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Wykaz oznaczeń

Wykaz oznaczeń

Oznaczenie Opis
AĘ(0,t) funkcja nieoznaczoności

AFWt(^,r) szerokopasmowa funkcja nieoznaczoności

BJDv(r,ćy) transformata Borna-Jordana

BUDx(/,ćy) transformata Butterworth’a

CBBD%(/,ćy) transformata Costa-Boudreaux’a-Bartelsa

CWDA(r,to) transformata Choi-Williamsa

chwilowa energia sygnału (ang. instantaneous energy )
Ev całkowita energia sygnału

f częstotliwość

Ę.Ę prosta transformata Fouriera względem zmiennej wskazanej w indeksie
F1 p-> 
r<o ’re odwrotna transformata Fouriera względem zmiennej wskazanej w 

indeksie
GCWDx(r,ćy) uogólniona transformata Choi-Williamsa

GWDx(t,ry) uogólniona transformata Wignera

g(0 funkcje okien wygładzających w czasie

h(0 funkcje okien wygładzających w częstotliwości

LDx(r,ty) transformata Levina

m'; moment zwykły rzędu r dla sygnału

m?
moment zwykły rzędu r dla kwadratu sygnału

mWD, globalny czasowy moment zerowego rzędu dla reprezentacji Wignera

mwDx (^) lokalny czasowy moment zerowego rzędu dla reprezentacji Wignera

m; moment zwykły rzędu r dla widma

Mr „1^1
moment zwykły rzędu r dla kwadratu widma

M° globalny częstotliwościowy moment zerowego rzędu dla reprezentacji
Wignera

M° (r) lokalny częstotliwościowy moment zerowego rzędu dla reprezentacji
Wignera
transformata Margineau’a-Hilla

NDjcty) transformata Nutalla
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Wykaz oznaczeń

Oznaczenie Opis
P. moc średnia sygnału

PDx(f,ćy) transformata Page’a

PWD, ( t,co) pseudo-transformata Wignera

r(^) funkcja autokorelacji sygnału

rt(7) chwilowa funkcja autokorelacji sygnału

R(^) funkcja autokorelacja sygnału zdefiniowana w oparciu o jego widmo

Rx(^ wygładzona chwilowa funkcja autokorelacji

RDv(t,ry) transformata Rihaczka

RGWD uogólniona transformata Wignera o wartościach rzeczywistych

SPECX t,a) spektrogram

SWD f ( t,CO) wygładzona wersja transformaty Wignera

SPWD, wygładzona wersja pseudo-transformaty Wignera

t czas
t' unormowany moment zwykły rzędu r dla sygnału

t'2 unormowany moment zwykły rzędu r dla kwadratu sygnału

globalny unormowany czasowy moment pierwszego rzędu dla 
reprezentacji Wignera
lokalny unormowany czasowy moment pierwszego rzędu dla 
reprezentacji Wignera

TF(C)(^ korelacyjna klasa biliniowych przekształceń czasowo-
częstotliwościowych

TF^f,#) energetyczna klasa biliniowych przekształceń czasowo-
częstotliwościowych

tfc(e) ( uogólnione równanie Cohena opisujące energetyczną klasę biliniowych 
przekształceń czasowo-częstotliwościowych

u dodatkowa zmienna całkowania czasu
WD» transformata Wignera sygnału x(t)

WD„ ( t,a>) wzajemna transformata Wignera sygnałów x(Y) i y(r)

WDX(<0,t) transformata Wignera sygnału x(r) wyznaczona w oparciu o jego widmo

W wzajemna transformata Wignera sygnałów x(t) i y(0 wyznaczona w 
oparciu o ich widma

WVD v transformata Wignera-Ville’a

xW sygnał

X(ry) transformata Fouriera sygnału, widmo

X(&>) widmo amplitudowe

X wartość średnia sygnału
Z AMD transformata Zhao-Atlasa-Marks’a



Wykaz oznaczeń

Oznaczenie Opis
g; moment centralny rzędu r dla sygnału

moment centralny rzędu r dla kwadratu sygnału

a' unormowany moment centralny rzędu r dla sygnału
unormowany moment centralny rzędu r dla kwadratu sygnału

Tl dodatkowa zmienna całkowania pulsacji
e przesunięcie pulsacji
A dodatkowa zmienna całkowania przesunięcia częstotliwościowego
A przesunięcie częstotliwościowe

chwilowe widmo gęstości energii

funkcja jądra - postać częstotliwość-czas

funkcja jądra - postać pulsacja-czas

funkcja jądra - postać czas-czas

funkcja jądra - postać czas-częstotliwość

funkcja jądra - postać czas-pulsacja

funkcja jądra - postać częstotliwość-częstotliwość

funkcja jądra - postać pulsacja-pulsacja
2 

^WD globalny unormowany czasowy moment centralny drugiego rzędu dla
reprezentacji Wignera

^WD (^) lokalny unormowany czasowy moment centralny drugiego rzędu dla
reprezentacji Wignera

T przesunięcie czasowe
widmo fazowe

CO pulsacja
®x

unormowany moment zwykły rzędu r dla widma

CO.' ,2 
1^1

unormowany moment zwykły rzędu r dla kwadratu widma

G moment centralny rzędu r dla widma

rN’ moment centralny rzędu r dla kwadratu widma

Az przedział czasu
kco przedział częstotliwości
AtxAco przedział czasowo-częstotliwościowy („komórka”, „kostka” czasowo- 

częstotliwościowa)
ATx szerokość średniokwadratowa sygnału
AQX szerokość średniokwadratowa widma

unormowany moment centralny rzędu r dla widma

Er 2 |x|2
unormowany moment centralny rzędu r dla kwadratu widma

y2 
^WD

globalny unormowany częstotliwościowy moment centralny drugiego
rzędu dla reprezentacji Wignera
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Oznaczenie Opis
^WD, G ) lokalny unormowany częstotliwościowy moment centralny drugiego 

rzędu dla reprezentacji Wignera

O X 2 widmo gęstości energii

lokalny unormowany częstotliwościowy moment pierwszego rzędu dla 
reprezentacji Wignera

o1 ^WDX
globalny unormowany częstotliwościowy moment pierwszego rzędu dla 
reprezentacji Wignera
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Przedmowa

Przedmowa

Niestacjonarność sygnałów stawia metodom analizy widmowej szereg problemów 
i nowych wymagań. Wyznaczenie jedynie widma gęstości energii sygnału 
niestacjonarnego pozwala uzyskać ogólną informację o charakterze sygnału, a cała 
informacja o zmienności czasowej widma jest przy tym podejściu tracona. Naruszenie 
podstawowego założenia analizy fourierowskiej, warunku stacjonarności sygnału, może 
być rozwiązane poprzez poszukiwanie reprezentacji sygnału opisanej w połączonej 
dziedzinie czasu i częstotliwości.

Pierwsze obszary zastosowań reprezentacji czasowo-częstotliwościowych 
dotyczyły problemów mechaniki kwantowej. Prace Wignera, Gabora, Ville’a czy Moyala 
z początku lat czterdziestych ubiegłego stulecia, wskazały pierwsze kierunki tworzenia 
dziedziny czasowo-częstotliwościowej. Kolejne dwa dziesięciolecia przyniosły szereg 
prac, takich autorów jak Page, Rihaczek, Levin czy Mark, które zaowocowały 
wprowadzeniem szeregu nowych reprezentacji czasowo-częstotliwościowych, 
adoptowanych zwłaszcza dla potrzeb analizy sygnałów. Jednak dopiero gwałtowny wzrost 
mocy obliczeniowej komputerów uczynił te metody bardzo atrakcyjnymi. W ślad za 
nowymi możliwościami aplikacyjnymi pojawiły się publikacje, które poza wspomnianymi 
wcześniej pracami, stanowią dziś bazę teoretyczną przekształceń czasowo- 
częstotliwościowych. Mowa tu o pracach Classena i Mecklenbraukera, szczegółowo 
opisujących przekształcenie Wignera wraz z problemami jego dyskretyzacji, czy pracach 
Boashasha, wskazujących na możliwości implementacji omawianej grupy przekształceń. 
Na szczególną uwagę, zwłaszcza z punktu widzenia niniejszej pracy, zasługują publikacje 
Leona Cohena, wprowadzające uogólnione równanie energetycznej klasy przekształceń 
czasowo-częstotliwościowych. Do tej grupy zaliczyć można również prace Hlawatscha 
i Boudreaux-Bartelsa. O znaczeniu przekształceń czasowo-częstotliwościowych świadczyć 
może również zwiększająca się liczba pozycji książkowych. Dzięki takim autorom jak 
Quian i Chen, Papandrou-Suppappola, Poularikas, Boashash czy Zieliński, problemy 
analizy czasowo-częstotliwościowej zostały zebrane i opracowane całościowo.

Współczesne możliwości aplikacyjne pozwoliły wykorzystać metody analizy 
czasowo-częstotliwościowej w dziedzinie przetwarzani sygnałów mowy [1, 23, 58, 60], 
czy analizie danych sejsmicznych [10] i ekonomicznych [15], Jedno z ostatnich 
zastosowań dotyczy sygnałów biomedycznych, zwłaszcza badań elektroencefalogramów 
[9,24,48,55,56]. Specjalna grupa przekształceń czasowo-częstotliwościowych tzw. 
korelacyjna grupa przekształceń, znalazła zastosowanie w technice radarowej [13],

Autor dostrzega możliwości zastosowania przekształceń czasowo- 
częstotliwościowych również w elektrotechnice. Główną motywację stanowią sygnały, 
jakie towarzyszą pracy współczesnych układów elektrycznych. Można tu wspomnieć 
o wpływie układów przekształtnikowych czy pieców łukowych, gdzie oprócz składowych 
charakterystycznych możemy mieć do czynienia ze składowymi niecharakterystycznymi, 
a nawet inter - oraz subharmonicznymi. Nie bez znaczenia pozostają stany przejściowe, 
których czas trwania np. w sieciach wysokiego napięcia, może osiągać nawet wartości od 
5 do 10 okresów składowej podstawowej. W takich przypadkach klasyczna analiza 
Fourierowska może okazać się niewystarczająca. Inne nowoczesne metody estymacji 
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Przedmowa

widma, takie jak statystyki wyższych rzędów czy grupa przekształceń parametrycznych, 
wymagają przyjęcia pewnych początkowych założeń. Problemy wyboru ilości 
estymowanych składników bądź szerokości okna pomiarowego mogą być rozwiązane na 
drodze wstępnego przekształcenia sygnału za pomocą omawianych nieparametrycznych 
przekształceń czasowo-częstotliwościowych.

W obszarze elektrotechniki podjęto również pierwsze próby wykorzystania 
reprezentacji czasowo-częstotliwościowych. Obecnie najpopularniejszą reprezentacją jest 
krótkoczasowa transformata Fouriera, a coraz większe zainteresowanie wzbudza 
transformata falkowa. Prace takich autorów jak Łobos z zespołem [34,36,37,42,43], 
Mindykowski [47], Rosołowski [53], wskazują na rosnące zainteresowanie 
transformacjami czasowo-częstotliwościowymi również wśród elektryków.

Ujęta w niniejszej pracy próba adaptacji przekształceń czasowo- 
częstotliwościowych klasy Cohena dla potrzeb elektrotechniki wydaje się zatem celowa.
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Cel pracy, teza pracy, układ pracy

Cel pracy

Celem pracy jest zbadanie możliwości wykorzystania nieparametrycznych przekształceń 
czasowo - częstotliwościowych klasy Cohena do badania niestacjonarnych sygnałów 
występujących w elektrotechnice i elektroenergetyce. Pożądanym jest wybór optymalnych 
reprezentacji, określenie obszaru ich zastosowań, cech charakterystycznych, zarówno 
korzystnych jak i ograniczających celowość ich wykorzystania.

Teza pracy

Dzięki modyfikacji właściwości badanej klasy przekształceń, poprzez dobór odpowiedniej 
funkcji jądra, można uzyskać przekształcenia dopasowane do danej klasy sygnału. Umożliwi 
to dokładniejsze wyznaczenie parametrów mocno zniekształconych sygnałów oraz lepszą 
diagnozę stanu pracy układów elektrycznych. Poprawa dokładności dotyczy parametrów 
w dziedzinie czasu i dziedzinie częstotliwości, w porównaniu do parametrów wyznaczonych 
z zastosowaniem algorytmu Fouriera.

Układ pracy

Niniejszą pracę otwiera przegląd podstawowych parametrów sygnału, zdefiniowanych 
w dziedzinie czasu, oraz parametrów widma sygnału, zdefiniowanych 
w dziedzinie częstotliwości. Podkreślone zostają wzajemne relacje pomiędzy obiema 
dziedzinami, a interpretacje niektórych parametrów, takich jak odcięta środka ciężkości czy 
wariancja, są szczególnie ukierunkowane na zdefiniowaną później połączoną dziedzinę czasu 
i częstotliwości.

Rozdział drugi poświęcony jest biliniowym nieparametrycznym przekształceniom 
czasowo-częstotliwościowym. Nakreślono w nim dwa główne nurty interpretacyjne 
omawianych przekształceń, które prowadzą do korelacyjnej lub energetycznej klasy 
przekształceń. Jako przykład podejścia korelacyjnego opisano funkcje nieoznaczoności. 
Ze względu na cel pracy, główny nacisk położono na szczegółowy opis energetycznej klasy 
przekształceń.

W podrozdziale 2.1 zawarto opis przekształcenia Wignera, które można traktować 
jako bazowe z punktu widzenia budowy innych przekształceń grupy energetycznej. 
W podrozdziale 2.1.1 autor postanowił zebrać wszystkie właściwości przekształcenia 
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Cel pracy, teza pracy, układ pracy

Wignera wraz z ich interpretacją, mając na celu późniejsze powiązanie z pożądanymi 
właściwościami przekształceń czasowo-częstotliwościowych. Podrozdział 2.1.2 objął swoim 
zakresem wpływ obciążenia sygnału funkcją okna, która prowadzi do tzw. pseudo- 
reprezentacji Wignera, wraz z jej wersją uśrednioną tzw. wygładzoną wersją pseudo- 
reprezentacji Wignera. Autor przytacza informacje istotne z punktu widzenia możliwości 
tłumienia niepożądanych składowych krzyżowych, które są charakterystyczną cechą 
biliniowych reprezentacji czas-częstotliwość. W podrozdziale 2.1.3 ujęto również, 
szczególnie ważną z punktu widzenia przetwarzania sygnałów rzeczywistych, kwestię 
reprezentacji Wignera sygnału analitycznego, zwanej również transformatą Wignera-Ville’a. 
Jedna z proponowanych w niniejszej pracy możliwości wykorzystania omawianych 
przekształceń polega na wyznaczaniu jednowymiarowych charakterystyk lokalnych 
momentów reprezentacji czasowo-częstotliwościowych. Podrozdział 2.1.4 zawiera definicje 
i interpretacje momentów transformacji Wignera, zarówno lokalnych jak i globalnych, 
ze szczególnym wskazaniem na możliwość wykorzystania uzyskanych charakterystyk jako 
wskaźników niestacjonarności. Wreszcie w podrozdziale 2.1.5 autor wyprowadza dwa 
przykłady analitycznego wyznaczania transformacji Wignera sygnałów ograniczonych, 
które służyć mają uwidocznieniu natury omawianego przekształcenia.

Podrozdział 2.2 poświęcono opisowi przekształcenia zwanego funkcją 
nieoznaczoności. Choć przekształcenie to należy do korelacyjnej grupy przekształceń i nie 
znajduje większego zastosowania w elektrotechnice, zagadnienie to stanowi podstawę 
interpretacji uogólnionego równania energetycznych reprezentacji czas-częstotliwość. 
W podrozdziale 2.2.1 zebrano więc podstawowe właściwości funkcji nieoznaczoności dla 
porównania z właściwościami przekształcenia Wignera. Dla podkreślenia dualności obu grup, 
w podrozdziale 2.2.2 przedstawiono wzajemne relacje pomiędzy funkcją nieoznaczoności 
a przekształceniem Wignera, wraz z przykładem.

Podrozdział 2.3 poświęcono zagadnieniu uogólnionego równania nieparametrycznych 
biliniowych przekształceń czasowo-częstotliwościowych, wprowadzonego przez Leona 
Cohena. Idea uogólnionego równania Cohena bazuje na tzw. funkcji jądra, charakterystycznej 
dla konkretnego przekształcenia i mającej ścisły związek z jego właściwościami. Pierwszy 
etap tej części pracy realizuje podrozdział 2.3.1, w którym zebrano szereg pożądanych 
właściwości przekształceń czasowo-częstotliwościowych. W podrozdziale 2.3.2 
przeanalizowano cztery alternatywne postacie funkcji jądra, powstałe przez odpowiednią 
zamianę zmiennych, wraz z wzajemnymi relacjami między nimi. Podążając śladem różnych 
postaci funkcji jądra, w podrozdziale 2.3.3 przedstawiono cztery alternatywne postacie 
równania Cohena, uzupełnione o ocenę numeryczną ich wykorzystania. 
W podrozdziale 2.3.4 zestawiono związki pomiędzy pożądanymi właściwościami 
przekształcenia czasowo-częstotliwościowego a właściwościami funkcji jądra. 
W podrozdziale 2.3.5 rozszerzono przedstawiony przy opisie pseudo-reprezentacji Wignera 
wpływ obciążenia sygnału funkcją okna oraz splotu reprezentacji z dodatkową funkcją 
wygładzającą, na ogólną pseudo- i wygładzoną pseudo-reprezentację klasy Cohena. 
W podrozdziale 2.3.6 autor usystematyzował przekształcenia klasy Cohena poprzez 
tabelaryczne zestawienie równań definicyjnych, postaci funkcji jądra oraz właściwości 
uzyskanych przekształceń. Ułatwia to podjęcie decyzji o wstępnym wyborze przekształceń, 
choćby ze względu na spełniane właściwości. Analizując rodzinę przekształceń klasy Cohena, 
autor zwrócił szczególną uwagę na podgrupę, spełniającą warunek afiniczności. Możliwości 
tłumienia składowych krzyżowych, jakie przynosi specjalna budowa funkcji jądra wskazanej 
podgrupy, zostały opisane w podrozdziale 2.3.7. To właśnie tę podgrupę autor uznaje za 
szczególnie użyteczną do analizy sygnałów z dziedziny elektrotechniki.

W rozdziale trzecim zawarto wyniki badań. Badania postanowiono skoncentrować 
w trzech grupach. Pierwsza grupa, ujęta w podrozdziale 3.1, dotyczy badań wstępnych.
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Cel pracy, teza pracy, układ pracy

Porównano tu reprezentację Wignera-Ville’a (WVD), pseudo-reprezentację Wignera-Ville’a 
(PWVD) oraz jej wersję wygładzoną (SPWVD) w celu określenia wpływu szerokości funkcji 
wygładzających w czasie i częstotliwości na uzyskaną reprezentację. Dokonano również 
jakościowej analizy wpływu funkcji jąder przekształceń należących do afinicznej podgrupy 
klasy Cohena (np. Choi-Williams (CWD), Born-Jordan (BJD), Margineau-Hill (MHD)). 
Badania wstępne przeprowadzono bazując na symulowanych sygnałach sumy składników 
cosinusoidalnych oraz prądu w gałęzi RLC, załączanej na napięcie sinusoidalne. Grupę drugą 
stanowią badania właściwe, obejmujące swoim zakresem symulowane oraz rzeczywiste 
sygnały, odwzorowujące problemy niestacjonarności w układach elektrycznych. 
W podrozdziale 3.2 znalazły się więc analizy symulowanych sygnałów załączania baterii 
kondensatorów, zwarcia w układzie przekształtnika oraz sygnałów pomiarowych zasilania 
pieca łukowego. Porównano tu wpływ różnych funkcji jądra reprezentacji 
z podgrupy afinicznej w celu dokonania jakościowej oceny uzyskanych reprezentacji. Dla 
wybranych metod przeanalizowano celowość dodatkowego wygładzania reprezentacji 
funkcjami okien (np. wygładzona wersja pseudo-transformaty Choi-Williamsa (SPCWD), 
transformata Zhao-Atlas-Marksa (ZAMD)). Autor przytoczył również wyniki badanych 
sygnałów uzyskane na podstawie metod jakościowo innych od badanych w niniejszej pracy. 
Mowa tu o reprezentacjach z grupy parametrycznej czy transformacji falkowej. Trzecia grupa 
analiz, zawarta w podrozdziale 3.3, dotyczy badań rozszerzonych, obejmujących swoim 
zakresem wyznaczanie lokalnych momentów częstotliwościowych. Wyznaczone 
jednowymiarowe charakterystyki momentów autor proponuje traktować jako wskaźniki 
niestacjonarności, które można wykorzystać w diagnostyce pracy układów elektrycznych.

Niniejszą pracę zamyka rozdział czwarty, w którym zawarto wnioski końcowe, oraz 
dodatek, w którym umieszczono wybrane analityczne wyprowadzenia właściwości 
transformaty Wignera.
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Rozdział l:Opis sygnałów w dziedzinie czasu i dziedzinie częstotliwości

1. Opis sygnałów w dziedzinie czasu i dziedzinie 
częstotliwości

W rozdziale tym dokonano przeglądu podstawowych parametrów sygnału, określonych 
zarówno w dziedzinie czasu jak i częstotliwości. Zadaniem takiego przybliżenia jest 
omówienie zależności między obiema dziedzinami, ściśle początkowo rozdzielanymi, które 
pozwolą na późniejsze wyeksponowanie warunków koniecznych do stworzenia reprezentacji 
sygnału w połączonej dziedzinie czasu i częstotliwości.

1.1. Parametry rzeczywistych sygnałów deterministycznych w 
dziedzinie czasu

W przypadku sygnałów deterministycznych możemy mówić o opisie sygnału dowolną, 
rzeczywistą lub zespoloną funkcją czasu lub dystrybucją czasu. Istnieje szereg parametrów 
charakteryzujących właściwości sygnału, pozwalających przypisać sygnał do pewnych 
wyodrębnionych klas, takich jak klasa sygnałów o ograniczonej energii, o ograniczonej mocy 
średniej, zarówno gdy sygnał jest sygnałem o skończonym lub nieskończonym czasie trwania. 
Niektóre z podanych definicji, zwłaszcza dotyczące właściwości energetycznych sygnału czy 
też kształtu i położenia względem środka osi czasu lub punktu skupienia, mają szczególne 
znaczenie ze względu na relacje występujące między reprezentacją sygnału w dziedzinie 
czasu i dziedzinie częstotliwości [54,57,63],
• Wartość średnia sygnału x(t) określonego w przedziale czasu (ą , ?2 > :

_  1 'z
x =------ jx(r)dr (1.1)

^2 — ^1 z,

• Wartość średnia sygnału x(r) o nieskończonym czasie trwania:
_  1 +f
x = lim—jx(7)dr (1.2)

• Wartość średnia sygnału okresowego x(t) o okresie T:
x = ^Jx(f)dr (1.3)

ro

gdzie t0 jest dowolnym punktem osi czasu
Druga grupa parametrów jest związana z właściwościami energetycznymi sygnału.
• Energia sygnału x(t)

Ex=jx2(t)dr (1.4)
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Rozdział 1 :Opis sygnałów w dziedzinie czasu i dziedzinie częstotliwości

• Moc średnia sygnału x(r) określonego w przedziale (t

— 1 %P(rpt2) = x =------ fx2(t)dr (1.5)

Dla wielu sygnałów o nieskończonym czasie trwania, w tym sygnałów okresowych, energia 
sygnału jest nieskończona. Dla energetycznego opisu tej klasy sygnałów wprowadzono 
pojęcie mocy średniej.
• Moc średnia sygnału x(t) o nieskończonym czasie trwania 

— 1 +rP =x2=lim— [x2(t)dr (1.6)

• Moc średnia sygnału okresowego x(t) o okresie T
___ i 'o+7

px=x2=- J x2(t)dt (1.7)
ro

gdzie to jest dowolnym punktem osi czasu.
Bazując na przedstawionej powyżej grupie parametrów można zdefiniować klasę sygnałów 
o ograniczonej energii, dla których 0<Et<°ooraz klasę sygnałów o ograniczonej mocy 
średniej, dla których 0 < Pt < °°.
Dla dokładniejszego opisu pewnych specyficznych cech sygnału takich jak kształt 
i położenie względem środka osi czasu lub punktu skupienia konieczne jest zdefiniowanie 
dalszych parametrów.
• Momenty zwykłe rzędu r:

mf - Jfx(r)dr,r = 1,2,... (1.8)

Dla przybliżenia interpretacji momentów zwykłych może posłużyć moment zwykły rzędu 
drugiego, czyli m2, nazywany momentem bezwładności sygnału x(f), charakteryzujący 
rozkład kształtu sygnału wokół osi czasu.

m2 = p2x(r)dt (1.9)

• Unormowane momenty zwykłe rzędu r:

J Ux(r)dr
-------- ,r = l,2„.. (1.10)

j x(r)dr

Proces normowania momentów względem pola ograniczonego wykresem sygnału prowadzi 
do wymiaru czasu w r-tej potędze. Ze względu na interpretację praktyczną na szczególną 
uwagę zasługuje unormowany moment zwykły rzędu pierwszego, czyli tx , nazywany odciętą 
środka ciężkości sygnału, określający punkt osi czasu, wokół którego sygnał jest skupiony.

jtx(t)dt

= -------- (1-H)
J x(r)dr
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Rozdział 1 :Opis sygnałów w dziedzinie czasu i dziedzinie częstotliwości

Unormowany moment zwykły rzędu drugiego, czyli t2, nazywany jest średnim kwadratem 
odciętej środka ciężkości, a pierwiastek -JtJ - promieniem bezwładności.

J rx(t)dt

= --------- d-12)
j x(t)dt

Odcięta środka ciężkości sygnału t* może jednak nie wyznaczać dokładnie punktu skupienia, 
ze względu na ścisły związek tego parametru z całką sygnału. Przy małych wartościach całki 
sygnału, co jest możliwe dla wielu typów sygnałów np. sygnałów oscylacyjnych, parametr ten 
przyjmuje duże wartości. Dla uniknięcia tego typu rozbieżności przyjęto charakteryzować 
punkt koncentracji sygnału odciętą środka ciężkości kwadratu sygnału t'2 , gdzie punkt 
koncentracji wyznacza punkt koncentracji energii sygnału:

J tx2(t)dt
---------  (1-13)

j x2(t)dt

• Momenty centralne rzędu r:

Sj=^-m'J = x(t)dt (1-14)

• Unormowane momenty centralne rzędu r:

______ J^-tQ x(r)dt
<=('-11)'=^------------- <1-15)

j x(r)dr

Podobnie jak w przypadku unormowanych momentów zwykłych, wśród unormowanych 
momentów centralnych można znaleźć parametry, które zasługują na szczególną uwagę ze 
względów interpretacyjnych. Takim parametrem jest moment rzędu drugiego o2, zwany 

wariancją sygnału i będący miarą rozrzutu sygnału wokół odciętej środka ciężkości t^ :
/ —U

______  U~ t‘ x(?)dt
^2=(^-tQ =tx-(d) ------------- d-16)

j x(t)dr

Dla sygnałów, których pole jest równe lub bliskie zero, tak określona miara rozrzutu nie jest 
wystarczająca i prowadzi do zastąpienia badania rozkładu sygnału wzdłuż osi czasu badaniem 
rozkładu jego energii wzdłuż osi czasu, czyli określenia wariancji kwadratu sygnału o2,:

+°° ___  2
- ,-.2 x(,)d'

=t?-(ó) -------- <117)
j x2(r)dr
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Unormowanie wariancji kwadratu sygnału odbywa się względem energii tego sygnału 
w odniesieniu do środka ciężkości kwadratu sygnału. Można zatem mówić o mierze rozrzutu 
energii sygnału wokół środka ciężkości kwadratu sygnału lub o stopniu koncentracji sygnału. 
Im wartość wariancji jest mniejsza tym szerokość przedziału czasu, w którym energia jest 
zgromadzona, jest mniejsza. Jeśli podobnie jak w przypadku promienia bezwładności 
zastosować pierwiastek z wariancji kwadratu sygnału, to otrzymana średnia szerokość 
przedziału koncentracji energii przyjmie wymiar czasu. Parametr ten nosi nazwę szerokości 
średniokwadratowej.
• Szerokość średniokwadratowa sygnału x(t):

Przedstawienie powyższych definicji parametrów sygnału w dziedzinie czasu ma na 
celu sprecyzowanie zagadnień potrzebnych do określenia warunków stworzenia łącznej 
czasowo-częstotliwościowej reprezentacji sygnału. Następnym krokiem ku realizacji tego 
zadania jest omówienie analogicznych parametrów sygnału przedstawionego w dziedzinie 
częstotliwości. Niezbędnym zatem jest wprowadzenie pojęcia przekształcenia Fouriera 
i zagadnień z nim związanych.

1.2. Parametry rzeczywistych sygnałów deterministycznych w 
dziedzinie częstotliwości

Przekształcenie całkowe Fouriera czy trygonometryczny lub zespolony szereg Fouriera 
są pojęciami, na których opierają się podstawy reprezentacji sygnału w dziedzinie 
częstotliwości. Określone na ich podstawie częstotliwościowe charakterystyki sygnału oraz 
tzw. charakterystyki wtórne, którymi są widmo gęstość energii - dla sygnałów o ograniczonej 
energii oraz widmo gęstość mocy - dla sygnałów o ograniczonej mocy, stanowią opis 
struktury sygnału w kategoriach częstotliwościowych [28,41,54,57], 
Prostą transformatę Fouriera X(co) sygnału x(f) nazwano widmem sygnału:

X(ty)= Jx(Oejń"dt (1.19)

Widmo sygnału, będące miarą korelacji sygnału z poszczególnymi zespolonymi funkcjami 
harmonicznymi w postaci e =cos(2ti^)-jsin(27i/r) , określa amplitudę i fazę składowych 
harmonicznych. Dla sygnału transformowalnego w sensie zwykłym charakterystykę taką 
można przedstawić jako zespoloną funkcję zmiennej rzeczywistej co.

X(ty) = |x(ćy)|eMffl) =ReX(ry) + jImX (1.20)

gdzie funkcje |x(ty)|,ę?(ćy),ReX(ty),ImX(ćy) są funkcjami zmiennej rzeczywistej co, 
mającej interpretację pulsacji, i noszą odpowiednio nazwy: widmo amplitudowe, widmo 
fazowe, widmo rzeczywiste, widmo urojone, pomiędzy którymi zachodzą następujące 
związki:

। / \i Iż ż 7(5 7 / 7(2" / x ImX(ry)|x(ty)| = ^(ReX(ry)) + (lmX(ty)) ,p(ry) = arctg------ (1.21) 
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Gdy mowa o sygnałach rzeczywistych transformowalnych w sensie zwykłym, widmo 
amplitudowe i fazowe dla ry>0 opisuje odpowiednio gęstości rozkładu amplitudy i fazy 
sygnału wzdłuż osi pulsacji.

Warto podkreślić, że wprowadzone pojęcie widma można rozszerzyć na sygnały 
transformowalne w sensie granicznym. Widma takich sygnałów należy wówczas zdefiniować 
jako sumę części funkcyjnych i dystrybucyjnych. Części funkcyjne widma opisują zależności 
jak dla sygnałów transformowalnych w zwykłym sensie. Jeżeli 
zaś w widmie sygnału w punkcie Ob występuje dystrybucja Diraca 27tc5(ty-<z>0), gdzie 
c=a+jb, to w części dystrybucyjnej widma amplitudowego, rzeczywistego i urojonego 
wystąpią w punkcie odpowiednio dystrybucje Diraca: 27r|c|5(ćy-ćy0),27ta5(ćy-ry0),

27tbS(ry-ry0). Wartość widma fazowego w punkcie ćób jest przy tym równa argc = arctg—.
a 

Odwrotne przekształcenia Fouriera definiuje wyrażenie:
x(r)=—l^ry^dry (1.22)

2żt 
które wskazuje na możliwość odtworzenia sygnału w sposób jednoznaczny na podstawie 
widma.

