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Yorwort.

Die Technische Elastizititslehre, welche den
Inhalt des vorliegenden Schlufibandes meines Lehrbuches der
technischen Physik bildet, beschrénkt sich auf umkehrbare
Zustandséinderungen fester Korper im Giltigkeitshereiche des
Hookeschen Gesetzes. Diese sind im weitesten Umfange einer
exakten Behandlung zugéinglich, die ihrerseits die einzig zuver-
lassige Grundlage fiir die konstruktive Titigkeit des Maschinen-
und Bauingenieurs darbietet. Infolge der erhdhten Anforderungen
der heutigen Technik sind dabei nicht selten neue Probleme zu
losen, denen gegeniiber die friither allein gebriuchlichen elemen-
taren Methoden versagen. Dazu tritt noch die Notwendigkeit
der Beriicksichtigung dynamischer Einfliisse, die sich durch das
Auftreten von Schwingungen mit der Gefahr der Resonanz-
erlscheinungen héufig genug auch da geltend machen, wo man bisher
reme  Gleichgewichtsuntersuchungen fiir. ausreichend hielt. Der
hierdurch bedingten gleichzeifideh Erweiterung und Vertiefung
der technischen Elastizititslehre war ohne ein allzu starkes An-
wachsen des Buchumfanges nur, durch eine zweckmifige An-
ordnung des Stoffes und eine kritische Auswahl unter den mannig-
fachen Anwendungen zu begegnen: *DemgemiB zerfallt das Werk
in zwel scharf voneinander getrennte Teile, von denen der erste
den Inhalt meiner Hauptvorlesing iiber Festigkeitslehre an der
Techn. Hochgchule zu Danzig im Wintersemester bildet, wihrend
ich ausgewihlte Kapitel des zweiten Teiles im Sommersemester
vor reiferen Studierenden vorzutragen pilege.

Der erste Teil umfafit fiinf Kapitel und beginnt mit einer
kurzen Darstellung der Zug- und Druckerscheinun-
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Vi Vorwort.

gen auf rein empirischer Grundlage, die unmittelbar aul das
Hookesche Gesetz und die beiden Spannungs-
artenfithrt. Daran schlieBen sich die elastischen Gleichgewichts-
bedingungen im ebenen Spannungszustand mit An-
wendung auf diinnwandige Gefélhe Die drei folgenden
Abschnitte itber deren Forménderung, iiber elastische
LingsschwingungenundRadialschwingungen
von Rohren, die fiir die Festigkeit von Druckleitungen von
Bedeutung sind, kann der Anfénger vorldulig tiberschlagen, wiih-
rend auf die Lehren des §7 iiber die Formédnderungs-
arbeit weiterhin mehrfach zuriickgegriffen wird. Da im all-
gemeinen jedes Kapitel mit einfacheren Dingen beginnt und all-
méihlich zu verwickelten aufsteigt, so empfiehlt es sich
firdenLeser,sogleichzumfolgendenKapitel
iiberzugehen, wenn er irgendwo auf Sehwie-
rigkeiten stdBt. Diese werden dann iiberwunden sein,
wenn er nach weiterem Fortschreiten die iibersehlagenen Ab-
schnitte in Angriff nimmt.

Das zweite Kapitel ist der reinen Torsion gewidmet,
wobei ich den schinen Untersuchungen von Bredt iiber die
Verdrehung diinnwandiger Hohlzylinder, die
ich selbst auf solche mit Zwischenstegen (Dinglers Pol.
Journal 1911, Heft 32) erweiterte, einen ihrer praktischen Be-
deutung entsprechenden Platz eingerdumt habe. Die hieraus
gewonnenen Sitze erleichtern {iberdies das Versténdnis der Ver-
drehung von Zylindern mit beliechigen Quer-
sechnitten, von denen sich die offenen dilmnwandigen wieder
besonders leicht behandeln lagsen. Das gilt auch fir die in § 12
hesprochenen Torsionsschwingungen, solange man die Stabmasse
gogen die Zusatzmassen an den Enden vernachléissigen darf.

Die Biegungslehre des geraden Stabes in
Kap. I1I beginnt mit der Untersuchung der Spannungs-
verteilung, wobei ich fiir die Aufzeichnung der Spannungs-
trajektorien die W a g n e r schen Kurven reiner Schubspannung
verwendet habe. Der Untersuchung der elastischen Linie
wurde eine kurze Diskussion der GroBenordnung der einzelnen
Glieder ihrer Differentialgleichung vorausgeschickt, von der dann
bei der Besprechung von Nebeneinfliissen sowie spater in der
Knicktheorie Gebrauch gemacht wird.



Vorwort. ViI

Inder Biegungslehre krummer Stébe (Kap.IV)
haben wir uns von vornherein auf diinne Stiibe beschriankt und
damit alle Betrachtungen iiberdieSpannungsverteilung
und die Integrationen iiber den Querschnitt ausgeschaltet, die
in vielen Schriften einen erheblichen Raum beanspruchen und doch
einer exakten Prifung nicht Stich halten. Von den Anwendungen
seien die auf Uhrfedern, auf elliptische Rohre
und auf Kreisrohre unter ungleichférmigem
Druck hervorgehoben. An den Schlufl dieses Kapitels habe
ich auch meine Theorie der Biegung krummer Rohre
(Dingl. Journal u. Phys. Zeitschr. 1912) gestellt, in der die in
§ 3 vorgetragene Behandlung diinnwandiger GefdBe unter Hinzu-
nahme von Biegungsspannungen eine Erweiterung erfihrt.

Das letzte Kapitel des ersten Teiles bringt zunéichst die
Eunlersche Knicktheorie, und zwar unter sofortiger
Heranziehung der zweiten Annéherung, durch welche die Unbe-
stimmtheit des Biegungspfeiles und der Spannungen beseitigt
wird (Zeitsche. d. V. d. Ing. 1908, S. 827), die bis in die letzte
Zeit viel Verwirrung angerichtet hat. Diese Darstellung wird
durch das dynamische Verhalten eines axial bela-
steten Stabes in Ankniipfung an die frither (§21) entwickelte
Theorie der Biegungsschwingungen sowie durch einige Unter-
suchungen iiber kritische Umlaufszahlen erganzt.
Den Abschluff dieses Kapitels bildet die nach meiner Uberzeu-
gung ebenso wichtige wie lehrreiche Theorie der Kippersech e i-
nungen in der Pranpdtlschen Darstellungsweise.

_Im VI. Kapitel, welches mit der allgemeinen Ela-
stizitdtstheorie den zweiten Teil des Buches einleitet,
werden zundchst die rdumlichen S pannungs- und
Dehnungsformeln entwickelt und fiir den isotro pen

K érper miteinander in Bezichung gebracht. Da die hieraus
resultierenden Differentialgleichungen nur in wenigen Fillen inte- -
grabel sind, so ergibt sich die Notwendigkeit der Heranziehung
von Ndherungslésungen durch das vom Verfasser ver-
allgemeinerte Ritzseche Verfahren (Phys. Zeitschr. und
Z. d. V. d. Ing. 1913). Von exakten Loésungen enthilt dieses
Kapitel das Gleichgewicht derelastischenKugelschale
sowie die De St. Vénantsche Theorieder Torsion
und der Biegun g des geraden Balkens.

11*



VIII Vorwort.

Der Plattenbiegung ist das Kapitel VII gewidmet,
das u. a. die vom Verfasser angegebene Niherungslésung fiir
rechteckige Platten (Z. d. V. d. Ing. 1913) bringt und mit der
Untersuchung der symmetrisch belasteten Kreisplatte abschliefit.
Mit der Plattentheorie eng verwandt ist die Behandlung des
ebenen Spannungszustandes mit Hilfe der Airy-
schen Spannungsfunktion im VIIL. Kapitel. Diese
Methode gewihrt trotz ihrer Unvollkommenheiten einen recht
guten Einblick in die Spannungsverteilunggerader
Balken und Kreisbogentrdger unter bestimmten
Belastungen und hat darum in den letzten Jahren auch in tech-
nischen Kreisen cine erhohte Beachtung gefunden, insbesondere
seitdem F 6 p pl sie in den Bd. V seiner Vorlesungen aufgenom-
men hat. Wenn ich mich auch in der Auswahl der Probleme
in diesem wie im folgenden Kapitel mit F 6 p p | mehrfach be-
rithre, o habe ich doch in deren Durchfiihrung stefs eigene Wege
eingeschlagen. Anstatt némlich eine Losung unvermittelt an-
zuschreiben und ihre Riehtigkeit nachfraglich zu erweisen, ent-
wickle ich sie schrittweise aus einfachen, manchmal trivialen
Téllen, wodurch ohne griofieren Aunfwand an Mihe und Zeit jede
den Anfinger storende Willkiir ausgeschlossen erscheint. In
diesem heuristischen Verfahren liegt zugleich eine Anleitung
zur selbstindigen Behandlung neuer Aufgaben, wie sie in der
Technik téglich auftauchen.

Eine ganze Anzahl derartiger moderner Untersuchungen
iberachsensymmetrischeSpannungszustinde
bringt das Kap. IX, in dem zuerst dickwandige Rohre
bzw. Seheiben unter Druek, unter dem Einflusse der
Fliehkraftheider Rotation sowie mit radial ver-
inderlicher Temperatur abgehandelt werden. Daran
schliefen sich dinnwandige Zylinder unter axia-
lem Druck, rotierende Trommeln und Gefalie
mit konstanter und veriinderlicher Wandstirke, wofiir auch das
Ritzsche Verfahren herangezogen wurde. Fiir die darauf
folgende Ermittlung der Spannungsverteilung in einem zur Seite
einer Begrenzungsebene unendlich ausgedehnten Kirper mit
einer konzentrierten Normallast konnte an das entsprechende
ebene Problem (§56) angekniipft werden. Daraus ergab sich’
zwanglos und ohne Heranziehung der Potentialtheorie eine



Vorwort. 11X

Losung, die ihrerseits einen bequemen Zugang zur Theorie der
Héarte eroffnet. Im historischen SchluBkapitel
habe ich mich nicht mit einer Aufzéhlung der von den einzelnen
Forschern auf dem Gebiete der Elastizitétslehre herriihrenden
Sétze begniigt, sondern auf Grund eines oft miithsamen Quellen-
studiums den inneren Zusammenhang der Fortschritte aufzu-
decken gesucht. Dabei bot sich Gelegenheit, auf einige im Buche
selbst nicht beriithrte Dinge hinzuweisen, welche geeignet sind,
den Leser zu weitergehenden Studien unter Benutzung der reich-
lich zitierten Literatur anzuregen.

Da das Buch nicht allein dem systematischen Studinm
bzw. dem Hochschulunterrichte als Grundlage dienen, sondern
sich auch als Nachschlagewerk fiir selbsténdig arbeitende Inge-
nieure, Physiker und Mathematiker niitzlich erweisen soll, so
habe ich Vorsorge getroffen, dali die einzelnen Abschnitte mdg-
lichst unabhingig voneinander gelesen werden konnen. Fiir das
Selbststudium diirfte die Hinzunahme einer Aufgabensammlung,
z B. der sehr reichhaltigen von F. Wittenbauer (Aufgaben
zur Techn. Mechanik, Bd. II, Festigkeitglehre, Berlin 1910)
niibzlich sein, obgleich fast jeder Paragraph unseres Buches
praktische Anwendungen der vorgetragenen Theorie und Rech-
nungsmethoden bringt. Die mathematischen Vorkenntnisse sind
dieselben, wie in meiner technischen Hydromechanik, d. h. die
Elemente der Differential- und Integralrechnung und der ana-
lytischen Geometrie, wiihrend die Integration totaler und par-
tieller  Differentialgleichungen in jedem vorkommenden Falle
durchgefiihrt worden ist.

Bei der Berechnung der Beispicle, der Kontrolle der Formeln
und der Korrektur sowie beim Zeichnen der Figuren und der An-
lage der Register haben mich meine Assistenten, die Herren
Dr. Gohner, Dr. Grammel und Dipl.-Ing. Lapp, in dankens-
werfer Weise unterstiitzt. Auch mein Bruder, Dipl.-Ing. Dr.
R. Lorenz in Essen, hatte die Freundlichkeit, die Revisions-
bogen durchzusehen und mich auf einige Unstimmigkeiten hin-
zuweisen, durch deren Beseitigung die Brauchbarkeit des Buches
gewonnen haben diirfte.

Danzig-Langfuhr, im Juli 1913.

H. Lorenz.



§ 1.

§ 2.

§ 3.

[nhaltsverzeichnis.

Kap. L. Zug- und Druckelastizitit isotroper Kirper.

Der Zug-und Druckversuch . ..

Beziehung zwischen der Stabkraft und der Langen-
anderung, Spannung und Dehnung. Das Hookesche Gesetz;
Elastizititsmodul und Elastizititsgrenze, elastische und
bleibende Dehnungen. Der FlieBvorgang. Temperatur-
snderungen bei der Formanderung. Die Formanderungs-
arbeit. Korper mit verdnderlichen Elastizitdtsmodulen;
isotrope und anisotrope Korper. Die Querkontraktion.
Normal- und Schubspannungen. Beispiel.

Der ebene Spannungszustand .

Definition des Spannungsbegriffes an einem Element;
paarweise Gleichheil entgegengesetzt gerichteler Span-
nungen. Spannungen in Diagonalflichen. Hauptschnitte,
Hauptspannungen und Spannungskreis. Dehnungen und
Schiebungen; Schubmodul. Spezialfall der reinen Schub-
spannung. Beziehung zwischen Elastizitatsmodul, Schub-
modul und Querkontraktion. Anderung der Elastizitéts-
konstanten mit der Temperatur. Tabelle der Elastizitatskon-
stanten. Die spezifische Forminderungsarbeit.

Spannungen in dinnen GefédéBwanden
untereinseitigem Drucke. i

Kennzeichnung der dinnen Wand. Aufstellung der
ersten Hauptgleichung. Beschriankung auf Rotationsflachen
und deren Zerlegung durch Hauptschnitte nach Meridian-
kurven und Parallelkreisen. Ableitung der zweiten Haupt-
gleichung, der Meridian- und Ringspannungen sowie der
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§ 5.

Inhaltsverzeichnis.
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elastischen Verschiebungen in radialer und axialer Richtung.
Beispiel des elliptischen Ringes mit Sonderfallen: Wellrohr,

- Wassergefall mit parabolischem Boden, rotierende Gefalie.

Die Formidnderung dinnwandiger Gefdlie

Gleichungen fiir die Radial- und Meridiandehnungen;
Verschiehungen und Winkelinderungen. Unvertraglich-
keit mit den Grenzbedingungen. Umkehrung des Rechnungs-
ganges und Anwendung auf zylindrische Rohre mit starren
Versteifungsringen an den Enden, Ausbauchung unter
innerem Uberdruck und axialem Zug; Wellenform bei
axialem Druck, Bruchlasten und Wellenlasten. Storung
der Achsensymmetrie durch Faltungen.

Elastische Liangsschwingungen eines
Stabes .

Schwingungen eines Stabes mil vernachlassigharer Eigen-
masse gegeniiber einer Zusatzmasse, Schwingungsdauer,
stoBweise Stabbelastung. Allgemeine Theorie der Lings-
schwingung eines Stabes; statische und dynamische Deh-
nung. Schallgeschwindigkeit des Stabmalterials. Verteilung
der Dehnungen langs des Stabes; stehende Schwingungen.
Spezialfalle der vernachlassigharen Stabmasse und der
Ireien Stabschwingung ohne Zusalzmasse.

Klastische Radialschwingungen zylin-
i her Wool Pel I IR s DR

Ableitung der Schwingungsgleichung fiir, das Rohr, freie
Radialschwingungen von Kreisringen. Zerlegung der Aus-
schlage in den stationdren und den dynamischen Bestandteil.
Einfilhrung der Bewegungsgleichungen einer elastischen
Fjmssi&’ikeit mit Reibungswiderstand. Angeniherte Propor-
tionalitat der Auslenkung mit der Druckschwankung, Fort-
pflanzungsgeschwindigkeit beider. Integration mit Riicksicht
auf die Grenzbedingungen, stehende gedampfte Schwin-
gungen. Diskussion der Druckschwankung infolge eines
gleichformigen Schieberschlusses,

Die Formanderungsarhbeit

Die Formanderungsarbeit der inneren und auBeren Krafte,
Verallgemeinerung des Hookeschen Gesetzes, die Super-
position der elastischen Verschiebungen, EinfluBzahlen.
Castiglianos Satz uber die Ableitungen der Forminderungs-
arbeit. Maxwells Satz iiber die Gegenseitigkeit der Verschie-

63

78
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§ 8.

9.9,

§ 10.

§ 11.

§ 12.

Inhaltsverzeichnis.

bungen. Beriicksichtigung der Abhangigkeit der aulieren
Krafte voneinander. Beispiele. Stabspannungen eines
Fachwerkes mit tberzahligen Staben.

Kap. II. Verdrehungselastizitiit isotroper Korper.
Die Verdrehung eines Kreiszylinders
Der Verdrehungswinkel. Die Verteilung der Schubspan-
nungen im Querschnitt, Erhaltung der Querschnittsebenen.
Das Torsionsmoment fir Voll- und Hohlzylinder. Die

Forménderungsarbeit und ihre Ableitung. Anwendung
auf Kreisringe und zylindrische Schraubenfedern.

Die Verdrehung dinnwandiger Hohl-
szylinder T A e . Sl : ;

Einfuhrung mitflerer Spannungen iiber die Wandstarke
Tangentiale Richtung der Spannung. Hydrodynamisches

- Gleichnis. Berechnung des Torsionsmomentes, der Ver-

drehung und der Verwerfung der Querschnittsflache. Son-
derfalle der ganz oder teilweise konstanten Wandstarke.

Dinnwandige Hohlzylinder mit Zwi-
schenstegen o s s anTts

Die Spannungsverteilung an einer Verzweigungsstelle.
Einfachster Fall einer Zwischenwand. Zerlegung des Tor-
sionsmomentes in Einzelmomente fur jede Zelle. Bestim-
mung der Einzelmomente durch die Ableitungen der
Formianderungsarbeif. Bedingung lir spannungslose Zwi-
schenwiande, Allgemeiner Fall beliebiger Zwischenwiinde
und deren Verzweigung,

Vollzylinder mit nicht kreisféormigen
Querschnitten : :

Die Gleichung der Cspannung;sllmcn Ableltung der bpan—
nungskomponenten, des Torsionsmomentes und der Ver-
drehung. Anwendung auf elliptische und rechteckige
Querschnitte. Kritik des Verfahrens und Behandlung
ditnnwandiger offener Querschnitte. Beispiele eines diinnen
Blechstreifens und eines aufgeschnittenen Hohlzylinders.

Elastische Torsionssehwingungen
Allgemeiner Ausdruck fiir das Torsionsmoment. Ver-

nachlassigung der Stabmasse. Freie Schwingungen eines
Schwungringes. Schwingungen einer rotierenden Welle
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§ 14.

§ 15.

§ 16.

Inhaltsverzeichnis.

mit zwel Schwungmassen. Scheinbare Langsschwingungen
zylindrischer Schraubenfedern. Beriicksichtigung der Stab-
masse; Aufstellung der partiellen Differentialgleichung.
Die Fortpflanzungsgeschwindigkeit der Torsion. Grund-
und Oberschwingungen, Knotenpunkte.

Kap. I1I. Die Biegung gerader isotroper Stiibe.

Die Verteilung der Normalspannungen
im Querschnitt urspriunglich gerader
Stabe
Der krumme und gerade Stab, seine Achse und sein
Querschnitt. Parallelverschiebung der dulieren Krilte
nach dem Querschnitt. Entstehung von Momenten und
Querkraften. Zusammenhang beider fiir konzentrierte
und kontinuierliche Belastung. Stetige Verteilung der
Normalspannungen, neutrale Schicht. Annahme der Er-
haltung der Querschnittsebene bei der Biegung. Lineare
Spannungsverteilung. Bedingung fir die Existenz des
Gleichgewichls, gerade und schiefe Belastung. Beispiel.

Schubspannungenund Formanderungs -
TP T A R R S e e

Bestimmung der Schubspannungskomponente normal
szur neutralen Schicht. Verlauf der Spannungslinien. Bei-
spiele des kreisformigen, rechteckigen und I-Querschnitts.
Die Forminderungsarbeit bei der Biegung, Kleinheit des
aul die Schubspannungen entfallenden Betrages, seine
geringe Veranderlichkeit mit der Querschnittsform.
Hauptspannungen und Spannungstra-
Jekiorien

Die Spannungsvertejlung um einen Punkt des Stab-
langsschnittes. Hauptspannungen und Hauptspannungs-
richtungen.  Haupfschubspannungen.  Kurven reiner
Schubspannungen und Spannungstrajektorien. Beispiele
eines Stabes mit einer Binzellast und mit kontinuierlicher
Belastung.

Dieelastische Linie.

Definition der elastischen Linie. Berechnung ihrer
Krimmung. Angeniherte Differentialgleichung bei kleiner
Kriimmung und Integration derselben. Bestimmung der
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§ 18,

§ 19.

§ 20.

Inhaltsverzeichnis.

Konstanten aus den Grenz- bzw. Auflagebedingungen.
Differentialgleichung fiir Einzellasten und kontinuier-
liche Belastung. Beispiele, Ersatz eingespannter Enden
durch Einspannungsmomente. Verfahren zur Behandlung
mehrerer Einzellasten.

Statisch unbestimmte Belastungsfalle

Definition des durchlaufenden Balkens. Ermittelung der
unbestimmten Auflagedriicke durch Verschwinden der
zugehirigen Pleile der elastischen Linie sowie aus der Ab-
leitung der Formianderungsarbeit, Beispiele. Verbindung
mehrerer Balken durch gelenkige oder verspannte Stabe.

Anderung der elastischen Linie durch
Nebeneinfliisse.

Anderung der elastischen Linie durch die Querkrafl. Un-

stetigkeiten an den Angriffsstellen von Einzellasten, Beispiel.

Stetige Anderung der elastischen Linie bei kontinuierlicher
Belastung, Beispiel. GroBenordnung der Verschiebung.
Horizontalverschiebung infolge der Biegung und Querkraft,
GriBenordnung beider; Beispiel. Einflull der Querkon-
traktion, Verzerrung der Querschnitisform. Korrektion
des Elastizitatsmoduls bei Verhinderung der Querschnitts-
biegung.
Biegungsschwingungen masseloser Stdbe
Lineare Abhingigkeit der Auslenkungen von der Be-
lastung. Zerlegung dieser in die statische Gewichtsbela-
stung und die dynamische durch Massenkrifte. Berech-
nung der HinfluBzahlen aus der statischen Auslenkung.
Zuriickfithrung des Systems der Bewegungsformeln auf
eine Differentialgleichung. Kennzeichnung der Bewegung
als gekoppelter Schwingung. Beispiele mit einer und zwei
Massen.

Biegungsschwingungen mit Beriicksich-
tigung der Stabmasse

Aufstellung der Schwingungsgleichung fiir ein Stab-
element. Elimination des statischen Ausschlages. Inte-
gration fiir zylindrische Stibe. Giiltigkeit der Lisung fiir ein
Intervall zwischen je zwei Zusatzmassen. Grenzbedin-
gungen fiir die Stiitzen und fir die Ubergangsstellen der
Intervalle. Beigpiele.
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§ 22.

§ 23.

§ 25.

Inhaltsverzeichnis.

Biegungss hwingungen zwangl'aui'ig be-
\xegtcrbtabe g

Ableitung der Glundgleichung mit Ricksicht auf die
axiale Stabkraft und die Beschleunigungskomponenten in
der Stabachse und normal zu dieser. Beispiele eines ela-
stischen Pendels und der Lokomotivkuppelstange. Ange-
naherte Integration der Schwingungsgleichung i letz-
terem Falle.
Stabe mit veranderlichem Querschnitt

Die Normalspannung und Schubspannung in Staben
mit verdnderlichem Querschnitt. Korper gleichen Wider-
standes. Verteilung der Schubspannung tiber deren Quer-
schnitt. Ausdriicke fiir das Biegungsmoment und die Quer-
kraft. Beispiele eines Korpers mit konstanter Hohe und kon-
stanter Breite. Die elastische Linie.

Kap. 1V. Die Biegung krummer isotroper Stibe.
Die Spannungsverteilung in krummen
Staben
Beschrankung auf eben gekriimmte dinne Stdbe. An-
nahme der Erhaltung der Querschniltsebenen. Verschie-
bung der neutralen Achse aus dem Schwerpunkte bei ver-
schwindender Resultante in der Stabachse. Volumdehnung.
Das Biegungsmoment und die Normalspannung im Quer-
schnitf. Schubspannung im Querschnitt und Normal-
spannung in der Richtung des Kriimmungsradius. Bei-
spiel zur Priifung der abgeleiteten Niherungsformeln.
Die Forminderung krummer Stabe . . .
Berechnung der Dehnung des Stabelementes durch eine
Stabkraft. Die Verdrehung und die Komponente der Ver-
schiebung, T\]ahorungsglelchung fiir geringe Abweichungen
von der Kreisform. Beispicle eines Kreisbogentrigers mit
einer Einzellast und eines Kolbenringes. Ableitung der
Verdrehung aus der Forménderungsarbeit. Unerheblichkeit

des Einflusses der Stabkraft und der ‘30h11bk1 afte auf den
Verdrehungswinkel.  Beispiel.

Einfach statisch unbestimmte Bela-

stung krummer Stabe i
Statisch bestimmter Bogentrager mit einem festen und

einem Gleitlager. Unbestimmtheit des Horizontalschubes
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§ 26.

§ 27.

§ 28.

§ 29.

Inhaltsverzeichnis.

bei Festhaltung beider Enden. Ermittelung des Horizon-
talschubes aus der Unveranderlichkeit der Sehnenlinge
mit Hilfe der elastischen Linie sowie aus der Forminde-
rungsarbeit mit Riicksicht auf den Einflu der Stabkraft,
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Kapitel I.
Zug- und Druckelastizitat isotroper Korper.

§ 1. Der Zug- und Druckversuch.

Beziehung zwischen der Stabkraft und der Langendnderung, Span-

nung und Dehnung. Das Hookesche Gesetz; Elastizititsmodul und

Elastizitatsgrenze, elastische und bleibende Dehnungen. Der FlieB-

Vorgang. Temperaturinderungen bei der Forminderung. Die Form-

anderungsarbeit. Korper mit verinderlichen Elastizitatsmoduln; iso-

trope und anisotrope Korper. Die Querkontraktion. Normal- und
Schubspannungen. Beispiele.

Die im festen Aggregatzustande befindlichen
K_fil‘pur erweisen sich bei genauerer Betrachtung
nicht als vollkommen starr im Sinne der Mechanik,
sondern  erleiden unter der Einwirkung #dulerer
Igl‘é'\fte kleine Formiinderungen, denen gegenseitige
\;_ersc}jieb‘mgen ihrer Bestandteile entsprechen. Da
d_IGSG]* orménderungen, wie man leicht durch Driicken
eines liautscl:mkkf}rpers in der Hand feststellen kann,
mit wachsender KraftduBerung zunehmen, so liegt
es nahe, zwischen diesen beiden Grofen auf dem
Wege des messenden Experimentes oine Beziehung
aufzusuchen. Zu diesem Zwecke stellen wir aus
dem zu priiffenden Stoffe einen zylindrischen Stab 1
(Fig. 1) mit kreisformigem Querschnitte her und
lassen bei festgehaltenem einen Ende A4 am an-
dern B in seiner Achsenrichtung eine Zugkraft P
wirken, die wir von Null aufwiirts stetig vergrifer
geschieht dies am bequemsten vermittelst hydr

P

LR B

n konnen. Es
aulischen Druckes
Lorenz, Elastizititslehre. 1



2 Kapitel 1.  Zug- und Druckelastizitit isotroper Kirper.
oder durch Verschiebung eines bekannten Gewichtes auf dem
Hehel in einer sog. Festigkeitsmaschinel), die eine sofortige
Ablesung der augenblicklichen GroBe der Kraftwirkung ermog-
licht. Auf dem Stabe wird vor dem Einspannen durch zwei
Marken in gehorigem Abstande von den Befestigungsstellen
eine MeRlinge I, festgelegt, deren Anderung A [ infolge der Be-
lastung durch Mikrometerschrauben oder Spiegelbeobachtung
gleichzeitig mit der Kraftmessung ermittelt wird.

Tragen wir nunmehr die Verlingerungen Al als Abszissen
und die zugehorigen Zugkrifte P als Ordinaten in ein recht-
winkliges Achsenkreuz ein, so ergibt sich z. B, fir Flubeisen
ein Diagramm Fig. 2, in das
aullerdem noch die Verkiir-
| b zungen (—Al) unter der Wir-
I le kung axialer Druckkréfte (— P)
i ! nach den Ablesungen beim
| ! Druckversuch in der Festig-
L i1*4" Keitsmaschine aufgenommen

werden. In diesem Diagramm

fallt zundchst der — bis auf
kleine Beobachtungsfehler —
4, genau geradlinige Anstieg der
i durch O hindurchgehenden
. it Kraftkurve zwischen den
Punkten 4, und 4, auf, dem auf diesem Wege offenbar eine Propor-
tionalitdt zwischen P und Al entspricht. Wiederholen wir die
Versuchsreihe mit Stdben aus demselben Material, aber von
anderen Meflangen [, und verschiedenen Querschnitten Fy, so
zeigh sich, dal fiir alle diese innerhalb der sog. Proportio-
nalitdatsgrenzen 4, und A,
12 Al
FOE{'].......(I}
wird, worin £ eine nur vom Material abhéngige Konstante dar-
stellt. Bezeichnen wir dann noch den Quotienten

{i I

1
|
fi
fi
!

!
|

1) Die eingehende Beschreibung derartiger Maschinen und ihrer
Handhabung findet sich u. a. in den Handbichern der Materialien-
kunde von Martens (Berlin 1898) und des Materialpriifungswesens
von Wawrziniok (Berlin 1908), auf die hiermit verwiesen wird.



§1. Der Zug- und Druckversuch. 3

{2

Fy
d. h. die auf die Flicheneinheit des Querschnittes entfallende,
normal zn ihm gerichtete Zug- oder Druckkraft als die Span -
nung und das Verhiltnis

=t e, ey (vl St (B

Al ==l s foliaral il el o (3
'El]

als die Dehnung des Stabes, so vereinfacht sich (1) in
G elE s R Dbt dstien b i)

also eine Gleichung, in der die Stababmessungen selbst nicht
mehr auftreten. Weiterhin erkennt man, dafl die Dehnung mit
der Spannung ihr Vorzeichen wechselt, so dall wir aus diesem
schon erkennen, ob wir es mit einer (posifiven) Zugspannung
oder einer (negativen) Druckspannung zu tun haben. Die durch
Gleichung (la) dargestellte Beziehung wurde zuerst von dem
Englinder Hooke (1678) auf empirischem Wege gefunden
und in die Worte »ut tensio sic vis« gefalit, weshalb man sie
auch als das Hookesche Gesetz bezeichnet. Unterbricht
man den Versuch an unserem Stabe, bevor einer der beiden
Punkte 4, oder A, erreicht ist, und entlastet den Stab ebenso
stetig, wie man ihn vorher belastet hatte, so geht auch die Léngen-
dnderung wieder nach Gl. (1) zuriick, so daB also das Hookesche
Gesetz eine umkehrbare Formédnderung des Stabes
d_'arStellL. Die diesem federnden Verhalten des Stabmaterials
Jéj}lgs der sog. Hookeschen Geraden A, 0 A, zugrunde liegende
Eigenschaft, kennzeichnet man wohl auch als seine Elastizitit,
l;(i“tnt tdal‘um die oben eingefiihrte Konstante £ den Elasti-
f?lqaq LSiI:iUf'UI des Materials und _d_ie Punkte A, 4, seine
“tastlzZltatsgrenzen?) An Stelle des nach Gl (1)
bzw. (la) eine Spannung darstellenden Elastizititsmoduls be-
nutzt man wohl auch seinen reziproken Wert 1 : E, den C. Bach
als den Dehnungskoeffizg enten bezeichnet.

‘ Uberschreiten wir nunmehr heim Zug- oder Druckversuch
eme der beiden Elastizitits- odep Proportionalititsgrenzen, so

') Gelegentlich setzt man die Elastizitatsgrenze, indem man ihr
willkiirlich eine hestimmte Dehnung zuordnet, etwas tiefer als die
Proportionalititsgrenze, ohne hierfiir eine ausreichende wissenschaft-
liche Begrimdung zu geben.

1
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biegt die Kurve der P sehr rasch von der Geraden 4,0 4, ab
und verlduft von einem Punkte C; bzw. C, ein kurzes Stiick
nahezu parallel der Abszissenachse. Es heilbt dies natiirlich nichts
anderes, als dal sich der Stab in diesemn Gebiete ohne merkiiche
Belastungszunahme stark verlingert bzw. verkiirzt, wofiir man
den Ausdruck des Fliefiens gebraucht und darum die
Punkte C; C,als Fliel - oder Streckgrenzen bezeichnet.
SchlieBlich steigt beim Zugversuch die Kraftkurve noch einmal
an, iiberschreitet ein Maximum und hért im Punkte By, der sog.
Bruchgrenze, mit dem Zerreilen des Stabes plotzlich auf,
wihrend beim Druckversuch die andere Bruchgrenze B,
nahezu einen Hochstwert der Belastung darstellt. Aus diesem
duBerst verwickelten Verlaufe der Kraftkurve auflerhalb des
Giiltigkeitshereiches des Hookeschen Gesetzes diirfen wir offen-
bar auf tiefgreitende innere Umwandlungen des Materials wihrend
des FlieBens schlieBen. Dies tritt beim Zugversuch schon da-
durch hervor, dall die Verldngerungen sich im Gegensatze zu der
elastischen Forménderung nicht mehr gleichmébig iiber die ganze
Stablinge verteilen, sondern in der Nachbarschaft einer im
voraus nicht angebbaren Stelle sehr hohe Werte annehmen,
und zwar unter starker Einschniirung des Stabquerschnittes.
Hierdurch wird anderseits die Widerstandsfahigkeit des Stabes
an dieser Stelle so geschwiicht, dall er dort sogar unter Abnahme
der Zugkraft schlieflich zu Bruche geht, wihrend beim Druck-
versuch nach vorheriger Ausbauchung ungefdhr in der Stab-
mitte ein Zermalmen eintritt. Unterbrechen wir den Zugver-
such auBerhalb der Hookeschen Geraden etwa beim Punkte D
und entlasten wieder stetig, so gehen Zugkraft und Dehnung
nicht mehr auf dem Wege DCA,0 zuriick, sondern lings der
Geraden D H, die nahezu parallel der urspriinglichen Hookeschen
Geraden OA; verliuft. Ist mit volliger Entlastung der Punkt A
erreicht, so hat der Stab durch diesen offenbar nicht um-
kehrbaren Gesamtvorgang eine nicht mehr zuriickgehende,
also bleibende Dehnung OH erfahren und wiirde sich
bei wiederholter Belastung jetzt nach der aufsteigenden Geraden
HD verlingern, die mithin die neue Hookesche Gerade fiir den
bleibend gestreckten Stab darstellt. Dieser wiederum kommt
eine mit D fast zusammenfallende Proportionalitits- oder
Elastizitdtsgrenze zu, die offenbar etwas héher liegt als die ur-
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spriingliche 4,. Daraus folgt also, dafl sich die Propor-
tionalitdtsgrenze und mit ihr auch die Streck-
grenzeeines Materialsimallgemeinendurch
einmalige bleibende Forménderung erhiohen,
ohne dafl dadurech an der Bruchgrenze etwas
gedndert wird.

Die grundsatzliche Verschiedenheit der Lingenénderung

eines Stabes unter- und oberhalb der Proportionalititsgrenze
tritt. besonders deutlich hervor bei der Verfolgung des Zu -
sammenhanges der Zugkraft P mit der Stab-
temperatur 7, deren allerdings nur geringe Anderung mit
Hilfe von Thermoelementen gemessen werden kann. Aus Fig. 3,
in der ein solches Diagramm?)
(rechts) mit dem zugehorigen
Zugkraftdiagramm (links) der-
art vereinigt ist, dafl die Tem-
peraturen als Abszissen aul-
getragen sind, erkennt man zu-
néchst, dafl dem Verlaufe der
Zugkraft 0D, D, die Tempera-
turkurve TyT, T, entspricht, Fig. 3.
welche unterhalb der Propor-
Honalititsgrenze Dy eine Temperaturabnahme bis 7', <= T, dariiber
aber eine starke Zunahme aufweist. Unterbricht man den Versuch
bei D, und entlastet auf dem Wege D,H, so nimmt die Tem-
peratur des um OH bleibend gestreckten Stabes bald wieder
ihren Urspriinglichen Wert 7, an, um bei erneuter Dehnung H D, Dy
sich nach dep Kurve 7,7,7, zu édndern, so zwar, dal auch
d‘er neuen Proportionalititsgrenze Dy ein Vorzeichenwechsel der
Tt‘-mperaturanrjerung bei T, << T, entspricht.

i Da nun die in der Technik &ufern Kréften unterworfenen
_Km'per‘, wie Konstruktionsteile von Maschinen und Bauwerken,
i allgemeinen keine bleibenden Forménderungen, welche die
Kophguration des ganzen Systems storen miissen, erleiden diirfen,
S0 Interessiert uns hier nur die elastische Léngendnderung langs

‘1} Nach Versuchen von E. Rasch; Berichte der Berliner Aka-
{leml‘e 1908, 8. 210. Siehe auch R. Plank, Zur Thermodynamik
elastischer und bleibender Forménderungen; Zeitschr, d. V. D. Ing. 1910.
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der Hookeschen Geraden. Die durch diese bedingte, aus Fig. 3
ersichtliche Temperaturabnahme ist aber erfahrungsgemill so
gering, daB wir sie praktisch immer vernachlassigen konnen.
Erleidet dagegen der Versuchsstab wihrend seiner Dehnung
noch infolge duBerer Wirmezufuhr eine Temperaturerhthung A7,
so gehort auch dieser eine Lingendnderung Al zu, die sich mit
dem Ausdehnungskoeffizienten a zu

1 Sl Y v g e Pl V)

ergibt, wihrend diejenige infolge der Belastung P bzw. der
Spannung ¢ nach (1) oder (1a)
ol

=10 Sl
At = EF, E a
war. Die gesamte Lingenénderung ist demnach
p o .
AJ;ED(aAT+ EFO) _Io(aAT—]— 2 - ®

oder, wenn wir nur unendlich kleine Anderungen di, dT und dP
bzw. do voraussetzen,

A= (adT—}-——)—l (adT—}—ﬂTr) .. (Ba).

!
Durch Multiplikation dieses Lingenelementes mit der Kraft P
ergibt sich hieraus das Element der Formédnderungs-
arbeit

: . L ey
el gl s 1 L ity G (O
dL = Pdl _PZO(adf—f-EFO) (6)
und nach Integration innerhalb der Hookeschen Geraden wegen
der Unabhiingigkeit der Kraft P von der Tempﬁratur%teigerung..-:1 T

Al AT

L= j’pdz_ijdTJrL SPu’P
Iy P2 Fylyo* .
........ L e < (Ba).
= PI‘)GAT_I_QE;?D FolyaadT 4 5 (Ga)

Fiithren wir schlieBlich noch das urspriingliche Stabvolumen
Fyly = V, ein, so erhalten wir

L—=V.a (M'H-M) F i Sy,

so daB also die durch eine vorgelegte Stab-
kraft bei bekannter Temperaturdnderung ge-
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leistete Forméinderungsarbeit dem urspring-
lichen Stabvolumen proportional wird.

Dehnen wir den Stab — ohne dullere Wirmezufuhr — iiber
die Proportionalititsgrenze hinaus bis D, so wird die dazu ndtige
Forméinderungsarbeit durch die planimetrisch zu ermittelnde
Fliache 0A,C,DJ in Fig. 2 dargestellt, von der durch Entlastung
nur das Dreieck HDJ wiedergewonnen werden kann, wéhrend
der Arbeitsaufwand OA,C;DH der bleibenden Dehnung ent-
spricht. DemgemaB ergibt die Fliche 0A,C;DB;J; die zum
Bruche des Stabes aufzuwendende Arbeit, von der infolge der
plétzlichen Entlastung beim Bruche indessen nichts wieder-
gewonnen werden kann, obwohl sich auch hiernach die beiden
Stabhilften erfahrungsgeméfl wieder nach einer Hookeschen
Geraden B, M, etwas zusammenziehen. Die dabei freiwerdende,
durch das Dreieck H,B,;/, bestimmte Arbeit werden wir spéiter
in der kinetischen Energie von Stabschwingungen wieder fest-
stellen. Vorlaufig begniigen wir uns mit der Tatsache, dal}
bleibende Formédnderungen nach einmaliger
Uberschreitungder Elastizitdtsgrenze immer
von allerdings viel schwidcherenelastischen
begleitetsind, deren Modul, wie die Parallelitit
der Geraden 0A,, HD, H, B, in Fig. 2 anzeigt, nahe-
Zu unabhédngig von der Belastung zuseiln
scheint,

y Indes.sen gibt es Korper, meist ausgepriigt kristallinischer
:f:ﬁ“i?i“’lﬂ (:ﬂ]BEiSCIl und. natiirliche Steine, deren Kraftkurve
dor Kmi: d"i iberhaupt keine c%eutlic.h erkennbare Gerade d}n'ch
i derln];tenanffmg aufweist, sondern sowohl auf der Zug-
-, ruckseite durchweg stetig bis zu den Bruchgrenzen
Vt.'rlz}uft, wéhrend der Anfang O anscheinend einen Wendepunkt
der Kurve bildet. Es heift dies natiirlich nichts weiter, als daf
derartige Korper einen mit der Spannung bzw. Dehnung verénder-
tichen Elastizititsmodul £ besitzen, dessen Wert E; im Anfang
durch die zugehérige Tangente derart gegeben ist, daB :

i t 1) } dal
-‘512—5’-(——) :( _) SR iy

: };0 Al 0 de 0
wird. “Das Hookesche Gesetz gilt demnach bei solchen Kérpern
nur fiir sehr kleine, strenggenommen unendlich kleine Deh-
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. nungen und Spannungen, wihrend es nahe liegt, den Gesamt-
verlauf der Kurve Fig. 4 durch die Potenzreihe

o 8 o=~FEet+ Eet+Ee+.... (8
! darzustellen. Soll iberdies entsprechend
| dem Wendepunkt in O dort die zweite
i ., Ableitung
o dea el
| E-Sz--:ZE:E-{—Z-a-b;;s—}—....

| verschwinden, so mufl dies auch fiir

b die Konstante FE, zutreffen,womit die
8, Reihe (8) die Form
Fig. 4. ’ s

o=Fet B34 Ejet+.... (8a)

annehmen wiirde, mit der man jedentfalls den wirklichen Verlauf
um so0 genauer wiedergeben kann, je mehr Glieder man verwendet.
Selbstverstédndlich kann man auch umgekehrt die Dehnung e
durch eine Reihe nach Potenzen von o ausdriicken. Mit solchen
Reihen ist jedoch praktisch nicht viel gewonnen, da man bei
diesen Kiorpern das Verhéltnis der bleibenden zur elastischen
Dehnung, deren Summen die Abszissen von Fig. 4 bilden, nicht
hinreichend kennt. Auf alle Félle ist es unzuldssig, den ganzen
Verlauf dieser Kurve durch die schon 1729 von Biilfinger
und neuerdings (1897) wieder von Bach und Schiile vor-
geschlagene Beziehung

B o TR L el et ()
) do B s
darstellen zu wollen?!), die wegen e filr » << 1 in O nach

Gl. (7) auf einen verschwindenden, fiir » > 1 dort aber auf einen
unendlich grofien Modul fiihren wiirde. Das schlieft natiirlich
nicht aus, dafl man in ziemlich grofem Abstande vom Koordi-
natenanfang durch Gl. (9) der Kurve Fig. 4 stiickweise gerecht
werden kann. Dazu kommt, daBl, wie einzelne Versuche gezeigt
haben, die analytische Verwertung der Formel (9), die hiernacle
keinesfalls bis zur Entlastung des Materials fortgesetzt werden
darf, auf uniiberwindliche Schwierigkeiten stobt, so dall man

1) Eine Zusammenstellung und kritische Priifung dieser und an-
derer empirischer Formeln gibt Mehmke »Zum Geselz der elastischen
Dehnungen. Zeitschr. f. Math. u, Physik. Bd. 42 (1897, Heft 6.
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in absehbarer Zeit wohl fiir solche dem Hookeschen Gesetze
nicht unterworfene Korper von Fall zu Fall auf das Experiment
angewiesen bleiben wird.

Weiter sei noch bemerkt, dall es erfahrungsmilig nicht
gleichgiiltig ist, in welcher Richtung die Probestibe aus einem
griofieren Stiick des zu untersuchenden Materials herausgeschnitten
sind, d. h. dafl die in der Natur vorkommenden oder kiinstlich
hergestellten Baustoffe im allgemeinen nach verschiedenen Rich-
tungen verschiedene elastische Eigenschaften besitzen, die sich
vor allem in einer Abhingigkeit des Elastizitdtsmoduls von der
Richtung der Belastung bzw. der Spannung kundgeben. So
wird z. B. bei einem durch Walzen hergestellten Rundeisen die
Achsenrichtung gegeniiber einer dazu senkrechten ebenso aus-
gezeichnet sein, wie die Faserrichtung von Hélzern, wihrend bei
gegossenen Korpern, wie Gulleisen oder Flufistahl, keine merkbare
Abhéngigkeit der elastischen Eigenschaften von der Richtung
besteht. Ganz besonders scharf {ritt dagegen eine solche Ab-
hiingigkeit in allen Kristallen hervor, die meist nach drei zuein-
ander senkrechten Richtungen ganz verschiedene Elastizitiits-
moduln besitzen. Da nun die durch Gieflen hergestellten, d. h.
aus dem fliissigen Zustande durch Erstarren hervorgegangenen
Kirper ein regelloses Gemenge von kleinen, mehr oder weniger
gut ausgebildeten Kristallen mit allen moglichen Achsenrich-
tungen darstellen, in denen als Ganzes keine Richtung bevorzugt
ist, so kann diese auch nicht mehr den Elastizitdtsmodul des
Materials beeinflussen. Wir werden uns mit solchenisotropen
Kérpern in der Folge vorwiegend beschiiftigen, wihrend das
analytische Studium der mit verschiedenen Elastizitdtskon-
stanten in verschiedenen Richtungen behaftetenanisotropen
Karper der theoretischen Physik iiberlassen bleiben mub.

Wir kehren nun noch einmal zu unserem Zug- und Druck-
versuch zuriick, bei dem der Probestab vor dem Bruche eine
deutliche Querschnittsveréinderung erfuhr, und zwar beim Zug
eine ortliche Einschniirung, beim Druck eine Ausbauchung,
die sich beide nach den Stabenden zu verlieren scheinen. Die
genauere Priifung durch Mikrometermessungen zeigt indessen,
daB schonim ganzenBereichedesHookeschen
Gesetzes die Querdimensionen der Ldngen-
dnderung proportionale, aber mit entgegen-
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gesetztem Vorzeichen behaftete Anderungen
erleiden, die wir als Querkontraktionen bzw.
Querdehnungen bezeichnen wollen. Mit einer Erfahrungs-
zahl p, dem sog. Querkontraktionskoeffizienten,
wird demnach die radiale Anderung des kreisfsrmigen Stabquer-
schnittes Fy =amr,?

= R L AU ot B Deb ot ) gy

7o pmo by i :

und daraus folgt eine Anderung der Querschnittsfliche

AF =g (ry4-Arp —mrg=F, (1 _i)— F,

oder nach Division mit F, sowie Vernachlissioung des Qua-
drates der stets sehr kleinen Dehnung e die sog. Querschnitts-

dehnung
AWy 2

Ep = ==

Fy &

Endlich erhalten wir noch eine Anderung des Volumens V, = F,l,
AV = (P B (BB B L= W, (1 iz 2;) (L 4e)— 7V,
oder nach Division mit V;, und abermaliger Vernachlédssigung

von &2 die sog. Volumdehnung

AV 2
Jhis: CUREE O Sl 9
&y A £ (1 H) S g e i B A

die fir g =2 verschwindet. Dieser Grenzwert des
Querkontraktionskoeffizienten entspricht
daher den unter dem Einflufl duferer Krifte
volumbestindigen (d. h. unausdehnbaren bzw. unzu-
sammendriickbaren) Korpern und trifft in der Tat
fiir ideale Fliissigkeiten fast genau zu, die.
natiirlich nur dem Druckversuch in geschlossenen Geléfien
unterworfen werden konnen. Fir die in der Technik verwendeten
isotropen Metalle hat sich innerhalb des Giiltigkeitsbereichs des
Hookeschen Gesetzes

(11).

S e s e N s S P SRl )

und erst nach Uberschreiten der Elastizitétsgrenze eine langsame
Annédherung an den vorstehenden Grenzwert ergeben.
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Legen wir schlieflich durch unseren Probestab eine Ebene,
deren Normale mit der Stabachse den Winkel ¢ bildet, Fig. 5,
g0 wird der Flicheninhalt dieses Schnittes

= F“--
cos @

worin F, wieder die Querschnittsfliche des zylin-
drischen Stabes bedeutet. Auf der neuen Schnitt-
ebene steht alsdann die axialeStabkraft P nicht
mehr senkrecht und kann daher in eine Normal-
komponente S und eine in die Schnittebene fallende
Tangentialkomponente 7' derart zerlegt werden, dal
5= Pcos o, =i o e (1 5
wird. Durch Division dieser Komponenten mit F I
ergeben sich wieder Spannungen, und zwar eine '’
Normalspannung |
N L RIEnRS
F F,
von der bisher betrachteten Art, sowie eine Tangential- oder

Schubspannung
T Psing-cosg
S0 ARSI B
welche zugleich in der Fliche F liegt, also die in ihr befindlichen
Korperteilchen gegen die benachbarte Schicht zu verschieben

bestrebt ist. .

Da ferner sin 2¢ —sin (x — 2 ¢) ist, so erhalten wir die-

selbe Schubspannung auch in einer Schnittfliche mit dem Nei-

(14),

Fig. 5.

