): 105Hz

WVD c=10 o =0.05

a)
tls) ' t[s] t[s]
d e
) 025 : : — ) : : : . , : b 025 , . . , .
i g A
t H H
% oFf: % O 0-“x“'}.‘qj“f’J"‘:?\'f\‘l"l"/‘”:-’"”""“
H : : :
-0.05 - 005 : s L 4
¥ 5
0.11-% t i 0.1 feeeeeeees beeeoooeess e e s At - : ; e S s At R
L — 50Hz(at) — 50Hz(a-) — 50Hz(a-1)
015 oo | =eee 105Hz(ct) H 015 freeeeeens e boeememesenheeee el e 05HZ(Ct) H s bt emee 105Hz(c) T
i : «  160Hz(a-) ; : 5 |~ 160Hza-t) : i i = 160Hz(a-)
02 I I I I 02 1 I 1 | I I 1 I
0 0.05 0.1 0.15 02 025 03 “0 0.05 0.1 015 02 025 03 0.15 02 025 03
tis) t(s] t[s]

Rys. 3.12. Plaszczyzny czasowo-czestotliwosciowe transformacji Wignera-Wille’a (a) 1 Choi-Williamsa z r6znymi wartosciami wspotczynnika
ttumienia o (b,c) oraz przebiegi sktadnikéw wtasnych i krzyzowych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy sygnatu ,,G1S52”.
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KARTA ANALIZY: Transformacje Margineau-Hilla (MHD), Born-Jordana (BJD), Zhao-Atlas-Marksa (ZAMD ) G1S2AS
Sktadniki wlasne (a-t): | 50Hz 160Hz I Sktadniki krzyzowe (c-t): 105Hz

ZAMD

MHD BJD BJD

h(7) Hamming 0.1s

h(r)

a)

300
250
200
gwo
100

50

d)

03
0.25}----
02
015}

0.1}
0.05

ZAMD
o

-0.05

-0.1

[ — iassssszos 1 -0.1 ; i :
i| = 50Hz(a-t) : — 50Hz(a-t)

: — 50Hz(a-t(c)
-0.15 ; ; : ==== 105Hz H 0 A5 [-rmenneeene benmrncmns brmneonoras roemen s i| ==== 105Hz(c-t) H 015

: : . ~  160Hz(@-tf(c-) 5 i : 1 = 160Hz(a) : : 5 | = 160Hz(a-t)

i I 1 i T T T J I 1 1 1 T

%25 005 0.1 015 02 025 03 0 005 0.1 015 02 025 03 02 005 0.4 015 02 025 03
t[s] t[s] t[s)

Rys. 3.13. Plaszczyzny czasowo-czgstotliwosciowe transformacji Margineau-Hilla (a), Born-Jordana (b) i Zhao-Atlas-Marksa z wygtadzajacym
oknem Hamminga o szerokosci pigciu okresow sktadowej podstawowej (c) oraz przebiegi sktadnikéw wiasnych i krzyzowych uzyskanych
reprezentacji (d,e,f), na przyktadzie analiz sygnatu ,,G152”.
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Omowienie wynikéow analiz Grupy 1:

Sygnaty analizowane w tej grupie charakteryzowaly si¢ znanym, symulowanym typem

niestacjonarnosci. Informacje zawarte w analitycznym opisie zostalty uwypuklone za pomoca

omawianych metod, a jednoczesnie pozwolily na jakosciowe poréwnanie otrzymanych
wynikow. W przypadku sygnatu ,,G1SI1” widoczny jest staly, w analizowanym odcinku czasu

(0-0.2)s, charakter energii sktadowej 50Hz (a-t). Moment pojawienia si¢ sktadowej 250Hz

(a-t) jest réwniez rozpoznawalny. Pojawieniu si¢ drugiej sktadowej towarzyszy czion

interferencyjny 150Hz. Sygnal ,,GI1S2” charakteryzuje si¢ stala energia sktadnika 50Hz

i zanikajacaq ekspotencjalnie energia sktadnika 160Hz. Skiadowa krzyzowa, 105Hz, ma

w zwigzku z tym charakter zanikajacych oscylacji. To zaplecze wiedzy o zmiennosci

analizowanych sygnatéw wykorzystano do poréwnania reprezentacji afinicznej podgrupy

klasy Cohena z klasycznym spektrogramem, jak rowniez do zbadania wplywu szerokosci
okien wygtadzajacych na wygtadzong pseudo-reprezentacje Wignera-Ville’a 1 wpltywu
samych funkcji jadra na uzyskane wyniki. Ponizej opisano omowienie wynikow.

e Reprezentacja Wignera-Ville’a (WVD) (Rys.3.3,3.9), cho¢ bogata w udzial sktadowych
krzyzowych, charakteryzuje si¢ najlepsza rozdzielczoscia czestotliwosciowa. Informacja
o energii sktadnikéw cosinusoidalnych zawarta jest jednak w ich geometrycznych
srodkach cigzkosci, co utrudnia $ledzenie zmian z punktu widzenia czasu.

e Pseudo-reprezentacja i jej wersja wygtadzona pozwala sledzi¢ zmiany tzw. unormowane;j
energii sktadowych sygnatu. Wspomniany wyzej, ,,niewygodny” wynik transformacji
Wignera-Ville’a zostaje tu przetamany na korzys¢ informacji o zmianach unormowanej
energii (Rys. 3.3, 3.9).

e Obcigzenie sygnatu funkcja okna h(r) (Rys.3.4,3.10) objawia si¢ pogorszeniem
rozdzielczosci czestotliwosciowej. Im szersze jest okno wygtadzajace h(r) tym
rozdzielczos¢ czgstotliwosciowa jest lepsza, ale skutecznos¢ tlumienia sktadowych
krzyzowych spada. W granicznym przypadku tj. dla okna prostokatnego o szerokosci
okna réownej dtugosci analizowanego sygnalu otrzymuje si¢ reprezentacj¢ Wignera-
Ville’a.

e Splot pseudo-reprezentacji z dodatkowa funkcja wygtadzajaca g(r) (Rys.3.5,3.11) ma
bardzo duzy wptyw na ttumienie sktadowych krzyzowych, ze wzgledu na usrednianie
reprezentacji wzdluz osi czasu. Oscylacyjny charakter sktadowych krzyzowych jest tym
bardziej redukowany im szersze jest okno g(7). Jednoczesnie wygladzajacy charakter
zastosowanej funkcji powoduje spadek rozdzielczosci czasowej uzyskanej reprezentacji.
Im szersze okno bierze udziat w operacji splotu tym diuzsza jest odpowiedz algorytmu.

e Nalezy jednak wyraznie podkresli¢, ze w przypadku wygtadzonej pseudo-reprezentacii,
rozdzielczosci czasowe 1 czestotliwosciowe sa zupelnie odseparowane. Szerokos¢ okna
h(r) odpowiada za ostro$¢ reprezentacji wzdtuz osi czestotliwosci, zas szeroko$¢ okna g(r)
odpowiedzialna jest za ostro$¢ reprezentacji wzdtuz osi czasu. Cecha ta wyraznie odr6znia
wygtadzona pseudo-reprezentacj¢ od spektrogramu, gdzie istnieje Scisty zwiazek
pomiedzy rozdzielczosdcig czasowq i czestotliwosciowq.

e Wyraznie tez widoczne jest dwukrotnie wigksze rozmycie czasowo-czgstotliwosciowe
spektrogramu (Rys.3.2,3.8) w poréwnaniu do wygtadzonej wersji pseudo-transformaty
Wignera-Ville’a, przy zachowaniu tej samej szerokosci okien h().

e Wykorzystanie jadra ekspotencjalnego (transformacja Choi-Williamsa) owocuje redukcja
sktadowych krzyzowych z zachowaniem rozdzielczosci czasowej 1 czgstotliwosciowej na
poziomie reprezentacji ~ Wignera-Ville’a  (Rys.3.6,3.12).  Zaleznos¢  pomigdzy
wspoétczynnikiem ttumienia ¢ a wlasnosciami reprezentacji jest nastgpujaca. Im mniejsza
jest warto$¢ parametru ¢ tym wigkszy jest stopien ttumienia sktadowych krzyzowych,
ale jednoczes$nie zaobserwowa¢ mozna wplyw na sktadniki wiasne. Im wigksza jest
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wartos¢ parametru ¢ tym mniejszy jest stopien ttumienia. W granicznym przypadku tj. dla
0 — +eo uzyskujemy reprezentacj¢ Wignera-Vill’a.

Reprezentacja Margineau-Hill (Rys.3.7,3.13) jest nieuzyteczna do badania sygnatow
elektrycznych, gdzie w wigkszosci przypadkéw mamy do czynienia z wielosktadnikowym
sygnatem, w ktorym dodatkowo sktadowa podstawowa istnieje w calym badanym
odcinku. Reprezentacj¢ ta dyskwalifikuje potozenie sktadnikéw krzyzowych, ktore
skupione sg tu na przemian w czasowych 1 czgstotliwosciowych srodkach cigzkosci
sktadnikow. Efektem tego jest naktadanie si¢ sktadowych krzyzowych na skladowe
wtasne i trudnos$ci w ich odseparowaniu.

Reprezentacja Born-Jordana (Rys.3.7,3.13), cho¢ zachowuje rozdzielczos¢ czasowo-
czestotliwosciowa na  poziomie Wignera-Vill’a charakteryzuje si¢ dodatkowym
ttumieniem sktadowych wtasnych wyzszych czgstotliwosci. Poprawe przynosi dodatkowe
wygtadzenie wzdtuz osi czgstotliwosci przez obcigzenie sygnatu oknem h(z), co prowadzi
do reprezentacji Zhao-Atlas_Marks (Rys.3.7,3.13). Wygtadzenie to owocuje, jak w
kazdym przypadku pseudo-reprezentacji, zmniejszeniem rozdzielczosci
czgstotliwosciowe;.
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3.2. Grupa 2 - badania wlasciwe

Celem badan przeprowadzonych w obrgbie tej grupy sygnatéw jest sprecyzowanie
mozliwosci zastosowania przeksztalcen Cohena w obszarze elektrotechniki. Szczegdlne
zainteresowanie skierowano w kierunku afninicznej podgrupy klasy Cohena, ktéra dzigki
specyficznej budowie funkcji jadra wykazuje zdolnosci tlumienia sktadowych krzyzowych
juz na poziomie réwnania definicyjnego. Wyniki analiz przyjeto prezentowa¢ na bazie
moduléw uzyskanych reprezentacji. Takie podejscie nie ma wpltywu na sktadowe wtasne
reprezentacji, ktore osiagaja rzeczywiste wartosci dodatnie, a jedynie na sktadowe krzyzowe,
teraz rozpoznawane jako wartosci bezwzgledne oscylacji. To sztuczne ograniczenie wartosci
reprezentacji uwydatnia cechy sktadnikéw witasnych i1 utatwia interpretacj¢ ptaszczyzn
czasowo-czgstotliwosciowych.

Dwa pierwsze sygnaly tej grupy dotycza symulacji zataczania baterii kondensatorow
w ukladzie linii $redniego napigcia (,,G2S17) oraz zwarcia w ukladzie przeksztattnika
(,G252). Obie symulacje wykonano w srodowisku EMTP.

Podobnie jak dla Grupy 1, tak badania Grupy2 rozpoczynaja zawsze analizy
z wykorzystaniem algorytmu Fouriera: ,,G2S/A0”, ,G252A0”. W kartach analiz
zamieszczono badany sygnal, jego transformat¢ Fouriera oraz spektrogramy z dwoma
szerokosciami funkcji okien h(r). Analizy te maja stuzy¢ za punkt odniesienia do
jakosciowego poréwnania z badanymi reprezentacjami klasy Cohena.