Traktując więc widmo jako równoważny sposób przedstawienia sygnału, należy 
spodziewać się, że wszystkie szczególne cechy jakie sygnał posiadał w dziedzinie czasu, 
można również opisać używając reprezentacji sygnału w dziedzinie częstotliwości. Ponadto, 
chcąc scharakteryzować samo widmo sygnału, poszukując choćby punktu jego koncentracji 
czy miary rozrzutu widma wokół środka ciężkości, można zdefiniować analogiczne parametry 
widma, jak w przypadku przedstawionych wcześniej parametrów czasowych sygnału. 
Wzajemne relacje, jakie występują pomiędzy obiema dziedzinami, bazują na właściwościach 
przekształcenia Fouriera. Podane poniżej zależności mają na celu przybliżyć tok 
rozumowania przyjęty przy formalizowaniu zagadnień związanych 
z połączoną dziedziną czasu i częstotliwości. Pierwsze podejście do omawianego problemu 
będzie zatem dotyczyć przedstawienia parametrów sygnału na podstawie jego charakterystyk 
widmowych.
Parametry sygnału wyznaczone na podstawie charakterystyk widmowych [28,57,63]:
• Energia sygnału x(Z) (twierdzenie Parsevala):

Ex = jx2(t)dz=^ J|x(ćzż)|2 dzw (1.23)

• Momenty zwykłe rzędu r:

m(= Jfxa)dt = (j)rXW(O),r = l,2,.„ (1.24)

• Moment zwykły rzędu drugiego - moment bezwładności sygnału:

m2= p2x(t)dt = -X"(0) (1.25)

Unormowane momenty zwykłe rzędu r:

J Fx(t)dt

j x(t)dt

X(r)(0) 
*(°)

,r = l,2,... (1-26)

• Unormowany moment zwykły rzędu pierwszego - odcięta środka ciężkości sygnału:
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j x(t)dt

■X'(0) 
J x(o) (1.27)

Unormowany moment zwykły rzędu drugiego - średni kwadrat odciętej środka ciężkości:

ft2x(r)dr . .p 2 x-(o) (1.28)

Pierwiastek średniego kwadratu odciętej środka ciężkości - promień bezwładności:

(1.29)

Wariancja sygnału: 
/ —\2   r-tM x(r)dr

cU=(t-tl ^-(C)2 = ---------
J x(r)dr

£12) (1.30)

Interpretacja zdefiniowanych teraz na podstawie charakterystyk widmowych 
parametrów sygnału została podkreślona przy omawianiu dziedziny czasu. Drugim 
wspomnianym już problemem jest określenie charakterystycznych cech samego widma, 
poprzez zdefiniowanie choćby punktu koncentracji widma czy jego rozrzutu wokół środka 
ciężkości. Celowym zatem wydaje się przeniesienie definicji parametrów podkreślających 
specyficzne cechy funkcji na grunt osi pulsacji i związanego z nią widma sygnału.

1.3. Parametry widma sygnału

W większości przypadków mamy do czynienia z rzeczywistym zarejestrowanym 
sygnałem, w praktyce zatem sygnałem o skończonym czasie trwania, czego konsekwencją 
jest również ograniczenie energii. Poniżej zdecydowano więc przedstawić definicje oraz 
interpretacje parametrów widma dla tej klas sygnałów.

Przed rozpoczęciem tego etapu należy jednak zdefiniować dodatkową charakterystykę 
częstotliwościową - widmo gęstości energii. Widmo gęstości energii definiowane jest jako 
kwadrat widma amplitudowego:

O(ty) = |x(ry)|2 (1.31)

Korzystając z twierdzeń dotyczących transformacji Fouriera, kwadrat widma amplitudowego, 
a co za tym idzie widmo gęstości energii, można zdefiniować bazując na funkcji autokorelacji 
sygnału r(r) :
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r(r)= |x(t)x*  (t--r)dt = Jx(r + f)x*(r)dt  = jxj t + — jx*(  t-— 
k ; k ; (132)

• Unormowany moment zwykły rzędu r dla widma:

=> jr(r)e~J®rć/r = |x(ćy)|~ =0(<y)

Ponadto, dla sygnałów rzeczywistych funkcja autokorelacji jest rzeczywista i parzysta, co 
prowadzi do wniosku, że i widmo gęstości energii jest rzeczywiste i parzyste. Warto 
zauważyć, że dla T — 0 funkcja autokorelacji wskaże wartość energii całkowitej sygnału:

r(0) = J|x(r)|2dr = Ex (1.33)

W końcu, wyrażenie funkcji autokorelacji jako transformaty odwrotnej widma gęstości 
energii doprowadzi dla r = 0 do twierdzenia Parsevala:

1 400 1 +°° 1 +M
r(r) = — [<D(ry)ej<OTd«, ^Ev=r(0) = — f<D(ćy)dry = — f|x(®)|2dćy (1.34) 

2^ 2.77 y 2.77 J
Wyprowadzenie powyższych zależności pozwala interpretować widmo gęstości energii jako 
charakterystykę opisującą rozkład energii wzdłuż osi pulsacji.

Wykorzystując wprowadzoną charakterystykę widma gęstości energii oraz stosując 
analogię do parametrów opisujących sygnał w dziedzinie czasu, możemy przejść do definicji 
parametrów widma sygnału i widma gęstości energii.
Parametry widma sygnału [28,57,63]:
• Momenty zwykłe rzędu r dla widma:

M*  = jryrX(ry)dćy (1.35)

• Momenty zwykłe rzędu r dla kwadratu widma (widma gęstości energii):

M^ = Jryr |x(ry)|2 dćy (1.36)

• Moment zwykły zerowego rzędu dla widma - wartość średnia widma:
M° = jx(®)dry (1.37)

• Moment zwykły rzędu pierwszego dla widma:
M'x = jry’X(ry)dóy (1.38)

określający punkt skupienia widma bez jego normalizacji.
• Moment zwykły rzędu drugiego dla widma - moment bezwładności widma:

M^ = jćy2X(<w)dty (1.39)

określający rozrzut widma wokół osi częstotliwości.
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jtyrX(ty)dty 
----------  

jx(ty)dty
(1.40)

• Unormowany moment zwykły rzędu 1 dla widma - odcięta środka ciężkości widma:

JtyX(ty)dty

------------- (1-41)
jx(ty)dty

charakteryzujący punkt na osi pulsacji, wokół którego widmo jest skupione.
• Unormowany moment zwykły rzędu 1 dla kwadratu widma - odcięta środka ciężkości 

kwadratu widma amplitudowego (widma gęstości energii) :
j ty|x (ty)|2 dty

co,1 ,2 = ---------------- (1.42)
M ri z

I X(ćw) dty

• Momenty centralne rzędu r dla widma:

r; =(ćy-M^)r= j^ty-M^ X(ty)dty

Momenty centralne rzędu r dla kwadratu widma:

• Unormowane momenty centralne rzędu r dla widma:
4-00 _____

______ J^ty-©^ X(ty)dty 
= (ty—) = ———------------------

Jx(ty)dty

• Unormowany moment centralny rzędu drugiego dla widma - wariancja widma:
/ ----- \2

I ty-©x I X(ty)dty
S2 =—--------------------------------

Jx(ty)dty

(1-43)

(1.44)

(1.45)

(1.46)

będący miarą rozrzutu widma wokół odciętej środka ciężkości widma.
• Unormowany moment centralny rzędu drugiego dla kwadratu widma - wariancja 

kwadratu widma amplitudowego (widma gęstości energii):
Ś] ^7 -------- Ul |2

| Jlty-co J |X(ty)| dty
L S2 2 = ---- -- --------------------- (1.47)

fi , .i2
||X(ty)| dty

• Szerokość średniokwadratowa widma ( kwadratu widma amplitudowego czyli widma 
gęstości energii):
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2 
dty

-----  (1.48)

Ważnym wnioskiem płynącym z rozważań nad interpretacją przytoczonych parametrów może 
być fakt, że szerokość średniokwadratowa widma sygnału AQX , jako pierwiastek wariancji 
kwadratu widma amplitudowego czyli widma gęstości energii, jest miarą koncentracji energii 
sygnału w dziedzinie częstotliwości, a dokładniej mówiąc, miarą średniej szerokości pasma 
wokół odciętej środka ciężkości kwadratu widma amplitudowego.
Przyjmując szerokości średniokwadratowe sygnału ATX i widma AQX jako miary średniego 
czasu trwania i średniej szerokości jego widma można sformułować zasadę nieoznaczoności:

ATXAQX>-X X 2 (1-49)

Z zasady nieoznaczoności można wywnioskować, że nie jest możliwe jednoczesne 
osiągnięcie dostatecznie dużej koncentracji energii sygnału w dowolnie małych przedziałach 
czasu i częstotliwości. Oznacza to, że można skupić energię sygnału w wąskim przedziale 
czasu, ale wówczas przedział częstotliwości, w którym ta energia jest skupiona nie może

przekraczać progu > 1 
2AT*

wynikającego z zasady nieoznaczoności.

Niniejszy rozdział miał za zadanie przybliżyć pewne wyodrębnione parametry zarówno 
sygnału przedstawionego w dziedzinie czasu jaki i jego reprezentacji częstotliwościowej, 
czyli widma. Wprowadzone pojęcia, takie jak energia i widmo gęstości energii, szerokość 
średniokwadratowa sygnału i jego widma czy odcięta środka ciężkości kwadratu sygnału 
i odcięta kwadratu widma amplitudowego, posłużą do sformułowania założeń, jakie powinna 
spełnić czasowo-częstotliwościowa reprezentacja sygnału.
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2. Biliniowe reprezentacje czasowo-częstotliwościowe

W literaturze istnieje wiele definicji reprezentacji czasowo-częstotliwościowych oraz 
sposobów ich klasyfikacji [8,33,63]. Interesujący podział zaproponowano w pracy [62] biorąc 
pod uwagę charakter obliczeniowy estymacji (reprezentacje parametryczne 
i nieparametryczne), strukturę równania definicyjnego (liniowa lub nieliniowa operacja na 
sygnale) wraz z występowaniem bądź nie operacji skalowania argumentu czasu lub 
częstotliwości: (odpowiednio: skalogram lub spektrogram). Powyższy podział ilustruje 
rysunek 2.1 w całości zaczerpnięty z pracy [62],

W przeciwieństwie do liniowych przekształceń czasowo-częstotliwościowych, które 
bazują na rozkładzie sygnału na składniki podstawowe (atomy), celem biliniowych 
przekształceń (ang. bilinear) zwanych również kwadratowymi (ang. ąuadratic) jest ujęcie 
niestacjonarności sygnału w oparciu o funkcję gęstości energii lub funkcję korelacji 
[2,19,20,25,26,27,40]. Stąd też wywodzą się dwa podstawowe kierunki interpretacji 
biliniowych widm czasowo-częstotliwościowych, pozwalające zgrupować je w dwie odrębne 
klasy: energetyczną i korelacyjną. Pierwszy z nich dotyczy ujęcia energetycznego i wskazuje 
widmo czasowo-częstotliwościowe jako przebieg tzw. chwilowego widma gęstości energii 
(ang. instantaneous energy density spectrum), która jest kwadratową formą reprezentacji 
sygnału. Można więc mówić o przejściu z dziedziny czasu do połączonej dziedziny czasu i 
częstotliwości. W przypadku korelacyjnej klasy przekształceń, uzyskiwana reprezentacja 
określona jest na połączonej dziedzinie przesunięć czasowych i częstotliwościowych i może 
być interpretowana jako czasowo-częstotliwościowa funkcja autokorelacji. Niezależnie 
jednak od wspomnianej klasyfikacji, podstawową własnością, jaką powinny spełniać 
przekształcenia całkowe jest warunek zachowania energii. W pierwszym kroku należy więc 
określić warunki brzegowe dotyczące dwuwymiarowych reprezentacji, rozumianych zarówno 
w sensie energetycznym jak i korelacyjnym.

Nawiązując do opisanych wcześniej parametrów sygnału w dziedzinie czasu 
i częstotliwości można zdefiniować chwilową energię sygnału (ang. instantaneous energy) 

wyrażającą intensywność czy też gęstość energii na jednostkę czasu w chwili t, oraz 
chwilowe widmo gęstości energii (ang. instantaneous energy density spectrum) ^(co), 
rozumiane jako intensywność energii na jednostkę pulsacji dla pulsacji co [19,26,27]:

^w=|x(0|2
(2.1)

Przyjmując pewien przedział czasu At możemy opisać częściową energię (ang. fractional 
energy) zawartą w przedziale czasu At w chwili t jako iloczyn |x(t)|~xAt. Analogicznie 

częściową energię zawartą w przedziale Aco dla pulsacji co wyraża iloczyn |x(cy)|2xAćc>.
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Rys. 2.1. Uproszczony podział czasowo-częstotliwościowych reprezentacji sygnałów ze 
względów obliczeniowych: rodzaj sposobu estymacji widma (parametryczny lub 
nieparametryczny) i struktura równania definicyjnego (liniowa lub nieliniowa operacja na 
sygnale) oraz występowanie (skalogram) lub niewystępowanie (spektrogram) operacji 
skalowania czasu lub częstotliwości

Z energetycznego punktu widzenia głównym celem reprezentacji czasowo- 
częstotliwościowych jest więc stworzenie funkcji dwóch zmiennych czasu i częstotliwości 
(pulsacji) TF(E)(t,ry), która będzie odwzorowywać energię lub intensywność (gęstość) 
energii w jednostce czasu na jednostkę częstotliwości. Iloczyn TF^ (r,ry)x Atx Ary 
wskazywać będzie częściową energię zawarta w czasowo-częstotliwościowej komórce 
AtxA<y o środku w punkcie Powyższe rozumowanie prowadzi do określenia
warunków brzegowych dowolnej reprezentacji czasowo-częstotliwościowej rozumianej w 
sensie energetycznym [19]:
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|TF(E)(z,ćy)dćy = ex(O = |x(r)|2

|TF(E)(t,69)dr^J«) = |x^^
(2.2)

Spełnienie powyższych warunków pozwala na wyrażenie całkowitej energii zawartej 
w sygnale za pomocą reprezentacji czasowo-częstotliwościowej:

jTF^^^drad^E, (2.3)

Odmienny kierunek wyznaczania czasowo-częstotliwościowych reprezentacji 
wykazuje podejście korelacyjne. W tym przypadku poszukiwana jest dwuwymiarowa funkcja 
autokorelacji TF(c)(0,r), wyznaczona w oparciu o jednowymiarowe funkcje autokorelacji

zdefiniowane w dziedzinie czasu r(r) oraz częstotliwości R(0) [26,27]: 

x(t)x* = jx(t + T)x* (r)dt = |x

r (0) = Jx(d>)X* ^co-O^co = jx(ry+0)X*(óo)dóy= |x^+yJx*^~^d/» 
Zmienne T oraz 0 oznaczają przesunięcie (opóźnienie) odpowiednio w dziedzinie czasu 
i częstotliwości. Korelacyjne warunki graniczne, które powinna spełnić poszukiwana 
czasowo-częstotliwościowa funkcja autokorelacji TF^(0,r) przedstawiają poniższe 
wyrażenia [26,27]:

TF(C) (0,0) = R (0)
TF<c)(0,T) = r(T) (2'

Spełnienie powyższych warunków oraz związki pomiędzy funkcją autokorelacji a energią 
pozwalają na wyznaczenie całkowitej energii sygnału na bazie zdefiniowanej 
dwuwymiarowej reprezentacji:

TF(c)(0,0) = EA (2.6)
Energetyczna klasa przekształceń czasowo-częstotliwościowych prowadzi więc do uzyskania 
funkcji opisującej zmiany energii sygnału bezpośrednio na płaszczyźnie czas-częstotliwość. 
Korelacyjna klasa przekształceń pozwala uzyskać funkcję, która nie jest bezpośrednio funkcją 
czasu i częstotliwości (pulsacji) lecz przesunięć, odpowiednio w dziedzinach czasu 
i częstotliwości, wciąż zachowując informację o niestacjonarności sygnału.

Wyodrębniając te dwie klasy przekształceń czasowo-częstotliwościowych warto 
również wspomnieć o pewnego rodzaju uogólnieniu, które niejako łączy w sobie zarówno 
podejście energetyczne jak i korelacyjne. Uogólnienie to bazuje na jednowymiarowym 
związku pomiędzy funkcją autokorelacji sygnału r(r) i jego widmem gęstości energii <F(ćo) 
[57]:

<F(ry) = |x(<»)|2 = (2.7)

Wprowadzając tzw. lokalną (chwilową) funkcję autokorelacji rt(r) zależną od chwili t 
można uzyskać dwuwymiarową funkcję czasu i częstotliwości rozumianą w sensie 
energetycznym TF(E’ (t,ty), definiując ją jako transformatę Fouriera funkcji rt (r):
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TF(e) (t,ćw) = pj^je^dr (2.8)

Przy wyborze funkcji rt (t) należy jednak pamiętać, że naturalnym kierunkiem jest uzyskanie 
rzeczywistej dwuwymiarowej funkcji TF(E> (t,ry), a co za tym idzie potrzeby spełnienia przez 
chwilową funkcję autokorelacji warunku:

r;(r) = r/(-r) (2-9)
Rozważając ten aspekt rozwoju czasowo-częstotliwościowych reprezentacji warto wspomnieć 
o tzw. wygładzonej wersji chwilowej funkcji autokorelacji, która powstaje z wykorzystaniem 
dodatkowej funkcji jądra. Kierunek ten prowadzi do wprowadzonej przez Leona Cohena [19] 
wspólnej rodziny przekształceń czasowo-częstotliwościowych i zostanie szczegółowo 
wyodrębniony w dalszej części pracy.
Wspomniana już chwilowa funkcja autokorelacji może posłużyć również do wyznaczenia 
korelacyjnej klasy przekształceń poprzez zmianę zmiennej całkowania z r na t, co prowadzi 
do ogólnego wyrażenia:

TF(c)(^,r)= jrt(T>’j^ (2.10)

Przedstawione powyżej relacje miały za zadanie przybliżyć podstawy i główne nurty 
nieparametrycznych, biliniowych przekształceń czasowo-częstotliwościowych. W dalszej 
części pracy szczegółowo omówiona zostanie transformacja Wignera, jako podstawowy 
przykład energetycznej klasy przekształceń, oraz symetryczna funkcja nieoznaczoności, jako 
przykład klasy korelacyjnej. Wprowadzona funkcja chwilowej funkcji autokorelacji może być 
potraktowana jako pewnego rodzaju łącznik pomiędzy dziedzinami (t,<y) oraz (0,r), co 
zostanie wykorzystane do wskazania wzajemnych relacji pomiędzy transformatą Wignera 
a funkcją nieoznaczoności i nakreśli cechę wzajemnej dualności przekształceń obu klas.

2.1. Transformacja Wignera - energetyczna klasa czasowo- 
częstotliwościowych reprezentacji sygnału

Transformacja Wignera jest podstawowym przykładem czasowo-częstotliwościowych 
reprezentacji w ujęciu energetycznym. Idea dwuwymiarowej reprezentacji Wignera została 
wprowadzona w 1932 roku przez Wignera dla potrzeb mechaniki kwantowej. W 1948 roku 
Ville podjął próbę adaptacji transformaty Wingera w obszarze analizy sygnałów. Splot 
funkcji podcałkowej tej transformacji z dodatkowymi funkcjami jest również kierunkiem do 
wyznaczania innych transformacji czasowo-częstotliwościowych. Dlatego też zdecydowano 
poświecić rozdział niniejszej pracy szczegółowemu omówieniu właściwości reprezentacji 
czasowo-częstotliwościowych na przykładzie transformacji Wignera.

Podstawowe pytania o właściwości przekształcenia czasowo-częstotliwościowego 
dotyczą zachowania energii sygnału, wpływu podstawowych operacji na sygnale, takich jak 
przesunięcie w dziedzinie czasu i częstotliwości, czy też obciążenia sygnału funkcją okna. 
Pierwsza grupa właściwości, przedstawiona w niniejszym rozdziale, ma za zadanie przybliżyć 
pożądane właściwości przekształcenia oraz sposoby ich udowodnienia. Druga grupa 
właściwości skupiona została wokół parametrów przekształcenia, jakimi są momenty 
dwuwymiarowych reprezentacji. Dwuwymiarowość przekształcenia, opisująca doskonale 
zmiany sygnału, niesie ze sobą trudności aplikacyjne. Analiza momentów, zwłaszcza 
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rozumianych w sensie lokalnym, prowadzi do jednowymiarowych charakterystyk, które 
traktować można jako wskaźniki niestacjonarności.
Wzajemne przekształcenie Wignera sygnałów x(t) i y(r) definiuje równanie [16,51,52,59]:

WDvva,«)= (2.11)

Własne przekształcenie Wignera sygnału x(r) przyjmie więc postać:
WDx(f,o) = WDxx(t,ń?) = fKk+lk/f-Ije^dT (2.12)

Powyższe definicje odnoszą się do sygnałów traktowanych jako funkcje czasu. Spełnienie 
wymogu dotyczącego zachowania energii, stawianego transformacjom czasowo- 
częstotliwościowym, pozwala wyrazić przekształcenie Wignera w oparciu o widma 
sygnałów:

WDxr(ćyj) = — Jx| je^dz; (2.13)

WDY(ry,t) = — fx| co+? |x*| co-? je^dn (2.14)
2^-21 2j t 2)

co prowadzi do istotnej relacji:
WDxy(r,®) = Wxr(ćy,f) (2.15)

Wyrażenie powyższe podkreśla możliwość wyrażenia przekształcenia Wignera widm 
sygnałów jedynie poprzez zamianę zmiennych w postaci przekształcenia wyznaczonego na 
bazie sygnałów. Ilustruje to wzajemną symetrię pomiędzy definicjami w dziedzinie czasu 
i dziedzinie częstotliwości. Szereg pozostałych właściwości przekształcenia Wignera, ujętych 
w poniższym podrozdziale, pozwoli na głębsze zrozumienie charakteru uzyskanych 
reprezentacji.

2.1.1. Właściwości przekształcenia Wignera i ich znaczenie

W. 1. rzeczywisty charakter przekształcenia Wignera
WX\yM = W*xy(t,co) 

’y ’yY ’ (2.16)
WDx(f,t») = W*x(r,ty)

Zarówno dla sygnałów rzeczywistych jak i zespolonych przekształcenie Wignera jest funkcją 
rzeczywistą, a w przypadku sygnałów rzeczywistych jest dodatkowo parzystą funkcją 
częstotliwości:

WDx(t,0) = W?(t,-0) (2.17)
W. 2. zachowanie przesunięcia w czasie
Jeśli x, (t) = x(r-t0), yj (t) = y(r-r0)t°:

(Z. 1 o)

W. 3. zachowanie przesunięcia w dziedzinie częstotliwości
Jeśli X! (t) = x(t)ej<^', yj (t) = y(t)ejńV to:
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WD^G,®) = Wjy(r,0-®o) 
’y (2.19)

WDa (t, co) = Wx (t, co - a)0)
W. 4. zachowanie skalowania sygnału w dziedzinie czasu
Jeśli Xj (t) = ^[^(ar), y, (z) = to:

WD^ * (t,co) = WDx y (2.20)

W. 5. przekształcenie Wignera sygnałów o ograniczonym czasie trwania
Ograniczenie sygnałów w czasie przejawia się ograniczeniem czasowym reprezentacji 
Wignera:

x(Z) = 0 lub y(Z) = 0 dla rg U.,6,) => WDr (t,a>) = 0 dla tg (tt.) 
’ (2.21)

x(t) = 0 dla tg (ta,tb) => WD((t,co) = 0 dla tg (ta,tb)
Analogiczną relację można przedstawić dla sygnałów przyczynowych:

x(t) = 0 dla/<0^Wt(t,&>) = 0 dlat<O,Vty (2.22)
W. 6. przekształcenie Wignera sygnałów o ograniczonym paśmie częstotliwości 
Ograniczenie widma sygnału przejawia się ograniczeniem częstotliwościowym jego 
reprezentacji Wignera:

X(ty) = 0 lub Y(ćy) = 0 dla ryg {(Oa,coh) => WD, v (t,a>) = 0 dla ryg (a>.a>h) 
,y (2.23)

X(ry) = 0 dla ryg (co^cof) => WD, (r,ty) = O dla ryg (coa,coh)
W. 7. modulacja sygnałów a ich przekształcenie Wignera
Przekształcenie Wignera sygnałów zmodulowanych przejawia się splotem transformacji 
Wignera sygnałów i fali nośnych w dziedzinie częstotliwości. Dla 
xm(t) = x(t)mx (t), ym(t) = y(t)my (t) wzajemne przekształcenie Wignera dane jest 
równaniem:

(2.24)

W. 8. przejście sygnałów przez łiniowy system stacjonarny a ich przekształcenie Wignera 
Sygnały na wyjściu liniowego systemu stacjonarnego opisuje splot sygnałów i odpowiedzi 
impulsowych systemu. Splot ten przenosi się na splot w dziedzinie czasu przekształceń 
Wignera sygnałów i odpowiedzi impulsowych. Jeśli więc sygnały na wyjściu systemów 
liniowych o odpowiedziach impulsowych hy(t) oraz h (t) opiszemy jako 
xf (t) = x(t)*hv (t), yc (t) = y(t)*h (t), to ich przekształcenie Wignera można określić 
splotem przekształceń w dziedzinie czasu:

WD,, ((,<B) = AjWD„(r,o)WD^A (t-r.o)dr (2.25)

W. 9. transformata Fouriera a przekształcenie Wignera
Równanie definicyjne przekształcenia Wignera pozwala traktować je jako transformatę 

i T i * i TiFouriera iloczynu t + — I y* I t — I przyjmując jako zmienną r przy ustalonym parametrze

t. Stąd odwrotna transformata Fouriera przekształcenia Wignera oznacza:
— |WDx/f,ty)ejwd0 = xp+4X^ (2.26)
2,yz- 2 j
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W. 10. całkowita energia sygnału
Jak już wspomniano zachowanie chwilowej energii sygnału i widmowej gęstości energii 
owocuje zachowaniem całkowitej energii sygnału. Podkreśla to poniższe rozumowanie.

JWDt(/,ty)dćy

dt - j|x(r)|'dr = (x,x) = ||x||2 = Ev 

dr = jjx (r)|~dr = Ej’*
(2.27)

Wyrażenia (2.27) określają odpowiednio całkowitą energię sygnału x(r) oraz energię zawartą 
w przedziale czasu ta <t <th wyrażone na podstawie przekształcenia Wignera sygnału.

Analogicznie, całkowanie przekształcenia Wignera sygnału x(r) po osi czasu od —oo < f < -}-oo 
dla -oo < co < +oo oraz dla a>u <axtoh wyznacza odpowiednio całkowitą energie sygnału

(2.28)

oraz energię sygnału zawartą w przedziale (^,6^).
W. 11. twierdzenie Moyala - twierdzenie o iloczynie skalarnym (unitarność) 
Twierdzenie to można traktować jako pewną analogię do twierdzenia Parsevala.

J JwDxJ?,«) W^J^jdzc^K)7’#)

1
2tz

J j WDt (r, ty) WD\ (r, afltdco =
(2.29)

W. 12. warunki brzegowe dla czasu
„ . r t . . , t. + r.Przyj muj ąc za r + — = r, oraz t - — = t2 możemy wyrazie r, r j ako t = - oraz T = t} -t2.

Stąd równanie (2.26) przyjmie postać:
— 7 WD v v f = X (r,) y* (r2) (2.30)
2^ \ 2 )

W szczególności dla t} = t2=t uzyskujemy:

271 J
Z <2-31)
jWDv(/,^d® = |x(/)|2

Oznacza to, że całkowanie przekształcenia Wignera po częstotliwości dla określonego t 
prowadzi do chwilowej energii sygnału określonej w chwili t. Właściwość ta jest jedną 
z pożądanych właściwości jakie winny spełniać nieparametryczne przekształcenia czasowo- 
częstotliwościowe.
Przyjmując dalej t} -1, t2 = 0 możliwe jest podjęcie problemu odzyskania sygnału z jego 
transformacji Wignera:
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(2.32)

Wyrażenie (2.32) podkreśla możliwość odzyskania oryginału sygnału z jego transformaty 

Wignera przez odwrotną transformatę Fouriera w chwili — wyskalowaną przez stały 

współczynnik x*(0).
W. 13. warunki brzegowe dla częstotliwości
Podobne rozumowanie jak w przypadku czasowych warunków brzegowych można 
przeprowadzić w dziedzinie częstotliwości wykorzystując własność symetrii przekształcenia 
Wignera. Równanie (2.13) opisujące przekształcenie Wignera na bazie widm sygnałów

(
77 i i 77 । co + IY* I co - I

przyjmując jako zmienną // przy ustalonym parametrze tu. Poszukując zatem funkcji 
podcałkowej należy:

J WDxr (tu, rje^df = X [ co + Y* [co - (2.33)

ri oPrzyjmując za co+ — = coxovazco-— = co2 możemy wyrazie co, rj jako 

co. + oy , . .co = ——- oraz r] = co} - tu,, co prowadzi do:

J WDxy )tdz = X (tu,) Y* (tu,) = jwD^ ^“^dt (2.34)

W szczególności dla tu, -co2—co uzyskujemy:

J WDw (co,t)dt= j WD,V (t, co)dt = X (ty) Y* (ty)

~ r (2-35)
J WDX (tu,r)dr = JwDt(r,tu)dr = |x(tu)|2

Oznacza to, że całkowanie przekształcenia Wignera po czasie dla określonego tu prowadzi do 
widma gęstości energii określonej dla przyjętej wartości co. Powyższa właściwość wraz ze 
wspomnianą już właściwością zachowania chwilowej energii sygnału leżą u podstaw 
wymagań stawianym nieparametrycznym czasowo-częstotliwościowym reprezentacjom 
sygnału, bowiem jedynie wtedy możliwe jest by zachowana została całkowita energia 
sygnału.
Wybór a\ = co, co2 = 0 prowadzi do odzyskania widma sygnału z jego transformacji Wignera:

7 WD„ (y A = X(®) Y- (0) = 7 WD„ (pfk

~ ~ (2.36)

7 WD» (p'}' = J w, p-y)1'= XW x‘ (o)
W. 14. iloczyn zmiennej „t” i sygnałów
Jeśli x,(t) = tx(t), y,(r) = /y(t) to:
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WD,,«,») +WD, „ (l,a) = 2rWD„ (t.a)
W. 75. iloczyn zmiennej „co" i sygnałów
Jeśli Xj (r) = cox{t\ yx (t) = ®y(0 to:

WD V(t,<y) + WD (t,®) = 2ćyWD (t,®)
W. 16. biliniowa natura przekształcenia a sygnały wieloskładnikowe 
Jeśli x1(t) = x11(0 + x12(0, y1(t) = yn(0 + y12(0 to:

(2.37)

(2.38)

WD (r,ru) = WD v (t,ry) + WD v (t^j + WD, v (t,ry) + WDr v (t,co)

WDV (?,«) = WD^ (ń^ + WD^ (t,ćy) + 2Re{WDJn Vp (r,®)}
Przekształcenie Wignera sumy sygnałów nie jest jedynie sumą przekształceń Wignera 
składowych sygnału, lecz również ich wzajemnych przekształceń Wignera. Pierwsze z nich 
przyjęto nazywać auto-składowymi (ang. auto-term), zaś składniki wzajemne noszą nazwę 
składowych krzyżowych (ang. cross-term). Składniki krzyżowe mają charakter oscylacyjny 
i umiejscowione są w częstotliwościowych środkach geometrycznych auto-składowych.