=ugeos*y . (154a)

= g sin @ cos @ = g sin 2¢ (15b),

gungswinkel }; — @ =90° — g, die auf der ersteren (F) senk-

recht steht, wihrend der Héchstwert von 7 — r)i mit sin 2 ¢ =1
sich fiir die Neigungen ¢ — + 4' — + 459 ergibt. Die so
erhaltefien Schubspannungen, welche {fiir
¢ =0 und g=90% d. h. im Normalschnitt des
Stabes sowie ldngs der Staboberfldche ver-
schwinden, haben somit stets inzweizuein-
ander senkrechten Ebenen denselben Wert.

Beispiel 1. Greift an einem Stabe Fig. 6 vom Quer-
schnitt ' F und der Linge AB =1I; + 5, der bei 4 und B un-
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nachgiebig gelagert ist, in C am Ende der Strecke [, eine Kraft P
an, so kann man diese in eine Axialkraft S und die Querkraft?
zerlegen, von denen die letztere nach den Sitzen der Mechanik
starrer Korper sich auf die beiden Auflager derart verteilt, daf}
hpara VENCE

Ll e B e v
Dagegen bietet die reine Statik keinen Aufschluf} iiber die Ver-
teilung der Axialkomponente S auf die beiden Auflager, wes-
halb man derartige Probleme auch als statisch unbe-
stimmte bezeichnet. Betrachten wir den Stab aber als ela-
stisch, so erkennen wir, daff das Stiick AC =1, durch den auf A
entfallenden Teil §; von § um Al gestreckt, das andere Stiick
CB =, durch §, um Al, verkiirzt werden muB, und zwar gemil
den Formeln

(16).

Ss

4 A=ty

dh=gr

wihrend gleichzeitig

S§=25;+95,
ist. Da nun die ganze Stablinge [, + I, keine Verénderung er-
leiden soll, so folgt weiterhin
AL+ A4L,=0
oder Si by — 8,10, =0,
mithin wird ganz analog (16)
S ot syl
s 51_.‘1:-(-_;‘ WA L1
Die beiden Auflagerkrifte haben also dieselben Vorzeichen
und damit auch die gleiche Richtung, wie in Fig. 6 angedeutet

(17).

T B P
X !
RNy e )
7 | ;
(1 {' | (:, . -t
Fig. 6.

ist. Trotzdem bedingt die erstere §; eine Zugspannung, die

andere S, dagegen eine Druckspannung, nimlich
S oy g
F L+

s T a),
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wihrend die durch Parallelverschiebung der Komponenten T,
und 7, in den Querschnitten geweckten Querkrifte (16) auf zwei
verschiedene mittlere Schubspannungen

s sl ey T. S L

L T SOF Ll
in den beiden Stabstiicken zu beiden Seiten von C fithren. Auf
die Wirkung der durch die erwihnte Parallelverschiebung hervor-
gerufenen Momente werden wir spéter zuriickkommen.

. (16a)

Beispiel 2. Ein Metalldraht Fig. 7, der durch sein Eigen-
gewicht und eine etwaige konstante Zusatzlast (z. B. Schnee oder
Rauhfrost) mit ¢ kg auf die Langeneinheit kontinuierlich belastet
ist, werde bei einer urspriinglichen Linge s, zwischen zwei Stan-

Fig. 7.

gen im festen Abstande [ mit gleich hohen Aufhingepunkten A B
befestigt. Dann zerlegt sich die im Drahte herrschende Zug-
kraft § in eine auf der ganzen Linge konstante Horizontalkom-
ponente A und eine Vertikalkomponente V, deren Zuwachs
beim Fortschreiten um das Langenelement ds durch dessen Ge-
wicht gegeben ist. Bedeutet also x die horizontale Abszisse,
y die Ordinate der vom aufgehdngten Draht gebildeten Kurve,
so gilt qv iy Vv =
ATy R s S

oder fiir flache Kurven hinreichend genau mit ds ~ dx

Py _ g

e S et s (A BA
2 H ( )
Legen wir nun den Koordinatenanfang in den fiefsten

dy
Punkt der Kurve, setzen also y =0, d';i O furi e — 0. ap

ergibt die Integration von (18a) eine Parabel

y =g & . (18b),
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mit dem Durchhang fiir x = + j
SRS T

SH
Die ganze Bogenldnge der Parabel zwischen den Punkten A B

1st angenidhert nun
[1 ez (‘“f) ]zx_—z+i £ Sa}“’dx
2 H

el s

= B ol (B8 5
S_E(H"za Hz) £(1+3 P2

woraus sich bei gegebener Linge s der mit der Seilspannung §
sehr nahe iibereinstimmende Horizontalzug /7 berechnet, dem bei
einem Drahtquerschnitt F die Spannung ¢ = H : F zugehort.
Mit dem spezifischen Drahtgewicht » und der Zusatzlast g¢q

st aber
R i e S R S R IS i £211) 17

aullerdem aber wird infolge der Spannkraft /7 und einer etwaigen
Temperatursteigerung AT mit dem Ausdehnungskoeffizienten a

32301—}—%—{—033"). B oo

womit s aus (19) eliminiert werden kann. Wegen der Kleinheit
des Untersehiedes von s und s, wird man praktisch zunédchst H
aus (19) mit s = s, bestimmen und diesen Wert in (21) einfiithren,
worauf dann mit dem neuen Werte von s die endgiiltige Be-
rechnung von H sowie von ¢ aus (19) erfolgt. .

0! =
|
1

=

wl "‘Q_-.-._}f:.
t‘.'l mL_,_ﬁr

(19),

§ 2. Der ehene Spannungszustand.

Definition des Spannungsbegriffes an einem Element; paarweise Gleich-
heit entgegengesetzt gerichteter Spannungen. Spannungen in Diagonal-
flachen. Hauptschnitte, Hauptspannungen und Spannungskreis. Deh-
nungen und Schiebungen; Schubmodul. Spezialfall der reinen Schub-
spannung. Beziehung zwischen Elastizitatsmodul, Schubmodul und
Querkontraktion. Anderung der Elastizitatskonstanten mit der Tem-
peratur. Tabelle der Elastizitatskonstanten. Die spezifische Form-
dnderungsarbeit.

Im vorigen Abschnitt haben wir zweierlei Arten von Span-
nungen im Innern eines festen Korpers kennen gelernt, die wir
als Quotienten der sie hervorrufenden Krifte und der Angriffs-
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{fliche definierten. Eine solche Definition hat aber dann keinen
Sinn mehr, wenn wir der voraussichtlich stetigen Anderung der
Spannungen im Korper gerecht werden wollen. Alsdann miissen
wir die Kraft selbst in Elemente zerlegen, von denen jedes auf
ein zugehoriges Flichenelement entféllt, so zwar, dal wir fiir
die Normal- und Schubspannung allgemein
WS T s
dF’ B o B I
zu schreiben haben, wenn S die senkrecht auf die Schnittfléche
wirkende Komponente bedeutet, wihrend die Tangentialkom-
ponente T in diese Fliche hineinfdllt. Demgegeniiber stellen die
im vorigen Paragraphen benutzten Quotienten S :F und 7 : F
Mittelwerte von 6 und 7, d. h. mittlere Spannungen in der Flache I
dar, deren Kenntnis allerdings fiir manche Zwecke ausreicht.
Nachdem wir bereits oben gesehen haben, dall an jedem
Flichenelement im Innern eines unter der Einwirkung &dullerer
Krifte stehenden Koérpers im allgemeinen je eine Normal- und

a

3
lloj,
B dx
1 IH
or [ ¥
| ¢
| TN "W
o e
TR o SRR TR e bivall
/’/ T
=g Y
/{‘4’/ P"l
v
Fig. 8.

eine Schubspannung angreift, betrachten wir in der Folge ein
Volumelement des Korpers mit den Seitenlingen dx, dy, dz,
Fig. 8, dessen mit der Bildebene parallele Seitenflichen dwx dy
giinzlich spannungsfrei bleiben, wihrend die Spannungen in den
iibrigen Seitenflachen parallel der X Y-Ebene gerichtet sein mégen.
Dies setzt natiiclich den Wegfall von Kriften in der zur Bild-
ebene normalen Z-Richtung voraus, weshalb wir den.so gekenn-
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zeichneten Spannungszustand des Elementes einen
ebenenim Gegensatz zu dem spiiter zu behandelnden r & u m -
lichen nennen wollen.

Es seien nunmehr ¢,” und z,” die in der Fliche dy dz durch O
wirkende Normal- und Schubspannung, ¢,” und z,”” die entgegen-
gesetzt wirkend angenommenen Spannungen in der gegeniiber-
liegenden gleich grofien Fliache durch A, wihrend die entspre-
chenden Spannungen in den Flichen dz dz durch O und B mit
o, 7," bzw. 6,” 7,/ bezeichnet werden sollen. Multiplizieren wir
jede dieser Spannungsgrofien mit der zugehidrigen Seitenfliche
und addieren die so entstandenen Kraftkomponenten in der
z- und y-Richtung getrennt, so ergeben sich unter Wegfall duBerer
Massenkréfte, z. B. des Gewichts des Elements als unendlich
klein von dritter Ordnung, die beiden Gleichgewichtsbedingungen

(6 —6)dydz—+ (v, — 1)) dadz=0
(6, —o))dxdz+ (v, — 1)) dydz=
oder auch nach Wegheben von dz und Division mit da

" r d " r
(0g —Gw}%"_ru — 1,/ =0 \

1 t r d ] :
ov”—a,'—i—(rm'—rx]dg:(] ‘

(2).

Da ferner das Gleichgewicht nicht von dem willkiirlichen Ver-
héltnis dy : de der Seitenlingen unseres Elementes abhiingen
kann, so miissen die Faktoren dieses Verhiiltnisses fiir sich ver-
schwinden, mithin wird

¢ L Puo i rr
Op = 0g Ty = Ty |

al=0"y s | (2),
d. h. diean gegeniiberliegenden Seitenfldchen
angreifenden Spannungen sind einander
paarweise gleich und — wie angenommen — ent-
gegengesetzt gerichtet.

Wiihrend sich nun die Normalspannungen, die wir in der
Folge mit o, und o, bezeichnen wollen, vermége der gemein-
samen Richtungsgeraden paarweise aufheben, rufen die Schub-
spannungen 7, und 7, zwei Kriiftepaare mit den Momenten
7, dy dz dz und 7, dx dz dy hervor, die sich gegenseitig aufheben
miissen, wenn das Element im Gleichgewichte verharren soll.
Daraus folgt aber sofort

e i R e R DS R £
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d. h. in zweil zueinander normalen Seiten-
flichen eines Kérperelementes herrschen
gleiche, nach der Schnittkante zu oder von
ihr weggerichtete Schubspannungen,
Schneiden wir jetzt unser Volumelement durch eine Dia-
gonalebene durch AB parallel der Z-Achse, so stellt Fig. 9 die
Projektion der einen Hilfte dieses Keiles auf die X Y- Ebene dar,
auf deren Seitenflichen von der Linge da und dy die Normal-
spannungen g, und g, in den
Achsenrichtungen, sowie die ge-
meinsame Schubspannungt wir-
ken. In der Diagonalebene von .
der Lénge ds mit der Neigung ¢
gegen do mogen dann eine Nor-
malspannung ¢, und eine Schub-
spannung 7, angreifen, die den
Spannungen g,, g, und 7z das
Gleichgewicht halten miissen.
Dieses Gleichgewicht kann, wie schon in Gl. (2), nur unter gleichge-
richteten Kriften herrschen, so dafl wir auch in diesem Falle des
keilférmigen Elementes zwei Bedingungsgleichungen wieder unter
Weglall von Massenkriften erhalten, nachdem wir die in ds
wirkenden Krifte o, ds und 7, ds durch Multiplikation mit

Fig. 9.

coswz{é—j bzw. sinq::%-g-. B A

in ihre Komponenten zerlegt haben. Alsdann ergibt sich unter
Weglassung des gemeinsamen Faktors dz
gudy~+rde=0,dssingp —71,dscos g
o,de—+1dy=o0,dscosp + 1,dssing
oder wegen (5) nach Wegheben von ds
0, 8iN @ -7 €08 @ = g, 8in @ — T, COS P
g, c0s @ - 7 8in @ = g, cos @ -} 7, sin @.
Daraus folgt aber .
0, = G, c0s% @ +} 0, 8in* @ -+ 2 7 sin @ cos @
7, = (0, — 0,) COS@ singp — 7 (cos®> p — sin¢) |

. ®
g, =2 _{; o Eﬁf_‘;ﬁ cos 2¢ 47 sin 2¢ l

oder
i [Bal:

a
“"‘S:"y

= N ¢
—2-—“" sin2¢ —zcos2¢g

b —

Lorenz, Elastizititslehre.
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womit die Spannungeninder Diagonalebene
dureh diejenigen in den beiden Seitenflidchen
und den Winkel der Diagonale gegeben sind.
Um nun die Neigung ¢, der Diagonale zu ermitteln, fiir welche
g, bei vorgelegten a,, 6, und 7 einen gréBten oder kleinsten
Wert annimmt, setzen wir

d o,

T
Dies ist aber, wie der Vergleich mit der zweiten Formel (Ga)
lehrt, die Bedingung fiir das Verschwinden von 7, so daf
also in Schnittflichen grioBter oder kleinster
Normalspannung keine Schubspannung an-
greift. Der Neigungswinkel ¢; folgt nunmehr aus der Bedin-
gung (7) bzw. aus

=—(0,—a,)sin2¢+2rcos2p=0 . . (7).

27

e e it TR U

tg2¢, = RO
o &

der auch der Winkel ¢, + 900 geniigt. Daher treten die
groBte und kleinste Normalspannung, die
sog. Hauptspannungen, in zwei zueinander
senkrechten Schnitten auf, die wir die Haupt-
schnitte nennen wollen. :

Fithren wir nunmehr die Werte von ¢, und ¢, + 90° an
Stelle von @ vermittelst der Beziehungen

SotiTos, il e CH TR e
PV e (o, —oF +47
s tg 2¢ 27 =
...) e T —————— o ——— e i'lb
e Vi+tg2¢, V(oy—0)*+47° %)

T

cos 2 (rp1 -+ %): —cos2¢,, sin2 ((pl ‘I—r—,) = —gin 2¢,

in die erste Formel (6a) ein, so erhalten wir fiir die beiden Haupt-
spannungen g, und g,

a e e
012:0"”-;_ Lt Yo, —oPFEF . . . 8
Zur Ermittlung der ausgezeichneten Werte der Schub-

spannung 7, haben wir dann nach der zweiten Formel (6a)
dt,

d(p:(a,—-ox)cos‘Zqoﬁ—?rsin?.q):i) Bt (8
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zu setzen, woraus sich ein Winkel <p2 berechnet, der die Be-
dingung

tg 2, = 0_2;60- — b S R TR (9a)

ebenso erfiilllt wie der Winkel ¢, + 90°. Die diesen
Winkeln zugehorigen, zueinander normalen
Schnitte der groBten und kleinsten Schub-
spannungen halbieren aber die Winkel der
beiden Hauptschnitte, bzw. bilden mitihnen
Winkel von 459 Mit (9a) folgen dann schlieRlich aus der
zweiten Formel (6a) die Werte dieser beiden Schubspannungen

2= Ar(%—ov P a0 o {10),

die sich somit nur durch ihr Vorzeichen unterscheiden. Dieses
Ergebnis war natiirlich nach den obigen Erdrterungen iiber das
Gleichgewicht am Volumelement Fig. 8 vorauszusehen, aus
denen hervorging, daB die Schubspannungen in zwei zueinander
normalen Seitenflichen des Elementes einander absolut gleich
sein muBten, wihrend die Vorzeichen sich durch diejenigen der
zugehirigen, einander entgegen wirkenden Kréftepaare bestimmen.
Legen wir jetzt von vornherein unsere Koordinatenebenen
parallel den beiden Hauptschnitten, so miissen wir auch in den
Gleichungen (6a) rechts die Hauptspannungen einfiihren, also

Oy = 01, G0, =l

setzen, womit diese sich in

Us:ﬂz—4 al—|—g2 IGOSZ.rp ‘
(11)
1:3:.93??.1_ Sin )4‘}) ‘

vereinfachen. Beide Formeln (11) lassen sich nach dem Vorschlage
von Mohr bequem durch ein Diagramm Fig. 10 darstellen,
in welchem die Normalspannungen die Abszissen, die Schub-
spannungen die Ordinaten bilden. Trigl man namlich auf der
Abszissenachse die beiden Lingen OB = g, ab und
konstruiert um den Halbierungspunkt A von BC einen Kreis

iiber dieser Strecke mit dem Radius AB = AC _—'---—_2' {—rl,

so wird die Abszisse OF eines Punktes D mit dem Radiuswinkel
PR
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CAD =2 ¢ offenbar mit o, die Ordinate DE mit 7, iiberein-
stimmen, wihrend der Abstand von O

OD=Vo2+1Z=7p
die auf dem Diagonalschnitt schrig angreifende resultie-
rende Spannung ergibt. Der Kreis in Fig. 10 heilit wohl
auch dere Mohrsche Spannungskreis.

)

bf‘l

Fig. 104

Soll die Spannung o, fiir irgendeine Richtung ¢ verschwinden,
so ist diese nach (11) durch
G0y

9 =
cos 2 s
gegeben. Diese Gleichung filhrt aber nur so lange auf reelle

Winkel, als

oder
g, 0, <0

ist, d. h. die Normalspannung in irgendeiner
Richtung kann nur verschwinden, wenn die
beiden Hauptspannungen entgegengesetzte
Vorzeichen besitzen.

Wenn in einem Korper dagegen keine Schubspannungen
auftreten sollen, so muf unabhingig von ¢ in Gl (11) 7, =0
sein. Dies bedingt aber sofort o, =0, =0, d. h. die Una b -
hiangigkeit der Normalspannung von' der
Richtung iiberhaupt, ein Fall, der bei vollkommenen
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Fliissigkeiten in der Tat eintritt und fiir den sich der Spannungs-
kreis auf den Punkt A reduziert.

Ist endlich eine der beiden Hauptspannungen, z. B. g; =0,
s0 ergeben sich aus (11) wieder die beiden Gleichungen (15a)
und (15b) des § 1, die einem sog. linearen Spannungs-
zustande entsprechen.

Nachdem wir bisher nur die an einem Volumenelement
angreifenden Spannungen betrachtet haben, eriibrigt uns
noch die Feststellung der von ihnen hervorgerufenen Form -
inderungen. Dabei wollen wir einen isotropen Korper
voraussetzen, dessen Elastizititsmodul £ und Querkontraktions-
koeffizient u von der Spannungsrichtung unabhiingig sind.
Alsdann wird die Dehnung &, des Elements in der z-Richtung
nicht allein von der Spannung o, abhingen, sondern auch ver-
moge der Querkontraktion von der dazu normalen o, und um-
gekehrt, so zwar, dall

Esx=oi—f-"—

L

f, e o e et 2y
heyzoy——-}:’-

wird und die Seitenfliche dF = da dy um den Betrag
dAF =dzdy (1l +¢&) (1 +e)—drdy=dady (et &)
zunimmt, dem eine Flichendehnung
L dAF ooy p—1

g = dF E ;1— b T R (13}

entspricht. AuBerdem aber erleidet auch die senkrecht zur Bild-
ebene stehende Seite dz infolge der Querkontraktion eine Deh-
nung, die sich aus
B Otk ool o 0 (46
i
berechnet, so dafi das Element eine Voluminderung im Betrage von

dAV =dzdydz (1 +&) (1 4e) (14&)—dzdyds,
also eine Volumdehnung

LAY L Oty p—2
Eu—'E'-V—_ea}—i-Sﬂ_t—éZ“ E VS i3 'u‘_ b (14}

erfdhrt.
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Hieran sind die Schubspannungen ganz unbeteiligt,
da sie nur Verschiebungen der gegeniiber-
liegenden Seitenfldchen des Elementes be-
dingen kénnen, durch welche nach Fig. 11 der ur-
spriinglich rechte Winkel AOB in den spitzen Winkel A'OB’
iibergeht, der sich von 90° um den sehr kleinen Betrag y unter-
scheidet. Diese sog. Schiebung oder Gleitung g
ist nunerfahrungsgeméf der Schubspannungz=
proportional, geniigt also ebenso wie die Dehnung und
Normalspannung dem Hookeschen Gesetze, so zwar, dall wir
mit einer neuen Material-
konstanten G, die wir den
Schubelastizitdtsmodul oder
kurz Schubmodul bzw.
Gleitmodul nennen wollen,
schreiben diirfen

7=y ()

Derartige Schubspannungen
tretennun, wie aus den GI.(11)
hervorgeht, in beliebigen Dia-
gonalflichen auch dann auf,
wenn die Seitenflichen des Volumelements Hauptschnitte bilden,
in denen nach den obigen Darlegungen keine Schubspannungen
angreifen. Die Schubspannungen in den Diagonalflichen dullern
sich alsdann in einer Winkelinderung der Diagonalen gegenein-
ander, wihrend- die Seiten des Elementes nur Langendnderungen
erfahren. Durch diese Lingeninderungen ist aber schon die
Winkelinderung der Diagonalen bestimmt, woraus wir schlielen
diirfen, dafl zwischen den fiir die erstéren maligebenden Material-
konstanten £ und u einerseits und dem fiir die letzteren aus-
schlaggebenden Schubmodul G anderseits eine allgemein giiltige
Beziehung besteht. Um diese zu ermitteln, diirfen wir von einem
beliebigen, mdglichst einfachen Spannungszustand ausgehen?)
und setzen daher zunéchst voraus, dall in unserem Elemente,
dessen Seitenflichen Hauptschnitte sein mogen, die beiden
Hauptspannungen einander entgegengesetzt gleich sein méogen, also
Or— - ge— g S i e (6]

"J Wir werden spiter (Kap. VI) hierfiir eine allgemeinere Ab-
leitung kennen lernen.
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Dann folgt aus Gl. (11) fiir die Diagonalspannungen

6, =00082¢ |

S i G e S (11 a).
Da auBerdem hierbei o, - 0, =0, + 6, = 0 ist, so verschwindet
in diesem Falle nach Gl (13) und (14) o
sowohl die Flichendehnung als auch die-
jenige des Volumens. Geben wir dann

noch der Diagonale die Neigung p —45°, Y% /" |

entsprechend einem quadratischen Ele- ] " o

mente dx =dy, Fig. 12, so erhalten X l

wir aus (11a) fiir die Diagonalspan- i R

nungen lc;
03:(}, Tg=—=0 . = (111)) Fig. 12.

Es herrscht also in den beiden Diagonalflichen der Elemente
reine Schubspannung, durch die der Winkel 90° :g
in g - 4 iibergeht, der mit der Schubspannung 7, wegen (15)

durch die Beziehung
Gy o e e e (AT

verkniipft ist. Da weiterhin am deformierten Element

Eemz01—%—:—0-“?;—1:—1881,:—-35 . 18)

sein mufl, so ist mit dxz —dy
tg(“ x)_flm(l‘f'a.—c) b

& 2] dy(l+4e) 1+
oder
'l—tg%- 1—e

I

1—’,—tg2§- 1+

Infolge der Kleinheit von y diirfen wir hierin den Tangens
mit dem Bogen selbst vertauschen und erhalten folglich
i) il Sl SR S (1)

oder nach Einsetzen von (17) und (18), wobei ¢ herausfillt,

T _,l{ -
G_'EZ{,u—f—iy R B 2 L S
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Das ist schon die gesuchte Beziehung zwischen
den Elastizitdtskonstanten eines isotropen
Korpers, die von der Erfahrung durchaus bestiitigt wird.
Dies setzt allerdings die unmittelbare Bestimmung des Schub-
moduls & aus Versuchen voraus, die wir erst spiter kennen
lernen werden. Aus (20) folgt weiterhin durch Auflésen nach 2

2G .

ey, p R (20 a),
wonach, da w stets positiv ist, jedenfalls £ > 2G sein mull. Fiir
inkompressible vollkommene Fliissigkeiten, in denen wegen des
Wegfalls von Schubspannungen die — stets negativen — Normal-
spannungen unabhingig von der Richtung ausfallen, miiBte
mit 4 =2 nach (20) E =3 G-werden. Diese Beziehung verliert
indessen ihren Sinn, da fiir solche Kérper das Hookesche Gesetz
nicht mehr anwendbar ist, welches der Formel (20) zugrunde
liegt.

Wir fiigen zum Schlusse noch eine Tabelle der Elasti-
zitatskonstanten einiger wichtiger Korper hinzu, die als Mittel-
werte aufzufassen sind. Die darin aufgenommenen Spannungen
beziehen sich, wie in der Technik iiblich, stets auf den ur-
spriinglichen Querschnitt des unbelasteten
Stabes, ein Umstand, der innerhalb der Elastizititsgrenze
wegen der Kleinheit der Flichenkontraktion keine Rolle spielt,
aber nach dem Eintritt des mit starken Querschnittsverénde-
rungen verbundenen FlieBens sehr zu beachten ist. Auferdem
gelten die Zahlen fiir normale Temperaturen zwischen —10°
und + 20% wihrend sich fiir Temperatursteigerungen AT die
Moduln hinreichend genau nach den empirischen Formeln

E=Ey(1—aqAT

Ll T
6= 6, (1 —ag Ty

|

berechnen lassen, deren Koeffizienten fiir einige Stoffe ebenfalls
in der Tabelle erscheinen. Ermittelt man daraus die Querkon-
traktionskoeffizienten u fiir héhere Temperaturen mit Hilfe der
Gl. (20a), so ergibt sich eine Anndherung an den Wert u =2,
der nach den Beobachtungen von Cl. Schifer beim Schmelz-
punkt in der Tat erreicht werden soll.
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Querd Blastizititd wiiep. 3 3 .
Material Moduln kg/qgem %‘E’E‘_ ﬁ?&f& 1;‘:: Br]llicg}jlrir-.‘:r?u T{{-{I)I;I[);;?:::
E G | Zug |Druck [kgjqgem| Zug | Druck oy | @y
| | | | |
Reines Eisen |1,83-1097,3-10°3,95) rd. |_\ rd. || rd. ) rd. | rd. 7,3-10-51,78 10
Schweileisen ‘ ‘ 11500-: 1500 [1800l3500 !|3500 - —
(Faserrichtung) |
FluBeisen 2,2 10°8,5-10% 8.4 | 9900 2000| 2000/ 4000 | 4000 126_10_; —
Federstahl | 8000 8000| — (1000010000 -
GuBeisen 1,0-106 | 4-105 | 4 _i ANl S oae fenph] Ll
Nickelstahl |21-105| — | — [ss00{34000 — [7000| — | — | —
Reines Kupfer| 1-10% | 4.10°| 4 | — | — | — 2100} — 3,6-10—5:-’1,5-10“5
. Nickel |2,35-1009,5-108 42| — | — | —| — | — [24-10793,3-10°°
Messing 8.10% [3.105| 3 | 650, — | — [1500| — | — .
Bronze 1.108 (3,7-10°% 2,8 9{}0‘ -] = ‘%Diéi‘j"s — — —

Zur Bestimmung der von den Spannungen am Element
Fig. 7 geleisteten Forménderungsarbeit gehen wir
zuniichst von einer unendlich kleinen Dehnung de, in der z-Rich-
tung aus, der eine Verlingerung dx - de, entspricht. Auf diesem
Wege leistet die von der Normalspannung o, herrithrende Kraft
0,dy dz das Arbeitselement o, dy dz - dz de, =0, de, dz dy * dz,
und ebenso wird in der y-Richtung o, de, dz dy dz die Arbeit
der Spannung o,. Aber auch die Schubspannung 7 mit dem
Drehmoment 7 da dy dz leistet infolge der unendlich kleinen
Schiebung dy die Arbeit 7 dy dx dy dz, so daB insgesamt auf das
Element mit den endlichen Dehnungen &, ¢, und der Schie-
bung % eine Arbeit

dL=c£xrlydzj(oxdsx—|—a1,(lay—|-'zdx)

entfillt, wofiic wir auch mit da dy dz =dV
d.L c
R-V—s‘f(azdt,—i— o,de,+rdy) . . - (22)
schreiben diirfen. Fiihren wir auf der rechten Seite dieser Gleichung
die Ausdriicke (12) und (15) fiir die Dehnungen und die Schiebung
ein, so ergibt sich

T -
ok =_}15 (omdox—]— oydg,r&‘—"ﬂd_%)Jr L {zdr
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oder nach Ausfiihrung der Integration von 0 bis o, bzw. g, und 7

9 2
% = _Zif (ﬂf 3o _—Efug tog - - @
oder auch
dL 1 :
W=j(am Em—l" Gysy—-i—r;{) ST R et L (23 a}.

Diese Ausdriicke bezeichnet man wohl auch als die spe-
zifische Forménderungsarbeit, aus der sich die
im ganzen Korper geleistete Arbeit durch Integration iiber
dessen Volumen ergibt. Die in der z-Richtung, also normal zur
Bildebene auch beim ebenen Spannungszustand im allgemeinen
auftretende Dehnung Gl (12a) trdgt zur Forminderungsarbeit
nichts bei, da in ihrer Richtung laut Voraussetzung keine Span-
nungen wirken. Natiirlich ist die Integration von (23) bzw. (23a)
nur ausfiihrbar, wenn man das Gesetzder Spannungs-
verteilung tiber das Gesamtvolumen kennt.
Die Ermittlung dieser Verteilung fiir die verschiedensten Be-
lastungsfalle und Kérperformen bildet aber gerade die Haupt -
aufgabe der Elastizitdatslehre.

§ 3. Spannungen in diinnen GefiBwiinden unter
einseitigem Drucke.

Kennzeichnung der diinnen Wand, Aufstellung der ersten Haupt-
gleichung. Beschrinkung auf Rotationsflachen und deren Zerlegung
durch Hauptschnitte nach Meridiankurven und Parallelkreisen, Ab-
leitung der zweiten Hauptgleichung, der Meridian- und Ringspan-
nungen sowie der elastischen Verschiebungen in radialer und axialer
Richtung. Beispiel des elliptischen Ringes mit Sonderfiallen; Wellrohr,
Wassergefall mit parabolischem Boden, rotierende GefiBe.

Ist die Wand eines unter innerem oder #uflerem Drucke
stehenden Gefdfles hinreichend diinn, so diirfen wir die Unter-
schiede der Spannungen innerhalb der Normalschnitte zur Wand
giénzlich vernachlissigen. Wirkt auBerdem der Druck p an
Jeder Stelle normal zur Wand, Fig. 13, besitzt also keine Kom-
ponente in der Tangentialebene zur GefiaBoberfliche, so wird
er in dieser auch keine Schubspannungen hervorrufen. Dann
aber kionnen auch in den (schraffierten) Normalschnitten der
Wand nach den Ergebnissen des § 2 keine zur Oberfliche normal
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gerichteten Schubspannungen herrschen, wiithrend dem Auftreten
solcher in tangentialer Richtung nichts im Wege steht.
Schneiden wir nunmehr aus der GeféBoberfliche ein Element
mit den Seitenflichen ds’ und ds” an einer Stelle, wo die als
sehr klein angesehene Wandstérke & betrigt, durch zwel zu-
oinander senkrecht stehende Normalschnitte heraus, so werden
diesen, wie in Fig. 13 angedeutet, zwei Kriimmungsmittelpunkte
M’ und M" mit den Kriimmungsradien o’ und o'’ derart zuge-
héren, daB mit den unendlich kleinen Winkeln dg’ und dg"
gleichartiger benachbarter Radien o' bzw. ¢
ds =0 d¢’, deteeaitd et 0 a4
ist. Herrscht alsdann in der Schnittfliche hds” die Normal-
spannung o', der eine gleich groBe Gegenspannung in der gegen-
iiberliegenden  Schnittfliche ent-
spricht, so werden die hiervon
4" herrithrenden Krifte ¢’hds’” nach
Fig. 14 infolge ihrer Neigung gegen-

M

Fig. 13. Fig. 14.

einander je eine Normal- und eine Tangentialkomponente be-
sitzen, von denen die letzteren sich aufheben. Die ersteren
Komponenten liefern aber infolge der Kleinheit des Winkels dg¢’
eine Summe i
.. dog"
246 hds' sin j— =¢ hds'dg',
su der in derselben Richtung von den Spannungen ¢’ der Betrag
S diotd :
26" hds'sin- 3; =o' hds dg"”

|
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hinzutritt, so dal insgesamt die Spannungen ¢ und ¢’ ein
Normalkraftelement

h(o"ds" de'+o"ds de")
bedingen. Diese Normalkraft wird nun durch eine entgegen-

gesetzt gerichtete, vom Drucke p herriihrende Kraft p ds’ ds”
aufgehoben, so dafl wir haben
hiods"dg' 40"ds de")y=pds' ds”.

Ersetzen wir hierin die Winkelelemente dg’ und de’’ durch die
Krimmungsradien nach Gl. (1), so folgt nach Wegheben des
auf beiden Seiten der Gleichgewichtsbedingung auftretenden
Faktors ds’ ds”’, sowie nach Division mit %

a' g

’ n

A

r

B8 A b s st U

Obwohl innerhalb der Wand auch eine senkrecht zur Ober-
fliche gerichtete Normalspannung herrscht, die von der Innen-
zur Aullenseite oder umgekehrt von dem Betrage p bis zu 0
stetig abnimmt, so dirfen wir diese doch angesichts der schon
aus (2) erkennbaren Kleinheit von p gegeniiber ¢’ und ¢’ géinzlich
vernachlissigen. Dann aber befindet sich unser Element in einem
ebenenSpannungszustande der im letzten Abschnitt
besprochenen Art, zu dessen vollstindiger Kenntnis allerdings
aufer der Bestimmung von ¢’ und ¢’ an jeder Stelle noch die-
jenige der tangential gerichteten Schubspannung 7 in den beiden
schraffierten Normalschnitten (Fig. 13) gehort. Gelingt es uns
dagegen, von vornherein das Element der Wand durch Haupt-
schnitte zu begrenzen, so eriibrigt sich die Feststellung der als-
dann verschwindenden Schubspannung, wiihrend zur Bestim-
mung der beiden Normalspannungen ¢" und o' auch in diesem
Falle neben (2) noch eine weitere Gleichung erforderlich ist.

Die Aufstellung dieser Gleichung in endlicher Form, sowie
die Begrenzung des Wandelementes durch Hauptschnitte ge-
staltet sich nun recht einfach, wenn wir uns auf Gefdliwinde
beschrinken, die nach Rotationsflédchen gestaltet sind,
wiihrend die Behandlung allgemeiner Oberflichen fast uniiber-
windlichen Schwierigkeiten begegnet und tberdies praktisch
ganz bedeutungslos ist. Ist dann auch der auf der Gefdfwand
lastende Druck p gleichformig um die Achse der Rotationsfliche
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verteilt, wodurch die Moglichkeit seiner Anderung in axialer
oder radialer Richtung nicht beriihrt wird, so befinden sich auch
alle an einen Parallelkreis anstoBenden kongruenten
Wandelemente in demselben Spannungszustande, der somit
ebenso wie die Dicke A nur lings des Meridianse hnittes
der Gefibwand variiert. Es liegt daher nahe, als Begrenzung
des Wandelementes je zwei benachbarte Parallelkreise und Me-
ridianschnitte zu wihlen, die sich ja auf der Oberfliche normal
schneiden miissen. Bezeichnen wir dann das Element der Meridian-

Fig. 15.

kurve mit ds”, dasjenige des Parallelkreises mit ds’, 50 wirkt
die oben eingefiihrte Spannung ¢ tangential zur Meridiankurve
und soll darum die Meridianspannun g heifenim Gegen-
satze zu der normal auf ihr und tangential zum Parallelkreis
wirkenden Ringspannung ¢. Um nun festzustellen, ob
die gewithlten Begrenzungen unseres Elementes wirklich Haupt-
schnitte sind, gechneiden wir aus der Gefabwand einen durch
swei Parallelkreise mit den Radien AP =r und A, Py =Ty
denen die Wandstirken h und h, entsprechen mogen, sowie
zwei benachbarte, um den Winkel dy gegeneinander geneigte
Meridianschnitte begrenzten Streifen, Fig. 15, heraus, in deren ,
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beiden Endquerschnitten hds’ =hrdy und hyds,’ = hyrydy die
Schubspannungen z bzw. 7, normal zu den Radien wirken mégen.
Da sich die auf den einander gegeniiberliegenden Seitenflichen
angreifenden Ringspannungen ¢’ aufheben, so miissen sich auch
die Momente der Schubkrifte in bezug auf eine beliebige Achse,
z. B. die Symmetrieachse 0Z, am Streifen ausgleichen, also die
Bedingung
G e e R S
« erfiillen. Da fernerhin kein um die Achse drehendes Moment
der dubieren Krifte vorhanden ist, so verschwinden die Aus-
driicke (3), oder es ist
(e e e e PR i
Dann aber kénnen auch keine Schubspannungen in den dazu
normalen Seitenflichen auftreten, so dall Parallelkreise
und Meridianschnitte in der Tat Haupt-
schnitte fiir die nach einer Rotationsflache
geformte Gefdallwand darstellen.

Die beiden benachbarten Meridianebenen enthalten weiter-
hin auch die Normalen zur Meridiankurve der Gefibwand in den
um ds'’ voneinander entfernten Punkten P und P’. Infolgedessen
schneiden sich diese Normalen auf der Rotationsachse im Punkte
M, der somit den Kriimmungsmittelpunkt des zur Meridian-
ebene senkrechten Hauptschnittes bildet, wodurch zugleich
PM' =¢' als zugehériger Kriimmungsradius erscheint. Ist
dann ¢ =<Z APM' der Winkel der Normalen PM' mit dem
Radius AP =r, so bestimmt sich der Kriimmungsradius des
Normalschnittes zur Meridianebene aus der Gleichung

PRBOR T N S e

die den sog. Meusnierschen Satz formuliert, wihrend der
andere Krimmungsradius PM"” =" in Gl (2) der Meridian-
kurve Fig. 14 selbst zugehért und aus ihrer Gleichung abgeleitet
werden kann.

Zur Gewinnung der oben erwihnten zweiten Gleichung
fiir die Ermittlung der Spannungen ¢’ und 6" wollen wir nunmehr
annehmen, dall unsere Rotationsfliche im allgemeinen eine zur
Achse normale Tangentialebene in einem Kreise BB mit dem
Radius BC =r, beriihrt, Fig. 16. Schneiden wir nun in diesem
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Kreise sowie in einem zweiten durch den Punkt P der Meridian-
kurve mit dem Rading AP —r gehenden unsere Rotations-
fliche, so haben wir von dieser
einen Ringbogen PB abgetrennt,
auf dem in der Achsenrichtung vom
Drucke p die Last

Z=2a{prdr . : (5)
Ty

ruht?), die von der gleichgerichteten
Komponente der gesamten Meri-
dianspannungen auf der Schnitt-
flaiche 2arh durch P, nidmlich
2 wrha'” cos ¢ gerade aufgehoben
wird, da im Scheitelkreise BB nur Fig. 16.

eine zur Achse normale Meridian-

spannung herrscht, die mithin keine Axialkomponente besitzt.
Daher erhalten wir als zweite Hauptgleichung zur Berech-
nung der Meridianspannung

/ r
o= - 5o CLSE:_ é‘npr Okl Sl Dl R [
in der die Integration stets ausgefithrt werden kann, wenn die
Druckverteilung entweder analytisch oder graphisch vorgelegt
ist. Fiir den einfachsten Fall eines auf der ganzen Gefal -
wand konstanten Druckes p ergibt (6)
VEa i et
T 2k reosg
wahrend wir z. B. in einem Fliissigkeitsbehédlter mit
der Spiegeltiefe z° eines Punktes der GefiBwand und dem spe-
zifischen Fliissigkeitsgewicht p zu setzen haben p — »z’, und
damit aus (6)

. (6a),

L 5

Jf____fl -t g
o _}z.rcos:psprdr S . (6b)

I'a
erhalten. Das mit 2z multiplizierte Integral der rechten Seite
ist offenbar identisch mit dem Volumen der ganzen iiber dem

1 Hierzu kame strenggenommen bei vertikaler Achse noch das
Gewicht des Ringbogens P B, welches wir aber praktisch meist gegen-
ithber der Belastung durch den Druck p vernachlassigen diirfen.
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Ringbogen PB stehenden Wassersdule. Bezeichnen wir ander-
seits mit 2 =—=0A den Abstand des Punktes P von einer Normal-
ebene zur Achse durch einen beliebig gewihlten Koordinaten-
anfang und rechnen den nach innen gerichteten Kriimmungs-
radius PM"' =p" positiv, so folgt wegen der Abnahme von ¢
mit von der Achse aus zunehmendem s’

ds” dr Z

: t,gq;:_ Ccos @ = _dl__
de’ dz’ ds"

e e

oder
s A S e -
ST g GOSN R
Durch Einfiihrung dieses Wertes mit (4) und (6) in die erste
Hauptgleichung ergibt sich dann die Ringspannung

e Br coste .

o = e (p +W . iprdr) Sl ey
die sich fiir konstantes p analog (6a) in

’ ?r r2—rg s g

o hcoszp( +d —o 48 99) 2 en(Ba)
und fiir den Fliissigkeitsdruck p =ypz’ in

etk a2r _ﬁ_‘_Ji P ¢ $

o' = F o (z - Iz j rdr) - e (BT

r

vereinfacht, worin z’ im ersten Gliede der Klammer natiirlich
e > die Spiegeltiefe von P darstellt, wihrend

g ~ es unter dem Integralzeichen mit r vari-
a \ %’_'1 ie[‘ t.

1. Als erstes Beispiel fir
die Spannungsermittlung wiéhlen wir
einen geschlossenen dinn-
wandigen Ring mit ellipti-
scher Meridiankurve, Fig 17,°
in dessen Innerm der konstante Uber-
druck p herrschen moge. Die grolie
Halbachse ¢ der Ellipse mige der Ring-
achse OZ parallel sein, der Koordinaten-
anfang O liege im Schnitt der Fortsetzung der kleinen Halb-
achse b mit der Ringachse im Abstande r, vom Ellipsenmittel-
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punkt. Alsdann lautet die Ellipsengleichung

z (et e
al+”_73__—1 PG e e taah ko (G)
Daraus folgt
b LA R S S A e
dz @@ —ry)  alr—ry ]/1 T tg(p‘
d2r bt a(r—ry) 128)
i s I Tl cos @ = =

ki

/(@ TWT—F pi

dz a (r—rg)?

Eingesetzt in Gl. (6a) ergibt sich damit die Meridian -
spannung

sl DAL R Tl +1o) AT ST i

ol Ry ¥ (@@ —0%) (r = T (10)
und aus Gl (8a) die Ringspannung

gl ol G P R

2ha  Y(@®—82) (r—rg)2 ¢

mit den Sonderwerten fiir

r:ro-l-b, i==1g,

6":‘_‘?(2?'0—,—{)}'5 G”=_pb2

SORPEEY AL s W

o= P bRV 421y (@ —B?) A L

AEE 0% a2 fES VS0 h
r=re—0b
i {2?‘0—-5}],1 :
- o
02,:_,19__.F)(2a2—52}—2r0(a.2—_b2_). . (1),

2h a2
Fiir den Fall eines elliptischen Querschnitts, dessen kleine
Achse der Ringachse parallel verlduft, haben wir nur in den
vorstehenden Formeln a mit b zu vertauschen, wihrend sich
fir den Kreisring mit a =5
T T AR
also eine konstante Ringspannung ergibt.
Lorenz, Elastizititslehre. 3
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Setzen wir in den Formeln (9) bis (11) ry =0, so ergeben
sich die Spannungen im gestreckten Rotations-
ellipsoid (r<<¥b)

o Pors s ks T ia or D @)+ ¥ 3
o ‘2};(;}’(& i 0 Sha @ —5) 2 b (13)
mit den Sonderwerten fiir
7 —0 =
" __ﬁba_ fr :_p_b 3
% =opa’ : 2h ke 4
: 4 b2 r pb(QaZ__,b?) 14
%= oha iy 7 R

Vertauschen wir in (13) @ mit b, so folgt fiir das abge-
plattete Rotationsellipsoid (r<a)

p a=2rie—h) (14)

o' =L yB—(@—B) 2, 0= s
2hb yat — (@ — b3 r*

2hb
mit den Sonderwerten fiir

p—0, r=u
i 0 Hem DE.

0" =555 01 5T o r A g e 14 1)
o ,_ pa(2t?—a?

Oy ——jh?, Gy -——2_}1 2 e (14 b}.

Die merkwiirdige Tatsache, dafl in diesem Falle die Ring-
spannung ¢’ negativ werden kann, was nach (14) allgemein fiir
Wandstellen mit Radien

2 at

s Y7 )
eintritt, erklirt sich sofort durch das in Fig. 18 angedeutete
Bestreben dieser Korperform, sich unter innerem Uberdruck
der Kugelgestalt zu néhern,
wodurch die Parallelkreise in
der Nachbarschaft des Aquators
eine Verkiirzung erfahren.

Weiterhinsei hervorgehoben,
daB sowohl fiir das gestreckte
wie auch das abgeplattete Ro-
tationsellipsoid die beiden Span-
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nungen ¢," und o, in den Polen einander gleich werden. Dies
trifft dann im Falle der Kugel, wie schon aus Symmetrie-
griilnden erhellt, fiir alle Punkte zu, so daB wir dort mit ¢ — b
haben
L || e, pa 1 5
g =go B e e el
Lassen wir am abgeplatteten Ellipsoid @ = o werden, so
geht dieses in zwei parallele Platten im Abstande 24
itber, zwischen denen der Druck p herrscht. Fiir diese wird aber
nach (14) ¢’ =¢"" — oo, so daB also diinne ebene Platten ohne
Schubspannungen normal zur Oberfliche unter der Wirkung
einseitigen Uberdruckes nicht im Gleichgewichte verharren
konnen. Das heilit natiirlich, daf} unser Ansatz nicht auf diesen
Fall ausgedehnt werden darf. £

Kehren wir nun noch einmal zu unseren Formeln (10) und (11)
zuriick und lassen den Radius r, unbegrenzt wachsen, indem wir
gleichzeitig r — ry = y setzen, so wird beim Ubergang zu ry, = oo,
und r =ry+ y = oo, d. h. fiir den Fall eines geraden ellip -
tischen Rohres

) P s s D 7 —
o' =-—"y(a®2—b ik ¢'=o0
ha ( v+
so daB also auch diese Form unter einseitigem Druck nicht be-
stehen kann. Sie geht vielmehr durch Innendruck von selbst
in das gerade Kreisrohr iiber, fiir welches nach (12) mit
' =r, =

alesb R\ g o 0RO

i 2h

wird, wéhrend das elliptische Rohr durch
duberen Druck einfach platt gedriickt wiir-
de. Hierin liegt eine groBe Gefahr fiir
die sog. Flammrohre der Dampf-
kessel, die man niemals absolut kreis-
rund ausfihren kann und deshalb hiufig
mit Versteifungsringen versieht. Denselben
Zweck erreicht man indessen noch sicherer
durch einen wellenférmigen Ver-
lauf der Meridiankurve, Fig. 19,
deren Gleichung dann

Fig. 19.
3t
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r—rl=csl,inc:tz=f:sin2.nﬁi LA i 12
%
geschrieben werden kann. Daraus folgt
%:cacosaz, %:—ca‘asiHQZZ—az (r—ry)
COos (p = - 1 ‘ i

Y14 c2a®cos? az :}’_'l + [ —(r—ry)?

Fiihren wir diese Werte in die Gl. (6a) und (8a) ein und beachten,
daB in diesen 7, =0 zu setzen ist, da die Wand keine radialen
Elemente besitzt, so folgt fiir die Spannungen

o' = % Y12 a®cos®az

e 2 [17)!
g :% 71+ c®a? cos%xz[i—%ﬁ (r—ry) {1—+~z¥2a20052a3]:\
deren groBte und kleinste Werte ebenso wie die mittleren
A fiic r=r; der Leser zu seiner
7 Ubung bestimmen moge.

I

|

E 2. Als zweites DBeispiel

| betrachten wir einen zylin-

e | — ——  — —] .

b= i I 3 ] drischen Wasserbe-
)

halter?!) vom Radius r

mit parabolischem

s Boden, Fig 20, dessen
Pleilhohe z; betragen moge,

‘ l so daf die auf den Ko-
i ordinatenanfang als Scheitel

|

| " bezogene Gleichung der para-
P r-o 2t holischen Meridiankurve des
—————————————— ¥ Bodens

g : — ‘.’1.2 .7"‘! .y (18}

Fig. 20. lautet. Istfernerz’ die Spiegel-
tiefe eines Punktes P mit dem

1) Die beiden Falle des Wasserbehilters mit kugel- und kegel-
formigen Boden sind schon in meiner Techn. Hydromechanik (Techn.
Physik Bd. I1I, 1910) S. 46 behandelt, wo allerdings an Stelle unserer
Spannungen die Groben S = ho', 8" = he'" als Oberflachenspan-
nungen berechnet wurden.
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Tangentenwinkel ¢, so wird bei einer wasserberiihrten Hoéhe a
des zylindrischen Teiles

=R —*=a+z1—:lz (19).
Weiter ist :
dr i d*r __'L(d_r)z___rﬁ_
de 275’ 3@ dzjin hzlF
. (19a).

oS = ——
]1+ 4,2,-2 ]/ + '

Dies liefert in die GI. {bb] und (8b) eingesetzt mitrs =10
g’ — l 2
=7 V +fi"2 a2z — 12’"

—_— rd (a -7y — 2—:%15 rz) (20).
8 2 ("' ‘|—F)
Setzt man hierin r = 0 entsprechend z' =« +} z,, so ergibt
sich fiir den Parabelscheitel

05 — Uhin—

(e m) < o« & w(20a)

und fiir die Ubergangsstelle in dem zylindrischen Teil mit r = r,

!

i =a

iaz

H,_/rl fi F_ ZL
ST O ]’j+4312 (a+ 2)

e (R 72 a+ -
R e /1 T TR Gl ey S =
PSRy T et 822

1+4z2

In der zylindrischen Wand herrschen dagegen an der Uber-
gangsstelle die Spannungen

yary yar

R

fa’ = Optu g - - ot B

so daB wir also an der scharfen Kante einen Span-
nungssprung vor uns haben. In der Kante selbst wiirde
sogar, da dort 0"’ = 0 ist, 6" = oo werden, wenn nimlich Mantel
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und Boden aus einem zusammenhiingenden Stiicke bestehen.
Verbindet man sie dagegen, wie in der Praxis immer geschieht,
mittels eines besonderen Ringes, der zugleich als Auflagestiitze
des Behilters dient, so halten sich in diesem die verschiedenen
Spannkréfte mit dem Auflagedrucke das Gleichgewicht.
SchlieBlich wollen wir noch den praktisch wichtigen Fall
der Rotation eines diinnwandigen Gefalies
um seine Symmetrieachse (einer sog. Zentri-
fuge) betrachten, die sich in einer radial nach aulen gerich-
teten Beschleunigung rm? geltend macht, wenn o die (konstante)
Winkelgeschwindigkeit bedeutet. Dieser Beschleunigung ent-
spricht dann am Wandelement vom spez. Gewichte y" die gleich-

gerichtete elementare Zentrifugalkraft % wrh ds ds”,

die durch einen Zusatz g, zur Ringspannung derart
ausgeglichen wird, dal
K '
, hds ds P!

gl —— ——*—wrhdsd ds”
B g .
oder ' 2 2
sy Y s (22)
e o L
=}
wird. Die gesamte Ringspannung ¢ ergibt sich somit zu
e i ) P R R 7 )

worin ¢ aus der fritheren Formel (8) bzw. im Falle eines
Fliissigkeitsbehilters aus (8b) mit Riicksicht auf die paraboloi-
dische Oberflichengestalt der rotierenden Flissigkeit!) zu be-
rechnen ist, die naturgemifl nach Gl (6b) auch die Meridian-
spannung ¢ beeinflufit.