Analizy ,,G2SIAI” , ,,G252A1”, dotycza porownania transformacji Wignera-Ville’a
(WVD) oraz Choi-Williamsa (CWD). Wptyw jadra wyktadniczego objawia si¢
mozliwosciami ttumienia sktadowych krzyzowych juz na poziomie rownania definicyjnego.
Sita redukceji sktadowych krzyzowych oraz wpltyw na sktadniki wiasne zostaje uwypuklona na
podstawie reprezentacji dla dwéch réznych wspotczynnikéw ttumienia, odpowiedzialnych za
ksztatt funkcji jadra. W kolejnych kolumnach karty analizy zawarto zatem plaszczyzny
czasowo-czestotliwosciowe wraz z przebiegami chwilowymi sktadnikéw  witasnych
reprezentacji Wignera-Ville’a i transformacji Choi-Williamsa dla dwéch wspoétczynnikéw
thumienia: o=1.0 oraz ¢=0.05.

Analizy ,,G2S1A2”, ,,G2S52A2, dotycza problemu wygtadzania transformacji Choi-
Williamsa za pomoca dodatkowych funkcji okien. Wygtadzona pseudo-reprezentacja Choi-
Williamsa (SPCWD), ze wspétczynnikow tlumienia o=1.0 oraz ¢=0.05, poréwnana jest
z wygtadzona pseudo-reprezentacja Wignera-Ville’a dla roznych szerokosci okien h(r)
(h(t) — pig¢ okreséw sktadowej podstawowej i g(7) — dwa okresy sktadowej podstawowej oraz
h(7) — dwa okresy sktadowej podstawowej i g(f) — dwa okresy sktadowej podstawowej).

Analizy ,,G2S1A3”, ,,G252A3” zawierajq pozostalte reprezentacje zwigzane z podgrupa
afiniczng. Do zbadania charakteru analizowanych sygnaléw wykorzystano reprezentacje
Born-Jordana (BJD) z jadrem typu ,sinc” oraz jej wersje wygladzong wzdluz osi
czestotliwosci Zhao-Atlas-Marks (ZAMD), z dwoma szerokosciami funkcji h(r). Celem tych
analiz jest nakreslenie charakteru omawianych przeksztalcen zwlaszcza ze wzgledu na
przebiegi sktadnikow witasnych i krzyzowych.

Karty ,,G2SIAP” oraz ,,G2S2AP” to analizy porOwnawcze. Pierwsza z nich zawiera
plaszczyzng czasowo- czgstotliwosciowa sygnatu ,,G2S71”, uzyskana przy pomocy
transformaty falkowej oraz przebiegi sktadowych, estymowanych przy uzyciu metody
Prony’ego. Druga karta porOwnawcza zawiera plaszczyzny czasowo-czgstotliwosciowe
sygnatu ,,G2S2” wyznaczone transformata falkowa i1 metoda Min-Norm z przesuwanym
oknem. Zamieszczone wyniki maja na celu podkresli¢ réznice wynikajace z budowy
algorytmow.
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Analizie poddano réwniez rzeczywisty sygnal pomiarowy pochodzacy z uktadu
zasilania pieca tukowego, udost¢pniony przez partnerski Uniwersytet w Neapolu (,,G253”).
Sygnal ten posiada sktadowa podstawowag o przewazajacej energii oraz bardzo wiele
charakterystycznych harmonicznych zwigzanych z praca przeksztattnika. Wyniki analiz
takiego sygnalu sprawiaja ogromne problemy interpretacyjne ze wzgledu na duza ilos¢
sktadowych krzyzowych o wysokiej amplitudzie. Dodatkowym problemem jest ,,naktadanie
si¢” sktadowych krzyzowych na sktadniki witasne. Problemy te nakreslono w analizie
,G2S3A0”.

Chcac okresli¢ charakter niestajonarnosci badanego sygnatu postanowiono przyjrzeé
si¢ zachowaniu sktadnikow w ograniczonym zakresie czestotliwosci. W tym celu sygnat
oryginalny poddano filtracji pasmowej (FIR, rzad filtru 150) w wybranym zakresie 300-
600Hz. Tak otrzymany sygnal, o nazwie ,,G253a”, poddano transformacjom czasowo-
czestotliwosciowym.  Zaobserwowano — wahania  czestotliwoscl  charakterystycznych
harmonicznych, jak réwniez pojawienie si¢ chwilowych sktadnikéw interharmonicznych.

Badania sygnatu ,,G2S3a” rozpoczynaja analizy z wykorzystaniem algorytmu
Fouriera. Transformata Fouriera oraz spektrogramy z dwoma szerokosciami funkcji okien
h(t) daja wstgpny obraz wykrytej niestacjonarnosci.

Analiza ,,G2S53aAI” dotyczy poréwnania transformacji Wignera-Ville’a (WVD) oraz
Choi-Williamsa (CWD). W kolejnych kolumnach karty analizy zawarto zatem plaszczyzny
czasowo-czgstotliwosciowe wraz z przebiegami chwilowymi sktadnikéw wilasnych
reprezentacji Wignera-Ville’a i1 transformacji Choi-Williamsa dla dwéch wspétczynnikéw
ttumienia: 6=1.0 oraz ¢=0.05.

Wygtadzone wersje pseudo-reprezentacji Wignera-Ville’a (SPWVD) oraz Choi-
Williamsa (SPCWD) zamieszczono w kartach analizy ,,G253aA2”. Poréwnanie reprezentacji
obejmuje dwie grupy szerokosci okien wygladzajacych: h(r) — pi¢¢ okresow sktadowe;j
podstawowej i g(f) — dwa okresy sktadowej podstawowej oraz h(r) — dwa okresy sktadowe;j
podstawowej i g(f) — dwa okresy sktadowej podstawowe;.

Na koniec do analizy sygnatu ,,G253a” wykorzystano reprezentacj¢ Born-Jordana
(BJD) oraz Zhao-Atlas-Marksa (ZAMD) z dwoma szeroko$ciami funkcji h(r) — analiza
,,G283aA3”.

Poréwnanie wynikow z odrgbng grupa przeksztatcen zawarto w karcie poréwnawczej
,,G353aAP”. Wahania wybranych sktadowych sprawdzono metoda Prony’ego oraz metoda
root-Music z przesuwanym oknem.
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KARTA SYGNALU: Zatqczanie baterii kondensatoréw

Parametry numeryczne sygnatu:

Przebieg sygnatu:

for 10KH> 10000 ; : :
T, (0,0.2)s i ; :
N, 2001 Fo
tp1 0.03s 6000
to 0.09s 4000

2000
Legenda parametrow: = [
for - czestotliwo$¢ probkowania w [Hz] -
T,-  dlugo$¢ sygnatu w [s] 2000
N,-  dlugosé sygnatu w prébkach -4000
tpr - zataczanie baterii Q; w [s] -6000 i
tpo-  zafaczanie baterii Q; w [s] 8000} 0‘105 0?1 ; i%_ 5

t[s]

Model Parametry modelu:

Transformer
DY 110/15 kV )
25MVA  Line Line
<— . okm —P>+——1km —>»

0.03s 0.09s
1 7]

900kVAI 1200kVArI

source
50Hz

Bateria kondensatoréw Q;: 900kVar, oddalona 0.2km od
stacji, moment zataczenia t,;=0.03s

Bateria kondensatorow Q,: 1200kVar, oddalona 1.2km
od stacji, moment zatgczenia t,,=0.09s

Napigcie pracy: Uy=15kV

Transformator: Un=110/15kV, Sx=25MVA, w uktadzie
potfaczen A-Y.

KARTA SYGNALU: Zwarcie w uktadzie przeksztattnika

G2S2

Parametry numeryczne sygnatu:

Przebieg sygnatu:

for 5kHz
Tx (0,0.2)s
N, 1001

ty 0.1s

Legenda parametrow:

Tor= czestotliwo$¢ probkowania w [Hz]
T,-  dlugosé sygnatu w [s]
N, -  dlugos¢ sygnatu w prébkach i
t, - poczatek zwarcia w [s]
0 005 o1 015 02
t[s]
Model: Parametry modelu:
PWM generation and control 5 . .z .
o Przeksztattnik: PWM, czestotliwo$¢ modulacyjna 1kHz
SN:3kVA
. Silnik: dwubiegunowy silnik asynchroniczny, Uy=230V,
Pn=1.1kW, wspotczynnik mocy cose=0.81, poslizg 6%
— d i Rodzaj zwarcia: migdzyfazowe zwarcie z rezystancja

\j.ﬂ

miejsca zwarcia 100€2, czas powstania zwarcia - t,=0.1s
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KARTA SYGNALU: Prqd w uktadzie zasilania pieca tukowego

Parametry numeryczne sygnatu:

Przebieg sygnatu:

£, |5kHz
T, |(0,0.4)s
N, |2001

Legenda parametrow:

for- czgstotliwo$¢ probkowania w [Hz]
T,-  dlugos¢ sygnatu w [s]
N, -  dlugos¢ sygnalu w prébkach

3000 P : — :

2000 ”” A -

1000 =P EH-HE - - H- -

-1000 H4-- SR L

i

i i i i i i i
0 0.05 01 015 02 025 0:3 035 04
t[s]

-2000 {H -

-3000

Schemat uktadu zasilania pieca tukowego:

Parametry uktadu:

HV MV

Tare
R 4l
Pomiar
a

Moc tuku: 80 MW

Transformator T;: Un=220kV/21kV, Sx=80 MVA,
w uktadzie potaczen Y-A

Transformator T,: Uy=21kV/0.638kV/0.638kV,
Sy=87 MVA, w uktadzie potaczen A-A-Y

Miejsce pomiaru: szyna $redniego napigcia (MV)

KARTA SYGNALU: Prqd w uktadzie zasilania pieca tukowego po
filtracji ograniczajqcej ilos¢ sktadowych (300-600Hz)

Przebieg sygnatu:

Parametry numeryczne sygnatu:
£ S5kHz

'Ly (0,0.4)s

N, 2001

Legenda parametrow:

fe - czestotliwos$¢ probkowania w [Hz]
Ty - dtugos¢ sygnatu w [s]

N, -  dlugosé¢ sygnatu w prébkach

300

200

100

I1A]

0

-100

i i i i i i
0 005 01 0.15 02 025 03 035 0.4
tls]

-300

Parametry numeryczne filtru:

Charakterystyka amplitudowa filtru

Typ pasmowo-przepustowy typu FIR
Szeroko$¢ 300-600Hz

pasma

Rzad filtru 150

; i i i i
0 200 400 600 800 1000
f[Hz]
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SKOROWIDZ ANALIZ GRUPY 2

Nazwa
analizy

G2S1A0
Rys. 3.14

G2S2A0
Rys. 3.20

G2S1Al

G2S2A1
Rys. 3.21

G2S1A2
Rys. 3.16
Rys. 3.17

G2S2A2
Rys. 3.22
Rys. 3.23

G2S1A3
Rys. 3.18
G2S2A3
Rys. 3.24

G2S1AP
Rys. 3.19

Nazwa
sygnatu

G2S1

G252

G251

G2S2

G281

G2S2

G2S2

G2S1

Temat i zawartos¢ analizy

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnat wraz z widmem gestosci energii; ptaszczyzny
czasowo-czgstotliwosciowe spektrogramu z wygtadzajacym oknem
Hamminga o szerokosci réwnej odpowiednio dwOm oraz pigciu
okresom sktadowej podstawowej oraz przebiegi sktadnikow wiasnych
uzyskanych reprezentacji.