2.1.2. Pseudo-transformata Wignera oraz jej wersja wygładzona

Z punktu widzenia zastosowania przekształcenia Wignera w numerycznych 
obliczeniach, konieczne jest rozważenie problemu obciążenia sygnałów funkcją okna. 
Oznacza to, że zamiast wyznaczenia transformacji sygnałów x(t) oraz y(r) do rozważań 
przyjmuje się rodzinę funkcji xt (t) = x^t)hx (r-t) orazy, (r) = y(t)h (r-t), powstałą dla 
różnych położeń okien hx^, h^r) w zależności od t. Podążając za macierzystą definicją 
transformacji Wignera, wzajemną oraz własną pseudo-transformatę Wignera (ang. Pseudo- 
Wigner Distribution, PWD) opisuje wyrażenie [16,27,50,51,61]:

e^dr

j k k k k (2‘40)
PWD (t,co) = fx\t + - x* t-- h - h* -- e’>rdr2 1 2J l 2j (2j { 2j

Dla ustalonego t obliczona transformata Wignera sygnałów xt (t), yt (t) może być wyrażona 
za pomocą splotu przekształceń Wignera sygnałów oryginalnych i funkcji okien zgodnie 
z wyrażeniem (2.24):

WD^ = WDr.JWW

WDv(T,ty) = — [WD^z/jWD,, {z-t^-pUrt
' 2tc J

W powyższym równaniu t pojawia się jako parametr określający położenie okna na osi czasu. 
Dla 7 = t otrzymujemy pseudo-transformatę Wignera wyrażonąjako:

PWD, , (»,») = WĄ , jwDwM)WDKĄ(0,ffl-7)d7

(2.42)
PWD,\t,co) = WDx (r,ćy)|r=f =— fWD^ńz/jWD^ (0,co-
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Zgodnie w powyższym wyrażeniem wzajemna lub własna pseudo-transformata Wignera jest 
splotem reprezentacji Wignera sygnałów nieobciążonych z niezależną od czasu funkcją 
odpowiednio WDAh (0,69-7/) bądź WD/( (0,69-7/). Dla ustalonego t przekształcenie 
Wignera jest jedynie funkcją co. Zatem okienkowanie można traktować jako operację filtracji 
oryginalnej funkcji WDty filtrem o odpowiedzi impulsowej WD/( h (0,69), gdzie rolę czasu 
w charakterystyce impulsowej przejmuje co. Przyjmując rzeczywistą, parzystą funkcję okna 
hx (?) = h (r) , omawianą odpowiedź impulsowa można opisać zależnością:

WDh (0,69) = jh/^e^dr (2.43)

Stąd funkcja transmitancji takiego filtru ma postać kwadratu okna, a co za tym idzie filtr taki 
będzie zawsze filtrem dolnoprzepustowym. Przyjmując okno prostokątne o długości T 
uzyskamy efekt filtracji idealnym filtrem dolnoprzepustowym, który stłumi zmiany 
częstotliwości w oryginalnym dwuwymiarowym widmie Wignera poza T/2. Pseudo- 
transformata Wignera jest więc wygładzoną wersją oryginalnej transformaty jedynie wzdłuż 
osi częstotliwości.

Kolejnym krokiem jest wygładzenie (uśrednienie) wzdłuż osi czasu. Należy dodać, 
że kierunek ten jest szczególnie ważny ze względu na możliwość wyzerowania oscylacyjnych 
składowych krzyżowych w reprezentacji Wignera. Omówione obecnie zagadnienie dotyczy 
wygładzonej wersji pseudo-reprezentacji Wignera (ang. Smoothed Pseudo-Wigner 
Distribution, SPWD), która niesie ze sobą możliwość niezależnego wyboru uśrednienia 
czasowego i częstotliwościowego. Z punktu widzenia pseudo-reprezentacji Wignera 
wygładzenie po osi czasu uzyskane jest przez splot w dziedzinie czasu pseudo-reprezentacji 
z dodatkową funkcją okna g(t) [27,51,62]:

SPWDjt, 69)= jg(t-»)PWDv(w,69)dM (2.44)

Wracając do definicji PWD opartej na sygnale obciążonym funkcją okna h(t), równanie 
powyższe można również przedstawić jako:

SPWDx(f,69)= J/i(f) Jg(f—w)x^w+-^Jx*^w—-^-Jdw g-^df (2.45)

a wykorzystując H(69) jako transformatę Fouriera funkcji h(t) [27,51,62]:

SPWDr (7,69)= j jg(t-u)H(co-r]} WDx (u,t/)dud?] (2.46)

Podejście to daje możliwość niezależnego wyboru stopnia uśrednienia względem 
częstotliwości i czasu, bowiem wygładzanie oparte jest na splocie z dwuwymiarową funkcją 
będącą iloczynem niezależnych, jednowymiarowych funkcji g^H^co). Cecha ta jest 
szczególnie użyteczna jeśli przywołamy na myśl problemy krótkoczasowej transformaty 
Fouriera, gdzie istnieje ścisły związek pomiędzy rozdzielczością w czasie i rozdzielczością 
w częstotliwości. Omawiając ten problem warto zauważyć, że klasyczny spektrogram może 
być wyrażony również za pomocą reprezentacji Wignera. Możemy wtedy mówić 
o wygładzonej reprezentacji Wignera (ang. Smoothed Wigner Distribution, SWD), która nie 
posiada już cechy niezależności rozdzielczości czasowej i częstotliwościowej.

SWDjt, 69)= J JWDft(w-7,7/-69)WDX(w, 7/)dwd77 = SPECx(r, 69) (2.47)

24



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

Wygładzanie jest tu więc efektem splotu z dwuwymiarową funkcją wygładzającą, którą 
stanowi transformata Wignera WDh(-t,—co) funkcji okna h(t) z uwzględnieniem zmiany 
znaku zmiennych. W tym przypadku całkowity zasięg czasowo-częstotliwościowy omawianej 
funkcji wygładzającej podlega ściśle zasadzie nieoznaczoności. Konsekwencją tego jest 
z jednej strony słaba koncentracja czasowo-częstotliwościowa, ale i wysoki stopień 
złagodzenia składowych krzyżowych.

2.1.3. Transformacja Wignera-Ville’a

Jedną z właściwości przekształcenia Wignera jest ograniczenie pasma częstotliwości 
reprezentacji sygnałów o ograniczonym widmie. Pewnym szczególnym przypadkiem takiego 
sygnału jest zespolony sygnał analityczny xu(t) = x(t) +jx(t), którego część urojona x(t) 
jest transformatą Hilberta sygnału rzeczywistego x(r). Związek pomiędzy widmem sygnału 
analitycznego Xu (ty) a widmem pierwotnego sygnału rzeczywistego X(ry) opisuje poniższe 
równanie [16,52]:

2X(<y) dla &>>0
Xa(ćy) = < X(0) dla ty=0 => WD, (r,ty) = 0 dla ćy<0 

0 dla ry<0
(2.48)

Omawiany przypadek adoptowany został przez Ville’a dla potrzeb analizy sygnałów 
i zaowocował pojęciem transformaty Wignera-Ville’a, gdzie przekształceniu Wignera 
poddawana jest analityczna postać sygnału rzeczywistego [6,7,25,27,46,52,63].

WVDv(t,ty) = WDi (t,ry) = Jxa (2.49)

Efektem takiego wstępnego przygotowania sygnału są zerowe wartości przekształcenia 
Wignera-Ville’a dla ujemnej części osi częstotliwości.

Warto tu zatem podkreślić znaczenie formy Wignera-Ville’a, która przez wyzerowanie 
składników w ujemnej części osi częstotliwości, redukuje liczbę składowych krzyżowych, 
wynikających z fluktuacji pomiędzy auto-składowymi widma, leżącymi w jego ujemnej 
i dodatniej części osi częstotliwości. Ma to szczególne znaczenie praktyczne, kiedy 
przetwarzaniu poddawane są sygnały rzeczywiste, których widmo jest parzyste, a całą 
informację o śledzonych zmianach widma odczytać można z dodatniej części osi 
częstotliwości. Istnieją jednak przypadki, kiedy użycie formy Wignera-Ville’a mogłoby 
spowodować utratę informacji. Ma to miejsce wtedy, gdy przetwarzaniu poddawany jest 
sygnał zespolony, jak na przykład podczas analizy wektora przestrzennego. Wykorzystanie 
reprezentacji czasowo-częstotliwościowych do badania tego rodzaju sygnału jest jednym 
z proponowanych w niniejszej pracy obszarów zastosowań dla potrzeb elektrotechniki 
Poza tym używając analitycznej formy sygnału należy być świadomym pewnej 
niedogodności. Nawiązując do własności transformaty Wignera sygnałów ograniczonych 
w czasie można spodziewać się zachowania czasowego ograniczenia w reprezentacji 
Wignera. Sygnał analityczny wprowadza niestety rozmycie czasowe nie zachowując 
wspomnianej własności. Związek pomiędzy transformatą Wignera a Wignera-Ville’a 
podkreśla poniższe równanie [52]:
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WVDx(t,ty
sin (2 tur)---- ------ 2 WVDX (r - r, ty)d T (2.50)

Wcześniejsze pojęcia pseudo-reprezentacji i wygładzonej pseudo-reprezentacji można 
adoptować na gruncie równania Wignera-Ville’a. Wprowadzenie funkcji okna czasowego 
h(t) dla sygnału rzeczywistego x(r) prowadzi do równań pseudo-reprezentacji Wignera- 
Vill’a (ang. Pseudo-Wigner-Ville Distribution) [46,59]:

PWVDx(f,ń>)= (2.51)

i owocuje uśrednianiem wzdłuż osi częstotliwości.
Uzyskanie wygładzenia wzdłuż osi czasu uzyskane jest przez splot w dziedzinie czasu 
pseudo-reprezentacji Wignera -Ville’a z dodatkową funkcją okna g(r) i owocuje 
wygładzoną pseudo-reprezentacją Wignera-Ville’a (ang. Smoothed Pseudo-Wigner-Ville 
Distribution) :

SPWVD t (t, a) = J g (r - u) PWVD v (u, a)du (2.52)

co w połączeniu z sygnałem obciążonym funkcją okna h(t), można również przedstawić 
jako:

SPWVDx (t,ry) = T l u+— x
2

u—— |dw e icOTdT 
2

(2.53)

Podobnie jak w przypadku wygładzonej pseudo-reprezentacji Wignera, wygładzona wersja 
pseudo-transformaty Wignera-Ville’a niesie możliwość wyzerowania oscylacyjnych 
składowych krzyżowych w reprezentacji Wignera-Ville’a wraz z zachowaniem niezależnego 
wyboru stopnia uśrednienia czasowego i częstotliwościowego. Zredukowanie ilości 
składowych krzyżowych poprzez wykorzystanie analitycznej formy sygnału oraz dalsze ich 
wygładzanie w czasie i częstotliwości, czynią omawianą postać szczególnie użyteczną dla 
potrzeb analizy rzeczywistych sygnałów wieloskładnikowych.

2.1.4. Globalne i lokalne momenty transformacji Wignera jako wskaźniki 
niestacjonarności

Omówione powyżej własności przekształcenia Wignera podkreślają możliwość opisu 
dystrybucji energii sygnału w połączonej dziedzinie czasu i częstotliwości. Nie zawsze 
konieczne jest wykorzystanie pełnej reprezantacji na płaszczyźnie zwłaszcza jeśli 
zmierzamy ku praktycznym zastosowaniom dwuwymiarowych przekształceń. Celom takim 
służyć mogą momenty przekształcenia Wignera.

Wprowadzając definicję lokalnych momentów, reprezentację Wignera traktuje się jako 
funkcję czasu przy ustalonej częstotliwości lub funkcję częstotliwości przy ustalonym czasie. 
Stąd uzyskane momenty lokalne są odpowiednio jednowymiarowymi funkcjami 
częstotliwości lub czasu, wciąż zachowując informację o zmianach sygnału w czasie lub 
częstotliwości. W przypadku momentów globalnych, uzyskanych przez całkowanie po całej 
płaszczyźnie informacje o zmianach energii w funkcji czasu czy częstotliwości zostają 
utracone.

Dalsze różnice ujawniają się w przypadku wyznaczania momentów lokalnych czy 
globalnych nie dla przekształcenia Wignera, lecz dla jego kwadratu. Mając na uwadze fakt, 
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że przekształcenie Wignera nie jest zawsze funkcją dodatnią, takie podejście może okazać się 
konieczne ze względów interpretacyjnych.

Rolą niniejszego rozdziału jest wprowadzenie definicji i interpretacji momentów 
przekształcenia Wignera w nawiązaniu do definicji i interpretacji momentów sygnału i jego 
widma.

Lokalne momenty częstotliwościowe [16];
• lokalny częstotliwościowy moment zwykły zerowego rzędu

zn J
(2.54)

Dla ustalonego t średnia z przekształcenia Wignera po częstotliwości określa chwilową 
energię sygnału. Niezerowa wartość tego momentu pozwala zdefiniować unormowane 
momenty wyższych rzędów.
• lokalny unormowany częstotliwościowy moment pierwszego rzędu

J ryWDv (r,ry)dry
------------------- (2-55)

[WD,(r,a>)d<»

Pierwsza interpretacja tej charakterystyki wskazuje na średnią częstotliwość przekształcenia 
Wignera w chwili t. Korzystając z własności przekształcenia powyższą charakterystykę 
można również wyznaczyć z zależności:

—;— / x x (t] d
^wd, (0 =Im—7T = Imyln x 

x(t) dr
(') (2.56)

Przekształcenie Wignera sygnałów rzeczywistych jest parzystą funkcją częstotliwości, czego 
efektem jest zerowa wartość parametru kl'WD dla tej klasy sygnałów. W przypadku sygnałów 
zespolonych x(t) = v(r)ey^, gdzie v(r) oraz ^(r) są funkcjami rzeczywistymi, średnia 
częstotliwość przekształcenia Wignera sygnału stanowi pochodną fazy, co prowadzi do 
interpretacji unormowanego częstotliwościowego momentu pierwszego rzędu jako chwilowej 
częstotliwości sygnału (ang. instantaneous freąuency):

^WDX (C “ (0
lokalny unormowany częstotliwościowy moment centralny drugiego rzędu

^co-ś2'wd (r)jŁ WDv(r,ry)dry

(0=--- —--------
JWD^^^dry

(2.57)

(2.58)

Przekształcenie Wignera nie jest zawsze dodatnie, co powoduje, że charakterystyka (r) 
również może przyjmować wartości niezerowe. Efektem tego jest pewna trudność 
w bezpośredniej interpretacji omawianego momentu jako miary rozrzutu częstotliwości wokół 
punktu skupienia widma w chwili t. Jednocześnie własności przekształcenia Wignera dają 
możliwość wyrażenia (r) w następującej formie:

, , . 1 d x'(r)
(2.59)

2 dr x(r)
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co w przypadku sygnałów zespolonych = v^t)eJip^ , prowadzi do:

(0
1 d v’(Q
2 dr v(r) 2 dr2 lnH0| (2.60)

Globalne momenty częstotliwościowe [16];
Momenty globalne, uzyskane na drodze całkowania po całej płaszczyźnie (t,ai), są stałymi 
wskaźnikami, charakteryzującymi przekształcenie w sensie ogólnym.
• globalny częstotliwościowy moment zwykły zerowego rzędu 

____ i +°° +°°
=— j JWD,(r,a>)d?d® = ||x(f)||2 =||x(®)|| = E, (2.61)

Moment ten określa więc całkowitą energię zawartą w sygnale.
• globalny unormowany częstotliwościowy moment pierwszego rzędu

j JtyWDv(r,ty)drdry 

--------------- <2-62^ 
j JWDt(r,ry)drdćy

Wybór t jako pierwszej zmiennej całkowania prowadzi do wyrażenia:
____ i

, ,IP— (2 63)w ____

a wykorzystanie twierdzenia Parsevala pozwala wyznaczyć £2^ jako:

 W|x W| dt 

|| -------- <2-64)

Powyższe równania pozwalają interpretować globalny unormowany moment 
częstotliwościowy pierwszego rzędu jako średnia częstotliwość spektrum sygnału lub jako 
średnią ważoną chwilowej mocy sygnału, gdzie chwilowa moc sygnału jest funkcją wagi.
• globalny unormowany częstotliwościowy moment centralny drugiego rzędu

j j(ćy-ĄD ) WD^b^tydt y- ) |x(ry)pdry

------------- (2-65) 
j jWD^^dćydt llXWI

Powyższe równanie wskazuje na dodatni charakter co pozwala interpretować ten 
moment jako miarę rozrzutu spektrum sygnału wokół częstotliwościowego punktu skupienia.

Lokalne momenty czasowe [ 16];;
• lokalny czasowy moment zwykły zerowego rzędu

fWD^ćyjdt = |x(ty)|2 (2.66)

Analogicznie do interpretacji częstotliwościowego momentu zwykłego zerowego rzędu, 
opisuje chwilowe widmo gęstości energii dla ustalonej co.
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• lokalny unormowany czasowy moment pierwszego rzędu

___ pWDx(t,ry)dt 

— —
fWD^y^dt

(2.67)

Interpretacja tego momentu jako średniego czasu dla danej częstotliwości może być 
pogłębiona przy wykorzystaniu własności przekształcenia Wignera:

1—/ s X'(ry) d z s
H=-ImV/T=-:^lnXn (2.68)

J X(ry) dry
Stąd dla X(ty) = |x (ty)^^, gdzie |x (ty)| oraz ^(ty) są funkcjami rzeczywistymi, 

lokalny unormowany moment czasowy można traktować jako przeciwną pochodną 
charakterystyki fazowej widma. Ma to szczególne znaczenie jeśli poddanym przekształceniu 
Wignera będzie sygnał odpowiedzi impulsowej liniowego systemu stacjonarnego. Wtedy 
przeciwna pochodna charakterystyki fazowej transmitancji widmowej takiego systemu 
wskaże opóźnienie grupowe systemu (ang. group-delay).
• lokalny unormowany czasowy moment centralny drugiego rzędu

+ r / ------ \2

(") = ------------------------- (2-69)
|WDv(r,ćy)dr

Własności przekształcenia Wignera pozwalają dowieść, że moment ten zależy jedynie od 
charakterystyki amplitudowej.

I d X'(ty) 1 d |x(zy)j i d2 . M
^wd =----Re---------7~\-------- i—7^r =-------- 7 In X(ń?)’ 2 dry X(ry) 2dry|x(<y)| 2 dry2 1 v 71

(2.70)

Globalne momenty czasowe [ 16]"
Momenty globalne, uzyskane na drodze całkowania po całej płaszczyźnie (t,cb), są stałymi 
wskaźnikami, charakteryzującymi przekształcenie w sensie ogólnym.
• globalny czasowy moment zwykły zerowego rzędu

^7=^ j jw,o.(z,«)d«xi/=iix(£U)ii2=nx(z)n2=e^ <2-71’

Moment ten, podobnie jak globalny częstotliwościowy moment zerowego rzędu, określa 
całkowitą energię zawartą w sygnale.
• globalny unormowany czasowy moment pierwszego rzędu

___ J pWDv(r,<w)dćydt
C. = =--------------------  (2-72)

j JWDx(r,ry)d£ydt

Wybór ryjako pierwszej zmiennej całkowania prowadzi do wyrażenia:

p|x(r)|2dt
t‘ =—------- -— (2.73) 
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a wykorzystanie twierdzenia Parsevala pozwala wyznaczyć t'WD jako:

Jt^ (ry)|x(ry)|2 d®

Powyższe równania pozwalają interpretować globalny unormowany moment czasowy 
pierwszego rzędu jako globalny średni czas sygnału lub jako średnią ważoną opóźnienia 
grupowego, gdzie funkcją wagi jest widmo gęstości energii.
• globalny unormowany czasowy moment centralny drugiego rzędu

+°° +oo ____ 2 +°° ____ 2
j |x(0|2dr

< = --------- (2.75)
j JwDj^drdry Hr)ll

Powyższe równanie wskazuje na dodatni charakter <y^D , co pozwala interpretować ten 
moment jako miarę rozrzutu sygnału wokół czasowego punktu skupienia.

Przedstawione zależności, opisujące momenty przekształcenia Wignera oraz ich 
interpretacje, są pewnego rodzaju wprowadzeniem do zaproponowanego w niniejszej 
rozprawie kierunku wykorzystania przekształceń czasowo-częstotliwościowych. 
Dwuwymiarowość uzyskanych wyników, choć szalenie użyteczna z punktu widzenia 
określenia choćby rodzaju niestacjonarności, może okazać się niekorzystną własnością tego 
typu przekształceń, gdy zmierzać będziemy ku praktycznym możliwością ich wykorzystania. 
Jednowymiarowe charakterystyki unormowanych lokalnych momentów częstotliwościowych 
pierwszego rzędu Q'wd (t) możemy interpretować jako przebieg zmian w czasie punktu 
skupienia widma Wignera. Jeśli zatem w analizowanym sygnale nastąpiłaby zmiana składu 
jego spektrum, to skupienie uwagi na analizie zmian charakterystyki (r) może 
zaowocować wyznaczeniem charakterystycznych punktów niestacjonarności na osi czasu. 
Taki kierunek postępowania może być jednak zakłócony podstawową własnością wynikającą 
z parzystości auto-reprezentacji Wignera względem osi częstotliwości dla sygnałów 
rzeczywistych, a te przecież są materiałem badań w większości przypadków. Efektem 
wspomnianej własności jest zerowa wartość lokalnego momentu widma, a więc żadna 
użyteczna informacja. Stąd należałoby zastanowić się, czy charakterystyki (t) nie 
można by wyznaczać na podstawie dodatniej jedynie części widma Wignera, definiując w ten 
sposób pseudo-moment lokalny. Takie rozwiązanie wydaj e się nie wprowadzać błędu w 
przyjętym kierunku rozumowania. Kiedy bowiem pominięcie części ujemnej widma Wignera 
może okazać się niewłaściwym krokiem? Jedynie przypadek sygnałów zespolonych i to nie 
analitycznych wymagałby rozpatrywania całej osi częstotliwości, a to ze względu na różnice 
widma w dodatniej i ujemnej części. Ta właściwość przekształcenia Wignera może być 
użyteczna przy badaniu wektora przestrzennego, który jako sygnał zespolony utworzony 
z trzech sygnałów układu trójfazowego niesie ze sobą informacje o składowych 
symetrycznych takiego układu. Obserwacja reprezentacji czasowo-częstotliwościowej 
wektora przestrzennego dla dodatniej osi częstotliwości przyniesie informacje o zmianach w 
czasie składowej zgodnej układu, ujemna zaś oś częstotliwości zawierać będzie informacje 
o niestacjonarności składowej przeciwnej.

Zespolony sygnał analityczny charakteryzuje się zerowymi wartościami reprezentacji 
Wignera dla ujemnej części osi częstotliwości. Ta właściwość jest podstawą transformacji 
Wignera-Ville’a, gdzie sygnał rzeczywisty najpierw poddawany jest transformacie Hilberta 
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dla uzyskania sygnału analitycznego, a dopiero później transformacie Wignera. Świadome 
wyzerowanie ujemnej części widma pozwala na uniknięcie dodatkowych składowych 
krzyżowych pomiędzy składowymi widma dodatniej i ujemnej części osi częstotliwości. 
W przypadku więc transformacji Wignera-Ville’a, zdefiniowanie lokalnych momentów 
widma ma sens jedynie dla dodatniej części osi częstotliwości.

W związku z powyższym, przyjęcie kierunku wyznaczania lokalnych pseudo- 
momentów częstotliwościowych na podstawie dodatniej jedynie części osi częstotliwości 
reprezentacji Wignera bądź Wignera-Ville’a pozwoli zredukować wielowymiarowość 
przekształceń i traktować uzyskane jednowymiarowe charakterystyki jako pewnego rodzaju 
wskaźnik niestacjonarności. Poniższe równania opisują zaproponowane podejście na 
przykładzie lokalnych unormowanych pseudo-momentów częstotliwościowych reprezentacji 
Wignera i Wignera-Viłle’a, wskazujących na średnią, lokalną częstotliwość badanego sygnału 
rzeczywistego:

 jtyWDv(r,ty)dty 

= -----------------  
fWD^t^dty 

(2.76) 
jówWVDv(r,ty)dćy

Q1 (t) = -2-----------------------ł^WVDX \L ) +~

fwVDx(r,ry)dty
0

2.1.5. Przykłady analitycznego wyznaczania transformacji Wignera

W niniejszym rozdziale postanowiono zamieścić dwa przykłady analitycznego wyznaczania 
transformacji Wignera sygnałów ograniczonych w czasie, w celu przybliżenia natury 
omawianego przekształcenia. Transformacji poddano sygnał prostokątny oraz ograniczony w 
czasie sygnał cosinusoidalny
Przykład 1:

(2.77)

Rysunek 2.2. Przykładowy sygnał poddany transformacji Wignera.

Składniki podcałkowe możemy opisać jako:

31



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

X ^f-^2
(2.78)

x

= AX

(2.79)
x

Granice całkowania względem zmiennej r oraz niezerowe wartości całki Wignera można 
wyznaczyć na bazie analizy wzajemnego położenia okien sygnału.
a. t <t\

(2-80)

Rysunek 2.4. Ilustracja wzajemnego położenia okien 
'1 <'<|('l+G

składników całki Wignera dla

WDxx(r(ty) = A2 e ^MrdT= A2 -A—e
-j®

j2cu(r-r1f
c c
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'-2('l+,2)-,0

2 p-
WDX,X {t,co) = ^-sin\2a){t-tI') (2-81)

tj. gdy: 2(r-r2) = -2(r-r1)

Rysunek 2.5. Ilustracja wzajemnego położenia okien składników całki Wignera dla

wdxx 24“ sin CD (2.82)

Rysunek 2.6. Ilustracja wzajemnego położenia okien składników całki Wignera dla

f(r7+r2)<«</2

-2(,-12)

WD = f A2e)MTdz=:A2^c~iMr
X,X V 7 J -JćW

2(?-Z2)

2(r r2)

2(r-r2)

A2 eJ2ćy(w2)
-j®

_e"j2®(^2)

24“ sin CD (2.83)
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d. |(/l+r2)<,<,2

Rysunek 2.7. Ilustracja wzajemnego położenia okien składników całki Wignera dla t > t^

WDx,x (2.84)
Ostatecznie transformację Wignera sygnału prostokątnego ograniczonego w czasie od tj do 
możemy zapisać w postaci:

0 dla t <

WD ] A(t,co) = <

2
^^-sin —

2

dla rl <t< + t2)

— sin 2co(t — t2} dla

0 dla f >f2
Dla zilustrowania charakteru otrzymanej postaci poniżej zamieszczono przykład wyznaczenia 
przebiegu wybranej składowej transformacji Wignera tj. przy określonym co dla 
A = 10,?j = 0,?2 = 0.2 oraz ?2 = 0.3 .

0 dla t<ty
< 2 r

lim 2 — sin 2tt)(t — tA dla h <t-2(h+t2)
ów—>0k 60

/ 2 r “P
— lim sin 2d)(t — t2} dla 2(rl + f2)<r<r2

69—>0< 69 z
0 dla f>f2

0 dla t < ty

ĄA^lt-ty} dla fi <t<±- (rl +t2
wD^ąo)-

\ i / i 2
n i

-4A (t-t2) dla ^(^+^2 )<t<t2 (2.86)

0 dla t > t2
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W szczególności dla t =—(4 + r2) = 0.Is, WD^ (0.1,0) = 400x0.1 = 40

Skąd dla A = 10, żj = 072 = 0.2 otrzymujemy: 
r0 dla t<0

wd4J(/,o)=.
4A2f = 400r

-4A2(t-t2 ) = -400(t-0.2)

dla

dla

0<f<0.1

0.1<f<0.2
0< dla f>0.2

2
Podobnie dla A = 107] = 0,r2 = 0.3 :

dla

dla

f<0

0<f<0.15
wd^o)-

Po
4A2f = 400f
-4A2(t-t2) = -400(t-0.3) dla 0.1 < t < 0.3
0 dla r>0.3

a w szczególności dla t =—(4+t2) = 0.15$, WDjj (0.15,0) = 400x0.15 = 60.

Podobnie można przeanalizować dowolne składowe a) = O)q dwuwymiarowej reprezentacji:

0 dla t<tx

WDA,A

?42 . r_ /
sin 2ć9q(t-ty\

2

dla rl <t<^tx+t2)

-^—sin 2a)o(t 
CD^ L Z'J

dla

0 dla f >f2
Skąd dla A = 107] = 072 = 0.2 oraz wybranej o>q = 1O^(/o = 5Hz) otrzymujemy:

0

— sin[ 20^(f)l

dla

dla

t<Q

0<f< 0.1
71 L J

70
----- sin[207r(t — 0.2)^| dla 0.1<f <0.2

k0 dla f>0.2
20W szczególności dla t = —(6+t2) = 0. k, WDjj (0.1,0) = — sin{27r] = G bądź dla 

2 77
t = -^+t2) = 0.025.y, WD^ (0.025,0) = — sin [ — | = — « 6.37

8 77 \2 J 77
Rysunek 2.8 przedstawia transformaty Wignera omawianych sygnałów oraz przebiegi 
wybranych składowych (0,5,10)Hz
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Rysunek 2.8. Transformata Wignera sygnału prostokątnego dla 
A = 10, = 0, Z2 =0.2 (a) oraz = 0.3 (b), jak też charakter przebiegu wybranych składowych 
(0,5,10)Hz (c,d).