§ 4. Die Formiinderung diinnwandiger GefiGe.

Gleichungen fiir die Radial- und Meridiandehnungen; Verschiebungen

und Winkelanderungen. Unvertriglichkeit mit den Grenzbedingungen.

Umkehrung des Rechnungsganges und Anwendung auf zylindrische

Rohre mit starren Versteifungsringen an den Enden, Ausbauchung

unter innerem Uberdruck und axialem Zug; Wellenform bei axialem

Druck, Bruchlasten und Wellenlasten. Storung der Achsensymmetrie
durch Faltungen.

Nachdem wir im vorigen Abschnitt die beiden Hauptspan-
nungen ¢’ und ¢”” an jeder Stelle der diinnen Wand einesachsen -

1) Vgl. hieritber: Lorenz, Techn. Hydromechanik. §45, R B
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symmetrischen GefdBes und damit dessen Span-
nungszustand iiberhaupt bestimmt haben, berechnen sich
daraus sofort die zugehérigegn Dehnungen & im Parallel-
kreisund ¢ in der Meridiankurve, wenn wir
beachten, daB der Kreisumfang 2z r sich um 2x4r und ein
Kurvenelement ds’" um dAs” vergrofiert, so dal

o Ar o dAs

Eba e T o e e W E

wird. Alsdann erhalten wir mit Riicksicht auf die Querkon-

traktion
Arne 1_(0, a”)
# o iH AT
: (2).
dds” _ 1, _0’_)
de7 BN p

Infolge dieser Dehnungen erleidet nun jeder Punkt der
Meridiankurve eine Verschiebung mit den Kom-
ponenten Ar und Az in radialer und axialer
Richtung, von denen die erstere unmittelbar aus der ersten
Formel (2) entnommen werden kann. Zur Berechnung der
Axialverschiecbung Az greifen wir auf den Ausdruck fiir das un-
deformierte Bogenelement

ds"2 =drt}-dz?
zuriick, der nach der Dehnung um die Betrige d4r, d4z, dAs" in
(ds” +dAs")2 = (dr4+dArP 4+ (dz{-dAz)?

iibergeht, woraus mit Riicksicht auf die vorstehende Gleichung,
sowie unter Vernachlissigung der Quadrate der stets nur kleinen
Verldngerungen
ds" dAs"=drdAr-+dzdAz
oder
dAs" ds’ ds” ddr dr =

dda=\cpm da iy _d_z) e ©)
resultiert. Beachten wir ferner die Gl (1), sowie, dall nach
den Bezeichnungen des letzten Abschnittes

drnal. dr

; dz
- P tg ¢, qa = Sin @, " cos @
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war, so dirfen wir an Stelle von (3) auch schreiben

A __Qs" d(er) gt
d/_i.-,_(sin-.ij-——dr tgtp)dr e sl

worin alle Groflen der Klammer mit Hilfe der Spannungs-
formeln und der Gleichung der Meridiankurve in » allein aus-
gedriickt werden konnen. Daher liefert die Integration den
Ausdruck

. 2" d(e'r) >
A»_S(Smg(p & tgfp)dr SRl
mit einer Konstanten C, die sich durch Festsetzung der axialen
Verschiebung fiir einen bestimmten Meridianpunkt ergibt und
fir den Fall, daB dieser in den Auflagering des Geféifies fillt,
verschwindet.

Leider gestaltet sich mit Ausnahme weniger einfacher Fille
die Ausfithrung der in (3b) angedeuteten Integration so ver-
wickelt, daB man praktisch sich fast immer mit graphischen
Niaherungsmethoden zur Ermittlung der Axialverschiebung be-
gniigen wird. Indessen kann man fiir den Fall eines konstanten
Druckes p von vornherein auf eine Proportionalitit der Ver-
schiebungen Ar und Az mit p schliefen, da dieser Uberdruck p
nicht nur in den Ausdriicken (6a) und (8a) des § 5 fir die Span-
nungen, sondern auch in den obigen Gleichungen (2) fiir die
Dehnungen als konstanter Faktor erscheint und daher an der
Integration unbeteiligt ist. Dasselbe gilt auch vonden Winkel-
danderungen Agp der Wand, die sich leicht aus

dAr
el
d(r-+A4r) dr
e p-kdp) =gri Sy T Y — o
1- :
dz

nach Aufldsung der linken Seite sowie unter Vernachldssigung
des Produktes kleiner Grifien zu

tgp (dAr dAz\  sin2e (dAr dAz\
14t \ dr dr b TR dr dz) @)
ergibt. Nach dieser Formel verschwindet die Winkelinderung

fiir alle Wandstellen, welche mit ¢ =0 bzw. & parallel zu der

nie 7 :
Achse verlaufen, oder die mit ¢ = 1 5 normal zu ihr stehen.

A.(pz
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Das letztere trifft u. a. fiir eine einseitig belastete ebene Platte
zu, deren Gleichgewicht indessen nach den Ausfiithrungen im
ersten Beispiel des § 3 auf unendliche Spannungen fithren wiirde,
womit dieser Fall iiberhaupt aus der Diskussion ausscheidet.
Aber auch ein urspriinglich kreiszylindrisches Rohr kann nach
Gl. (4) nur wieder in ein solches mit durchweg gleich gedehntem
Radius iibergehen, sich also nicht zwischen Versteifungsringen
aushauchen oder eindriicken, wie doch die Erfahrung zeigt.
Der hierin liegende Widerspruch erklirt sich einfach aus der
Tatsache, dafl mit den vorstehenden Gl. (2) die Radialverschie-
bung Ar schon eindeutig durch die Spannungen bestimmt ist,
welche ihrerseits sich nach den Formeln des § 3 aus der urspriing-
lichen Gefdliform ohne Riicksicht auf etwaige Grenzbedingungen,
wie sie z. B. durch Versteifungs- und Auflageringe vorgeschrieben
sind, berechnen. Zur Beseitigung dieses Widerspruches brauchen
wir daher nur die Aufgabe umzukehren, d. h. aus den Gl (6)
und (8) § 3 mit Hilfe der obigen Formeln (2) die Spannungen zu
eliminieren und an Stelle der Grofien » und ¢ die der Form-
dnderung entsprechenden r--Ar, ¢ 4 A einzufithren, wobei
Potenzen und Produkte der kleinen Anderungen Ar und Ag
vernachldssigt werden diirfen. Auf diese Weise erhalten wir
schlieflich fiir die Verschiebungen Ar und A¢ bzw. Az zwei Dif-
ferentialgleichungen zweiter Ordnung, deren Integration aller-
dings im allgemeinen noch erheblich grifleren Schwierigkeiten
begegnet wie die Auswertung von (3b). Wir wollen uns darum
hier mit der Anwendung des geschilderten Verfahrens auf den
praktisch wichtigen Fall eines kreiszylindrischen
Rohresvon der Linge I, der Wandstarke s und dem urspriing-
lichen Radius 7, beschrénken, auf dessen Mantelfliche der innere
Uberdruck p lasten mioge, wihrend gleichzeitig in der
Achsenrichtung eine Zugkraft P wirkt. Alsdann wird
r =ry -+ Ar und wir erhalten bei kleinem A7 mit hinreichender

Genauigkeit fiir die beiden Kriimmungen mit cos ¢ ~ 1
1 1 1 (.1 Ar ) 1 &r @ Ar

T T O

¢~ ToFAr 7o\
Andererseits bedingt die Zugkralt P eine Axialspannung
P 2 ( Ar')

ek dahey\c - rg )

"

l‘l_
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withrend sich die Ringspannung mit Hilfe der Gl (2) zu

Ar i Ar (& Ar q
e s

berechnet. Setzen wir alle diese Werte in die Gl (2) des § 3,
nimlich

_ﬁ, _E'i e | _!!J_ L/
9,+9,, T e Rl O Ly
ein, so erhalten wir

ar P APNIEE - A
F?+ﬂﬂ?@;ﬂﬁbi+‘
P dgdr(i_dro)_ﬁ

" 2nkr, 422 h
oder nach Weglassung des Quadrates von Ar sowie seines Pro-
ST
duktes mit ——— P
o el Bl
T2 muhry| 2mhr, 82 h  2nphrd’

Aber auch hierin diirfen wir das zweite Glied der ersten Klammer,
das mit g =2 etwas kleiner als die Axialspannung ausfillt,
gegeniiber dem Elastizititsmodul E unbedenklich vernach-
lissigen, womit sich unsere Formel in

T N R
e 2mhry A2~k 2mphrgd
oder in
BAr 2mEh 1 2mryp -
Ay, el ®)

vereinfacht. Dies ist schon die gesuchte Differential-
gleichung fir die Radialdehnung unseres Zy-
linders, wihrend wir die axialen Verschiebungen iiberhaupt
als unerheblich vernachlissigen diirfen. Mit den Abkiirzungen

2gEh . 1., 2@mp-. 9
Pr o Ty B ©)
lautet unsere Formel
dzAr 3
o —a-Ar+b—a-(Ar—t— D o)

und ergibt das allgemeine Integral

Ar-- -——43"‘—]—88“‘" o e e e (100,
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dessen willkiirliche Konstanten A und B sich aus den
Grenzbedingungen bestimmen. Setzen wir z. B. fest, dall
infolge des Vorhandenseins praktisch T“' A
starrer Versteifungsringe an

den Zylinderenden, Fig. 21, dort, .#| ! .‘
alzol dar | == 0 und =z — [ keine I{ . | \:
Radialdehnungen méglich sind, so ',' e _;: iff
ergeben sich die beiden Bedingungs- ! o i
gleichungen Prae 4 nm 1: {

b b i z Il|
A+B=L derpBem=2 |, Sl
aus denen ‘.‘ /

e dezleit, ]!o |
— az e{;l =) e—.a; : 5 .

R | . (104a) Y

= Fig. 21

folgt. Damit aber wird die Ausbauchung Ar unseres
Zylinders

b "('l_e-—:xi) eo:z_l__(eal_ll)e—-ai_ ) o
Ar:aﬂ(\ i bt (M;
mit einem durch Verschwinden der Ableitung dAr : dz fir z =
folgenden Hochstwerte
b 2
AI‘OZ (ii (E—g_"f—:—"‘l) e (ilﬂ.),

der, wie man leicht feststellen kann, das entgegenge-
setzte Vorzeichen von b:a® besitzt. Wegen (9)

wird daher
o 2y el )
ArZ0 fir s M (11b),

und der Zylinder erleidet gar keine Form-
anderung firb=0,d h wenn
P

2R P -

o tte),

p=

wihrend er bei kleinerem Innendruck oder
duBerem Uberdruck nach innen eingebaucht
wird. Dies entspricht der Forménderung emes zylindrischen
Kesselflammrohres, Sind die Versteifungsringe, wie beim Kessel
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selbst, mit Deckeln versehen, auf denen wiederum der Innen-
druck p lastet, so wird mit P =z ry?p die grofite Ausbauchung

Sror L B i ol L
Ary= W(l—m)(i— plre) B CLY

Dies trifft auch noch zu fiir den Fall, dafi unser Rohrstiick mit
Flanschen an den Enden den Bestandteil einer lingeren Leitung
bildet, in der der Druck p herrscht. Infolge des vorausgesetzten
Wegfalles von Schubspannungen in der Radialrichtung kénnen
natiirlich weder die Versteifungsringe, noch die Flanschen Winkel-
inderungen der Mantelgeraden verhindern.

Haben wir es dagegen an Stelle der Zugkraft P mit einem
Drucke in der Achsenrichtung zu tun, so wird
in ungeren Formeln wegen des negativen Vorzeichens von P
auch a? << 0 und damit ¢ imagindr. Anstatt nun mit Hilfe des
Moivreschen Lehrsatzes die Exponentialfunktion in trigono-
metrische umzuwandeln, wollen wir der besseren Ubersicht
wegen fiir diesen Fall nach Anderung des Vorzeichens von P
fiir Gl. (8)

i R T 2rryp .
E':ZT-*_ P _— nry T p el
oder mit den Abkiirzungen
BN o ] 2argp 2
P.ro = a=, 1 rﬂ' _l- P = l} S {10}
-{Zf; ~+ a2 (Ar—%):f) S

schreiben. Das allgemeine Integral dieser Differentialgleichung

lautet =
Ar—-—c=A'c0Saz-|-B'singz . . « [14),

L
worin die willkiirlichen Konstanten A’ und B’ wieder durch
die Grenzbedingungen gegeben sind. Verlangen wir, wie oben,
daB Ar =0 fiir z =0 und z =1 sei, so folgt

b b
Am=—py A’casaé—}—B’sinaI:—uaul
. 4
also B,__{J__ cosal—1 ——-b--t al Bl
T snal . ah P9

und damit A b al :) '

St 1—tg 5 sinaz—cosa = ik
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: \ 4 al - :
Dieser Ausdruck wird mit tg — unendlich grofl, wenn mit

einer ganzen positiven Zahl &

W=l =) o s e (15)
d. h. gleich einem ungeraden Vielfachen von 7 wird. Die
zugehdrigen Druckkrédfte P., die sich daraus mit
(13) zu
__2EhRP
2 k—1PRar, °
berechnen, werden daher den Zylinder unab-
hdingig von einem éduleren oder inneren

Uberdruck zerstdédren, und sollen darum seine
Bruechlasten genannt werden.

= L (diGa).

Schreibt man weiterhin Gl. (15) in der Form

bl e al az) 5
Ar:a—25m - (sm —— —tg 5 cos 7) o o idaal;
so erkennt man, dall Ar =0 wird fiir
z 27 2k
sin == =0 oder gh===(ls Sal s s c
2 a a
az al s xar 2km
tg"2—:tg? oder z :I, I 2 B '_a_'

Die hierdurch festgelegten Punkte auf dem Zylindermantel
haben dann den Abstand einer vollen Wellenlédnge, wenn in ihnen
die Ableitung von (15), also

dAr_b(._, gty 05 )

ek o .SIH ag— tg? cos (I,.-)
iibereinstimmende Werte besitzt. Es mul also nach Einsetzen
von gz =2 kw und az —al — 2 kxn

_tg_-Q-— — —tg% cDS&I-{-Siﬂal
oder
al
aI:?,A,J‘Z, t;g 2—:0 (17)

sein, wodurch sich (15) in

b 2N 5
Ar:&j(i—cosa;):-a-,_,—sm-T S
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vereinfacht. Durch Verbindung von (17) mit (13) erhalten wir
sodann die Druckkrédafte
Eh?
j}kr s S —
2R2mr,

welche die durch (15b) definierte Wellenform
Fig. 22 des Zylindermantels hervorrufen und
darum als seine Wellenlasten hezeichnet werden sollen.

el al,

Aus dem Vergleich von (16a) und (17a) erhellt sodann, d a f
die Wellenlast niemals mit der Bruchlast
iibereinstimmt, sondern dalB je eine Last

der einen Art mit einer

it @ der anderen bei fortschrei-
7"!‘-%2 %2_‘* tendem £ ah‘weehsel.t, wih -
] i —] rend dazwischenliegende
P p/ Lasten, die weder der

Gl (16a) noch (17a) geniigen,

iitbherhaupt keine Formédnde-

rungdes Zylinders bedingen.

1 Das Vorzeichen der Ausbauchung

Z,I der Wellen héngt nach (15b) lediglich

\ l l von demjenigen von b ab, es kann nach

L & (13) nur negativ werden fiir p << 0, d. h.

T - wenn der Zylinder unter duBerem Uber-

Fig. 22. druck steht. Haben wir es z. B. mit

einem beidseitig durch starre

Bioden geschlossenenZylinder unter duferem

Uberdruck zu tun, so wird mit P ==z r%p aus (13)

2Eh s 2 1—2u
I B e

Infolge des negativen Vorzeichens von b erfihrt der Zylinder

lediglich Einbauchungen, die nach (15b) wellenartig ver-

laufen fiir Driicke

g L
~

S

N
/
‘?5?:“}

(

==

~

2

o

2= ) IESPREE] 1 2 S M

EhR 0
Pr = m—roa P NS (ld’b}

analog Gl. (17a) und zum Bruche fiihren, wenn nach (16a)

P=Tgh AR - - - - - (6D)

wird.
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Die vorstehend ermittelten Wellenformen sind natiirlich
an die Giiltigkeit des Hookeschen Gesetzes gekniipft, welches
fir jedes Material an eine obere Grenze der Spannungen (6)
und (7) bzw. der Dehnungen gebunden ist. Setzen wir den Aus-
druck (17a) in diese Formeln ein und beachten, dafl nach (15b)
die gr6Bte Ausbauchung

25 /e 2r2p

Are="g = ZuER T Eh e

ist, so folgt fiir die gesuchten Spannungen mit r ~ 7,
E T R To

S T s ek By
Hiernach konnen nur ziemlich grofle Werte von k fiir die Ent-
stehung elastischer Wellenformen in Frage kommen. Dann aber
unterscheidet sich 2 & nur wenig von 2k — 1, so daBl also die
Bruchlasten dicht neben den Wellenlasten liegen. Es heifit dies
nichts anderes, als daB man bei derartigen Druckproben fast
sofort bleibende Wellenformen erhilt, die zuerst von Lilly
beobachtet und (Engineering, 10. Januar 1908) beschrieben
wurden.

Wird die radiale Verschiebung an den beiden Zylinderenden
im Gegensatz zu den Bedingungen (14a) nicht verhindert, so
treten unter sonst gleichen Verhiéltnissen Faltungen in der
Wand, also Abweichungen von der Achsensym-
metrie auf, die nicht mehr aus unserer Grundformel (8) ab-
geleitet werden konnen. Begniigt man sich indessen mit der
Untersuchung kleiner Abweichungen des Zylinderquerschnitts
von der Kreisringform, so darf unter Einfilhrung des Dreh-
winkels y des Fahrstrahls gegen seine Anfangslage in der bekannten
Formel fiir die Kriimmung

dris azr
2 (o b Eoaehin) [iSsse o St
o r -|—.J(dz) r dif

[+ (T

das Quadrat der Ableitung dr : dy vernachléssigt und angenéhert
1 | i

0 r r°dypy

o

r:;s__l e
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geschrieben werden. Setzen wir hierin, wie oben, r =r, - 4r,
so wird daraus hinreichend genau
1 1 Ar 15 0sa]
=S S L. 19,
0 Ty To T O
worin wir sogleich die Zeichen fiir die partielle Ableitung ein-
fiithren, da ja Ar aullerdem noch mit z derart variiert, daf} nach (5)
%dr . W = : s :
1ipt :—V; ist. Dies liefert mit den Spannungsgleichungen
(6) und (6a), die auch bei kleinen Faltungen noch giiltig bleiben,
in der Formel (7) unter Vernachlissigung von P:muhr, gegen
den Elastizitdtsmodul E fiir eine axiale Druckkraft P1)

P r2Ar o otdr . i
32+2ﬁ;¢hr3 kY +3‘:rkr 922 +’?nu?
oder
2n Eh 2Ar faantdy ZTrOp 9
Pro VT %2 Tun ag +.L”o bk

Diese Glelchung geht ersichtlich mit dem Verschwinden der
: . 2Ar . .
die Faltung bedingenden Ableitung bb—); in (12) tiber. Da dieses

Glied iiberdies mit dem Quotienten ‘L‘!- behaftet ist, so erkennt
man, da der Eintrittder FaltungdesZylinders
allein durch die Querkontraktion bedingt
ist. Benutzt man wieder die Abkiirzungen (13), so schreibt
sich (20) auch

?dr 1 ad 5 oo

T AT (/Jr _Ee‘) —0 . . (20a).
Setzen wir nunmehr hierin mit je einér reinen Funktion X von
und Z von z probeweise

b

Ar——= Xl . . @ e s (2),
(05
so folgt aus (20a)
a:Z @2 X 5 B !
dz —I“b”.z d ot (X +Zj=0.

1) Fuhrt man die Rechnung fiir positive P, also Zugkrafte durch,
so ergibt sich, daB die Faltung damit unvertriglich ist.
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Diese Formel zerfillt aber mit einer Konstanten a in die beiden
>z g 1. X
LAk 7 =1 Sl G A
dzg+a g prt d

mit den Lésungen
Z+a=Acosazt| Bsinaz
X—a=CcosaryyYu-+Dsinaryzyu,

+a(X—a)=0

womit (21) iibergeht in
Ar——é-;-: Acosaz~+ Bsinaz+Ccosaryyyp +
+Dsinarggfu . . (2la).
Hierin entfallen die ersten beiden Glieder rechts auf die A us-
bauechung, die letzten beiden auf die Faltung des Zy-
linders, die sich nach unserem Ansatz (21) einfach iiberlagern.
Gehen wir in einem Querschnitt, d. h. fiir z = konst., um den
deformierten Zylinder herum, éindern also y um 2z, so erreichen
wir wieder den Anfangspunkt. Es muB mithin der auf die Fal-
tung kommende Betrag der Deformation fiir y =0 und y =2x
denselben Wert besitzen. Setzen wir also hierfiir

Ar'—%:fl cos az 4 Bsinasz,
s0 ist € =0 und sinaryg27zju = 0 oder mit einer ganzen
Zahl k

- k
arg2nyu =ka, e 22),
02T}/ v (
Daraus folgt aber mit (13) fiir die zugehérigen Druckkriifte
Sz u kL oy
P,=—ZEo2Te (22a)
Diese Faltungslasten kom-  _— =

men indessen nur dann zur Wirkung,
wenn man die Forminderung an den r
Enden: z =0, z==1[ nicht unterdriickt, {
was, wie man leicht erkennt, ein Ver-
schwinden des Koeffizienten D zur Folge
hatte. In Fig. 23 ist die Anderung der
Querschnittsform lings des ganzen Zy- —
linders fiir £/ =3 dargestellt. Fig. 23,

Lorenz, Elastizitilslehre. 4
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Setzen wir dagegen an Stelle von (21)
Ar-——i_—X Tadzioi S o i (93)
o?
in (20a) ein, so wird daraus nach Division mit XZ

1 d*Z 1 ‘10?\
/dz3+ruﬁX

Diese Formel zerfiallt mit einer Konstanten %2 in die beiden

Gleichungen
a2 Z . A 1 #X 5
2 — ) Z =10 £ g X —
PZt@—®Z=0, T X=0

mit den Ldsungen
Z—=Acoszya® —#2+ Bsinzyd® —#®
X=Ccosxrgyyp +Dsmxrgyyu,

so daff (23) iibergeht in
Ar— % = (Adcoszja®—s® +
+ Bsinzya® —#2) (Ceosnryzfp + Dsinzryyzyu) (23a).

Diese Formel ist unerfiillbar, wenn wir fiir irgendeinen Querschnitt
die Auslenkung Ar total unterdriicken. Verlangen wir dagegen,
5 e !
dall fir oz =0 upd z =1 dr = wird, so verschwindet A

und es wird sin [ ya2 — %2 =0, also mit einer ganzen Zahl k
1 1

12— 2=k, =2 e,

’ ; ; - : 3 £
Soll weiterhin an irgendeinem Querschnitt Ar = fiie y =0

und x =2z sein, so verschwindet auch noch die Konstante ¢
und es wird sin % ry 27 Ju =0, oder mit einer zweiten ganzen
Zahl k,

Qanrgfpu =hym, #=- L . (24a)
2ro v
oder in Verbindung mit (24)
fo,2 w2 ko 7
L Wi E ST o P 25).
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Daraus folgt mit (13) die zugehorige Belastung

2 3
o L B 2 DR N
o M_|_ ky? /
0 ( {2 4}‘02 T
der mit BD = B eine Forménderung des Zylinders

e b,
o2

o Sin fy 3{ sinky y . (25D)

entspricht, die infolge der Willkiir in

der Wahl der beiden Zahlen k; und #,

iiberaus manniglaltig ausfallen kann.

Fir %k =k, =2 erhalten wir z. B. die ”Wm;”
l

" . \\\ e

in Fig. 24 dargestellte Form mit stark
itbertriebenen Ausbeulungen und Fal-
tungen, wie solche sich nach Uber-
schreiten der Elastizititsgrenze in der
Tat ausbilden.

Da die Ordnungszahlen f; und #&,
in GL (2ba), wie schon oben in den
Formeln (16a) und (17a), im Nenner
auftreten, so ergeben sich mit steigen-
dem /£ beliebig kleine Knicklasten, d. h.
theoretisch eine totale Wider-
standsunfahigkeit der be-
trachteten Rohre gegen axi-
alen Druck, die offenbar in der Vernach-
lissigung der radialen Schubspannungs-
komponenten im Wandmaterial begriindet ist.

§ 5. Elastisehe Lingsschwingungen eines Stabes.
Schwingungen eines Sfabes mit vernachlissigbarer Eigenmasse gegen-
ither einer Zusatzmasse, Schwingungsdauer, stoBweise Stabbelastung.
Allgemeine Theorie der Léngsschwingung eines Stabes; statische und
dynamische Dehnung. Schallgeschwindigkeit des Stabmaterials. Ver-
teilung der Dehnungen lings des Stabes; stehende Schwingungen.
Spezialfalle der vernachlassigbaren Stabmasse und der freien Stab-

schwingung ohne Zusatzmasse.

Die bisherigen Untersuchungen betrafen ausnahmslos ela-
stische Kérper, deren Einzelelemente unter der Wirkung der
an ihnen angreifenden duleren Krifte und der dadurch geweekten
Spannungen gerade im Gleichgewichte verharrten. Uberwiegt

4%
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dagegen die nach irgendeiner Richtung genommene Kompo-
nente der #uberen Resultante die gleichgerichtete elastische
Spannkraft, so treten Beschleunigungen auf, mit deren Folge-
erscheinungen wir uns noch etwas beschiftigen wollen.

Dabei gehen wir von dem einfachen Falle eines ge-
raden zylindrischen Stabes aus, der an einem
Ende festgehalten wird, wihrend er am an-
deren eine Masse m, trdgt, gegen welche
seine Eigenmasse m vernachldssigt werden
darf, Fig. 25. Greift nun in der Stabrichtung seibst an dieser
Masse eine &uBere Kraft P an, so wird diese ecinerseits die
Masse beschleunigen, andererseits aber den Stab um den Be-
trag Al = &, derart dehnen, daf mit dem Elastizititsmodul F,
dem konstanten Stabquerschnitt F' und der
Stablinge [ die Gleichung

d? &, EF
e o s L N )
besteht. Istim Sonderfalle die Kraft P konstant,
und zwar bei vertikaler Authingung des Stabes

& identisch mit dem Gewicht G= mgyg der Zusatz-
l ‘ masse, so erhalten wir aus (1) nach Division
1 2 E 5
| mit my dso,LEF,:_g
i e 0 T S R R (La)

oder mit der Abkiirzung

EF x
L

2 (G5 L

.M—;:_%z(_lgﬂﬁ-@) - ALY

Diese mit Gl.(12a) §4 formell iibereinstimmende
Differentialgleichung besitzt nun das allgemeine
Integral
Fig. 25.

5o

— -5 — Acosayt+ Bsinagt (3),
g™

dessen willkiirliche Konstanten durch die in unserer Hand lie-
genden Anfangsbedingungen gegeben sind. Schreiben wir z. B.
vor, daR zu Beginn der Zeitrechnung, also fiir — 0, noch keine
Verlingerung &, besteht, so folgt aus (3)

A= ——g2—-

@y
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Soll weiterhin in diesem Zeitpunkte die Masse m, die An-
fangsgeschwindigkeit ¢ besitzen, so erhalten wir durch Dif-
ferentiation von (3)

(dto) == g
0

dt
Damit aber lautet unser Integral
g eh
fi=—"2 (1l —cosayt) +—sing,t . . . (3a
fo= s 1) - sin gy (3a)

und stellt eine Schwingung der am unteren Stab-
ende befindlichen Masgsse m, mit der Periode

27 [lm,
zoz%zznymg oAl BosiT, A

dar. Die GL (3a) behdlt natiirlich ihre Geltung fir den Fall,
dal die Masse m, erst im Zeitpunkte ¢ =0 mit dem Stabe in
Verbindung tritt, wenn sie nur in der Folge diese Verbindung
behélt. Alsdann aber haben wir es mit einem StofB vorgang
zu tun, der am bequemsten in einem sog. Fallwerk e studiert
wird. In einem solchen 4Rt man das ganze System, d. h. den
Stab mit seiner oberen Einspannvorrichtung und der am Stab
héingenden Masse m, von einer bestimmten Hohe £ herabstiirzen
und die mit einem kriftigen Klotz verbundene Einspannvor-
richtung aufschlagen, wodurch sie pliotzlich ihre Geschwindig-
keit wverliert, wihrend die Masse m, sich mit der Anfangsge-
schwindigkeit

e=R ad i soia 10 aisnlansts)
nach Gl. (3a) weiter bewegt und den Stab in Schwingungen
versetzt. Nach Ablauf der halben Schwingungsdauer hat das
Stabende und damit die Masse m, die Geschwindigkeit —¢ er-
reicht. Sind beide, wie beim StoBe, nicht fest verbunden, so
wird in diesem Augenblicke die Masse sich vom Stabende wieder
trennen, da die Geschwindigkeit des letzteren absolut rascher
abnimmt, als die der zuriickprallenden Masse. Daraus geht
hervor, daf die halbe Schwingungsdauer die wohl auch als
Stofdauer angesprochene Zeit der Beriihrung beider Korper
darstellt. AuBerdem erkennen wir, dafl infolge dieses
elastischen StoBes die kinetische Energie
der Masse my keine Einbufie erleidet, wihrend
wir diejenige des Stabes iiberhaupt vernachlissigt haben.



H4 Kapitel 1. Zug- und Druckelastizitit isotroper Kérper.

Auf dieser Erhaltung der kinetischen Energie beruht aber
die in der Dynamik starrer Kérper!) behandelte mechanische
Theorie des elastischen StoBes, die somit durch unsere Darlegung
ihre niiherungsweise Bestiitigung findet. Die genauere Theorie
mit Riicksicht auf die Bewegung der einzelnen Stabschichten,
die von F. Neumann und De St. Vénant?) aufgestellt
wurde, gestaltet sich dagegen so verwickelt, dali wir von ihrer
Wiedergabe angesichts der geringen praktischen Bedeutung
absehen miissen.

Die beiden Grenzlagen der Schwingungen

: o g
unseres Stabes ergeben sich aus (3a) mit —[&‘-’:—O ANl

g f g2 > 3

o T S e
fa—ram By AL B — =5k 5—3 . (3b),
2= 2 ] 12
wihrend der mittlere Ausschlag
S I A ;
R P TN A e

mit der statischen Dehnung des Stabes durch die Last myg
{ibereinstimmt. Dabei ist natiirlich vorausgesetzt, dali der ganze
Vorgang sich im Giiltigkeitsbereiche des Hookeschen Gesetzes
abspielt, d. h. daB die aus (3b) mit dem positiven Vorzeichen
zu entnehmende Verlingerung noch unterhalb der Elastizitits-
grenze bleibt. Dann aber liefert die Beobachtung der Schwin-
gungsdauer (4) eine sehr zuverldssige Bestimmung des Elasti-
zitéitsmoduls.

Ist schlieBlich die Anfangsgeschwindigkeit der Zusatzmasse

¢ =0, so wird nach (3b)
: 2g Zi'mog

CORC N e

entsprechend einer plétzlichen Belastungdes Sta-
bes durch das Gewicht myg, die somit eine
doppelt so grofBle, allerdings nur vnr'iibul‘—

e s > 134d),

1 Vgl. Lorenz, Techn. Mechanik starrer Systeme. Minchen
1902. 8. 407 ff.

?) Vgl. Love, Lehrbuch der Elastizitat (deutsch von Timpe).
Leipzig 1907. 8. 494 ff.



§ 5. Blastische Liangsschwingungen eines Stabes. 55

gehende Dehnung hervorrult wie eine gleich
grofe, aber stetig von Null an zunehmende
Kraft.

Die vorstehenden Ausfithrungen verlieren ihre Giltigkeit,
wenn die Stabmasse m nicht mehr gegen die
Zusatzmasse my vernachlissigt werden darf,
oder wenn z. B. nach plotzlicher Ent-
lastung der Stab sich selbst iiberlassen
bleibt. +

Gr‘n

In diesem Falle zerlegen wir am
einfachsten die axiale Verschicbung &
des Querschnitts im Abstande = von 94X |
der Befestigungsstelle (Fig. 25) in zwei | ‘
Teile & und &', von denen die erstere, *"_
durch die statische Belastung allein
bedingte nur von x abhingt, wihrend

die letztere von der Bewegung her- o+ 80
T : &x
riithrt und daher sowohl mit der Lage x b

als auch mit der Zeit ¢ variiert. Durch
die totale Verschiebung & erfihrt nun ein Stabelement Fig. 26

; : . 0c . s
von der axialen Linge dx eine Verlingerung um S0 dx, mithin

: 0 :
eine Dehnung ¢ — bf}’ der nach dem Hookeschen Gesetze die
Spannung

0é oS o

= rz_rb 'L.,ba:+aa:)

zugehort. Daraus folgt aber, dali dem Zerfall der Verlingerung
in zwei Bestandteile auch ein solcher der Spannung entspricht,
deren statischer Teil ¢’ mit dem Querschnitt F multipliziert
nichts weiter als das Gesamtgewicht der unterhalb des Quer-
schnitts befindlichen Massen darstellt, so zwar, dal} nach Fig. 25

Fo'=yF(l—x)+meeg . - . - - (7)

(6)

und nach (6)
o0& My g s
Byt . 0

ist, woraus durch Integration lber x al]em (da & nicht von ¢

abhéngt)
x m
&":; m(ﬂ—‘—z)%— EM Lt R T
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hervorgeht und zwar unter Wegfall einer Konstanten, da fiir
die Einspannstelle = 0 die Verschiebung & verschwinden muf.

Zur Ermittlung der dynamischen Verschiebung & brauchen
wir nunmehr auf die statische Belastung gar keine Riicksicht

zu nehmen und nur zu beachten, daB die zugehirige Spannung ¢
153

an der Stelle z sich beim Fortschreiten um dx auf ¢’ + -0{;— dx
derart erhoht, daf der Kraftiiberschul F%%” dz zur Beschleu-
nigung ‘ig der Masse dm des Stabelementes dient. Wir erhalten
mithin die Gleichung’

F%dx: -i?—dm S e TR
worin d&’

w=_d_t_'.(9)

die augenblickliche axiale Geschwindigkeit des Elementes von
der Masse

dm=LFdz . . . .. . . (10)

bedeutet, durch deren Einfiihrung sich (8) unter Wegheben des

Produktes Fdz in
dw

bo?f
vereinfacht. Die ebenso wie & von den beiden Verédnderlichen
x und ¢ abhiingige Geschwindigkeit w =7f (2, 2) erleidet nun im
Zeitelemente dt eine Anderung
dw=f@-Ldt, z-}+wdt)—f (1, 2),

so daf wir auch fiir die Beschleunigung

dw 0w dw w1 3w -

G TRl e T ST T
schreiben diirfen, worin wegen der Kleinheit der auftretenden
Geschwindigkeiten deren Quadrate zu vernachldssigen sind.
Mithin bleibt

o [~

(11)

eyl
dt i
und, da auch in dem Ausdruck fiir die Geschwindigkeit
X d*f” i béﬂ bfrr
AV TR T T
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das zweite Glied als Produkt kleiner GréfBen unterdriickt werden
kann,

dw  0*E”
Andererseits ist aber auch wegen (6)
T aé” o
=11 T (6a),
also da” d2 &
W = f ?-x'z“ {Gb).

Fithren wir die Ausdriicke (11a) und (6b) in (8a) ein, so geht
diese Gleichung iiber in
62 Eu W y a?. Err
B o
in der nur mehr die dynamische Verschiebung & als abhéngige
Veréinderliche auftritt. Nach Multiplikation mit g:y sowie
mit der Abkiirzung

(8b),

EBodk g i Al e e Y,
X

erhalten wir schlieflich die Differentialgleichung
a2 E_& t’_:ﬁé‘:
0 ¥* 02
die durch den sehr allgemeinen Ansatz mit zwei willkiirlichen
Funktionen f; und f,

'=fxtat)y+fhle—ar) . . . . (13)
befriedigt wird, da nach (12) die GréBe a positiv und negativ

!

sein kann. Jedenfalls erkennt man, daB der Ausschlag & in
zwei Teile

(8¢),

Gl lalan), 1 B e @@ty | 5o (158
zerfallt, die wir getrennt voneinander verfolgen konnen. Fassen
wir zuniichst den Ausschlag & ins Auge, und verlangen, daf}
or gur Zeit ¢ am Orte ' denselben Wert haben moge wie zur
Zeit ¢ an der Stelle @, so folgt daraus

fs (& — at) e
oder

(et — s Al cte A s e D (131)),
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worin die Differenzen x — 2’ und ¢ —¢" beliebhig grof} oder klein
gein diirfen. Demnach stellt ¢« eine konstante Ge-
schwindigkeit dar, mit der sich der Ausschlag
&' inder positiven -Richtung fortpflanzt,
wihrend der Ausschlag &' wegen des umgekehrten Vorzeichens
von a mit derselben Geschwindigkeit der ersteren entgegen-
fauft. Da nun diese Ausschlige mit axial aufeinanderfolgenden
Verdichtungen und Verdiinnungen des Stabmaterials verkniipft,
diese aber das Kennzeichen der Schallbewegung sind, so ist «
gleichzeitig nichts anderes als die Fortpflanzungsgeschwindig-
keit des Schalles im Stabmaterial, die wir kurz seine Schall-
geschwindigkeit nennen wollen. Mit dieser Geschwin-
digkeit pflanzen sich natiirlich auch im Falle des elastischen
StoBes die Verschichungen im Stabe fort, so dall der oben er-
withnten genaueren Theorie dieser Erscheinung ebenfalls die
Gl. (8¢) zugrunde liegt.

Um endlich iiber die Form der in Gl (13) eingehenden
Funktionen und damit iiber das Gesetz der ortlichen und zeit-
lichen Verteilung der Ausschlige im Stabe Aufschluf zu erhalten,
machen wir einmal die Annahme, dafl der Ausschlag &7 als
Produkt zweier Funktionen X und T darstellbar sei, von denen
die erstere nur von z, die letztere nur von ¢ abhiingen moge.

Wir schreiben also
o SRR a2 A
o has 0 d
und erhalten damit durch Einsetzen in (8¢) nach Division mit X7
@ex 1eT (14 a)
X da? el - e
Hierin steht also links eine blofle Funktion von x, rechts eine
solche von ¢ allein, die nur dann miteinander iibercinstimmen
konnen, wenn sie beide einer und derselben Konstanten gleich
werden, Wire diese Konstante positiv, so erhielten wir sowohl
fiitr X als auch fiir 7 je eine mit @ bzw. ¢ unbegrenzt zunehmende
Exponentialfunktion, die mit der Erfahrung nicht im Einklang
steht. Die Konstante kann also nur negativ ausfallen, so dafi wir
nach ihrer Einfithrung durch — a2 @2 die Formel (14a) in die beiden

|

(14)

. (14D)




§ 5. Elastische Langsschwingungen eines Stabes. 59

zerlegen diirfen, aus denen mit vier neuen Konstanten 4, B, C, D
die Integrale

X—=Acosaz+ Bsinaz | (15)
T =Ccosaat+Dsinaat |~ %

hervorgehen, deren Multiplikation auf

&= (Acosax—+ Bsinaz) (Ccosaal+ Dsinaat) (15a)
fithrt. Denken wir uns nun den Stab an der Stelle z =0 fest-
gehalten, so konnen dort niemals Ausschlige auftreten, d. h. der
Ausdruck (15a) muf fiir # = 0 unabhiingig von ¢ verschwinden.
Dies ist aber nur moglich, wenn A =0 wird oder wenn mit
BC = 4,, BD = B, unser Integral die Form

&' =smax(dycosaat+ Bysinaat) . . (15b)

annimmt, wofiir wir auch entsprechend der Formulierung (15)

P A9 ging (x+ at) —%cnsa (x4 at)

2
-+ “;'-]-- sinu{x—ai}—}—%cosa(m——at} - (15¢)

schreiben diirfen. Die hierdurch gegebene Schwingung ist da-
durch gekennzeichnet, daf gleichzeitig alle Stab-
querschnitte die Ruhelage passieren und
wieder gleichzeitig positive bzw. negative
Maximalausschldgeerreichen. Solche Bewegungen
aber bezeichnen wir als stehende Schwingungen.
In den letzten Formeln steckt auBer den beiden Integrations-
konstanten noch die Grofe «, deren Bedeutung ebenfalls zu er-
mitteln ist. Zu diesem Zwecke erinnern wir uns daran, dal
am freien Stabende nach Fig. 25 die Masse m, befestigt ist, die,
wie wir annehmen wollen, nur als Ganzes an den durch Gl (15b)
bzw. (15e¢) gekennzeichneten Sehwingungen teilnimmt. Be-
zeichnon wir die dynamische Spannung am Stabende mit o,”,
den dort eintretenden Gesamtausschlag mit &'/, so besteht
an dieser Stelle die der Formel (1) analoge Gleichung

g dz &y §
o) F -+ my -d?f-? =1 (16).
Andererseits ist die Spannung nach (6a) mit Riicksicht auf (15b)
S I o0&, Eacosax(Ayecosaat -4 Bysinaat) (17),

ox
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mithin fiir das Stabende z =1
o)) =FEacosal(Adgcosaat+ Bysinaat) . . (17a).

Setzen wir diesen Wert in (16) ein, so folgt schlieBlich

2 & 1
mo%‘i-g—=—EFacosal(Ao BoB.0 0t St ol
oder
o . kg : ]
ol = cos al (Aycos aat -+ Bysinaat) (16a).

Nun ist aber mit Riicksicht auf (15b) die dynamische Auslenkung
am Stabende, also fiir o =1

&' =sinal(4dgcosaat+ Bysinaat) . . (18),
also
2 G

ddzg— =—ad’sinal(dycosaat+ Bysinaat) (18a),
ein Ausdruck, der mit (16a) nur dann tibereinstimmen kann, wenn

! EF

aasinal=——cosal
??’!.U

oder wegen der durch (12) gegebenen Bedeutung von a2

B HL LB o - TeT 9 RS o

wird. Dies ist aber fiir ¢l eine transzendente Gleichung, die im
allgemeinen nur mit Hilfe von Néherungsmethoden bzw. auf
graphischem Wege zu lésen ist. Schreiben wir mit ¢ [ = u fiir (19)

R
s et e A PSR T 52

s0 kénnen wir die Wurzeln dieser Gleichung auch aus den Schnitt-
punkten der beiden Kurven

iy
A
y=cotgu . . (19b)

ermitteln, wie aus Fig. 27 her-
vorgeht. Diese Konstruktion zeigt
auch, dafl die Gl (19) bzw. (19a)
Fig. 27. im allgemeinen unendlich viele




§ 5. Blastische Langsschwingungen eines Stabes. 61

Wurzeln hat, deren jeder ein Ausdruck von der Form (18)
mit einer bestimmten Schwingungsdauer

2n  2m 1 (20)
aa u a

zukommt, so daB also die Bewegungdesbelasteten
Stabes sich aus einer unendlichen Zahl von

Einzelschwingungen zusammensetzt.

Beschriinken wir uns zunéchst auf den Fall, dall die Stab -
masse m klein ist im Verhédltnis zur Zusatz-
masse my, so wird in (19) auch «l so klein ausfallen, dal
wir den Tangens mit dem Bogen vertauschen diirfen. Dann
aber geht (19) tber in

(a1t e I y 'l
mo gMy _
F.F [ EF
A I o 9
aa i e ]Emo Gl skl e o (D0

wonach die Periode dieser Schwingung mit der im Eingang
dieses Paragraphen besprochenen zusammenféllt. In der Tat
wird hierfiir der totale Schwingungsausschlag
durch Zusammenfassen von (15b) mit (7h)

== —I—f”——-—(l——:’-’"—-)x-i—
_|_m°° x—|—sm—— (Agcos agt 4+ Bysinagt) . (22),

also fir das btabendv mit & =1

—{— m"--g-l—i—sinal (A, cos ayt + By sin ayt) (22a).

Dieser Ansdruek geht mit A, sin al = A, Bysinal = B sowie

y 12
wegen m‘}j = —u— nach Weglassung der sehr kleinen Dehnung 5%

infolge des Eigengewichtes des Stabes in die Gl. (3) iiber.
Wenn auch das im Eingang dieses Paragraphen entwickelte
Néherungsverfahren uns it hinreichender Genauigkeit die
Ausschlige des Stabendes mit der Masse m, lieferte, so gabh es
doch keinen Aufschluff iiber die gleichzeitige \ertmluncr der
Ausschlige lings des Stabes selbst, die wir aus (22) als eine
wellenartige erkennen.
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Zu einer zweiten Annidherung fir kleine m : m,
gelangen wir durch Entwicklung der Reihe fiir tg z unter
Beibehaltung der Glieder bis zur vierten Ordnung, also mit

4
uwtgu=u?-4 ug__ = %,
< 0
woraus sich
w2 = S bt 0 23
( l + 3 my e

ergibt. Die allein in Frage kommende positive Wurzel geht
dann mit ndherungsweiser Ausfithrung des Wurzelausdrucks
wieder in
"
! My
iiber, so dall die erste und zweite Anndherung sich nur unmerk-
lich voneinander unterscheiden.

SchlieBlich is6 noch die freie Schwingung des
Stabes ohne jede Zusatzmasse von Interesse, fiir
die Gl. (19) bzw. (19a) mit m, =0

H,Q':-

7T ) ‘.
tgal = co, == a0 =" (24)
2 2 1
liefert und eine Schwingungsdauer
27 4
== T= : (2.{’; a)
ac i

ergibt. Fiir die Schwingung selbst erhalten. wir daher aus (15b)

o T @ Jr i
£t ._-sm 5T (1 COR £—|—-B sin 5 zt) e
oder auch mit (24a) und 41/ :Zﬂ
g =sin 20w L (“10 cos 2 7 —t-—[— Bysin 27 —LJ . (254).
lo lo fa

Auch hier haben wir wieder eine wellenférmige Verteilung
der gleichzeitigen Schwingungsausschlige lings des Stabes, die
sich aulerdem periodisch an jeder Stelle #ndern. Bezeichnen
wir den Abstand zweier Stellen mit zur selben Zeit gleich groflen
und gleich gerichteten Ausschligen als die Wellenldnge,
so lehrt Gl. (25a), daB diese mit [, — 41, d. h. der vierfachen
Lange des frei schwingenden Stabes identisch ist. Dieser Fall
tritt insbesondere bei plétzlicher Entlastung eines gespannten
Stabes ein und ist angeniihert in dem Bewegungszustande der
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beiden Bestandteile eines in der Festigkeitsmaschine gespannten
Stabes unmittelbar nach dem Bruche verwirklicht.
Weiter ist noch zu bemerken, dafi die Bedingung tg al — 22

o T . = o
auller fiir al = noch fiir alle ungeraden Vielfachen von
o~ -

erfiilllt wird, denen somit eine unendliche Wertreihe fiir ¢ mit
ebensovielen Einzelschwingungen entsprechen. Diese bezeichnet
man dann im Gegensatz zu der durch (24) und (25) definierten
sog. Grundschwingung als die longitudinalen Ober -
sechwingungen des Stabes, die sich an den Stabenden auf
die umgebende Luft {ibertragen und dort Téne von verschiedener
Hohe hervorbringen.

Es bietet iibrigens keine Schwierigkeiten, die vorstehende
Untersuchung auf zylindrische Stdbe auszudehnen, die aus
parallel zur Stabachse zusammengesetzten Stiicken verschie-
denen Materials!) bestehen, wihrend die Schwingungen von
Stdben mit verdnderlichem Querschnitte?), z. B. konischer Ober-
flache, ziemlich allgemein durch Reihen darstellbar sind. Da
derartige Untersuchungen — obwohl ihre Ergebnisse durch
akustische Versuche gut bestitigt sind — keine praktische Be-
deutung besitzen, so miissen wir aul ihre Wiedergabe an dieser
Stelle verzichten.

§ 6. Elastische Radialschwingungen zylindrischer Rohre.
Ableitung der Schwingungsgleichung fir das Rohr; freie Radial-
schwingungen von Kreisringen. Zerlegung der Ausschlige in den statio-
niaren und den dynamischen Bestandteil. Einfithrung der Bewegungs-
gleichungen einer elastischen Fliissigkeit mit Reibungswiderstand. An-
gendherte Proportionalitat der Auslenkung mit der Druckschwankung,
Fortpflanzungsgeschwindigkeit beider. Integration mit Riicksicht auf
die Grenzbedingungen, stehende gedampfte Schwingungen. Diskussion

der Druckschwankung infolge eines gleichférmigen Schieberschlusses.