Transformacje Wignera-Ville’a (WVD) i

Temat: Choi-Williamsa
(CWD)

Plaszczyzny  czasowo-czgstotliwosciowe  modutu  transformacji
Wignera-Wille’a 1 Choi-Williamsa z réznymi  wartosciami
wspotczynnika tlumienia ¢ oraz przebiegi sktadnikow wiasnych
uzyskanych reprezentacji.

Temat: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i
Choi-Williamsa (SPCWD)

Ptaszczyzny czasowo-czgstotliwosciowe modutu wygtadzonej pseudo-
reprezentacji Wignera-Ville’a i Choi-Williamsa z r6znymi wartosciami
wspotczynnika tlumienia ¢ oraz przebiegi sktadnikow wiasnych
uzyskanych reprezentacji ; strona 1 analizy: h(r) — okno Hamminga o
szerokosci pigciu okresow sktadowej podstawowej, g(f) — okno
Hamminga o szerokosci dwoch okresow sktadowej podstawowej;
strona 2 analizy: h(r) — okno Hamminga o szerokosci dwoch okresow
sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwoch
okresow sktadowej podstawowe].

Temat: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa
(ZAMD)

Plaszczyzny czasowo-czgstotliwosciowe modutu transformacji Born-
Jordana i Zhao-Atlas-Marksa z wygladzajacym oknem Hamminga o
szerokosci pieciu i dwodch okresow sktadowej podstawowej oraz
przebiegi sktadnikéw wilasnych uzyskanych reprezentacji.

Temat: Transformata falkowa i metoda Prony’ego
Plaszczyzna czasowo-czestotliwosciowa transformaty flakowej oraz
przebiegi sktadnikéw czestotliwosciowych fragmentéw  sygnatu
,,G2S1’uzyskane za pomoca metody Prony’ego. Wyniki poréwnawcze
zaczerpnigto z prac [36,38] oraz [44].

G2S2AP
Rys. 3.25

G252

Temat: Transformata falkowa i metoda Min-Norm

Plaszczyzna czasowo-czestotliwosciowa transformaty flakowej oraz
metody Min-Norm z przesuwajacym oknem o szerokosci 80 probek.
Wyniki porownawcze zaczerpnigto z prac [36,38].
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Rozdziat 3: Wyniki badan

SKOROWIDZ ANALIZ GRUPY 2 - c.d.

Nazwa
analizy

G2S3A0
Rys. 3.26

Nazwa
sygnatu

G2S3

G2S3a

G2S3a

G2S3a

G2S3a

G2S3a

Temat i zawartos$¢ analizy

Temat: Problemy interpretacji analizy sygnatu wielosktadnikowego ze
sktadowq o przewazajqcej energii

Analizowany sygnal wraz z widmem ggstosci energii; fragment
plaszczyzny  czasowo-czgstotliwosciowe  modutu  transformacji
Wignera-Ville’a, Choi-Williamsa  z dwoma wartosciami
wspotczynnika ttumienia ¢ 1 Zhao-Atlas-Marksa z wygtadzajacym
oknem Hamminga o szerokosci réwnej pigciu okresom skladowe;j
podstawowej

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnal wraz z widmem gestosci energii; ptaszczyzny
czasowo-czestotliwosciowe spektrogramu z wygladzajacym oknem
Hamminga o szerokosci réwnej odpowiednio dwom oraz pigciu
okresom sktadowej podstawowej oraz przebiegi sktadnikow wiasnych
uzyskanych reprezentacji.

Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa

Temat:

(CWD)
Ptaszczyzny  czasowo-czestotliwosciowe  modutu  transformacji
Wignera-Wille’a 1 Choi-Williamsa z réznymi  wartosciami

wspétczynnika tlumienia ¢ oraz przebiegi skiadnikéw wiasnych
uzyskanych reprezentacji.

Temat: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i
Choi-Williamsa (SPCWD)

Ptaszczyzny czasowo-czgstotliwosciowe modutu wygtadzonej pseudo-
reprezentacji  Wignera-Ville’a 1 Choi-Williamsa z  réznymi
warto$ciami wspoéiczynnika tlumienia ¢ oraz przebiegi sktadnikow
wtasnych uzyskanych reprezentacji ; strona 1 analizy: h(r) — okno
Hamminga o szerokosci pigciu okresow sktadowej podstawowej, g(7)
— okno Hamminga o szerokosci dwoéch okreséw sktadowej
podstawowej; strona 2 analizy: h(r) — okno Hamminga o szerokosci
dwoch okresow sktadowej podstawowej, g(f) — okno Hamminga o
szerokosci dwoch okresow sktadowej podstawowe;.

Temat: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa
(ZAMD)

Ptaszczyzny czasowo-czgstotliwosciowe modutu transformacji Born-
Jordana i Zhao-Atlas-Marksa z wygtadzajacym oknem Hamminga o
szerokosci pigciu 1 dwoch okresow sktadowej podstawowej oraz
przebiegi sktadnikéw wiasnych uzyskanych reprezentacji.

Temat: Metoda Prony’ego i metoda root-Music
Wahania sktadnikow czestotliwosciowych w  zakresie 300-600Hz
uzyskane metoda Prony’ego z przesuwajacym si¢ oknem o szerokosci
22 prébek oraz metoda root-Music z przesuwajacym oknem o
szerokosci 500 probek Wyniki poréwnawcze zaczerpnig¢to z prac
[11,12].
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC)
Sktadniki wlasne (a-t): | 50Hz 160Hz

SPEC h(t) Hamming 0.04s SPEC h(z) | Hamming | 0.1s

D 000 : : b) - : &)
8000 ' ‘
6000
4000

2000

i(Al
o
f[Hz)

-2000
-4000

-6000

-8000 i i i

t[s]

d) 3x 10° C)

: — S0Mza
i i -==- 270Hz(a-t)
25{.... ceee 35k S § [ i x  475Hz(a-t) ]

T
-=--- 270Hz(a-t)
x  475Hz(a-t)

SPEC

widmo gestosci energii [J]
- 5
o '
h -
_/_-—_—

200 300 400 500 600 700
fiHz]

0.1

02
t[s]

Rys. 3.14. Analizowany sygnatl wraz z widmem gestosci energii (a,d); ptaszczyzny czasowo-czestotliwosciowe spektrogramu z wygtadzajacym

oknem Hamminga o szerokosci réwnej odpowiednio dwém oraz pigciu okresom sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw
wlasnych uzyskanych reprezentacji (e,f), na przyktadzie analizy sygnatu ,,G2S517”.

97



Rozdziat 3: Wyniki badan

KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa (CWD)

160Hz 262.5Hz

Sktadniki wiasne (a-t): I

50Hz 270Hz

475Hz

I Sktadniki krzyzowe (c-t):

c=1.0

ICWDI

31 = 475Hz(a)

IWVD|

0.1 0.15 02
t[s]

01

IWVDI
a) c)
i~
z
5 5 5
e
d) 35310 : ) 35X10 ‘ D g2 10 ,
— 50Hz(a) — 50Hz(at) : — 50Hz(at)
---- 270Hz(a-t) ---- 270Hz(a-t) : ---- 270Hz(a-t)
"""""""" b 31 = 475Hza T 31 = 475Hzay) [T

t[s]

01 )
t[s]

Rys. 3.15. Plaszczyzny czasowo-czgstotliwosciowe modutu transformacji Wignera-Wille’a (a) 1 Choi-Williamsa z réznymi wartosciami

wspotczynnika thumienia o (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy sygnatu ,,G2S1”.
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Rozdziat 3: Wyniki badan

G2S1A2

KARTA ANALIZY: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD)
Sktadniki wtasne (a-t): 50Hz 270Hz 475Hz Sktadniki krzyzowe (c-t): 160Hz 262.5Hz 372.5Hz
h(z) Hamming 0.1s ISPCWDI h(7) Hamming 0.1s ISPCWDI h(t) Hamming 0.1s
ISPWVDI ~0.05
g(t) Hamming 0.04s a(1) Hamming 0.04s g =1 a(1) Hamming 0.04s

b)

f[Hz]

0 0.05 0.1 0.15 0.05 0.1 015
t[s) t[s]
d ° e 5 5
) 35218 . ) asiio : b 35210 , .
— 50Hz{a-t) — 50Hz(a-t) — 50Hz(a-t) ;
---- 270Hz(a-t) -=--- 270Hz(a-t) ---- 270Hz(a-t)
3H x  475Hz(a-t) ; 3N« 475Hzat) | a8 3N = 475Hz(at) =1
p Y S A—— 7 S— SR ¥ .
e e L e R
: o
(IR 1] SRR e S @ 1.
|| R % (NSO / SN NI IR
05------ff---
ol
0 0.05 0.1 015 02 0.2
t[s]

Rys. 3.16. Plaszczyzny czasowo-czgstotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z r6znymi
wartosciami wspoétczynnika ttumienia o (b,c) oraz przebiegi sktadnikéw wtasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy
sygnatu ,,G251”; h(r) — okno Hamminga o szerokosci pigciu okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwoch

okresow sktadowej podstawowe;j.
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Rozdziat 3: Wyniki badan

KARTA ANALIZY: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD)

Sktadniki wtasne (a-t):

ISPWVDI

475Hz

50Hz 270Hz
h(7) Hamming 0.04s
g(1) Hamming 0.04s

Sktadniki krzyzowe (c-t):

ISPCWDI

Hamming

0.04s

Hamming

0.04s

160Hz

G2S1A2

ISPCWDI

o =0.05

262.5Hz 372.5Hz
Hamming 0.04s
Hamming 0.04s

a)
N
z
0 005 015 e 01
t[s]
d) x10° x10°
5 = . 6 . o - 6 : 1
— 50Hz(at) : — 50Hz(at) 4t : — 50Hz(at) :
---- 270Hz(a-t) i d -==- 270Hz(a-t) : : ---- 270Hz(a-t)
sl| » a75Hziat) | . I i s« 475Hz(at) | SR S 4 sH x  475Hz(aY)

|SPWVD|

0 0.05

W S S

":*'_'.';‘_'—';

02

|SPCWD|

0.1 0.15
t[s]

02

Rys. 3.17. Plaszczyzny czasowo-czestotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z réznymi
wartosciami wspoétczynnika ttumienia ¢ (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy
sygnatu ,,G2S517”; h(r) — okno Hamminga o szerokosci dwdch okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwoch
okreséw sktadowej podstawowe;.
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1A3

KARTA ANALIZY: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa (ZAMD)
J 50Hz 270Hz 475Hz l Sktadniki krzyzowe (c-t): 160Hz 262.5Hz 372.5Hz

|ZAMDI
h(z) Hamming 0.1s

IZAMDI
BID|,)

Sktadniki wtasne (a-t):

h(z) Hamming 0.04s

BJDI
BID],)

a)
tis)
d e ¥ °
) 45 : ) 4510 - . : B 45710 .
— 50Hz(a-t) — 50Hz(a-t) : : — 50Hz(a-t)
4H ---- 270Hz(a-t) 4H === 270Hz(a-t) 4H ---- 270Hz(a-t)
x  475Hz(a-t) = 475Hz(a-t) x  475Hz(a-t)
: k)1 S TS UN Py I 4 85 |--remrenommnnzea- P

3

|ZAMD|

|BJD|
|ZAMD|

. \""\.\ni
% 0.05 0.1 015 02
t[s]

Rys. 3.18. Plaszczyzny czasowo-czgstotliwosciowe modutu transformacji Born-Jordana (a) i Zhao-Atlas-Marksa z wygtadzajacym oknem
Hamminga o szerokosci pigciu i dwoch okreséw sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji

(d,e,f), na przyktadzie analizy sygnatu ,,G2S1”.
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KARTA ANALIZY POROWNAWCZEJ: Transformata falkowa i metoda Prony’ego G2S1AP
S Estymacja sktadnikéw sygnatu Estymacja sktadnikéw sygnatu
FlsaCeyana, CZAsgWa-CHtOt WORCIONA .G2S1” w zakresie t(0.03-0.09)s ,G2S1” w zakresie t(0.09-1.5)s
Sktadniki: 50Hz, 272Hz, 478Hz Sktadnik 1: 50.00Hz Sktadnik 1: 50.00Hz
a) b) d)
500 3000 , , 1 , : 3000 ; . , , ,
700 2000 2000
600
1000 1000
500 = =z
Z 400 g ‘_5 0
300 cg ; i ; 1 ! g
TI] S Shal SRS s RIS e . -1000
200 i ; : i i : : : : :
100 2000 -+--oorre oo oo oo e —— 2000 |---voere oo foorf e oo
0 005 0.1 015 02 ; i 3 5 ;
kRl 20006 004 005 006 007 008 009 0%0s o1 o011 o012 013 o014 015
t[s) t[s]
Sktadnik 2:475.91Hz Sktadnik 2: 269.64 Hz
1 7 t—7 o 8000 . : : €) 8000 . . . ; ,
WT(r.a)=—= Ix(t)g(—jdt | R R
Ja i % a 6000 RO S - . L ISR T ——— .
Zespolona falka Morleta: pon L1 OO . S b | 2000} -'I;f:
2 ! i i := .;::
2nfet fa L T e R . T 200044
g(t)=m-fy -’ e T E R
fa=1; fc=5, zakres skali=9:2:300 3 FEFeETET s L &
0T LA AR SRS O - - S 2000 H-+4-4
-------------------------------------------- - -4000 "\,5'1; :
B0 oo 005 006 007 008 009 800053 o GEE 01z 013 o1 015
t[s) t[s]

Rys. 3.19. Ptaszczyzna czasowo-czgstotliwosciowa transformaty flakowej (a) oraz przebiegi sktadnikéw czgstotliwosciowych fragmentéw

sygnatu ,,G257(a,b-fragment t(0.03-0.09)s; d,e-fragment t(0.09-1.5)s uzyskane za pomoca metody Prony’ego. Wyniki poréwnawcze
zaczerpnigto z prac [36,38] oraz [44].
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KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC)

G2S2A0

Sktadniki wtasne (a-t): T 60Hz 880Hz  1000Hz 1120Hz

h(z) I Hamming l 0.1s

h(z I Hamming 0.04s
FFT SPEC (®) = SPEC
a) . b) c)
! ! ; 1200 1200
G EEEEN l 1000 1000
_________________ .o B B OILE B
2 ’ 800 800
<o 1 L 600 L 600
-2 | | 7 400 400
i 200 200
; i ; i :
% 005 0.1 0.15 02 % 0.05 0.1 g
t[s] t[s]
d e
) 08 , T T T T T ) 07 T T T D 07 T T T
: ' ; ! : 4 — 60Hz(a-t) : — 60Hz(a-t) ;
4 T ---- 880Hz(a-t) ! -==- 880Hz(a-t)
T ooss T T T 7 0611«  1000Hz(a-t) 08[ « 1000Hz(a-t) =1
" EERENDEN +  1120Hz(a-t) +  1120Hz(a-t)
E 06 o e - H . T T
c— s o H H
5 30025 +
g 05t § 002 i A NN [ (S RO SO S | N (| RS IR SUR - S N
S g O
R 80015 - e
g’; '83 001 &
2 03§ & 4
£ 0005
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g 02f-}- g j I, 4
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Rys. 3.20. Analizowany sygnat wraz z widmem gestosci energii (a,d); ptaszczyzny czasowo-czestotliwosciowe spektrogramu z wygtadzajacym
oknem Hamminga o szerokosci réwnej odpowiednio dwom oraz pigciu okresom sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw

wilasnych uzyskanych reprezentacji (e,f), na przyktadzie analizy sygnatu ,,G252”.
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KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa (CWD) G2S2A1
Sktadniki wtasne (a-t): | 60Hz 880Hz 1000Hz 1120Hz | Sktadniki krzyzowe (c-t): D70HZ 530Hz 590Hz 940Hz  1000Hz 1060Hz

IWVDI ICWDI c=10 ICWDI o =0.05

a) , b) ‘ _ c)

f[Hz)
f(Hz]
fHz)

0.05 0.1 0.15 O 005 0.1 0.15
t[s] t[s] t[s]
d) 07 . : — €) 07 : . r Y 07 ; y ;
— 60Hz(a1) : : — B0Hz(a1) : : — 60Hz(at) :
---- 880Hz(a-t) k ---- 880Hz(a-t) ---- 880Hz(a-1)
08H . 1000Hz(a-ti(ct) [ L AL~ A S 7 08F x  1000Hz(a-t)(c-t) 061« 1000Hz(a-ty(c-t)
+  1120Hz(a-t) : +  1120Hz(a-t) + 1120Hz(a-t)

0 0.05 01 015 02 0 0.05 01 015 02
t[s] t[s]

Rys. 3.21. Plaszczyzny czasowo-czgstotliwosciowe modutu transformacji Wignera-Wille’a (a) i Choi-Williamsa z réznymi wartosciami
wspotczynnika thumienia o (b,c) oraz przebiegi sktadnikéw wtasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy sygnatu ,,G252”.
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KARTA ANALIZY: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD)

Sktadniki wtasne (a-t): 60Hz 880Hz 1000Hz 1120Hz Sktadniki krzyzowe (c-t): l 470Hz 530Hz 590Hz 940Hz  1000Hz 1060Hz
ISPWVDI h(7) Hamming 0.1s ISPCWDI h(7) Hamming 0.1s ISPCWDI h(z) Hamming 0.1s
g(t) Hamming 0.04s g(n) Hamming 0.04s g(n) Hamming 0.04s
a)
1200
1000
800
g 600
4001
200
% 005 0.1 0.15 0 005 01 015
t[s] t[s]
d) 07 : . r €) 07 - . . 3 07 — . ,
— 60Hz(a-t) — B60Hz(a-t) — 60Hz(a-t)
---- 880Hz(a-) i : ---- 880Hz(a-t) ---- 880Hz(a-1) i
08« 1000Hz(a-ty(c-t) [ =iyt N 061 .~ 1000Hz(a-ty(c-t) 081+ 1000Hz(a-t)(c-ty [ i AN 7
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z |
@03
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o 0.05 kR 015 02
t[s)

Rys. 3.22. Plaszczyzny czasowo-czestotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z réznymi
wartosciami wspOfczynnika ttumienia o (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy

sygnatu ,,G252”; h(r) — okno Hamminga o szerokosci pigciu okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwdch
okresow sktadowej podstawowe;j.
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KARTA ANALIZY: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD) G2S2A2

Sktadniki whasne (a-t): 60Hz 880Hz 1000Hz 1120Hz | Sktadniki krzyzowe (c-t): ] 470Hz 530Hz  590Hz 940Hz  1000Hz 1060Hz
h(z) Hamming 0.04s h(7) Hamming 0.04s ISPCWDI h(7) Hamming 0.04s
ISPWVDI —0.05
a(1) Hamming 0.04s g(1) Hamming 0.04s o'="% g(1) Hamming 0.04s
a) b)

f[Hz)
f[Hz)

% 005 0.1 015 0 005 01 015
t[s) t[s]
d) 07 : y . e) 07 . . v f) 0.7 . : .
— 60Hz(a-t) : : — 60Hz(a-t) : : — 60Hz(a-t) :
---- 880Hz(a-t) ---- 880Hz(a-t) ---- 880Hz(a-t) :
08 . 1000Hz(a-ty(c-t) 081 «  1000Hz(a-ty(c-t) 081 « 1000Hz(a-t¥(c-t) :
1120Hz(a-t) + 1120Hz(a-t) : i + 1120Hz(a-t)
[0 — b e o . 05 ; ;

0 0.05 0.1 0.15 02
t[s]

t[s]

Rys. 3.23. Plaszczyzny czasowo-czestotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z r6znymi
wartosciami wspOlczynnika tlumienia o (b,c) oraz przebiegi sktadnikéw wilasnych uzyskanych reprezentacji (d,e,f), na przykladzie analizy
sygnatu ,,G252”; h(r) — okno Hamminga o szerokosci dwoéch okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwoch
okresow sktadowej podstawowe;.
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KARTA ANALIZY: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa (ZAMD)

G2S2A3

Sktadniki wtasne (a-t):

| 60Hz  830HZ

1000Hz

1120Hz
|IZAMDI

Sktadniki krzyzowe (c-t): | 470Hz  530Hz  590Hz  940Hz  1000Hz 1060Hz
|IZAMDI
h(z) Hammin 0.1s h(7) Hammin 0.04s
& BID|, ., S

0.05

0.1 0.15
tls]

02
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t[s]

b)
=
L
% 0.05 0.1 015 ,
t[s] t[s) t[s]
d) 07 . . €) 07 ) . - b 07 ; , ,
— 60Hz(a-t) ; — 60Hz(a-t) : — 60Hz(a-t) :
---- 880Hz(a-t) ---- 880Hz(a-t) ---- 880Hz(a-t)
081« 1000Hz(a-ty(c-t) 0BH  »  1000Hz(@-t(ct) [y e . 06 1000Hz(a-ty(c-t)
+  1120Hz(a-) + 1120Hz(at) & 1120Hz(a)
()] Eem—— R—— A : :

Rys. 3.24. Plaszczyzny czasowo-czestotliwo$ciowe modutu transformacji Born-Jordana (a) i Zhao-Atlas-Marksa z wygtadzajacym oknem
Hamminga o szerokosci pigciu i dwéch okreséw sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacii
(d,e,f), na przyktadzie analizy sygnatu ,,G252”.
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KARTA ANALIZY POROWNAWCZEJ: Transformata falkowa i metoda Min-Norm

Ptaszczyzna czasowo-czgstotliwosciowa
- fragment

Sktadniki: 880Hz, 1000Hz, 1100Hz, 1930Hz

G2S2AP

Plaszczyzna czasowo-czestotliwosciowa

Sktadniki: 60Hz, 880Hz, 1120Hz, 2000Hz
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Rys. 3.25. Plaszczyzna czasowo-czestotliwosciowa transformaty flakowej (a) oraz metody Min-Norm z przesuwajacym oknem o szerokosci 80

prébek (b). Wyniki poréwnawcze zaczerpnigto z prac [36,38].
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KARTA ANALIZY: Problemy interpretacji analizy sygnatu wielosktadnikowego ze sktadowq o przewazajqcej energii
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-2000
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G2S3A0
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Rys. 3.26. Analizowany sygnat wraz z widmem gestosci energii (a,d); fragment plaszczyzny czasowo-czestotliwosciowe modutu transformacii
Wignera-Ville’a (b), Choi-Williamsa z dwoma wartosciami wspétczynnika ttumienia o (c,f) i Zhao-Atlas-Marksa (e) z wygtadzajacym oknem
Hamminga o szerokosci réwnej pigciu okresom sktadowej podstawowej, na przyktadzie analizy sygnatu ,,G253”.
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KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC)

G2S3aA0

| 350H, 4508z

Sktadniki wlasne (a-t): Chwilowe interharmoniczne (a-t): 460Hz 470Hz 480Hz
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Rys. 3.27. Analizowany sygnat wraz z widmem gestosci energii (a,d); plaszczyzny czasowo-czgstotliwosciowe spektrogramu z wygtadzajacym
oknem Hamminga o szerokosci réwnej odpowiednio dwém oraz pigciu okresom sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw
wiasnych uzyskanych reprezentacji (e,f), na przyktadzie analizy sygnatu ,,G253a”.
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KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa (CWD)