Przykład 2
Niech zadanym sygnałem będzie ograniczony w czasie sygnał cosinusoidalny: 

x(t) = +

X(,) = A (2.88)

Transformatę Wignera tak opisanego sygnału można wyrazić jako:

Dalsze przekształcenia prowadzą do poniższych wyrażeń:

(2.89)
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ej2(*vM
"l Ci "I Ci ~I Ci

4 + ł)4-f)e-J-dr =

oo

J 2cos2(a)Qt + </7') + e^°T + e^°r A^t +^A^t --jje^^dT (2-91)

. Z f

(2.92)

A f Z r\ A r\ , A f -j^+^ok J t\ A rZ+ — e v 0/ d f+; d dr+---- e JV 07 A t+^A t-^ dr
4 J \ 2/ \ 2/ 4 J \ 2/ \ 2/

Auto-transformatę WD^,®) ograniczonego sygnału cosinusoidalnego można więc zapisać 
w postaci:

A2 A2

2 r

(2.93)
a wykorzystując wyrażenia (2.85) opisujące WDj j (t,a>) otrzymujemy :

0, dla t < ty 

■^cos2(a)Qt + i/Ąsin^2co(t — ty )^j +

2 f

WDX x (t,iv)
dia ty <t<-{ty +t2)

2
-■^■cos 2^a>Qt + ^sin^co^t -12)] +

1)]}

(2.94)

dla -(ty +t2 <t <{2

0, dla t > t2
Dla zilustrowania charakteru otrzymanej postaci poniżej zamieszczono przykład wyznaczenia 
przebiegu WDrj(t,0) sygnału x(t) = 10c<95,(1007rt)[/(t)-/(t-0.2)^

'O dla t < 0

WDxJ»,0) =
200r cos ( 2007n ) H— sin ( 200^t)

71

-200 (t - 0.2) cos (200^) - — sin (200^ (t - 0.2))
TT

dla

dla

0 < t < 0.1

0.1 < r < 0.2

dla t > 0.2
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W szczególności dla t =—(^ + t2) = 0. 15, WDn (0.1,0) = 20 cos (207?) + —sin (20tt) = 20.
2 TC2

Analogicznie wyprowadzić możemy zależność opisującą przebieg przekształcenia Wignera 
dla wybranej pulsacji cog:

0, dla t < /] 
.2

cos [2a>Qt^ sin(2a>Qt^

3.2 2
= ——sin(4tOrlt} + A t, 

4 ®o V ' 2
A2 --2—cos
"o

( 2rygr ) sin [ 2o>q (t - t2)]
(2.95)

0, dla t > ?2

Jeśli również t2 = kT0,T0 -271/(0^ to wyrażenie powyższe upraszcza się do postaci:

^,x(0«0) = ‘

0, dla t < ty

—-^—sin(Aa>(<t\ + A^t, dlari<t< —
4 V ' 1 2

0, dla t > t2

a w przypadku omawianego przykładu x (?) = 1 Ocm(100^)[7(t)-/(t-0.2)]

^,x(0100^) =

W szczególności dla

0, dla t < 0
3

-j—5m(4007n) + 100r, dla0<r<0.1

3
----- 5Żn(400^) -100(t - 0.2), dla 0.1 < t < 0.2

4zr
0, dla t> 0.2

r = l(Zj+Z2) = 0.15, WD^(0.1,100^-) = 10 bądź dla:

1t = -(tj + r2) = 0.0255, WDh (0.025,100^) = 100x0.025 = 2.5
8

t = -(t] +t2) = 0.1255, WDxr (0.125,100^) = -100(0.125-0.2) = 7.5 
8

Rysunek 2.9 przedstawia transformaty Wignera omawianego sygnału oraz przebiegi 
wybranych składowych (0,50,55,60)Hz
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Rys. 2.9. Transformata Wignera ograniczonego sygnału cosinusoidalnego
x (?) = \0cos(100#?)[/(?)-/(?-0.2)] (a,b) oraz charakter wybranych składowych
(50,55,60)Hz (c) oraz OHz (d).

Dla porównania poniżej przybliżono również charakter transformaty Wignera sygnału
(100#?) [/ (?) - /(? -0.3)] (rys 2.10). Wtedy: 

dla ? < 0

ograniczonego dla t2=0.3s, tj. x(?) = 10 cm 

0

WD„(/,0) =
200? cos(200#?) H— sin(200#?) 

#
dla

—200 (? — 0.3 ) cos ( 200#?)---- sin ( 200# (? — 0.3)) dla
#

0.3

0 dla

W szczególności dla ? = — (?] + ?2) = 0. k, WDXX (0.15,0) = 30cm(30#)+ —
2 #

sin (^30^ = 30 .
2

Wrx(?,100#) =

0, dla ? < 0
3

— .ym(400#?) +100?, dla0<?<0.15

3
----- sm(400#?)-100(?-0.2), dla0.1<?<0.3

4#
0, dla? >0.3
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Rys. 2.10. Transformata Wignera ograniczonego sygnału cosinusoidalnego 
x (r) = 10co5 (1 OO^t) [/(?)-7 (t-0.3)] (a,b); charakter wybranych składowych (50,55,60)Hz 
(c) oraz składowej krzyżowej (0Hz) (d).

2.2. Funkcja nieoznaczoności - korelacyjna klasa czasowo- 
częstotliwościowych reprezentacji sygnału

W klasie korelacyjnych przekształceń czasowo-częstotliwościowych podstawowym 
przykładem jest tzw. funkcja nieoznaczoności (ang. ambiguity function). Wprowadzona przez 
Ville’a i MoyaTa została w latach pięćdziesiątych adoptowana przez Woodward’a do analizy 
sygnałów techniki radarowej [19,27] . Jak już wspomniano efektem przekształcenia czasowo- 
częstotliwościowego rozumianego w sensie korelacyjnym jest dwuwymiarowa funkcja 
przesunięć czasowych i częstotliwościowych. W technice radarowej głównym problemem jest 
estymacja odległości i prędkości przesuwającego się obiektu. Przeniesienie sygnału do 
połączonej dziedziny przesunięć pozwala powiązać zmienną przesunięcia czasowego 
z odległością oraz zmienną przesunięcia częstotliwości z prędkością czy też opóźnieniem 
Dopplerowskim.

Wspomniano już, że czasowo-częstotliwościową reprezentację można uzyskać 
poprzez transformację Fouriera tzw. chwilowej funkcji autokorelacji (wyrażenie (2.8)).

i T \ ( T \Przyjęcie symetrycznej postaci chwilowej funkcji autokorelacji rt(f) = x t+- / t— 
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oraz zmiana zmiennej całkowania z r na t prowadzi do korelacyjnej klasy przekształceń, 
a dokładnie do wyrażenia opisującego symetryczną funkcję nieoznaczoności (ang. symmetric 
ambiguity function) [2,26,27,51,52,62]:

^Fx{0,t) = f + (2.96)

Podobnie jak transformatę Wignera, funkcję nieoznaczoności można wyrazić również za 
pomocą widma sygnału X (jaĄ, tj.

AĘ(0,r) X| co+- |x*| co-- |ej"rdćy 
< 2 J 2 J (2.97)

Funkcja AF, rozumiana jest jako czasowo-częstotliwościowa korelacja, wskazując stopień 
podobieństwa sygnału x(r) i jego czasowo-częstotliwościowej reprezentacji. W odróżnieniu 
od zmiennych czasu t oraz pulsacji co jako wartości bezwzględnych, zmienne r oraz 0 są 
wartościami względnymi skojarzonymi odpowiednio z przesunięciem czasowym 
i częstotliwościowym. W literaturze spotkać można wyodrębnienie powyższej definicji jako 
wąskopasmowej funkcji nieoznaczoności [62], ze względu na klasyczne zastosowanie tego 
przekształcenia w wąskopasmowej radiolokacji powietrznej. Wprowadzenie dodatkowego 
współczynnika do definicji (2.96), mającego na celu zamodelowanie wpływu środowiska na 
rozchodzenia się sygnału, prowadzi do szerokopasmowej funkcji nieoznaczoności [62]:

AFWvv(^,r)= Jx

AFWvx(0,r) = Jx (2.98)

W powyższym równaniu ;; oznacza współczynnik skalujący bliski 1, x(r) oraz y(t) 
reprezentują impulsowy sygnał odebrany i wysyłany. Dla y(r)=x(r) analizie jest poddawany 
tylko sygnał odebrany. Jako przykład znaczenia szerokopasmowej funkcji nieoznaczoności 
można podać jej zastosowanie w radiolokacyjnych systemach nawigacji morskiej. Skalowanie 
współczynnikiem i] dotyczy w tym przypadku sygnału wysyłanego i ma na celu fizyczne 
modelowanie efektu Dopplera w środowisku wodnym [62].
Warto w tym miejscu wspomnieć, że w literaturze napotkać można na definicję funkcji 
nieoznaczoności opartą na odwrotnej transformacie Fouriera [19,21,25,29,30,40]:

AFx(0,t) = AFxx(0,t) = ^- jxp + |k*p-|jeJ*'dt (2.99)

Przyjęcie takiej definicji ma pewien wpływ na sformułowanie uogólnionego równania 
reprezentacji czasowo-częstotliwościowej. W niniejszej pracy zdecydowano pozostać przy 
wprowadzonej przez Woodwarda, oryginalnej wersji równania definicyjnego funkcji 
nieoznaczoności (równanie (2.96)).

2.2.1. Właściwości funkcji nieoznaczoności

Poniżej podano kilka właściwości funkcji nieoznaczoności (2.96) tak, by możliwe 
było porównanie ich z własnościami transformacji Wignera [27,51 ]:
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A. 1. zespolony charakter funkcji nieoznaczoności
W przeciwieństwie do auto-transformacji Wignera, która jest funkcją rzeczywistą, funkcja 
nieoznaczoności jest funkcją zespoloną i nie spełnia równania AĘ (0,-r) AĘ* (#,r). Dla
sygnałów rzeczywistych funkcja ta spełnia Hermitowski warunek parzystości:

AĘ(^,f) = AF. (-^,-t) (2.100)

A. 2. przesunięcie w czasie
Jeśli x, (?) = x(t-t0) to:

AĘ (0, z) = AĘ (3, z) e~ie,° (2.101)
A. 3. przesunięcie w dziedzinie częstotliwości
Jeśli Xj (r) = x(t)ejaw to:

AĘ (3, r) = AĘ (3, z) e(2.102)
A. 4. skalowanie sygnału w dziedzinie czasu
Jeśli Xj (t) = ^|a|x(at) to:

AĘ(0,r) = AĘ|(2.103) 
1 \a J

A. 5. funkcja nieoznaczoności sygnałów o ograniczonym czasie trwania
Ograniczenie sygnałów w czasie przejawia się ograniczeniem funkcji nieoznaczoności wzdłuż 
osi przesunięcia czasowego r:

x(0 = 0dlatg (fa,ffc)=>AĘ(0,?j = Odla (2.104)
A. 6. funkcja nieoznaczoności sygnałów o ograniczonym paśmie częstotłiwości 
Ograniczenie spektrum sygnałów przejawia się ograniczeniem funkcji nieoznaczoności 
wzdłuż osi opóźnienia Doppłerowskiego:

X(ry) = 0 dla co^ (a)a,(Oh) => AĘ (3,f) = 0 dla |0| > (tą,-O)a) (2.105)
Warto zauważyć, że w przypadku sygnałów analitycznych funkcja nieoznaczoności nie osiąga 
wartości zerowych dla ujemnej części osi przesunięcia częstotliwości.
A. 7. modułacja sygnału a postać funkcji nieoznaczoności
Przekształcenie AF sygnału zmodulowanego przejawia się splotem funkcji nieoznaczoności 
sygnału i fali nośnej w dziedzinie częstotliwości. Dla xm(t) = x^mx (t) auto-funkcję 
nieoznaczoności można wyrazić równaniem:

AĘ [3,z} = -^— |AĘ(A,T)WDm (^-A,T)d2 (2.106)

A. 8. biliniowa natura przekształcenia a sygnały wieloskładnikowe
Jeśli X] (t) = xH(t) + x12(t) to:

AF^,r) = AFj0,r)+AĘjS,r)+^ (2.107)
Podobnie jak w przypadku przekształcenia Wignera, funkcja nieoznaczoności sumy sygnałów 
jest sumą przekształceń składowych sygnału oraz składowych interferencyjnych. 
W odróżnieniu jednak od przekształcenia Wignera składniki własne umiejscowione będą 
w środku układu współrzędnych płaszczyzny (3,rf a położenie składników interferencyjnych 
zależeć będzie od wzajemnych przesunięć czasowo-częstotliwościowych. Dokładnie 
zagadnienie to omówione zostanie nieco później, kiedy podany zostanie przykład funkcji 
nieoznaczoności oraz transformacji Wignera-Ville’a sumy sygnałów Gaussowskich.
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2.2.2. Funkcja nieoznaczoności a przekształcenie Wignera - dualność klas 
energetycznej i korelacyjnej

Równanie definicyjne symetrycznej funkcji nieoznaczoności (2.96) pozwala traktować 

je jako transformatę Fouriera sygnału xl i + — ly I r-—I, PrzyJmuj4c Ja^° zmienn4 

całkowania t przy ustalonym parametrze r. Stąd odwrotna transformata Fouriera pozwala 
wyrazić funkcję podcałkowąjako:

— fAFMTje^d^Kl t + - |x*| t-- | (2.108)
2^2 k 2j

Podobne rozumowanie zastosowane do transformacji Wignera, gdzie zmienną całkowania jest 
r przy ustalonym parametrze t, prowadzi do wyrażenia funkcji podcałkowej poprzez:

|WDx(^>j^d0 = xfr+|jx*G^ (2.109)

Wykorzystując powyższe równania możliwe jest znalezienie związku pomiędzy 
transformacją Wignera a funkcją nieoznaczoności [27,52]:

WDx(b«) = — f jAFj^-rje^e^dMr

(2.iio)
AĘ (^,t) = j jWDv (t,ty)e^e^dtydr

Równania powyższe wskazują na pewien dualny charakter przekształceń Wignera i funkcji 
nieoznaczoności, a co za tym idzie możliwość „przenoszenia” pomiędzy dziedzinami 
i (0,r). Wzajemne relacje pomiędzy transformacją Wignera a funkcją nieoznaczoności 
przedstawia poniższy rysunek [52] .

Rys. 2.11. Wzajemne relacje pomiędzy transformacją Wignera a funkcją nieoznaczoności.

Dla przybliżenia związków pomiędzy energetyczną a korelacyjną klasą przekształceń poniżej 
przedstawiono przykład transformacji Wignera-Ville’a i funkcji nieoznaczoności 
dwuskładnikowej funkcji Gaussa [25,57]:

■ 6~'i) . (f~*2)
x(r) = x,(t) + x2(0=-r—e e^'+-rŁ=e (2.111)

^^rtz2
Składniki powyższej funkcji skupione są odpowiednio wokół (ti, coj) oraz (t2, (£>2)- Biliniowy 
charakter omawianych przekształceń objawi się istnieniem składowych własnych (ang. auto- 
terms) i krzyżowych (ang. cross-terms). Ich położenie na płaszczyznach czas-częstotliwość, 

43



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

w przypadku transformacji Wignera-Ville’a, czy przesunięć czasowych 
i częstotliwościowych, dla funkcji nieznaczoności, można ściśle określić wprowadzając 
parametry opisujące wzajemne relacje pomiędzy punktami skupienia składników 
Gaussowskich [52]:

A +t2t — —----— t — t — tlg 9 *2 n
2 (2.112)

gdzie: oraz a>K wyznaczają środki geometryczne, a td oraz cod odstępy pomiędzy
składnikami Gaussowskimi, odpowiednio na osi czasu i częstotliwości (pulsacji).
Zgodnie z przedstawionymi właściwościami dotyczącymi transformacji Wignera-Ville’a oraz 
funkcji nieoznaczoności sygnałów wieloskładnikowych, poszukiwane reprezentacje dla 
omawianego przykładu można opisać wyrażeniem:

WVDx(t,ty) = WVDv (t,®) + WVDti (r,ty) + WVD,(/,«) + WVDVi (t,aĄ
AF^ (M +AĘ2 (M +AF^ (0,t) +AF^ (&,?) (2‘H3)

Rys. 2.12 przedstawia położenie składników własnych i krzyżowych kwadratu modułów 
WVD oraz AF dla różnych punktów skupienia składników Gaussowskich. Warto zauważyć, 
że przedstawienie sygnału na płaszczyźnie czas-częstotliwość (WVD) wskazuje bezpośrednio 
punkty skupienia składników sygnału, a składowe krzyżowe skupione są w geometrycznym 
środku (tg,a>g). Reprezentacja sygnału na płaszczyźnie przesunięć czasowych 
i częstotliwościowych (AF) skupia składniki sygnału w środku układu współrzędnych, 
wyraźnie wskazując wzajemne położenie między nimi (td, Od) oraz (-td, -(Od)-
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Punkty skupienia składników Gaussowskich: (O.O8s,5OHz), (0.16s,250Hz) - tg = O.12s,fg = 15O//z,tj = 0.085,^ = 200Hz

t[s] teta[Hz]

Punkty skupienia składników Gaussowskich: (0.04s,50Hz), (0.16s,50Hz) - tg = O.lj,fg =50//z,tj = 0.12s,łj, = 0Hz

Punkty skupienia składników Gaussowskich: (0. ls,50Hz), (0.1s,250Hz) - tg = O.ls,fg = ISOHz.t,, = Os.fj = 200Hz

Rys. 2.12. Kwadrat modułu transformacji Wignera-Ville’a (WVD - a,b,c) oraz funkcji 
nieoznaczoności (AF -d,e,f) dla różnych punktów skupienia składników Gaussowskich.
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2.3. Przekształcenia klasy Cohena - uogólnienie energetycznej 
klasy przekształceń czasowo-częstotliwościowych

Dotychczas, rozważając biliniowe nieparametryczne czasowo-częstotliwościowe 
reprezentacje, omówiono transformację Wignera i Wignera-Ville’a oraz symetryczną funkcję 
nieoznaczoności sygnału. Powyższe przekształcenia mają kluczowe znaczenie w obszarze 
transformacji czasowo-częstotliwościowych. Jak niedługo zostanie pokazane nie są to jedyne 
transformacje tego typu, ale wyznaczenie innych nieparametrycznych transformacji czasowo- 
częstotliwościowych w wielu przypadkach można oprzeć właśnie o transformację Wignera 
bądź funkcję nieoznaczoności. Intensywne prace w tym kierunku prowadził w latach 70-80 
Leon Cohen, czego efektem było uogólnienie pewnej klasy biliniowych czasowo- 
częstotliwościowych reprezentacji, zwanej później klasą Cohena [19,20], Główna idea 
uogólnienia Cohena bazuje na wprowadzeniu w równaniu definicyjnym tzw. funkcji jądra 
(ang. kernel function), odpowiedzialnej za właściwości uzyskanego przekształcenia, 
prowadzącej do znanych przekształceń czasowo-częstotliwościowych czy też stwarzającej 
możliwość uzyskania nowych transformacji o określonych właściwościach. Uogólnienie tego 
typu niesie za sobą szereg pytań, na których odpowiedź postarano się zawrzeć w niniejszym 
rozdziale. Jak już wspomniano, pomiędzy funkcją jądra a właściwościami uzyskanego 
przekształcenia istnieje ścisły związek. Po wprowadzeniu definicji uogólnienia Cohena 
podane zostaną podstawowe pożądane właściwości przekształceń czasowo- 
częstotliwościowych. Wprowadzone równanie definicyjne, rozumiane w sensie 
energetycznym, rozszerzone zostanie o wskazanie czterech możliwych postaci uogólnienia 
Cohena, w zależności od przyjętych definicji funkcji jądra, jak również od wyboru budowy 
równania, opartego na transformacji Wignera bądź też na funkcji nieoznaczoności sygnału. 
Dalszym krokiem będzie powiązanie postaci funkcji jądra z właściwościami uzyskanego 
przekształcenia czasowo-częstotliwościowego. W ślad za przedstawionymi przykładami 
funkcji jądra opisane zostaną podstawowe znane przekształcenia czasowo-częstotliwościowe 
należące do klasy Cohena oraz ich właściwości.

Pozostając przy definicji funkcji nieoznaczoności wprowadzonej przez Woodwarda 
(równanie (2.96)) oraz wynikających z niej związków pomiędzy funkcją nieoznaczoności 
i transformacją Wignera (równanie (2.110)), uogólnienie nieparametrycznych biliniowych 
reprezentacji czasowo-częstotliwościowych opisuje równanie Cohena w postaci 
[2,26,27,49,51,52,62]:

TFC(/’(Lf)= f [ fxfM + -WM--V(A,7)e'2^^ 
J J •> l 2) i. 2 /

(2.114)
TFC(/} (f,®) = jj*/ + -VC &zdd

Jeśli przyjąć zmodyfikowaną definicję funkcji nieoznaczoności jako odwrotnej transformaty 
Fouriera chwilowej funkcji autokorelacji względem zmiennej t (równanie (2.99)), 
to w równaniu opisującym uogólnienie Cohena należy zmienić znak przy składnikach 
exp(J0t) oraz exp(- jOu) oraz uzupełnić wzór o współczynnik 1/2^ [14,25,29,30,40]:

u--
(2.115)

u - -Ł (0/ĄfrjeteJmej0ududTd0
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2.3.1. Pożądane właściwości reprezentacji czasowo-częstotliwościowych

W poprzednich rozdziałach, dotyczących transformacji Wignera oraz funkcji 
nieoznaczoności, przytoczono kilka podstawowych własności tych przekształceń. Niektóre 
z nich, takie jak zachowanie przesunięcia w czasie czy częstotliwości, są bardzo użyteczne. 
Omawiając klasę Cohena należy pamiętać, że wszystkie transformacje uzyskane drogą 
uogólnionego równania powinny spełniać właściwość przesunięcia czasowego 
i częstotliwościowego. Choć różne funkcje jądra mogą zaowocować uzyskaniem lub utratą 
szeregu innych właściwości, tak warunek przesunięć zostaje zachowany. Stąd w literaturze 
klasę Cohena określa się czasem mianem klasy zachowującej przesunięcia (ang „shift- 
invariant”) [27]. W tabeli 2.1 , w całości zaczerpniętej z prac [27] i [62], zamieszczono szereg 
pożądanych własności przekształceń czasowo-częstotliwościowych. Warto być świadomym, 
że wybrana do badania konkretnego sygnału reprezentacja czasowo-częstotliwościowa nie 
musi spełniać wszystkich wymienionych własności. Zbiór własności, oprócz wspomnianej już 
własności zachowania przesunięcia czasowo-częstotliwościowego, można ograniczyć 
w zależności od celu przetwarzania sygnału i w dużej mierze od charakteru niestacjonarności 
badanego sygnału.

Tabela 2.1 Zestawienie pożądanych właściwości reprezentacji czasowo-częstotliwościowych 
rozumianych w sensie energetycznym [27,62]

Nr Własność Wyrażenie
PI rzeczywisty charakter przekształcenia TF)£)(?,?y) = TF)£)ł(?,ty)
P2 zachowanie przesunięcia czasowego Jeśli X] (?) = x(?-?0) to:

= TF^'(/-?(^
P3 zachowanie przesunięcia

częstotliwościowego
Jeśli Xj (?) = x(?)exp(jryot) to:

P4 zachowanie skalowania w dziedzinie 
czasu

Jeśli x, (?) = y[ax(at) to:

(z,®) = TF^fa?,—1
\ a)

P5 zachowanie ograniczenia w dziedzinie 
czasu

Jeśli x(?) = 0 dla ?g (?],?2) to: 
TF)£* (?,&>) = 0 dla ?g (?,,?2)

P6 zachowanie ograniczenia w dziedzinie 
częstotliwości

Jeśli X(<y) = 0 dla m (cox,&>2) to: 

TĘ(£) (?,?y) = 0 dla (ćy,,ćy2)
P7 reakcja na iloczyn sygnału (modulacja) 

splotem reprezentacji w dziedzinie 
częstotliwości

Jeśli xm(?) = x(?)m(?) to:

TF)£) (?, ®) = — jTFf} (?, 2)TFf} (t, co-A) d2

P8 reakcja na splot sygnału (przejście 
sygnału przez SLS) splotem 
reprezentacji w dziedzinie czasu

Jeśli X/?) = x(?)*h(?) to:

TF!£) (?, ó>) = y- j (t, ?y)TFj£) (t-t, co) dt
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Tabela 2.1 c.d Zestawienie pożądanych właściwości reprezentacji czasowo- 
częstotliwościowych rozumianych w sensie energetycznym [27,62]

Nr Własność Wyrażenie
P9 spełnienie równości Moyala

(unitarność)
-1 
2n J

= (x,

jyptN

*

ry)drdry =

PIO zachowanie energii chwilowej (warunki 
brzegowe dla czasu) jTF (r,ry)dćy = |x(r)|’

Pil zachowanie widma gęstości energii 
(warunki brzegowe dla częstotliwości) jtfJ£)(r,ty)dr = X W'

P12 zachowanie momentów czasowych n- 
tego rzędu

1} "TFj£) (t ,af) drJry= Jr"N r)| dr

P13 zachowanie momentów
częstotliwościowych n-tego rzędu

7} t,co]drdry = j ty"|:K(ry)|2 dry

P14 możliwość wyznaczenia częstotliwości 
chwilowej sygnału zespolonego JtyTFi£)(z,ćy)dty

1 d r
=------- argj2ti dt 1

x(r)}
)dry

P15 możliwość wyznaczenia opóźnienia 
grupowego sygnału pTF!£’(t.® ) dr

271 dcoJti dr

P16 reakcja na zamianę zmiennych w 
transformacie Fouriera sygnału

Jeśli

ąp(£)

X(» == F{x 

pp(£) (

(0} ay(
co---- ,at 
a

r) - yTalk^at^ to:

PI 7 reakcja na iloczyn sygnału z liniową 
modulacją częstotliwości Jeśli

Tp(£) X,

X] (t) = A

(^/) =

■(')exPy2^| r2j to:

P18 reakcja na splot sygnału z liniową 
modulacją częstotliwości Jeśli

ąp(£)

X, (t) = A:(r)*exp| j27C 

k a

C 2-r2
2

j to:

Wszystkie reprezentacje należące do klasy Cohena zachowują przesunięcie czasowe 
i częstotliwościowe (własności P2,P3 , tabela 2.1). Jeśli dodatkowo jądro przekształcenia 
^(0,7) zależy tylko od iloczynu zmiennych 6 i r, czyli jest spełniony warunek

(Pcot ($r) > to reprezentacje te spełniają również właściwość skalowania 
w dziedzinie czasu, zgodnie z właściwością P4.
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2.3.2. Alternatywne postacie funkcji jądra

Poza przedstawioną podstawową definicją klasy Cohena (2.114) istnieją jeszcze cztery 
alternatywne postacie tego równania, które można otrzymać przez odpowiedni wybór 
zmiennych w funkcji jądra. Warto podkreślić, że pomiędzy różnymi postaciami funkcji jądra 
istnieją relacje oparte na jedno lub dwuwymiarowej transformacie Fouriera. Chcąc wyraźnie 
wskazać kierunki formułowania postaci równania klasy Cohena, funkcje jądra opisano 
dodatkowymi indeksami, które odpowiadają interpretacji ich zmiennych: t-czas, to-pulsacja, 
r-przesunięcie (opóźnienie) czasowe, 0-przesunięcie (opóźnienie) pulsacji. W tabeli 2.2 
zebrano oznaczenia oraz wzajemne relacje pomiędzy tak zdefiniowanymi funkcjami jądra, 
zaczerpnięte z prac Hahna [25] oraz HIawatsha [27].

Tabela 2.2 Cztery postacie funkcji jądra uogólnienia Cohena (2.114) i ich wzajemne relacje

Cztery alternatywne postacie funkcji jądra:
Postać 1 Postać 2 Postać 3 Postać 4

częstotliwość-czas 
(pulsacja-czas) czas-czas

czas- 
częstotliwość 

(czas-pulsacja)

częstotliwość-częstotliwość 
(pulsacja-pulsacja)

AA A A^A A AA
Ł,AA AA A AAeA

Wzajemne relacje pomiędzy różnymi postaciami funkcji jądra oparte na jednowymiarowej 
transformacie Fouriera:

Postać 1 
^A^A^AA^A}

AAA = pAtA^'^ #ft(pA $aApA A2*fTdf

ŁAA = FA{<LAeA} AAoA^ł AAA = ]AA0AAmda)

Postać 2 AAA= fA AAA ^AAA^A

aA^AA K(^)} AAtA ]^At^Aimd(o

Postać 3 
^,AtA = FA{AAe^A}

^AcfA^AA^fA^'^ AA=^\AAAQ-j2nfTdT

^Ap^A^AA^A} AAA = ^AAt^

Postać 4 A AA A ^ApA^^

AAe^AFr{AAA} AA^A
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relacje
Tabela 2.2 c.d. Cztery postacie funkcji jądra uogólnienia Cohena (2.114) i ich wzajemne

Cztery alternatywne postacie funkcji jądra:
Postać 1 Postać 2 Postać 3 Postać 4

częstotliwość-czas 
(pulsacja-czas) czas-czas

czas- 
częstotliwość 

(czas-pulsacja)

częstotliwość-częstotliwość 
(pulsacja-pulsacja)

AAA AAf) A A’f) 
AA3’A

Wzajemne relacje pomiędzy różnymi postaciami funkcji jądra oparte na dwuwymiarowej 
transformacie Fouriera :

Postać 1 A

Postać 2
ćW.P = FŻF^..,(eF }

i
(ip= j

Postać 3
1

Postać 4

^ojm {6,o>)= j j^„ (z,r)e_Jlilr^^'drdr

Sprawdzenie:
Postaci

^(^7) = J J co)ejmTdco e~ie,dt= dt

bądź:

<UAA = j pU^^e^dzd^ J ejmdo) = j {0, co) ejandco =0M (0, t)[^A^^A 16‘dt

Postać 2: (/)„ (er) = F^F;' (^ty))

AAA = f
,jm jOtd^d0 = f [^(P^e^dco e'e,d0 = f^(0,p)e^d0

bądź: <^^ = ^^{^0,(0)}
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e7ftd^dty = j j^(ya,(^,ćy)eje'd^ ejmda>= (t,co)eJl"rdco (t,v)

Postać 3: (t,w) = F~'Ft (0,t)}

J ftH*,-J^ei0,dTdP = J ej0,dP^ $ 0t„(P,a\eJ0,dP ^,„(t,co)

bądź: (t,a) = FTFg' (^,r)} 

^(^r)= J pU^K^^d^ J f (P,r)ej0,dP e~imdT= (t^je^dr^ (t,ty)

Postać 4: c/)^ {P, co) = F,FT {0„ (t, t)}

= f RM* J0>Te iB,dTdt= j {t,r)e 7®rdr e-^dt = <!>,„ (t, co) e~je,dt (P, co)

bądź: (/)mm{P,ćo) = FrF,{(/)tt(t,T)}

Ko, (^«) = j j(?>r) e~ie,e-imdtd T = J l^(t,T)e-jff,dt e-jaTdT= \ć>(JP^)e-JOJTdT=^miJ{P,oj)

Graficznie wzajemne relacje pomiędzy omawianymi czterema postaciami jądra przedstawia 
rysunek 2.13.