Unterliegt der in einem kreiszylindrischen Rohre herrschende
Druck p aus irgendeiner &ulieren Ursache zeitlichen Schwan-
kungen, so werden sich diese auch auf die Forménderung, die

1) Vgl, die Abhandlungen von Stefan in den Wiener Berichten
1867 und 1868 sowie von Waldstein, ebenda 1902,

%) Vgl. u. a. Kirchhoff, Ges. Abhandlungen, S. 339, Nabl,
Wiener Berichte 1902,
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nach §4 in der Hauptsache in kleinen Radialverschiebungen
besteht, iibertragen. Zu deren Verfolgung fassen wir, wie in § 3,
wieder das durch Fig. 13 dargestellte rechteckige Element der
Rohrwand von der Fliche dF = ds’ ds” mit den beiden Kriim-
mungsradien ¢’ und ¢’ ins Auge, fiir welches im Falle des Gleich-
gewichts
o’ il

p=i{g+7)
war, wenn / die Wandstérke und ¢’ bzw. ¢'* die in den Richtungen
ds' bzw. ds”’ wirkenden Spannungen bedeuten. Multiplizieren
wir diese Formel wieder mit dem Flichenelement, so erhalten
wir links die vom Drucke herrithrende Normalkraft, rechts die
entgegengesetzt wirkende Komponente der Spannungen, zu der
im Bewegungszustande noch das Produkt aus der
Masse dm des Wandelementes mit der Normalbeschleunigung
dw : dt derart hinzutritt, daf

a a" d w

wird. Mit dem spezifischen Gewichte p; des Wandmaterials
und der Erdbeschleunigung g schreibt sich das Massenelement

dm:?—-hdﬁ’ sy e S T

so da nach Wegheben von dF die noch fiir beliebige Oberflichen-
gestalten giiltige Bewegungsgleichung die Form
i e L 9
p h(g,—i*g,,)—i— " T AR e |
annimmt. Im Sonderfalle des kreiszylindrischen Rohres vom
Radius r, im unbelasteten Zustande, der infolge der kleinen
Forménderung in 7 =ry, -+ Ar ibergeht, diirfen wir nun nach
GL (5) bis (7) § 4 mit einem Axialzug P = ry*p und dem Elasti-
zititsmodul £, des Wandmaterials angenéhert setzen

Sl ise i driy g Ar\ p 4 P

a ™ - 'r,;f—i_ﬁ';u_ﬁ' (_1 £ ru_) B g +2ru h 3
g’ iy _E()_ _é?Ar (‘)}1
L T

worin wir fiir die schwache Kriimmung der deformierten Meridian-
linie die zweite partielle Ableitung von Ar nach s einfiihren
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miissen, da Ar infolge der Bewegung im allgemeinen auch von
der Zeit abhingt. Diese Abhéngigkeit wird durch das letzte
Glied rechts der Bewegungsgleichung (2) dargestellt, in dem
wir unter Vernachlissigung von Axialverschiebungen als Grifien
zweiter Ordnung kurz

dw _ 02Ar 2

. DT e Tt (4)
schreiben diirfen. Durch Einfihrung von (3) und (4) geht dann
die Bewegungsgleichung (2) iiber in

T SR A7 e DI AT a0l
h (1_ )—El r 2k 0z +EE‘H,2_ g

2u
Herrscht in dem Rohre iiberhaupt kein Druck, so verschwindet
nach der zweiten Formel (3) auch die Axialspannung ¢, wo-
durch die einzelnen ringformigen Rohrelemente ganz unabhingig
voneinander werden. Fiir ihre Bewegung gilt dann die mit
p =0 aus (5) hervorgehende Gleichung

otAr E g b
e = YT ey QIR SRR (Ha),
die offenbar eine Radialsehwingung mit der Dauer
o St
= e -
lo— 2, £z s el (5b)

ergibt, worin nach Gl. (12) §5 @, die Schallgeschwin-
digkeit im Rohrmaterial bedeutet. Die radiale
Schwingungsdauer freier diinnwandiger Kreis-
zylinder stimmt demnach mit der Zeit iiber-
ein, die der Schall zum Durchlaufen des Kreis-
umfangs bendtigt.

Ist dagegen der im Rohr herrschende Druck Schwankungen
unterworfen, die wir als klein voraussetzen wollen, so diirfen
wir ihn in einen nur mit dem Orte verdnderlichen Teil p’ und einen
kleinen mit der Zeit und dem Orte verdnderlichen Betrag p’
zerlegen, so zwar, dall

oo, r it 3
e A I I PGSR T
wird. Dem ersteren mag dann eine statische Hadialver'schiebung w,
dem zweiten eine dynamische n" entsprechen, derart, daf
e AR RS DA S i

Lorenz, Elastizititslehre, i
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ist. Fithren wir diese Werte in die GL (5) ein, so zerfdllt sie
2 5

52 als klein héherer

s

unter Vernachlissigung des Produktes p”

Ordnung in

Pl MG o et fley Bhated

h (l o ‘_),”) pF] El ro‘Z 92 h E) S (8)
P il A p P 3 oot AR 51 o b
?(1 Zu) 1,3— )h" = —r- S BE (9).

Das Integral der ersten dieser Gleichungen haben wir aber schon
fiic den Fall konstanten Druckes in § 4 Gl. (11) kennen ge-
lernt. Es lautet in unserer Schreibweise

| ol % Bkt —gz &)
u’z-—-io(iu—(i AR e
(05

cal e e—ui 3 (88),

worin nach §4 Gl (9)
[2E h b r 1

_1 rs};” i JDE};Z (1_2;) - - (8b)
war, und stellt die statische Ausbauchung eines
zylindrischen Rohres von der Linge | mit
starrenVersteifungsringen an den Enden dar.
Uber diese statische Ausbauchung, die natiirlich in jedem Be-
standteile einer langeren Rohrleitung mit dem darin herrschenden,
innerhalb der Linge I des Teiles konstanten Drucke p' andere
Werte annehmen kan:n lagert sich dann die dynamische
Ausbeulung «”, die mit dcr sowohl mit z als auch mit ¢
variablen Druckschwankung p” durch GL (9) verkniiptt ist.
Diese Gleichung geniigt aber noch nicht zur Feststellung der
Abhiingigkeit beider Grofen u” und p” von z und t; hierfir
bedarf es vielmehr noch einer weiteren Formel,*die wir aus den
Bewegungsgleichungen der im Rohre stromenden Fliissigkeit!)
ableiten miissen. Bezeichnen wir die augenblickliche Geschwin-
digkeit der Flissigkeit vom spezifischen Gewichte y mit w, so
Jautet ihre Bewegungsgleichung in einem horizontalen Rohre
ohne Riicksicht auf den Bewegungswiderstand

g op _dw _ow W
ol Ve TR T T

1) Vgl hlt‘[‘uhE‘I‘ Lorenz, Techn. Hydromechanik, Minchen 1910,
Kap. 1L
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Der Bewegungswiderstand zerfillt nun in die
innere Flissigkeitsreibung, die der Geschwindig-
keit w direkt und dem Quadrate des Rohrradius indirekt pro-
portional ist, sowie in den Turbulenzwiderstand,
welcher dem Quadrate der Geschwindigkeit direkt und dLm
Radius umgekehrt proportional sich ergibt. Bezeichnen wir die
diesen Widerstinden zukommenden Erfahrungskoeffizienten mit
# und A, so lautet die durch sie erg‘anzte Bewegungsgleichung

g op ow Aw?

J-) bz- af +h{’—a "}— 2 —I— =T P (10}

Durch Zerlegung sowohl des Druckes p als auch der Ge-
schwindigkeit w in ihre stationdren und zeitlich verinderlichen
Bestandteile nach (6) bzw.

s D L R RS R S i R
worin w" wieder klein gegen w' anzunehmen ist, zerfillt unter

Vernachldssigung der Quadrate von @’ und seiner Produkte
mit anderen Schwankungen auch Gl. (10) in die bheiden Formeln

g o .\V’z DW' :
T b}; ____|_ - (12)

g op aw” bw” % 22w

=] ot = Ry i S + ! ot 1=
B (?‘2 7y )u’ d3),

von denen die erste der stationdren Horizontal-

stromung durch das statisch deformierte Rohr zugehort,

wéhrend die zweite den Zusammenhang der auch

zeitlichen Druck- und Geschwindigkeits-

schwankungen liefert. Ist ferner die Fliissigkeit, wie wir
im allgemeinen annehmen miissen, kompressibel, so &ndert sich

ihr spezifisches Gewicht mit einem Anfangswerte y, und dem

Elastizitatsmodul £, nach der Gleichung

' P ) :
P=191 4 - TR R L
/i ;’0( By (14)
worin z. B. fiir Wasser £, =21 000 kg/qem zu setzen ist.

Da nun die Ableitungen der Driicke nur klein sein kénnen,
s0 werden die linken Seiten der Formeln (12) und (13) durch
die stets kleine Anderung von y nicht merklich beeinfluft, und
wir sind berechtigt, in diesen Formeln p durch y, zu ersetzen.

Bk
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Damit erhalten wir an Stelle von (12) und (13)

N b i = a +
__;i) -a’z = :2 w' —I— u’QJ—W aﬂ: i o et
A e 2i ;
—?’:— p’ = ;Pt -+ w! — _I_(rg + - i )w” (13a),
o 02 .

und wenn wir beachten, da ' nur wenig von der konstanten
Geschwindigkeit ¢ durch das undeformierte Rohr abweicht,
unter Einfiihrung eines Widerstandskoeffizienten

P 24c 9 o
e ol
in weiterer Anndherung
g dp % L 0w’
TR i T s 3D
op" ow” 0w’ 5
e e

Um schlieBlich die Geschwindigkeiten @’ und w"” zu eli-
minieren, greifen wir auf die Kontinuitadtsgleichung
der Flissigkeit zuriick, welche besagt, dall durch den
UberschuB der in eine Scheibe vom Querschnitt # und der
Dicke dz auf der einen Fliche eintretenden Masse gegen die auf
der anderen austretende eine zeitliche Anderung des Massen-
inhaltes der Scheibe bedingt ist, derart, dall bei veréinderlichem
Querschnitt F

b('\;F) a{:I}FW) Y e
- _I__..b: S R R Lt S T

wird. Dafiir diirfen wir aber auch schreiben
1 (oy bF DE oW i
o '35 (57 +735) 35 =0 - Usw,

und wenn die Schwankungen von y und F von derselben Ordnung
klein sind, wie diejenigen von w und p, so folgt mit Riicksicht '
auf (14) sowie unter Einfilhrung des unverdnderten Rohrquer-
schnitts £, hinreichend genau

i pat <Lt 1 Jb}-) L dw
E; (bx i b};')_l_}-'o(ﬁ‘l’” - 55 =0 . (16b).
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Wegen (6) und (11) sowie

F=ar=ma(r,4+v 4-u'P=mnr? ( 142
dF dF '.2 "
O -"o- (w +u

zerfillt aber (16b) in die beiden Gleichungen

el

L r} W {
ur W Elu baf S
0
1 fap 4 ppii 2 bu,” ou" oW’ _
T(a: i a) | ;-G(WJF“’ )+ TR

von denen die erstere nur die Kontinuitidt der stationéren Stro-
mung im statisch deformierten Rohre darstellt und auch in
o (F" 'y
_(_a~—y_)=0 CARRAT LR ey
zusammengezogen werden kann. Fiir die Gl. (19) diirfen wir
dagegen mit Riicksicht aul die geringe Verdnderlichkeit der
stationdren Stromgeschwindigkeit w' =—¢ setzen und daher
schreiben
1 fop” op") 2 [ow” au,” oW
= ——| 4 — B 9a).
_EO(M i a:.)+r0 Y )+ 0 (19a)
Mit [Hilfe dieser Gleichung sind wir mlnmehl in dcr Lage, die
Geschwindigkeit @' aus (13b) zu eliminieren, wiihrend wir auf
die weitere Verfolgung der stalionédren Bewegung hier verzichten
kénnen, da die kleine, durch ortliche Querschnittsinderung und
Bewegungswiderstidnde bedingte Druckschwankung die statische
Forménderung des Rohres nur in verschwindendem Mafie beein-
fluft. Die Elimination von &' aus (13b) und (19a) vollziehen
wir nun in der Weise, dall wir zunéchst (19a) mit ¢ multipli-
zieren und davon (13b) abziehen. Dies liefert
¢ aj{)i'} aI}ff) 3 g aplf
ffu(az B s
2eiou ou' ow'
., EieT enia
+r0(.hﬂ i bz) i ot
Durch partielle Differentiation dieser Formel nach z und Addition
der partiell nach ¢ differenzierten Gl. (19a) folgt weiter

=

]. a'} " bﬂ.pﬂ 0 )_ g azp
Lﬂ(ap el gl 6 T T N
2" o2 u”’ i R R
+m(aa‘ T TR .)_'““ 02 ‘
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2 aw):!
und nach Einsetzen von ? aus (19a)

1 (2*p” > gropr
'Eo(aﬂ i aza e ) 7o 02
e
+'E,] Dt
2 (o2y 0% u'!
+§( YE 2 btb e 63‘1)
2C [du” bu”)
e
Eliminieren wir schlieBlich aus (9) und (20) den Druck p”,
so resultiert fiir die radiale Auslenkung u' eine partielle
Differentialgleichung vierter Ordnung, deren
weitere Behandlung auf erhebliche mathematische Schwierig-
keiten stoBt. Wir wollen darum das Problem zu vereinfachen
suchen und setzen zunichst unter vorldunfiger Vernachlassigung
der mit { behafteten Widerstandsglieder

T e S NRERE IS T v

63) —0 (0

wodurch (20) in

by 2\ [0%u 4., 00" gazu) gby O*u”
(ro )(a;z L 7o O

oder mit der Abkiirzung

8by g (22)
B L e
fe £, To
in
o2 u’ %! 5 0F w o%u' i
L2 = 20 ¢
T VAU S T St
iibergeht. Schreiben wir nun probeweise
W' = A sin(az+ ft) ‘
o=yl o2 o2 E (21 a)
AL e A 2 gt =
o8 TS b BT o

so folgt aus (20a) nach Wegheben von u”

(B <P =a?a?

="t g (a—'el

oder

womit aus (21a) :
w=Asma[z+ (@a—ec)t] . . . . (21D)
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wird. Die Differenz @ — ¢ stellt somit die Fortpfl a nzungs-
gese hw1ndwke1t des Ausschlages ' und nach
(21) des Druckes p” selbst lings des Rohres dar, die jedenfalls
die gleiche GroBenordnung, wie die im vorigen Abschnitt er-
mittelte Schallgeschwindigkeit besitzt. Thr gegeniiber spielt
aber die nur wenige Meter in der Sekunde betragende stationire
Stromgeqchwmdlgkmt ¢ gar keine Rolle, so dafi die mit ihr be-
hafteten Glieder in unseren Formeln unbedenklich vernachlassigt
werden diirfen. Es heilt dies natiirlich nur, dall es far
die Fortpflanzung von Storungen ldngs des
Rohres nahezu gleichgiiltig ist, ob die da-
rin befindliche Fliussigkeit stromt oder
ruht. Jedenfalls vereinfacht sich unsere Differentialglei-
chung (20) nach dieser Feststellung unter Beibehaltung der
Widerstandsglieder in

1 b2p” 2 o2u 1 ap 2 du’ o 2 ,U” ;
Hy 0 + 12 +:(F o1 +_0_Ez) _y; T

und nach ]amfuhrung des Ansatzes (21)

b N Tos . . ont } bog o2u S
(EO'JVE)(}F e hatoner SR
bzw. mit (22)

LA TS e LI

S F el SR il 023,

Zur Integration dieser Gleichung denken wir uns u'" als Produkt
giner reinen Funktion 7 der Zeit ¢ und einer solchen Z von z
allein, schreiben also

u'=7TZ7Z
ou'! dT  Buwr _ ., &T B _ o BZ|. (24).
balad Lot L b By e
ot dt’ o i de’ vz T(Z32
Dies liefert mit (23)
1 ({d2T ai a2 d2Z
SR [ — S e e ¥ .
T a’i2 e r!f.) Z dz? - (23 a),

worin links eine reine Zeitfunktion, rechts aber eine solche von z
allein steht. Diese Gleichung kann demnach nur bestehen,
wenn beide Seiten einer und derselben Konstanten gleich werden,
die iiberdies, da sonst Z mit z unbegrenzt zunimmt, negativ sein
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mufB. Setzen wir fiir die Konstante — a®a? so zerfdllt (23a)
in die beiden Formeln
a*Z ‘
T @z=0]
daT

e 22T =
o g eer=0)
mit den Integralen

Z=Acosaz-|} Bsinaz 1

. (23b)

oL - o
e 2t(CcostVazaﬁ—%—{—DsinIVagaz—-%)\

Wegen der Kleinheit des durch (15) definierten, von der Strom-
geschwindigkeit ¢ abhéngigen Dampfungsfaktors £ diirfen wir
aber unbedenklich die zweite Formel (24a) in

(242).

T—e¢ 2 (CoosaattDsinaat) . . . (24b)
vereinfachen und erhalten dann fiic die Auslenkung
G
w'—e 2 (A cos az-+Bsinaz) (Ccosaat+ Dsinaat) (25),

die somit infolge der durch  gegebenen Fliissigkeitsreibung
nach und nach abklingt, und zwar, da { selbst mit der Strom-
geschwindigkeit wichst, um so rascher, je grofier diese Geschwin-
digkeit ausfallt.

Wird das Rohr an der Stelle z =0 dill(‘ll Einmauerung
oder einen Versteifungsring an seiner radialen Auslenkung
dauernd verhindert, so muf dort u” =0, also 4 =0 sein, und
wir erhalten mit BC = A, BD = B, aus (25)

5
e e_fisin az(d;cosaat+ Byisinaat) . (25a).
Liegt ein solches Hindernis fir das Entstehen einer Auslenkung
auch fiir z =1 vor, so muB hierin sin al =0 oder mit einer
ganzen Zahl £

Gy e g e L (26)

sein, so dall also im allgemeinen die Gesamtauslenkung sich
aus einer unendlichen Zahl von Einzelbetrigen derart zusammen
setzt, dal

lo,r.-

R z t J :
2 sin bk — (Akcoskna?—{—Bksmfmi—t) (25b).
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Die hierin auftretende Fortpflanzungsgeschwin-
digkeit « der Radialschwingungen berechnet
sich nun aus (22), nachdem wir die Konstante b, durch Einsetzen
von (25a) und durch Vermittlung von (21) in (9) eliminiert
haben, wobei wir infolge der Kleinheit der davon betroffenen
Glieder unbedenklich an Stelle von (23)

62 u' . bz w
Ste . e i
02 0z
oder wegen (25a)
3 o tt e
aa;; g el aa:é

setzen diirfen. Dies ergibt mit (21) in (9) nach Wegheben von u’’

:—O'.2 un

2pu—1 Ey 2(p’;ﬂ'o yla’z) !
LT T L A T (%),
wihrend aus (22)
N s
i’Jo(y0 Eo)_ Yo Motk 0 (D24)

folgt.” Die Elimination von & aus diesen Formeln liefert alsdann
die Gleichung

B0 b b B a0

e el e e L
der die Fortpflanzungsgeschwindigkeit @ des Ausschlages n”’
geniigen mufll. Hierin sind aber die mit «® behafteten Glieder
der ersten Klammer rechts klein gegen E, : 7,2 so dall wir in
erster Anndherung?!) schreiben diirfen

aﬁ(L‘_1 El/—"‘) Ol Sl S

I Bor,

i

YoTo
withrend sich eine zweite Annéiherung durch Einsetzen
dieses Wertes in die erste Klammer rechts von (9b) ergibt und
eine, wenn auch nicht starke Verédnderlichkeit von
a mit a, d. h. nach (26) mit der Ordnungszahl k der
Einzelsechwingungen erkennen lift. Dall sich hieraus

1) Die Formel {27) liefert z. B. fir M= S Er=
2100000 kg/qem, E, = 21000 kg/qem, p, = 1000 kg/cbm = 0,001
kg/cbem, g = 9,81 m/Sek.? = 981 cm/Sek.*: a = 126000 cm/Sek. =
1260 m/Sek., also einen erheblich geringeren Wert als die Schall-
geschwindigkeit im Rohrmaterial allein, die rd. 5000 m/Sek. betragt.
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bzw. aus (27) zwei entgegengesetzt gleiche Werte von a be-
rechnen, entspricht durchaus der Gl. (25a), die ja auch analog
(15¢) in § 5 in der Form

ol
u”:Te 25[‘4lsina(z—[—at)—Blcosa(z+czt)]
i

b e

—|—2—_e - i[Alsino:(z—a.-:)-JI-JBLcoso:(z—a,i)] (25¢)

geschrieben werden kann und damit die Fortpflanzung einer
Storung nach zwei entgegengesetzten Richtungen anzeigt. Dem
Umstand, dal die Einzelschwingungen in der Summe (25b)
nicht genau mit ein und derselben Geschwindigkeit fortschreiten,
kann man durch Einfithrung von @, an Stelle von a gerecht
werden, und erkennt sodann, dafi der Gesamtvorgang infolge
der hierdurch bedingten Interferenz der Einzelschwingungen
strenggenommen nicht mehr wie bei einem fiir alle Glieder
gleichen a durch eine Fouriersche Reihe darstellbar ist.

Dies alles gilt natiirlich auch fiir nach (21) mit den Aus-
lenkungen u” nahezu proportionale Druckschwankungen p'',
welche im Falle einer aus lauter gleich langen Einzelrohren be-
stehenden Leitung die Bewegung von einem Rohre nach dem
anderen auch dann iibertragen, wenn die Verbindungen (Flanschen)
praktisch als starr angesehen werden miissen. Sind allerdings
die Einzelrohre nicht mehr gleich lang, so besteht auch nicht
mehr die Beziehung (26) lings der ganzen Leitung, so dafi sich
stehende Schwingungen nach Gl (25a) nicht mehr ausbilden
kénnen. In diesem Falle wird eine am Ende der Leitung hervor-
gerufene Stérung, z. B. mehr oder weniger plotzliche Druck-
steigerung, sich einfach mit der durch (27) angenihert definierten
Geschwindigkeit a bis zum andern Ende, geschwiicht durch die
Déampfung, fortpflanzen und beim Riicklaufe infolge der Inter-
ferenz erloschen.

Es fragt sich nunmehr, nach welchen Gesetzen die mit den
Druckschwankungen verkniipften Geschwindigkeitsinderungen
der Stréomung sich vollziehen, wobei wir von der Flissigkeits-
reibung zunédchst absehen wollen. Vernachlissigen wir auller-
dem, wie schon in den bisherigen Entwicklungen, die mit der
stationdren Stromgeschwindigkeit multiplizierten Ableitungen
kleiner Schwankungen p”, w’ und ", so gehen die beiden
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Grundformeln (13b) und (19a) nach Elimination von u" durch
(21) sowie nach Einfiihrung von (22) iiber in

g D o
Py 0@ e Dy -
_Eampt v i
g DL | DR

Diese beiden Niherungsformeln wurden schon von Korteweg
(1878) und von Alliévi (1903) aufgestellt und der Theorie
der Radialschwingungen zugrunde gelegt. Sie werden ganz
allgemein durch zwei willkiirliche Funktionen f; und f, derart
erfiillt, dalB

/ =f(z+at)+/, z—azl . (28a),
aw" =1, (z4at) —fp (:—an)]

wie man durch Differentiation und Einsetzen in (28) leicht
feststellen kann.

Wollte man die Fliissigkeitsreibung angenihert beriick-
sichtigen, so brauchte man nur analog (25b) jeden der beiden

Ausdriicke (27a) mit dem Faktor e — 5t zu multiplizieren, wo-
durch allerdings in den Formeln (28) Reibungsglieder von der

C

C r
Form 5 p'" und 3 @'’ bedingt werden, die wir zunéchst vernach-

lassigt haben. Dd ferner p” und @” Schwankungen um Mittel-
werte p’ und @’ bzw. ¢ darstellen, so konnen die Funktionen f;
und f, keine additiven Konstanten besitzen. Dies trifft natir-
lich auch fiir die der Druckschwankung p" proportionale Aus-
lenkung u’ zu, fiir die wir somit nach (28a) mit (21)

"—g}} lh(z+at)+fy(z—at)] . . . (28Db)
zu setzen hitten und damit einen Ausdruck erhalten, der bis
auf den Diamplungsfaktor e — %t durch die Reihe (25b) dargestellt
werden kann, wie man aus der Umformung von (25a) in (25¢)
sofort erkennt. Aus (28a) folgt nun weiter durch Subtraktion
bzw. Addition

j‘ pr—aw’ =2f (z—al)
7o ol e (9800

; p’'aw’=2f (z1al)
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i ¢

Fiir ein Maximum oder Minimum ' = w,,"”, dem nach
(28) infolge des gleichzeitigen Verschwindens der Ableitungen
dann auch ein ausgezeichneter Wert von p'" =—p," zugehort,
konnen die linken Seiten von (28¢) nicht mehr mit der Zeit oder
dem Orte variieren, da eben diese Werte — abgesehen von der
hier auller Betracht bleibenden Dédmplung — sich unverdndert
laings des Rohres fortpflanzen. Da anderseits aber die Funk-
tionen f; und f,, wie schon bemerkt, keine additiven Konstanten
besitzen, so miissen sie fir den Eintritt ausgezeichneter Werte
von p'’ und " verschwinden, womit die zugehirigen Bedingungs-
gleichungen zwischen z und ¢ gegeben sind. Wir erhalten also
hierfiir

Y,

P/’ =T S AR e R (29)

worin w,,”" hichstens der Stromgeschwindigkeit ¢ fiir den Fall
eines raschen Abschlusses oder einer plétzlichen Offnung der
Leitung unter Wahrung der Kontinuitit gleich werden kann.
Schreitet die Stérungswelle, wie z. B. im Falle der Offnung oder
des Schlusses eines Schiebers, aus einem Ende der Leitung nur
in einer Richtung fort, so geniigt die Einfiihrung einer der beiden
Funktionen f, oder f, in die vorstehenden Gleichungen, so daf}
wir z. B. an Stelle von (28a) hierfiir kiirzer

--ng” et il s e S R T

Yo
schreiben diirfen, woraus zugleich die Proportionalitit der Druck-
und Geschwindigkeitsschwankungen erhellt. Der an der Stelle
z =20 befindliche Schieber habe nun eine Offnung F, < F,,
wobei Fy wieder den Rohrquerschnitt bedeutet. Dann berechnet
sich die Ausflufgeschwindigkeit o der Fliissigkeit aus dem zur
Zeit ¢ nur um F, e (1) gedffneten Schieber ins Freie unter Vernach-
lassigung des Quadrates der viel kleineren Stromgeschwindig-
keit ¢ angenéhert zu

coamel el | if (p'+p” - . . (31

worin mit @' =w,"”" fir z =0

vFip @y =wyFy=(c4+w/ ) F; . . . . (31a)
ist und @ ({) die zeitliche Veriinderlichkeit der Schieberdfinung
andeutet, withrend das negative Vorzeichen der Wurzel darum
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gewiihlt werden muB, weil die Fliissigkeit der z-Richtung ent-
gegenstromt.
Die Elimination von » aus (31) und (31a) ergibt weiterhin
" F ’ "
chw =—F O] S+ . - Gl
oder wegen der Kleinheit von p” gegen p’ mit Riicksicht auf
das ohnehin kleine Verhiltnis F, : ¥, geniigend genau

i F]_ - 2g
st e WY e 8

Soll nun zur Zeit ¢ =0 der Schieber voll gedffnet sein, so dal
@ (0) =1 und
By [2gp :
c=— o e SR (G
Fy ] 7o G
ist, so folgt durch Subtraktion beider Formeln mit ¢ (1) — 1= ()

Fin

F [2gp :
wo"=~'_ﬁ [ (1) — 4] 15;— S R
Dies liefert in (30) eingesetzt fiir z =0

?p Ve —awy' = —acy()=f(—at) . . (30a),
0

womit die Funktion f sich schon aus dem Bewegungsgesetz y (¢)
des Schiebers ermitteln laBt. Ist z. B. bei einer mit der Zeit
proportionalen, also gleichformigen SchluBbewegung von der
Gesamtdauer

Py t A h
*?’U)——zl—:ﬂ- = P (5)——'!1 aeias
so wird aus (30a)
g GriE) L e T
B gt =—aw = “ly—=—=—¢ . (30b
70;0 = h Fol Yo 1 )

und schlieflich fiiv eine beliebige Stelle z der Rohrleitung zur

Zeit 1

o i z—at
oot e e
Yo 1

Daraus geht hervor, dafh die Druckschwankung

. (32a).

Zur Zeitt:—“;— an der Stelle z beginnt und nach
[
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dem weiteren Ablaufe der SchluBzeit, also

fiir ¢ :%—}—ﬁl den Héchstwert
st
pm”: g 2

entsprechend dem Stillstand der ganzen Fliis-
sigkeitssdule, erreicht, um danach wieder
abzunehmen. Dies gilt allerdings nur fiir den Fall einer
unendlich langen Leitung, bzw. bei endlicher Leitungslinge i

Y : ; e
fiir den Hingang der Druckwelle, solange die SchluBzeit ¢; < 2 =

bleibt, da im andern Fall die riickkehrende Druckwelle den Schluf-
vorgang selbst noch modifiziert. Alsdann 4Bt sich die Erschei-
nung nicht mehr durch den Ansatz (30) darstellen, es mul} viel-
mehr auf Gl (28a) mit zwei willkiirlichen Funktionen zuriick-
gegriffen werden, woriiber man das Nihere in der sehr griind-
lichen Arbeit von Alliévi?') nachlesen kann. [Hier kam es
im wesentlichen auf die Ermittlung der elastischen Radial-
schwingungen im Rohre selbst an, deren Fortpflanzungsgeschwin-
digkeit nicht allein durch die Elastizitatskonstanten des Materials
und das Verhéiltnis der Wandstirke i zum Rohrhalbmesser r,
sondern auch derjenigen der Fliissigkeit bedingt war, und welche
iiberdies einer mit der stationdiren Stromgeschwindigkeit zu-
nehmenden Démpfung unterworfen sind.

§ 7. Die Formiinderungsarbeit.

Die Formanderungsarbeit der inneren und dufleren Krifte. Verallge-

meinerung des Hookeschen Gesetzes, die Superposition der elastischen

Verschiebungen, EinfluBzahlen. Castiglianos Satz iiber die Ableitungen

der Formanderungsarbeit. Maxwells Satz tiber die Gegenseitigkeit der

Verschiebungen. Berticksichtigung der Abhingigkeit der auBeren Krafte

voneinander. Beispicle. Stabspannungen eines Fachwerkes mit iiber-
zithligen Staben.

Am Schlusse der Untersuchung iiber den ebenen Span-
nungszustand in § 2 haben wir einen Ausdruck fiir die Form -
inderungsarbeiteines Volumelementes abgeleitet, welches

1) L. Alliévi, Allgemeine Theorie iiber die verinderliche Bewe-
gung des Wassers in Leitungen, deutsch von Dubs u. Bataillard,
Berlin 1909.
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im Gleichgewichtszustande den Normalspannungen o, und g,
sowie der Schubspannung t unterworfen ist. Die Ausfithrung
der Integration iiber das ganze Korpervolumen, d. h. die Be-
rechnung der totalen Formiinderungsarbeit setzt natiirlich die
vollstindige Kenntnis der Spannungsverteilung voraus, die in
jedem Einzelfalle besonders festzustellen ist.

Dagegen wissen wir von vornherein, dall die Forménderungs-
arbeit von den #duBeren am Kiérper angreifenden Kréften, die
wir mit P; P,... P, bezeichnen wollen, dadurch geleistet wird,
daf deren Angriffspunkte am Korper Verschiebungen erleiden.
Die in die Richtung der Krilte fallenden Projektionen dieser
Verschiebungen seien nun As; As, ... Ads,, dann wird infolge
unendlich kleiner Anderungen dieser Verschiebungskomponenten
um dAsy, dAs, . ..dAs, die von den dulleren Kriften geleistete
Forméinderungsarbeit um den Betrag

dL=Pydde B P dNsok: L Pdis, . . (1)

wachsen. Andererseits lehrt die Erfahrung, daf die Verschiebungs-
komponente As irgendeines Korperpunktes in einer vorgeschrie-
benen Richtung der an einem andern Punkte angreifenden Kraft
P, proportional ist, derart, dal -man mit einem nur von der
Konfiguration und der Elastizitit des Korpers abhingigen
Faktor ay
As— o 0

schreiben darf. Treten hierzu noch weitere Krifte, so addieren
sich die von ihnen hervorgerufenen Verschiehungskomponenten
einfach zur ersteren, so dalB wir schlieBlich fiir die auf irgendeine
Richtung projizierte Verschiebung eines Korperpunktes unter
der Wirkung der Einzelkrifte P; P, ... P, den Ausdruck

Ag=—rty Bl Pyt o el b woidd (2)

erhalten, den man auch als die allgemeinste Formdes
Hookeschen Gesetzes betrachten darf. Wegen der
algebraischen Addition der einzelnen Kraftwirkungen bezeichnet
man Gl. (2) auch hiufig als das Superpositionsgesetz
der elastischen Verschiebungen, wihrend die
von den Kriften selbst unabhéngigen Faktoren a deren Ein -
fluBzahlen in bezug auf die ins Auge gefalite Verschiebung
heillen.
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Das Superpositionsgesetz gilt selbstverstdndlich auch fiir
die Angriffsstellen der duBeren Krifte selbst, so dall wir die in
die Richtungen der zugehdrigen Kréfte fallenden Gesamtver-
schiebungen ihrer Angriffspunkte zweckméBig in der Form
/_1.5‘1—(111 ‘[_‘ILEP + +a1%P + _"‘alkpk—i" _}_alnp-n
Aéz—“zl 1‘|‘azz z‘|‘ +azz 1—{_ +ﬂ2kpk+ —f—"‘a-nPn

As&—uzlf —E—a1212+ -|-Ct”P+ —l_azi‘Pk+ “l—‘lmpn
Ask_.aklP +a,2 2+ +amp+ +a”P,‘c—i- +aMPn

Asn—-am 1‘1‘“%2 z+ +anipf+ +aﬂkpk+ ‘i‘ann‘D

schreiben kinnen. Setzen wir die Differentiale dieser Verschie-
bungen in den Ausdruck (1) fiir das Element der Forménde-
rungsarbeit ein, so lautet dieser

DL Pl i Pt 0D, D]
—{—P(a21dP]+a22dP2—|— +a2ﬂdpﬂ)

+P anldP —]-—anzdpz—[— —[—amu{!’%)

oder auch unter Zusammenfassung aller untereinander stehenden
Terme mit denselben Dilferentialen

dL = (ay; Py + ay, P. -2+ o ayy Py) d Py
‘l‘(am 1+a22 2+ +%2P)dp

w Cha
aln +a2n 2+ +aﬂ'n ﬂ}dIn

Hiernach erscheint die totale Forménderungsarbeit selbst als
Funktion der Einzelkrifte

L= kiR DD i P ) s maRle

L

mit dem Element

AL Rl ey
AL =55 dPy 35 d Pyt FapdPa - B

Diese Gleichung ist aber unter der Voraussetzung von-

einander unabhingiger duberer Kréafte P,
also willkiirlicher Differentiale P, mit (la) nur vereinbar, wenn
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oL
d Py =y P11, Pot-. iy Pt 0y Pt 0 Py

6—132-‘5‘12 11 %s Py O P e Pyt 0 Py

oL i
>P, Y T T S S L e o S T (1b).
BL i
a—p;—an Pytay Pyt i Pit iy Pt - P,
oL

b'lT_:aM 1+ GanPat A0 Pyt o tn Prt-+ -+ 000 Py

Differenzieren wir eine dieser Ableitungen nach einer an-
deren Kraft, so erhalten wir z. B.

d (aL Bl o

3P, DD, IR
§ gl
P bl agep, "

also allgemein wegen der Umkehrbarkeit der Reihenfolge der

Differentiationen
Oy = Qi - - z % s . . . (‘{i).‘

d. h. die EinfluBzahl der k-ten Last auf die
Verschiebung des Angriffspunktesder i-ten
LastistebensogroB,wiedieEinfluBzahlder
letzteren auf den Angriffspunkt der ersteren
L ast. Dieses von J. C. M ax well zuerst abgeleitete Ergebnis
bezeichnet man wohl auch als den Satz von der Gegenseli-
tigkeit der Verschiebungen. Vertauschen wir auf
Grund von Gl (4) die Zeiger der Einflubzahlen a in Gl (1b),
so ergibt sich durch Vergleich mit (2a) allgemein

Bl o e OL :
E)P —-A.S‘l, bP . bpk'_'—isk . (3)1
sodaBalsodiepartielle Ableitungder Form-
inderungsarbeit 1101L1101ner duleren Einzel-
kraft schon die in ihre Richtung fallende

Lorenz, Blastizitdtslehre. 6
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Verschiebungskomponente ihres Angriffs-
punktes ergibt.

Handelt es sich insbesondere um Auflagedriicke P,
deren Angriffspunkte keine Verschiebungen erleiden sollen, so
verschwinden dafiir die Ableitungen der Forménderungsarbeit,
und wir erhalten Gleichungen von der Gestalt

oL
0P,

Die Zahl derartiger Gleichungen stimmt offenbar mit der-
jenigen der voneinander unabhingigen Krifte iiberein. Sind
demnach die an einem Korper angreifenden d#ulleren Krafte
durch gewisse Beziehungen, z. B. statische Gleichgewichtshe-
dingungen, miteinander verkniipft, so miissen vor Ausfithrung
der Differentiation erst ebensoviele abhéngige Kriifte eliminiert
werden, als Bedingungsgleichungen vorhanden sind. Will man
diese Elimination vermeiden, so muf bei der Differentiation auf
die Abhéngigkeit Riicksicht genommen werden. Sind z. B. die
Krifte P, und P, mit den andern durch zwei Gleichungen ver-
kniipft, so ergibt sich die Verschiebung des Angriffspunktes
von P, zu

=R R s (N

DL gPi OE @Py 8k

MRS YL TN dPpP dP ; '
worin die Ableitungen — 5+ und -2 aus den Bedingungsglei-
dr a.P;

chungen zu entnehmen sind.

Aus diesen Bemerkungen geht hervor, daB die Methode
der Ableitungen der Formédnderungsarbeit,
deren systematische Durchfithrung man dem italienischen In-
genieur Castigliano verdankt, sich besonders zur Berech-
nung statisch unbestimmter GroBen eignet, deren Ermittelung
aul anderem Wege sich héufig recht unbequem gestaltet. Ca-
stigliano hat iibrigens das vorstehende Verfahren in seinem
klassischen Hauptwerke?!) zunéichst an sog. Fachwerken, also
Stabverbindungen entwickelt und dann auf beliebige Korper
ausgedehnt, ohne von dem M a x wellschen Satze der Gegen-
seitigkeit der Verschiebungen Gebrauch zu machen. Wir haben

1) A. Castigliano: Theorie des Gleichgewichts elastischer Sy-
steme, deutsch von E. Hauff, Wien 1886.
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es darum vorgezogen, im Anschluff an den Gedankengang von
Foppll) die Herleitung auf die erfahrungsmifBige Verall-
gemeinerung des H o o k e schen Gesetzes zu griinden, aus der
das Maxwellsche Ergebnis ohne weiteres hervorgeht.

Die Verwendung der vorstehenden Methode setzt natiirlich
voraus, dafi wir den Ausdruck fiir die Forménderungsarbeit (3)
explizit anschreiben kénnen. Um welche Funktion der duBeren
Krifte es sich dabei handelt, erkennen wir leicht aus (1a), worin
wegen (4)

i Pi A Py + oy Prd Py = a (P, d Py + Prpd Py) = ay d (P; Py)
zu setzen ist, so daP die Integration mit der unteren Grenze 0
fiir alle Krifte P wegen deren allmiihlicher Zunahme

L:'_ail P2t o3Py Pyte... 4 0y i PPyt + 0y, P P,

4.-93—21)2* bt o B L, e B By

o ) 1(3b).
+ j‘gpid + +am}zpﬂ
a?l 3
+ 502
ergibt. Dafiir kann man auch kiirzer
A A DG

schreiben, worin sich die Summe sowohl iiber t, als auch iiber k
erstreckt, die beide der Reihe nach alle Werte von 1 bis # annehmen.
Die Formiénderungsarbeit erscheint demnach als eine Funk -
tion zweiten Grades der auf den Koérper
wirkenden &duBeren Krédafte, deren Lkonstante
Koeffizienten, die Einflufizahlen, aus den besonderen Bedin-
gungen der Konfiguration des Korpers und der elastischen
Eigenschaften seiner Bestandteile zu berechnen sind. Hieriiber
geben die nachstehenden Beispiele der Anwendung des ganzen
Verfahrens Auskunft.

Y A. Faoppl, Vorlesungen iiber techn. Mechanik, Bd. V, Die wich-
tigsten Lehren der hioheren Elastizititstheorie, Leipzig 1907. § 42 u. 48.

6*
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Beispiel 1. Wir betrachten zundchst im Anschlufi an
das Beispiel 1 des §1 den Fall eines Stabes vom konstanten
Querschnitt # und der Linge [ + [y, der an seinen beiden Enden

e e YomeRa T

. 3«@ %»L* 8 «@)
A B
Fig. 28

ig. 28.

A und B in starren Zapfen gelagert ist (Fig. 28), wéhrend im
Punkte € mit AC =1, eine Kraft S in der Stabrichtung AB
eingreift. Sind dann Sy und S, die beiden Auflagedrucke in den
Zapfen A und B, also
S Q=8 Lk S e S o ABR

so ergeben sich die Forménderungen der beiden Stabteile AC
und BC zu

T L+ I )
und daraus die zugehirigen Forminderungsarbeiten, welche
wegen des gleichen Vorzeichens der Kraft und der von ihr hervor-
gerufenen Lingendnderung stets positiv ausfallen, zu

= U h g _1h o
I 5 TF 8.2, = SR T2
Die ganze Forminderungsarbeit ist demnach
'1 a a
L= -Q—EF--(ElSl- i b e S S
mit den beiden Einflulizahlen
l L;
L 'E}F ’ U9 == EzF_'

Durch Differentiation von (8) folgt dann nach (5b) mit Riick-

sicht auf die Bedingungsgleichung (6), also mit &_Sl = —1
2
fiir die feste Auflage A
Bl et 0k @8,
0=5% 155, 45, B

IE1 Sl e li‘2 '5‘2}

oder
LSpssly®y  vvoe doth it (9),
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so dafl
Y LS

S Ly

h=g o ST

wird. Durch Elimination von S, aus Gl (8) und (7) hitten wir
dagegen den Ausdruck
1

L:zrr[il? =S SR e S SRS A

erhalten, dessen Differentiation nach S; bei konstantem S wieder

auf (9) fithrt.

. (9a)

Beispiel 2. An einer vertikalen Wand mdgen durch
iibereinander befindliche Gelenke BCD drei Stibe von den Lingen
llpl; und den Querschnitten F
F, F, befestigt sein, die in dem
Punkte 4 wiederum gelenkig zu-
sammenlaufen, Fig. 29. Es sollen
die durch eine in A aufgehidngte
Last P in den Stében hervorge-
rufenen Krifte §; §, 5; bestimmb
werden.

Bezeichnet man die Neigungen
der Stibe gegen die Wand bzw.
mit S, fz P, 0 haben wir zu-

niichst die beiden Gleichgewichts- v

bedingungen im Punkte 4 in vertikaler und horizontaler Rich-
tung, némlich

85 cos 3, 4 S, cos f, + Sy cos iy = P .

S, sin fy 4 S, sin fy - S, sin f =0 } W e
die offensichtlich nicht zur Bestimmung der drei Stabspannungen
ausreichen, welche selbst mit den Auflagekriiften in den Stiitz-
punkten BCD iibereinstimmen. Das Problem ist mithin statisch
unbestimmt und erfordert zu seiner Losung die Aufstellung
einer weiteren Gleichung. Zu diesem Zwecke berechnen wir
die von den Stabkriften hervorgerufenen Léngenénderungen
unter der Annahme verschiedenen Stabmaterials, also mit ver-
schiedenen Elastizititsmoduln E; E, Ey

s' 21 Sy ly agl
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mit deren Hilfe sich die totale Form#nderungsarbeit zu

iR S SR :
L*‘(Elﬁl i N o o SR

2

ergibt. Differenzieren wir nun diese Gleichung mit Riicksicht
auf (5b) nach §; und setzen die Ableitung entsprechend der festen
Auflage B gleich Null, so folgt

[ e

EF VEF, a5 E,F, 45, =0 - - (12a),

wiéhrend nach (10) bei konstantem P

ds, ds.
eosﬁ1—|-zfcosﬁ2+d—sicosﬁ3=0[

. (10a)
: dsy . 158,
sin 3, —I—ﬁ Smﬁz_l_c—i_S_i smﬁl:OI
ist. Daraus berechnen sich die beiden Ableitungen
_dSz_ __ 8in B cos ff; — sin f}; cos fig
dS, " sin B, cos B, — sin fi cos B, (10b)

dS,  sinf, cosf; — sin 5; cos B,
dsS;  sin fy cos f, — sin 3, cos fy

Fiihren wir diese Werte in GIl. (12a) ein, so erhalten wir
die gesuchte dritte Formel, die mit den beiden Gleichungen (10)
die drei Spannungen §; S, S, eindeutig der Last P proportional
bestimmt. Damit sind wir auch in den Stand gesetzt, die ver-
tikale Verschiebung As des Angnffspunktes A der Last P aus
der Gleichung

JE 1;15 zglsg ly Sg2 (13)
P SR g SRS et AR

zu berechnen, die infolge der Proportionalitit der S mit P auch
in der Form

A _OL LS 4S8, |, LS, dS, % S3 dSg
e R R dP E,F, apr Ef« dap
geschrieben werden kann und, wie nach den Grundannahmen
unserer ganzen Entwicklung zu erwarten war, eine Proportio-
nalitit der Verschiebung von As mit P ergibt.

4 ey —.

. (134a)

Beispiel 3. Das in Fig. 30 dargestellte, in einem seiner
Knotenpunkte durch das Gewicht P belastete ebene Fachwerk
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ruht mit den drei anderen Knotenpunkten auf Stiitzen, deren
vertikale Auflagedriicke zugleich mit den Stabspannungen zu
ermitteln sind.

Bezeichnen wir zu diesem Zwecke die Stiitzendriicke der
beiden &uBeren Knoten mit V; und V,, den mittleren mit Q.
die Stabspannungen mit S; S, 538,85 und die Stabneigungen

Fig. 30.

gegen die Vertikale mit f; By 3 By f5, so bedingt das Gleich-
gewicht der Stabkrifte mit den dulieren Kriften an jedem Knoten-
punkte ein Gleichungspaar, und zwar fiir die beiden dulleren
Knoten
Sy cos By + Sy cos B, == Vl}
Sy sin B+ Sy sinfy =10 |°
Sy 008 B, + Sy co8 iy, =V,
S, sin f; + S, sin 8, =0 If i
withrend fiir die beiden mittleren Knoten
8, cos f; + S, cos iy + 55 cos f; = P
Sy sin B; + 8y sin By + S5 sin 5 = 0 } k
S, c08 By + Sg €08 B3 — S5 €08 fs = —(
Sy sin f, 4 8 sin f; — S5 sin f; = 0 }
oilt. Aus den ersten vier Formeln folgt sofort mit sin f5, cos fi,
— 08 f3, sin fy =sin (B, — p;) sowie den Abkiirzungen x

L, sinfy, oy o L L e
gr=V Sin (Bs— B1) Vi Sa=V,; Sin (B — fy) =1, V; (12a)

(15)

e iy gt e L g 0By e r
83 e V2 sin (ﬁ4 ZiEd .33} ou / i 54 V2 SIn (}32 _'ﬁ4} Tl 1!2 (133‘)
und aus der zweiten Gl (15)

_ Sysinfly - Sysin fiy.

S s f3;
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oder wegen (12a) und (13a)
! _sin B, sin fy Sin fysinfly
by =L sin f; sin (f; — By) deka g Bssin (B, — Bq)
it A 2N Sl PR B B SR T
Andererseits ergibt die Addition der beiden letzten Formeln (12)
und (13), sowie diejenige der letzten Formeln (14) und (15) unter
Wegfall der Spannung S,

Sy sin fi; 4 Sy sin B, + Sy sin f; - S, sin f; = 0,
wonach die Horizontalkomponenten der Stabkrifte unter sich
im Gleichgewichte sind. Addiert man weiterhin die ersten
beiden Gl (12) und (13), sowie (14) und (15), so folgt
Ve PRl L oon o By
d. h. die Bedingung des Gleichgewichts der
dulieren Vertikalkréafte, aus der naturgemiB auch
der Ausgleich der Vertikalkomponenten der Stabkrifte folgt.
SchlieBlich erhalten wir noch unter Einfiihrung der Stablingen
lyly Iy 1y die beiden Momentengleichungen

Vi Uy sin fy 4 I sin 8,) = Pl sin f; — Ql, sin ﬁ's} (17

Vs (lg 8in B, + I, sin B) = Pl sin f, — Qlysin [ = 170
durch deren Zusammenfassung man wieder auf (16) gefithrt
wiirde. Schreibt man an Stelle von (17) kiirzer

Vysdy P A0
V2=—.22’P—i—.7{2"()}' R R )
und substituiert diese Ausdriicke in die Formeln (12a), (13a)
und (15a), so ergeben sich alle Stabkriifte als lineare Funktionen
der beiden Krifte P und Q derart, daff mit neuen Abkiirzungen
M1 V1 MoV .o U5 V5
=P +90, .5'2:;52P—|—T2Ql
Sy =g P +93Q, Sy=pP+»0Q . . . (18)
Sy = it P+ 9,0 J
wird. Wiren die beiden Kréifte 2 und Q von vornherein gegeben,
so wiire das Fachwerk ein statisch bestimmtes, und die Stab-
krifte eindeutig durch die Formeln (18) festgelegt. Ist dagegen,
wie im vorliegenden Falle,  der noch unbekannte Auflagedruck
einer mittleren Stiitze, so greifen wir auf die Forminderungs-
arbeit zuriick, die nach Einfithrung der Stabquerschnitte, sowie
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unter der Annahme verschiedenen Stabmaterials mit den Moduln
L il B
LS2 | LS? IS [y 8,2 lp 8*
, e e B L 1 - 1
s Z(Ef- F g T EE TR i) 19
lautet und nach Elnsetz,en von (18) mit den leicht zu ubcrsehenden
EinfluBzahlen a; a;, a,, analog (3b)

L:F§_1P2+QHPQ+“;_202. S

geschrieben werden kann. Das Verschwinden der partiellen
Ableitung dieser Arbeit nach @, nédmlich

oL i .

w:alzp—,—azz()=0 9 . . . [20),
ergibt alsdann die noch fehlende Gleichung zur Berechnung des
Auflagedruckes @, wiithrend die Ableitung nach P, niamlich

oL 052 :

ap‘—auf—l‘(‘m@ = (an_‘;:a)P:AS . (21
die Vertikalverschiehung des Angriffspunktes der Last 2 liefert.
Mit der Berechnung von @ aus (20) sind dann durch die Gl. (17a)
nicht nur die beiden andern Auflagedrucke V; und V,, sondern

auch nach (18) sdmtliche Stabkréfte eindeutig gegeben.