Sktadniki wtasne (a-t): | 350Hz 450Hz 550Hz Chwilowe interharmoniczne (a-t): 460Hz 470Hz 480Hz
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Rys. 3.28. Plaszczyzny czasowo-czgstotliwosciowe modutu transformacji Wignera-Wille’a (a) i Choi-Williamsa z réznymi wartos$ciami
wspolczynnika ttumienia o (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy sygnatu ,,G253a”.
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tadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD)

(G2S3aA2

KARTA ANALIZY: Wy
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Rys. 3.29. Plaszczyzny czasowo-czgstotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z réznymi
wartosciami wspOiczynnika thumienia ¢ (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji (d,e.f), na przyktadzie analizy
sygnatu ,,G253a”; h(r) — okno Hamminga o szerokosci pigciu okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwdch

okresow sktadowej podstawowe;.
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KARTA ANALIZY: Wygtadzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Williamsa (SPCWD) G2S3aA2

Sktadniki wtasne (a-t): 350Hz 450Hz 550Hz Chwilowe interharmoniczne (a-t): 460Hz 470Hz 480Hz
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Rys. 3.30. Plaszczyzny czasowo-czgstotliwosciowe modutu wygtadzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z réznymi
wartosciami wspétczynnika thumienia o (b,c) oraz przebiegi sktadnikow wiasnych uzyskanych reprezentacji (d,e,f), na przyktadzie analizy
sygnatu ,,G253a”; h(r) — okno Hamminga o szerokosci dwéch okreséw sktadowej podstawowej, g(f) — okno Hamminga o szerokosci dwéch
okreséw sktadowej podstawowe;.
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KARTA ANALIZY: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa (ZAMD) G2S3aA3
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Rys. 3.31. Plaszczyzny czasowo-czestotliwosciowe modutu transformacji Born-Jordana (a) i Zhao-Atlas-Marksa z wygtadzajacym oknem
Hamminga o szerokosci pigciu i dwoch okreséw sktadowej podstawowej (b,c) oraz przebiegi sktadnikéw wiasnych uzyskanych reprezentacji

(d,e,f), na przyktadzie analizy sygnatu ,,G2S3a”.
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KARTA ANALIZY POROWNAWCZEI: Metoda Prony’ego i metoda root-Music G2S3aAP

Ptaszczyzna czasowo-czestotliwosciowa . Ptaszczyzna czasowo-czestotliwosciowa
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Rys. 3.32. Wahania sktadnikow czestotliwosciowych w zakresie 300-600Hz uzyskane metoda Prony’ego z przesuwajacym si¢ oknem o

szerokosci 22 prébek (a) oraz metoda root-Music z przesuwajacym oknem o szerokosci 500 probek (b). Wyniki poréwnawcze zaczerpnigto z
prac [11,12].

115



Rozdziat 3: Wyniki badan

Omowienie wynikow Grupy 2:

Prezentowane wyniki mialy za zadanie sprecyzowac jakosciowe mozliwosci wykorzystania
reprezentacji Cohena w elektrotechnice. Analizowane sygnalty zataczania baterii
kondensatorow, zwarcia w uktadzie przeksztattnika oraz pomiarowy sygnat pradu w uktadzie
zasilania pieca lukowego, odwzorowywaty mozliwe stany pracy uktadéw elektrycznych. Ich
analiza metodami czasowo-czestotliwosciowymi  pozwolita  wyodrgbni¢ informacje

o charakterze zmian skfadnikow czestotliwosciowych.  Szczegétowe komentarze

Zamieszczono ponize;j.

e Transformacje Wignera-Ville’a (Rys.3.15,3.21,3.28), ze wzgledu na duza liczbe
sktadowych wtasnych reprezentacji 1 zwigzana z tym duza iloSciq sktadowych
krzyzowych mozna traktowac jedynie jako wstgpna reprezentacje. Wymaga ona dalszych
zabiegéw usredniajacych sktadniki krzyzowe poprzez stosowanie wygtadzajacych funkcji
okna (Rys.3.16,3.17,3.22,3.23,3.29,3.30). Efektem tego jest jednak zmniejszenie
rozdzielczosci czasowo-czgstotliwosciowej. Nalezy jednak podkresli¢, ze w poréwnaniu
do algorytmu Fouriera o takiej samej szerokosci okna h(t) (Rys.3.14,3.20,3.27),
wygtadzona pseudo-transformacja Wignera-Ville’a charakteryzuje si¢ dwukrotnie lepsza
rozdzielczodcia czasowo-czgstotliwosciowa.

e Efektywniejszym kierunkiem jest wplyw na redukcj¢ sktadowych krzyzowych na
poziomie réwnania definicyjnego, poprzez zmiang¢ funkcji jadra. Wykorzystanie jadra
eksponencjalnego (transformacja Choi-Williamsa) owocuje redukcja sktadowych
krzyzowych z zachowaniem rozdzielczosci czasowej i czestotliwosciowe] na poziomie
reprezentacji Wignera-Ville’a.

e  Wybdr wartosci wspotczynnika ttumienia zalezy od wzajemnych relacji energetycznych
sktadnikéw badanego sygnatu. Jesli bowiem sygnal posiada sktadowe o zblizonych
amplitudach to prezentowany w pracy zakres wspotczynnika o, w granicach od 0.05 do
1.0, jest wystarczajacy. Warto zauwazyc¢, ze wybor 6=0.05 dla sygnatu zwarcia w uktadzie
przeksztattnika (Rys.3.21) poprawit ttumienie 1 nie miat wptywu na przebieg sktadnikow
wiasnych. Taka sama wartos¢ wspotczynnika tlumienia, zastosowana w przypadku
sygnatu zataczania baterii kondensatorow (Rys.3.15), zaowocowata jednak wyraznym
wpltywem na sktadniki wtasne. Ostatecznego wyboru wartosci ¢ mozna dokona¢ zatem,
poprzez ,,wyostrzanie” reprezentacji z jednoczesnym unikaniem wplywu na skfadniki
wilasne.

e Dopiero sygnat zasilania pieca fukowego, ktory posiada sktadowa przewyzszajaca
pozostate skfadniki ponad 20-krotnie, pokazuje trudnosci w ttumieniu sktadowych
krzyzowych (Rys.3.26). Wéwecezas tlumienie jadrem Gaussowskim ze wspoétczynnikiem
0=0.005 pozwolito wyttumi¢ sktadowe krzyzowe, ale wptyw na sktadniki wtasne byt juz
bardzo zauwazalny.

e Cho¢ istnieje dalsza mozliwos¢ wygtadzenia reprezentacji Choi-Williamsa przez
dodatkowe funkcje wygtadzajace (Rys.3.16,3.17,3.22,3.23), to spowodowana takim
dziataniem strata rozdzielczosci czasowej czy czestotliwosciowej, w pordwnaniu do
jakosci ttumienia sktadowych krzyzowych, pozwala stwierdzi¢, iz dziatanie takie nie
zawsze jest potrzebne.

e Przyktad analiz sygnat zasilania pieca tukowego ,,G253” pokazuje ogromne trudnosci
interpretacyjne ~ wynikow  uzytych  przeksztalcen @ w  przypadku = sygnatéw
wielosktadnikowych (Rys.3.26). Badany sygnal zawieral skladowa podstawowa
0 znacznie przewazajacej energii oraz szeroki zakres charakterystycznych harmonicznych
zwigzanych z praca przeksztattnika, a takze wiele interharmonicznych bedacych skutkiem
chaotycznej natury zjawiska tuku. Tak duza ilos¢ sktadowych witasnych niesie za sobag
duzg ilo$¢ sktadowych krzyzowych, niejednokrotnie ,naktadajacych si¢” na sktadniki
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wiasne. Trzeba pamigta¢, ze amplituda oscylacji sktadowych krzyzowych zalezy od
wzajemnych energii skfadnikow wiasnych. Zatem istnienie skiadowej podstawowej
o duzej energii zaowocowato pojawieniem si¢ sktadowych krzyzowych o duzej
amplitudzie. Wstgpne ograniczenie ilosci sktadowych przez odfiltrowanie wybranego
zakresu czestotliwosci moze okaza¢ si¢ niekiedy jedyna metoda do zdobycia informacji
o charakterze zmiennosci badanego sygnatu. Przytoczone w pracy analizy zakresu 300-
600Hz pozwolity podkresli¢ mozliwosci wykorzystania badanych metod do sygnatéw
charakteryzujacych si¢ wahaniami czgstotliwosci, czy tez wykrycia krétkotrwatych
interharmonicznych (Rys.3.27,3.28,3.29,3.30,3.31).

Metody parametryczne, takie jak algorytm Prony’ego czy statystyki wyzszych rzedéw,
wymagaja przyjecia pewnych zatozen wstgpnych dotyczacych chocby rzedu przyjetego
modelu czy szerokosci okna pomiarowego. Podobnie doktadnos$¢ reprezentacji uzyskanej
za pomocyq transformaty falkowej silnie zalezy od przyjetej czestotliwosci falki bazowe;]
i zakresu skali, co nie pozwala z jednakowg doktadnoscia obserwowac¢ dowolnie
szerokiego zakresu czestotliwosci. Reprezentacje z klasy Cohena, mozna zatem
wykorzysta¢ jako zrédto informacji dla ustalenia parametrow innych metod (Rys.3.32).
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3.3. Grupa 3 — badania rozszerzone

Wskazane we wstepie teoretycznym definicje i interpretacje lokalnych momentow
transformacji ~ czasowo-cze¢stotliwosciowych — wskazuja na  mozliwos¢  uzyskania
jednowymiarowych charakterystyk, ktére traktowa¢ mozna jako poréwnawcze wskazniki
niestacjonarnosci. W niniejszym podrozdziale zaprezentowane zostang charakterystyki
lokalnych momentow czestotliwosciowych reprezentacji Wignera-Ville’a, ktére reprezentujg
chwilowa, s$rednig czestotliwo$¢ sygnatu. Inaczej moéwiac, charakterystyka lokalnych
momentéw czgstotliwosciowych pozwoli $ledzi¢ czgstotliwosciowy punkt skupienia widma
sygnatu w funkcji czasu. Pojawienie si¢ dodatkowych sktadowych przesunie punkt skupienia
widma, a zatem i ksztalt krzywej, w kierunku pojawiajacej si¢ sktadowej czestotliwosciowe;j
badz $redniego punktu skupienia zbioru czgstotliwosci w nowym stanie pracy uktadu
elektrycznego. Zredukowanie wymiaru plaszczyzny czasowo-czestotliwosciowej do
jednowymiarowej charakterystyki spowoduje utrat¢ informacji o szczegétach chwilowego
spektrum, ale wcigz zachowane zostang informacje o czasie trwanie 1 poczatku
niestacjonarnosci. Zatem proponowane charakterystyki mozna zastosowaé jako poréwnawcze
wskazniki stanu pracy badanego ukladu elektrycznego i wykorzysta¢ np. jako elementy
uczace sieci neuronowych. Przypomnijmy, ze w niniejszej pracy przyjeto wylicza¢ lokalne
momenty czestotliwosciowe na podstawie jedynie dodatniej czesci osi czestotliwosci
ptaszczyzny czasowo-czgstotliwosciowej, wyrazenie (2.76). We wszystkich bowiem
przypadkach w analizach uzywano analityczne] formy sygnaléw rzeczywistych, czego
efektem byly zerowe wartosci transformacji w ujemnej czg$ci osi czgstotliwosci.
Jednoczesnie nalezy uscisli¢, ze nie wszystkie reprezentacje, nawet te z grupy afinicznej,
spetniajg wlasciwos¢ zachowania momentow czestotliwosciowych 1 mozliwosci wyznaczenia
czestotliwosei chwilowej (wlasciwosci P13 1 P14 tabeli 2.6). Wiasciwos¢ t¢ tracq wszystkie
wygtadzone pseudo-reprezentacje, takie jak wygladzony pseudo-Wigner-Ville’ (SPWVD),
wygtadzony pesudo-Choi-Williams (SPCWD), ale rowniez transformacje Zhao-Atlas-Marksa
(ZAMD) 1 Margineau-Hilla (MHD). Mozliwosci $ledzenia chwilowej czestotliwosci nie
posiada réwniez spektrogram (SPEC).