Rys. 2.13. Relacje pomiędzy czterema alternatywnymi postaciami funkcji jądra oparte na 
jednowymiarowej (a) i dwuwymiarowej transformacie Fouriera (b)

2.3.3. Alternatywne postacie równania Cohena

Nawiązując do odpowiednich relacji pomiędzy zmiennymi funkcji jądra, można zapisać 
główne równanie klasy Cohena w czterech alternatywnych postaciach: częstotliwość-czas 
(pulsacja-czas), czas-czas, czas-częstotliwość (czas-pulsacja) oraz częstotliwość-częstotliwość 
(pulsacja-pulsacja).
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Postać 1 równania Cohena - częstotliwość-czas (pulsacja-czas):
Wychodząc bezpośrednio z równania (2.114) oraz przyjmując u jako pierwszą zmienną 
całkowania, otrzymujemy wyrażenie na bądź TFC(£) (t,co), jako wynik

dwuwymiarowej transformaty Fouriera iloczynu funkcji jądra i funkcji

nieoznaczoności AF^t)lub odpowiednio i AF(6\r) [26,27,49,51,52,62]:

TFC(/’ (t,/) = 7 JAF(//,r)^ (p^e^e-^drdp

TFC(/’(C®) = J ^AF{0,T)</)M{0,Tyjeie~jmidTdO

(2.116)
gdzie: AF(/Z,f)= Jx^u + ^x* --^^'^"‘du

AF((9,r)= |xfu+-Mx* fu—-^je^du

Iloczyn (//,t)AF(//,t) czy (0,t) AF(0,t) przyjęto nazywać uogólnioną funkcją
nieoznaczoności (ang. generalized ambiguity function) [7,19,21], 
Postać 2 równania Cohena - czas-czas:
W równaniu definicyjnym (2.114) , ze względu na zmienną p {0), można wyodrębnić 
podcałkowy człon:

J(p^e^e-^dp = "J</>fl {p^^^dp

(2.117)
K &e^e"^“d0 = +J(0,r)ej0^d0

Nawiązując do tabełi 2.2 oraz możliwości zapisu funkcji jądra w postaci 0lt za pomocą

jako0„M= ^fl(p,zy'2v,,dp = ^0M(0,T)e.je‘d0, równania powyższe można

traktować jako (/)tl {t-u,T ,̂ skąd uzyskiwana jest druga alternatywna forma równania Cohena 
[26,27,49,51,52,62]:

TFcZ(c/) = J Jxfu +— Jx* f u—— {t—u,T^e~i2"fTdudt

“ (2.118)
TFC^(f,ć»)= J Jx^u+^x*^u-^j^„ {t—u,T}e~imdud.T

Jeśli dodatkowo przypomnimy wprowadzone wcześniej pojęcie lokalnej (chwilowej) 
(7" i । T \r + —lx*l t-—I, to omawianą alternatywną

postać równania Cohena traktować możemy jako przekształcenie Fouriera względem 
zmiennej r wygładzonej, chwilowej symetrycznej funkcji autokorelacji [27,62]:
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TFC^ (t,/) = J Rx {t^^dr 

TFC^(r,ćy) = jRj^^dT

fi I jgdzie: Rx(t,T) = J xI u-ł—lx*l u—l^zz (r-M,T)dw

(t-u,?) = (p^e^e-^dp

bądź: 0tl(t-u,T) = (^zje^W = (P,z)eJ0,e^&“dP

Postać 3 równania Cohena - czas-częstotliwość (czas-pulsacja):

Wykorzystując relacje 0z/(t,/) = j [p,T^e]2”(fl,~fT^dTdp oraz

= j jcOTeje,dTd0, reprezentację klasy Cohena można również

przedstawić jako wyniki dwuwymiarowego splotu reprezentacji Wignera (Wignera-Ville’a) 
sygnału z funkcjąjądra bądź 0ZZU, jako [26,27,49,51,52,62]:

TFC(/’(t,/) = 7 {WD^M^-^-^d^WD^^

(2.120)
TFC^(r,zy) = J JwDJC(M,77)^(t-u,ty-7)dMd7 = WDx(t,tw)*^(t,ty)

Postać 4 równania Cohena - częstotliwość-częstotliwość (pulsacja-pulsacja):
Ostatnia alternatywna forma równania Cohena oparta jest na związku pomiędzy funkcjąjądra 
w postaci </)ft czy też a funkcją jądra wyrażoną w formie czy też , w oparciu 
o widmo sygnału X(ja>') [27,49,51]:

TFC(/’ (c/ ) = ^X x7a-^V (//,/ - ^e^dpdA

ZZ (2.121)
TFC(/’ (r, ty) = 7 7 X f 77-^ X 0, e^d/zd 77

\ 2 J \ 2 j

Należy podkreślić, że wszystkie omówione postacie są jedynie alternatywną formą 
głównego równania definicyjnego (2.114) i opisują tę samą rodzinę przekształceń czasowo- 
częstotliwościowych. Wskazanie jednak różnych możliwości opisu klasy Cohena pozwala 
zastanowić się nad wyborem postaci, które może być najbardziej efektywna np. z punktu 
widzenia budowy algorytmu przetwarzania sygnału, możliwości optymalnego, adaptacyjnego 
doboru kształtu funkcji jądra czy też w zależności od rodzaju sygnału
i związanąz tym redukcją pasożytniczych interferencji [6,14,29].

Ocenę numeryczną omawianych postaci dokonano w pracach [3,7,62], Wyznaczenie 
reprezentacji Cohena bezpośrednio z równania definicyjnego (2.114) jest sposobem najmniej 
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efektywnym, wymagającym wykonania trzech transformat Fouriera i nie stwarzającym 
możliwości adaptacyjnej optymalizacji funkcji jądra. Postać 1 (równanie (2.116)), choć 
złożona obliczeniowo, dzięki właściwościom funkcji nieoznaczoności daje możliwość 
adaptacyjnej analizy. Składowe własne sygnałów występujące w funkcji nieoznaczoności 
AF^.r) skoncentrowane są w środku układu współrzędnych {0=0, t=0\ 
a składowe interferencyjne w pewnym oddaleniu od niego. Stąd możliwe jest takie 
kształtowanie funkcji jądra by przepuszczało ono z funkcji AF^r) jedynie
składowe własne sygnału przy jednoczesnym tłumieniu interferencyjnych składowych 
wzajemnych [3,4,5,31],

Niniejsza rozprawa nie obejmuje swoim zakresem problemu automatycznej adaptacji 
funkcji jądra do rodzaju sygnału, a kładzie nacisk na możliwość wykorzystania znanych 
reprezentacji czasowo-częstotliwościowych, a więc o określonych funkcjach jądra, do analizy 
niestacjonarnych sygnałów elektrycznych. W związku z powyższym bardzo interesująca 
wydaje się być postać 2, traktująca reprezentację jako przekształcenie Fouriera wygładzonej 
wersji chwilowej funkcji autokorelacji, równanie (2.119). Przy zadanej funkcji jądra (/)ft 
czy (0,t) jej alternatywna postać (r,r) obliczana jest tylko raz na początku i jest stała 
podczas obliczeń. Kolejnym krokiem tej metody jest wyznaczenie chwilowej funkcji

I
T" i * । Ti

r + —I, a następnie jej wersji wygładzonej

Rx(t,-r) = jxl w + —lx*l m—— l^„(?-M,-r)du, uśrednionej względem t, by ostatecznie 

wynikową reprezentację czasowo-częstotliwościową uzyskać jako transformatę Fouriera 
Rv (f,r) względem zmiennej r. Postać ta wydaje się być najwygodniejsza z punktu widzenia 
budowy algorytmu wyznaczania reprezentacji klasy Cohena.

I wreszcie postać 3, równanie (2.120), bazująca na dwuwymiarowym splocie 
reprezentacji Wignera z funkcją jądra w postaci bądź gdzie

^ (b/)= [ czy też J Jc {e,T}e-ianei0tdTÓ0,

przynosi jasny kierunek co do możliwości redukcji wpływu składowych interferencyjnych na 
uzyskaną reprezentację czasowo-częstotliwościową. Ponieważ składowe interferencyjne mają 
charakter oscylacyjny, istnieje możliwość ich wygładzenia czy też stłumienia poprzez 
odpowiedni dobór funkcji jądra. Kierunek ten jest na tyle istotny, że w literaturze można 
napotkać na własną nazwę omawianej postaci 3, jako wygładzonej reprezentacji Wignera 
(ang. smoothed Wigner distribution) [27,46,62],

2.3.4. Właściwości funkcji jądra a właściwości reprezentacji

Po przedstawieniu uogólnionej idei biliniowych przekształceń czasowo-częstotliwościowych 
nasuwa się pytanie o wpływ funkcji jądra na właściwości uzyskanej transformacji. Wcześniej, 
w tabeli 2.1, zestawiono szereg pożądanych właściwości jakie powinny spełniać reprezentacje 
czasowo-częstotliwościowe. Należy być jednak świadomym, że obciążenie dodatkową 
funkcją może spowodować utratę niektórych z nich. Z drugiej jednak strony funkcja jądra 
przynosi redukcję składowych krzyżowych. Wybór zatem funkcji jądra jest pewnego rodzaju
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„transakcją wiązaną”, gdzie przedmiotem sporu jest rodzaj niestacjonarności występujący 
w badanym sygnale i jakość uzyskanej reprezentacji. Niemniej jednak warto zastanowić się, 
jakie warunki musi spełniać funkcja jądra, by dana właściwość transformacji została 
zachowana. Tabela 2.3 zawiera zestawienie warunków dla funkcji jądra, powodujących 
zachowanie omówionych wcześniej, pożądanych właściwości transformacji czasowo- 
częstotliwościowych.

Tabela 2.3 Zestawienie warunków dla funkcji jądra, powodujących zachowanie pożądanych 
właściwości transformacji czasowo-częstotliwościowych

Nr Właściwość transformacji (tabela 2.1 ) Warunek dla funkcji jądra
PI rzeczywisty charakter przekształcenia

P2 zachowanie przesunięcia czasowego brak warunku, właściwość zawsze zachowana
P3 zachowanie przesunięcia

częstotliwościowego
brak warunku, właściwość zawsze zachowana

P4 zachowanie skalowania w dziedzinie 
czasu a I a rj = M^ t}, dla a 0

P5 zachowanie ograniczenia w dziedzinie 
czasu t,T^= 0dla t

T \2,
|, tj. ti

— 
1 ot 

U
-

— 
| O

l
1

P6 zachowanie ograniczenia w dziedzinie 
częstotliwości ) = Odla -) f

1 t
p
2,

,tj. (Ot
L 2 2 J

P7 reakcja na iloczyn sygnału
(modulacja) splotem reprezentacji w 
dziedzinie częstotliwości

P8 reakcja na splot sygnału (przejście 
sygnału przez SLS) splotem 
reprezentacji w dziedzinie czasu

)Mm:
P9 spełnienie równości Moyala

( unitarność )
MM =1

PIO zachowanie energii chwilowej
(warunki brzegowe dla czasu)

= 1

Pil zachowanie widma gęstości energii 
(warunki brzegowe dla częstotliwości)

MM = 1

P12 zachowanie momentów czasowych n- 
tego rzędu

«U<f.o)=i

P13 zachowanie momentów
częstotliwościowych n-tego rzędu

MM = 1

P14 możliwość wyznaczenia częstotliwości 
chwilowej sygnału zespolonego

kfo.o

- a . .

)=1

= 0
r=0

P15 możliwość wyznaczenia opóźnienia 
grupowego sygnału

30^

) = 1

9,^ = 0
0=0
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pożądanych właściwości transformacji czasowo-częstotliwościowych
Tabela 2.3 c.d. Zestawienie warunków dla funkcji jądra powodujących zachowanie

Nr Właściowść transformacji (tabela 2.1 ) Warunek dla funkcji jądra
P16 reakcja na zamianę zmiennych w 

transformacie Fouriera sygnału ^cot

O
s 

|1

U
 

U , dla c 0

P17 reakcja na iloczyn sygnału z liniową 
modulacją częstotliwości

Ł^-CT,T ), dla c 0

P18 reakcja na splot sygnału z liniową 
modulacją częstotliwości ^cot

O
S 

11 ts 
O

Ś

2.3.5. Pseudo - reprezentacje klasy Cohena oraz ich wersje wygładzone

Kończąc omawianie rodziny przekształceń Cohena warto również odwołać się do 
wspomnianego już przy okazji pseudo-reprezentacji Wignera i jej wersji wygładzonej 
problemu obciążenia sygnału funkcją wygładzającą i splotu otrzymanej reprezentacji 
z dodatkową funkcją wygładzającą. Wskazane relacje pomiędzy funkcją wagi sygnału 
a wygładzaniem w dziedzinie częstotliwości oraz splotem reprezentacji z dodatkową funkcją 
wygładzającą a wygładzaniem w dziedzinie czasu, można również przenieść na grunt 
uogólnienia Cohena, wprowadzając pojęcia pseudo-reprezentacji klasy Cohena bądź jej wersji 
wygładzonej. Należy jednak ponownie podkreślić, że omawiane podejście ma szczególne 
znaczenie z punktu widzenia tłumienia składowych krzyżowych i wiąże się ze świadomą 
zgodą na pogorszenie rozdzielczości czasowej bądź częstotliwościowej. W przypadku 
wykorzystania funkcji jądra, której podstawowym zadaniem jest utrzymanie pożądanych 
własności przekształcenia przy jednoczesnym tłumieniu składowych krzyżowych, 
wprowadzenie dodatkowych funkcji wygładzających może okazać się niepotrzebne. Niemniej 
jednak ujmując całościowo problematykę biliniowych przekształceń czasowo- 
częstotliwościowych, zagadnienie pseudo-reprezentację klasy Cohena bądź jej wersji 
wygładzonej powinno zostać poruszone.

Uogólnione równanie pseudo-reprezentacji klasy Cohena opisuje poniższe wyrażenie:

(2.122)
Obciążenie sygnału dodatkową funkcją okna h(r) ujawni się więc splotem w dziedzinie 
częstotliwości, którego efektem jest dodatkowe uśrednianie reprezentacji wzdłuż osi 
częstotliwości:

PTFC^k^ — [TFÓ/^jTFCP^ (2.123)
2^ J

Dodatkowe wygładzenie wzdłuż osi czasu uzyskane jest przez splot w dziedzinie 
czasu pseudo-reprezentacji z dodatkową funkcją okna g (t):

SPTFC^ (t, a) = g (t - u) PTFC^ (w, ty)dw (2.124)

Wykorzystując widmo funkcji wagi H(ty) powyższe równanie można wyrazić jako:
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SPTFC(/’(r,4y)= J f(2.125)

Podejście to nawiązuje do omawianej już w przypadku transformacji Wignera możliwości 
niezależnego wyboru stopnia uśrednienia względem częstotliwości i czasu, bowiem 
wygładzanie oparte jest na splocie z dwuwymiarową funkcją będącą iloczynem niezależnych, 
jednowymiarowych funkcji g^H^co). Ścisły związek pomiędzy rozdzielczością w czasie 
i rozdzielczością w częstotliwości, tak charakterystyczny dla krótkoczasowej transformaty 
Fouriera, zostaje tu przerwany.

Ostatnią kwestią istotną z punktu widzenia tłumienia składowych krzyżowych jest 
wstępne przetransformowanie sygnałów rzeczywistych do zespolonej postaci analitycznej 
podobnie, jak w przypadku transformacji Wignera-Ville’a. Wcześniej podkreślono już 
parzystość widma sygnałów rzeczywistych oraz zerowe wartości widma postaci analitycznej 
w ujemnej części osi częstotliwości. Zatem uogólnione równanie Cohena dla sygnałów 
analitycznych będzie charakteryzować się redukcją składowych krzyżowych pomiędzy 
składnikami dodatniej i ujemnej części osi częstotliwości. Ponownie należy podkreślić, 
że wspomniane podejście może okazać się niekorzystne w przypadku reprezentacji sygnałów 
zespolonych. W obszarze analizy sygnałów rzeczywistych, wstępne przygotowanie sygnału 
w postaci analitycznej należy uznać za wskazane.

2.3.6. Przekształcenia klasy Cohena, ich funkcje jądra oraz właściwości

By podsumować przedstawione rozważania, w tabelach 2.4, 2.5, 2.6 zebrano funkcje jądra 
wybranych reprezentacji czasowo-częstotliwościowych w czterech alternatywnych 
postaciach, wyrażenia definiujące wybrane reprezentacje czasowo-częstotliwościowe oraz 
właściwości uzyskanych reprezentacji [27,51,62], Celem takiego usystematyzowania jest chęć 
katalogowego wręcz zestawienia różnych reprezentacji z klasy Cohena, co usprawnić ma 
porównanie ich właściwości czy uwypuklić podstawowe różnice.
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Tabela 2.4 Cztery alternatywne postacie funkcji jądra (tabela 2.2) Wybranych reprezentacji klasy Cohena

L.p. Transformacja Funkcja jądra 
Postać 1 - (0,r

Funkcja jądra
Postać 2 - (r,r)

Funkcja jądra 
Postać 3 - 0r(U(t,ty )

Funkcja jądra 
Postać 4- ^0,(0}

1 Wigner (WD) 1 0 3{co)
2 Uogólniony Wigner 

(GWD)
3(t + ar) 1

kl

.0)J-' 
e a

6(co-a0)

3 Uogólniony Wigner o 
wartościach rzeczywistych 

(RGWD)

cos(ćz6’t) -^3(t+ar)-v3(t-av) ] 1—cos 
a

c
~{ -a0) + 3[(o+a0)~\

4 Pseudo-Wigner (PWD)
/i h* i

N
> | s- *

to
 | ^(r) WDjO.ćy) WD;,(0,6')

5 Wygładzony pseudo- 
Wigner (SPWD) h

ts> 
1 O

l

T
< 2

]g(«) h — \n - 
<2;

77 wda(o,^ WD,( 0,ry)C;(ry )

6 Levin (LD)

II 1 277/1,(0 = 271 f

(
6 t +

k

kT 

2j
f,{A )

1 
to

 I —
to

 | —
 z 

X ^{f+~ 

U 2
Z'

f-

\

2 J

( 71 4)J
7 Page (PD) g->A|r| _ g-y(0/2)|r|.

0 = 2^,(0 = 2nf

/
5 t-

k

kP fM 1 (
2l

1+ _ 
2

^7-
2

A

2 J +

k
8 Rihaczek (RD) e-ji^ =e-jer.

0 = 27t/i,co = 27rf 2J_______

/ 
3 0' 

(O + —
2Z

58



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

Tabela 2.4 c.d. Cztery alternatywne postacie funkcji jądra (tabela 2.2) wybranych reprezentacji klasy Cohena

L.p. Transformacja Funkcja jądra
Postać 1 -

Funkcja jądr 
Postać 2 - </>At

a Funkcja jądra 
Postać 3 - 0r<y (t,a>)

Funkcja jądra
Postać 4- ^A3^)

9 Margineau- 
Hill (MHD)

z \ P
COS(^^/) = COSl — T

0 = 2ji^,co = 27cf

9
2L '

+ 
to

 | l 
to

 I -
s

-
2cos(4^r/) = 2cos(2ćyt) -A 

2L co—
< 2?

+ <^ o co-\---
2, -

10 Born-Jordan 
(BJD)

. (0. z >. sin — T3VR.\nilT) ^2
ł T
2

0 = 2jqu,co = 27rf

9

A, dla 
.H

0 , dla

t 1 .— <— ti. te
T 2
t 1 .- >- tj. ti
T 2

f T
l 2’2;

( TKt
<

A,dia
H

0 , dla
<.

co
A

co
A \J

 
A

to
 | i—

 to | ^
* ( 0 0} e —

l 2 2j

C 0 0} 
i —l 2 2j

11 Zhao-Atlas- 
Marks 

(ZAMD)

II 
s-

ii to
 

TT

S 
£2

. 
V
. 5’

II 
3 

"g
 T?

to
-i 

N
> |

'
---

--
O
 II <

/i(z), dla

0 , dla -

t 1 .
- <- tj. t
T 2

t 1 .- >- tj. ti
r 2

1 
z—

to
 | -

i 
|

to
j vto 1

1 )}

12 Spektrogram 
(SPEC)

AF 0 h(- t —
2;

h* f-t
1 ri 

+ WDA-t-a')

Sb 
I 

C
N

1 
H

h{a 0' co+ —
2,

1

9
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Tabela 2.4 c.d. Cztery alternatywne postacie funkcji jądra (tabela 2.2) wybranych reprezentacji klasy Cohena

L.p. Transformacja Funkcjąjądra 
Postać 1 - (0,z}

Funkcjąjądra
Postać 2 - (t,z}

Funkcjąjądra
Postać 3 - (/)tco

Funkcjąjądra 
Postać 4- <1)^0, co}

13 Choi-Williams (CWD) GO2 
e a

lz±e^

\ 477 Z

z \2 
® r<J

i---- / \2

\477 0

14 Uogólniony Choi-Williams 
(GCWD) np. dla N=1:

.. " j^L
40 4r2" .

2^ Z

0 = 277/0,0^ = 2^//0

np. dla M=l:
M

Tj ZA) 4A2" .

2^77 /O
0 = 277/0, 0O = 277jU0

- *„ Geu

15 Nutall (ND)
e

a

-TT^a2

_e_

+b2+2rabj]

-,b = —

(M

16 Costa-Boudreaux-Bartels 
(CBBD)

....
...

...
...

...
...

 i | 
V

7=
7 

Sr
 

U
- 

+
a 

u 
Ti

—
< 03 Gs to || O | ~ 

,-
" 

a £

F,{K(ej)}

17 Butterworth (BUD) 1

1 +
( 0^ 2N ( X z

V*)

IM
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Tabela 2.5 Wybrane reprezentacje z klasy Cohena i ich wyrażenia

L.p. Transformacja Wyrażenie TFC £)(t,/)bądź TFĆf , gdzie co = ,0 = 27t/d
1 Wigner (WD)

WE

WE

H

H
 

*
+ 

+
| 

M
 | * 1 

x

*

T t—
2

T t----
2

^e~'^fTAT

2 Uogólniony Wigner (GWD)
OWD,(r,/

GWD,(l,®

)= Jx

)= Jx

z
r +

k
z

r +
k

— + a.2 )

—+a |t
k2 )

\ *
X

\ *
X

( / 
r-

Z /
t-

bJ
 1 H

- M | 1—
 

1 
1

e-i2nfTAT

e-jmdT

3 Uogólniony Wigner o wartościach 
rzeczywistych 

(RGWD)
RGWD v (l

RGWDv(r, ty) =

J cos (27qia-i} AĘ (/ 

j cos(<z(9r) AFt (0,t }eie,e~im^6

4 Pseudo-Wigner (PWD)
PWDX

PWDt
1 O

l 
I O

l
+ 

+

H 
i*—

? 
ll 

ll

----------- 7 
7

M
 1 

|

ts 
| O

l 
| ol

-st

| O
 l 

I <N
1 

1

* 
*-st

4-00 

e-Mdf=— f
-L

e-j^dT = J_ rv 
2^_£

WDx(t,2)WD;,(0/-2)d2

1
ZDx(C77)WDh(O,ćy-7)d7

Legenda zmiennych czas częstotliwość/pulsacja przesunięcie czasowe przesunięcie częstotliwościowe
TFC i£) t,

u- dodatkowa zmienna całkowania
f T F’

X - dodatkowa zmienna całkowania

TFC (U 7,ty) t, 
u- dodatkowa zmienna całkowania

a> T e.
Tj - dodatkowa zmienna całkowania
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Tabela 2.5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrażenia
L.p. Transformacja Wyrażenie TFC^(t,jp)bądź TFC^ (?,&>), gdzie a> = 27rf ,0 = 27^1
5 Wygładzony pseudo-Wigner (SPWD)

SPWDx(t,f) =

SPWDr(t,®) =

)PWD

)PWD

x{u,f)du=^~]
271 y

(u,co}du =— f 
2^ 2

g(t~i

g{t-i

i) WDt {u, 2)WDa (0/ -2) dud2

<) WD/w^jWDj (0,69-7?) dwd 7/

6 Levin (LD)
LD,(

LD, (

6/)

7,0)]

_ d_ 
di

__d 
dt

t

t

)e-jarc

2

Tdz

2

Ir

7 Page (PD)
PD,

PD A

(?J) =^2Re<

= 2Re<

ei^ft

ejM j

p(7)

x(r)e

e~nrt-

-jmd^

frdT

r >
>

8 Rihaczek (RD) RD,(

RD,(
6/) =

Tty) =

x(0 X

X

*(/) 

»
■,X(a) 

e~ia
j

9 Margineau-Hill (MHD) MHDV

MHDr

('.r ) = Re{ 

) = Re{

x(t^ A

A FJM]

}

62



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

Tabela 2.5 c.d. Wybrane reprezentac e z klasy Cohena i ich wyrażenia
L.p. Transformacja Wyrażenie TFC^^t, /)bądź TFC^^t,^, gdzie co = 2jrf,0 = lnu
10 Born-Jordan (BJD)

BJD.e./H]^
Hr+—
i ( tA ( tA- [ x u + — x* u----le~j2^rdudT2j l 2/

. (e sin —i .kl
2 /

BJD, («,/»)= f J—
— —T

2 t-

r [1 x u +-
W
2

- | x* | u - —X ja>rdud T 
2j l 2/

11 Zhao-Atlas-Marks (ZAMD) k
ZAMDv(/,/)= j

+oo+oo sin

IT

e
-T

H7)
- j

2

x|m + —|x*f u\~i2rctrdudT
A l 2J l 2/

2

ZAMDx(f,o) = J J^(r)|r|—

2

^AFR^RT^drd^ j 

T
h(?j j

2

r u + — x* u- — \e~jairdudT 
{ 2j { 2J

Legenda 
zmiennych

czas częstotliwość/pulsacja przesunięcie czasowe przesunięcie częstotliwościowe

TFC t,
u- dodatkowa zmienna 
całkowania

f T A-
A - dodatkowa zmienna całkowania

TFCJ£)(r,0) t,
u- dodatkowa zmienna 
całkowania

CO T 0,
Tj - dodatkowa zmienna całkowania
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Tabela 2,5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrażenia
L.p. Transformacja Wyrażenie TFC^ (t,f) bądź TFC^ , gdz e co = 27if,0 = 27L^
12 Spektrogram (SPEC) 4-00 2 +« 2

SPEC, (?,/) = STFTr(r,/)2 = jx(r)h(r-t)e-^dT = f)eiMtdł

SPECx(cty)= STFTv(r,ćy)2 = j x(t) h (t-r) e-ja\
2

Ir =

+oo 2
jx (?f)H (rj-ct))eJT1,drj

13 Choi-Williams (CWD) +“+~ (2^ur)2 +oo-

CWDt(t,/)= j je 2 ■4 T ^x\ u + k\x*\u-^-\e~i2,rfzdudz 
k 2j k

+~+~ (&j2 1------------

CWDx(Try)= j je’ 2 AFx(0,T)ej0,e-j‘OIdtd0 = j Tl
-eL 
r

r-«j2
2x(u + — |x*| u-— le-^dndf 

k 2j k 2j
14 Uogólniony Choi-Williams — uth2n'

(GCWD) GCWDx(r,/)= j je^ lroJ AĘ le72^"^^^

z \2M z x2 

GCWDx(r,ty)= j jJ
N

AĘ ejd,e-jmrdTd0

Legenda zmiennych czas częstotliwość/pulsacja przesunięcie czasowe przesunięcie częstotliwościowe
TFC«((,/) t, f T

u- dodatkowa zmienna całkowania A - dodatkowa zmienna całkowania

TFC t, (0 T 0,
u- dodatkowa zmienna całkowania ?7 - dodatkowa zmienna całkowania
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Tabela 2.5 c.d. Wybrane reprezentacje z klasy Cohena i ich wyrażenia
L.p. Transformacja Wyrażenie TFC^ (t,f) bądź , gdzie co = 2nf ,0 = Z7qu
15 Nutall (ND)

ND, (»,/) = । p po,

NDT(c<y) = [Je1 L i'AFx(0,T)ej8,e-jO)TdTd0
—oo —oo

16 Costa-Boudreaux-Bartels (CBBD)
cbbdv(c/) = 7

CBBDv(t,ćy) = jjJ rB+C)2!^!

_ _9 ,_r 
rdF li 6 ,b T '

n ^0 ‘'O

A = a2ab2 ,B = a2b2a,

C = 2rUab) 1

17 Butterworth (BUD)
BUDv(b/) =

BUDx(r,to) =

‘11 z . V" f \2"
— 1+ tL

0 T

11 r n\2Hi \2M
—-1+£ ±

< y k ro,

(^T)e'2^'-fddTd^

{0,T)ej0te~JardTd0

Legenda zmiennych czas częstotliwość/pulsacja przesunięcie czasowe przesunięcie częstotliwościowe
TFC^tJ) t,

u- dodatkowa zmienna całkowania
f r

A - dodatkowa zmienna całkowania
TFC^^co) t,

u- dodatkowa zmienna całkowania
CO T 6,

Tj - dodatkowa zmienna całkowania
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Tabela 2.6 Właściwości (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

L.p. Transformacja/Warunek PI P2 P3 P4 P5 P6
1 Wigner (WD)

2 Uogólniony Wigner (GWD)
—

— —
a <1/2

3 Uogólniony Wigner o 
wartościach rzeczywistych 

(RGWD)
— —

a <1/2
4 Pseudo-Wigner (PWD)

— —A(0) = l
5 Wygładzony pseudo-Wigner 

(SPWD) —
— — —

G R
Legenda właściwości:
PI - rzeczywisty charakter przekształcenia
P2 - zachowanie przesunięcie w dziedzinie czasu
P3 - zachowanie przesunięcia w częstotliwości
P4 - zachowanie skalowania w dziedzinie czasu
P5 - zachowanie ograniczenia w czasie
P6 - zachowanie ograniczenia w częstotliwości

P7- reakcja na iloczyn sygr 
P8 - reakcja na splot sygnał 
P9 - spełnienie równości M 
PIO - zachowanie energii c 
Pil- zachowanie widma g 
P12 - zachowanie momentc

Posiadane właściwości (tabela 2.1)
P7 P8 P9 PIO Pil P12 P13 P14 P15 P16 P17 P18

\f

— — — — —

— — —
— —

— — — — — — — — —

— — — — — — — — — — — —

talu z funkcją modulującą 
u z funkcją modulującą 
oyala (unitarność) 
iwilowej sygnału 
ęstości energii sygnału 
iw czasowych

P13 - zachowanie momentów częstotliwościowych
P14 - wyznaczenie częstotliwości chwilowej
PI5 - wyznaczenie opóźnienia grupowego
P16 - reakcja na zamianę zmiennych
P17 - iloczyn z liniową modulacją częstotliwości
P18 — splot z liniową modulacją częstotliwości
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Tabela 2.6 c.d. Właściwości (tabela 2.1 )wybranych reprezentacji klasy Cohena (tabela 2.5)

L.p. Transformacja/Warunek Posiadane właściwości (tabela 2.1)
PI P2 P3 P4 P5 P6 P7 P8 P9 PIO Pil P12 P13 P14 P15 P16 P17 P18

6 Levin (LD) — — — a — — — — —
7 Page (PD) — — — y — — — — —
8 Rihaczek (RD)

— — — — — —
9 Margineau-Hill (MHD)

— — — — — —
10 Born-Jordan (BJD)

— — — — —
11 Zhao-Atlas-Marks (ZAMD) 

h (t) - funkcja parzysta
—

— — — — — — — — — — — — —

12 Spektrogram (SPEC)
— — — — — — — — — — — — — — —

13 Choi-Williams (CWD)
— — — — — — —

Legenda właściwości:
PI - rzeczywisty charakter przekształcenia
P2 - zachowanie przesunięcie w dziedzinie czasu
P3 - zachowanie przesunięcia w częstotliwości
P4 - zachowanie skalowania w dziedzinie czasu
P5 - zachowanie ograniczenia w czasie
P6 - zachowanie ograniczenia w częstotliwości

P7 - reakcja na iloczyn sygnału z funkcją modulującą 
P8 - reakcja na splot sygnału z funkcją modulującą 
P9 - spełnienie równości Moyala (unitarność) 
PIO - zachowanie energii chwilowej sygnału 
Pil - zachowanie widma gęstości energii sygnału 
P12 - zachowanie momentów czasowych

P13 - zachowanie momentów częstotliwościowych
P14 - wyznaczenie częstotliwości chwilowej
PI5 - wyznaczenie opóźnienia grupowego
P16 - reakcja na zamianę zmiennych
P17 - iloczyn z liniową modulacją częstotliwości
P18 - splot z liniową modulacją częstotliwości
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Tabela 2.6 c.d. Właściwości (tabela 2.1 jwybranych reprezentacji klasy Cohena (tabela 2.5)

L.p. Transformacja/Warunek Posiadane właściwości (tabela 2.1)
PI P2 P3 P4 P5 P6 P7 P8 P9 PIO Pil P12 P13 P14 P15 P16 P17 P18

14 Uogólniony Choi-Williams 
(GCWD) 
M >1/2

y^ yj —
— —

—

—
y^ y^ y^

—

—
— —

^>1/2

M =1/2
—N = l/2

M =N —

15 Nutall (ND) — — — — — — — — — — — — — — —
Legenda właściwości:
PI - rzeczywisty charakter przekształcenia
P2 - zachowanie przesunięcie w dziedzinie czasu
P3 - zachowanie przesunięcia w częstotliwości
P4 - zachowanie skalowania w dziedzinie czasu
P5 - zachowanie ograniczenia w czasie
P6 - zachowanie ograniczenia w częstotliwości

P7 - reakcja na iloczyn sygnału z funkcją modulującą 
P8 - reakcja na splot sygnału z funkcją modulującą 
P9 - spełnienie równości Moyala (unitarność) 
PIO - zachowanie energii chwilowej sygnału 
Pil - zachowanie widma gęstości energii sygnału 
P12 - zachowanie momentów czasowych

PI3 - zachowanie momentów częstotliwościowych
P14 - wyznaczenie częstotliwości chwilowej
PI5 - wyznaczenie opóźnienia grupowego
P16 - reakcja na zamianę zmiennych
P17 - iloczyn z liniową modulacją częstotliwości
P18 - splot z liniową modulacją częstotliwości

68



Rozdział 2: Biliniowe reprezentacje czasowo-częstotliwościowe

Tabela 2.6 c.d. Właściwości (tabela 2.1 jwybranych reprezentacji klasy Cohena (tabela 2.5)

L.p. Transformacj a/Warunek Posiadane właściwości (tabela 2.1)
PI P2 P3 P4 P5 P6 P7 P8 P9 PIO Pil P12 P13 P14 P15 P16 P17 P18

16 Costa-Boudreaux-Bartels 
(CBBD) —

— —
— —

—

— — — — — —
—

— —
a = l

— — — — — —a = l,r — 0, A = 1 /4 — —
17 Butterworth (BUD)

—
— — — — —

_
—

— —

M >1/2

N > 1/2
—M =N —

Legenda właściwości:
PI - rzeczywisty charakter przekształcenia
P2 - zachowanie przesunięcie w dziedzinie czasu 
P3 - zachowanie przesunięcia w częstotliwości 
P4 - zachowanie skalowania w dziedzinie czasu 
P5 - zachowanie ograniczenia w czasie 
P6 - zachowanie ograniczenia w częstotliwości

P7 - reakcja na iloczyn sygnału z funkcją modulującą 
P8 - reakcja na splot sygnału z funkcją modulującą 
P9 - spełnienie równości Moyala (unitarność) 
PIO - zachowanie energii chwilowej sygnału 
PI 1 - zachowanie widma gęstości energii sygnału 
P12 - zachowanie momentów czasowych

PI3 - zachowanie momentów częstotliwościowych
P14 - wyznaczenie częstotliwości chwilowej
PI5 - wyznaczenie opóźnienia grupowego
P16 - reakcja na zamianę zmiennych
P17 - iloczyn z liniową modulacją częstotliwości
PI8 - splot z liniową modulacją częstotliwości
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2.3.7. Afiniczne przekształcenia czasowo-częstotliwościowe a klasa Cohena

Obserwując wpływ jądra na właściwości uzyskanych przekształceń czasowo- 
częstotliwościowych, wśród opisanych wyżej reprezentacji wyodrębnić można podgrupę 
przekształceń o bardzo istotnej właściwości. Mowa tu o przekształceniach zachowujących 
jednocześnie właściwości przesunięcia i skalowania w czasie (P2,P4, tabela 2.1) oraz 
zachowujących przesunięcie w częstotliwości (P3, tabela 2.1). Warto podkreślić, 
że spełnienie przez reprezentacje jedynie pierwszych dwóch właściwości tj. zachowania 
przesunięcia i skalowania w czasie, pozwala przyporządkować je do grupy tzw. afnicznych 
przekształceń (ang. affine). Jednocześnie wspomniano już, iż domeną klasy Cohena jest 
zachowanie przesunięcia nie tylko w czasie ale i częstotliwości, co w literaturze 
anglojęzycznej przyjęto określać mianem „shift-invariant class”. Wyodrębnienie zatem 
reprezentacji spełniających jednocześnie trzy omawiane właściwości prowadzi do afinicznej 
podgrupy klasy Cohena (ang. „shift-scale invariant class”). Podkreśla to poniższy rysunek, 
przedstawiający klasę Cohena wraz z wyodrębnioną podgrupą przekształceń afinicznych.