Enthédlt das zu untersuchende Fachwerk sog. iiber-
zdhlige Stabe, so lassen sich bei vorgelegten &uBeren

Fig. 31. Fig. 32.

Kriften die Stabspannungen nicht mehr aus den statischen
Gleichgewichtsbedingungen bestimmen. Entfernt man aber
einen solchen iiberzihligen Stab, z. B. den mit dem Zeiger 6
bezeichneten in Fig. 31, so wird an dem Spannungszustande
des iibrig bleibenden %vstems Fig. 32 gegeniiber dem urspriing-
lichen nichts geéindert, wenn in den Endknoten des entfernten
Stabes die von ihnen dort ausgeiibten Kréifte S¢ angebracht
werden. Diese den Stabkriiften entgegengesetzten Krifte wirken
nunmehr auf das restliche Fachwerk als dulere Krifte,
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Bezeichnen wir jetzt die Forménderungsarbeit dieses ver-
stiimmelten Fachwerks mit L', so liefert bei vorliufig festge-
haltenem einen Endknoten A des entfernten Stabes die Ab-
leitung von L’ nach der Stabkraft — §g die Verschiebung des
andern Knotens B, die offenbar mit der totalen Lingenénderung
Alg des entfernten Stabes iibereinstimmt. Es ist also mit den
bisherigen Bezeichnungen
oL Al = 1 Ss N0 (EGSﬁz)

T35, el 2,05, Bk,
oder 0wl A N
08, . 2E, F, )—0'

Der in der Klammer stehende Ausdruck ist aber nichts
anderes, als die Forménderungsarbeit des verstiimmelten Fach-
werks, vermehrt um diejenige des entfernten Stabes, oder mit
andern Worten, die totale Formdnderungsarbeit I des urspriing-
lichen statisch unbestimmten Fachwerkes, Fig. 31. Fiir dieses
konnen wir daher die Gleichung

S

Y
anschreiben, durch welche die Stabspannung Sg; bestimmt ist.
Sind mehrere iiberzihlige Stdbe vorhanden, so erhalten wir fiir
jeden solchen eine Formel (22), so dafi der vollstindigen Berech-
nung des Fachwerks unter Hinzunahme der statischen Gleich-
gewichtsbedingungen fiir die einzelnen Knotenpunkte nichts
mehr im Wege steht.

Da fernerhin die einzelnen Glieder, aus denen sich die Form-
dnderungsarbeit zusammensetzt, die Stabkrifte im Quadrate
enthalten, also alle positiv sind, gleichgiiltig, ob es sich um eine
Verlidngerung oder Verkiirzung handelt, so werden auch die
zweiten Ableitungen der Arbeit nach den statisch unbestimmten
Kriften positiv. Dann aber stellen die Gl. (22) die Bedingung
fir ein Minimum der Formédnderungsarbeit dar,
Der Satz erhiilt noch dadurch eine grilere praktische Bedeutung,
" daP man jeden beliebigen Kiorper als ein Fachwerk mit unend-
lich vielen Stiben und damit unendlich vielen statisch unbe-
stimmten Kriften auffassen kann. Daraus folgt die Moglichkeit
der Bestimmung einzelner Spannungen oder iiberhaupt diesen
proportionaler Griflen durch das Verschwinden der partiellen
Ableitungen der Forménderungsarbeit nach ihnen.

T el e e T 471



Kapitel II.
Verdrehungselastizitét isotroper Korper.

§ 8. Die Verdrehung eines Kreiszylinders.

Der Verdrehungswinkel. Die Verteilung der Schubspannungen im
Querschnitt, Brhaltung der Querschnittsebenen. Das Torsionsmoment .

fiir Voll- und Hohlzylinder. Die Formanderungsarbeit und ihre Ablei-
tung. Anwendung auf Kreisringe und zylindrische Schraubenfedern.

Greifen an den Enden eines geraden Kreiszylinders zwei
Kriftepaare mit entgegengerichtetem Drehungssinne an, deren
Achsen der Zylinderachse parallel sind, so erleidet der Zy-
linder eine Verdrehung oder Torsion derart, dall
seine Mantelgeraden in Schrauben-
linien {ibergehen, also auf dem
Zylinderumfang eine Neigung gegen
ihre urspriingliche Lage annehmen.
Schneiden wir uns aus dem Zylinder
ein Element von der Achsenlénge dz
(Fig. 33) heraus, so werden dessen
beide Endflichen gegeneinander um
den Winkel AOB —dg verdreht
sein.  Da keines der Zylinder-
elemente vor den anderen bevor-
zugt ist, so mul sich die Verdrehung gleichmilig aul die ganze
Zylinderlinge z, verteilen. Ist demmnach ¢ die Gesamtver-
drehung des Zylinders, so haben wir auch

A% 8
: @ %y
oder .
d‘p.:-?—:const S | R By AL

d Z =



92 Kapitel II. Verdrehungselastizitat isotroper Korper.

Diese Beziehung gilt natiirlich ganz allgemein auch fiir
Zylinder und Prismen mit beliebig gestalteter Grundflidche,
wenn nur die Achse der beiden Kréftepaare der Zylinderachse
bzw. den Mantelgeraden parallel ist. Da die Kriftepaare selbst
in den Endquerschnitten jedes Elementes angreifen, so werden
sie dort Schubspannungen 7 hervorrufen, deren Ver-
teilung tiber die Quersehnittsfliche noch zu ermitteln ist.

In unserem Falle des Kreiszylinders werden diese Schub-
spannungen jedenfalls aus Symmetriegriinden lings eines mit
dem Umfang konzentrischen Kreises dieselbe Grilie und Neigung

Fig. 34.

gegen den Kreisradius r besitzen, so dafl wir sie nach Fig. 34
in eine Radialkomponente 7, und eine Tangentialkomponente 7,
zerlegen konnen. Beiden Komponenten miissen aber nach der
Folgerung aus Gl. (4) § 2 gleich grofe Komponenten in Normal-
schnitten zur Querschnittsebene entsprechen. Einen dieser
Normalschnitte bildet nun der Zylindermantel mit dem Kreis-
radius r selbst, der mit dem AuBenmantel vom Radius r, ein
Ringelement begrenzt, an dessen Innenfliche in der Achsen-
richtung die Gesamtkraft 2 wr,dz wirkt, wihrend auf der Auflen-
fliche keine derartige Spannung herrscht. Das Gleichgewicht
des Ringelementes kann darum nur bestehen, wenn die auf der
Innenfliche wirkende Kraft, d. h. die Schubspannungr,
selbst verschwindet, so daf nur mehr die
Tangentialkomponente 7,=—7 iibrig bleibt.

Das Verschwinden der Radialkomponente 7, hat iiberdies
noch die weitere Folge, daB der urspriinglich rechte Winkel der
Querschnittsebene mit dem Achsenzylinder » keine Anderung
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erfiahrt, oder mit anderen Worten, dafidie Querschnitts-
ebenen des Kreiszylinders auch nach der
Verdrehung als solehe erhalten bleiben.
Dieses Ergebnis ist als Folge der Achsensymmetrie ausdriicklich
auf Querschnitte beschriinkt, die von konzentrischen Kreisen be-
orenzt werden, gilt also im Gegensatz zu der konstanten Ver-
drehung der Léngeneinheit des Zylinders nach Gl (1) durchaus
nicht allgemein, wie man [rither irrtiimlich angenommen hat.

Kehren wir nunmehr zu der tangential gerichteten Schub-
spannung im Querschnitte zuriick, so erkennen wir, dall diese
auch in einem Meridianschnitte 0AA°0", Fig. 33, wirksam ist
und die Verschiebung der Geraden A’A in die Lage A’B bedingt,
die mit der urspriinglichen den Winkel y einschlieft. Um diesen
Betrag hat sich der urspriinglich rechte Winkel A’'AB eines
Volumelementes dz dr ds mit den Seitenlingen dz, dr und ds in
axialer, radialer und tangentialer Richtung gedndert. Die Winkel-
dnderung steht aber nach GIl. (15) § 2 mit der Schubspannung
in der Beziehung

P I
worin G den Schub- oder Gleitmodul bedeutet, dessen
Zusammenhang mit dem Elastizitdtsmodul £ und dem Quer-
kontraktionskoeffizienten g wir ebenfalls schon in § 2 kennen
gelernt haben. Da weiterhin nach Iig. 33 der Bogen AB ein-
mal als Bestandteil des Kreises aus 0 mit dem Radiusr, dann
aber als Seite des Dreiecks A’AB aufgefallt werden kann, so
haben wir fiir kleine Winkel y auch

ydz=rdg

oder
dg @ ;

Ai— o M O

L 3),
wonach im Verein mit (1) der Neigungswinkel der
schraubenformig gekriimmten Fasern eines
Kreiszylinders gegen ihre urspringliche
Lage parallel der Achse ihrem Achsenab-
stand rproportional ist. Verbinden wir diese Formel
mit (2), so folgt auch

3

=Grpiat s 1 e

0

=
asl

‘I:G?‘—i—-

i_ll
a
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also eine dem Achsenabstand proportionale
Schubspannung im Querschnitt des Kreis-
zylinders, fir die man wohl auch den Ausdruck einer
linearen Spannungsverteilung lings des
Radius gebraucht. Multiplizieren wir die Schubspannung
mit dem zugehorigen Flachenelement dF, so erhalten wir das
Element der im Querschnitt wirksamen Tangentialkraft

dT =zdF =62 rdF . . . . . (4a),

%o

aus der sich durch Multiplikation mit dem Hebelarm r das ele-
mentare Drehmoment, das wir hier als Torsionsmoment
bezeichnen, zu

iM=rtrdF=6L2dF . . . . . (5)

')

berechnet. Die Integration dieser Formel iiber den ganzen
Querschnitt liefert sodann unter Einfithrung des polaren
Triagheitsmomentes?)

5P o g T e P [

der ganzen Querschnittsfliche das totale Torsions-
moment

fMiEde Co¥_ vl 5T S AR (B

“o

welches offenbar mit dem Momente des &ulieren Kréftepaares
iibereinstimmt. Da es sich in der Praxis hdufig um die Ermitt-
lung der gréfiten Spannung 7, handelt, die nach dem linearen
Verteilungsgesetz (4) offenbar am Querschnittsumfang mit dem
AuBenradius 7, herrscht, so diirfen wir auch an Stelle von (4)
setzen

e e e e
womit dann (ba) in
ﬁﬁ:fﬂ.@[,:;cao. e . (50

To
ithergeht. Auch diese Formel gilt nur fiir Kreiszylinder, obwohl
sie friither filschlicherweise allgemein gebraucht wurde. Wir
kénnen sie natiirlich auch durch Ausrechnung des polaren Trig-

1) Vgl. Lorenz, Techn. Mechanik starrer Systeme, § 36, S. 273.
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heitsmomentes umformen, das wir am einfachsten erhalten,
wenn wir in Gl (6) fiir das Flachenelement dF einen Ringstreifen
von der Breite dr einsetzen, also dF — 2ardr schreiben. Da-
mit wird ;

("0:'.2:'551‘393:' e EREL LT TG SRV L PRI

worin fiir einen Vollkreisquerschnitt die Integration
von r =— 0 bis r =r, zu erstrecken ist, so dall hierfiir
T
gt -
O =anNrdr — el (6b)
0

wird. Fiir einen Ringquersechnittmit dem Innenradius r
und dem Aufenradius r, erhalten wir analog

P

90:235r3dr'=1;£(r24—r‘]4) peitn st (e

2
"1

Da in unserem Falle nur Schubspannungen auftreten, so
ergibt sich die spezifische Forménderungsarbeit nach Gl (22)
§ 2 zu

e &
Nun kénnen wir aber fiir das Volumelement in unserem Falle
dlV =z dF=2mrdr g,

schreiben und erhalten damit aus (7) mit (4b) nach Integration
fiir den Vollkreis

e Ta
B o Ll o sk
g—"z;;'-rz?‘d?‘—arnz'd? dr = il To o . (8]
0
oder unter Einfithrung des Gesamtvolumens V = g’z
b
L—&GV.......(Sa).

Mit Riicksicht auf die Formeln (5b) und (6b) konnen wir an
Stelle von (8) auch schreiben

R . D e MG

e sy
U s iy 9 e

oder wegen (ba)

}
B T T T S e
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Das ist aber nichts anderes als die Arbeit der duleren Krifte,
d. h. hier des Torsionsmoments, die, wie schon aus den Betrach-
tungen des § 7 hervorging, mit der durch die inneren Krifte,
also die Spannungen, geleisteten Forménderungsarbeit iiber-
einstimmt. Ganz entsprechend erhalten wir fiir den Hohlzylinder
mit zor =1y

el i L 7T Tp®
— = \Prdr =55 (rsd —1y)
Zg () 4Gry?
T
_— 5;22 .2 2 2 2 "
_-”LGr'Q(I2 i it = I ol bl
2

s i n’\ .
L= <1+r22)v S o Lo eEeE

Die weitere Umformung von (10) fiithrt dann ebenso wie (8b)
wieder auf die allgemeine Arbeitsgleichung (9), die naturgemél
fiir Zylinder oder Prismen mit beliebig gestalteter Grundflache
gilt. Ebenso erhdlt man durch Differentiation der Forménde-
rungsarbeit (8b) nach dem Moment wegen (5a)

dL a4 [Pz \_ Mz
aMm T AM (E 90) B
also den Verdrehungswinkel, so dafi die Castigliano-
schen Sidtze auch fiir Momente gelten, wenn
gleichzeitig die Verdrehung an Stelle der
linearen Verschiebung eingefihrt wird.

Beispiel: Die Theorie der Verdrehung eines geraden
Kreiszylinders darf angendhert auch auf Ringe angewendet
werden, deren Durchmesser grol gegen die Abmessungen des
kreisformigen Querschnitts ist. Wir denken uns z. B. einen sol-
chen Ring mit dem Radius ¢ und dem Querschnittsradius r,
an einer Stelle A aufgeschnitten und die Enden mit Hebelarmen
starr verbunden, an denen je eine Kraft P normal zur Ring-
ebene mit den Richtungen nach oben und unten angreift, Fig. 35.
Dann kénnen wir die Kraft nach jedem Ringquerschnitt B ver-
legen, wodurch ein Kraftepaar mit dem Torsionsmoment :

ﬂ]’{:Pa . . . . . . . H.l}
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geweckt wird, welches offenbar von der Lage des Querschnitts B
ganz unabhiingig ist. Dieses Moment hat eine Verdrehung ¢
der beiden Endquerschnitte bei 4 gegeneinander zur Folge, die
durch GI. (5a) gegeben ist, wenn wir darin die Linge z, = 27«
setzen, so zwar, dall mit (6b)

_2aMa_ 2aaP _ 4@ P
¥="¢o, . 6O, - GCig
wird. Daraus folgt dann eine Verschiebung der beiden Hebel-
enden in axialer Richtung (Fig. 36) um den Betrag
2qa® P ba* P

J— b DS S R 19
A= g o= Go, Gr a . (12a).

Fig. 35. Fig. 36.

Aulierdem aber ruft die Kraft P selbst als Querkraft (siche Bei-
spiel 1 in §1) Schubspannungen im Querschnitte F = 7,2
hervor, deren Mittelwert in erster Annéherung

(% P

e 5 7T Ty?
sein wird. Diese Spannung wiederum bedingt eine Neigung der
Mittellinie gegen ihre urspriingliche Lagel)
7 P P )
x”: (;‘ = G_F _ . 9 . . . . (13)'

1) Wir werden spiiter (§ 14) sehen, dafl dieser Ansatz noch durch
einen Faktor 1,2 auf der rechten Seite zu korrigieren ist, was in dem
oben stehenden Fall indessen keine wesentliche Rolle spielt.

=
i

Lorenz, Elastizititslehre.
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der bei einer Gesamtlinge z, =— 2ma eine axiale Verschiebung

der Endquerschnitte gegeneinander um
2a P

As’ =z33"' = o SRR TR (13a)
entspricht. Infolgedessen wird die totale Verschiebung
der Angriffspunkte der beiden Krifte P

g P 2
As=Ag +-As" = i—%—(z ;i—2+1) S,
worin sichtlich das erste Glied der Klammer wegen a = r, schr
viel groBer ist als 1, so dall letztere Zahl praktisch stets gegen
das erste Glied unterdriickt werden kann, was offenbar auf eine
Vernachlissigung von As” gegen As" hinauslauft.

Die vorstehenden Entwicklungen lassen sich auch aul eine
zylindrische Sehraubenfeder, Fig 37, mit flachen, d. h.
wenig gegen die Normalebene zur Achse geneigten Windungen
iibertragen, wie solche in sog. Feder-
wagen Verwendung finden. Ist n die
! Windungszahl, so hat man mit z; =2 nma
Té.fﬁf”:p aus (bb), (6b) und (11)

b’::'!—i-:‘:D 2anMae  4na* P

= GO, s Gr,,4_’

also unter Vernachlissigung von As”

a——"

=

G/{/D bna® P
P

Y — —— f
le—laoi= Grd v

Jedenfalls ergibt sich daraus eine der Kralt P
proportionale Verschiebung der Endpunkte, die
somit eine bequeme Kraftmessung erlaubt.

Fig. 37.

§ 9. Die Verdrehung diinnwandiger Hohlzylinder.
Einfithrung mittlerer Spannungen iiber die Wandstirke. Tangentiale
Richtung der Spannung. Hydrodynamisches Gleichnis. Berechnung des
Torsionsmomentes, der Verdrehung und der Verwerfung der Quer-
schnittsflache. Sonderfalle der ganz oder teilweise konstanten Wand-

stirke.

Bevor wir in die Untersuchung der Torsion von Vollzylindern
bzw. Prismen mit nicht kreisférmigen Querschnitten eintreten,
wollen wir den Fall dinnwandiger Hohlzylinder
behandeln, der sich mit hinreichender Anniherung verhiltnis-
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mébig einfach erledigen ldfit. Wir nehmen dabei an, daB die Wand-
stérke des betrachteten Hohlkérpers klein gegen die Abmessungen
der geschlossenen, sonst aber beliebig gestalteten Umfangskurve
seines Querschnittes normal zur Mantellinie sei. Alsdann diirfen
wir innerhalb der Wandstirke von den Anderungen der Span-

Fig. 38.

nungen absehen, fiir diese vielmehr ebenso Mittelwerte einfithren,
wie bei der Untersuchung der diinnwandigen Gefdlle in § 3.
Schneiden wir nunmehr aus dem Hohlzylinder Fig. 38 ein
Element ABB’A’ Fig. 39 von der axialen Linge dz mit den
Wandstérken £ und A’ lings der
Normalschnitte A B bzw. A'B" zur
Auflenlinie 4 4" —=s heraus, so er-
kennt man zuniichst, dafl im Quer-
schnitt die Sechubspannungenz und
7' tangential zur Umfangskurve
AA" gerichtet sein miissen. Denn
den etwa vorhandenen Normal-
komponenten hierzu miifiten gleich
grofie Spannungen lings der inne- A
ren bzw. duberen Mantelfliche des Fig. 39,
Hohlzylinders entsprechen, die je-
doeh nicht vorhanden sind. Dagegen sind den beiden Tangential-
spannungen 7 und 7" an den Enden A und A" des Elementes gleich
grolie Spannungen in den Schnittflichen 4B und A’B’ zugeordnet,
welche nur dann keine axiale Verschiebung hervorrufen, wenn
thdz =1 hidz

T&
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oder kiirzer
el = LR il il

ist. Die Torsionsspannung in einem dinn-
wandigen Hohlzylinder ist also —unabhidngig
von der Form der Umfangskurve — indirekt
proportional der Wandstdarke Da dieselbe Be-
ziehung auch fiir die Wassergeschwindigkeit in einem geschlos-
senen Kanal von konstanter Tiefe, aber verdnderlicher Breite £
gilt, so kann man die beiden Begrenzungskurven des Quer-
schnittes ganz allgemein als Stromlinien auffassen und spricht
dann wohl von einem hydrodynamischen Gleichnis
fiir unsern Spannungszustand.

In einem Querschnittselemente hds, Fig. 38, wirkt demnach
die Tangentialkraft z/ids mit den beiden Komponenten

dX —=thdscos®, dY=thdssind,

wenn © den Winkel von ds mit der X-Achse eines in der urspriing-
lichen Querschnittsebene liegenden Koordinatensystems bedeutet.
Da nun ds cos® = dg, ds sin® =dy die Differentiale der Ko-
ordinaten der Umfangskurve darstellen, so erhalten wir fir die
von der Schubspannung insgesamt herrithrenden Kraftkompo-
nenten in den Achsenrichtungen nach Integration iiber die
geschlossene Umfangskurve
X={rhde=vhfda=0 |
Y:Srhdy:rhgdy =0 )

Dievonden Schubspannungen geweckten
Krifte ergeben somit keine resultierende
Querkraft normal zur Zylinderachse und kinnen
daher die Querschnitte als Ganzes nicht gegeneinander ver-
schieben. Dies trifft insbesondere die Schwerpunkte der Quer-
schnittstlachen Shds , deren als Zylinderachse anzu-
sehende Verbindungsgerade infolgedessen durch die Schub-
spannungen keine Forménderung erfihrt.

Dagegen werden die einzelnen Querschnitte um die Zy-
linderachse gegeneinander verdreht, und zwar durch das Tor-
sionsmoment M, welches sich mit dem Lote [ von einem
beliebigen Pole O der Querschnittsebene auf die Tangente in ds
(Fig. 38) mit (1) zu

M=(rhids=7hflds=2thF, . . . ()

(2).
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berechnet, wenn F; die ganze vom Umfang eingeschlossene,
also nicht materiell erfiillte Fliche bedeutet. Durch diese Formel
ist erst die Schubspannung an jeder Stelle der Wandung un-
abhingig von der Lage des Poles O bestimmt.

Zur Berechnung des Verdrehungswinkels ¢ greifen
wir auf die Forménderungsarbeit zuriick, die fiir eine Scheibe
von der axialen Dicke dz

S| d
dli= sl TR L G

geschrieben werden kann. Leiten wir die Formiinderung dagegen
aus den Spannungen ab, so haben wir mit dem Volumelement
dV =hdsdz der Wand nach Gl. (7) des §8

dL:Tt;’"SIQdVZ-;—ESTdeS ¥,y (43)

oder nach Gleichsetzen mit Riicksicht auf (1) fiir die ganze Scheibe
ap P (ds

M i e . (4b).
0

Eliminieren wir dann noch das Produkt 7/ durch Gl. (3), so folgt
fir den Verdrehungswinkel der Léngeneinheit des Hohlzylinders

deg ¢ m (ds (5

d: "% GGFE)H

worin sich das Integral der rechten Seite iiber den ganzen
Umtang des Querschnittes zu erstrecken hat und darum mit
dem Index O versehen ist.

Die vorstehende Betrachtung, die man dem Ingenieur
R. Bredt?) verdankt, 14Bt sich indessen noch etwas ausdehnen,
und zwar auf die axiale Verwerfung des urspriinglich
ebenen Querschnitts. Daf} dieser nach der Torsion im allgemeinen
nicht mehr eben bleiben kann, erkennt man schon aus der Formel
fir die Gleitung, d. h. die Anderung rechter Winkel an einem
Wandelement. Diese lautet ndmlich mit (3)
T e .
x:—(;-ZZGFO—'h-. e g e

1) R. Bredt, Studien zur Drehungselastizitat. Zeitschr. d. Ver.
D. Ing. 1896, S. 815.
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ist also ersichtlich der Wandstéirke indirekt proportional. Infolge
der Schubspannung wird ein urspriinglich parallelcpipedisch;;s
Wandelement % ds dz nicht nur als Ganzes die Verschiebungen Az
und As in der Richtung der Achse und des Umfangs erleiden,
sondern auch die in Fig. 40 punktiert angedeutete Form an-
nehmen, der in beiden Richtungen die Verschiebungen

O — 0dz .a__AS

% ds und DD = 53 dz
L4z
- ,QT as
ll ds
(]
H l
\
L]
L}
|
| l\
‘#I
45
dz df

Fig. &1.

der Endpunkte € und D entsprechen. Dadurch hat sich der
urspriinglich rechte Winkel CBD um die beiden kleinen Winkel

Ol
CBC =g = 55
Dy S
DBD=Fp5="%;
vermindert, so dal nach der Definition der Gleitung
ddz 244

zu setzen ist. Durch Verbindung mit (6) folgt daraus
odz , dds. . W 4

S e 5 T R L
Betrachten wir nun in Fig. 41 ein Stiick der Umfangskurve;
deren Element ds mit dem Fahrstrahl » vom ruhenden Quer-

schnittsschwerpunkt S den Winkel a einschlieft, so ist die Ver-
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schiebung von ds in seiner Richtung, ndmlich D D' = abAde,
aufzufassen als die Projektion des Bogens D D" = p i—? d z infolge
der Verdrehung des Querschnitts. Mithin besteht die Bezichung
345 _ dy :
5 dz—sma LN S N NS
durch deren Einfithrung (7a) tibergeht in
paz TR dp h
¥ _—ZGFO . —-rd S0 etk s ca LRI

Eliminieren wir hieraus noch das Moment 9 mit Hilfe von
Gl. (5), so wird
am dg (" 2F,

ds  dz 1
1 g'a:;s
0

Die axiale Verschiebung Az eines Querschnittspunktes ergibt
sich daraus durch Integration iiber s von einer Anfangslage aus,
in der wir willkiirlich Az =0 setzen, mit Riicksicht auf die

dyg . !
Konstanz von drg im Querschnitt zu

~1
)

—— il S

s B - ; =
Az— o g‘d: T —jrd’.s‘sma (e by
h

Hierin ist aber dssin a nichts anderes als die Projektion des
Bogens rdy, wenn 4 den Winkel des Fahrstrahls » mit der eben
erwéhnten Anfangslage bedeutet. Mithin erhalten wir

j rdssin a :5!‘2 dy =2F,

unter /' die von der Anfangslage his zum betrachteten Element
vom Fahrstrahl aus dem Schwerpunkt iiberstrichene Fliche ASD
verstanden. Setzen wir dies in Gl (7d) ein, so nimmt diese

die Form
deg ;i FD F ds :
Az=2 s [ iErd & [ de 5 S Lh i ()
_ -

; 2 ds ‘ds
an, in der sich das Integral T im Gegensatz zu 7, hur auf

s 0
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das die Fliche # auflen umgrenzende Umfangsstiick A D erstreckt.
Jedenfalls erkennt man aus diesem Resultat, dafl die axiale
Verschiebung lings des Umfangs sehr verschiedene Werte an-
nehmen kann, so dafB die urspringlich ebene
Wandkurve durch die Torsion im allgemeinen in eine
Raumkurve iibergeht.

. Besonders einfach gestalten sich die erhaltenen Ausdriicke
fiir den Fall konstanter Wandstédrke, die natiirlich
nach Gl. (3) auch eine konstante Schubspannung unabhingig
von der Form der Wandkurve bedingt. Die Verdrehung (5)
geht damit iiber in

o A R ST 3 5

e o b e
worin s, die ganze Linge der Umfangskurve bedeutet. Ebenso
erhiilt man fir die axiale Verschiebung (9) der Umfangspunkte
mit der Bogenlinge AD =s (Fig. 41)

A St b W
=2s—=—|—"——| . . . . . (93)
Az=2s e (S“ s) (9a)
Im Sonderfalle eines Kreisumfangs vom Radius r, ist
So=2nry, =Ty, Fo=arg, F= ?f;— I

und daher mit dem Trigheitsmoment 2z r®h = 6,

e s el

25 2Gmrsh GO
im Einklang mit Gl. (5a) des § 7, wiihrend die axiale Verschiebung
Az in diesem Falle iiberhaupt verschwindet, so dali die Umfangs-
kurve eben bleibt.

Unsere Formeln sind auch noch fiir den Fall giiltig, dali die
Wand aus mehreren miteinander vernieteten oder verldteten
Blechstreifen besteht, von denen jeder eine andere Wandstéirke
besitzen kann. Bezeichnen wir die einzelnen Wandstirken mit
hyho...h, mit den auf dem Umfang gemessenen Lingen
$1 83+ .. 8, 80 erhalten wir in unseren Formeln

Il

48 _ & | % Sn.
S R AR Sk ah Iy

und dsi. 18 s s
: ity i i B - 8
Sj"a_—;‘a1+fzg+"+kk’
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worin s den im Bogen 4D (Fig. 41) noch einbegriffenen Teil des
Streifens von der Umfangslinge s, und der Wandstirke 7, be-
deutet.

Haben wir es z. B. mit einem rechteckigen Hohl-
prisma Fig. 42 zu tun, mit den Seitenldngen «; und a, sowie
den zugehérigen Wandstarken %, und hy, so entsprechen diesen
nach Gl (3) die Schub-
spannungen

m
1= Daanhy
1= Tayaghy’
‘withrend  sich die Ver-
drehung nach (5) zu
__ I 4
B 4GaPay (7{ 7a2')

berechnet. Die Ermitt-
lung der axialen Ver-
schiebung Az nach Gl. (9), wobei man zweckmilig von einem
Eckpunkte ausgeht, sei dem Leser zur Ubung empfohlen.

§ 10. [Diinnwandige Hohlzylinder mit Zwischenstegen.
Die Spannungsverteilung an einer Verzweigungsstelle. Einfachster
Fall einer Zwischenwand. Zerlegung des Torsionsmomentes in Einzel-
momente fiir jede Zelle. Bestimmung der Einzelmomente durch die
Ableitungen der Forméanderungsarbeit. Bedingung fir spannungslose
Zwischenwande. Allgemeiner Fall beliebiger Zwischenwande und deren
Verzweigung.

Das im vorigen Abschnitt entwickelte Verfahren bedarf
noch einer Ergénzung fiir den Fall, daB der Hohlkorper, wie z. B.
ein Schiff, noch Zwischenwinde besitzt, die vermoge ihrer Ver-
bindung mit der AuBenwand an der Verdrehung teilnehmen
werden und daher die Spannungsverteilung beeinflussen miissen.

Wir betrachten zunéchst den einfachen Fall eines Hol ] -
zylinders mit einer Zwischenwand, Fig. 43,
deren veriinderliche Wandstérke 2" sein moge, wihrend wir die der
beiden AuBenwiinde mit £, und %, bezeichnen; ihnen entsprechen
die Schubspannungen 7', 7; und 7,. Alsdann erkennt man nach



106 Kapitel II. Verdrehungselastizitit isotroper Korper.

Analogie mit Fig. 39, daB lings jeder dieser Wandstiicke die
Produkte 7'A', 7k, 7., konstant sein miissen, wihrend das
axiale  Gleichgewicht
eines Elementes A, B,
A'B" A, B, der Ver-
zweigungsstelle 1
Fig. 43 die Beziechung

T hy—th=1H (1)

liefert. Bezeichnen wir
weiterhin die Elemente
der drei Wandstiicke
mit ds’, ds; und ds,,
die Lote auf ihre Ver-
Fig. 43. lingerungen von einem
beliebigen Pole O aus

mit I, l, und l,, so wird das Torsionsmoment

M=10y [ Ldsy+ 7oy §lgdsy -7k [ 1 ds

oder wegen (1)

M= Ry (5 Lds S Ui ds’) + 1o by (§ 1y dsy — 5 {Fdishl

Kehren wir mit den Grenzen
des letzten Integrals sein Vor-
zeichen um und beachten, dall

fhds, +frde=2F,

1

ftydsy -V ds=2F,

die doppelten Quer-
schnittsfldchen der
durch die Zwischen-
wand getrennten Zellen bedeuten, so folgt fiir das Moment

WMe=2 @ i Fi-trhsFy) . . . o« . (2)
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oder auch unter Zerlegung in zwei Momente
R — D ek D R SR ()
deren jedes an einer Zelle angreift,
Al — e S R
Fiir die Forménderungsarbeit L ergibt sich avnalog Gl (4b)
des §9
2G. L Lo 1 s, s
= ;3.1)25-‘ 2L hzﬁg-‘-,-‘— dola! m‘aﬂ > (4)
Zp 2 : I-l . s ;r’,

9,

oder auch mit (1) bzw. (3), wonach

; m M d
Th =1 hy— Ty hy =2 (-—1——.—2-) i
: 11— Ta lly By 7, (3a)
1st,
8GL 4G &des M2 (ds, (M BAL ‘Tds’
P e = g PR S IR Vst Gt ) Vhesar 1 SR e
0 0 e 2 ) by T Ffjkz +(Fx -Fz) J W o,

In den drei Gleichungen (1), (2) und (4) treten nun die vier
Unbekannten 7,hy, 7,hy, t'h" und ¢ auf, wihrend in den beiden
Formeln (2a) und (4a) aulier M, und M, noch der Verdrehungs-
winkel ¢ zu berechnen ist, so dal} jedenfalls noch eine weitere
Beziehung bestehen mufl. Diese ergibt sich nun nach den Sétzen
von Castigliano § 7 durch partielle Differentiation der Arbeits-
gleichung (4a) nach My bzw. M, woraus die Einzelverdrehungen
@, und ¢, der beiden Zellen

8G 8G oL M, (ds] : (‘ED‘;I Emﬁ) 1 ((ig‘
—— g e e S Dl = it
et e B s e 8 bR -
86 . _8G oL W, {ds, (T T 1 gds'_J
% TF g Ol T R g SR g
hervorgehen. Multipliziert man diese Ausdriicke mit ¢, baw. i,
so wird mit Riicksicht auf (4a)

My 1+ My oo =M,
eine Formel, die mit (2a) nur vereinbar ist, wenn

Ri=s o=

wird. In der Tat muf} jede Zelle um denselben Winkel verdreht
werden, wenn die Querschnittsform keine Verzerrung erleiden
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Analogie mit Fig. 39, daf lings jeder dieser Wandstiicke die
Produkte ©'h, 7.y, T.hs konstant sein miissen, wihrend das
axiale  Gleichgewicht
eines Elementes A, B,
A'B A B, der VYer-
zweigungsstelle 1
Fig. 43 die Beziechung

T —thy=7N (1)

liefert. Bezeichnen wir
weiterhin die Elemente
der drei Wandstiicke
mit ds’, ds; und ds,,
die Lote auf ihre Ver-
Fig. 43. lingerungen von einem
beliebigen Pole O aus

mit I, I, und l,, so wird das Torsionsmoment

M=r1, 0y § Lhdsy+ 7505 §lods, +v 0§V ds

oder wegen (1)
=1 by ((ldsy+JVads) by (§lyds, — fras).

Kehren wir mit den Grenzen
des letzten Integrals sein Vor-
zeichen um und beachten, daf

i

Klds, L iV dsd =205

2 1

(lydsy+ U ds =2F,

die doppelten Quer-
schnittsfldchen der
durch die Zwischen-
wand getrennten Zellen bedeuten, so folgt fiir das Moment

Ptz Qi By Bl s B Bl wwo s sesede o (8

Fig. 44.
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oder auch unter Zerlegung in zwei Momente
M —de b, e —2z 5 F . 0 )
deren jedes an einer Zelle angreift,
=i Bl o a(2a)
Fir die Forménderungsarbeit L ergibt sich avnalog Gl. (4b)
des §9

90T,
=Gm ‘f“”

ol RS N a R
= (1 fh){“ﬂj + (v f¢2)~j‘ B, T ' )“j"k,— (4)

o

oder auch mit (1) bzw. (3), wonach

M M
rk—rh~rf’s:2(----1—-——2) o[ 3a
: 1 2 My F, 7, (3a)
1st,
8GL 4G 2 rls:, d s,

N, (ds
— My =" i L L rod ;
2y Zy g 2] + (z’?a +( ) b ().

In den drei Gleichungen (1), (2) und (4) treten nun die vier
Unbekannten 74, 7k, ©'4" und ¢ auf, wihrend in den beiden
Formeln (2a) und (4a) auber M, und M, noch der Verdrehungs-
winkel ¢ zu berechnen ist, so dall jedenfalls noch eine weitere
Beziehung bestehen mufl. Diese ergibt sich nun nach den Sitzen
von Castigliano § 7 durch partielle Differentiation der Arbeits-
gleichung (4a) nach M; bzw. M, woraus die Einzelverdrehungen
@, und @, der beiden Zellen
86 _8G 3L _ M, (de] @__%) 1 ds’]
O e )y T a
8G . _8G oL 5).‘12 ((fsa 9 (EIRI e “J?z) ‘1 ds' J
7 2 g Bl T W W ng 1%
hervorgehen. Multipliziert man diese Ausdriicke mit 9, bzw. My,
so wird mit Riicksicht auf (4a)

My @y + My, =M o,
eine Formel, die mit (2a) nur vereinbar ist, wenn
i Y=

wird. In der Tat mufl jede Zelle um denselben Winkel verdreht
werden, wenn die Querschnittsform keine Verzerrung erleiden

(5)
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soll. Dann aber ergibt sich durch Gleichsetzen der beiden Aus-

driicke (5) b ; - . ;
LR S e ]
T1_|:JF1S( hy + K )+F25 k’}

My [ 1 {'_gsﬁ ds 1 sads" e
—'}:;‘[?;v(h; ;.a,v)+‘ﬁh, Wechohnti s

wodurch dann im Verein mit (2a) die Momente 3¢, und 9N, ein-
deutig bestimmt sind, aus denen sich mit (3) und (1) die Span-
nungen an jeder Stelle berechnen lassen.

Soll die Zwischenwand keine Sehubspan-
nung aufnehmen, so mufl wegen 7" =0 in Gl (1) 7,74
—1,hy oder nach (3)

™, Wy
ﬁ‘l 1;‘2
sein, womit (6) iibergeht in
Bl ek i )
VL Fo ) ks :

eine Bedingung, die ersichtlich ohne weiteres fiir Zwischenwénde
erfiillt ist, die den Hohlkérper in zwei kongruente Hélften teilen.
Mit Wegfall der Zwischenwand wird F;, =F,, s, =85, iy = hy,
womit Gl (7) zu einer Identitdt wird.

Ist die Wandstéirke durchweg konstant,
so hat man aus (1) mit fy =hy =1’ '

e e O R I R e G
withrend (6) sich vereinfacht in
Wy (s +8 | ¢ )__ My (15" _“L) 6
A A e e R

Soll ferner die Schubspannung iberall
denselbenWertr,=1, =17 —=tbesitzen, so konnen
sich innerhalb der Einzelstrecken s;, s, und s" die Wandstérken
nicht dndern, so zwar, daf}

Rpmhs SRR GRS )
ist, wihrend (2) in
T(hF, —hF)=2MW . . . . . (2b)
und (6) in

{ A

s o (U Y by 1 AR
F, [Fl 85 (Fl ”1"199)]_ % [Fs e kT(Fl +F2} (6b)
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iihergeht. Aus dieser Gl. (6b) und (1b) berechnen sich die
Verhéltnisse /oy : k' und hy : &', deren Quotient dann hy : Ay
ergibt und in (2b) eingesetzt bei vorgelegten Werten von M
und 7 die Absolutwerte i, und A, liefert.

Es bietet natiirlich gar keine Schwierigkeiten, das vorstehende
Verfahren auf Que rschn::t.te mit mehreren Zwi-
schenwidnden s, s usw. (Fig. 45 u. 46) auszudehnen, wie
sie bei Sehiffendurchdieiibereinanderliegen-

5
Fig, 45, Fig. 46.

den Decks bzw. den Doppelboden usw. bedingt
sind. Alsdann erhalten wir an Stelle von (1) mit analogen Be-
zeichnungen
T e —al (8)
Tohy — T3y =7" R -4 i

und statt (2) mit den Querschnittsflichen BF, . ... der Einzel-
zellen

M=2 @It +...) . . (9.
Entsprechend wird in diesem Falle die Forménderungsarbeit L
mit den Einzelmomenten Mt N, M, . . . nach (3)

8G + - —}G n,2 a’sl ((£52 M,2 rf.S'q
> L= Jﬁfp =T ( + F’ b T i

J,R E}Rz 2 (*d S’. 'ﬂﬁz S.R 2 ""”I r
(I" 1"2) j-‘ h' +(F _Ifq) j ,I{H +" (IO},

2
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aus deren Ableitungen wegen der Ubereinstimmung aller Ver-
drehungswinkel die Gleichungen

oL

oM, — oM, oMy

hervorgehen, die mit

e oy et G

M=, +D, M, +.... . . . . (9a)
gerade zur Bestimmung der Einzelmomente ausreichen, aus
denen sich dann die Produkte 7./, 7.h,, 73k usw. mit Gl (6)

berechnen.

Handelt es sich dagegen um eine Reihe insich zu-
rilicklaunfender Zellen oder, was auf dasselbe hinaus-

Fig. 47.

kommt, um Verzweigungen
der Zwischenwind e selbst,
die fiir sich dann Teile der Quer-
schnittsfliche umschlieBen, so wer-
den auch diesen Einzelmomente
entsprechen, die aus der vorstehen-
den Entwicklung nicht ohne wei-
teres ersichtlich sind. Wir wollen
uns hierbei mit der Untersuchung
des einfachsten Falles einer
Zwischenwand mit einer
Verzweigung (Fig. 47) be-

gniigen, bei dem also sechs Strecken s;s,s" s 5" s, mit den
Wandstérken i, by &' h'" k" hy’ und den Schubspannungen 7,7,
' 7" 7,7, zu beriicksichtigen sind. Aus der Figur erkennt

man schon, dal} hierbei

i == e
LY t ' t P MY -
TR =l =R

oder

(12)

Ao e e R i S S | )

ist. Fiir das totale Torsionsmoment ergibt sich damit, wie oben,
M=2[e, M F;F 1ol Fo+ (r. 0y +7/ 2NV F'] . (13),

wenn wir mit /; die Zelle von der AuBenwand s, mit F, die
von s, und mit 7" die von den Innenwandungen s’ und s, be-

grenzte Zelle bezeichnen.

Setzen wir dann noch

2y Fy =W, 200 Fy =My, 2(t;lq+7' k) F' =MW (13a),
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s0 wird wieder
W=+ o o - o (13b).

Fiir die Forménderungsarbeit L ergibt sich weiter
ST 5."’351 1 (g hy)? {_?2
%0 7o Al
+ e (445
+ (7' Ry’ (d‘sl + (7 Ay )? E’gis_?' (14)
2

oder nach Elimination von 7’2" aus (12), sowie nach Einfithrung
der Einzelmomente (13a)

8¢ 4G M2 (ds, . M2 (ds. | [ds" | ds
ol pP kol 1( 1_]_1”2(_2 (1 Rﬁ){ )

Z 2y HERE hy e ol
(W M\ sy, (M, 5 A
e Fl) Ty +(1ﬁ =7 )S pel b

Daraus bestimmen sich wieder die Einzelmomente wegen der
gleichen Verdrehung der Einzelzellen mit Hilfe der beiden Formeln
L T
oM, oM, oW

sowie mit (13b), wonach die Produkte th sich aus (13a) ergeben.

(15)

Sollen im Sonderfalle die beiden Zwischenstege
s" und 5"’ kLlnPnb_pd.nllu[lgenuIlt.(-‘l‘\VlﬁlI.['LnSEIn,
so folgt aus (12) und (13a)

Tl =110, T 1
™, W, < [12b).
R
Setzen wir dies in das Gleichungspaar
oL oL oL. AL (15a)

M, M M, oW

ein, so wird daraus
(. J Iy _{_F' =3 ) F) R F 7 s + ;’32

My (dsy (M My\ (L (dsg | 1 f dsy | dsy'
1""1_3';5 fiy m(.F’_— Fy ){F {}*2' is g (’11'-—’_ by )}
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oder nach Multiplikation mit ¥, bzw. F, und Addition
W, ((ds; | dsg\ (W WM\ Fi+Fo4-F ([dsy | dsy
i )-(E B AtIE 4 1)
woliir wir auch unter Wiedereinfiihrung der Produkte 7,h; und
7,'h, sowie mit Fy 4 F, + F' =F schreiben dirfen
Tl (,&_ dsy\ _u'hy’ { ds | dsy! B
F -,-(hl - hz)_“ il ( hy' i hz’) B
Das ist aber nichts anderes als die Bedingung der gleichen Ver-
drehung der nicht mehr miteinander zusammenhéngenden Hohl-
zylinder mit den Wandungen s; + s, bzw. s;" 4 sy, wie sich ohne
weiteres aus den Formeln des § 9 ergeben wiirde. Hierin lLiegt
zugleich eine erwiinschte Kontrolle des ganzen Rechnungs-
verfahrens. Durch Division der beiden Formeln (15b) wiirden
die Momente sich wegheben und eine geometrische Bedingung
fiir den Wegfall der Schubspannungen in den beiden Stegen s’
und '’ resultieren, die wir aber nicht erst anzuschreiben brauchen.
SchlieBlich sei noch darauf hingewiesen, dafl auch im
Falle des Vorhandenseins von Zwischen-
stegen die Querschnitte infolge der Ver-
drehung nicht mehr eben bleiben kénnen.
Die axiale Verschiebung der einzelnen Wandstellen berechnet
sich auch hier nach den im vorigen Paragraphen entwickelten
Formeln, in die nur fiir jede Zelle das zugehorige Moment und
ihre Fldche einzufiihren sind. Dabei ist lediglich zu beachten,
dab auch hier wieder die Teilflichen F durch Uberstreichen des
Fahrstrahls vom Gesamtschwerpunkt des Querschnitts aus
entstanden sind. Da die Einzelheiten dieser Rechnung nichts
Neues bieten und auch nur geringen praktischen Wert besitzen,
so konnen sie an dieser Stelle itbergangen werden.

§ 11. Vollzylinder mit nicht kreisformigen Querschnitten.
Die Gleichung der Spannungslinien, Ableitung der Spannungskompo-
nenten, des Torsionsmomentes und der Verdrehung. Anwendung auf
elliptische und rechteckige Querschnitte. Kritik des Verfahrens und
Behandlung diinnwandiger offener Querschnitte. Beispiele eines diinnen

Blechstreifens und eines aufgeschnittenen Hohlzylinders.

Handelt es sich um Vollzylinder, deren Querschnitt von
der Kreisform abweicht, so begegnet die Bestimmung der Tor-
sionsspannung an jeder Stelle nach Grdfe und Richtung erheb-
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lichen Schwierigkeiten. Von vornherein steht nur fest, daf lings
des Umfangs die dort herrschende Torsionsspannung an jeder
Stelle die Richtung der Umfangstangente besitzen muf, da
langs des zum Querschnitt normalen Zylindermantels, wenn wir
von den einer Berechnung iiberhaupt unzuginglichen Ein-
spannungsstellen absehen, keine Schubspannungen herrschen
sollen.
Denken wir uns die Gleichung der Umfangskurve
b e (L L e Sy iy L
mit den Koordinaten zy auf ein rechtwinkliges Achsenkreuz
durch den Querschnittsschwerpunkt O bezogen (Fig. 48), und die

Schubspannung 7 am Umfang in ihre Komponenten 7, und 7,
normal zudenAchsenrichtungen?) zerlegt, so stellt

W _dy o)

T A
die Bedingung der tangentialen Richtung der Schubspannung
am Umfang dar. Schreiben wir diese Gleichung in der Form

T Bty diy = (R R o2

1) Der Grund fir diese Bezeichnung der Schubspannungskompo-

nenten im CGegensatz zu derjenigen der Normalspannungen in den

Achsenrichtungen selbst wird sich aus den allgemeinen Erdrterungen
itber das dreidimensionale Problem spiter (Kap. VI) ergeben.

Lorenz, Elastizitatslehre, 8
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0 stimmt gie mit der Differentialgleichung der Umfangskurve (1),
nimlich

ol
0 dax 1— ---——d =0T e L e s BT
itherein, wenn
i v ;
Ty = D’ TBZ_W (3),

d. h. wenn die Schubspannungskomponenten als partielle Ab-
leitungen der Gleichung der Umfangskurve betrachtet werden.
Nun geniigt aber der Differentialgleichung (1a) nicht allein die
Umfangskurve, sondern eine ganze Schar von Kurven
in der Querschnittsebene, die sich voneinander nur durch eine
bei der Differentiation weggefallene Konstante ¥, den sog.
Parameter jeder Einzelkurve unterscheiden.