Ponizej podano przebiegi lokalnych momentow czestotliwosciowych transformacji
Wignera-Ville’a i Choi-Williamsa sygnatu sumy sktadnikéw cosinusoidalnych (,,G1S77) dla
réznych wartosci czestotliwosci drugiej sktadowej, sygnatu pradu w gatezi RLC zataczanej na
napigcie sinusoidalne (,,G/52”) z r6znymi wartosciami pojemnosci i wreszcie sygnatu pradu
w uktadzie zalaczania baterii kondensatoréow (,,G2S17). Wyznaczone -charakterystyki
lokalnych momentéw czgstotliwosciowych zebrano w kartach analiz: ,,G3AI”, ,,G3A2”,
,G3A3”. Nalezy doda¢, ze na warto$¢ lokalnych momentéw czgstotliwosciowych majq
wplyw réwniez sktadowe krzyzowe, a poprawna wartos¢ sredniej czestotliwosci osiggana jest
jedynie, gdy oscylacje przyjmujq zerowe wartosci. Dla wyeliminowania wptywu sktadowych
krzyzowych i uwypuklenia proponowanego kierunku wykorzystania reprezentacji czasowo-
czestotliwosciowych, wyniki lokalnych momentéw czgstotliwosciowych poddano usrednieniu
filtrem medianowym. Rzad filtru przyjeto na poziomie 150 prébek, by sttumi¢ wplyw
sktadowych krzyzowych na przebieg momentu i jednoczes$ni zachowa¢ dynamike zmian
badanego zjawiska.
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SKOROWIDZ ANALIZ GRUPY 3

Nazwa Nazwa

. Temat 1 zawartos$¢ analizy
analizy | sygnalu

Temat:  Przebiegi  lokalnych — momentow  czestotliwosciowych
transformacji WVD i CWD

Przebiegi sygnatu ,,G1SI1” dla trzech wartosci czgstotliwosci drugiej
sktadowej oraz charakterystyki lokalnych momentow
czestotliwosciowych uzyskanych na podstawie transformacji Wignera-
Ville’a oraz Choi-Williamsa. W celu usrednienia wptywu sktadowych
krzyzowych, charakterystyki usredniono filtrem medianowym rze¢du

150.

Temat:  Przebiegi  lokalnych
transformacji WVD i CWD

Przebiegi sygnatu ,,G1S2” dla trzech wartosci pojemnosci oraz
charakterystyki lokalnych momentow czgstotliwosciowych
uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi-
Williamsa. W celu usrednienia wpltywu sktadowych krzyzowych,
charakterystyki usredniono filtrem medianowym rzedu 150.

G3Al
Rys. 3.33

GISI

momentow  czestotliwosciowych

G3A2
Rys. 3.34

G152

Temat:  Przebiegi  lokalnych — momentow  czestotliwoSciowych
transformacji WVD i CWD

Przebieg sygnatu ,,G2S5I” oraz charakterystyki lokalnych momentow
czestotliwosciowych uzyskanych na podstawie transformacji Wignera-

Ville’a oraz Choi-Williamsa. W celu usrednienia wptywu sktadowych
krzyzowych, charakterystyki u$redniono filtrem medianowym rz¢du
150.
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KARTA ANALIZY: Przebiegi lokalnych momentow czestotliwosciowych transformacji WVD i CWD

f1=50Hz x(t) =10cos(1007zt)[1(¢) - 1(t —0.2)]+ f1=50Hz x(t) =10cos(1007zt)[1(¢) —1(z - 0.2)] + f1=50Hz x(t) =10cos(1007z)[1(¢) - 1(t —0.2)]+
f2=150Hz +5c0s(30071)[1(t - 0.1) 1t —0.2)1 || ||f2=250Hz £2=550Hz +5cos (11007)[1(t = 0.1) = 1(t = 0.2)]

+5c0s (5007 )[1(=0.1)=1( = 0.2)]

Gl iy )

R

1

amplituda [-]
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-,-_--_-‘.
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amplituda [-]
o
__»-—-—---+---—.- ==
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0.05 0.1 0.15 02 ) 0.05 0.1 0.15 02
t(s] t{s] t[s]

WVD filtr medianowy, rzad 150 CWD,oc=1.0 filtr medianowy, rzad 150

d) e)
180 T T T 180 T — T

« f1=50Hzf2=150Hz | : : f1=50Hz,f2=150Hz | : :

160 H ---- f1=50Hzf2=250Hz 160 H === f1=50HZ,f2=250Hz |-+ i-vmmmmmonommmnccdeeeee e .

— f1=50Hz f2=550Hz ~—— 1=50Hz f2=550Hz : :

J‘wWVD‘ (t,)da

Qv (1) = —_
_[WVD,‘ (t,w)dw =

0 ‘

Rys. 3.33.Przebiegi sygnatu ,,GISI” dla trzech wartosci czestotliwosci drugiej sktadowej (a,b,c) oraz charakterystyki lokalnych momentéw
czestotliwosciowych uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi-Williamsa (d,e). W celu us$rednienia wptywu
sktadowych krzyzowych, charakterystyki usredniono filtrem medianowym rzedu 150.
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KARTA ANALIZY: Przebiegi lokalnych momentow czestotliwosciowych transformacji WVD i CWD

R=4Q, L=100mH, C=5uF R=4Q, L=100mH, C=10uF
i(t)=0.54(sin (2750 1) — 4.5¢> sin (27 - 225 1) )1(r) i(t)=1.13-(sin (2750 1) =3.18 ¢ sin (27160 1))1(t)

R=4Q, L=100mH, C=20pF
i(1)=2.55-(sin(27%50*1) - 225 & sin (27 - 112-1))1(¢)

' f— C=5mikroF y : ; —— C=5mikroF
: ---- C=10mikroF : : : --=-- C=10mikroF
C=20mikroF : : : C=20mikroF

ja)CWD, (r.w)dw

Qe (1) =———
ICWDi (t,w)dw
0

0 0.05 0.1 0.15 02 025 03 0 0.05 0.1 015 02 025 03
t[s) t[s]

Rys. 3.34. Przebiegi sygnatu ,,G152” dla trzech warto$ci pojemnosci (a,b,c) oraz charakterystyki lokalnych momentéw czestotliwo$ciowych

uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi-Williamsa (d,e). W celu usrednienia wptywu sktadowych krzyzowych,
charakterystyki usredniono filtrem medianowym rzedu 150.
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KARTA ANALIZY: Przebiegi lokalnych momentow

a)

10000

8000

b)

czestotliwosciowych transformacji WVD i CWD

Sygnat zalgczania baterii kondensatoréow - ,,G2S1

G3A3

[@WVD, (,0)do

Q:n'n, (t) = U.m
_{WVDi (tw)dw

0

t[s]

Qlcwn, ([ ) = “m

[ WD, (1,0)do

jCWD, (r.0)dw

0

Rys. 3.35. Przebieg sygnatu ,,G251” (a) oraz charakterystyki lokalnych momentéw czgstotliwosciowych uzyskanych na podstawie transformacji
Wignera-Ville’a oraz Choi-Williamsa (b,c). W celu usrednienia wptywu sktadowych krzyzowych, charakterystyki usredniono filtrem

medianowym rzedu 150.
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Omowienie wynikow Grupy 3:

Zaproponowane  w  niniejszej  pracy  charakterystyki  lokalnych ~ momentéw
czestotliwosciowych  zwracajg  uwage na dodatkowe mozliwosci  wykorzystania
wyznaczonych transformat czasowo-czgstotliwosciowych. Sledzenie zmian punktu skupienia
widma sygnalu w funkcji czasu zachowuje informacje o czasowym charakterze
niestacjonarno$ci. Szczeg6ty dotyczace zmiany skfadu widma zostaja przy tym podejsciu
utracone, pozostawiajac jedynie ogdlne informacje o kierunkach przesunig¢¢ srodka cigzkosci
widma ku wyzszym badz nizszych czgstotliwosciom. A zatem:

e Uzyskane charakterystyki mozna wykorzysta¢ do detekcji momentu powstania i czasu
trwania stanu przejsciowego.

e Zredukowanie wymiaru plaszczyzny czasowo-czestotliwosciowej pozwala poréwnywac
uzyskane jednowymiarowe charakterystyki np. dla réznych parametrow uktadéw
elektrycznych. To za$ niesie nowe mozliwos¢ diagnostyczne, czy tez pozwala traktowac
uzyskane charakterystyki jako elementy uczace i decyzyjne sieci neuronowych.

e Ograniczeniem jest fakt, ze nie wszystkie transformaty czasowo-czgstotliwosciowe
spetniajg witasciwosci zachowania momentow czgstotliwosciowych i wyznaczania
chwilowej czgstotliwosci. Tabela 2.6, wiasnosci wybranych reprezentacji klasy Cohena,
zostata opracowana z mysla o usprawnieniu podejmowania metodycznych decyzji przy
wyborze reprezentacji. Tabela ta pozwala stwierdzi¢, iz w przypadku afinicznej podgrupy
klasy Cohena, do wyznaczania lokalnych momentéw czgstotliwosciowych wykorzystaé
mozna jedynie transformat¢ Wignera-Ville’a (WVD, Choi-Williamsa (CWD) oraz Born-
Jordana (BJD). Pozostate transformacje tej podgrupy oraz ich wersje wygtadzone nie
spetniaja wtasciwosci P13, P14, lezacych u podstaw charakterystyk lokalnych momentow
czestotliwosciowych.
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4. Wnioski

Motywacja powstania niniejszej pracy stala si¢ potrzeba doktadnego wyznaczania
parametrow niestacjonarnych sygnalow elektrycznych w dziedzinie czasu 1 czgstotliwosci.
W tym celu przeprowadzono badania mozliwosci wykorzystania nieparametrycznych
przeksztalcen czasowo-czestotliwosciowych, nalezacych do klasy Cohena. Analizowane w
pracy sygnaty podkreslaja rézne zrédia i charakter badanych niestacjonarnosci. Jednak w
wigkszosci przypadkéw sygnaty z zakresu elektrotechniki posiadaja jedna wspdlng ceche,
ktéra autor uznat za podstawowe kryterium przy wyborze reprezentacji z klasy Cohena. Oté6z
istnienie w catym odcinku badanego sygnatu sktadowej podstawowej implikuje niepozadane
sktadowe krzyzowe, pomigdzy sktadowa podstawowa a czestotliwosciami pojawiajacymi si¢
w stanie przejsciowym. Stad tez autor wskazuje afiniczng podgrupg klasy Cohena, jako
szczegblnie uzyteczng w zakresie elektrotechniki. Ta bowiem grupa, o szczegélnej budowie
funkcji jadra, pozwala na tlumienie sktadowych krzyzowych juz na poziomie réwnania
definicyjnego. Cho¢ autor podkresla mozliwosci dodatkowego tlumienia sktadowych
krzyzowych za pomoca okien wygtadzajacych, to jednak kierunek ten, nalezy traktowac jako
srodek dodatkowy, majacy duzy wplyw na rozdzielczosci czasowo-czestotliwosciowe.
Badania zaprezentowane w niniejszej rozprawie pozwolity podkresli¢ poprawe doktadnosci
wyznaczania parametréw mocno znieksztatconych sygnatéw elektrycznych w poréwnaniu do
spektrogramu, bazujacego na krétkoczasowej transformacie Fouriera. Charakterystyczne
cechy algorytmoéw afinicznej podgrupy klasy Cohena, korzystne 1 ograniczajace celowos¢ ich
wykorzystania w dziedzinie elektrotechniki, podsumowano ponize;.