Rys. 2.14. Wyodrębnienie reprezentacji afinicznych wśród reprezentacji klasy Cohena

Reprezentacje klasy Cohena, należące do podgrupy afinicznej, zasługują na 
szczególną uwagę nie tylko ze względu na spełnienie jednocześnie trzech, istotnych własności 
przekształceń czasowo-częstotliwościowych, ale również ze względu na budowę funkcji 
jądra, opartej na iloczynie zmiennych 3 i r:

A, (A (Sr) = (P)|(2.126)

Taka budowa funkcji jądra stwarza możliwości tłumienia składowych krzyżowych. Jeśli 
bowiem za (^) przyjąć funkcję taką, że <j)M (0) = 1, co przekłada się na postać {3,t} 

jako ^<yr(0,T) = ^ax(^,0) = l, uzyskana reprezentacja spełniać będzie warunki brzegowe dla 

czasu i częstotliwości. Jeśli dodatkowo funkcja będzie funkcją malejącą, a ściślej
rzecz ujmując, skupioną wokół ^ = 0, to odpowiadająca jej funkcja będzie
w równaniu Cohena odpowiedzialna za tłumienie składowych krzyżowych [2,27], Typowym 
przykładem może być transformacja Choi-Williamsa, gdzie zastosowano funkcję jądra 

o charakterze funkcji Gaussa (3,t) = 0^ (3t) = e a = ^M{^\er=p=e a ■ 
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Im mniejsza jest wartość parametru er tym większy jest stopień tłumienia składowych 
krzyżowych. I odwrotnie, dla (5 —> +« uzyskujemy bogatą w udział składowych krzyżowych 
reprezentację Wignera.

Omówione w niniejszym podrozdziale zagadnienie afinicznej podgrupy klasy Cohena 
ma szczególne znaczenie dla niniejszej pracy. Głównym bowiem celem rozprawy jest 
określenie możliwości zastosowania klasy Cohena do badania sygnałów elektrycznych. 
Sygnały takie charakteryzują się w większości przypadków udziałem wielu składników 
częstotliwościowych, a co za tym idzie, zakłóceniem uzyskanych reprezentacji przez znaczną 
ilością niepożądanych składowych krzyżowych. Autor wyodrębniając afiniczną podgrupę 
klasy Cohena, kieruje się możliwościami tłumienia składowych krzyżowych już na poziomie 
równania definicyjnego. Należy pamiętać, że dodatkową redukcję składowych krzyżowych 
może przynieść obciążenie sygnału funkcją okna czy splot reprezentacji z dodatkowym 
oknem wygładzającym (pseudo i wygładzona pseudo-reprezentacja). Jednak działania te 
sztucznie wpływają na poprawę interpretacji uzyskanych wyników i mają niebagatelny 
wpływ na rozdzielczości czasowe i częstotliwościowe uzyskanych reprezentacji.
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3. Wyniki badań

W niniejszej pracy postanowiono skoncentrować badania w trzech grupach. Pierwsza grupa, 
ujęta w podrozdziale 3.1, dotyczy badań wstępnych. Porównano tu reprezentację Wignera- 
Ville’a (WVD), pseudo-reprezentację Wignera-Ville’a (PWVD) oraz jej wersję wygładzoną 
(SPWVD) w celu określenia wpływu szerokości funkcji wygładzających w czasie 
i częstotliwości na uzyskaną reprezentację. Dokonano również jakościowej analizy wpływu 
funkcji jąder przekształceń należących do afinicznej podgrupy klasy Cohena (np. Choi- 
Williams (CWD), Born-Jordan (BJD), Margineau-Hill (MHD)). Badania wstępne 
przeprowadzono bazując na symulowanych sygnałach sumy składników cosinusoidalnych 
oraz prądu w gałęzi RLC załączanej na napięcie zmienne. Grupę drugą stanowią badania 
właściwe, obejmujące swoim zakresem symulowane oraz rzeczywiste sygnały, 
odwzorowujące problemy niestacjonarności w układach elektrycznych. W podrozdziale 3.2 
znalazły się więc analizy symulowanych sygnałów załączania baterii kondensatorów, zwarcia 
w układzie przekształtnika oraz sygnałów zarejestrowanych w układzie zasilania pieca 
łukowego. Porównano tu wpływ różnych funkcji jądra reprezentacji z podgrupy afinicznej w 
celu dokonania jakościowej oceny uzyskanych reprezentacji. Dla wybranych metod 
przeanalizowano celowość dodatkowego wygładzania reprezentacji funkcjami okien (np. 
wygładzona wersja pseudo-transforamty Choi-Williamsa (SPCWD), transformata Zhao- 
Atlas-Marksa (ZAMD)). Trzecia grupa analiz, zawarta w podrozdziale 3.3, dotyczy badań 
rozszerzonych, obejmujących swoim zakresem wyznaczanie lokalnych momentów 
częstotliwościowych uzyskanych reprezentacji. Zaproponowane przez autora 
jednowymiarowe charakterystyki momentów można traktować jako wskaźniki 
niestacjonarności.

Dla usystematyzowania badań w niniejszej pracy zdecydowano wykorzystać system 
kart informacyjnych sygnałów i analiz. Karty informacyjne sygnałów zawierają podstawowe 
informacje numeryczne, przebieg sygnału oraz opis matematyczny bądź charakterystykę 
symulowanego obwodu. Karty te umieszczone są na początku każdego podrozdziału, 
dotyczącego wspomnianych już trzech grup analiz. Karty analiz zawierają płaszczyzny 
czasowo-częstotliwościowe oraz przebiegi chwilowe składników własnych (a-t) i krzyżowych 
(c-t), zgrupowane w kolumnach nazwanych skrótem użytych reprezentacji. W razie potrzeby 
nazwa reprezentacji uzupełniona jest o informacje dotyczące rodzaju i szerokości okien 
wygładzających. W nagłówku każdej karty analizy odnaleźć można temat analizy oraz 
informacje dotyczące wykrytych składowych własnych oraz krzyżowych.

Kluczowe znaczenie dla usprawnienia poruszania się po prezentowanych wynikach 
ma przyjęte nazewnictwo kart i ich lokalizacja (rys. 3.1 ). Struktura nazwy sygnału zawiera 
informacje o grupie oraz numerze kolejnym sygnału. W nazwie analizy powtórzona zostaje 
informacja o badanym sygnale wraz z kolejnym numerem analizy. Nazwa sygnału oraz 
analizy przewidziana została w prawym górnym rogu karty każdej karty. Pozwala to na 
usprawnienie korzystania z prezentowanych wyników. Dodatkowo każdy podrozdział 
podsumowuje zwięzłe omówienie wyników.
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Rys. 3.1. Fragment karty sygnału (a) oraz karty analizy (b) z przykładową strukturą nazw.

3.1. Grupa 1 - badania wstępne

Celem badań opartych na sygnałach wstępnych jest porównanie reprezentacji Wignera-Ville’a 
i ich modyfikacji w świetle spektrogramu, uzyskanego drogą algorytmu Fouriera. Przejście 
z oryginalnej reprezentacji do tzw. pseudo-reprezentacji zostaje naświetlone zwłaszcza 
z powodu uzyskania możliwości śledzenia tzw. unormowanej energii sygnału. Dalsza 
modyfikacja pseudo-reprezentacji, w celu jej wygładzenia z jednoczesnym stłumieniem 
składowych krzyżowych, zostaje sprawdzona zwłaszcza ze względu na wpływ zastosowanych 
okien wygładzających h(r) oraz g(0- Omówiona we wstępie teoretycznym właściwość 
niezależnego wpływu na rozdzielczość czasową i częstotliwościową zostaje tu sprawdzona 
i potwierdzona.

Zestawienie wyników przynależnych do danej grupy rozpoczynają zawsze analizy 
z wykorzystaniem algorytmu Fouriera, co w przypadku Grupy 1 dotyczy analiz „G1S1A0” 
i „G1S2A0”. W kartach analiz zamieszczono badany sygnał, jego transformatę Fouriera oraz 
spektrogramy z dwoma szerokościami funkcji okien h(r). Analizy te mają służyć jako punkt 
odniesienia do jakościowego porównania z badanymi reprezentacjami klasy Cohena.

Analizy „G1S1A1" oraz „G1S2A1” mają na celu przybliżyć charakter reprezentacji 
Wignera-Ville’a (WVD), pseudo-reprezentacji Wignera-Ville’a (PWVD) oraz jej wersji 
wygładzonej (SPWVD). W kartach omawianych analiz wyróżnić można trzy kolumny. 
W nagłówku każdej z nich znajdują się skróty nazw użytych reprezentacji, wraz 
z dodatkowymi informacjami dotyczącymi rodzaju i długości użytych funkcji wygładzających 
i wykrytych składowych własnych (a-t) i krzyżowych (c-t). Pierwsza kolumna kart, wiersze 
„a” i „d”, przedstawia płaszczyznę czasowo-częstotliwościową reprezentacji Wignera-Ville’a 
oraz przebiegi chwilowe składników własnych i związanych z nimi składników krzyżowych. 
Przebiegi te uzyskuje się poprzez „cięcie” wzdłuż osi czasu dla wybranej częstotliwości. 
W przypadku sygnału „G1S1” mowa tu o składnikach własnych 50Hz i 250Hz oraz składowej 
krzyżowej 150Hz. Dla sygnału „G1S2”, składniki własne reprezentacji tworzą składowa 50Hz 
oraz zanikająca składowa 160Hz, czego efektem jest pojawienie się składowej krzyżowej 
105Hz. Druga kolumna kart, wiersze „b” i „e”, pokazuje wpływ obciążenia sygnału oknem 
Hamminga, o szerokości równej pięciu okresom składowej podstawowej, co prowadzi do 
pseudo-reprezentacji Wignera-Ville’a. Trzecia kolumna, wiersze „c” i „f”, zawiera 
płaszczyznę czasowo-częstotliwościową oraz przebiegi chwilowe składników, po 
dodatkowym wygładzeniu pseudo-reprezentacji wzdłuż osi czasu oknem Hamminga 
o szerokości równej dwóm okresom składowej podstawowej, czyli składniki wygładzonej 
wersji pseudo-reprezentacji Wignera-Ville’a.

Wygładzona wersja pseudo-reprezentacji Wignera wykazuje duży stopień tłumienia 
składowych krzyżowych. Wyraźny jest jednak wpływ okien na otrzymaną reprezentację. 
Analizy „G1S1A2” oraz „G1S2A2" służą uwypukleniu wpływu szerokości okna h(r), którego 
zadaniem jest wygładzenie reprezentacji wzdłuż osi częstotliwości. Zachowując stałą 
szerokości okna g(t), równą dwu okresom składowej podstawowej, w trzech kolumnach 
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omawianych analiz, zawarto płaszczyzny czasowo-częstotliwościowe oraz chwilowe 
przebiegi składników własnych i krzyżowych, odpowiednio dla szerokości okna h(r) równej 
trzem, czterem i pięciu okresom składowej podstawowej. Analogicznie kolejne dwie analizy, 
„G1S1A3” oraz „G1S2A3”, pokazują wpływ szerokości okna g(0, uśredniającego pseudo- 
reprezentację Wignera-Ville’a wzdłuż osi czasu, przy ustalonej szerokości okna h(r), równej 
pięciu okresom składowej podstawowej. W kolumnach kart analiz zamieszczono płaszczyzny 
czasowo-częstotliwościowe oraz chwilowe przebiegi składników własnych i krzyżowych, dla 
trzech szerokości okna g(r): jeden, dwa oraz trzy okresy składowej podstawowej.

Kolejne analizy „G1S1A4” oraz „G1S2A4” dotyczą porównania transformacji 
Wignera-Ville’a oraz Choi-Williamsa (CWD). Wpływ jądra wykładniczego objawia się 
możliwościami tłumienia składowych krzyżowych już na poziomie równania definicyjnego. 
Siła redukcji składowych krzyżowych oraz wpływ na składniki własne jest tu podkreślony na 
podstawie reprezentacji dla dwóch różnych współczynników tłumienia o=1.0 oraz <7=0.05, 
odpowiedzialnych za kształt funkcji jądra.

Analizy „G1S1A5” oraz „G1S2A5” zawierają pozostałe reprezentacje związane 
z podgrupą afiniczną: reprezentację Margineau-Hill (MHD) z jądrem cosinusoidalnym, Born- 
Jordan (BJD) z jądrem typu „sine” oraz jej wersją wygładzoną wzdłuż osi częstotliwości 
Zhao-Atlas-Marks (ZAMD). Celem tych analiz jest nakreślenie charakteru omawianych 
przekształceń zwłaszcza ze względu na przebiegi składników własnych i krzyżowych. 
Niekorzystne z tego punktu widzenia położenie składników krzyżowych reprezentacji 
Margineau-Hill zostaje tu podkreślone.

Podane poniżej karty informacyjne sygnałów dotyczą zatem omawianej pierwszej 
grupy analiz. Pierwszy sygnał, oznaczony jako „G1S1”, bazuje na sumie ograniczonych 
sygnałów cosinusoidalnych, gdzie druga składowa pojawia się w badanym fragmencie z 
opóźnieniem. Drugi z sygnałów, „G1S2”, opisuje sygnał prądu w gałęzi szeregowej RLC, 
załączanej na źródło sinusoidalne. Symulację zjawiska wykonano w środowisku 
oprogramowania EMTP i sprawdzono analitycznie.
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SKOROWIDZ ANALIZ GRUPY 1 G1 |
Nazwa 
analizy

Nazwa 
sygnału Temat i zawartość analizy

G1S1A0
Rys. 3.2 G1S1

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnał wraz z widmem gęstości energii, płaszczyzny 
czasowo-częstotliwościowe spektrogramu z oknem Hamminga o 
szerokości równej odpowiednio dwóm oraz pięciu okresom składowej 
podstawowej; przebiegi składników własnych.

G1S2A0
Rys. 3.8 G1S2

G1S1A1
Rys. 3.3 G1S1

Temat: Transformacje Wignera-Ville’a (WVD) i jej wersje wygładzone 
(PWVD, SPWVD)
Porównanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji 
Wignera-Ville’a i jej wersji wygładzonej na podstawie płaszczyzn 
czasowo-częstotliwościowych oraz chwilowych przebiegów 
składników własnych oraz krzyżowych.

G1S2A1
Rys. 3.9 G1S2

G1S1A2
Rys. 3.4 G1S1

Temat: Wpływ szerokości funkcji okna h(r) przy ustalonym oknie g(t) 
na reprezentację SPWVD
Porównanie wpływu funkcji h(r) na wygładzoną pseudo-reprezentację 
Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej gf): 
płaszczyzny czasowo-częstotliwościowe, chwilowe przebiegi 
składników własnych oraz krzyżowych dla szerokości h(r) równej 
odpowiednio dwóm, czterem oraz pięciu okresom składowej 
podstawowej.

G1S2A2
Rys. 3.10 G1S2

G1S1A3
Rys. 3.5 G1S1

Temat: Wpływ szerokości funkcji okna g(t) przy ustalonym oknie h(r) 
na reprezentacje SPWVD
Porównanie wpływu funkcji g(t) na wygładzoną pseudo-reprezentację 
Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej h(r): 
płaszczyzny czasowo-częstotliwościowe, chwilowe przebiegi 
składników własnych oraz krzyżowych dla szerokości gf) równej 
odpowiednio jednemu, dwóm oraz trzem okresom składowej 
podstawowej.

G1S2A3
Rys. 3.11 G1S2

G1S1A4
Rys. 3.6 G1S1

Temat: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa 
(CWD)
Płaszczyzny czasowo-częstotliwościowe transformacj Wignera-Wille’a 
i Choi-Williamsa z różnymi wartościami współczynnika tłumienia o 
oraz przebiegi składników własnych i krzyżowych

G1S2A4
Rys. 3.12 G1S2

G1S1A5
Rys. 3.7 G1S1

Temat: Transformacje Margineau-Hilla (MHD), Born-Jordana (BJD), 
Zhao-Atlas-Marksa (ZAMD)
Płaszczyzny czasowo-częstotliwościowe transformacji Margineau- 
Hilla, Born-Jordana i Zhao-Atlas-Marksa z wygładzającym oknem 
Hamminga o szerokości pięciu okresów składowej podstawowej; 
przebiegi składników własnych i krzyżowych uzyskanych 
reprezentacji.

G1S2A5
Rys. 3.13 G1S2
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Rys. 3.2. Analizowany sygnał wraz z widmem gęstości energii (a,d); płaszczyzny czasowo-częstotliwościowe spektrogramu (b,c) oraz przebiegi 
składników własnych (e,f) z wygładzającym oknem Hamminga o szerokości równej odpowiednio dwóm oraz pięciu okresom składowej 
podstawowej, na przykładzie analizy sygnału „GlSl”.

77



Rozdział 3: Wyniki badań

KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i jej wersje wygładzone (PWVD, SPWVD)
Składniki własne (a-t): 50Hz 250Hz Składniki krzyżowe (c-t): 150Hz

WVD PWVD Hamming

J| G1S1A1

SPWYD h(r) Hamming O.ls

g(0 Hamming 0.04s

d)

300

250 '.... ■

200

T 150

100

0
0 0.05 0.1 0.15

t [s]

Rys. 3.3. Porównanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji Wignera-Ville’a i jej wersji wygładzonej na podstawie płaszczyzn 
czasowo-częstotliwościowych (a,b,c) oraz chwilowych przebiegów składników własnych oraz krzyżowych (d,e,f) na przykładzie analizy sygnału 
„Gisr.
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Rys. 3.4. Porównanie wpływu funkcji h(r) na wygładzoną pseudo-reprezentację Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej 
g(0- (a),(b),(c) ■ płaszczyzny czasowo-częstotliwościowe, (d),(e),(f) - chwilowe przebiegi składników własnych oraz krzyżowych dla szerokości 
h(r) równej odpowiednio dwóm, czterem oraz pięciu okresom składowej podstawowej, na przykładzie analizy sygnału „G1S1”.
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G1S1A3KARTA ANALIZY: Wpływ szerokości funkcji okna g(t) przy ustalonym oknie h(r) na reprezentacje SPWVD
Składniki własne (a-t): 50Hz 250Hz Składniki krzyżowe (c-t): 150Hz

SPWYD h(r) Hamming O.ls SPWYD h(T) Hamming O.ls SPWYD * h(r) Hamming O.ls
g(0 Hamming 0.02s g(0 Hamming 0.04s g(0 Hamming 0.06s

b)a) c)
300 300 300

250250 250

200 200 200

1150 x 150

100

50

0 05 01 C 15
t[s]

100

50

°0 0.05 0.1 0.15
t [s]

100

50

0.05 0.1 0.15
t [s]

d) e) f)

% %

Rys. 3.5. Porównanie wpływu funkcji g(0 na wygładzoną pseudo-reprezentację Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej 
h(r): (a),(b),(c) - płaszczyzny czasowo-częstotliwościowe, (d),(e),(f) - chwilowe przebiegi składników własnych oraz krzyżowych dla szerokości 
g(r) równej odpowiednio jednemu, dwóm oraz trzem okresom składowej podstawowej, na przykładzie analizy sygnału „G1S1”.
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Rys. 3.6. Płaszczyzny czasowo-częstotliwościowe transformacji Wignera-Wille’a (a) i Choi-Williamsa z różnymi wartościami współczynnika 
tłumienia u (b,c) oraz przebiegi składników własnych i krzyżowych uzyskanych reprezentacji (d,e,f), na przykładzie analizy sygnału „GlSl”.
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KARTA ANALIZY: Transformacje Margineau-Hilla (MHD), Born-Jordana (BJD), Zhao-Atlas-Marksa (ZAMD) ]| G1S1A5

Składniki własne (a-t): 50Hz 250Hz Składniki krzyżowe (c-t): 150Hz

MHD
ZAMD

bjdU h(r) Hamming O.ls

300

200

i 150

100

50

°0 0 05 0 1 0 15

t(s]

d)

BJD

Rys. 3.7. Płaszczyzny czasowo-częstotliwościowe transformacji Margineau-Hilla (a), Born-Jordana (b) i Zhao-Atlas-Marksa z wygładzającym 
oknem Hamminga o szerokości pięciu okresów składowej podstawowej (c) oraz przebiegi składników własnych i krzyżowych uzyskanych 
reprezentacji (d,e,f), na przykładzie analiz sygnału „G1ST\
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Rys. 3.8. Analizowany sygnał wraz z widmem gęstości energii (a,d); płaszczyzny czasowo-częstotliwościowe spektrogramu (b,c) oraz przebiegi 
składników własnych (e,f) z wygładzającym oknem Hamminga o szerokości równej odpowiednio dwóm oraz pięciu okresom składowej 
podstawowej, na przykładzie analizy sygnału „G1S2”.
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|| G1S2A1 n|

Składniki krzyżowe (c-t):
Hamming O.ls

Rys. 3.9. Porównanie reprezentacji Wignera-Ville’a oraz pseudo-reprezentacji Wignera-Ville’a i jej wersji wygładzonej na podstawie płaszczyzn 
czasowo-częstotliwościowych (a,b,c) oraz chwilowych przebiegów składników własnych oraz krzyżowych (d,e,f), na przykładzie analizy 
sygnału „G1S2”.
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KARTA ANALIZY: Wpływ szerokości funkcji okna h(r) przy ustalonym oknie je SPWYD G1S2A2na

a)

Składniki własne (a-t): 50Hz 160Hz Składniki krzyżowe (c-t): 105Hz

SPWYD h(r) Hamming 0.04s SPWYD j h(r) Hamming 0.08s SPWYD h(r) Hamming O.ls
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Rys. 3.10. Porównanie wpływu funkcji h(r) na wygładzoną pseudo-reprezentację Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej 
g(0: (a),(b),(c) - płaszczyzny czasowo-częstotliwościowe, (d),(e),(f) - chwilowe przebiegi składników własnych oraz krzyżowych dla szerokości 
h(r) równej odpowiednio dwóm, czterem oraz pięciu okresom składowej podstawowej, na przykładzie analizy sygnału „G1S2”.

50Hz(a-t) 
105Hz(c-t) 
160Hz(a-t)
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Rys. 3.11. Porównanie wpływu funkcji g(t) na wygładzoną pseudo-reprezentację Wignera-Ville’a, przy stałej szerokości funkcji wygładzającej 
h(r): (a),(b),(c) - płaszczyzny czasowo-częstotliwościowe, (d),(e),(f) - chwilowe przebiegi składników własnych oraz krzyżowych dla szerokości 
g(0 równej odpowiednio jednemu, dwóm oraz trzem okresom składowej podstawowej, na przykładzie analizy sygnału „G1S2”.
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KARTA ANALIZY: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa (CWD) | G1S2A4
Składniki własne (a-t): 50Hz 160Hz Składniki krzyżowe (c-t): 105Hz

CWD cr = 0.05

a)

WVD

Rys. 3.12. Płaszczyzny czasowo-częstotliwościowe transformacji Wignera-Wille’a (a) i Choi-Williamsa z różnymi wartościami współczynnika 
tłumienia o (b,c) oraz przebiegi składników własnych i krzyżowych uzyskanych reprezentacji (d,e,f), na przykładzie analizy sygnału „G1S2”.
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Rys. 3.13. Płaszczyzny czasowo-częstotliwościowe transformacji Margineau-Hilla (a), Born-Jordana (b) i Zhao-Atlas-Marksa z wygładzającym 
oknem Hamminga o szerokości pięciu okresów składowej podstawowej (c) oraz przebiegi składników własnych i krzyżowych uzyskanych 
reprezentacji (d,e,f), na przykładzie analiz sygnału „G1S2”.
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Omówienie wyników analiz Grupy 1:
Sygnały analizowane w tej grupie charakteryzowały się znanym, symulowanym typem 
niestacjonarności. Informacje zawarte w analitycznym opisie zostały uwypuklone za pomocą 
omawianych metod, a jednocześnie pozwoliły na jakościowe porównanie otrzymanych 
wyników. W przypadku sygnału „G1ST widoczny jest stały, w analizowanym odcinku czasu 
(0-0.2)s, charakter energii składowej 50Hz (a-t). Moment pojawienia się składowej 250Hz 
(a-t) jest również rozpoznawalny. Pojawieniu się drugiej składowej towarzyszy człon 
interferencyjny 150Hz. Sygnał „G1S2” charakteryzuje się stałą energią składnika 50Hz 
i zanikającą ekspotencjalnie energią składnika 160Hz. Składowa krzyżowa, 105Hz, ma 
w związku z tym charakter zanikających oscylacji. To zaplecze wiedzy o zmienności 
analizowanych sygnałów wykorzystano do porównania reprezentacji afinicznej podgrupy 
klasy Cohena z klasycznym spektrogramem, jak również do zbadania wpływu szerokości 
okien wygładzających na wygładzoną pseudo-reprezentację Wignera-Ville’a i wpływu 
samych funkcji jądra na uzyskane wyniki. Poniżej opisano omówienie wyników.
• Reprezentacja Wignera-Ville’a (WVD) (Rys.3.3,3.9), choć bogata w udział składowych 

krzyżowych, charakteryzuje się najlepszą rozdzielczością częstotliwościową. Informacja 
o energii składników cosinusoidalnych zawarta jest jednak w ich geometrycznych 
środkach ciężkości, co utrudnia śledzenie zmian z punktu widzenia czasu.

• Pseudo-reprezentacja i jej wersja wygładzona pozwala śledzić zmiany tzw. unormowanej 
energii składowych sygnału. Wspomniany wyżej, „niewygodny” wynik transformacji 
Wignera-Ville’a zostaje tu przełamany na korzyść informacji o zmianach unormowanej 
energii (Rys. 3.3, 3.9).

• Obciążenie sygnału funkcją okna h(r) (Rys.3.4,3.10) objawia się pogorszeniem 
rozdzielczości częstotliwościowej. Im szersze jest okno wygładzające h(r) tym 
rozdzielczość częstotliwościowa jest lepsza, ale skuteczność tłumienia składowych 
krzyżowych spada. W granicznym przypadku tj. dla okna prostokątnego o szerokości 
okna równej długości analizowanego sygnału otrzymuje się reprezentację Wignera- 
Ville’a.

• Splot pseudo-reprezentacji z dodatkową funkcją wygładzającą g(r) (Rys.3.5,3.11) ma 
bardzo duży wpływ na tłumienie składowych krzyżowych, ze względu na uśrednianie 
reprezentacji wzdłuż osi czasu. Oscylacyjny charakter składowych krzyżowych jest tym 
bardziej redukowany im szersze jest okno g(t). Jednocześnie wygładzający charakter 
zastosowanej funkcji powoduje spadek rozdzielczości czasowej uzyskanej reprezentacji. 
Im szersze okno bierze udział w operacji splotu tym dłuższa jest odpowiedź algorytmu.

• Należy jednak wyraźnie podkreślić, że w przypadku wygładzonej pseudo-reprezentacji, 
rozdzielczości czasowe i częstotliwościowe są zupełnie odseparowane. Szerokość okna 
h(r) odpowiada za ostrość reprezentacji wzdłuż osi częstotliwości, zaś szerokość okna g(t) 
odpowiedzialna jest za ostrość reprezentacji wzdłuż osi czasu. Cecha ta wyraźnie odróżnia 
wygładzoną pseudo-reprezentację od spektrogramu, gdzie istnieje ścisły związek 
pomiędzy rozdzielczością czasową i częstotliwościową.