Ubertragen wir die Beziehungen (3) fiir die Schubspannungs-
komponenten auf die ganze durch (la) dargestellte, in Fig. 48
punktierte Kurvenschar, soweit sie innerhalb des Querschnitts
verliuft, so gibt die Tangente der durch einen Querschnittspunkt
hindurchgehenden Kurve

e

die Richtung der dort herrschenden Schubspannung an. Da
dieselbe Eigenschaft auch den Stromlinien in bezug aufl die
Stromgeschwindigkeit zukommt, so erkennen wir, daf} die schon
in § 9 erwihnte und als hydrodynamisches Gleichnis bezeichnete
Analogie zwischen der Flissigkeitsstromung und dem Spannungs-
zustand bei der Verdrehung ganz allgemein zutrifft. In der Talb
folgt aus den beiden Formeln (3) durch Elimination von ¥

ar”—l—g:; I e b e S
pine mit der Kontinuitdtsgleichung der Flissigkeitshewegung
iibereinstimmende Beziehung, wenn 7, und 7, die entsprechenden
Geschwindigkeitskomponenten bedeuten. Betrachten wir dem-
gemiB zwei benachbarte Spannungskurven Fig. 49,
deren Parameter sich um d% unterscheiden mogen, so kann
das Produkt der Spannung 7 mit dem Normalenabstand PP’ =dn
auch in der Form

rdn=rt,dx —7,dYy
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oder mit Riicksicht auf (3)

o oY
zdra:a-é--rﬁx—l——a?dyﬁtﬂp S S )

geschrieben werden. Da ferner d¥ in dem ganzen Streifen zwi-
schen den beiden Kurven denselben Wert behilt, so gilt dies
auch fir das Produkt wdn, d.h.

die Schubspannung ist }
an jeder Stelle dem Nor-
malabstande zweier be-
nachbarfer Spannungs-
linien indirekt propor-
tional. Dieses Ergebnis ist |
offenbar eine Verallgemeinerung l
von Gl (1) in §9, die aus der &2
Tatsache abgeleitet wurde, dal Fig, 49,

normal zur Wandkurve in der

Achsenrichtung des Stabes keine Schubspannungskomponenten
wirken. Dies trifft natiiclich auch fiir den unendlich diinnen
Hohlzylinder mit den Erzeugenden ¥ und ¥ + d¥ sowie der
Wandstéirke dn zu, auf den alsdann nur ein Element d3)t des
ganzen Torsionsmoments I entfdllt, so zwar, dall nach Gl (1)
§ 9 mit der von der Kurve ¥ eingeschlossenen Fliche F

@l = 2 it an S el s (D)
ist. Mit Riicksicht auf (3b) diicfen wir aber hierfiir auch schreiben
dI =2 =0 d (F-Tr— DR (ba)

woraus durch Integration zwischen zwei Erzeugenden ¥, und ¥,
mit endlicher Parameterdifferenz und den eingeschlossenen
Flachen Fy; und F,

M=2(F,P,—F,P)—2[WdF . . . (5b)
1

hervorgeht. Diese Formel wire giltig fiir einen Hohlzylinder,
dessen Querschnitt durch die beiden geschlossenen Kurven ¥
und ¥, begrenzt ist.

Im Falle eines Vollzylinders setzen wir zweckmifBig fiir die
Umlfangskurve nach Gl (1) ¥, =0, wihrend [ir die untere
Grenze, d. h. den Schwerpunkt, die Flache 7/, =0 wird. Mithin ver-

8*



116 Kapitel 1. Verdrehungselastizitit isotroper Korper.

einfacht sich fiir den Vollzylinder das Torsionsmoment
(5b) in
F
=R dE = SRl o
(1]

Zu demselben Ergebnis miissen wir natiirlich auch gelangen
durch Aufstellung des Torsionsmomentes fiir ein Flachenelement
dF = dx dy, ndmlich

%R:S(Imm—r,,y)df'. RECTE Bt g T U O
dessen analytische Transformation?) in (5¢) hier unterbleiben kann.

SchlieBlich ergibt sich noch die Verdrehung aus der
Forménderungsarbeit nach der ohne weiteres verstindlichen
Gleichung

d 1 5 e :
9}&—&‘33:(; szF:G S{W-}-mw AR

in der die Integration, ebenso wie in (6), nach Kenntnis der
Verteilung der Torsionsspannung iiber den Querschnitt, d. h. der
Abhéingigkeit ihrer Komponenten 7, und 7, von den Koordinaten,
stets ausfithrbar ist. Hierzu bedarf es aber nach Gl. (3) nur der
Aufstellung einer fir den ganzen Querschnitt giiltigen Funk-
tion ¥, der auch bei vollem Querschnitt die Umfangskurve,
bei Hohlzylindern beide Begrenzungen geniigen miissen.

1. Als erstes Beispiel betrachten wir einen ellip -
tischen Querschnitt mit den Halbachsen « und b,
dessen Umfang der Gleichung

35 e e
5 =+ Ty L=l o e e )
geniigt. Setzen wir mit ciner Konstanten &

7 S 25
P !c( o 7 1). PR e T
so erkennen wir, daff fiir den Umfang wegen (8) ¥ =0 wird.
Hieraus ergeben sich nach (3) die Spannungskomponenten

s A adl o Dhy

rx—‘ax_ a2 ! Iy—'—ay sy (10)

1) Vgl. hierfiir die Abhandlung von L. Henneberg: Zur Torsions-
festigkeit. Z. f. Math. u. Physik. 1904. Bd. 51.
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und nach (5¢) das Torsionsmoment

93%:—2&((22—}-3}—1)&}? R T

e

oder mit F —mab
M=2% (:rr, ab — I

e

gxﬂdF—-;é- (y? dF) (ki

Nun sind aber die beiden axialen Trigheitsmomente der El-
lipsenfldche®)

§22dF =7 &b, j;ﬁd}?:f-ubﬁ. ey

also wird aus (11a)

Me—Fmab v e DY
Dasselbe Resultat ergibt sich natiirlich auch aus (6) mit (10),
nimlich

2 2
M= 2% ((%Jrfg) dF =k ab.

Durch das Torsionsmoment (11b) ist erst die Konstante &
der Gl. (9) der Spannungskurven bestimmt, die offenbar kon-
zentrische und dem Umfang dhnliche Ellipsen darstellen. Damit
ergeben sich die Spannungskomponenten (10) zu

2 Mz 2 My

T e = .
LS mabd

. (104a),
also proportional den zu ihrer Richtung
normalen Koordinaten des zugehdrigen
Querschnittspunktes, wihrend die resultierende

Schubspannung
e e
F—Vfa:'—}—fyz = .’."'Eﬁ'ab_ ] (1_4—1_-54_ o (101))

wird. Sie erreicht ihre gréfiten Werte lings des Umfangs, dem
gleichzeitig die groBten Werte von z? und y? zukommen. Am
Umfange selbst gilt Gl (8), mithin ist dort nach Elimination
von y

1) Diese berechnen sich am bequemsten aus der Projektion der
Kreisflache, deren axiale Trigheitsmomente aus Symmelriegriinden
(Lorenz, Techn. Mechanik, S. 284) gleich dem halben polaren sind.
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mit einem absoluten Maximum fiir 2 =0

29M

Tmax =— 75 = Tgmax
7 b2 o

und einem Minimum fir z —a
2M

e L
nazb yInax

Tmin =

Diegrolite Spannunghbeider Torsioneines
elliptischen Zylinders tritt demnach am
Ende der kleinen Achse auf.

SchlieBlich erhalten wir noch fiir den Verdrehungswinkel
der Lingeneinheit des Zylinders aus (7) mit (10a)

dp 4 i ) M (a® + b?) ey

T Coat ae;rej P W raeE )

Auf ganz dhnliche Weise 1Bt sich auch der Fall eines Hohl-

zylinders behandeln, dessen Querschnitt durch zwei konzentrische

und &hnliche Ellipsen mit den Halbachsen a, b, und @, b, be-

grenzt ist. Hierbei ist nur zu beachten, dafl, wenn fiir den Umfang

k(S 1) =0

gesetzt wird, in Gl. (5b) der Pa: ﬂmcl;er ¥, der inneren Begrenzung
sich daraus z. B. mit # =a;, y =0 wegen @, : s =8, : b, zu

a,* by? |
!pl-—_fi(aig —1)—5,( 1 —1)
berechnet, wihrend fiir die Trégheitsmomente (12) die Diffe-
renzen der dulleren und inneren Ellipsenflichen zu setzen sind.
Der weitere Rechnungsgang bietet dann nichts Neues.

e 2. Ein rechteckiger Quer-

| schnitt Fig. 50 werde begrenzt durch

vier Gerade mit den Gleichungen
g4a=0, y+b=0,
z—a=0, y—b=0,

so dall der Gesamtumfang der Formel

(x—a)(z+a)(y—0b) (y+b) =0

oder
(BE =B (g2 — b =0 . . el
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geniigt. Durch Multiplikation dieses Ausdruckes mit einer noch
zu bestimmenden Konstanten % erhalten wir daraus die all-
gemeine Gleichung

Y=Fk(2®—) -0 . . . . . (15),
die fiir verschiedene Werte des Parameters ¥ eine Kurvenschar
definiert, deren Verlauf im Innern des Querschnitts durch Fig. 50
dargestellt ist. Betrachten wir diese Kurven als Spannungs-
linien, so folgt daraus nach (3)

Tp— b—l'p—: 2k a(y>—b?) ’
0w
(16)
oL 8 o S A
2 b?;!_ S ol b y
und das Torsionsmoment aus (5¢) oder (6) mit dFF = dx dy
=-4b w:--—i—a =g
"TJE——MGJ {22 (42— %) 4 42 (& "——aﬁ}]dmtiyxm@kfﬁﬁ (17).
LI'__ L=—0a
Damit aber wird aus (16)
__ 9 Ma(y®—b — 19 My@@P—a?) .
el T g W
mit einer resultierenden Spannung
gk T :
=16 Va2 (2 — b%)2 4 42 a?jF - o (L6h).

Daraus erkennt man, dali die Spannungskomponenten 7, und 7,
lings einer Geraden y — konst. bzw. 2 — konst. den Achsen-
absténden x bzw. y proportional ausfallen und daf} die resul-
tierende Spannung am Umfang fiir « = + a, y =0 baw. =
y — t b ihre Hochstwerte

g Il 9 Mm
Ixmax—'1(};-a2b-, 'fymax=—ﬁm,

also in der Mitte der Rechteckseiten erreicht. Da offenbar wegen
o

Tx max < Ty max
ist, s0 kommt das absolute Spannungsmaxi-
mum den Mitten der beiden Lingsseiten Zn
wihrend die vier Eeken »—Ha y—tbh nach
(16b) spannungsfrei bleiben.
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Fiihren wir dann noch die Ausdriicke (16a) in Gl. (7) ein,
so folgt fiir den Verdrehungswinkel des Stabes mit rechteckigem
Querschnitt
d(') 9‘2 ED?' Lol 2 2 2y a 2 ava]
{':(16) T 3 B W PP+ @ — @ de dy
—b—a

oder ausgefiihrt

de 9 M PR

dz 40 6 &b

Der vorstehenden Ermittlung der Spannungsverteilung
haftet nun offenbar eine gewisse Willkiir in dem Ansatze der
allgemeinen Gleichung der Spannungslinien dadurch an., dal}
man die mit einer Konstanten & multiplizierte Funktion der
Umfangsgleichung einem vom Null verschiedenen Parameter ¥
gleichsetzt. Mit demselben Rechte hétten wir auch mit einer
beliebigen Funktion f (¥) fir die Spannungslinien

(18).

Ees L i Sttt bl S (€
setzen konnen, woraus dann
P 0 df ol
S e A Ba ;
v ap N
WOE S e S0

und fir jede Spannungskurve, lings deren d¥ =0 ist, wieder
Gl. (2a) folgen wiirde, ohne dafl wir iiber die Funktion f (%)
etwas auszusagen vermochten. Wir werden spiter sehen, dab
dies nur daran liegt, dafl wir in unseren obigen Betrachtungen
den wichtigen Zusammenhang zwischen der Schubspannung und
der Gleitung nicht benutzt haben, der in der Tat jede Willkiir
iiber die Wahl der Funktion f(¥) beseitigt und eindeutige
Ergebnisse liefert. Dieser strengere Gedankengang wird zwar
unsere Formeln fiir den elliptischen Querschnitt bestédtigen,
dagegen diejenigen fiir das Rechteck nicht unwesentlich modi-
fizieren, so dafll unsere hierfiir erhaltenen Gleichungen nur als
ziemlich rohe Néherungen zu betrachten sind. Gleichzeitig
wird dann die exakte Formulierung Aufschliisse iiber die Ver-
werfung der Querschnittsebene liefern, zu deren Bestimmung
wir ja schon bei diinnwandigen Hohlzylindern in § 9 den Zu-
sammenhang zwischen der Schubspannung und Gleitung heran-
gezogen haben.
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Dagegen lilt sich mit den bisherigen Hilfsmitteln noch die
Verdrehung soleher Querschnitte mit hinrei-
chender Anndherung und ohne allzu willkiir-
liche Annahmen behandeln, in denen die
im allgemeinen nicht konstante
Breite AA"=h durchweg klein ge-
gen die Linge ist (Fig. 51). Fir diese
Querschnitte gilt zunéichst wieder die GI. (5),
worin dn  den Abstand zweier benachbarter
Spannungslinien bedeutet, die ihrerseits nahe-
zu parallel der Umfangskurve verlaufen. Da-
raus geht sofort hervor, dall in dem Streifen
zwischen den beiden Spannungslinien das Pro-
dukt 7zdn seinen Wert nicht &ndert. Bezeich-

nen wir weiter mit b :-;_k die halbe Quer- Fig. 51.
schnittsbreite und mit » den halben Abstand BB’

der beiden Schnitte des Streifens mit der Normalen A4 A', so
diirfen wir mit hinreichender Genauigkeit die schraffierte Fliche
F der Gesamtfliche #; des Querschnitts derart proportional
setzen, dald

F_—_Fﬂ%.......(ZOJ

wird. Damit aber geht Gl (5) iiber in
9
m:“_fﬂ..mdn e e e

Nun hat aber die Schubspannung 7 in den Punkten B
und B’ entgegengesetzte Richtung, wihrend sie in der punktierten
Mittellinie iiberhaupt verschwindet, da dort die beiden Zweige
der Spannungskurve nur noch einen verschwindenden Abstand
haben. Daher kann man in erster Annéherung die Schubspannung
selbst dem Abstand von der Mifttellinie proportional annehmen,
also mit einem dem Punkte A zukommenden Werte 7,

n
T=Ty— R o i 22
0 b ( )
schreiben, womit die Momentengleichung in

dg)z:%‘:“—rnnzdn. e e e ey
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tibergeht. Daraus folgt aber durch Integration das ganze Tor-
sionsmoment

i b 2
n = —2-;;“ rO'Enz din— ;—, bl s (D)
{
und damit die Schubspannung an einer beliebigen Stelle
E ey a5
r_‘_z}?ﬂﬁ et oe SURERC S SR I

woraus man sofort erkennt, daffdieMaximalspannung
an der schmalsten Umfangsstelle herrscht.
Setzen wir diesen Wert in die Arbeitsgleichung (7) ein, so liefert
diese mit dFF —dn ds die Verdrehung

s b
dp_9 B (nar_ 9 W (frands
dz 4 GE® ) B 4 GF? ) ) b '
L]
oder integriert
8
dop 3 I g ds 23 4
O R S T e S S e
0
worin sich das Integral iiber den ganzen Querschnittsumfang zu
erstrecken hat, wihrend & die halbe Breite bedeutet.

3. Als Beispiel betrachten wir zunéchst einen schmalen
rechteckigen Querschnitt, fir den Fy =4 ab, s =4 a ist.
Damit erhalten wir fiir die gréBte Torsionsspannung aus (21b)

3 M -

=_ """ . . . . . . . (2
To 8 ab? e,
wihrend das oben in Beispiel 2 angewandte Verfahren hierfiir

g s

1%;_?3’ also den 1,5 fachen Wert lieferte. Es liegt auf der Hand,
dafl fiir den Fall sehr schmaler Querschnitte, z. B. fiir Blech-
streifen, das Ergebnis (22a) zuverlissiger ist als der frithere Wert.

Ganz entsprechend ist fir das schmale Rechteck die Ver-
drehung

dg 3 WM 4a_ 3 MW
dz 7 & GEEZ b T 16 Gab®

wihrend sich aus (18) mit Vernachldssigung von 62 gegen a?
g geg

. (23D},

dafiir E% ag%)-z ergibt. Hier ist also der Unterschied noch erl.mbw

lich gréfer.
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4, Fireinen diinnwandigen Hohlzylindermit
kreisformigem Umfang, der an einer Stelle auf-
geschnitten ist, Fig 52, er- !
geben unsere Formeln, wenn r," der
Radius, & =20 die Wandstirke, also
Fy = Zmr b ist,

3 I
=05 Tl
im Gegensatz zu der mittleren Span-
nung im geschlossenen Ringe nach § 9,

]
E=90Fh T 2mrgh

Die letztere Spannung verhilt

sich bei gleichem Moment zu der gréfiten im offenen Ring wie

. (214),

To

Fig. 52,

e
T g T

Daraus geht deutlich hervor, dall ein Kreiszylinder durch Auf-

schneiden den grifiten Teil seines Torsionswiderstandes einbiifit.

SchlieBlich ist noch die Verdrehung fiir unseren Fall mit s = 4ar,,

L

diz o 2m G, kP

gegeniiber derjenigen des geschlossenen Ringes im Betrage von

1 M

27 Gr@kh

e

§ 12. Elastische Torsionsschwingungen.
Allgemeiner Ausdruck fiir das Torsionsmoment. Vernachlissigung der
Stabmasse. Freie Schwingungen eines Schwungringes. Schwingungen
einer rotierenden Welle mit zwei Schwungmassen. Scheinbare Langs-
schwingungen zylindrischer Schraubenfedern. Beriicksichtigung der
Stabmasse; Aufstellung der partiellen Differentialgleichung. Die Fort-
pllanzungsgeschwindigkeit der Torsion. Grund- und Oberschwingungen,
Knotenpunlkte.

Die bisherigen Untersuchungen iiber die Verdrehung zylin-
drischer Kérper um ihre Léngsachse haben allgemein ergeben,
dall im Zustande des Gleichgewichtes das Torsionsmoment

_ d
s))zz(}J--%:GJ-ip‘ R e

~0
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gesetzt werden darf, worin G den Gleitmodul des als isotrop
vorausgesetzten Materials, @ den Verdrehungswinkel, z, die
freie Stabliange und J einen von der Form und den Dimensionen
des Querschnitts abhéngigen -Ausdruck bedeuten, der im Fall
eines kreisformigen Voll- oder Hohlquerschnittes mit dessen
polarem Tréagheitsmoment um das Zentrum iibereinstimmt.
Denken wir uns nunmehr den Stab an einem Ende einge-
spannt, wihrend er am anderen Ende einen aufgekeilten
Schwungring von der Masse m mit dem polaren Triigheits-
halbmesser k,, also dem Tréagheitsmoment @, =m k> trigt,
welches das entsprechende Tragheitsmoment des Stabes um
seine Achse weitaus iiberwiegt, so wird im Falle einer Verdrehung
des Schwungringes um d¢ das Torsionsmoment diesem eine
nach der Ruhelage zu gerichtete Winkelbeschleunigung derart
erteilen, dall unter Vernachlidssigung der Stabmasse
2
»JJI:—@)O%ETP S R e
Subtrahieren wir diese Formel von (1), so folgt

tfrp 0 -
0 —I——-—— =i ki o el 2 (20

oder mit der Abkiirzung

GJ a
@(El o L et T
auch 2 -
dt({) mhgdgn=0F . o . LA O3 aE
Das allgemeine Integral dieser Schwingungsgleichung ist
(o BT i A o i W S S 1

worin A und B zwei Konstanten darstellen, die sich aus den
Anfangshedingungen des Vorgangs (z. B. einer Auslenkung g,
zur Zeit { =0 ohne anfingliche Winkelgeschwindigkeit) be-
stimmen, wihrend die Sehwingun gs dauer ¢, sich zu
2 0,2
R e AR T8 l “"“ I 2 s e
&y
berechnet. Sie ist offenbar identisch mit dLrjenigen eines mathe-
matischen Pendels von der Lénge z, unter dem Einflusse einer

Beschleunigung
GJ

= g, . (bh)
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und bietet ein bequemes Mittel zur experimentellen Bestimmung
des Gleitmoduls G dar.

Wesentlich anders gestaltet sich der Schwingungsvorgang,
wennder Stabmiteiner Winkelgeschwindig-
keit m um seine Achse rotiert. Esmdgen jetzt an seinen
beiden Enden zwei Massen m; und m, mit den polaren Tragheits-
halbmessern f; und %, also den Trig-
heitsmomenten i b ]

O =gl % 0, — m, 2 ()
sitzen (Fig. 53), denen gegeniiber die
Stabmasse mit ihrem polaren Trig-
heitsmoment wieder vernachlissigt wer- |
den kann. Weiterhin greife am Schwung- Fig. 53
ring ¢, das treibende Moment 9, an,
am Schwungringe @, das widerstehende Moment M, so daf
unser Beispiel dem Falle einer Transmissionswelle entspricht,
an deren beiden Enden etwa durch Riemscheiben Energie zu-
bzw. abgeleitet wird. Ebenso féllt hierunter die Schraubenwelle
eines Schiffes, an deren einem Ende die Maschine angreift,
withrend aul dem andern Ende der Propeller sitzt.

ol

Infolge der Elastizitit der Welle werden die beiden Schwung-
massen von einer willkiirlichen gemeinsamen Ruhelage aus in
jedem Augenblick verschiedene Winkel ¢, und ¢, zuriickgelegt
haben, deren Differenz ¢, — @, —¢ mit der Verdrehung der
Welle selbst iibereinstimmt. Denken wir uns einmal die Welle
entfernt, so miissen wir ihr durch Gl. (1) gegebenes Torsions-
moment MM am Schwungringe @, als Widerstandsmoment, am
Schwungringe @, dagegen als treibendes Moment anbringen.
Auf diese Weise erhalten wir die beiden Formeln

2
0, — 0 = L

1 g2

]2
m— M, = 6, ‘dsz[

durch deren Addition das als Moment von inneren Kriften
aufzufassende Torsionsmoment I naturgemil wieder herausfallt,
Da es uns hier darauf ankommt, die zeitliche Anderung der
Verdrehung, also den Schwingungsvorgang, zu studieren, der
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sich vermutlich der Rotation des ganzen Systems iiberlagern
wird, so dividieren wir die erste Formel (7) mit @, die zweite
mit @, und erhalten nach Subtraktion beider mit ¢, — ¢, — ¢
sﬂ?t My 1 1 &>o
= m(@l = 92) )
oder nach Einsetzen von (1)
e G 1 ) A
T et | Sy, || | s S [ = - - - 8 i
o, 7o, (@1+'@2q“+ as ®)
Sind diebeiden Momenteecinander gleich,
also

=
“0

SJR]_ == E]J"‘.a — S:RO . . . . . - . (9)1
so folgt aus (7) durch Addition
P o
0, d£31+93 d.!;"O SN S i

woraus entgegengesetzt gerichtete Winkelbeschleunigungen resul-
tieren, wihrend Gl. (8) in

2 GJ( E}ann)_ :
a4 01+@)( D e S
iibergeht. Schreiben wir hierin
GJ ( 1 1 ) ¢
|t = . . ... . (10
% :[;)1 Oy 5 &9
Y
e e

wonach also ¢, die statische Verdrehung des Stabes durch das
Moment M, bedeutet, so vereinfacht sich (8a) in
dz

P —|——a m—anl —F S S SR N E B
mit dem allgemeinen Integrale
g—gy=dcovatt Beinegt . .. (13).

In diesem Falle der Gleichheit des treibenden und des
widerstehenden Momentes iiberlagert sich also der statischen
Verdrehung der Welle eine freie Schwingung von der
Dauer

2m / Z
1

=2ng—f e . . (120,
V‘”"(o +0)

to=""
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die offenbar kleiner ausfillt als der Wert (ba) fiir die einseitig
cingespannte Welle und sich ihm mit unbegrenzt wachsendem o,
beliebig nahert.
Praktisch wichtiger als die Gleichheit der heiden Momente
My und M, ist ihre periodische Verdnderlichkeit :
der wir mit hinreichender Genauigkeit durch den Ansatz
S'E:Tl S Zgi_: =Ady+ Ay coswt 4 A,cos2mi = Ao cos ey
+ Bysinwt 4 Bysin 2wt .. B, cosnwl (13)
unter der Voraussetzung gerecht werden, daf die Schwingungs-
ausschlage ¢ =@, — @, nur klein ausfallen. Alsdann geht die
Differentialgleichung (8) mit der Abkiirzung (10) iiber in
2
%{T— + (fp— (1?)
=A;coswi{A,c082w¢ .. A, cosnmit
+ By sinwt~+ By sin 2 wi . -+ B,sinnwi . (14),
worin
‘ii?:(pﬂ. 3 e ook S i)
wieder die statische Verdrehung durch die konstanten Teile der
beiden Momente 9, und M, bedeutet. Uber diese Verdrehung
lagert sich nunmehr eine freie Schwingung nach Gl. (12), zu der
dann schliefilich eine erzwungene Schwingung hinzutritt, deren
Einzelglieder denjenigen des auf der rechten Seite von (14)
stehenden Impulses entsprechen. Mithin lautet das allgemeine
Integral von (14)
@ —@o=4A cos at -+ Bsinat
+ Creoswt+ Cycos2wt ...+ C,cosnmt
~+ Dy sin wt+ Dysin 2wt 4 ...~ D, sinn wt (16),

worin sich die Koeffizienten € und D durch Einsetzen in (14) zu

& il W B
R 1 P ) .

A, B, Rl
& Dol Pt 1 i i J

bestimmen, wihrend 4 und B durch die Anfangsbedingungen
gegeben sind. Setzen wir z. B. fest, dal zu Beginn der Zeitrechnung
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das ganze System gerade gleichférmig rotiert, wobei natiirlich
nur die statische Verdrehung vorhanden ist, so wird fiir £ =0,
dep
? =%0 g =0, woraus
A=—(C;+Co+...) l

w s Llalreh
B=——(Dy+2D,+-.) | i
hervorgeht. Das Integral (16) nimmt demnach die Form an
»‘ i i i\
@ — o= C; (cos wt —cosat) 4 o D, ( ql{;;ﬁ—— sn:la J
o : .
- Cy (cos2wi—cosat) 2w D, (EI.‘Z:;% i smaa,t )

te
oder wegen (16a)
B, (_s_i{l__m_i L

A, (cos ml— cos at) 1] a
s == a® — 2 s R— 2
9B (Ein'lmll__ “»EE{)
Ay (c0s 2 w1 — cos at) 20 2 a
S a®—4 w? v, o a® —4 o
ol wlls Bifsrmsmdbi b Brn B elieie kel

Im Falleder Resonanz des kten Impulsgliedes
mit der Eigenschwingung des Systems, d. h. fir
k w =a wird der Ausdruck

O TR T

Bk(sinkm {° sinat )
s 2 — 2

Ay (cosk wt— cos at)
a2 IRl

wegen des gleichzeitigen Verschwindens der Zédhler und Nenner
unbestimmt, so dafl man durch Differentiation nach «. oberhalb
und unterhalb der Bruchstriche

A k B, B
E(Aksmat-—-—a--—cosaz)—- 58 Sinat
erhilt, Es tritt also bei der Resonanz zu den
sonst ungednderten Einzelschwingungen ein
Term hinzu, dessen Amplitude mit der Zeit
unbegrenzt zunimmt. Da hierbei naturgemili die
Proportionalititsgrenze bald iiberschritten und bei weiterer
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Steigerung sogar die Bruchgrenze erreicht sein wird, so bedeutet
die Resonanz eine Gefahr fiir den Bestand des ganzen Systems,
die in der Praxis unbedingt ausgeschlossen sein sollte. Dies
wird jedenfalls erreicht, wenn von vornherein

ARy e aah SR 1T T | (18),

d. h. die Umdrehungsdauer der Rotation kleiner
als die durch (12a) gegebene Dauer der Eigen-
schwingung des Systems gewdahlt wird, wih-
rend eine durch Verstirkung der Welle hervorgerufene Vermin-
derung der REigenschwingungsdauer die Gefahr der Resonanz
geradezu heraufbeschwéren wiirde. Dieses Ergebnis ist von
besonderer Bedeutung fir die Propellerwellen der Schilfe, von
denen im Falle der Resonanz die frei herausragende Schraube
abgewiirgt wird und verloren geht, wonach das Schiff hilflos
den Wind- und Wasserstrémungen ausgesetzt ist. Durch die in
neuester Zeit hauptsichlich infolge der Einfithrung von Dampl-
turbinen bedingte Steigerung der Umlaufzahl unter gleichzeitiger
Verminderung der Wellendurchmesser fiir gleiche Treibarbeit
ist diese Gefahr fiir die Damplschiffahrt nach Maligabe der
Bedingung (18) erheblich vermindert worden,

Das vorstehende Rechnungsverfahren 188t sich noch auf
den Fall von mehr als zwei Sch wungringen auf
der Welle und verschiedenen Dimensionen dieser zwischen
je zwei Schwungringen ausdehnen, wodurch sich natiirlich der
Gesamtvorgang erheblich verwickelt. Immerhin bildet die Durch-
arbeitung des Problems fiir den Leser eine recht niitzliche Ubung.

Zu den Torsionsvorgingen gehéren auch noch die s ¢ h e in -
baren Longituclina]schwiugungen zxlindri-
scher Schraubenfedern (Fig. 37), deren axiale Ver-
schichung der Endpunkte As sich nach Gl. (14a) § 8 berechnet.
Umgekehrt folgt daraus die Zugkraft zur Dehnung der Feder zu

4
P— _.-As. R e L

worin 7, den Drahtradius und » die Anzahl der Windungen vom
Windungsradius @ bedeutet. Ist die Feder an einem Knde fest-
gehalten, wihrend mit dem anderen eine Masse m sich axial
verschieben kann, se wird diese nach der Auslenkung um As

Lorenz, Blastizititslehre, ' ]
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durch die Kraft P nach der Ruhelage hin eine Beschleunigung
erfahren, so zwar, dafl

A s !
P=—m (dT; {20},
also im Verein mit (19)
A s Gryt
ol TR AL e R SR

a2 hna*m
ist. Die hierdurch gekennzeichneten Schwingungen der Masse m

besitzen eine Dauer, die sich nach Analogie von (4) und (5a) zu

3
i“zwl/fg’fu;n e 8 B g ) h
berechnet, woraus man wiederum den Gleitmodul G bestimmen
kann. :

Verbindet die Schraubenfeder zwei Massen m, und my, die
sich wie zwei federnd gekuppelte Eisenbahnwagen mit einer ge-
meinsamen Geschwindigkeit ¢ in der Achsenrichtung vorwirts
bewegen, so lagern sich dariiber Schwingungen der Korper mit
einer Dauer, die dhnlich wie (12a) durch die beiden Massen be-
stimmt ist. Es liRt sich zeigen, daf in diesem Falle auch durch
gleitende oder Rollenreibung der Massen auf ihrer Bahn die
Schwingungen nicht vernichtet werden konnen?!), wie man in der
Tat auf der Eisenbahn jederzeit beobachten kann.

Die bisher entwickelte Niherungstheorie der Torsions-
schwingungen stabférmiger Korper versagt, wenn die Korper-
masse nicht mehr gegeniiber den Zusatzmassen vernachléssigt
werden kanm, und zwar gleichgiiltig, ob die letzteren, wie oben
angenommen wurde, an den Stabenden befestigt oder lings
des schwingenden Stabes irgendwie verteilt sind. Diesen Fall
haben wir z. B. in einem Schiffe vor uns, dessen AuBenhaut
unter dem Einflusse der variablen Drehmomente der Maschinen
und Propeller Torsionsschwingungen vollzieht, wobei der Schiffs-
inhalt, Kessel, Maschinen, Ladung usw., nur mitgenommen
wird, ohne selbst Spannungen zu erleiden. Daher bezieht sich
in der Gleichung (1) der Ausdruck J lediglich auf die der Torsion
unterworfenen Teile des Querschnitts, den wir zunéchst noch
als unverdnderlich lings des ganzen damit als zylindrisch ange-

1) Vgl. Lorenz, Techn. Mechanik starrer Systeme, S. 178 ff.
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sehenen Kérpers vorausselzen wollen. Da jedoch in diesem Falle
schon wegen des Wegfalls fester Einspannungen die ginzlich
frei schwingenden Stabenden ein lings des Stabes veriinder-
liches Torsionsmoment bedingen, so diirfen wir nicht mehr er-
warten, dafl die Verdrehung der Lingeneinheit eine konstante
Grolle darstellt. Der Verdnderlichkeit des Drehwinkels ¢ selbst
mit z werden wir daher in der Momentengleichung (1) jetzt
durch die partielle Ableitung gerecht.

Wir betrachten nun eine Scheibe des Kérpers von der axialen
Dicke dz (Fig. 54), auf deren Vorderfliche das Torsionsmoment 3t
wirkt, welches bis zur Hinterfliche auf 9t - aalT_E dz angewachsen
ist. Bezeichnen wir dann das polare
Trigheitsmoment des stofferfiillten Quer-
schinitts einschlieflich der lings des ganzen
Stabes gleichférmig verteilten spannungs-
freien Zusatzmassen, die in Fig. b4 schraffiert
angedeutet sind, mit @ in bezug auf deren
Querschnittsschwerpunkt, so ist @ d z Fig. 54,
das totale Triagheitsmoment des Scheiben-
volumens um die Schwerachse in der z-Richtung, und wir
erhalten als Bewegungsgleichung

[ E)EUE % | r ;J’
™+ aiz)—mz ; Odz-

02 [
012

oder kiirzer
oMty Ry
B2 B AR
worin p einen Mittelwert des spezifischen Gewichts iiber den
ganzen Korperquerschnitt und g die Erdbeschleunigung bedeutet.
In dieser Formel erscheint naturgemil) die Winkelbeschleunigung
als partielle Ableitung nach der Zeit allein, da der Querschnitt
selbst durch die Torsion keine IForménderung erleidet.
Eliminieren wir aus (1) und (23) das Moment 9, so folgt
mit Riicksicht auf die vorausgesetzte Konstanz von .J

(23),

i o ek :
SE Sy 0 o e
oder mit der Abkiirzung
gJ i : i
y;(:—) r— . s il S : % (2:_‘)),
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worin ¢ eine Geschwindigkeit darstellt, kiirzer

2 o2 >
_ag:c f’f e I S T Ly

Dieser partiellen Differentialgleichung sind wir aber schon
in §5 GL (8¢c) flir die Lingsschwingungen eines zylindrischen
Stabes begegnet und erhalten daher nach Analogie von Gl. (15a)
a. a. O. fiir unseren Fall als Integral

¢ = (A cosaz+ Bsinaz) (Ccosact-4 Dsinact) . (26)

mit den noch zu bestimmenden Konstanten , 4, B, €, D. Daraus
folgt zundchst fiir das Torsionsmoment nach (1)

M=—aGJ(Asinaz— Bceosaz) (Ccosact-+ Dsinact) (27).

welches bei einem nirgends eingespannten Kor-
per') an den freien Enden unabhingig von der Zeit ver-
schwinden mufi. Es ist also [ir z =0

0=aGJ:B(Ceosact - Dsinact)

oder B =0, so dal sich der Ausdruck (26) mit den Abkiirzungen
— A C =4y — A D = B, vereinfacht in

M=0aGJsinaz(dgcosact+ Bysinact) . . (27a).

Dieser Ausdruck verschwindet aber nur dann fiir das andere
Ende z = [, worin [ die ganze Stabléinge bedeutet, wenn sin ¢ { = 0,
oder mit einer ganzen positiven Zahl n

T e R

ist. Hiernach ergibt sich fiir jedes n ein Wert von a, dem wiederum
ein Ausdruck von der Form (27a) fiir das Moment und ebenso
ein Ausdruck von der Form

p=cosaz(dycosact+ Bysinact) . . . (26a)

lir die totale Verdrehung an der Stelle z entspricht. Wir werden
darum an Stelle der Gleichungen (27a) und (26a), die nur parti-

1) Die strengere Behandlung der Torsionsschwingung des einseitig
eingespannten Stabes mit einer Schwungmasse am anderen Ende ent-
spricht genau der in § 5 betrachteten Langsschwingung und braucht
deshalb hier nicht nochmals durchgefiihrt zu werden.
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kuldre Integrale darstellen, mit (28) je eine Fouriersche Reihe,
nimlich

n=co £
M = aGJ-nZISII1 n”f:l(ﬂn 08 n"_zﬂ -+ B, si ”'F;Ci) (27 b)
@ = 200% naw I {A”co rwr,r"t “ -+ B, sin -ﬁj('t') (26b)
=

anzusetzen haben, deren Koeffizienten 4,, B, im Falle freier,
d. h. sich selbst iiberlassener Schwingungen durch die s\nfangs—
bedingungen gegeben oder bei erzwungenen Sc hwingungen
durch den Ausdruck fiir das Torsionsmoment an einer bestimmten
Stelle zy im Korper in seiner Abhéngigkeit von der Zeit vor-
geschrieben sind. Das letztere trifft namentlich zu fir Schiffe,
Wo 7, die Stelle der Antriebsmaschine angibt, deren Drehmoment
modifiziert durch das des Propellers vermoge der Reaktion auf
den Schiffskorper tordierend zuriickwirkt. Fiir den veriinder-
lichen Teil dieses Drehmoments diirfen wir aber dhnlich wie in
Gl. (13) mit der Winkelgeschwindigkeit @ der Welle schreiben

=0

Al — 2 Cocosnwt-D,sinnwt) . . . (29),
==
wihrend der konstante Betrag nur eine Gesamtneigung zur Folge
hat, die auf den Schwingungsvorgang ohne Einfluff ist. Die
Formel (29) steht aber nur dann mit (27b) in Einklang, wenn
bei einer Umdrehungsdauer ¢, der Welle

BE g SN SIS ek, e
l : %
oder unter Einfiilhrung der Wellenlinge A, welche der
FDI‘t}]f‘&ﬂ?ll]lUbg eschwindigkeit ¢ der Tor-
sion entspricht,

zo—-:-zé. e - 1

ist, wihrend bei anderen Umdrehungsdauern
bzw. Winkelgeschwindigkeiten des Impulses
iberhaupt keine Schwingungen entstehen
kdnnen.

Es fragt sich nun weiter, ob nicht lings der Stabachse
Knotenpunkte bestehen, deren zugehérige Querschnitte
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nicht an den Torsionsschwingungen teilnehmen. Fiir diese mull
unabhéngig von der Zeit ¢ der Verdrehungswinkel ¢ iiberhaupt
verschwinden, was nur moglich ist, wenn in (26a) die Knoten-
punktsabszisse z, der Bedingung cos a z; =0, also

S 3 5 7
4% =5 - & 7 USW.

geniigt, so dal der Abstand zweier solcher Knoten mit (28)
und (30a)
L s nelig (20T)

i

l
"

T
S ki

wird. Hiernach gibt die Ordnungszahl n der Einzel- oder Ober-
schwingung (gegeniiber der Grundschwingung fiir n =1) die
Zahl der Knotenpunkte des Stabes an, wie aus
Fig. 55 fiic n =1 bis n = 4 hervorgeht. Zu jeder dieser Schwin-

gungen gehort eine Periode des Impul-

et =t
J o | t 1 S
e ses >, wenn f, diejenige der Grund-
| B ey ?l o -
- e T, .
o —— schwingung bedeutet.

e 173 o Es braucht wohl kaum noch bemerkt
= = zu werden, dall man bei Anwendung der
e — vorstehenden Theorie auf die Torsions-

Tia, 55. schwingungen an  Schiffen in  die

Gleichung fiir die Fortpflanzungsge-
schwindigkeit ¢ Mittelwerte von @ und J einzufithren hat,
die nach den Methoden des § 10 aus einer grifieren Anzahl
von Spanten abgeleitet werden komnen, wihrend eine exaktere
Rechnung unter Beriicksichtigung der nicht zylindrischen
Schiffsform zu uniibersichtlich wird, um praktisch in Frage zu
kommen.



~ Kapitel IIL
Die Biegung gerader isotroper Stibe.

§ 13. Die Verteilung der Normalspannungen im Quersehnitt ur-
spriinglich gerader Stibe.
Der krumme und gerade Stab, seine Achse und sein Querschnitt.
Parallelverschiebung der duBleren Krafte nach dem Querschnitt. Hnt-
stehung von Momenten und Querkriften. Zusammenhang beider fir
konzentrierte und kontinuierliche Belastung. Stetige Verteilung der
Normalspannungen, neutrale Schicht. Annahme der Erhaltung der
Querschnittsebene bei der Biegung. Lineare Spannungsverteilung.
Bedingung fir die Existenz des Gleichgewichts, gerade und schiefe
Belastung. Beispiel.

Unter einem stabférmigen Koérper oder einem
Stab e kurzweg wollen wir in der Folge einen Kérper verstehen,
dessen eine Dimension, seine Linge, die beiden an jeder Stelle
dazu normalen Querdimensionen, die Breite und Hohe, derart
iibertrifft, dal die in der Langsrichtung aul der Korperoberfliche
gezogenen Mantellinien in der Nachbarschaft jeder Stelle nur
verschwindende Richtungsunterschiede aufweisen.l) Es heilt
das nichts anderes, als dall die Normalebene zu einer solchen
Mantellinie alle anderen nahezu senkrecht durchschneidet. Die
stetige Folge dieser Schnittpunkte umsehlieBt auf der Normal-
ebene einen Querschnitt des Stabes; die Verbindungslinie
aller aufeinander folgenden Querschnittsschwerpunkte bildet die
Stabachse, deren Richtung ebenfalls auf der Querschnitts-
ebene nahezu normal steht.

1) Man vergleiche hiermil die ganz analoge Definition eines
Stromfadens in der Hydromechanik. Lorenz, Techn. Hydro-
mechanil (1910), S. 59.
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Man kann sich demnach einen stabférmigen Kérper auch
nach Fig. 56 dadurch erzeugt denken, daB man auf den Normal-
ebenen IV;N,... zu einer beliebigen gekriimmten Achse A A
durch geschlossene Kurven die Querschnitte derart abgrenzt,
dall ihre Schwerpunkte mit den Achsenschnitten §;85 ... zu-
sammenfallen.')  Alsdann bildet
die Umhiillung der stetigen Quer-
schnittsfolge die Staboberfliche.

Ist die Stabachse eine Gerade,
so bezeichnen wir den Stab als
einen geraden Stab im Gegen-
satze zu einem krummen Stab mit gekriimmter Achse.
Der gerade Stab geht insbesondere in einen zylindrischen oder
prismatischen iiber, wenn alle Querschnitte kongruent und
gegeneinander nicht verdreht sind.

Soll nun ein stabférmiger Korper unter der Einwirkung
duBerer Krifte, zu denen wir sein Eigengewicht im allgemeinen
hinzurechnen miissen, im Gleichgewichte verharren, so mub
dies zunéchst fir die duBeren Krifte selbst gelten. Haben sie
verschiedene Angriffspunkte, die entweder am Kérper sich be-
finden oder doch mit ihm starr verbunden sein kinnen, so treten
Verschiebungen der einzelnen Stabteile gegeneinander auf, die
ihrerseits mit elastischen Spannungen, und zwar sowohl Normal-
wie auch Schubspannungen, verkniipft sind. Diese Spannungen
lassen sich nun an jedem Querschnitt zu einer Resultanten
und einem Kriftepaar vereinigen, welche den auf der einen
Seite des Querschnitts am Stabe angreifenden duferen Kriiften
das Gleichgewicht halten miissen. Wir diirfen also einen ganzen
Stabteil entfernen und durch die Wirkung aller an ihm an-
greifenden duBeren Krifte ersetzen, die durch Parallelverschiebung
nach dem Schwerpunkt der Schnittebene dort in der Tat ebenfalls
eine Resultante und ein Kriftepaar ergeben.

Liefert diese Parallelverschiebung lediglich eine Normalkraft
zum Schnittquerschnitt, so werden in diesem auch nur Normal-
spannungen, also je nach der Richtung der Resultanten, Z u g -
oder Druckspannungen wirken, wie wir sie im Kap. I
betrachtet haben. Bleibt dagegen nur ein Kriftepaar iibrig,

1) Vgl. E. Brauer, Festigkeitslehre (1905), S. 59.
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dessen Achse normal zum Schnittquerschnitt steht, so ruft
dessen Moment die im Kap. IT untersuchte Verdrehung
des Stabes um seine Achse hervor.

Ergibt sich aufler einer Resultanten in der Querschnitts-
ebene selbst ein Kriftepaar mit einer in diese fallenden Achse,
die sonach normal zur Stabachse steht, so wird die erstere im
Querschnitt Sehubspannungen, das Moment der letz-
teren dagegen sowohl Zug- als auch Druckspannun-
gen wecken, denen axiale Verlingerungen und Verkiirzungen
der Stabelemente entsprechen. Das gleichzeitige Auftreten von
Verlangerungen und Verkiirzungen von Stabteilen ist aber not-
wendig mit einer Anderung der Kriimmung der Stabachse ver-
bunden, die wir als eine Biegung des Stabes bezeichnen.

Im allgemeinen Falle, d. h. beim Zusammenwirken einer
Resultante und eines Kriftepaares mit beliebigen Richtungen
zum Schnittquerschnitt, erkennt man aus der Zerlegung beider
in Normal- und Parallelkomponenten hierzu, daB der Stab als
Ganzes sowohl axial gezogen oder gedriickt als auch verdreht
und sehlieBlich gebogen wird. Handelt es sich dabei nur um kleine
Verschiebungen der Einzelteile innerhalb der Giiltigkeit des
Hookeschen Gesetzes, die wir stets voraussetzen, so kénnen
diese als Superposition oder Ubereinander-
lagerung der Wirkung der Komponenten der
Resultante und des Krédftepaares angesechen wer-
den. Damit aber ist die Maglichkeit gegeben, die oben geschil-
derten Einzelvorginge unabhéngig voneinander fiir sich zu be-
trachten, wie dies in den beiden vorangegangenen Kapiteln [lir
die Zug- und Druckwirkungen

- . = - . i &

sowie fiir die Torsion bereits | : i
. r [+ | I

geschehen ist. s A |

Wir brauchen uns in der ¢ la g
Folge also nur mehr mit der w(, | Dw
Biegung des Stabes zu be- :
fassen. Dabei wollen wir uns , ¢ =

" e - — ¥,
zunéchst auf den geraden
2 4 e reschri (s n |
Stab beschrinken, aul de T

nach Fig. 57 eine Reihe von
parallelen Krdften @ wirken, deren Richtungs-
linien sdmtliech die Stabachse schneiden.
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Zu diesen Kriaften @, die man gewdhnlich als konzen-
trierte Lasten bezeichnet, treten dann im Falle der Ab-
stiittzung des Stabes noch die Auflagedriicke V, welche
den Lasten das Gleichgewicht halten und darum mit ihnen und
der Stabachse in derselben Ebene liegen. Durchschneiden wir
den Stab im Abstande z von einem Ende, so ergibt sich das
dort wirksame sog. Biegungsmoment als die Mo-
mentensumme aller Einzelkrédfte auf einer
Seite der Schnittstelle in bezug auf diese.
Mithin wird das Biegungsmoment fiir die linke Seite der
Schnittstelle in Fig. 57

S ==l SRR SO SRR Ry
und ebenso fiir die rechte Seite bei einer Stablinge [
M= () —F =20 s o mn (20

Aus der durch das Gleichgewicht geforderten Ubereinstim-
mung beider folgt weiter
(Vi4+-Ve—2Q)z=V,l—2Qe¢,
eine Beziehung, die fiir alle Werte von z nur bestehen kann,
wenn gleichzeitig

VI—I_V :S‘Q l (’J}}

wird. Dies sind aber nichts anderes als die Gleichgewichts-
bedingungen der #dufieren Krifte untereinander, die, wie wir
schon oben erkannten, von vornherein erfiillt sein miissen. Ver-
schieben wir andererseits die Kréfte aufl einer Seite der Schnitt-
stelle parallel zu sich nach dieser, so erhalten wir dort auller
dem Biegungsmoment 9% noch aus der algebraischen Summe
dieser Krifte eine Quer- oder Transversalkraft im
Schnittquerschnitt im Betrage von

LI — 0= Vi ot SR (A
wofiir wir auch mit Riicksicht auf (1) und (2) allgemeiner
. d =
e R R R N )

setzen diirfen. Diese Formel hitten wir auch unmittelbar und
ohne ndhere Kenntnis der Stabbelastung aus dem Gleich-
gewichte einer Elementarscheibe A 4 BB, des Stabes von der
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axialen Dicke dz (Fig. 58) ableiten konnen, an dem die entgegen-
gesetzt gleichen Querkrifte der Schnittflichen mit dem Hebel-
arm dz das Moment d3 = Tdz hervorrufen.

Aus der Formel (4) folgt weiter, daf} die Querkraft an den
Angriffsstellen der dulleren Krifte selbst, d. h. fir z = ¢, ¢, usw.
sprungweise ihren Wert um denjenigen der &uleren Kraft findert,
so daB an solchen Stellen die Ableitung (5) unstetig wird. Dies

Y o
Fig. 50.

¢l | f trifft nicht mehr zu, wenn der Stab nach Fig. 59
Jid eine kontinuierliche Belastung tragt,
l.ﬁi{f deren Grofle, auf die Léngeneinheit bezogen,
i wir mit ¢ bezeichnen wollen, so dali ¢dz den Zu-
LJ;” wachs d T der Querkraft beim Fortschreiten um dz
4 bedeutet. Hiernach gilt mit Riicksicht auf Fig. 58
Tig. 58. dar 42N
1=~ dz 5

Da nun in Wirklichkeit jeder Stab ein Eigengewicht besitzt,
welches ohne weiteres als eine kontinuierliche Belastung aufzu-
fassen ist, so erhalten wir an Stelle der Formeln (3) die allge-
meinen Gleichgewichtshedingungen

)
Vit Va=2Q +qds

[
Vol=20Qc-}§qzdz
il

und an Stelle von (%) :

T:Vi—j'grhr—-.l‘ —Vz—i—j'r_;dz N Ll
i -

woraus sich dann das Moment an der Schnittstelle nach Gl (5)
durch Integration ergibt. Natiirlich kann man auch das Moment
und die Querkraft getrennt fiir die konzentrierten Lasten und die
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kontinuierliche Belastung berechnen und nachtriglich die Sum-
mierung vornehmen.m)

Zur Ermittlung der normalen Stabspannungen
betrachten wir die in Fig. 58 durch eine punktierte Linie A'B’
angedeutete Deformation der einen Schnittiliche AB des Stab-
clementes infolge der Wirkung des Biegungsmomentes, dessen
Kenntnis wir nunmehr voraussetzen konnen. Sind die hieraus
kenntlichen Verldngerungen und Verkiirzungen der der Stab-
achse parallelen Fasern iiber den Stabquerschnitt stetig verteilt,
s0 wird eine Faserschicht existieren, deren Linge selbst unver-
indert bleibt, falls nicht, was wir hier ausgeschlossen haben,
auf das Stabelement ecine &uBere Axialkomponente wirkt.
Diese im Querschnitt durch eine Kurve dargestellte Schicht
bezeichnen wir als die neutrale Schicht. Jede Faser
steht alsdann unter dem Einfluf der zugehdrigen Spannung o,
die, je nachdem sie verlingert oder verkiirzt wird, positiv oder
negativ einzusetzen ist. Infolge des Wegfalls der dulleren Axial-
komponente miissen sich auch die von den Spannungen her-
rithrenden Elementarkrifte od¥, wo dF ein Flichenelement des
Querschnitts bedeutet, gegenseitig aufheben, d. h. es mul

T G S R P NS S

sein. Ist der Stabquerschnitt hinreichend klein, so kann man
mit Bernoulli im Anschluff an Fig. 56 zunichst annehmen,
daB bei der Biegung die urspringlich ebenen
Querschnitte nur eine Neigung dp gegen-
einander erhalten, wdhrend ihre Ebenen
selbst keine Formidnderungen erleiden. Dann
aber wird die in Fig. 58 punktierte Linie A'B’ eine Gerade,
welche die urspriingliche Gerade AB in der neutralen
Schicht schneidet. Diese selbst wird als Schnitt zweier
Ebenen nunmehr ebenfalls zu einer Geraden OO0 im Querschnitt
und wird als dessen neutrale Achse bezeichnet.