1. Poprawa doktadnosci w stosunku do algorytmu Fouriera
Stosujac algorytmy omawianej klasy otrzymuje si¢ dwukrotne polepszenie rozdzielczosci
w stosunku do spektrogramu, bazujacego na krotkoczasowej transformacie Fouriera
(wyraznie wigksze rozmycie plaszczyzn czasowo-czgstotliwosciowych spektrogramu).
Zakres obserwacji zostaje ograniczony z %2 do Y4 czgstotliwosci probkowania.

2. Rozdzielenie zwiqzku pomiedzy rozdzielczosciq czasowq i czestotliwosciowq
Charakterystyczna cechg spektrogramu jest bezposredni zwigzek pomig¢dzy szerokoscia
funkcji okna a rozdzielczoscia czasowo-czgstotliwosciowa. Zwigkszanie szerokosci
funkcji okna poprawia rozdzielczos¢ czestotliwosciowa, ale wydtuza czas odpowiedzi
algorytmu. W przypadku wygtadzonych pseudo-reprezentacji klasy Cohena, stosowane sa
dwie funkcje okien: funkcja wymnazana z sygnalem, ktora odpowiedzialna jest za
rozdzielczos¢ czestotliwosciowa, oraz funkcja splatana z reprezentacja wzglgdem czasu,
majaca wplyw na rozdzielczos¢ czasowq. Prowadzi to do niezaleznosci w sterowaniu
poziomami rozdzielczosci czasowe]j i czgstotliwosciowe.

3. Sktadowe krzyzowe — niepozqdana wtasciwos¢ transformacji klasy Cohena
Biliniowe reprezentacje czasowo-czgstotliwosciowe charakteryzuja si¢ zawartoscia dwoch
rodzajow sktadnikéw. Jedynie skfadniki wiasne zawieraja uzyteczng informacje
o czestotliwosciach  wystgpujacych  w  zmiennym widmie badanego sygnatu.
W geometrycznych czasowo-czgstotliwosciowych srodkach cigzkosci  sktadnikéw
wlasnych znajduja si¢ niepozadane, oscylacyjne skfadniki krzyzowe. Sktadniki te
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powoduja trudnosci w interpretacji plaszczyzn czasowo-czgstotliwosciowych. Jak
pokazuja przyktady przeprowadzonych analiz, istnieje nawet mozliwos¢ znieksztatcenia
sktadowych wilasnych przez pokrywajace je sktadowe krzyzowe. Zjawisko to towarzyszy
najsilniej transformacji Margineau-Hilla o jadrze cosinusoidalnym, gdzie potozenie
sktadnikéw krzyzowych pokrywa si¢ z potozeniem sktadnikow wiasnych. Ta niekorzystna
wtasciwos¢ reprezentacji Marginau-Hilla catkowicie eliminuje ja z grupy przeksztalcen
uzytecznych dla potrzeb elektrotechniki. Poprawe przynosi dopiero sztuczne usrednianie
funkcjami wygtadzajacymi.

Mozliwosci ttumienia sktadowych krzyzowych na trzech poziomach

Poziom 1: Sygnat rzeczywisty, sygnat zespolony a posta¢ analityczna

W przypadku badan sygnaléw rzeczywistych, ktérych widmo jest parzysta funkcja
czestotliwoscei, w algorytmach nalezy stosowac postacie analityczne sygnatow, uzyskane
np. droga transformaty Hilberta. Charakteryzuja si¢ one zerowymi wartosciami widma
w ujemnej czgsci osi czestotliwosci, co owocuje redukcja sktadowych krzyzowych
pomiedzy sktadnikami widma lezacymi w ujemnej 1 dodatniej czgsci osi czestotliwosci.
Zastosowanie postaci analitycznej do badan sygnatow zespolonych moze spowodowac
utrate waznych informacji, zawartych w ujemnej czgsci osi czestotliwosci. Przyktadem
moga by¢ analizy wektora przestrzennego [35,45]. Plaszczyzny czasowo-
czestotliwosciowe wektora przestrzennego zawieraja jednoczesnie informacje o zmianach
sktadowej zgodnej i przeciwnej, ktore reprezentowane sa odpowiednio wzdtuz dodatniej
1 ujemnej czgsci osi czestotliwosci.

Poziom 2: Dobor funkcji jadra o wlasciwosciach wygtadzajqcych

Doboér funkceji jadra, a co za tymi idzie wskazanie reprezentacji klasy Cohena uzytecznej
dla potrzeb elektrotechniki, jest jednym z gtdwnych celow niniejszej pracy. Bardzo dobre
efekty usredniania sktadowych krzyzowych, z jednoczesnym zachowaniem rozdzielczosci
czasowo-czgstotliwosciowej na poziomie transformacji  Wignera-Ville’a, przynosi
zastosowanie jadra Gaussowskiego (transformacja Choi-Williamsa). Dodatkowo, budowa
funkcji jadra tego przeksztalcenia pozwala powigza¢ site¢ tlumienia z jednym
wspotczynnikiem, wspoétczynnikiem tlumienia 0. Wybor wartosci  wspotczynnika
ttumienia zalezy od wzajemnych relacji energetycznych sktadnikéw badanego sygnatu.
Przy wyborze nalezy dazy¢ do uzyskania charakterystyki o najmniejszej amplitudzie
sktadowych krzyzowych i braku wplywu funkecji jadra na skfadniki wiasne. Jesli sygnat
posiada sktadowe o zblizonych amplitudach to prezentowany w pracy zakres
wspotczynnika o, w granicach od 0.05 do 1.0, jest wystarczajacy. Dopiero
wielosktadnikowy sygnat zasilania pieca tukowego, ktory posiada skladowa
przewyzszajaca pozostate sktadniki ponad 20-krotnie, pokazuje trudnosci w tlumieniu
sktadowych krzyzowych. Wéwczas ttumienie jadrem Gaussowskim ze wspotczynnikiem
0=0.005 pozwolito wyttumi¢ sktadowe krzyzowe, ale wptyw na sktadniki wtasne byl juz
bardzo zauwazalny.

Wykonane analizy wskazuja réwniez transformacj¢ o jadrze stozkowym (Zhao-Atlas-
Marks) jako uzyteczna dla potrzeb elektrotechniki. Mozna ja traktowac jako pseudo-
reprezentacj¢ Born-Jordana, przez co reprezentacj¢ o mniejszej rozdzielczosci
czestotliwosciowej niz transformacja oryginalna. Ta ostatnia wykazuje jednak negatywny
efekt thumienia sktadowych o wyzszych czgstotliwosciach.

Poziom 3: Sztuczne usrednianie sktadowych krzyzowych — wygtadzone pseudo-
reprezentacje

Ostatnig droga tlumienia sktadowych krzyzowych jest wyznaczanie wygtadzonych
pseudo-reprezentacji klasy Cohena, uzyskiwanych na drodze obciazenia sygnatu funkcja
okna oraz splotu pseudo-reprezentacji z dodatkowa funkcja okna. Obcigzenie sygnatu
funkcja okna owocuje wygtadzaniem reprezentacji wzdluz osi czestotliwosci,
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ale okupione jest zmniejszeniem rozdzielczosci czgstotliwosciowej. Im szersze jest okno
wymnazane z sygnatem, tym lepsza osiaga si¢ rozdzielczos¢ czestotliwosciowa. Wyniki
analiz wskazujg na szeroko$¢ okna wymnazanego z sygnatem nie wigksza niz pigc
okreséw sktadowej podstawowej. Zaleta pseudo-reprezentacji jest mozliwos$¢ wykreslania
unormowanej energii sygnatu. W przypadku transformacji oryginalnej informacja o
energii sktadnikow wtasnych zawarta jest w czasowym srodku cigzkosci wystgpowania
danej sktadowej. Pseudo-reprezentacje wskazuja stale poziomy energii w odcinkach
stacjonarnosci sygnatu oraz zmiany dopiero w trakcie pojawienia si¢ niestacjonarnosci.
Charakter i lokalizacja sktadowych krzyzowych w reprezentacjach wigkszosci sygnatow z
zakresu elektrotechniki sprawia, ze efektywna redukcj¢ sktadowych krzyzowych przynosi
splot wzdtuz osi czasu pseudo-reprezentacji z dodatkowq funkcjq okna. Efektem takiego
podejscia jest wygtadzona pseudo-reprezentacja. Uzycie dodatkowego okna powoduje
zmniejszenie rozdzielczosci czasowej. Im szersze jest okno splotu, tym dluzszy jest czas
odpowiedzi algorytmu. Okno biorgce udziat w splocie pseudo-reprezentacji bardzo dobrze
wygtadza sktadowe krzyzowe juz przy szerokosciach dwoch, trzech okreséw sktadowe;j
podstawowe;.

5. Lokalne momenty czestotliwosciowe jako jednowymiarowe wskazniki niestacjonarnosci
W  pracy zaproponowano  szersze  wykorzystanie  transformacji = czasowo-
czestotliwosciowych, bazujace na jednowymiarowych charakterystykach lokalnych
momentéw czestotliwosciowych. Cho¢ szczegoty dotyczace zmian sktadu widma zostaja
przy tym podej$ciu utracone, informacje o czasowych wilasciwosciach badanej
niestacjonarnosci sa zachowane. Uzyskane charakterystyki mozna zatem wykorzysta¢ do
detekcji momentu powstania i czasu trwania stanu przejsciowego. Ponadto, zredukowanie
liczby wymiaréw do jednowymiarowej funkcji czasu, pozwala wykorzystac
charakterystyki lokalnych momentéw cze¢stotliwosciowych jako wskazniki réznych
stanéw pracy uktadu, co owocuje perspektywami wykorzystania w obszarze diagnostyki.

6. Transformacje klasy Cohena a inne metody estymacji parametrow niestacjonarnych
sygnatow elektrycznych
Metody parametryczne, takie jak algorytm Prony’ego czy statystyki wyzszych rzedow,
wymagaja przyjecia pewnych zatozen wstgpnych, dotyczacych chocby rzedu przyjetego
modelu czy szeroko$ci okna pomiarowego. Podobnie, doktadnos¢ reprezentacji uzyskane;j
za pomocg transformaty falkowej silnie zalezy od przyjetej czgstotliwosci falki bazowe;j
i zakresu skali, co nie pozwala z jednakowa doktadnosciq obserwowaé dowolnie
szerokiego zakresu czestotliwosci. Reprezentacje z klasy Cohena, mozna zatem
wykorzystaé jako zrédto informacji dla ustalenia parametréw innych metod.