• Wyraźnie też widoczne jest dwukrotnie większe rozmycie czasowo-częstotliwościowe 
spektrogramu (Rys.3.2,3.8) w porównaniu do wygładzonej wersji pseudo-transformaty 
Wignera-Ville’a, przy zachowaniu tej samej szerokości okien h(r).

• Wykorzystanie jądra ekspotencjalnego (transformacja Choi-Williamsa) owocuje redukcją 
składowych krzyżowych z zachowaniem rozdzielczości czasowej i częstotliwościowej na 
poziomie reprezentacji Wignera-Ville’a (Rys.3.6,3.12). Zależność pomiędzy
współczynnikiem tłumienia er a własnościami reprezentacji jest następująca. Im mniejsza 
jest wartość parametru cr tym większy jest stopień tłumienia składowych krzyżowych, 
ale jednocześnie zaobserwować można wpływ na składniki własne. Im większa jest 
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wartość parametru o tym mniejszy jest stopień tłumienia. W granicznym przypadku tj. dla 
er —» +°° uzyskujemy reprezentację Wignera-Vill’a.

• Reprezentacja Margineau-Hill (Rys.3.7,3.13) jest nieużyteczna do badania sygnałów 
elektrycznych, gdzie w większości przypadków mamy do czynienia z wieloskładnikowym 
sygnałem, w którym dodatkowo składowa podstawowa istnieje w całym badanym 
odcinku. Reprezentację tą dyskwalifikuje położenie składników krzyżowych, które 
skupione są tu na przemian w czasowych i częstotliwościowych środkach ciężkości 
składników. Efektem tego jest nakładanie się składowych krzyżowych na składowe 
własne i trudności w ich odseparowaniu.

• Reprezentacja Born-Jordana (Rys.3.7,3.13), choć zachowuje rozdzielczość czasowo- 
częstotliwościową na poziomie Wignera-Vill’a charakteryzuje się dodatkowym 
tłumieniem składowych własnych wyższych częstotliwości. Poprawę przynosi dodatkowe 
wygładzenie wzdłuż osi częstotliwości przez obciążenie sygnału oknem h(r), co prowadzi 
do reprezentacji Zhao-Atlas_Marks (Rys.3.7,3.13). Wygładzenie to owocuje, jak w 
każdym przypadku pseudo-reprezentacji, zmniejszeniem rozdzielczości 
częstotliwościowej.
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3.2. Grupa 2 - badania właściwe

Celem badań przeprowadzonych w obrębie tej grupy sygnałów jest sprecyzowanie 
możliwości zastosowania przekształceń Cohena w obszarze elektrotechniki. Szczególne 
zainteresowanie skierowano w kierunku afninicznej podgrupy klasy Cohena, która dzięki 
specyficznej budowie funkcji jądra wykazuje zdolności tłumienia składowych krzyżowych 
już na poziomie równania definicyjnego. Wyniki analiz przyjęto prezentować na bazie 
modułów uzyskanych reprezentacji. Takie podejście nie ma wpływu na składowe własne 
reprezentacji, które osiągają rzeczywiste wartości dodatnie, a jedynie na składowe krzyżowe, 
teraz rozpoznawane jako wartości bezwzględne oscylacji. To sztuczne ograniczenie wartości 
reprezentacji uwydatnia cechy składników własnych i ułatwia interpretację płaszczyzn 
czasowo-częstotliwościowych.

Dwa pierwsze sygnały tej grupy dotyczą symulacji załączania baterii kondensatorów 
w układzie linii średniego napięcia („G2S7”) oraz zwarcia w układzie przekształtnika 
^„G2S2"\ Obie symulacje wykonano w środowisku EMTP.

Podobnie jak dla Grupy 1, tak badania Grupy2 rozpoczynają zawsze analizy 
z wykorzystaniem algorytmu Fouriera: „G2S1A0", „G2S2A0”. W kartach analiz 
zamieszczono badany sygnał, jego transformatę Fouriera oraz spektrogramy z dwoma 
szerokościami funkcji okien h(r). Analizy te mają służyć za punkt odniesienia do 
jakościowego porównania z badanymi reprezentacjami klasy Cohena.

Analizy „G2S1AP' , „G2S2AP’, dotyczą porównania transformacji Wignera-Ville’a 
(WVD) oraz Choi-Williamsa (CWD). Wpływ jądra wykładniczego objawia się 
możliwościami tłumienia składowych krzyżowych już na poziomie równania definicyjnego. 
Siła redukcji składowych krzyżowych oraz wpływ na składniki własne zostaje uwypuklona na 
podstawie reprezentacji dla dwóch różnych współczynników tłumienia, odpowiedzialnych za 
kształt funkcji jądra. W kolejnych kolumnach karty analizy zawarto zatem płaszczyzny 
czasowo-częstotliwościowe wraz z przebiegami chwilowymi składników własnych 
reprezentacji Wignera-Ville’a i transformacji Choi-Williamsa dla dwóch współczynników 
tłumienia: <7=1.0 oraz cr=0.05.

Analizy „G2S1A2", „G2S2A2, dotyczą problemu wygładzania transformacji Choi- 
Williamsa za pomocą dodatkowych funkcji okien. Wygładzona pseudo-reprezentacja Choi- 
Williamsa (SPCWD), ze współczynników tłumienia o-1.0 oraz <7=0.05, porównana jest 
z wygładzoną pseudo-reprezentacją Wignera-Ville’a dla różnych szerokości okien h(r) 
(h(r) - pięć okresów składowej podstawowej i g(t) - dwa okresy składowej podstawowej oraz 
h(r) - dwa okresy składowej podstawowej i g(f) - dwa okresy składowej podstawowej).

Analizy „G2S1A3”, „G2S2A3” zawierają pozostałe reprezentacje związane z podgrupą 
afiniczną. Do zbadania charakteru analizowanych sygnałów wykorzystano reprezentację 
Born-Jordana (BJD) z jądrem typu „sine” oraz jej wersję wygładzoną wzdłuż osi 
częstotliwości Zhao-Atlas-Marks (ZAMD), z dwoma szerokościami funkcji h(r). Celem tych 
analiz jest nakreślenie charakteru omawianych przekształceń zwłaszcza ze względu na 
przebiegi składników własnych i krzyżowych.

Karty „G2S1AP” oraz „G2S2AP” to analizy porównawcze. Pierwsza z nich zawiera 
płaszczyznę czasowo- częstotliwościową sygnału „G2S^,, uzyskaną przy pomocy 
transformaty falkowej oraz przebiegi składowych, estymowanych przy użyciu metody 
Prony’ego. Druga karta porównawcza zawiera płaszczyzny czasowo-częstotliwościowe 
sygnału „G2S2” wyznaczone transformatą falkową i metodą Min-Norm z przesuwanym 
oknem. Zamieszczone wyniki mają na celu podkreślić różnice wynikające z budowy 
algorytmów.
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Analizie poddano również rzeczywisty sygnał pomiarowy pochodzący z układu 
zasilania pieca łukowego, udostępniony przez partnerski Uniwersytet w Neapolu („G2S3”). 
Sygnał ten posiada składową podstawową o przeważającej energii oraz bardzo wiele 
charakterystycznych harmonicznych związanych z pracą przekształtnika. Wyniki analiz 
takiego sygnału sprawiają ogromne problemy interpretacyjne ze względu na dużą ilość 
składowych krzyżowych o wysokiej amplitudzie. Dodatkowym problemem jest „nakładanie 
się” składowych krzyżowych na składniki własne. Problemy te nakreślono w analizie 
„G2S3A0”.

Chcąc określić charakter niestajonarności badanego sygnału postanowiono przyjrzeć 
się zachowaniu składników w ograniczonym zakresie częstotliwości. W tym celu sygnał 
oryginalny poddano filtracji pasmowej (FIR, rząd filtru 150) w wybranym zakresie 300- 
600Hz. Tak otrzymany sygnał, o nazwie „G2S3a”, poddano transformacjom czasowo- 
częstotliwościowym. Zaobserwowano wahania częstotliwości charakterystycznych 
harmonicznych, jak również pojawienie się chwilowych składników interharmonicznych.

Badania sygnału ,,G2S3a” rozpoczynają analizy z wykorzystaniem algorytmu 
Fouriera. Transformata Fouriera oraz spektrogramy z dwoma szerokościami funkcji okien 
h(r) dają wstępny obraz wykrytej niestacjonarności.

Analiza „G2S3aAr‘l dotyczy porównania transformacji Wignera-Ville’a (WVD) oraz 
Choi-Williamsa (CWD). W kolejnych kolumnach karty analizy zawarto zatem płaszczyzny 
czasowo-częstotliwościowe wraz z przebiegami chwilowymi składników własnych 
reprezentacji Wignera-Ville’a i transformacji Choi-Williamsa dla dwóch współczynników 
tłumienia: cr=1.0 oraz cr=0.05.

Wygładzone wersje pseudo-reprezentacji Wignera-Ville’a (SPWVD) oraz Choi- 
Williamsa (SPCWD) zamieszczono w kartach analizy „G2S3aA2”. Porównanie reprezentacji 
obejmuje dwie grupy szerokości okien wygładzających: h(r) - pięć okresów składowej 
podstawowej i g(0 - dwa okresy składowej podstawowej oraz h(r) - dwa okresy składowej 
podstawowej i g(t) - dwa okresy składowej podstawowej.

Na koniec do analizy sygnału „G2S3a” wykorzystano reprezentację Born-Jordana 
(BJD) oraz Zhao-Atlas-Marksa (ZAMD) z dwoma szerokościami funkcji h(r) - analiza 
„G2S3aA3”.

Porównanie wyników z odrębną grupą przekształceń zawarto w karcie porównawczej 
„G3S3aAP”. Wahania wybranych składowych sprawdzono metodą Prony’ego oraz metodą 
root-Music z przesuwanym oknem.
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Przebieg sygnału:

KARTA SYGNAŁU: Załączanie baterii kondensatorów G2S1 [
Parametry numeryczne sygnału:
fpr 10kHz

10000
T 1 X (0,0.2)s
Nx 2001 8000

Łi 0.03s 6000

tp2 0.09s 4000

2000
Legenda parametrów: 2 0
fpr częstotliwość próbkowania w [Hz]
Tx- długość sygnału w [s] -2000

Nx- długość sygnału w próbkach -4000

tPi - załączanie baterii Q] w [s] -6000

tp2- załączanie baterii Q2 w [s] -8000

Model: Parametry modelu:
Bateria kondensatorów Qj: 900kVar, oddalona 0.2km od 
stacji, moment załączenia tpi=O.O3s
Bateria kondensatorów Q2: 1200kVar, oddalona 1.2km 
od stacji, moment załączenia tp2=0.09s
Napięcie pracy: UN=l5kV
Transformator: UN=110/15kV, SN=25MVA, w układzie 
połączeń A-Y.

KARTA SYGNAŁU: Zwarcie w układzie przekształtnika G2S2
Parametry numeryczne sygnału:
fpr 5kHz
T 1 X (0,0.2)s
Nx 1001

O.ls

Legenda parametrów:
fpr - częstotliwość próbkowania w [Hz]
Tx - długość sygnału w [s]
Nx - długość sygnału w próbkach
tp - początek zwarcia w [s]

Model:

PWM generarion and control

Parametry modelu:

Przekształtnik: PWM, częstotliwość modulacyjna 1kHz
SN=3kVA
Silnik: dwubiegunowy silnik asynchroniczny, UN=230V, 
PN=l.lkW, współczynnik mocy cos<p=0.81, poślizg 6%

Rodzaj zwarcia: międzyfazowe zwarcie z rezystancją 
miejsca zwarcia 100Q, czas powstania zwarcia - tp=O.ls

93



Rozdział 3: Wyniki badań

KARTA SYGNAŁU: Prąd w układzie zasilania pieca łukowego G2S3

fpr 5kHz
Tx (0,0.4)s
Nx 2001

Przebieg sygnału:Parametry numeryczne sygnału:

Schemat układu zasilania pieca łukowego: Parametry układu:

Legenda parametrów:
fpr - 

Tx- 
Nx-

częstotliwość próbkowania w [Hz] 
długość sygnału w [s] 
długość sygnału w próbkach

Moc łuku: 80 MW
Transformator Tp UN=220kV/21kV, SN=80 MVA, 
w układzie połączeń Y-A
Transformator T2: UN=21kV/O.638kV/O.638kV, 
Sn=87 MVA, w układzie połączeń A-A-Y
Miejsce pomiaru: szyna średniego napięcia (MV)

Parametry numeryczne sygnału:

KARTA SYGNAŁU: Prąd w układzie zasilania pieca łukowego po 
filtracji ograniczającej ilość składowych (300-600Hz) G2S3a

Przebieg sygnału:
fpr 5kHz
T 1 X (0,0.4)s
Nx 2001

Legenda parametrów:
fpr - częstotliwość próbkowania w [Hz]
Tx - długość sygnału w [s]
Nx - długość sygnału w próbkach

300

-300---------- 1---------- 1---------- 1---------- 1-----------1---------- 1---------- 1-----------
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Parametry numeryczne filtru:
Typ pasmowo-przepustowy typu FIR
Szerokość 
pasma

300-600Hz

Rząd filtru 150

Charakterystyka amplitudowa filtru
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SIKORO WIDZ ANALIZ GRUPY 2 | G2 |

Nazwa 
analizy

Nazwa 
sygnału Temat i zawartość analizy

G2S1A0
Rys. 3.14 G2S1

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnał wraz z widmem gęstości energii; płaszczyzny 
czasowo-częstotliwościowe spektrogramu z wygładzającym oknem 
Hamminga o szerokości równej odpowiednio dwóm oraz pięciu 
okresom składowej podstawowej oraz przebiegi składników własnych 
uzyskanych reprezentacji.

G2S2A0
Rys. 3.20 G2S2

G2S1A1
Rys. 3.15 G2S1

Temat: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa 
(CWD)
Płaszczyzny czasowo-częstotliwościowe modułu transformacji 
Wignera-Wille’a i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia o oraz przebiegi składników własnych 
uzyskanych reprezentacji.

G2S2A1
Rys. 3.21 G2S2

G2S1A2
Rys. 3.16
Rys. 3.17

G2S1

Temat: Wygładzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i 
Choi-Williamsa (SPCWD)
Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo- 
reprezentacji Wignera-Ville’a i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia o oraz przebiegi składników własnych 
uzyskanych reprezentacji ; strona 1 analizy: h(r) - okno Hamminga o 
szerokości pięciu okresów składowej podstawowej, g(0 - okno 
Hamminga o szerokości dwóch okresów składowej podstawowej; 
strona 2 analizy: h(r) - okno Hamminga o szerokości dwóch okresów 
składowej podstawowej, g(t) - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.

G2S2A2
Rys. 3.22
Rys. 3.23

G2S2

G2S1A3
Rys. 3.18 G2S1

Temat: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa 
(ZAMD)
Płaszczyzny czasowo-częstotliwościowe modułu transformacji Born- 
Jordana i Zhao-Atlas-Marksa z wygładzającym oknem Hamminga o 
szerokości pięciu i dwóch okresów składowej podstawowej oraz 
przebiegi składników własnych uzyskanych reprezentacji.

G2S2A3
Rys. 3.24 G2S2

G2S1AP
Rys. 3.19 G2S1

Temat: Transformata falków a i metoda Prony’ego
Płaszczyzna czasowo-częstotliwościowa transformaty flakowej oraz 
przebiegi składników częstotliwościowych fragmentów sygnału 
„G257”uzyskane za pomocą metody Prony’ego. Wyniki porównawcze 
zaczerpnięto z prac [36,38] oraz [44].

G2S2AP
Rys. 3.25 G2S2

Temat: Transformata falków a i metoda Min-Norm
Płaszczyzna czasowo-częstotliwościowa transformaty flakowej oraz 
metody Min-Norm z przesuwającym oknem o szerokości 80 próbek. 
Wyniki porównawcze zaczerpnięto z prac [36,38].
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SKCJROWIDZ ANALIZ GRUPY 2 - c.d. G2 |
Nazwa 
analizy

Nazwa 
sygnału Temat i zawartość analizy

G2S3A0
Rys. 3.26 G2S3

Temat: Problemy interpretacji analizy sygnału wieloskładnikowego ze 
składową o przeważającej energii
Analizowany sygnał wraz z widmem gęstości energii; fragment 
płaszczyzny czasowo-częstotliwościowe modułu transformacji 
Wignera-Ville’a, Choi-Williamsa z dwoma wartościami 
współczynnika tłumienia o i Zhao-Atlas-Marksa z wygładzającym 
oknem Hamminga o szerokości równej pięciu okresom składowej 
podstawowej,

G2S3aA0
Rys. 3.27 G2S3a

Temat: Algorytmy Fouriera (FFT, SPEC)
Analizowany sygnał wraz z widmem gęstości energii; płaszczyzny 
czasowo-częstotliwościowe spektrogramu z wygładzającym oknem 
Hamminga o szerokości równej odpowiednio dwóm oraz pięciu 
okresom składowej podstawowej oraz przebiegi składników własnych 
uzyskanych reprezentacji.

G2S3aAl
Rys. 3.28 G2S3a

Temat: Transformacje Wignera-Ville’a (WVD) i Choi-Williamsa 
(CWD)
Płaszczyzny czasowo-częstotliwościowe modułu transformacji 
Wignera-Wille’a i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia o oraz przebiegi składników własnych 
uzyskanych reprezentacji.

G2S3aA2
Rys. 3.29
Rys. 3.30

G2S3a

Temat: Wygładzone pseudo-reprezentacje Wignera-Ville’a (SPWVD) i 
Choi-Williamsa (SPCWD)
Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo- 
reprezentacji Wignera-Viłle’a i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia o oraz przebiegi składników 
własnych uzyskanych reprezentacji ; strona 1 analizy: h(r) - okno 
Hamminga o szerokości pięciu okresów składowej podstawowej, g(t) 
- okno Hamminga o szerokości dwóch okresów składowej 
podstawowej; strona 2 analizy: h(r) - okno Hamminga o szerokości 
dwóch okresów składowej podstawowej, g(7) - okno Hamminga o 
szerokości dwóch okresów składowej podstawowej.

G2S3aA3
Rys. 3.31 G2S3a

Temat: Transformacje Born-Jordana (BJD) i Zhao-Atlas-Marksa 
(ZAMD)
Płaszczyzny czasowo-częstotliwościowe modułu transformacji Born- 
Jordana i Zhao-Atlas-Marksa z wygładzającym oknem Hamminga o 
szerokości pięciu i dwóch okresów składowej podstawowej oraz 
przebiegi składników własnych uzyskanych reprezentacji.

G2S3aAP
Rys. 3.32 G2S3a

Temat: Metoda Prony’ego i metoda root-Music
Wahania składników częstotliwościowych w zakresie 3OO-6OOHz 
uzyskane metodą Prony’ego z przesuwającym się oknem o szerokości 
22 próbek oraz metodą root-Music z przesuwającym oknem o 
szerokości 500 próbek Wyniki porównawcze zaczerpnięto z prac 
[11,12].

96



Rozdział 3: Wyniki badań

Rys. 3.14. Analizowany sygnał wraz z widmem gęstości energii (a,d); płaszczyzny czasowo-częstotliwościowe spektrogramu z wygładzającym 
oknem Hamminga o szerokości równej odpowiednio dwóm oraz pięciu okresom składowej podstawowej (b,c) oraz przebiegi składników 
własnych uzyskanych reprezentacji (e,f), na przykładzie analizy sygnału „G2Sr'.
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Rys. 3.15. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Wignera-Wille’a (a) i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia cr (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy sygnału „G2S1”.
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Rys. 3.16. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia tr (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G2S1”', h(r) - okno Hamminga o szerokości pięciu okresów składowej podstawowej, g(t) - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.17. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia a (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G2S7”; h(r) - okno Hamminga o szerokości dwóch okresów składowej podstawowej, g(t) - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.18. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Born-Jordana (a) i Zhao-Atlas-Marksa z wygładzającym oknem 
Hamminga o szerokości pięciu i dwóch okresów składowej podstawowej (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji 
(d,e,f), na przykładzie analizy sygnału „G2S1”.
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Rys. 3.19. Płaszczyzna czasowo-częstotliwościowa transformaty flakowej (a) oraz przebiegi składników częstotliwościowych fragmentów 
sygnału „G2S7”(a,b-fragment t(O.O3-O.O9)s; d,e-fragment t(O.O9-1.5)s uzyskane za pomocą metody Prony’ego. Wyniki porównawcze 
zaczerpnięto z prac [36,38] oraz [44],
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KARTA ANALIZY: Algorytmy Fouriera (FFT, SPEC)I G2S2A0
Składniki własne (a-t): 60Hz 880Hz 1000Hz 1120Hz

Rys. 3.20. Analizowany sygnał wraz z widmem gęstości energii (a,d); płaszczyzny czasowo-częstotliwościowe spektrogramu z wygładzającym 
oknem Hamminga o szerokości równej odpowiednio dwóm oraz pięciu okresom składowej podstawowej (b,c) oraz przebiegi składników 
własnych uzyskanych reprezentacji (e,f), na przykładzie analizy sygnału „G2S2".
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G2S2A1 |

Rys. 3.21. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Wignera-Wille’a (a) i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia a (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy sygnału „G2S2”.
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Rys. 3.22. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia o (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G2S2”\ h(r) - okno Hamminga o szerokości pięciu okresów składowej podstawowej, g(r) - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.23. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia o (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G252”; h(r) - okno Hamminga o szerokości dwóch okresów składowej podstawowej, g(0 - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.24. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Born-Jordana (a) i Zhao-Atłas-Marksa z wygładzającym oknem 
Hamminga o szerokości pięciu i dwóch okresów składowej podstawowej (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji 
(d,e,f), na przykładzie analizy sygnału „G2S2”.
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KARTA ANALIZY PORÓWNAWCZEJ: Transformata falkowa i metoda Min-Norm || G2S2AP

WT Płaszczyzna czasowo-częstotliwościowa 
- fragment Min-Norm Płaszczyzna czasowo-częstotliwościowa

Składniki: 880Hz, 1000Hz, 1100Hz. 1930Hz Składniki: 60Hz, 880Hz, 1120Hz, 2000Hz
a)

2500

500 
0

1000

r 1500

2000

0.05 0.15 0.20.1 
t[s]

Zespolona falka Morleta: g (t) = • fB
fB=l; fc=L zakres skali=O. 1:0.1:10

metoda Min-Norm 
szerokość okna 80 próbek, 

częstotliwość próbkowania 20 kHz
>2

. e^fc<. e fB

Rys. 3.25. Płaszczyzna czasowo-częstotliwościowa transformaty flakowej (a) oraz metody Min-Norm z przesuwającym oknem o szerokości 80 
próbek (b). Wyniki porównawcze zaczerpnięto z prac [36,38],
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KARTA ANALIZY: Problemy interpretacji analizy sygnału wieloskładnikowego ze składową o przeważającej energii

Sygnał IWYDI

| G2S3A0

<7 = 1.0

FFT

d)

w

ICWDI

Rys. 3.26. Analizowany sygnał wraz z widmem gęstości energii (a,d); fragment płaszczyzny czasowo-częstotliwościowe modułu transformacji 
Wignera-Ville’a (b), Choi-Williamsa z dwoma wartościami współczynnika tłumienia o (c,f) i Zhao-Atlas-Marksa (e) z wygładzającym oknem 
Hamminga o szerokości równej pięciu okresom składowej podstawowej, na przykładzie analizy sygnału „G2S3".
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Rys. 3.27. Analizowany sygnał wraz z widmem gęstości energii (a,d); płaszczyzny czasowo-częstotliwościowe spektrogramu z wygładzającym 
oknem Hamminga o szerokości równej odpowiednio dwóm oraz pięciu okresom składowej podstawowej (b,c) oraz przebiegi składników 
własnych uzyskanych reprezentacji (e,f), na przykładzie analizy sygnału „G2S3a”.
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Rys. 3.28. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Wignera-Wille’a (a) i Choi-Williamsa z różnymi wartościami 
współczynnika tłumienia er (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy sygnału „G2S3a”.
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ISPWYDI

KARTA ANALIZY: Wygładzonepseudo-reprezentacje Wignera-Ville’a (SPWVD) i Choi-Wdliamsa (SPCWD) F G2S3aA2
Składniki własne (a-t): 350Hz 450Hz 550Hz Chwilowe interharmoniczne (a-t): 460Hz 470Hz 480Hz

Hamming
Hamming 0.04s

ISPCWDI h(T) Hamming O.ls
<7 = 1.0 g(0 Hamming 0.04s

ISPCWDI 
cr = 0.05

h(r) Hamming O.ls

g(0 Hamming 0.04s

d)
-----  550Hz(a-t)
—- 450Hz(a-t)/(c-t)

3000

2500

2000

g
U 1500
CL
GO

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04

500

Rys. 3.29. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia o (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G2S3a”-, h(r) - okno Hamminga o szerokości pięciu okresów składowej podstawowej, g(0 - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.30. Płaszczyzny czasowo-częstotliwościowe modułu wygładzonej pseudo-reprezentacji Wignera-Ville’a (a) i Choi-Williamsa z różnymi 
wartościami współczynnika tłumienia o (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji (d,e,f), na przykładzie analizy 
sygnału „G2S3a”-, h(r) - okno Hamminga o szerokości dwóch okresów składowej podstawowej, g(r) - okno Hamminga o szerokości dwóch 
okresów składowej podstawowej.
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Rys. 3.31. Płaszczyzny czasowo-częstotliwościowe modułu transformacji Born-Jordana (a) i Zhao-Atlas-Marksa z wygładzającym oknem 
Hamminga o szerokości pięciu i dwóch okresów składowej podstawowej (b,c) oraz przebiegi składników własnych uzyskanych reprezentacji 
(d,e,f), na przykładzie analizy sygnału „G2S3a”.
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KARTA ANALIZY PORÓWNAWCZEJ: Metoda Prony’ego i metoda root-Music G2S3aAP

Prony Płaszczyzna czasowo-częstotliwościowa 
(fragment) root-Music Płaszczyzna czasowo-częstotliwościowa 

(fragment)

Składniki: 350Hz, 450Hz, 550Hz
b)

Składniki: 350Hz, 450Hz, 550Hz

metoda Prony’ego 
szerokość okna - 22 próbki 

krok przesuwu okna - 10 próbek 
wyniki uśrednione filtrem medianowym - rząd filtru: 50

metoda root-Music 
szerokość okna - 500 próbek 

krok przesuwu okna - 20 próbek

Rys. 3.32. Wahania składników częstotliwościowych w zakresie 300-600Hz uzyskane metodą Prony’ego z przesuwającym się oknem o 
szerokości 22 próbek (a) oraz metodą root-Music z przesuwającym oknem o szerokości 500 próbek (b). Wyniki porównawcze zaczerpnięto z 
prac [11,12].
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Omówienie wyników Grupy 2:

Prezentowane wyniki miały za zadanie sprecyzować jakościowe możliwości wykorzystania 
reprezentacji Cohena w elektrotechnice. Analizowane sygnały załączania baterii 
kondensatorów, zwarcia w układzie przekształtnika oraz pomiarowy sygnał prądu w układzie 
zasilania pieca łukowego, odwzorowywały możliwe stany pracy układów elektrycznych. Ich 
analiza metodami czasowo-częstotliwościowymi pozwoliła wyodrębnić informacje 
o charakterze zmian składników częstotliwościowych. Szczegółowe komentarze 
zamieszczono poniżej.
• Transformację Wignera-Ville’a (Rys.3.15,3.21,3.28), ze względu na dużą liczbę 

składowych własnych reprezentacji i związaną z tym dużą ilością składowych 
krzyżowych można traktować jedynie jako wstępną reprezentację. Wymaga ona dalszych 
zabiegów uśredniających składniki krzyżowe poprzez stosowanie wygładzających funkcji 
okna (Rys.3.16,3.17,3.22,3.23,3.29,3.30). Efektem tego jest jednak zmniejszenie 
rozdzielczości czasowo-częstotliwościowej. Należy jednak podkreślić, że w porównaniu 
do algorytmu Fouriera o takiej samej szerokości okna h(x) (Rys.3.14,3.20,3.27), 
wygładzona pseudo-transformacja Wignera-Ville’a charakteryzuje się dwukrotnie lepszą 
rozdzielczością czasowo-częstotliwościową.

• Efektywniejszym kierunkiem jest wpływ na redukcję składowych krzyżowych na 
poziomie równania definicyjnego, poprzez zmianę funkcji jądra. Wykorzystanie jądra 
eksponencjalnego (transformacja Choi-Williamsa) owocuje redukcją składowych 
krzyżowych z zachowaniem rozdzielczości czasowej i częstotliwościowej na poziomie 
reprezentacji Wignera-Ville’a.

• Wybór wartości współczynnika tłumienia zależy od wzajemnych relacji energetycznych 
składników badanego sygnału. Jeśli bowiem sygnał posiada składowe o zbliżonych 
amplitudach to prezentowany w pracy zakres współczynnika cr, w granicach od 0.05 do 
1.0, jest wystarczający. Warto zauważyć, że wybór <t=0.05 dla sygnału zwarcia w układzie 
przekształtnika (Rys.3.21) poprawił tłumienie i nie miał wpływu na przebieg składników 
własnych. Taka sama wartość współczynnika tłumienia, zastosowana w przypadku 
sygnału załączania baterii kondensatorów (Rys.3.15), zaowocowała jednak wyraźnym 
wpływem na składniki własne. Ostatecznego wyboru wartości a można dokonać zatem, 
poprzez „wyostrzanie” reprezentacji z jednoczesnym unikaniem wpływu na składniki 
własne.

• Dopiero sygnał zasilania pieca łukowego, który posiada składową przewyższającą 
pozostałe składniki ponad 20-krotnie, pokazuje trudności w tłumieniu składowych 
krzyżowych (Rys.3.26). Wówczas tłumienie jądrem Gaussowskim ze współczynnikiem 
cr=0.005 pozwoliło wytłumić składowe krzyżowe, ale wpływ na składniki własne był już 
bardzo zauważalny.

• Choć istnieje dalsza możliwość wygładzenia reprezentacji Choi-Williamsa przez 
dodatkowe funkcje wygładzające (Rys.3.16,3.17,3.22,3.23), to spowodowana takim 
działaniem strata rozdzielczości czasowej czy częstotliwościowej, w porównaniu do 
jakości tłumienia składowych krzyżowych, pozwala stwierdzić, iż działanie takie nie 
zawsze jest potrzebne.

• Przykład analiz sygnał zasilania pieca łukowego „G2S3” pokazuje ogromne trudności 
interpretacyjne wyników użytych przekształceń w przypadku sygnałów 
wieloskładnikowych (Rys.3.26). Badany sygnał zawierał składową podstawową 
o znacznie przeważającej energii oraz szeroki zakres charakterystycznych harmonicznych 
związanych z pracą przekształtnika, a także wiele interharmonicznych będących skutkiem 
chaotycznej natury zjawiska łuku. Tak duża ilość składowych własnych niesie za sobą 
dużą ilość składowych krzyżowych, niejednokrotnie „nakładających się” na składniki 
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własne. Trzeba pamiętać, że amplituda oscylacji składowych krzyżowych zależy od 
wzajemnych energii składników własnych. Zatem istnienie składowej podstawowej 
o dużej energii zaowocowało pojawieniem się składowych krzyżowych o dużej 
amplitudzie. Wstępne ograniczenie ilości składowych przez odfiltrowanie wybranego 
zakresu częstotliwości może okazać się niekiedy jedyną metodą do zdobycia informacji 
o charakterze zmienności badanego sygnału. Przytoczone w pracy analizy zakresu 300- 
600Hz pozwoliły podkreślić możliwości wykorzystania badanych metod do sygnałów 
charakteryzujących się wahaniami częstotliwości, czy też wykrycia krótkotrwałych 
interharmonicznych (Rys.3.27,3.28,3.29,3.30,3.31).