Bedeutet dann y den Abstand eines Flachenelementes dF),
welches den Querschnitt der Faser C,C bildet, so wird deren

Verldngerung
dAdz=ydgp

1) Vgl. hiermit Lorenz, Techn. Mechanik starrer Systeme, S. 29G ff.
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oder nach Division durch die urspriingliche Faserlinge C,C = dz

sein. Die linke Seite dieser Gleichung ist aber nichts anderes,
als die frither mit & bezeichnete Dehnung der Faser, wihrend
der iiber dem Querschnitt konstante Quotient de:dz auf der
rechten Seite die durch die Biegung hervorgerufene Kriimmung
einer der Parallelen zur Stabachse in der neutralen Schicht
darstellt. Bezeichnen wir den Krimmungsradius dieser defor-
mierten Geraden mit p, so schreibt sich (8) auch in der Form

g amvidlidolne, b Snsuminay iy (8a),
0
und da nach dem Hookeschen Gesetz o = Ee ist, so folgt
Vi
=— e T L AR LN
g=aiy (9)

L'

Da der Quotient E:g fiir alle Querschnittselemente den-
selben Wert besitzt, so liefert die Bernoullische
Annahme der Erhaltung der Querschnitts-
ebenen eine dem Abstand von der neutralen
Achse proportionale Spannung im Quer-
schnitt, die mit der Verlingerung beim Durchgang durch die
neutrale Achse d. h. mit dem Abstand y ihr Vorzeichen éndert.
Da nach Gl. (9) auch die Spannung in ihrer Abhingigkeit von ¥
durch eine Gerade darstellbar ist, so spricht man in diesem
Falle auch von einer linearen Spannungsvertei-
lun g, die wir natiiclich auch direkt als Annahme an die Spitze
stellen und daraus die Erhaltung der Querschnittsebene folgern
konnen.

Infolge dieser linearen Spannungsverteilung diicfen wir
unter Einfithrung einer bestimmten Spannung g, in der Ent-
fernung y, von der neutralen Achse, fiir die man gewdhnlich
den der dufersten Faser znkommenden Héchst-
wert wihlt, an Stelle von (9) auch schreiben

e C
iy — . - . . - . 2 . X ‘}' %
Yo Y (9 a)
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Setzt man diesen Ausdruck oder (9) in die Formel (7) fiir
das Verschwinden der Axialkomponente ein, so wird daraus

o

% (y(E.F = g‘ydﬁ'zo,
Y g

e L

woraus unmittelbar

T L R

alsodas Verschwinden des statischenMomentes
des Querschnitts in bezug aufl die neutrale
Achse hervorgeht, die somit eine Schwer-
achse ist. Weiterhin folgt fiir das Moment der Spannung o
im Flichenelement dF, welche wir nach Fortfall einer Axialkraft
sogleich auf die neutrale Schicht beziehen diirfen, dIX = gy dF;
also liir den ganzen Querschnitt das Biegungsmoment

M= Jagdllsas vwd s KEB)
oder wegen (9) bzw. (9a)
B g,
M= — ‘2031?:—“( RS ee R £ ) L
_ 'sty yﬂuy
worin
e R SR S e L )

das Trigheitsmoment des Quersehnittsinbe-
zug auf die neutrale Schwerachse darstellt, so dalb
wir an Stelle von (10a) auch kiirzer

EO _ 0,0

g Ho

= . (10b)
schreiben konnen. In dieser Formel, in der man den Quotienten
O : y, hiufig als das Widerstandsmoment des Quer-
schnitts anspricht, diifen wir aber auch nach (9a) das
Verhiltnis g,: 3, durch o: y ersetzen, so dall aus
@ a el SUsE o
Y

die Spannung in jedem Abstande von der neu-
tralen Achse bestimmt werden kann.

Auber dem Biegungsmoment werden die Spannungen aber
im allgemeinen noch ein Moment M' um die zur neutralen Achse
XO0X senkrechte Schwerachse Y OY hervorrufen, Fig. 60..
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Mit dem Abstand x des Flichenelementes von dieser Schwer-
achse ergibt sich das gesuchte Moment zu
We—imndE 10 R T

oder mit Riicksicht auf (9) oder (9a)

EI]?':-—f (;Lyu’z"— (r S G B

= J

WOrin
Yenal =Y el D)

das sog. Zentrifugalmoment des Querschnitts
um die neutrale und die dazu senkrechte
Sehwerachse bedeutet.?)

Da nun dem Momente ' der Span- S
nungen kein Moment der duBeren Krifte [,_71\
am “Q_ut_’.rhschﬂitl; das Gleichgewicht hilt, so 4 Hf’j
mull M’ selbst verschwinden. Dies aber istx [~ /T /
nur moglich, wenn das Zentrifugal- ? S
moment des Querschnitts in /
bezug auf die beiden Achsen /

erschwindet, bzw. wenn diese bei- AR
den Achsen sog. Hauptachsen des Fig. 60,

Querschnitts sind. Trifft dies nicht
zu, s0 geniigen unsere Formeln tberhaupt nicht den Gleich-
gewichtsbhedingungen des Stabes, womit auch die Berechnung
der Spannungen aus (10b) oder (10 ¢) hinfillig wird. Wird da-
gegen mit

A IR S
die Achse des Biegungsmomentes parallel
einer der beiden Hauptachsen des Quer-
schnitts, so sprechen wir von einer geraden Belastung
des Stabes, fir die alsdann die oben entwickelten Formeln (8)
bis (10) ihre Giiltigkeit behalten. Dies ist u. a. immer dann der
Fall, wenn der Querschnitt eine Symmetrieachse besitzt, die
stets eine der beiden Hauptachsen darstellt, zu der die Achse des
Ilf:guugumnmontes parallel oder senkrecht verlduft.

') Uber den Zusammenhang der verschiedenen Tragheitsmomente
eines Querschnitts mit dem Zentrifugalmoment vgl. Lorenz, Techn,
Mechanik starrer Systeme, § 36
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Nunmehr erledigt sich auch der Fall der schiefen Be-
lastung des Stabes, bei der die Achse des resultieren-
den Paares der duferen Krafte, also des Biegungsmomentes,
mit einer der beiden Hauptachsen des Querschnitts Fig. 60,
z. B. AOA, den Winkel 9 bildet, um welchen dann die andere
Hauptachse BOB gegen die Ebene des Kriftepaares geneigt ist.
Alsdann brauchen wir ndmlich nur das Biegungsmoment 9 in
seine beiden Komponenten ' = M cos# und M'" = M sinJ
parallel den Hauptachsen zu zerlegen oder, was auf dasselbe
hinauslduft, die in diese Richtung fallenden Komponenten der
dubBeren Krifte und Auflagedriicke, die jetzt gar nicht mehr
einander parallel zu sein brauchen, fir sich zu zwel Biegungs-
momenten zusammenzufassen. Jedes dieser Momente ruft dann
im Querschnitt eine Spannung ¢’ bzw. ¢ hervor, die aus der
Gl. (10¢) unter Einfithrung der Abstinde z' und y' des zu-
gehorigen Fliachenelementes dF, den beiden Hauptachsen sowie
mit den zugehorigen Haupttrigheitsmomenten €, und @, be-
rechnet werden kann, so zwar, dali
Wy My cosd

[N “, b

. 4
p_ W Msind | ‘
S e R S

Daraus folgt dann nach dem Superpositionsprinzip die
Gesamtspannung an jeder Stelle

@ rsm-ﬁ) dGa)

i ?,*"_CC.’_S ﬁ in
T e

o=0+d" =M (—’- &, =

miteinerlinearen Verteilungiberden Quer-
schnitt zu beiden Seiten einer neutralen
Sechwerachse, deren Gleichung aus (144a) sich mit ¢ = 0 zu

, cos sin ¢ .
y (yb + :,\_’;r {jﬁ raar O - - . . . (].J}I

ergibt. Diese Achse fillt mithin bei der schiefen Belastung
durchaus nicht, mit derjenigen des resultierenden Biegungs-
momentes zusammen, wie man vielleicht nach Analogie mit der
geraden Belastung vermuten konnte.
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Weiterhin erkennt man aus (14a), d& 8 die Spannung
ihre groBten Werte am Umfang des Quer-
schnitts annimmt. Das absolute Maximum ergibt sich
daraus durch Differentiation fiir

1 de  dy cosd sin 17 o
do 0, -J’H_I(;)a = S

W da'  da

worin die Ableitung dy’: da’ aus der Gleichung f(2'y’) = 0
der Umfangskurve zu berechnen ist, die natiirlich selbst auf
die beiden Hauptachsen bezogen sein mull.

So erhdlt man z. B. fiir einen elliptischen Quer-
schnitt mit der Gleichung
ES
=l =
in bezug auf seine Hauptachsen die Haupttrigheitsmomente

B,=[otdF =" a'h, O,=[pdf—7alt

Deren Einfithrung in Gl (14a) ergibt dann die Gesamtspannung
4M [y cosd | 2 sind
e

und daraus die Gleichung der neutralen Achse

Da weiterhin fiir den Umfang
L B
aa Y a?
ist, so liegen nach (16) die groBten Spannungen an den Enden
der Geraden

arl

e cotg 9,

die in der Ebene des Biegungsmomentes liegt, bzw. dessen Spur
auf der Querschnittstlache darstellt, wihrend die neutrale Schicht
offenbar nicht mit der Achse des Biegungsmomentes zusammen-
fallt.

Lorenz, Elastizititslenre. 10
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§ 14. Schubspannungen und Forminderungsarbeit.
Bestimmung der Schubspannungskomponente normal zur neutralen
Schicht. Verlauf der Spannungslinien. Beispiele des kreisformigen,
rechteckigen und I-Querschnitfs. Die Forminderungsarbeit bei der
Biegung, Kleinheit des auf die Schubspannungen entfallenden Be-

frages, seine geringe Verdnderlichkeil mit der Querschnittsform.

Aufler den im letzten Abschnitt ermittelten Normalspan-
nungen, welche durch das Biegungsmoment der dulleren Krifte
im Querschnitt eines Stabes geweckt werden, ruft die Quer-
kraft noch Schubspannungen hervor, deren Be-
stimmung zur vollstindigen
Kenntnis der Spannungsver-
teilung nétig ist.

Wir wollen uns dabei zu-
nichst auf den Fall der ge-
raden Belastung eines zylin-
drischen Stabes beschrinken,
bei der die Achse des Biegungs-
momentes emer Haupttrig-
heitsachse des Querschnitts,
die zugleich seine neutrale
Achse A A ist, parallel liegt.
Gehen wir dann in einer Elementarscheibe (Fig. 61) des
Stabes mit der axialen Dicke dz von der Vorderfliche nach der

: " : o 00
Hinterfliche, so wird die Normalspannung von ¢ aufl ¢ s iz

Fig. 61.

anwachsen, so zwar, dall auf ein Elementarstibehen vom Quer-
schnitt d# ein Uberschuf’ g(—: dzd F der Axialkraft entfallt.
Integrieren wir diesen Ausdruck iber einen Teil des Quer-
schnitts, z. B. den oberhalb der Parallelen C'C zur neutralen Achse
zwischen den Ordinaten y, und y, gelegenen, so erhalten wir
eine Elementarkraft, welche die iiber der Fliche CC C'C’ liegende
‘Kappe axial verschieben wiirde, wenn ihr nicht in der Flache
selbst eine Schubkraft entgegenwirkte. Bezeichnen wir die
lings der Geraden CC = 2 x; herrschende mittlere Schub-
spannung mit 7, so ist diese Schubkraft 27,2,dz, mithin
Ua

L O <
2, 2, d2 ::.Yﬁdzdﬁ.

81
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Da sich die Integration nur iiber den in Fig. 61 schraffierten
Teil des Querschnitts erstreckt, so diicfen wir rechts das Diffe-
rential dz herausnehmen und dann gegen das gleiche der linken
Seite wegheben, so daf

\
27, 2y = \b"—dﬁ g e
Vi
tibrig bleibt. Hierin ist aber nach GI. (10c) § 13
Nt )
g = —(.)— PN T S (2),

worin sowohl das Biegungsmoment 9, wie auch das Triigheits-
moment @ um die neutrale Achse nur mit z variieren kénnen,
g0 dall mit
g 0 (M)
P a0 ( !
Gl. (1) iibergeht in

1 M W deN ¢
y1 {74
Da weiter unsere Betrachtung an Hand der Fig. 61 nur fiir
einen zylindrischen Stab gilt, an dem @ konstant
bleibt, so wird aus (3) unter gleichzeitiger Einfiihrung der Quer-
kraft 7 nach Gl (5) § 13

Ua

D T — ({) d'.,m Syrla‘"—_ g; jyriF b et
[/} ih

Aus diesen Formeln erhellt jedenfalls, da die im Quer-
schnitte eines gebogenen Stabes durch eine
Querkraft hervorgerufenen Schubspannungen
normal zur neutralen Achse mit dem Abstand
von dieser variieren. Daraus folgt sofort, dall der
urspriinglich rechte Winkel des Querschnitts mit der Ebene
CCC'C’ in Fig. 61 im allgemeinen fiir jede Lage der Geraden CC
eine verschiedene Anderung erfihrt, womit die der GI. (2)
zugrunde liegende Erhaltung der Querschnitts-
ebenen bei der Biegung unvereinbar ist. Multiplizieren
wir ferner Gl. (3a) beidseitig mit dy, und integrieren nochmals

10%
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itber den ganzen Querschnitt, so ergibt die linke Seite unmittel-
bar die Querkraft, so dab

Ya

g A g
2 (v dyy =1 = e S“‘yl SydF
? ”
wird, was nur moglich ist, wenn

Yo
O={dy, [ydF.
e

Dies ist aber nur ein anderer Ausdruck fiir das Trigheits-
moment, der aus dem uns gelidufigen durch partielle Integration,
bei der die statischen Momente fiir die Grenzen verschwinden,
hergeleitet werden kann.

Die durch Gl. (3a) bestimmte Schubspannung z, ist, wie
schon oben bemerkt wurde, der Mittelwert iiber eine Parallele
zur neutralen Achse. Dal sie nicht den wahren Wert der Schub-
spannung darstellt, erkennt man schon
aus der Bedingung fir den Quer-
schnittsrand, die genau wie bei der
Torsion dort infolge des Wegfalls von
Schubspannungen auf den Stabmantel
eine tangentiale Richtung fordert.
Dann aber miigsen auch noch Sehub-

spannungskomponenten
parallel der neutralen Achse
existieren, die sich bei der Integration
tiber den ganzen Querschnitt autheben,
wenn unserer Voraussetzung gemill kei-

ist. Uber die GroBe und Richtung dieser
Fig, 62, Schubspannungskomponenten gibt in-

dessen die bisherige Betrachtung keinen

Aufsehlufl, so dab man — ohne Zuhilfenahme spéiter (§44) zu be-
handelnder allgemeiner Beziehungen —dhnlich wie bei der Torsion
nicht kreisférmiger Vollzylinder auf mehr oder weniger willkiirliche
Annahmen angewiesen ist. Einen Anhaltspunkt hierfiir bietet
der Verlauf des Querschnittsumfangs, der wenigstens die Rich-
tung der resultierenden Schubspannung dort festlegt. Daraus folgt
z. B. fiir symmetrische Querschnitte in Bezug auf eine Normale
BB zur neutralen Achse AA (Fig. 62), dall bei durchweg gleicher

negleichgerichtete Querkraft vorhanden-
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Richtung der Spannungskomponente r, parallel BB die dazu
normalen Komponenten 7, zu beiden Seiten der Symmetrieachse
einander entgegengesetzt sein miissen. Da iiberdies in den beiden
Scheiteln BB beide Komponenten verschwinden, so ergeben
sich fiir die Richtung der resultierenden Spannung symmetrische
Kurven zwischen beiden Scheiteln, die man in erster Annéiherung
durch gleiche Teilung der Abszissen innerhalb des Querschnitts
konstruieren kann. Alsdann aber diirfen wir alle so gewonnenen
s0g. Spannungslinien als Projektionen des um BB gedrehten
Quersehnittsurnfangs betrachten, wobei die Tangenten aller Punkte
lings der Geraden CC als Projektionen der Mantellinien des
Tangentenkegels durch die Randpunkte CC in demselben Punkt D
zusammenlaufen. Setzt man schlieBlich in erster Anniherung
die Komponente 7,, dem aus (3a) hervorgegangenen Mittelwerte 7,
gleich, so ist mit einem Neigungswinkel ¢ der Tangente gegen
die Symmetrieachse auch die normale Schubspannung durch
e e e e A )

gegeben.
1. Beispiel. Haben wir es mit einem Kreisquer-

schnitt vom Radius ¢ zu tun (Fig. 63), so ist mit y, = «a
’ 3

i R 9 3
SydF =2{Va — 2. ydy =35 (@ —y??,
U U
womit wegen
CC=2u; =2Ya>—y?
Gl. (3a) iibergeht in

e gt 9 (&
=73 g % =73 g @y 6.

Dieser Wert gilt nach den vor- 4
stehenden Ausfithrungen in erster
Anniiherung fir alle Punkte P der
Parallelen CC zur neutralen Achse.
Mit den Bezeichnungen CE = a;
und PE — x ergibt sich aber der
Neigungswinkel O D P =y  der
Tangente in P aus dem Werte O DC = y, fir €

Fig. 63.
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mithin nach (4) und (5)
%——_-—xyl T el () 1
Die resultierende Schubspannung ist demnach

=Vt ni= glam 2 . . . ()
mit dem Maximalwerte auf der Parallelen in € fiir z = x,, also

= 1 5-!" g ] |‘|‘ %
oder auch wegen _
a2y = a®
11:%%{1271. s R s 2k )

mit einem absoluten Hochstwerte fir 2, = a

: [ -
TI‘HE!X=3 (9&2 S e 74 )

lingsderneutralen Achse 4 4. Dividieren wir diesen
Wert durch die mittlere Schubspannung im Quer-
schnitt

7i 14
s (8),
so folgt mit @ = i «t
Tmax 4 -
Tm = B T e oS | T (ba}.

Die Schubspannungslinien sind in diesem Falle Ellipsen
tiber dem zur neutralen Schicht senkrechten Kreisdurchmesser
als gemeinsamer grofler Achse 2¢. Daher lassen sich auch die
obenstehenden Formeln (5) bis (7) solort auf elliptische
Querschnitteausdehnen, wenn wir mit der kleinen Achse 2b

JT
als neutraler Schicht x; durch a, - b und @ durch @, = = wdh
ersetzen, wihrend beim Zusammenfallen der groflien Achse mit
s b T ¥
der neutralen Schicht z; L an Stelle von z; und @, = 5 ab3 fiir @

in die Formeln eingeht.
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2. Beispiel. Im rechteckigen Querschnitt
von der Breite 22, = 20 und der Hohe 2y, = 2/ ist im An-
schluf an Fig. 64

Yo f:
53;{?3}*1:265yciy:b(;‘ﬁ-—yﬁ), f
J's-h

U Us
also nach (3a) l 2
1 I
) (} (']’ _Jl} o {9)’
worin
=T Fh
O={y2dF =2b{ ppdy= 3 iy Fig. 64.

—h —h

ist. Da der Winkel g hier iiberall verschwindet, so dafl die Schub-
spannungslinien innerhalb des Querschnitts normal zur neutralen
Achse verlaufen und an der Ober- und Unterkante mit diesen
zusammenfallen, so treten iiberhaupt keine Spannungskompo-
nenten 7, parallel der meutralen Schicht auf. Diese Folgerung
unserer Annahmen ist in hohem Grade unwahrscheinlich und
wird auch durch eine genauere Untersuchung nicht bestéitigt.
Halten wir uns indessen vorliufig an Gl (9), so fiihrt diese,
wie schon beim Kreisquerschnitt, zu einem Spannungs-
maximum in der neutralen Achse mit einer
parabolischen Abnahme nach den dufleren
Fasern des Querschnitts hin.

Dieser Hochstwert ist hier mit y; = 0

{8 3
T max :i “ B 8 b (93),
wihrend die mittlere Schubspannung
i 4
™w=F = Thb (10)
und das Verhiltnis
Tmax _ i
Ty . (10a)

wird.

Die Unzulénglichkeit unseres Naherungsverfahrens tritt
besonders deutlich zutage bei der Untersuchung von Querschnitten,
die sich aus einzelnen Rechtecken zusammensetzen, wie z. B.
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dem in Fig. 65 schematisch dargestellten eines sog. 1-Trigers
mit der Stegbreite 2b;, der Flanschbreite 2b,, der Steghéhe 24,
und der totalen Hohe 2k, Hierbei ist die Schubspannung im
Flansech mit y, = h, nach (3a)

T —yt 7
%= 5 T T S
mit einem Maximalwerte
i ;lgi = kl?‘
Ty = (_') = ——2—--- LTl T s (1] a)

Fig. 65.

auf der Innenseite des Flansches. Dagegen folgt die Schub-
spannung im Steg aus
Wa ha Iy
‘ 0 T 1( \
.wabl :?;)— (de:—(; k!; de2 "'—'Eydpl)
Uul fis Y
wobei im ersten Integral dF, = 2b,dy, im zweiten dF; = 2b,dy
zu setzen ist. Dies liefert schliefilich

1" T .
=5g [bz(hz—kl +k2_y1r=] Reas v

mit einem Héchstwerte fiic y;, = 0 in der neutralen Schicht
i
U= [ (o2 — Iy? —!—}aIJ SRR
wihrend an der Ubergangsstelle zwischen Steg und Flansch
mit y; = hy; die Schubspannung den Wert
W

m= g5 =M’ . . . . . (12h)
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annimmt. An dieser Stelle springt demnach die Schubspannung
plotzlich von dem Werte (11a) auf (12b) und zeigt im tibrigen
innerhalb des Flansches und des Steges den in Fig. 65 darge-
stellten parabolischen Verlauf. In Wirklichkeit ist natiirlich
dieser Spannungssprung ebenso unméglich wie der endliche
Wert von 7, lings der freien Innenkante der Flanschen. Dort
muf} vielmehr 7, = 0 sein, woraus man etwa auf den in Fig. 65
punktiert eingetragenen Spannungsverlauf in den Flanschen
neben dem Stege schlieBen darf, wihrend der Verlauf innerhalb
des Steges davon nahezu unberiihrt bleibt.)

Um nun festzustellen, welche Bedeutung der Wirkung der
Transversalkraft im Vergleich zu derjenigen des Biegungs-
momentes zukommt, wollen wir die Formédnderungs-
arbeit berechnen, fiir die wir infolge des Wegfalls von Normal-
spannungen aufller in der Achsenrichtung

L =21—B dV —2%'5}2(5 e I A
schreiben diirfen. Hierin ist zunéchst das Volumelement
dV¥=Fdz
so dal} wir auch an Stelle von (13) fiirdie Forméanderun gs-
arbeit der Lingeneinheit des Stabes

f/ 1 1
rjfz_:?E g:ﬂdF{- 50 grzdﬁ‘ o S st Rig)

1) Nach Versuchen von Coker, »Optical Determination of stresse
(Proceed. Roy. Soe. 1912), der auf optischem Wege die Forminderung
dunner durchsichtiger Plattchen aus Nitro-
zellulose von rechteckigem Querschnitt von Z’{/’;///ﬂ
der Hohe 2a und der Breite 25 ermittelte, g{f%
zeigte sich, dal} das parabolische Verteilungs- <4
gesetz Gl (9) nur so lange gilt, als a <7 26
war, withrend fiir @ > 24 die Kurve der 7,
von der Ober- und Unterkante steil auf-
steigend zwei Maxima und in der Mitte ein
Minimum aufwies, Fig. 66. Da die Maxima
und Minima sich nur wenig unterscheiden, so Fig. 66.
empfiehlt Coker fir « >28, die Schub-
spannung einfach als konstant anzunehmen, was jedenfalls praktisch
immer zulissig sein dirfte.
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haben, worin sich die Integrale iiber den Querschnitt erstrecken.
Mit Gl. (2) geht das erste dieser Integrale iiber in
. mz m=
2 2
T \ dF ==

wihrend aus dem zweiten mit Riicksicht auf (4)

[RdF =2+ dF =[r2 (L +t2yp)dF . (15)
wird. Die Auswertung erfolgt dann nach Einsetzen des Aus-
druckes (3a) fiir 7, unter Beriicksichtigung der Neigung v der
Spannungslinien, an deren Stelle wir auch im Anschluli an
Fig. 62 die Neigung ¢, der Tangente an den Umfangspunkten in
gleichem Abstand y, von der neutralen Achse durch

a7 T T
tg'rp:Et-gwl:?l G (16)
einfiihren kénnen. Schreiben wir aullerdem dF =dx dy,, so wird
aus (15)

fz2dF jjrm (i+—L0 wl)d:sdy1:23}m2('1+§5;3€1—)xldyl(-15a).

Nach Fmsetzen von (14) und (15a) geht der Ausdruck (13a)
fiir die Forméi.ndprungs'lrbcit, iber in
dL N> 1 &
T ZEO+ rEn (To: (1+ ’Ul)xldyl . fla"),

dessen zweites Glied fiir JC(]OIL Einzelfall auszuwerten ist.

(14),

3. Beispiel. So erhalten wir fiir den Kreisquerschnitt

Fig. 63 mit :
Py=acody;, Yy = @ sinyy,

sowie wegen Gl. (5), d. h.
T abar
e T4

1

' erdF = 25'.-:,32<1 + ti;ﬂ)xl diyy

2
G (003“%—4— —"3— fh
]
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Hierin ist 5

<+

1 1 o ¥ 3
costy, = g——FQ—_GOSQ%—i‘?COS‘H}H: jc(1s4y;1 ff?pl:'-g—?t
" 5 2 ROl 1
cos®y; = o —|—3—2c-os_1,ul—|—Ecos by a5 €08 6y,
."E . 5
jcos"wl ‘i’h:]g:‘r:

also F 9 T2 :}_ T2 g6
ittt i e T TR U
WAl “(16+8) 57 e

Da nun weiter fiir den Kreis

T

ist, so folgt auch
5o B AN i
Sr-c«EF— BT mal - bSO 5

und damit fir die totale Iw;rm'a‘tnderungbarheil
der Lingencinheit des Kreiszylinders
dL i ) 1486\ 7= 2
e Sl e R
4. Beispiel. In derselben Weise ergibt sich fiir den
rechteckigen Querschnitt Fig. 64 mit

bl s
Y= 0, i == b, Ty = 3 6 (a2 — Y1)
1 (" 8 o
e ) a®
jtz o — 5o 51( 2y 22dy, = o
—a
oder wegen : 4
= 5 ash, F=é4ab
; g ogr g
j’fgtl‘:F: E'a—: 1,2 )
mithin dr A e 5
B = e ne e nlih)
Die beiden Ergebnisse (17a) und (17b) fir den Kreis und

das Rechteck unterscheiden sich formal so wenig voneinander,
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daB wir fiir beide mit hinreichender Annéherung die letzte Formel
(17b) verwenden diirfen?), in welcher der Quotient 7' : F nichts
anderes als die mittlere Schubspannung bedeutet. Jedenfalls
diirfen wir unter Einfithrung eines nur von der Querschnitts-
form abhangigen Faktors § allgemeiner fiir die Forménderungs-
arbeit schreiben

dz ~_ 2\EG®@ " GF,
Fithren wir dann noch den '1ragheltshalbmesser k des Quer-
schnitts in bezug auf die neutrale Achse durch

(e b=

ein und beachten, dab die Querkraft 7 auch als Resultante
aller Lasten einschlieBlich der Auflagedriicke auf einer Seite
des Querschnittes aufgefaBt werden kann, die mit ihrem Hebel-
arm h dag Biegungsmoment

ks 'q'lr’ T=)
dL 1 (M p’f) e

m—=1Th
ergibt, so geht (18) iiber in
dL- 1 P E I
= (1 +B8¢ ) . (18a).

Hierin wird bei Stiben, deren Querdimensionen klein gegen
die Lange ausfallen, auch das Verhiltnis & : & im allgemeinen
pinen kleinen Bruch darstellen, was in noch héherem Mabe fiir
k2 : h? zutrifft. Infolgedessen wird das zweite Glied der Klammer
in den meisten Fillen klein gegen die Einheit, d. h. der auf
die Schubspannung entfallende Arbeitsbe-
trag spielt gegeniiber dem vom Biegungs-
moment herriihrenden bei-langen Stdben nur
eine untergeordnete Rolle. Aus diesem Grunde
vernachlissigt man in der technischen Praxis hiufig die Schub-
spannungsarbeit bei der Biegung iiberhaupt und beschrinkt
sich auf die Untersuchung der Wirkung des reinen Biegungs-
momentes.

1) Dazu ist indessen zu bemerken, dal far Querschnitte mit
Einschniirungen nach Art des I-Tragers der Faktor des Schubspan-
nungsgliedes der Formanderungsarbeit ganz erheblich gréfiere, bis zu &
ansteigende Werte annehmen kann, wodurch aber bei hinreichender
Stabliange gegenuhm den Querdimensionen die GréBenordnung der
Glieder keine Anderung erfahrt.
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§ 15. Hauptspannungen und Spannungstrajektorien.

Die Spannungsverteilung um einen Punk{ des Stablingsschnittes.

Hauptspannungen und Hauptspannungsrichtung. Hauptschubspan-

nungen. Kurven reiner Schubspannung und Spannungstrajektorien.

Beispiele eines Stabes mil einer Einzellast und mit kontinuierlicher
Belastung.

Durch die Untersuchungen der beiden letzten Abschnitte
wurde die Spannungsverteilung in einem gebogenen Stabe voll-
standig festgelegt. Sie gestaltet sich besonders einfach fiir einen
rechteckigen Querschnitt bei gerader Belastung, da in diesem
keine Schubspannungen parallel zur neutralen Achse auftreten,
so dali nur die Spannungskomponenten GIl. (2) und (9) § 14

m
G:""'J
“
“ i) =S
=30 ¢ ) [

iibrig bleiben. Infolgedessen haben wir es hier mit einem
ebenen Spannungszustand zu tun, den wir schon
“in § 2 nidher kennen gelernt haben. Aus dem dort betrachteten
allgemeinen Falle geht der unsere hervor, wenn wir unter Bei-
behaltung der Schubspannung 7 fiir die axiale Normalspannung
0, = ¢ und die dazu senkrechte g, = 0 setzen, so dal} in einem
Flachenelemente mit der Neigung ¢ gegen die Stabachse nach
Gl (6) § 2 die Spannungen

0= asin®@-2rsin@cosy |

2
7, = t (o singcos @ -+ 7cos 2¢) %

herrschen. Die Normalspannungen o, werden zu Haupt-
spannungen, d. h. nehmen unter gleichzeitigem Wegtfall
der Schubspannung grofite und kleinste Werte 6, und g, an fiir
Neigungswinkel ¢,, gegeben durch
- R T __
tg2p = —- G RS SN,
wihrend sich fiir die Hauptschubspannungen

! o el o
Bam=to- =T @ _p - .+ @
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ergibt. Mit diesen Werten berechnen sich dann die Haupt-
%pannunwen selbst zu

¢ i
010 = 5 2 __2 |,0-—-|—r’n'2 _Z_Oyt_JO]\m 42 L T2 (a*— %) _-5 .

T]2 ESS i_.j'lo'?‘ +-‘{lr‘é= "__]'h}ll y_'J_T ( G 2)’ }

von denen auch die ersteren offenbar entgegengesetzte Vor-
zeichen besitzen. Den ganzen Spannungsverlauf um einen Punkt
iibersieht man am bequemsten in den Polardiagrammen Fig. 67

P i, e

Fig. 67. Fig. 68.

und 68, in denen die zueinander normalen Hauptspannungs-
richtungen der o, mit AA, BB, diejenigen der Hauptschub-
spannungen 7,, dagegen mit CC, DD bezeichnet sind, withrend ZZ
die Richtung der Stabachse und Y'Y die Spur des Querschnitts
in der Bildebene angibt. Die gezeichneten Kurven schneiden
dann auf einem unter einem Winkel ¢ gegen ZZ geneigten Fahr-
strahl die zugehorigen Normal- und Schubspannungen ab.
AuBerdem erkennt man aus Fig. 67, dal es fiir jeden
Punkt noech zwei Richtungen gibt, denen
keine Normalspannungen zugeordnet sind,
Fiir diese Richtungen wird die erste Gl (2) mit g, = 0

(0 sin @ -} 27 cos @) sin p =0,
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woraus die beiden Werte

|}

tg(p’:—-a—fzthq}l, g e R

hervorgehen, von denen der letzte die einfache Folge des Weg-
falls von Normalspannungen senkrecht zur Stabachse ist, wih-
rend der erstere mit dem doppelten Winkel eines der beiden
Hauptsehnitte gegen die Stabachse iibereinstimmt.

Man kann sich nun im Léngsschnitt des Stabes eine Schar
von Kurven denken, deren Richtung iiberall mit der Richtung
der reinen Schubspannung ibereinstimmt. Fiir solche reine
Schubspannungslinien?) liefert Gl (5) mit Riick-
sicht auf (1) sowie wegen dy = — dz tg ¢’ die Bezichung

dy T a?—qy?
dz W gy

oder
ydy r 3
P dz—0F W e s (6
Da hierin
_dw
T

ist, so diicfen wir an Stelle von (6) auch schreiben

d N ydy ;

“nf —'dz'—'_——'ﬁ— = e (Ui’l),
woraus durch Integration

Ign M= + lgn (a® — y?) = lgn C?

oder

SRl B Ry — R S BTy
hervorgeht mit einer Konstanten €, die man durch IP%LIegunw
cines Kurvenpunktes bestimmen kann.

Durch Halbierung des Tangentenwinkels ¢’ der Kurven-
schar (Ga) erhdlt man nach Gl (4) die Tangentenwinkel einer
neuen Kurvenschar, welehe an jedem Punkte die Richtung einer
Hauptspannung angibt, womit zugleich die dazu normale Haupt-
‘\[)an'IUIlg,,‘sl‘lc‘htung festgelegt ist. Die analytische Behandlung

| Vg J. Wagner, Kurven reiner Schubbeanspruchung der
geraden Balkentrager mit rechtezckigem Querschnitt. Zeitschr. d. Osterr.
Ing.- u. Arch.-Ver. 1911, 8. 615 ff.
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dieser sog. Hauptspannungstrajektorien geht von
Gl. (3) aus, in der

AL dz
tg-‘)qb o == E{i_ﬁ

1—tg2 gy

oder

ok il
dz tg2¢, dz
zu setzen ist. Daraus folgt dann

dy 1
Ey a tO‘Q(pl l o tc‘-)rpl

oder wegen (3)

dy Ny sIR" - =
&z~ Te—p | T e—pe - -

eine Differentialgleichung, die wegen des wverschiedenen Vor-
zeichens des zweiten Gliedes rechts zwei nach Gl. (3) normal zu-
einander stehende Kurvenscharen darstellt, deren Integration
jedoch praktisch an der Unméglichkeit der Trennung der Va-
riabeln y und z scheitert. Es bleibt daher im Einzelfalle nichts
weiter als die punktweise Aufzeichnung auf Grund der Werte
von 2 oder, noch besser, die von Wagner angegebene, schon
erwihnte Konstruktion der Trajeken toriaus den reinen Schub-
spannungslinien iibrig.

Genau dasselbe gilt auch von den Sehubspannungs-
trajektorien, die nach GL (4) die Richtungen der gribten
Schubspannungen angeben. Fir diese lautet die Differential-
gleichung ganz analog (7)

= Ty 7—" 2.9

du Bl —a) o T “—fﬂ-
ds . my Lt

8),

deren Integration wieder auf zwei Kurvenscharen fithren wiirde,
welche wegen

tg2¢,tg 29, =—1
die Hauptspannungstrajektorien iberall unter dem Winkel
459 durchschneiden und damit aus ihnen leicht wverzeichnet
werden konnen.
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I. Beispiel. Wir betrachten zuniichst den einfachen Fall
eines Stabes, der an einem Ende horizontal ein-
gespanntist, amandereneine Last trdagt, die,
wenn vom Kigengewichte des Stabes abgesehen werden darf,
mit der lings desselben konstanten Querkraft 7' iibereinstimmt.
Da weiterhin fiir einen Querschnitt im Abstande z vom belasteten
Ende M = 7z ist, so lautet
zunichst die Gleichung (6b) der
reinen Schubspannungs-
linien

T222 (a2 — y2) = C2
oder, wenn z =z sein soll
fur g =0,

[af==yelia? — e me s oSO

Jede derartige Kurve ist Fig. 69.
mithin durch die Lage z, ihres
Scheitels aul der neutralen Achse vollstindig bestimmt und nédhert
sich mit ihren beiden Zweigen asymptotisch der Ober- und
Unterkante des Lingsschnitts Fig. 69. Da fir z, = 0

(et e e (9]
wird, so gehdren sowohl diese Kanten y = + a als auch die
Stirngerade z = 0 der Sehar der reinen Schubspannungslinien an.
Eliminieren wir > — »?* aus (9) und der zweiten Gl. (1), so folgt

.2
el g

S T
oder, wenn wir die lings des Balkens konstante Schubspannung
in der neutralen Achse

T a?
e -
setzen,
T8 =t nnr NS ret BEGHES BRI ST 0 T

Nach dieser Formel édndert sich die Schubspannung auf einer
Schubspannungskurve.
Fiir die Hauptspannungstrajektorien ergibt
sich mit M = Tz aus (3)
2 a?— y?
Ban= s e e 10

Lorenz, Elastizititslehre, 11
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so dal fir
=0 und =9, (2gy=1 90% " gj= % 459
und [fiir
W= "1 a 2@, =0 oder =, @, =0 oder 90°
wird, AuBerdem aber wird ¢, = 0 fiir z = oo, mithin néihern
sich die Hauptspannungstrajektorien der einen Kante asympto-
tisch, wihrend sie die andere
rechtwinklig schneiden und so-
wohl die neutrale Achse als auch
| die Stirnkante im Winkel von 45°
durchsetzen. Dies bedingt fiir
die zwischen der Stirnkante und
der neutralen Achse verlaufen-
den Kurventeile je einen Wende-
punkt. Diese  Bemerkungen
reichen schon hin, den Verlauf der Hauptspannungskurven in
den Lingsschnitt einzutragen, was in Fig. 70 durch ausgezogene
Linien geschehen ist.

Im Gegensatz hierzn schneidet die eine Schar der in Fig. 70
punktiert gezeichneten Schubspannungstrajekto-
rien die Ober- und Unterkante im Winkel von 459 und die neu-
trale Achse rechtwinklig, wiihrend die andere Schar sich der
neutralen Achse asymptotisch nédhert und entweder die Ober-
und Unterkante unter 45° schneidet oder die Stirnkante unter 90°.
Die hier miindenden Schubsgpannungstrajektorien besitzen eben-
falls Wendepunkte, wie aus Fig. 70 zu erkennen ist.

Den soeben untersuchten Triger kann man auch als die
Hilfte eines auf zwei Stiitzen ruhenden gewichts-
losen Balkens betrachten, der in der Mitte eine Last 27
trigt. Die Schubspannungslinien und Trajektorien der anderen
Hilfte ergeben sich dann einfach als Spiegelbild der in Fig. 69
und 70 gezeichneten in bezug auf die Trigermitte A44. Man
ithersiecht sofort, dafi ldngs dieser Geraden die einander ent-
sprechenden Kurven beider Hilften nicht stetig ineinander
iibergehen, sondern endliche Winkel miteinander einschliefen.
Ganz dasselbe tritt natiirlich ein, wenn wir den in Fig. 69 und 70
dargestellten Triger aul der anderen Seite von AA durch ein
ungleich langes Stiick ergiinzen, woraus ein auf zwei Stiitzen
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ruhender, unsymmetrisch belasteter Balken hervorgeht, dessen
Spannungskurven zu keinen weiteren Bemerkungen Anlaf
bieten.

2. Beispiel FiireinenmitderkonstantenLastyg
auf die Lédngeneinheit beschwerten Balken
von der Linge [ ist an einem Querschnitte im Abstande z vom
Ende

=Lu—21, M=gl—7s

so dall die Gleichung fiir die reinen Schubspannungs-
kurven (6b) die Form

q

4

B2

(53

(1 — 2222 (@ — ) = C?

annimmt, Setzen wir hierin zur Vereinfachung mit der halben
Stablinge b
l
t=5—2=b—7, l—z=0b-17,
so erhalten wir in bezug auf ein Achsenkreuz durch die Stabmitte
qice
(bz = 312) (a-z sy y2} —as {
q
oder mit z' = gz, fir y = 0
(b2 —2'2) (@ — y?) = (b2 — 5,2 a® (11).
Dieser doppelt symmetrischen
Kurvenschar (Fig. 71) sind wir
schon einmal bei der Nédherungs-
berechnung der Torsion recht- _
eckiger Querschnitte begegnet. Fiithren wir die Ausdriicke
fir 77 und MW in die Gl (3) fiir die Hauptspannungs-
kurven ein, so wird aus dieser

Fig. 71.

l—2z a®-—y? z a? — y?
e i ol . e T 9
2o =—T"pnz ¥ B2 —77) m (12),
wonach fiir
y=0, sowiefirz=+tb 2@ =909 fin =
y=boay vy =1 2¢, =0 oder z, ¢, = 0 oder 90°

13*
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wird. Damit ergibt sich der in Fig. 72 auf der rechten Hallte
gezeichnete Verlauf zweier sich kreuzender Kurvenscharen,
wihrend auf der linken Hilfte
A :_'h ;:L\‘v .a~ die heide‘rll( Sﬂnan;{;n@ (im !chull
o s 90@ 1. spannungskurven einge }agc.nmm.,

e o g’ zu denen die neutrale Achse
A XX r und die beiden Stirnkanten, nicht
aber die Halbierungslinie des Lings-
; schnitts  hinzuzurechnen  sind.
Diese gehért vielmehr ebenso wie die Ober- und Unterkante
zu den Hauptspannungstrajektorien.

§ 16. Die elastische Linie.

Definition der elastischen Linie. Berechnung ihrer Krimmung. An-

geniherte Differentialgleichung bei kleiner Krimmung und Integra-

tion derselben. Bestimmung der Konstanten aus den Grenz- baw.

Auflagebedingungen.  Differentialgleichung fiir Einzellasten und

kontinuierliche Belastung. Beispiele, Ersalz eingespannter Enden

durch Einspannungsmomente. Verfahren zur Behandlung mehrerer
Einzellasten.

Unter der Annahme der Erhaltung der Querschnittsebenen
eines gebogenen Stabes, die nach Fig. 56 auch nach der Biegung
zu dessen Achse normal stehen, ist die ganze Formiénderung durch
diejenige der Stabachse vollstindig bestimmt. War die Stab-
achse urspriinglich gerade, so wird sie infolge der Wirkung des
Biegungsmomentes in eine Kurve, die sog. elastische Linie,
iibergehen, deren Kriimmungsradius g schon durch die Gl (10b),
§ 13, niimlich

[ (s
ki iy e e L
[

gegeben ist. Daraus erhellt sofort, dall ein homogener zylin-
drischer Stab unter dem Einflusse eines konstanten Biegungs-
momentes eine konstante Kriimmung annimmt, also in einen
Kreisbogen iibergeht, der fiir diesen Fall die elastische Linie
darstellt.

Bezeichnen wir ganz allgemein die ‘Normalverschiebungen
von Stabachsenpunkten in der Ebene des Biegungsmomentes
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mit #, so wird der Ausdruck fiir den Krimmungsradius

[+

b e e sy

(353
Handelt es sich, wie wir in der Folge immer voraussetzen, nur
um kleine Verschiebungen 7, so wird auch der Neigungswinkel
der elastischen Linie, dessen Tangens durch d#: dz gegeben ist,
nur eine kleine Zahl sein, wihrend der Kriimmungsradius selbst
im Verhiltnis zu der Verschiebung # sehr grol} ausfdllt. TFiir
die Kriimmung dirfen wir demnach an Stelle von (2) ange-

nihert schreiben
0 d 22 . 2 \dz k

woraus man erkennt, da auch die vor der Klammer stehende
zweite Ableitung von # einen mit der Kriimmung nahe iiber-
einstimmenden kleinen Betrag annimmt. Das Produkt mit dem
Quadrate der ersten Ableitung kénnen wir daher als klein von
dritter Ordnung unbedenklich wvernachldssigen, ohne
damit Groflen zweiter Ordnung unterdriickt

zu haben., Durch diese Vernachlissicung wird aus (2a) kurz

(2a),

1y .
und ausg (1)
- )
EG- |-y, (3)

Ist hierin im Einklang mit der hier stets vorausgesetzten Be-
lastung des Stabes durch konstante Normalkrdfte
zur Achse das Moment eine reine Funktion des Querschnitts-
abstandes z von einem Stabende, so liefert die einmalige In-
tegration von (3) die Neigung ¢ der elastischen Linie, deren Tan-
gens infolge der Kleinheit der Kriimmung unbedenklich mit dem
Bogen vertauscht werden darf, namlich

ro(i'? EQp=C,+[Mdz . . . . (3a),
0

withrend eine weitere Integration

z z
E@Oyn=Cy+Ciatfdzfmdz . . . . 3b)
1 n
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auf die Gleichung der elastischen Linie in ex-
pliziter Form fiithrt. Die hierin auftretenden Integrationskon-
stanten ergeben sich natiirlich aus den von Fall zu Fall ver-
schiedenen Grenzbedingungen. Hat man es mit Einzel-
lasten nach Fig. 57 zu tun, so kann man auch von der Quer-
kraft T ausgehen, die sich mit d3 = 7T'dz durch Differentiation
von (3) zu

&y

dz3

ergibt. Da die Querkraft zwischen je zwei Einzellasten, zu
denen auch die Auflagedriicke gehoren, konstant bleibt, so ge-
langt man durch dreimalige Integration von (4) zur Gleichung
der elastischen Linie im Intervall zwischen
zwei Einzellasten, die aber im Gegensatz zu (3b) drei
Konstante enthilt.

E® ia e & Spo st ol

Diese treten dann mit den Konstanten der Nachbarinter-
valle infolge der Ubereinstimmung der Ordinaten und ihrer
Ableitungen an den Ubergangsstellen, an denen die Querkraft
selbst sich sprungweise édndert, in lineare Bezichungen, die ins-
gesamt zur Berechnung ausreichen. Daraus erkennt man jeden-
falls die Notwendigkeit der gesonderten Behandlung der ein-
zelnen Intervalle zwischen konzentrierten Lasten, welche die end-
giiltige Berechnung der Ordinaten der elastischen Linie zwar
nicht erschwert, aber doch beim Vorhandensein vieler Lasten
ziemlich unbequem gestaltet.

Viel einfacher wird das Rechnungsverfahren, wenn lediglich
eine kontinuierliche Belastung ¢ gegeben ist, die
sich aus der Querkraft (4) wegen d7 = qgdz durch Differen-
tiation zu ;

4
E@%;=g_ SR e ity

ergibt, worin ¢ eine reine Funktion von z darstellt. Die hieraus
berechnete elastische Linie enthilt vier Konstante, die sich meist
ohne weiteres aus den Auflagebedingungen an den Stabenden
ergeben.

1. Beispiel. Fir einen frei aufliegenden
Balken mit gleichférmiger Belastung ¢ (Fig. 73)
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ergibt die zweimalige Integration ven (5) das Moment
d‘? =
=L tCzt6,

welches fiir die beiden Stut;z];mnk‘r,e7 d. h. sowohl fir z=0,
als auch fiir z =1 verschwindet. Infolgedessen ist €, = 0 und

Mm=

Ci=—1g ié; mithin
: e d“*}, q - 3
E 6 — :—2—(32—zl) SIS e R e
Daraus folgt weiter
dy q (,33 z_?_i) ;
AL pegmil s o e
und schlieflich

e
EOn =1 (‘E_T) a6

Bei festen Stiitzpunkten verschwindet auch dieser Ausdruck

3
fite z =0 und z=1, also 18t €; = U und €, — %—i—, und die ge-
suchte Gleichung der plasm‘schen Linie Iautet

EQy = 22( Sl ) RIS
z

Sie liefert einen grifiten Wert dcr Durchbiegung #, fu =
im Betrage von

{ el

oo gl
=3 EO
den man gewdhnlich als den Biegungspfeil bezeichnet.