W $wietle zaprezentowanych wynikéw oraz gtéwnych celéw rozprawy mozna stwierdzié, ze
wskazana przez autora afiniczna podgrupa klasy Cohena jest uzyteczng formq reprezentacji
niestacjonarnych sygnatéw elektrycznych. Transformacje te mozna traktowac¢ jako pewnego
rodzaju  wyposrodkowane  rozwiazanie = pomigdzy  ,rozmytym”  Fourierowskim
spektrogramem, a ,,wyostrzong”, cho¢ bogata w sktadniki krzyzowe, transformacja Wignera-
Ville’a. Poprawa doktadnosci wyznaczania parametrow niestacjonarnych sygnatow
elektrycznych w poréwnaniu do algorytmu Fouriera zostaje zatem osiagnigta.
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Dodatek — analityczne wyprowadzenia wybranych
wlasciwosci transformacji Wignera

D.1.Transformata Wignera sygnatu a transformata Wignera

widm
Jesli
WD, . ()= Ix,(t+§)x§(t—§)e‘-"‘”dr (D.1)
i _
I .
WDX]’XZ (a)’t):g J.X/(C(H_%)X2(a)_%)ej/bd/1 (D.2)
to: B
WD, . (Lw)=WDy \ (@) (D.3)
Wyprowadzenie:

WDX}’XZ (t’a)):F{xl (t+ )x2 (t__)} { (é(f+2t)) ( (T Zt))} (D.4)
éF{xl(é(TJth)) >?F{xz —é T— 2t }
X, (o)=F{x; (1)}, X,(o)=F{x, ()} (D.5)
F{ 1(1(T+2l))} F{X1(ér)}ej2w[:2X1(2a))ej2w[ (D-6)

*

Bl (-5(e-20)}=

Flal-se-20))

:{2){2 (—2w)e‘f2“’” } =2X; (20)e I
(o)
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=— IZXI (Zp)ejZPtZX;k (2(a)—p))e_j2(w_p)tdp = (D.8)

(D.9)
Stad:
2

VDA (t,a)):E J.Xl(a)+%)X2(w_i)eJ tdl=Wx1,x2 (w,1) (D.10)

Wykorzystane wiasnosci transformaty Fouriera:

Fl(t—15)}=X ()e™'” , Fl(an)}=rLx(2),

l a

) (D.11)
Flx" (1)} = X" (<o)
D.2. Transformata Wignera sumy sygnalow
Jesli:
x(2)=x; (¢)+x, (¢) (D.12)
to:

w0, 00)= [+ na(i+ ][ (-gen-5)] o

WD, (1,0)= o]x’ ([ +§)x1* (t _%)e—jmdﬁL _‘-xz ([ +§)x2* (l _%)e_ijdT-F

¢ [+ ) (=) s [ny(i+5) (1) ar= mas

— —0Q

=WD, (1,0)+WD, (,®)+WD, . (,0)+WD, . (1,0)

Ogodlnie dla sygnatéw zespolonych zachodzi takze zwigzek:
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_ 9 r),~JjOT -

WD, . (@)= Ixz(t+§)x] (I—E)e dz =
T—>—T

. dt——dt

oo (o]

= Jal-gpilege e [[ule2)ul-5)e ] a9

—o0 —oo

5k
)

- Jx](t+§)x2*(t—%)e_jmdr :WD;]’xz(t,a))

—00

Jezeli zas x; (t) 1 x, (I) sa sygnatami rzeczywistymi, wowczas:

_ T r\,—Jjot _

WD, . (Lo)= Ix2(t+3)x](z—5)e dt =
To—T

—oo dT——d7T

oo
o

= | x,(t=Z)x, (1 +%)eTdr = (D.16)

—00

oo
-

= | xl(t+§)x2(r~§)e_j(_w)TdT:WDxl’x2 (1,~w)

—00

Czyli:
WD, (1,0)= WD, (1,0)+ WD, (1,0)+2Re{WD_ (r,0)} ©@.17)
lub w szczegdlnosci dla sygnatéw rzeczywistych:
WD, (1,w)=WD, (t,@)+WD, (1,0)+WD
Przypadek og6lny — sygnaty bedace suma dowolnej ilosci sktadowych:

x(1)= % (1) (D.19)

o, (L@)+ WD, (1,-®) (D.18)

(D.20)
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Stad: WD, (,0)=> WD, (1,0)+2Re > WD, (1,0) (D21)
k i>k

D.3.Lokalne momenty cz¢stotliwosciowe

Ogolnie lokalny zwykty moment czgstotliwosciowy n-tego rzgdu mozna opisa¢ wyrazeniem:

Mpys ()= J-a)"WDx]’

» ) (t,w)dw

X

—0Q

(D.22)

MCVDx (1)= J-a)"WDx(t,a))da)

(D.23)

gdzie:

(D.24)

- (D.25)
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W szczegdlnym przypadku, gdy n = 0

MY, (1)= J‘WDW(2 (t,w)dw =27 x,(t)x,(t) (D.26)

badz dla x; (t) =X, (t) = x(t)
My, (1)= jwpx (t,0)dw =27 x(1)x" (1) = 27| x(1)
Lokalny moment czg¢stotliwosciowy zerowego rzedu wskazywal bedzie na chwilowg energie

sygnatu. Jest to zwigzane z warunkami brzegowymi dla czasu, jakie musza spetni¢
reprezentacje czasowo-czestotliwosciowe.

2
| (D.27)

Lokalny zwykty moment czgstotliwosciowy pierwszego rzgdu:

1
o, ()= [oWD,  (10)do

M
X1,%2
- (D.28)
M}, ()= ijDx(z,w)dw
0= o Jolo 5t ghmae] -
= [ [onloegli-g)e o do-
o (D.29)

co ©o

= [ Joulir5)s(e-5)e a0 az-

—00 —00

Joleeshits) | Jorran
gdzie: B B
J.a)e_jmda):j j%e‘jwrdw: j% je"jwrdw: j2z 8 (r)  (D.30)
(+)= j2m J.x](t+%)x;(t—%)5’(7)d72—j27za—af—{x1(t+%)x;(t—%)} (D.31)
7=0
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*1,%2

M, (==l (0530 ) 5] -

(D.32)

’

- el 50 - )50

Mévz), ‘ (t):WXI(I)x;(Z){(ZEi;j*—ijg;}:
. (D33
= j”xl(’)x;(’)%{[ngg(t)]*—logx](t)}z jﬂ'x](t)x;(t)i{lggxz—(t)}

Dla sygnatéw zespolonych: x, (t):’xl (t)|ejw’(t)’ Xy (l):‘xz (t) ej‘/’z(’)

Arva(] 4 {,n

M£VD ([):-f”‘xl([)l‘xz(t) e

x1,%2 dt x, (1)
(D.34)
Dla sygnatu zespolonego x(l) =X (t) =X, (t)
7 . 21(x()\ x() (1)
e {( ) % >} 2l Iy @39
lub MéVDx () =27 x( | Im j {logx(1)} (D.36)
Zapisujac sygnal zespolony w postaci wyktadnicze]
(1)=]x(t) e’ 4 (D.37)
otrzymujemy:
Mé‘,D_(t):Zﬂ:l | Imj{log“ |ejw(')”:
' (D.38)

2d . / 2
= 27| x(t)| E{ln| x(t) [+ gy (1)} = 2y (1)| x(1) |
Dla sygnatéw rzeczywistych

% (1) } (D.39)
x;(2)

1 : d
My, (1 ):iJ”|x1(’)Hx2([) E;{l"
W przypadku, gdy sygnat x(7) jest rzeczywisty, wéwczas faza sygnatu moze przyjmowaé

*1,%2

dwie wartosci:

w(r)=0 lub w(r)=x (D.40)

Czyli: My (1)=0 (DAI)

Charakterystyka lokalnego momentu zwyktego transformaty Wignera sygnatéw zespolonych
zawiera w sobie informacje o zmianach pochodnej fazy, a zatem mozliwe jest $ledzenie
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chwilowej czestotliwosci. W przypadku sygnaléw rzeczywistych, ze wzgledu na parzystosc¢
widma, wyznaczone lokalne momenty czgstotliwosciowe przyjmuja warto$¢ zero, co
uniemozliwia wykorzystanie proponowanej charakterystyki do badania czgstotliwosci

chwilowej. Zmiana fazy sygnalu z (t)=0 na y (t)zir umozliwi lokalizacj¢ przejscia
sygnatu przez zero. Chcac odnalez¢ chwilowa czestotliwosci sygnatu rzeczywistego w pracy

zaproponowano wyznaczanie lokalnych momentoéw transformacji jedynie na bazie dodatniej
czescl osi czestotliwoscl.

D.4.Rozdzielczo$¢ reprezentacji Wignera-Ville’a i spektrogramu

Najczesciej spotykanym sposobem poréwnania rozdzielczosci reprezentacji czasowo-
czestotliwosciowych  jest  wyznaczanie pola  powierzchni  plaszczyzny  czasowo-
czestotliwosciowe] potrzebnej do reprezentacji unormowane] funkcji Gaussa [32,52]. Jesli
zatem badanym sygnatem bedzie funkcja Gaussa:

aYe 5"
x(t)z(—ye 2 (D.42)

to transformata Wignera-Ville’a przyjmie postac:

o

WVD _(1,0)= \/% J e—%{[r%f}e—?{(r?f} e /Tdr =
B el )

Wyrazenie powyzsze wskazuje, ze transformata Wignera-Ville’a sygnatu Gaussowskiego
skoncentrowana jest w  Srodku uktadu  wspolrzednych  ptaszczyzny  czasowo-
czestotliwosciowej, a parametr badanej funkcji a, odpowiada za rozmycie reprezentacji
wzdtuz kierunkow czasu i czestotliwosci. Im wigksze sa wartosci a, tym reprezentacja
skupiona jest bardziej wzdluz osi czasu lecz bardziej rozmyta wzdluz osi czestotliwosci
i odwrotnie. Istotne jest, ze pole powierzchni potrzebne do koncentracji energii takiego
sygnatu ma ksztatt elipsy. W szczegélnosci, dla amplitudy widma rownej e, pole elipsy
reprezentujacej sygnat Gaussowski przez transformacje Wignera-Ville’a, przyjmie wartos$¢
A=z

(D.43)

Podobne rozumowanie mozemy przeprowadzi¢ dla klasycznego spektrogramu,
uzyskanego na podstawie krétkoczasowej transformaty Fouriera, o funkcji okna tego samego
typu, co badany sygnat. A zatem jesli funkcja analizujaca h(z) bedzie réwniez funkcja Gaussa:

h(z)= [ﬁjﬁ e_gr2 (D.44)

wtedy krétkoczasowa transformate Fouriera opisze ponizsze wyrazenie:
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Ry G _B 1)
STFTx(t,a))z J-x(’[)h(’[—t)e—jmdr (aﬂj J.e( ]e[ 2( )je_jmdr:

T

- ; g _mﬁ (D.45)
-t {— i 4 12+ﬂz‘r——t2} '
(I
ﬂ- —00
Wyrazenie to mozna przedstawi¢ w formie'
1 ;. . B
2 { "+ a)t}
STFT, (1, 0) [V ] o) e (ars) (D.46)
o+ [
Ostatecznie poszukiwany spektrogram:
238 [ T |
SPEC, (1,w) =|STFT, (1,0)| = E ] Zarh) “*ﬂ) (D.47)
o+ p

Podobnie jak dla reprezentacji Wignera-Ville’a, spektrogram funkcji Gaussowskiej skupiony
bedzie wokoét srodka uktadu wspétrzednych, a kontur przyjmie ksztatt elipsy. Poszukujac
jednak pola elipsy dla widma o amplitudzie e, otrzymamy:

P (D.48)
op

W granicznym przypadku, najlepsza rozdzielczo$¢ uzyska sig, jesli szeroko$¢ funkcji
analizujacej bedzie taka sama jak dlugos¢ analizowanego sygnatu, a zatem dla a=f. Ale
nawet wtedy pole elipsy potrzebne do reprezentacji badanego sygnatu Gaussowskiego
przyjmie warto$¢ A=2r.

Powyzsze wyprowadzenie pokazuje dwukrotnie lepsza rozdzielczos¢ transformacji Wignera-
Ville’a w poréwnaniu do klasycznego spektrogramu.
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		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie
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