• Metody parametryczne, takie jak algorytm Prony’ego czy statystyki wyższych rzędów, 
wymagają przyjęcia pewnych założeń wstępnych dotyczących choćby rzędu przyjętego 
modelu czy szerokości okna pomiarowego. Podobnie dokładność reprezentacji uzyskanej 
za pomocą transformaty falkowej silnie zależy od przyjętej częstotliwości falki bazowej 
i zakresu skali, co nie pozwala z jednakową dokładnością obserwować dowolnie 
szerokiego zakresu częstotliwości. Reprezentacje z klasy Cohena, można zatem 
wykorzystać jako źródło informacji dla ustalenia parametrów innych metod (Rys.3.32).
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3.3. Grupa 3 - badania rozszerzone

Wskazane we wstępie teoretycznym definicje i interpretacje lokalnych momentów 
transformacji czasowo-częstotliwościowych wskazują na możliwość uzyskania 
jednowymiarowych charakterystyk, które traktować można jako porównawcze wskaźniki 
niestacjonarności. W niniejszym podrozdziale zaprezentowane zostaną charakterystyki 
lokalnych momentów częstotliwościowych reprezentacji Wignera-Ville’a, które reprezentują 
chwilową, średnią częstotliwość sygnału. Inaczej mówiąc, charakterystyka lokalnych 
momentów częstotliwościowych pozwoli śledzić częstotliwościowy punkt skupienia widma 
sygnału w funkcji czasu. Pojawienie się dodatkowych składowych przesunie punkt skupienia 
widma, a zatem i kształt krzywej, w kierunku pojawiającej się składowej częstotliwościowej 
bądź średniego punktu skupienia zbioru częstotliwości w nowym stanie pracy układu 
elektrycznego. Zredukowanie wymiaru płaszczyzny czasowo-częstotliwościowej do 
jednowymiarowej charakterystyki spowoduje utratę informacji o szczegółach chwilowego 
spektrum, ale wciąż zachowane zostaną informacje o czasie trwanie i początku 
niestacjonarności. Zatem proponowane charakterystyki można zastosować jako porównawcze 
wskaźniki stanu pracy badanego układu elektrycznego i wykorzystać np. jako elementy 
uczące sieci neuronowych. Przypomnijmy, że w niniejszej pracy przyjęto wyliczać lokalne 
momenty częstotliwościowe na podstawie jedynie dodatniej części osi częstotliwości 
płaszczyzny czasowo-częstotliwościowej, wyrażenie (2.76). We wszystkich bowiem 
przypadkach w analizach używano analitycznej formy sygnałów rzeczywistych, czego 
efektem były zerowe wartości transformacji w ujemnej części osi częstotliwości. 
Jednocześnie należy uściślić, że nie wszystkie reprezentacje, nawet te z grupy afinicznej, 
spełniają właściwość zachowania momentów częstotliwościowych i możliwości wyznaczenia 
częstotliwości chwilowej (właściwości P13 i P14 tabeli 2.6). Właściwość tę tracą wszystkie 
wygładzone pseudo-reprezentacje, takie jak wygładzony pseudo-Wigner-Ville’ (SPWVD), 
wygładzony pesudo-Choi-Williams (SPCWD), ale również transformacje Zhao-Atlas-Marksa 
(ZAMD) i Margineau-Hilla (MHD). Możliwości śledzenia chwilowej częstotliwości nie 
posiada również spektrogram (SPEC).

Poniżej podano przebiegi lokalnych momentów częstotliwościowych transformacji 
Wignera-Ville’a i Choi-Williamsa sygnału sumy składników cosinusoidalnych („G1SP") dla 
różnych wartości częstotliwości drugiej składowej, sygnału prądu w gałęzi RLC załączanej na 
napięcie sinusoidalne („G1S2”} z różnymi wartościami pojemności i wreszcie sygnału prądu 
w układzie załączania baterii kondensatorów („G2S1”). Wyznaczone charakterystyki 
lokalnych momentów częstotliwościowych zebrano w kartach analiz: „CSAP', „G3A2”, 
„G3A3”. Należy dodać, że na wartość lokalnych momentów częstotliwościowych mają 
wpływ również składowe krzyżowe, a poprawna wartość średniej częstotliwości osiągana jest 
jedynie, gdy oscylacje przyjmują zerowe wartości. Dla wyeliminowania wpływu składowych 
krzyżowych i uwypuklenia proponowanego kierunku wykorzystania reprezentacji czasowo- 
częstotliwościowych, wyniki lokalnych momentów częstotliwościowych poddano uśrednieniu 
filtrem medianowym. Rząd filtru przyjęto na poziomie 150 próbek, by stłumić wpływ 
składowych krzyżowych na przebieg momentu i jednocześni zachować dynamikę zmian 
badanego zjawiska.
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s KORO WIDZ ANALIZ GRUPY 3 G3 |
Nazwa 
analizy

Nazwa 
sygnału Temat i zawartość analizy

G3A1
Rys. 3.33 G1S1

Temat: Przebiegi lokalnych momentów częstotliwościowych 
transformacji WVD i CWD
Przebiegi sygnału „G1S1" dla trzech wartości częstotliwości drugiej 
składowej oraz charakterystyki lokalnych momentów
częstotliwościowych uzyskanych na podstawie transformacji Wignera- 
Ville’a oraz Choi-Williamsa. W celu uśrednienia wpływu składowych 
krzyżowych, charakterystyki uśredniono filtrem medianowym rzędu 
150.

G3A2
Rys. 3.34 G1S2

Temat: Przebiegi lokalnych momentów częstotliwościowych 
transformacji WVD i CWD
Przebiegi sygnału „G1S2” dla trzech wartości pojemności oraz 
charakterystyki lokalnych momentów częstotliwościowych 
uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi- 
Williamsa. W celu uśrednienia wpływu składowych krzyżowych, 
charakterystyki uśredniono filtrem medianowym rzędu 150.

G3A3
Rys. 3.35 J G2S1

Temat: Przebiegi lokalnych momentów częstotliwościowych 
transformacji WVD i CWD
Przebieg sygnału ,,G2SP’ oraz charakterystyki lokalnych momentów 
częstotliwościowych uzyskanych na podstawie transformacji Wignera- 
Ville’a oraz Choi-Williamsa. W celu uśrednienia wpływu składowych 
krzyżowych, charakterystyki uśredniono filtrem medianowym rzędu 
150.
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KARTA ANALIZY: Przebiegi lokalnych momentów częstotliwościowych transformacji WVD i C WD G3A1
x(r) — 1 Ocos(l 00tz7)[1(O — l(t — 0-2)] + f । =5QHz x(0 - 10 cos( 1 OOzrr)[ l(r) — l(t — 0.2)] + fl=50Hz x(0 = 10cos(100?n)[l(0-l(r-0.2)] +

f2=150Hz + 5 cos (300/27) [1(2 - 0.1) -1(2 - 0.2)] f2=250Hz + 5 cos ( 500/27 ) [l(r - 0.1) -1(7 - 0.2)] f2=550Hz + 5cos(1100^f)[l(r-0.1)-l(r-0.2)]
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Rys. 3.33.Przebiegi sygnału „G1S1” dla trzech wartości częstotliwości drugiej składowej (a,b,c) oraz charakterystyki lokalnych momentów 
częstotliwościowych uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi-Williamsa (d,e). W celu uśrednienia wpływu 
składowych krzyżowych, charakterystyki uśredniono filtrem medianowym rzędu 150.
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Rys. 3.34. Przebiegi sygnału „G1S2” dla trzech wartości pojemności (a,b,c) oraz charakterystyki lokalnych momentów częstotliwościowych 
uzyskanych na podstawie transformacji Wignera-Ville’a oraz Choi-Williamsa (d,e). W celu uśrednienia wpływu składowych krzyżowych, 
charakterystyki uśredniono filtrem medianowym rzędu 150.
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Rys. 3.35. Przebieg sygnału „G2S1" (a) oraz charakterystyki lokalnych momentów częstotliwościowych uzyskanych na podstawie transformacji 
Wignera-Ville’a oraz Choi-Williamsa (b,c). W celu uśrednienia wpływu składowych krzyżowych, charakterystyki uśredniono filtrem 
medianowym rzędu 150.
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Omówienie wyników Grupy 3:

Zaproponowane w niniejszej pracy charakterystyki lokalnych momentów 
częstotliwościowych zwracają uwagę na dodatkowe możliwości wykorzystania 
wyznaczonych transformat czasowo-częstotliwościowych. Siedzenie zmian punktu skupienia 
widma sygnału w funkcji czasu zachowuje informacje o czasowym charakterze 
niestacjonarności. Szczegóły dotyczące zmiany składu widma zostają przy tym podejściu 
utracone, pozostawiając jedynie ogólne informacje o kierunkach przesunięć środka ciężkości 
widma ku wyższym bądź niższych częstotliwościom. A zatem:

• Uzyskane charakterystyki można wykorzystać do detekcji momentu powstania i czasu 
trwania stanu przejściowego.

• Zredukowanie wymiaru płaszczyzny czasowo-częstotliwościowej pozwala porównywać 
uzyskane jednowymiarowe charakterystyki np. dla różnych parametrów układów 
elektrycznych. To zaś niesie nowe możliwość diagnostyczne, czy też pozwala traktować 
uzyskane charakterystyki jako elementy uczące i decyzyjne sieci neuronowych.

• Ograniczeniem jest fakt, że nie wszystkie transformaty czasowo-częstotliwościowe 
spełniają właściwości zachowania momentów częstotliwościowych i wyznaczania 
chwilowej częstotliwości. Tabela 2.6, własności wybranych reprezentacji klasy Cohena, 
została opracowana z myślą o usprawnieniu podejmowania metodycznych decyzji przy 
wyborze reprezentacji. Tabela ta pozwala stwierdzić, iż w przypadku afinicznej podgrupy 
klasy Cohena, do wyznaczania lokalnych momentów częstotliwościowych wykorzystać 
można jedynie transformatę Wignera-Ville’a (WVD, Choi-Williamsa (CWD) oraz Born- 
Jordana (BJD). Pozostałe transformacje tej podgrupy oraz ich wersje wygładzone nie 
spełniają właściwości PI3, P14, leżących u podstaw charakterystyk lokalnych momentów 
częstotliwościowych.
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4. Wnioski

Motywacją powstania niniejszej pracy stała się potrzeba dokładnego wyznaczania 
parametrów niestacjonarnych sygnałów elektrycznych w dziedzinie czasu i częstotliwości. 
W tym celu przeprowadzono badania możliwości wykorzystania nieparametrycznych 
przekształceń czasowo-częstotliwościowych, należących do klasy Cohena. Analizowane w 
pracy sygnały podkreślają różne źródła i charakter badanych niestacjonarności. Jednak w 
większości przypadków sygnały z zakresu elektrotechniki posiadają jedną wspólną cechę, 
którą autor uznał za podstawowe kryterium przy wyborze reprezentacji z klasy Cohena. Otóż 
istnienie w całym odcinku badanego sygnału składowej podstawowej implikuje niepożądane 
składowe krzyżowe, pomiędzy składową podstawową a częstotliwościami pojawiającymi się 
w stanie przejściowym. Stąd też autor wskazuje afiniczną podgrupę klasy Cohena, jako 
szczególnie użyteczną w zakresie elektrotechniki. Ta bowiem grupa, o szczególnej budowie 
funkcji jądra, pozwala na tłumienie składowych krzyżowych już na poziomie równania 
definicyjnego. Choć autor podkreśla możliwości dodatkowego tłumienia składowych 
krzyżowych za pomocą okien wygładzających, to jednak kierunek ten, należy traktować jako 
środek dodatkowy, mający duży wpływ na rozdzielczości czasowo-częstotliwościowe. 
Badania zaprezentowane w niniejszej rozprawie pozwoliły podkreślić poprawę dokładności 
wyznaczania parametrów mocno zniekształconych sygnałów elektrycznych w porównaniu do 
spektrogramu, bazującego na krótkoczasowej transformacie Fouriera. Charakterystyczne 
cechy algorytmów afinicznej podgrupy klasy Cohena, korzystne i ograniczające celowość ich 
wykorzystania w dziedzinie elektrotechniki, podsumowano poniżej.

1. Poprawa dokładności w stosunku do algorytmu Fouriera
Stosując algorytmy omawianej klasy otrzymuje się dwukrotne polepszenie rozdzielczości 
w stosunku do spektrogramu, bazującego na krótkoczasowej transformacie Fouriera 
(wyraźnie większe rozmycie płaszczyzn czasowo-częstotliwościowych spektrogramu). 
Zakres obserwacji zostaje ograniczony z do częstotliwości próbkowania.

2. Rozdzielenie związku pomiędzy rozdzielczością czasową i częstotliwościową
Charakterystyczną cechą spektrogramu jest bezpośredni związek pomiędzy szerokością 
funkcji okna a rozdzielczością czasowo-częstotliwościową. Zwiększanie szerokości 
funkcji okna poprawia rozdzielczość częstotliwościową, ale wydłuża czas odpowiedzi 
algorytmu. W przypadku wygładzonych pseudo-reprezentacji klasy Cohena, stosowane są 
dwie funkcje okien: funkcja wymnażana z sygnałem, która odpowiedzialna jest za 
rozdzielczość częstotliwościową, oraz funkcja splatana z reprezentacją względem czasu, 
mająca wpływ na rozdzielczość czasową. Prowadzi to do niezależności w sterowaniu 
poziomami rozdzielczości czasowej i częstotliwościowej.

3. Składowe krzyżowe - niepożądana właściwość transformacji kłasy Cohena
Biliniowe reprezentacje czasowo-częstotliwościowe charakteryzują się zawartością dwóch 
rodzajów składników. Jedynie składniki własne zawierają użyteczną informacje 
o częstotliwościach występujących w zmiennym widmie badanego sygnału. 
W geometrycznych czasowo-częstotliwościowych środkach ciężkości składników 
własnych znajdują się niepożądane, oscylacyjne składniki krzyżowe. Składniki te 
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powodują trudności w interpretacji płaszczyzn czasowo-częstotliwościowych. Jak 
pokazują przykłady przeprowadzonych analiz, istnieje nawet możliwość zniekształcenia 
składowych własnych przez pokrywające je składowe krzyżowe. Zjawisko to towarzyszy 
najsilniej transformacji Margineau-Hilla o jądrze cosinusoidalnym, gdzie położenie 
składników krzyżowych pokrywa się z położeniem składników własnych. Ta niekorzystna 
właściwość reprezentacji Marginau-Hilla całkowicie eliminuje ją z grupy przekształceń 
użytecznych dla potrzeb elektrotechniki. Poprawę przynosi dopiero sztuczne uśrednianie 
funkcjami wygładzającymi.

4. Możliwości tłumienia składowych krzyżowych na trzech poziomach 
Poziom 1: Sygnał rzeczywisty, sygnał zespolony a postać analityczna 
W przypadku badań sygnałów rzeczywistych, których widmo jest parzystą funkcją 
częstotliwości, w algorytmach należy stosować postacie analityczne sygnałów, uzyskane 
np. drogą transformaty Hilberta. Charakteryzują się one zerowymi wartościami widma 
w ujemnej części osi częstotliwości, co owocuje redukcją składowych krzyżowych 
pomiędzy składnikami widma leżącymi w ujemnej i dodatniej części osi częstotliwości. 
Zastosowanie postaci analitycznej do badań sygnałów zespolonych może spowodować 
utratę ważnych informacji, zawartych w ujemnej części osi częstotliwości. Przykładem 
mogą być analizy wektora przestrzennego [35,45], Płaszczyzny czasowo- 
częstotliwościowe wektora przestrzennego zawierają jednocześnie informacje o zmianach 
składowej zgodnej i przeciwnej, które reprezentowane są odpowiednio wzdłuż dodatniej 
i ujemnej części osi częstotliwości.
Poziom 2: Dobór funkcji jądra o właściwościach wygładzających
Dobór funkcji jądra, a co za tymi idzie wskazanie reprezentacji klasy Cohena użytecznej 
dla potrzeb elektrotechniki, jest jednym z głównych celów niniejszej pracy. Bardzo dobre 
efekty uśredniania składowych krzyżowych, z jednoczesnym zachowaniem rozdzielczości 
czasowo-częstotliwościowej na poziomie transformacji Wignera-Ville’a, przynosi 
zastosowanie jądra Gaussowskiego (transformacja Choi-Williamsa). Dodatkowo, budowa 
funkcji jądra tego przekształcenia pozwala powiązać siłę tłumienia z jednym 
współczynnikiem, współczynnikiem tłumienia o. Wybór wartości współczynnika 
tłumienia zależy od wzajemnych relacji energetycznych składników badanego sygnału. 
Przy wyborze należy dążyć do uzyskania charakterystyki o najmniejszej amplitudzie 
składowych krzyżowych i braku wpływu funkcji jądra na składniki własne. Jeśli sygnał 
posiada składowe o zbliżonych amplitudach to prezentowany w pracy zakres 
współczynnika o, w granicach od 0.05 do 1.0, jest wystarczający. Dopiero 
wieloskładnikowy sygnał zasilania pieca łukowego, który posiada składową 
przewyższającą pozostałe składniki ponad 20-krotnie, pokazuje trudności w tłumieniu 
składowych krzyżowych. Wówczas tłumienie jądrem Gaussowskim ze współczynnikiem 
<7=0.005 pozwoliło wytłumić składowe krzyżowe, ale wpływ na składniki własne był już 
bardzo zauważalny.
Wykonane analizy wskazują również transformację o jądrze stożkowym (Zhao-Atlas- 
Marks) jako użyteczną dla potrzeb elektrotechniki. Można ją traktować jako pseudo- 
reprezentację Born-Jordana, przez co reprezentację o mniejszej rozdzielczości 
częstotliwościowej niż transformacja oryginalna. Ta ostatnia wykazuje jednak negatywny 
efekt tłumienia składowych o wyższych częstotliwościach.
Poziom 3: Sztuczne uśrednianie składowych krzyżowych - wygładzone pseudo- 
reprezentacje
Ostatnią drogą tłumienia składowych krzyżowych jest wyznaczanie wygładzonych 
pseudo-reprezentacji klasy Cohena, uzyskiwanych na drodze obciążenia sygnału funkcją 
okna oraz splotu pseudo-reprezentacji z dodatkową funkcją okna. Obciążenie sygnału 
funkcją okna owocuje wygładzaniem reprezentacji wzdłuż osi częstotliwości, 
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ale okupione jest zmniejszeniem rozdzielczości częstotliwościowej. Im szersze jest okno 
wymnażane z sygnałem, tym lepszą osiąga się rozdzielczość częstotliwościową. Wyniki 
analiz wskazują na szerokość okna wymnażanego z sygnałem nie większą niż pięć 
okresów składowej podstawowej. Zaletą pseudo-reprezentacji jest możliwość wykreślania 
unormowanej energii sygnału. W przypadku transformacji oryginalnej informacja o 
energii składników własnych zawarta jest w czasowym środku ciężkości występowania 
danej składowej. Pseudo-reprezentacje wskazują stałe poziomy energii w odcinkach 
stacjonarności sygnału oraz zmiany dopiero w trakcie pojawienia się niestacjonarności.
Charakter i lokalizacja składowych krzyżowych w reprezentacjach większości sygnałów z 
zakresu elektrotechniki sprawia, że efektywną redukcję składowych krzyżowych przynosi 
splot wzdłuż osi czasu pseudo-reprezentacji z dodatkową funkcją okna. Efektem takiego 
podejścia jest wygładzona pseudo-reprezentacja. Użycie dodatkowego okna powoduje 
zmniejszenie rozdzielczości czasowej. Im szersze jest okno splotu, tym dłuższy jest czas 
odpowiedzi algorytmu. Okno biorące udział w splocie pseudo-reprezentacji bardzo dobrze 
wygładza składowe krzyżowe już przy szerokościach dwóch, trzech okresów składowej 
podstawowej.

5. Lokalne momenty częstotliwościowe jako jednowymiarowe wskaźniki niestacjonarności 
W pracy zaproponowano szersze wykorzystanie transformacji czasowo- 
częstotliwościowych, bazujące na jednowymiarowych charakterystykach lokalnych 
momentów częstotliwościowych. Choć szczegóły dotyczące zmian składu widma zostają 
przy tym podejściu utracone, informacje o czasowych właściwościach badanej 
niestacjonarności są zachowane. Uzyskane charakterystyki można zatem wykorzystać do 
detekcji momentu powstania i czasu trwania stanu przejściowego. Ponadto, zredukowanie 
liczby wymiarów do jednowymiarowej funkcji czasu, pozwala wykorzystać 
charakterystyki lokalnych momentów częstotliwościowych jako wskaźniki różnych 
stanów pracy układu, co owocuje perspektywami wykorzystania w obszarze diagnostyki.

6. Transformacje klasy Cohena a inne metody estymacji parametrów niestacjonarnych 
sygnałów elektrycznych
Metody parametryczne, takie jak algorytm Prony’ego czy statystyki wyższych rzędów, 
wymagają przyjęcia pewnych założeń wstępnych, dotyczących choćby rzędu przyjętego 
modelu czy szerokości okna pomiarowego. Podobnie, dokładność reprezentacji uzyskanej 
za pomocą transformaty falkowej silnie zależy od przyjętej częstotliwości falki bazowej 
i zakresu skali, co nie pozwala z jednakową dokładnością obserwować dowolnie 
szerokiego zakresu częstotliwości. Reprezentacje z klasy Cohena, można zatem 
wykorzystać jako źródło informacji dla ustalenia parametrów innych metod.

W świetle zaprezentowanych wyników oraz głównych celów rozprawy można stwierdzić, że 
wskazana przez autora afiniczna podgrupa klasy Cohena jest użyteczną formą reprezentacji 
niestacjonarnych sygnałów elektrycznych. Transformacje te można traktować jako pewnego 
rodzaju wypośrodkowane rozwiązanie pomiędzy „rozmytym” Fourierowskim 
spektrogramem, a „wyostrzoną”, choć bogatą w składniki krzyżowe, transformacją Wignera- 
Ville’a. Poprawa dokładności wyznaczania parametrów niestacjonarnych sygnałów 
elektrycznych w porównaniu do algorytmu Fouriera zostaje zatem osiągnięta.
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Dodatek - analityczne wyprowadzenia wybranych 
właściwości transformacji Wignera

D.l.Transformata Wignera sygnału a transformata Wignera 
widm

Jeśli

+ (D-1)
—oo

i
oo

wdX;iX2 (©,/)=£ (d.2)

to:
W^J^WD^f) (D.3)

Wyprowadzenie:

WDx„^ M = F{^ ('+f) *2 ('-f)} = F{^ (f (~f(T-2'))} =
, , , <D-‘

—F{x;(j(r + 2»))}*F{x;(4(r-2<))} 
lJL

X]((i))= F[xj(t)], x2(w) = F[x2(t)] (D.5)

^{xl(i(r + 2t))} = ^{xl(iT)}ej2M =2X/(2M)ej2(Ut (D.6)
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^px2M = ^(2X;(2ffl)e'2^^

= — ^2X](2p)ej2pt2X2(2(a>-p))e~j2^~p>>tdp= (D.8)

—oo

OO

= j«; (2p)X2 (2 (o - p^e^^dp

2p — co = — ^dp——dX, Xj (2p^ — Xj fćy + yk
2 4 V ’ (D.9)

X^(2co-2p) = X^co-^

Stąd:
oo

WD (r,®) = -^ fx,(®4)x2>4)e^ = WX;>X2(M (D.10)
lJL v

Wykorzystane własności transformaty Fouriera:
F{x(r-f0)} = X(6>)eF7^ ’

1 1 (D.ll)
F{x* (z)} = **(-")

D.2. Transformata Wignera sumy sygnałów

oo oo

+ f Xy (r “fk ^mdT+ dT = (D.14)

= WDX, (',«) + WDX2 (»,») +WDX/ X2 (g®)+WDV; (t,a,}

Ogólnie dla sygnałów zespolonych zachodzi także związek:
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09

WD (t,co)= [x2 (t + y)x,*(t-~)e ^dr = 
X2,X7 \ ’ / J 2) 1 \ 2) T-ł-T

dT-^-dT

Jeżeli zaś x7 (r) i x2 (ż) są sygnałami rzeczywistymi, wówczas:

WDx2,x,('>®)= + M=
dT^-dT

oo

= ^x2^-^x^t + ^eja,rdT = (D.16)

oo

= p,(z + f)x2(/-f)^jM^r = WD,^^

Czyli:
WDr(z,ćy) = WDr (cćy) + WDr p,&») + 2/?4wD Y r (D.17)

lub w szczególności dla sygnałów rzeczywistych:
WDx(cty)=WXy (cry) + WDX2 (r,óy) +WDXpX2 (t,co) +

Przypadek ogólny - sygnały będące sumą dowolnej ilości składowych:
= (D-19)

k

WDx[t,C0)= x^t+ ^x* e ^aTdT =

(D.20)

oo

e~jC0TdT =

e~jmdT
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Stąd: WI)J ^()) = WDtJ^ WD(((t,a)
k i>k

(D.21)

D.3. Lokalne momenty częstotliwościowe

Ogólnie lokalny zwykły moment częstotliwościowy zr-tego rzędu można opisać wyrażeniem:

(?)~ WD
X]X2 J 1’ X

(D.22)

(t) = ^a)nWDx(t,a))dw

[t,co)dco =
xix2 J i ’ ■

(D.23)

130



Dodatek

W szczególnym przypadku, gdy n = 0

mwd M = fwD
XI,X2 J 1’2

(t,®)da> = 2ti Xj (t)x2 (?) (D.26)

bądź dla Xj (?) = x2 (?) = x(?)

(?) (D.27)

Lokalny moment częstotliwościowy zerowego rzędu wskazywał będzie na chwilową energię 
sygnału. Jest to związane z warunkami brzegowymi dla czasu, jakie muszą spełnić 
reprezentacj e czasowo-częstotliwościowe.

Lokalny zwykły moment częstotliwościowy pierwszego rzędu:

gdzie:

[coe j ^a>Tdco= j~- [e ^^dco- j2/r ó'(t)
J J ot dt J J v ’ (D.30)
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M^/2

(D.32)

Bądź:

(?) = |x;(?)|e7^W,Dla sygnałów zespolonych:

xi v 1

Dla sygnału zespolonego ^(?) = ^y(?) = %2(^)

Mwz\
(?) = 2tt| x(?) |2 Im^-^ log x(t}}

(D.34)

(D.35)

lub

Zapisując sygnał zespolony w postaci wykładniczej
x(?) = | x^ |e7^)

otrzymujemy:
Mwd. (t) = 2n\x(t)\2 Imlog |x(f)|e7^ 

x dt l L
= 2^| x(?) |2 ^ln^x(t) | + ;>(?)} = 2^/(?)| x(t) |2

Dla sygnałów rzeczywistych

W=Mx,w||*2W|^|'« •
*1,2 Ol X, [l I

(D.36)

(D.37)

(D.38)

(D.39)

W przypadku, gdy sygnał x^ jest rzeczywisty, wówczas faza sygnału może przyjmować
dwie wartości:

= 0 lub y/{t] = 7r (D.40)

Czyli: M^(?) = 0 (D.41)

Charakterystyka lokalnego momentu zwykłego transformaty Wignera sygnałów zespolonych 
zawiera w sobie informacje o zmianach pochodnej fazy, a zatem możliwe jest śledzenie
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chwilowej częstotliwości. W przypadku sygnałów rzeczywistych, ze względu na parzystość 
widma, wyznaczone lokalne momenty częstotliwościowe przyjmują wartość zero, co 
uniemożliwia wykorzystanie proponowanej charakterystyki do badania częstotliwości 
chwilowej. Zmiana fazy sygnału z ^(t) = 0na = umożliwi lokalizację przejścia 
sygnału przez zero. Chcąc odnaleźć chwilową częstotliwości sygnału rzeczywistego w pracy 
zaproponowano wyznaczanie lokalnych momentów transformacji jedynie na bazie dodatniej 
części osi częstotliwości.

D.4.Rozdzielczość reprezentacji Wignera-Ville’a i spektrogramu

Najczęściej spotykanym sposobem porównania rozdzielczości reprezentacji czasowo- 
częstotliwościowych jest wyznaczanie pola powierzchni płaszczyzny czasowo- 
częstotliwościowej potrzebnej do reprezentacji unormowanej funkcji Gaussa [32,52], Jeśli 
zatem badanym sygnałem będzie funkcja Gaussa:

(D.42)

to transformata Wignera-Ville’a przyjmie postać:

(D.43)

Wyrażenie powyższe wskazuje, że transformata Wignera-Ville’a sygnału Gaussowskiego 
skoncentrowana jest w środku układu współrzędnych płaszczyzny czasowo- 
częstotliwościowej, a parametr badanej funkcji a, odpowiada za rozmycie reprezentacji 
wzdłuż kierunków czasu i częstotliwości. Im większe są wartości a, tym reprezentacja 
skupiona jest bardziej wzdłuż osi czasu lecz bardziej rozmyta wzdłuż osi częstotliwości 
i odwrotnie. Istotne jest, że pole powierzchni potrzebne do koncentracji energii takiego 
sygnału ma kształt elipsy. W szczególności, dla amplitudy widma równej e1, pole elipsy 
reprezentującej sygnał Gaussowski przez transformację Wignera-Ville’a, przyjmie wartość 
A = 7T.

Podobne rozumowanie możemy przeprowadzić dla klasycznego spektrogramu, 
uzyskanego na podstawie krótkoczasowej transformaty Fouriera, o funkcji okna tego samego 
typu, co badany sygnał. A zatem jeśli funkcją analizująca h(r) będzie również funkcją Gaussa:

(D.44)

wtedy krótkoczasową transformatę Fouriera opisze poniższe wyrażenie:
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STFTX (t,co) = f x(r)h(T-t)e jev7dT= —~\ J 2 'e" 2 }a>TdT
J \7l J J—oo x —oo

2 O fi 2 
------— \T+BtT-—t

2 J 2 e^dT

(D.45)

Wyrażenie to można przedstawić w formie:

STFTjt,®)

Z /----- ! aP 2 1 2 . P2-7^ 2 ^a+P)' ~2(a+p}a ^(a+P)]
^ + 0 )

(D.46)

Ostatecznie poszukiwany spektrogram:

SPEC^ (t,ty) = |STFTX (r,tw)| =
aP t2 

2(a+P)

1 2]

—------------ r2(a+P) J (D.47)

Podobnie jak dla reprezentacji Wignera-Ville’a, spektrogram funkcji Gaussowskiej skupiony
będzie wokół środka układu współrzędnych, a kontur przyjmie kształt elipsy. Poszukując 
jednak pola elipsy dla widma o amplitudzie e’1, otrzymamy:

(D.48)

W granicznym przypadku, najlepszą rozdzielczość uzyska się, jeśli szerokość funkcji 
analizującej będzie taka sama jak długość analizowanego sygnału, a zatem dla a=/3. Ale 
nawet wtedy pole elipsy potrzebne do reprezentacji badanego sygnału Gaussowskiego 
przyjmie wartość A-2-ji.
Powyższe wyprowadzenie pokazuje dwukrotnie lepszą rozdzielczość transformacji Wignera- 
Ville’a w porównaniu do klasycznego spektrogramu.
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