. (6D),

2. Beispiel. Ist der Balken unter sonst gleichen Ver-
héltnissen an den Enden eingespannt (Fig. 74), so
erhalten wir zunéchst aus 5) durch dreimalige Integration

dr 3z z
£o < 9’-6 CHLE TR, AP
Infolge der Einspannung verschwm-
det nun diese Ableitung fir z = 0,
mithin 1st ('320 T.UJd es bleibt

ST T S L Cy
50 dz ~ 6 —Jr- g
woraus durch noc.hmahge Integmtion mit = O firz=10 f(]l!-_’;t

22 2 C] z



168 Kapitel IT1I. Die Biegung gerader isofroper Stibe.

Da weiterhin auch fiir das andere eingespannte Balkenende
z = [ sowohl die Ableitung d #: d z, als auch die Durchbiegung #
verschwinden muf}, so wird

[ ql°
Cl 103 o+ Cy= b
l q 2
Cigt+G=—17
also
ql gl
Clz el szﬂ'
Damit geht dann die Gleichung der elastischen Linie iiber in
9., 92 (2 P 7
E6n = (--2-—L.,+2) ok s e
mit einem Biegungspfeil fiir z — i
o OB 5w
EAYAC b

der nur 1/; des Wertes (6b) fiir den frei aufliegenden Balken
erreicht. Aus (7a) folgt durch zweimalige Differentiation das
Biegungsmoment

.m Py _ f

2 :
= D @

das bis auf das konstante Glied mit dem Momente (6) fiir den
frei aufliegenden Balken iibereinstimmt. Durch die Einspan-
nung werden also an den Enden Momente geweckt, die man
daher auch als Einspannungsmomente bezeichnet.
Geht man bei der Behandlung eines Problems von der Momenten-
gleichung (3) aus, so ist aufl der rechten Seite ein etwa vorhan-
denes Einspannungsmoment als vorliufig willkiirliche Konstante
hinzuzufiigen, die dann durch die Grenzbedingungen mit be-
stimmt wird.

3. Beispiel. Im Falle eines frei aufliegenden
Balkens von der Linge [, der im Abstande ¢ von einem Ende
die Einzellast @ trigt (Fig. 75), erhalten wir zunichst auf
rein statischem Wege die beiden Stiitzendriicke

[
Va=Q7,
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die mit den Querkriiften 7 in den beiden Stabteilen ¢ und l—c¢
iibereinstimmen. Da 7} nach oben gerichtet ist, wihrend wir

nack unten positiv zdhlen, so er- - L
gibt Gl (4) fiir die linke Stab- a Ly
halfte £ T
@ 1=y e
EO - =—0— oty 1, o
Fig. 75

und nach Integration wegen des
verschwindenden Momentes am Ende z=0
d?y [—e¢

BO gm0ty o iy

eine Formel, die wir natirlich auch sofort hétten anschreiben
kénnen. Sie liefert dureh Integration
ey l—¢ .
L@?—s_—:clw()--g e LR N )

und weiter mit der Bedingung # = 0 fir z =10

-2
z

ciat
6
Fir die rechte Stabhélfte haben wir an Stelle
von (9) wegen der plétzlichen Anderung der Querkraft an der
Belastungsstelle

n 1 "{_
Iﬂ(-)-r;:(,lz—(}—j . (9

d? 3 c
E6 d 22 —Q(;:—f’jr-—Q—!, z
oder e
N 291 ¢
1«,(-)(35,‘;*:()--{3-_()1:: e et v S Sy
woraus d 5
¢ z2
E@-aj—le-E—ch—]—Q AR S s
und

o o 72
EOn=Q 7 —0Qc5+Coz4Cy

folgt. Da fiir z = wieder 7 = 0 sein soll, so liefert die letztere

Formel
e i e
)= (_l_ g—QC?—}—CaE—I—Cg

oder nach Elimination von Cj

EOy =% (2 — B) — 0; (—B)+Cy(z—1 (10b).
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Die in den Gleichungen (9a), (9b), (10a), (10b) auftretenden
Integrationskonstanten €; und C, ergeben sich aus der Uber-
einstimmung der Ableitungen und Durchbiegungen beider Stab-
halften an der Belastungsstelle, d. h. fir z =¢. Wir erhalten
auf diese Weise aus (9a) und (10a)

CZ
G — 02
und aus (9b) und (10b)
cl c
Coll—e)+Cie= QB s Q3 ,

woraus
(v l ¢ Q(‘( &
CIZQC(%'IJF:@'"i)v b s zz+‘)
hervorgeht. Damit lauten dann die Gleichungen der
beiden Zweige der elastischen Linie links und
rechts von der Last Q

F@ c\ #
T b g sien: i
E6 ) ¢zt . o2 r‘*’ )
i ”_(zﬂ‘) TR

mit der gemeinsamen Ordinate fiir z = ¢

— ch 02 v Bl Qcﬂ | 2 £
??a*?"}f:?(_z _“‘*‘1)_3595”"” )

und der gemeinsamen Ableitung an derselben Stelle

(ﬁj) ,Sé (2 c: +_§__C):_}«?@Cg u—a(‘f—?:—“—c) (13).

) L l ;
Diese verschwindet fiir ¢ =0, ¢ = 2—_1md e=1, d. h. wenn die

Last auf einer der Stiitzen ruht, womit die elastische Linie selbst
in Wegfall kommt, oder fiir eine symmetrische Last, der dann ein
Biegungspfeil

QP
7o &bLO....‘..(iza)

entspricht. Im allgemeinen wird die Stelle des Biegungspfeils,
d. h. der grobiten Durchbiegung, nicht mit dem Angriffsorte der
Last zusammenfallen, sondern in einem der beiden Felder des
Balkens liegen. Diese Frage wird durch das Vorzeichen der
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Ableitung (13) entschieden, welche den Zuwachs der Ordinate
angibt. Dieser Zuwachs fillt positiv aus, wenn
I+e¢ l
:.g_—{-ﬂ---—c“)ﬂ oder | > 2¢, bzw. p= o
ist, d. h. das Maximum der Ordinate liegt auf
demlingerenderbeiden Felder. Alsdann berechnet
sich die Lage der Biegungspfeile im linken Felde der Fig. 75
durch Differentiation der ersten Formel (11) zu

JasTTac] Pm Rt l
= ";26(.?_ E)’ giiltig fir ¢ > T e (11a)
oder fiir das rechte Feld aus der zweiten Formel (11)
s —— l = giiltig fiir ¢ <5 . . (11b).

4 Beispiel. Ist der Balken nach Fig. 76 ohne sonstige
Anderung an einem Ende eingespannt, so lauten
die beiden Grundformeln fiir die linke und rechte Seite unter
Hinzufiigung des Einspannungsmoments 9t

d*r 2
EQ d'z; =M, — V2 ‘
o {4315
E@ (;EZ‘ZJI :9’)61“— V13+(){z_ U} ‘
wobei
Vil=0 400 —¢) v v« o . (14)

ist. Das Moment 9%, bestimmt sich alsdann aus der Bedingung
des Verschwindens von dy:dz fir die Einspannstelle z = 0,

o
Al Q T Y 7 c—-————-a " s
W o e e TR SR e N
7 N 3

Fig. 76. Fig. 77.

withrend der Rechnungsgang im iibrigen genau so verlault wie
im vorigen Beispiel. Die Formel (13) gilt auch noch fiir
den Fall der beiderseitigen Einspannung (Fig. 77)
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des Balkens, die man durch zwei Momente M, und M, ersetzen
kann, welehe durch die an Stelle von (14) tretende Beziehung

M=, —Vil+001—e¢) . . . . (15)
verkniipft sind. Auch hier bestimmen sich die Grofen 0t und IR,

aus dem Verschwinden der Ableitung d #:d z fiir z = 0 auf der
linken und fiir 2 =1 auf der rechten Seite der Last (.

Ruhen auf dem Balken mehrere Lasten Q,0,0,. ..

in den Abstinden ¢; ¢5¢;... vom linken Ende, so kann man
unter Beriicksichtigung etwaiger Einspannungen die Grund-
gleichungen (3) fiir jedes Intervall ¢, ¢;—¢;, e5—¢, . . . anschreiben

und fiir sich integrieren. Bei n Intervallen treten alsdann 2 n
Integrationskonstanten aul, von denen 2 durch das Verschwinden
der Ordinate der elastischen Linie fiir z = 0 und z = [ bestimmt
werden, wihrend die restlichen aus der Ubereinstimmung der
Ordinaten und ihrer Ableitungen an den n—1 Belastungsstellen
hervorgehen. Die etwa vorhandenen Einspannungsmomente be-
rechnen sich schlieBlich, wie im 4. Beispiel angedeutet, aus dem
Verschwinden der Ableitungen fiir z =0 und z =L

Rascher gelangt man dagegen zum Ziele durch getrennte
Berechnung der elastischen Linie fiir jede Einzellast nach Art
der Beispiele 3 und 4 und darauffolgende Ubereinanderlagerung
der Ordinaten innerhalb der einzelnen Intervalle. Hat man z. B.
drei Lasten Q; 0y 05 mit den Abstinden ¢, ¢, ¢; vom linken Ende
(Fig. 57) und bezeichnet die Ordinaten der linken und rechten
Hilfte der elastischen Linie fiir die Last Q; mit %, ', fiir die
Last Qy mit #," #,", fiir Q3 mit #," 5,”, so ist die resultierende
Ordinate ;

im Intervall ¢ N 0 +ny
b » Cog— 04 i /P T
» " Cag—10C 0 e g
» » l—ey 7T o S

Dieses Verfahren hat den Vorteil, daf die Bestimmung der
Integrationskonstanten ein fiir allemal in die Berechnung der
Formeln fiir die Einzelordinaten verlegt ist und darum nicht
nochmals wiederholt zu werden braucht.
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§ 17. Statisch unbestimmie Belastungstiille.

Definition des durchlaufenden Balkens. Ermittlung der unbestimmten

Auflagedriicke durch Verschwinden der zugehérigen Pleile der elasfi-

schen Linie sowie aus der Ableitung der Forménderungsarbeit, Bei-

spiele. Verbindung mehrerer Balken durch gelenkige oder verspannle
Stabe.

Unter einem durchlaufenden (oder kontinuier-
lichen) Balken mige im allgemeinen ein Stab verstanden
werden, der auf mehr als zwei Stiitzen ruht, so dall also die
Stiitzendriicke nicht mehr aus den rein statischen Gleichgewichts-
bedingungen ermittelt werden koénnen. Beschriinken wir uns auf
den geraden Stab unter gerader Belastung durch die zur Stab-
achse normalen bekannten Krifte @, 0,... Q; in den Ab-
standen ¢; ¢y ... ¢, vom linken Ende, wihrend die Auflage-
driicke V; V5 ...V, in den Abstédnden a, a, . ..a, vom gleichen
Ende angreifen, so erkennen wir aus den beiden Gleichgewichts-
bedingungen

2V =20 | )

Bl DIy e S :
dal} insgesamt noch n—2 weitere Gleichungen zur vollstandigen
Berechnung aller n Auflagedriicke aufzustellen sind. Der néchst-
liegende Weg hierzu geht im Anschlusse an § 16 von der Uber-
legung aus, dali nach Gl. (1) zwei Auflagedriicke, z. B. ¥V, und V,,
durch die bekannten Lasten ( und die vorldufig noch unbekannten
iibrigen n—2 Auflagedriicke V, V, ... V, gegeben sind. Be-
trachtet man diese selbst als Lasten, so steht der Ermittlung
der elastischen Linie des Balkens nach dem im § 16 entwickelten
Verfahren nichts im Wege. Diese geniigt alsdann den Auflage-
bedingungen, wenn man kurzerhand die Biegungspfeile der n—2
Angriffspunkte der unbekannten Auflagedriicke gleich Null setzt,
oder ihnen allgemeiner etwa vorgeschriebene Werte zuteilt. Da-
durch ergibt sich auf jeden Fall gerade die notwendige Zahl
von Bedingungsgleichungen zur Berechnung der gesuchten Auf-
lagedriicke. Das ganze Verfahren liuft offenbar aul die Ermitt-
lung derjenigen Krifte hinaus, welche die von den Lasten @
hervorgerufenen Durchbiegungen in den Abstinden a vom linken
Stabende gerade wieder aufheben. Darum kann man das Er-
gebnis auch als die Uberlagerung zweier elastischer Linien des
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Stabes unter dem Einflull der LastenQ und der Krifte V, V, ... V,
aulfassen, denen dann die Auflagedriicke ;" und V' JJ?W |
und V,” an den Stellen @; und a, zugeordnet sind, die sich nac-h
den Formeln
'V =V, ] 5
V‘Z_I_V2 '—V[ & it
wieder zu den beiden von den anderen als abhingig beerch-
teten Auflagedriicken V, und V, ergiinzen.

1.Beispiel Zur Erliuterung des obigen Verfahrens fassen
wir einen Balken von der Linge [ ins Auge, der im Abstande ¢
vom linken Ende die Einzellast @ trigt, wihrend neben den
beiden Auflagedriicken V; und V, an den Balkenenden auf dem
rechten Felde sich eine dritte Stiitze mit dem unbekannten
Drucke V im Abstande ¢ vom linken Ende befindet (Fig. 78).

3 et Ll

Fig. 78.

Denken wir uns zuniichst diese Stiitze weggenommen, so liefert
die zweite Formel (11) § 16 mit z = a die dort eintretende Durch-

biegung
IR By )ac el ate B
=& ( Rl = PR T D A

C

ader auch

Andererseits ist die Durchbiegung des Balkens nach Wegnahme
von Q unter der Wirkung von V allein nach Gl (12) § 16 und
nach Ersatz von ¢ durch ¢ und von Q durch — V
Va2 5
—W(l—a) gt S e )
so dafi man mit der Auflageb(,dingung 7 =gl =
(@® -+ —2al)

S e e

e

I

erhilt.
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Daraus folgen dann mit Hilfe der beiden Gleichgewichts-

formeln i g .-|
Vyil=0Qc—Va ey
die Auflagedriicke an den Enden
p— ¢ [:’ —c —]- 55 @+ —2al ] ‘
Vz_QC i_az ‘ S )8
I Sell—a)
die man natiirlich auch nach (2) in die beiden Bestandteile
—p T
Vlr — Q E l_ c . V’]rr _— 'V £_a
e e
7 45y S ¢ | = V ”
=05,  Vr=—vi{ |

zerlegen kann. -

Das vorstehende Verfahren setzt die Kenntnis der elastischen
Linie fiir die gerade Belastung des Stabes voraus, deren in § 16
gegebene Herleitung im allgemeinen zwar nicht schwierige, aber
doch umstindliche Rechnungen bedingt. Es liegt daher nahe,
nach einem Wege zu suchen, der die Ermittlung der statisch
unbestimmten Auflagekrifte unmittelbar erméglicht. Hierzu bietet
sich uns der Castiglianosche Satz von der Forménde-
rungsarbeit dar, der die Verschiebungen jedes Angrilfspunktes
einer Kraft in ihrer Richtung an einem elastischen System als
partielle Ableitung der Forménderungsarbeit nach der Kraft
selbst bestimmt. Die Forménderungsarbeit ist hierbei — unter
Vernachlissigung des Einflusses der Querkraft — gegeben durch
1 {'E?R?dz

b=ge T e
0

(7),

worin das Biegungsmoment fiir jedes Intervall zwischen zwei
Lasten, zu denen auch die Auflagedriicke zu rechnen sind, durch
einen besonderen Ausdruck dargestellt wird. Infolgedessen mul}
Gl. (7) in ebensoviele Glieder zerlegt werden, als Intervalle vor-
handen sind, denen dann je ein Moment 3, I, . . . geordnet ist,

so zwar, dal
1 M2dz 1
2F 5 1(_-) = le=5F

4

Cg
Fdz 1 g‘m‘ezdz
RS Tl o

2

I

'Q_..--—\‘}
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die Forminderungsarbeiten der Einzelintervalle darstellen. Die

darin auftretenden Momente sind nun lineare Funktionen aller

Krafte auf der einen Seite der zugehorigen Schnittstelle, die

wieder fiir sich durch die statischen Bedingungsgleichungen (1)

verkniipft sind. Wir konnen darum in der Forminderungsarbeit
¢ mzd ¢ Mmp2d

1 (" MlPdsz 1 MPdz =

---2-55—-1@—-+ ELS e
i &y

von vornherein zwei Auflagedriicke V; und V, durch alle iibrigen

ausdriicken und erhalten dann fiir die Stiitze von V; im Ab-

stande ¢, unmittelbar

L:

oL, 5

'lh:W-'—"-O RS s s S

Hat man dagegen die Krafte V; und V, nicht eliminiert,

so darf nicht iibersehen werden, dal sie mit den anderen Auf-

lagedriicken durch (1) zusammenhingen, so dafl also jetzt
= ol ol Bl aVo, oL, -
L A T L A LS R

? A : oV ol
wird, worin die Ableitungen 3 i"_::- und FI%

nunmehr den sta-

tischen Gleichgewichtsbedingungen (1) zu entnehmen sind.

9. Beispiel. Im Falle des vorigen Beispiels ist in den
drei Intervallen
von 0 bise WMy=V;z
yoog o ow o W= e iz—a
S e M= Vs (L — z),

QEOL,=[[V,z—0Q (z— )P dz

sdopl e e
= (=0 55+ (e— 9 eV~ B (a0 + @]
1 > .
2EGL, = 3 Vo2 (l—a)Pdz= V“;

i

(I — a)®.
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Die gesamte Forminderungsarbeit des Balkens (Fig. 78)
ist somit gegeben durch

2EQL — é Ifl’l‘zc?‘ - -E;—(VI—Q}Q (a3 — ) + é V2 (l— a)?
+(@a—c) c[(V,Q0 — @3 (a+0)+sz’J k[ 1 Db 200
und liefert fiir die mittlere Stiitze durch Differentiation nach V
o oV 2 oV 2 _ oV
= lavl* —Q 5 T3 U—a gy
2 (g Q?’Vl: ST S

‘Hierin ist aber nach Gl (1a)

— ;"
e R R

i TR
und damit wird aus (9a)

2V, Vaall— a2 =Q(5 @+ 5 8 —ate . Ob)

Diese Glelchung bestimmt alsdann im Verein mit den beiden
statischen Formeln (1a) die drei unbekannten Auflagedriicke V, V,
und ¥ und fithrt, wie man durch Einsetzen von V; und V, so-
fort feststellen kann, wieder auf die Beziehung (5).

Vergleicht man den Rechnungsgang der beiden eben geschil-
derten Methoden, go leuchtet ohne weiteres ein, dall die letztere
rascher zum Ziele fiihrt, da bei ihr die langwierige Bestimmung
der Gleichung der elastischen Linie fir die einzelnen Stabinter-
valle ginzlich weglfdllt. An dieser interessieren uns ohnehin
fast nur die Biegungspleile der Angriffstellen der Lasten, die
man ebenfalls leicht durch Ableitung der Forménderungsarbeit zu

oL oL oL oV, oL oV,

1 =%g 00 o7, B0 0y, 80
erhilt, nachdem alle Auflagedriicke durch die Lasten O aus-
gedriickt sind. Die vollstandige Ausfithrung dieser Rechnung
an unserem Beispiel diirfte dem Leser kaum noch Schwierigkeiten
hereiten, weshalb wir gie hier tibergehen wollen.

(10)

Dagegen mogen hier noch soleche Probleme kurz ins Auge
gefaBt werden, bei denen die Forménderung zweier oder mehrerer
Balken durch Zwischenglieder miteinander verkniipft ist. An

Lorenz, Elastizititslehre. 12
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den Verbindungsstellen der Zwischenglieder wirken alsdann Krifte
auf die Balken, die ebenso wie die statisch unbestimmten Auf-
lagedriicke sich nicht aus den einfachen Gleichgewichtsformeln
herechnen lassen, sodall derartig verkniipfte Balken wie durch-
laufende Triiger zu behandeln sind. Das dabei einzuschlagende
Verfahren ist allerdings wesentlich durch den einzelnen Fall
bedingt, wie man am einfachsten aus dem nachstehenden Bei-
spiel erkennt.

3. Beispiel Zwei einseitig eingespannte -gleichlange
Balken mit den axialen Trdgheitsmomenten ¢, und &, und den
Elastizitatsmoduln £, und E, mogen an den anderen Enden
durch einen vertikalen starren Stab gelenkig verbunden sein
(Fig. 79), in dessen Richtung eine Last  wirkt. Dann kdnnen
wir uns diese Last in zwel Be-

=

/' : o = =
__?_r‘ : I standteile Q} und @, zerlegt den-
Z -} w ken, deren jeder unabhéngig vom
7 . g
7 andern einen Stab derart belastet,
%“ e T A dafl die beiden elastischen Linien
den Gleichungen
- - :';--f%
7 s PRt B 12 4
) e BTy
blf*)l—d e —
f S 1;2 g
Fig. 79. E,0, R =z ‘

i
- - S e S
geniigen, deren Integration wegen der Einspannung mit —7= = 0,

s 2 0 fiir z=1[ auf

dz _
£, 0, ‘ff{} - %‘ (22— I?) \
d 0 : (11a)
A Nt e
S dz yo i ‘
und schlieBlich mit 7, = 0, 7, = 0 fir z =1 auf
E, 6Oy = % (2 — I3) — %1 (3 ‘ 1l

i { Fr-
EyOyapy = %2_ {2 — B~ _Q_ ?z—1) | '

fithrt. Fiir z = 0 folgen daraus die Biegungspf&ulu an den Enden

: ?
EI (€] 18 ng‘)2 Hag == {— QZ & A [l L (}I
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Da ferner wegen der Starrheit des Verbindungsstabes diese
beiden Biegungspfeile miteinander {ibereinstimmen miissen, so

folgt daraus ).
B e

it By 6,
oder wegen Qa0 =R e i S
f_’:l(’)] ]J‘){)] i

e 5 5 o= T oy ) 2
@=CFe +t5e, ©¢=Crertre, 129
womit dann auch die beiden Biegungspfeile gegeben sind.

4. Beispiel. Ersetzen wir die Gelenke der Verbindungs-
stange des letzten Beispieles durch Schuhe, welche die Balken-
enden starr umgreifen, so wird aufier der gleichen Durchbiegung
beider Enden dort auch noch der Neigungswinkel identisch sein.
Die Beeinflussung des Neigungswinkels kann aber, wie friiher

bei der festen Einspannung, nur 7 -
durch Zusatzmomente M, und M, — - W’%._.l
erreicht werden (Fig. 80), die wir i 2 i:"’
uns demnach an den Balkenenden 7 :
angreifend zu denken haben. Mit 7 -
ihnen lauten die Grundformeln 7 T
: d* 1 " Z s
£, 0, "W:Qﬁ‘l“ml i 1 a
(14) 5
1"_:. () a2 ?.l?_ i 02: _|__ ':Ulgz Tig. 80.
oy it 4 o
und nach Integration mit :—;‘i—l it ((;"_2 =0 fir z=1
. dr e '
B0 =S 2y, (s — 1) |
Sl Q T deeay.
E,0, 2 = (& f)+~m__z.)(
Weiter folgt daraus mit #; = 5, = 0 fiir z = [
2
e
el
+ 5 (28— B) — Dy L (z—1)
2 (141)
175 ):_J_ & X
Ey Oyijy = ((,‘ = £ Rt
e o :
- 5 (2 — B — Myl (z—1)

12%
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Die hierdurch gegebenen Durchbiegungen sollen nun fiir die
Balkenenden z = 0 iibereinstimmen, also mull sein

1 Ol 0y 1 Q1 Mt ) 2
E, 0, (T+T) E,0, ( Tl e e
Infolge der Gleichheit der Biegungspfeile erleiden also die

Balkenenden nur eine Parallelverschiebung, mithin ist fiir z = 0
auch

2 SRR
35, dz "
- und wir erhalten aus (14a)
l o :
5}331:_@1 : Per=mg .+ s (16},
wihrend auferdem Gl. , d. h. Q; -+ @, = Q bestehen bleibt.

Eliminieren wir die Momente aus (16) und (15), so fiithrt dies
wieder auf Gl. (12) bzw. (12a), womit sich dann

P i R _ &l B0, .
M= — 3 E,0,F E,0," M, = — 5 E.0,+ E,0, (16a)
mit der algebraischen Summe

l
S . L T

ergibt. Es fragt sich nun, wodurch diesem Einspannungsmoment
das Gleichgewicht gehalten wird, ohne dafl die elastischen Linien
beider Balken eine Anderung erfahren. Dies letztere ist nur mit
Kréften vereinbar, die in den Stabachsen selbst wirken und von
den Befestigungsstellen aufgenommen werden. Wir erhalten also
noch ein Kriftepaar + P, welches mit dem Balkenabstand a als
Hebelarm die Neigung des Verbindungsstabes der Balkenenden
aufhebt, so zwar, dafl der obere Stab durch die Kraft — P ge-
driickt, der untere durch P gezogen wird, wihrend sich die
Grofie von P aus der Formel

)
Pa:% e s e W )
berechnet. Der Biegungspfeil der Balkenenden ergibt sich end-
lich aus (14b) mit (16) zu
e Bl il g G .
S BEeT B, - - - U8
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betrdgt also nur 1:4 des durch (11¢) erhaltenen Wertes fiir das
3. Beispiel.

Schliefilich sei noch bemerkt, dafl man natiirlich auch die
Forménderung der Verbindungsstibe mehrerer Balken beriick-
sichtigen und damit ibre inneren Krifte berechnen kann. Diese
Forménderungen gehen dann einfach in die . Verschiebungen
der AnschluBstellen ein, die somit bei gleicher Richtung nicht
mehr miteinander iibereinstimmen. FEs ist selbstverstandlich,
dafl die Rechnungen sich hierbei viel verwickelter gestalten,
ohne doch inhaltlich etwas Neues zu bieten.

§ 18. Anderung der elastischen Linie durech Neheneinfliisse.

Anderung der elastischen Linie durch die Querkraft. Unstetigkeiten
an den Angriffsstellen von Einzellasten, Beispiel. Stetige Anderung
der elastischen Linie bei kontinuierlicher Belastung, Beispiel. Grolen-
ordnung der Verschiebung. Horizontalverschiebung infolge der Bie-
gung und Querkraft, GroBenordnung beider, Beispiel. EinfluB der
Querkontraktion, Verzerrung der Querschnittsform. Korrektion des
Elastizitatsmoduls bei Verhinderung der Querschnittsbiegung.

Die in den vorigen Abschnitten durchgefithrte Berechnung
der elastischen Linie beruhte ausschlieBlich auf der Ndherungsformel
fiir das Biegungsmoment, die ihrerseits aus der Bernoulli-
schen Annahme der Erhaltung der Querschnittsebenen abge-
leitet wurde und darum den EinfluB der Schubspan-
nungen aul die Durchbiegung des Stabes nicht mit ent-
hélt. Dariiber erhalten wir Aufschluff durch Zuriickgreifen auf
die Formanderungarbeit, die, aul die Lingeneinheit
des Balkens bezogen, nach GI. (18), § 14,

L Mm2 i )
2l

5 oo Pen (1)

war, worin T die Querkraft bedeutet, welche die Schubspan-
nungen im Querschnitt hervorruft.  Differenzieren wir diese
Gleichung nach dem Moment 3 und beachten, dall nach den
Castiglianoschen Sitzen iber die Ableitung der Form-

dnderungsarbeit
dL _dy

d_JE_(‘D_ EJ{Z - - . 4 < = (2)
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die Verdrehung eines Stabelementes unter dem Einflusse
des Biegungsmomentes M darstellt, die infolge ihrer Kleinheit
mit ihrem Tangens, also der Ableitung der elastischen Linie,

vertauscht werden kann, so folgt

d dL)_‘_(il}? d-:;__ {J’T arT
(a’JJE Hzium i EO _l_ GF d0
oder auah wegen d M = Tdz
dp __atg MR8 g P )

Wr B B0 EP g e B
Zwischen je zwei konzentrierten Lasten ist nun
die Querkraft konstant, daher verschwindet im Intervalle selbst
die Ableitung d T:d z und die letzte Formel geht dort wieder
in die GI. (3), § 16, iiber. Uberschreiten wir dagegen an einer Be-
lastungsstelle die Grenze des Intervalls, so &ndert sich plotzlich
die Querkraft um den Betrag der dort angreifenden Einzellast
AT = Q, so dall wir aus (3) mit d z = 0 an der Ubergangsstelle
Am:ﬁéﬁT gQ SRR T )
also eine unstetige Anderung des Neigungswin-
kels der elastischen Linie erhalten, die somit
an den Belastungsstellen einen Knieck erleidet.
Die Anderungen der Ordinaten der elastischen Linie folgen aus (4)
durch Multiplikation mit den von der Belastungsstelle aus ge-
rechneten Abszissen h, so zwar, dal} fiir eine beliebige Stelle
A sl e S R R R R

wird.

1. Beispiel. So erhalten wir im Falle zweier Lasten O,
und @, mit den Abstéinden ¢, und ¢, vom linken Balkenende
(Fig. 81) im ersten Intervall eine Querkraft V7, im zweiten V, —Q,
und im dritten V; —Q; — @, = —V,, so zwar, dafl die elastische
Linie in den drei Intervallen konstante Neigungsinderungen er-
fahrt im Betrage von

Llfgl-—%lﬂ ‘

A%:—GﬁF (Vi — Q1) | (4a)
3

Apy=—p (Vi — 01— Q) =—TﬂF' Va
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Diesen Neigungsiinderungen entsprechen nach Gl (5) die
Ordinatendnderungen an den Belastungsstellen

Ao —ode; :-G/; ol ‘
(5a),

Any=c; A @1+ (ca— ;)4 ‘}'2—( 1 sley Vi (eg—e) (V1—0Qy)]
wihrend man fir die Ordinatenéinderung der rechten Stiilze
Ang=c, A1+ (ea—e)) Aot (1— ) Apy

Bl e,
Ang= fﬁ'lﬁ’r Vi—lp—e¢ — Q)+ —cy) —Q,—0y)]=0

oder wegen der Momentenbedingung Vil = (I—¢;) Q) -+ (I1—¢,) O
A e =— 0

erhiilt, ein selbstverstindliches Ergebnis, das lediglich zur Rech-
nungspriiffung dient.

: =3 =i

P G i

: P L] A

VA e ol 4]

e % _ ol %
AQ? “dfe__ AfPS

Fig. 81.

Im Falle der kontinuierlichen Belastung er-
halten wir aus (3) durch Integration

d e
=, ~—5.L, az+GﬁF i eS80

$0 dall in diesem Falle die Neigungsdnderung

y A
_4!}3=(!FT A e o ()

keine Spriinge erleidet, und damit auch die
elastische Linie durchaus stetig bleibt.

2. Beispiel. Fir einen frei aufliegenden Balken mit
gleichformiger Belastung (Fig. 73, vgl. 1. Beispiel, § 16) ist die
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Querkraft 7 = -'({)—E-—gz, also nach (6)
._irp—-ﬁ-q (2 —z) 8405, oy pi P i
wihrend sich daraus die Anderung der Ordinaten zu
= - Bae
m,_gaqo-d,,_ 3G (1 — 9%

berechnet. Es ist dies eine Parabel mit dem Scheitel in der Bal-
kenmitte, dessen Ordinate

A%:ﬁ_ﬁ’i'__ GRS Sl e da

. (6b)

die VergroBerung des Biegungspfeiles Gl. (6b), § 16, durch die
Schubkrifte darstellt. Mit @ = Fk? und f = 1,2 fir den recht-
eckigen Querschnitt ergibt sich das Verhédltnis beider

Ane _ B-384 EO e

NG TR v 7 ekl S0 L

Yo ‘
welches fiir lange diinne Stdbe kaum in Betracht kommt, fiir
kurze dicke Balken dagegen recht erhebliche Werte annehmen
kann. Der Einfluf3 der Schubkrifte tritt noch stirker bei Quer-
schnitten hervor, die stark vom Rechteck abweichen und daher
auch ein viel gréferes § benétigen. So wird man z. B. bei 1-Trégern,
bei denen der Faktor bis f = 4 ansteigt, stets zu priifen haben,
ob die Anderung der elastischen Linie durch die Querkraft nicht
auf unzuldssige Formiénderungen fiihrt.

Weiterhin haben wir noch festzustellen, ob nicht die elasti-
sche Linie durch Horizontalverschiebungen der
Stabelemente wesentliche Anderungen erfahren kann.
Solche Verschiebungen ergeben sich einerseits durch die Bie-
gung des Stabes selbst, d. h. aus dem Lingenunterschiede der
gebogenen und geraden Stabachse; aullerdem aber aus der Deh-
nung des Stabes durch Kraftkomponenten in der Tangenten-
richtung des gebogenen Stabes, und schlieflich durch Tempe-
raturiinderungen. Vernachlidssigen wir die letzteren, so erhalten
wir zundichst fir die in die Tangentenrichtung fallende Kraft-
komponente unter Vertauschung des Sinus und Tangens des als
klein vorausgesetzten Neigungswinkels T E:;z, woraus dann
eine Dehnung : T dy £

SR st et e
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resultiert. Das urspriingliche Léngenelement d [ des Stabes wird
hierdurch aunf
T
ds=dl-(1 L&) dl+ " qz

EF dz

anwachsen. Fiir das Bogenelement der elastischen Linie haben
wir aber andererseits

e (]

oder wegen der Kleinheit des Neigungswinkels mit hinreichender
Annéherung

(8)

ds=dstg(5Hds . .. .. @

Durch Gleichsetzen der beiden Ausdriicke (8) und (9) folgt
alsdann
T dy 1 [dy
e s (‘d‘) ds

und daraus das Element der Horizontalverschiebung
_dn {1 dy i
sl e (-‘2‘ . L‘F) G
Da nun die Querkraft
dm

gl g
gt o T e 2
i dz S dz (9) e f:fz( )

war, so diirfen wir an Stelle der letzten Gleichung auch schreiben
a4l _dn d (q_ kz)
wdeze Uz gz \2 0

Diese Horizontalverschiebungder Ldngen-
einheit ist ein kleiner Wert von zweiter Ordnung, dessen
Beriicksichtigung indessen nach den Eingangsbemerkungen zu
§ 16 nichts im Wege steht. Er verschwindet offenbar, da langs
des ganzen Stabes in gebogenem Zustande d 9 : d z % 0 ist, nur fiir

(10).

i kY my

e e e (11),
worin 7, eine willkirliche Konstante bedeutet. Dafiir diirfen
wir aber auch angenéhert schreiben

}.’.2 " —'-'_?]l'_]

0 b =10
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oder nach Multiplikation mit EF sowie wegen Fk* —= ¢

'i"__il[;p_‘{‘_o
E e

Das Verschwinden der Horizontalverschiehung setzt demnach
ein mit der Ordinate der elastischen Linie linear zunehmendes Bie-
gungsmoment voraus, das mit der unseren Betrachtungen zugrunde
liegenden geraden Stabbelastung unvereinbar ist. Daraus folgt
natiirlich, dafl fiir die angenommene Stabbela-
stung die Horizontalverschiebung iiberhaupt
nicht verschwinden kann Es liegt dies in der
Hauptsache daran, dall die Durchbiegung # diinner Stibe
im allgemeinen von derselben Griflenordnung ist wie der Trig-
heitshalbmesser & des Querschnitts um die neutrale Achse, so
dalb bei kleiner Kriimmung das zweite Glied der Klammer in
Gl. (10) selbst um eine GroBenordnung kleiner ausfallt als »
und daher unterdriickt werden kann. Es wird somit fiir prak-
tische Zwecke geniigen, fiir die Horizontalverschiecbung

ddal 1 'd:;)z

7 IReRL ( dz
zu setzen, d. h. die Dehnung durch die Komponente der Quer-
kraft zu vernachléssigen.

=M. . . . . {1a).

(10 a)

i

3. Beispiel. Zur Prifung dieser Folgerungen greifen
wir nochmals auf den [rei aufliegenden Balken mit gleichformiger
Belastung ¢ zuriick, fiir den wir im 1. Beispiel § 16 gefunden hatten

- 3 -
EOy=-2 (—“--——zza+ I..;}

12\ 2
s R g o elialo .'
£6 d-ﬁ-_ﬁ(m--..m +5)
EO i R el
N S G'E_z"f _12_{(3”2_“;)’

d (n & ‘ B _
—(—fj——- —)zfﬁ’,— (~3_ 124 — 1282 4 6 sz)
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wird. Setzen wir dies in Gl. (10) ein und integrieren tiber den
ganzen Stab, so erhalten wir unter der Annahme, dafl eines
der Enden festgehalten wird, als Verschiebung des anderen Endes

!
o bl A K g ; i
JI_E_&; LA g)d e ((),(}hl—|—l,2. g)
0

oder, da der Biegungspfeil Gl. (6b), § 16,

o _L_ g
M=12.32 EO
betrug, :

/H«,z)——(urv( )

Hieraus erkennt man deutlich den Unterschied der Griben-
ordnung der beiden Glieder in der Klammer, aullerdem aber
auch, dal die Horizontalverschiebung eines Stabendes immerhin
Werte annehmen kann, die praktisch keineswegs aufier acht
gelassen werden dirfen. Jedenfalls mul schon mit Riicksicht
aul diese Horizontalverschiebung fiir eine gewisse Beweglichkeit
eines der Auflager (durch Rollen) gesorgt werden, die aullerdem
noch zum Ausgleich der hier nicht untersuchten Temperatur-
wirkungen erforderlich ist, wenn nicht ganz erhebliche axiale
Spannungen auftreten sollen.

Den durch die Biegung bedingten Lingendnderungen der
einzelnen Stabelemente parallel der Achsenrichtung entsprechen
nun im allgemeinen auch Anderungen an den Quer-
dimensionen des Balkens 1niolge der Quer-
kontraktion. Bezeichnen wir die Dehnungen in der Rich-
tung der Stabachse mit e, in der Richtung der Neutralachse
mit ¢, und normal zu beiden mit &,, so erhalten wir unter der
Annahme, daf bei der Biegung nur in der z-Richtung Normal-
spannungen ¢ wirken

Plaae — 0
Ep =&y — — 'H Z == 1 i St o e “?_)
oder auch nach Gl. (8a), § 13,
{J::_Fy':—i (12(;1}
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worin ¢ den Kriimmungsradius der elastischen Linie bedeutet,
der innerhalb eines Stabquerschnitts als konstant zu betrachten
ist. Da nun
dA x ‘ ddy
e R i
ist, unter 4x und Ay die Verlingerungen der Querschnitts-
koordinaten in einem rechtwinkligen System durch den Schwer-
punkt O mit der neutralen Schicht als z-Achse verstanden (Fig. 82),
so ergibt sich zunichst die Verldngerung y der Ordinate von der
Neutralachse aus gemessen

(13)

2

u
= . S
Ay—_{}’eﬁdy_ e
wihrend auf der gegeniiberliegenden Seite mit der Umkehr der
Integrationsgrenzen auch das Vorzeichen wechselt. Wir erhalten

alsoim Querschnitt eines

gebogenen Stabes normal &
zur Neutralachse auf der
up
s I B\
/! A\
i/ \
a x\

i ;

\ s ;)
=i}
ex—%}-—/

Fig, 82. Fig. 83.

gedrickten Seite Verlingerungen, auf der
gezogenen Verkiirzungen der Ordinaten, wo-
durch die neutrale Achse selbst scheinbar
eine Parallelverschiebung nach der gezo-
genen Seite erleidet (Fig. 82).

Wihrend nun die Lingenénderung der Ordinaten nach (14)
unabhéingig von den zugehirigen Abszissen ist, trifft dies, wie
aus der Vereinigung von (12a) und (13), d. h. aus

dAx Y

dz = e el


Neutralach.se
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hervorgeht, umgekehrt nicht zu. Integrieren wir (15) lings einer
Abszisse, also fiir konstantes y, so folgt
Az i

Diese Gleichung ergibt eine in Fig. 83 punktiert angedeutete
Verzerrung des ganzen Querschnittes, die
wir uns durch eine Biegung der Neutral-
achsemitdemkonstanten Kriimmungsradius
OM =¢ = pup ersetzt denken kénnen. Diese Er-
scheinung ftritt besonders deutlich bei

flachen rechteckigen Querschnitten her- @
vor, welche bei der Biegung des Stabes

die aus Fig. 84 ersichtliche Form an- Fig. 84.
nehmen, aus der man nach Cornu

sehr genau den Querkontraktionskoeffizienten als Verhaltnis
der Kriimmungsradien der Quer- und Lingsbiegung bestimmen
kann. Die elastische Linie selbst muB in diesem TFalle,
der offenbar nicht mehr dem ebenen Spannungszustand ent-
spricht, als geometrischer Ort der Querschnittsschwerpunkte
angesehen werden, womit ihre Berechnung nach der Methode
des § 16 beibehalten werden kann.

Verhindern wir dagegen die Verwerfung
des Querschnittes etwa durch Befestigung von Quer-
leisten, so werden in der Richtung der neutralen Achse Span-
nungen o, geweckt, die sich mit &, = 0 aus
= a
= :
berechnen und die Dehnung in der Achsenrichtung nach der
Formel

Oy

Es:o—gq-:a('l— i‘,) e el iG]
7 2

modifizieren, die an Stelle der friiher benutzten einfachen Glei-
chung E &= o tritt. Das besagt aber nichts anderes, als dal
in diesem Falle der Elastizititsmodul E durch den Wert
' E 2 = L
B = T =5 R

T —

zu ersetzen ist, ohne daB sonstige Anderungen der Berechnungen

.eintreten.
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§ 19. Biegungssehwingungen masseloser Stiibe.

Lineare Abhingigkeit der Auslenkungen von der Belastung. Zer-
legung dieser in die statische Gewichtsbelastung und die dynamische
durch Massenkriafte. Berechnung der Einflulzahlen aus der statischen
Auslenkung. Zuriickfithrung des Systems der Bewegungsformeln auf
eine Differentialgleichung. Kennzeichnung der Bewegung als gekop-
pelter Schwingung. Beispiele mit einer und zwei Massen.

Die Durchbiegung irgendeiner Stelle eines geraden Stabes
von konstantem Querschnitt unter der Wirkung einer Anzahl
paralleler LastenQ, Qs . .. ¢, normal zur Stabachse konnen wir nach
den AuBerungen iiber die elastische Linie (§§16 und 17) ganz
allgemein durch die Formel

E(-')*!:?‘lol—}—”z@z—}‘- ' ‘_!_',‘-FF.QR ALt “)
darstellen, in der £ den Elastizitismodul des Stabmaterials,
O das Tragheitsmoment des Stabquerschnitts um die neutrale
Achse und #; %, . .. %, Faktoren bedeuten, die von der Lage
der ins Auge gefaliten Stelle mit der Ordinate # und derjenigen
der Angriffsorte der Belastungen sowie etwaiger Zwischen-
stiitzen abhéngen. Diese Formel ist offenbar nichts anderes,
als der erweiterte Ausdruck fir das Hookesche Gesetaz,
das wir schon im § 7 der Untersuchung der Forménderungs-
arbeit zugrunde gelegt haben. Wire der Querschnitt des Stabes
nicht konstant, so hitten wir nur an Stelle von (1)

§ =00y +asls 4 sl v o (d8)
zu setzen, worin die Faktoren o nicht nur Funktionen der oben-
genannten Abstinde sind, sondern auch noch von der Ver-
dnderlichkeit des Querschnitts lings der Stabachse abhiingen. Von
dieser praktisch kaum in Frage kommenden Komplikation soll
indessen in der Folge abgesehen werden.

Betrachten wir den Stab zuniichst auch noch als mass e -
los und stellen uns unter den Lasten Q; Q, . . . die Gewichte
von Massen my my . . . vor, die an den Angriffstellen befestigt
sind, so ist offenbar in (1) ohne sonstige Anderung mit der Erd-
beschleunigung g nur

Qr=mg Q=myg...Q=mg . . . (2
zu setzen. Werden dagegen die Massen in Bewegung versetazt,
die wegen ihrer Verbindung mit dem Stabe nur senkrecht zu
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dessen Achse erfolgen kann, so zwar, dall die Auslenkungen #,
W - - - 1, ihrer Befestigungsstellen zeitliche Anderungen er-
fahren, so wirken die Stabkréfte @ im Sinne einer Riickfithrung
in die Ruhelage, mithin ist in diesem Falle

a2 oy
Qy = my (g (1";'!2_)

d? 9
ng’”z( s aff) (3),
: Ay
: ()nzmﬂ( — dtin)
womit (1) iibergeht in
f &y 2,
B0 = nymy (g - ) + %ymy (g— - (4).

Daraus erkennen wir, dal} sich die augenblickliche Durchbiegung
des Stabes zusammensetzt aus einer statischen Aus-
lenkung :
o
& 2 = = o
i— EO (eymy = stamis -+ . oo mamy) . . . (4a)
infolge der Gewichtsbelastung und einem dynamischen
Betrage
1 d?y d? 1, d? 1,
" R /2 i A
e ) 5~ Mo M e e : :b
! Ee ™ lfhz—f_‘z 2 2 5 ~+ %, 0, dzz)(“’ 3
der durch die gleichzeitigen Beschleunigungen aller Einzel-
massen bestimmt ist. Diese selbst héngen aber mit den zu-
gehirigen Durchbiegungen 9, #, . . . 7, durch ein System von
Gleichungen zusammen, die als Spezialfdlle aus (4) abgeleitet
werden konnen und darum bis auf die Faktoren x mit dieser
Gleichung iibereinstimmen, nédmlich

d? d?9
Eé}l}}.]:xll?”l( di‘;l)'i' 712?352( a‘;_.g)_{_ L
=y d?
EOn, = #y1my (g G E”f) + g mmy (g [“;2) +- (5).
¥ fi M (l s
EOn, == #y,ymy (g rfIz‘ + Hna My |8 — 2 +

Hiernach zerfallen auch die Auslenkungen der Massen selbst
Jje in einen statischen und einen dynamischen Betrag. Das For-
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melsystem (5) kann natiirlich auch zur Bestimmung der Stab-
krifte (3) durch die zugehorigen Auslenkungen 7, 7y . . . 7
benutzt werden, woraus dann die Durchbiegung # einer be-
lichigen Stelle als lineare Funktion der 7y 7, . . . #, resultieren
wiirde, und zwar unabhingig davon, ob es sich um ruhende
Massen my my . . . mit konstanten #; 7, . . . oder um bewegte
Massen mit zeitlich verdnderlichen Ausschligen handelt. In
dem uns hier allein interessierenden letzteren Falle kénnen wir
aber, unter Einfithrung der Abkiirzungen

r = g - -
N =W—T5n (56111 = #y 2y —+ - - - %10 M)

g = g — Eg(j) (gy My + #oa Mg+ -« - Hgn M) ‘ el
fiir die dyn;axlci.isc.ller.l zgxuslen-ku;lgen, mit ;
d;;zl- 2 d;’ig, d;:iz = CE;?E:—”, AEE S itb D)
an Stelle von (5) schreiben
FO?ﬁ” 1 di;;’ 21911 di;?” B, di;i—;” —0

d R nﬂ '}jn”

E@n," —I—/Mml dI~ —|—V22H’£2 d:‘f L, T, d;f,é-:O (6).

20 1 2y d2p. '

E@y," +xn1m1% - o T 2ddr- T, ing— =10
Die Integrale dieses Systemes von simultanen Differentidl
gleichungen ergeben alsdann die zeitliche Anderung der #”
und damit auch wegen (ba) diejenige der Auslenkungen 2 7,

. %, durch deren Einfithrung in (4) schlieBlich der Bewegungs-
zustand des ganzen Stabes festgelegt ist. Die Ausfithrung dor
Integration setzt allerdings die Elimination aller Variablen #"
bis auf eine aus dem System (6) voraus, die nur durch umsténd-
liche, wenn auch nicht schwierige Rechnungen erreicht werden
kann. So kann man z. B. aus den beiden ersten Gleichungen (6)

! : EEBTE .
die Beschleunigung — ;21 eliminieren und erhalt S0 ??1” selbst als
d"' ?9 ;l— 3‘{ Ullz )!'n”

Funktion von #,” und simtlicher Ableitungen —7o=, = 5 Az
namlich

d-' d*ng"”

dﬂu
M = g+ e hg _‘L-’u’“ dr g
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Differenziert man diese Gleichung noch zweimal nach ¢
und setzt das Ergebnis in das zweite Glied der zweiten Gl. (6)
ein, so ergibt sich schlieflich eine lineare Gleichung zwischen
7y' und sédmtlichen zweiten und vierten Ableitungen von #,”
75" . . . my'. Durch Wiederholung dieses Verfahrens, d. h.
Kombination der ersten Gl. (6) mit jeder andern verschwindet
alsdann die Variable 2,"" aus dem ganzen System, das nunmehr
nur noch n— 1 Ausschlige und ebensoviel lineare Differential-
gleichungen enthilt, die allerdings jetzt alle von der vierten
Ordnung sind. Eliminiert man aus diesem System die Variable
3y ', so vermindert sich die Zahl der Gleichungen wieder um eine
unter gleichzeitiger Erhohung auf die achte Ordnung, so dab
schlieBlich bei n-Variablen fiir die letzte eine lineare Differential-
gleichung von der Ordnung 2% iibrig bleibt, die aber nur Ab-
leitungen gerader Ordnung enthélt. Der Fortfall der ungeraden
Ableitungen ist in der Vernachldssigung von Bewegungswider-
stdnden bedingt, die sich in (6) durch sog. Diampfungsglieder
mit den ersten Ableitungen geltend machen und das Problem
noch erheblich verwickelter gestalten wiirden. Aber auch ohne
solche in Wirklichkeit unvermeidliche Zusatzglieder verlauft
die resultierende Bewegung so kompliziert, dall man aunf die
Verfolgung des allgemeinen Falles verzichten mufBl. Dagegen
bietet es keine Schwierigkeit, den Charakter der Bewegung aus
der Gleichungsgruppe (6) unmittelbar festzustellen. Hierzu
brauchen wir nur die erste Formel ins Auge zu fassen, die sich

nach Entfernung der Massen my, m; . . . m, in
a2, B8 o
a2 Ly = eSS G e )

vereinfachen wiirde. Hierin ist aber nach der ersten Gl. (5) E‘%

die Durchbiegung an der Belastungsstelle durch die Gewichts-
einheit, eine Grofe, die wir in §7 als die EinflufRzahl be-
zeichnet haben. Rechnen wir im Einklang mit dem bisherigen
Gebrauche die Durchbiegung positiv in der Kraftrichtung, so
trifft dies auch fiir die Einflubzahl an der Angriffstelle zu.. Mit-
hin ist in Gl. (6a) der ganze Faktor von #," positiv, und die Formel
selbst stellt eine freie Schwingung dar. Da dieselbe
Uberlegung auch fiir die anderen Gleichungen (6) zutrifft, so
diirfen in diesen die Beschleunigungsglieder der anderen Massen

Lorenz, Elastizititslehre, e
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als Storungsglieder der auf die vorn stehende Auslenkung be-
ziiglichen Einzelschwingung angesehen werden, die dadurch zu
einer erzwungenen Schwingung wird. Die Glei-
chungen (6) ergeben somit eine Verkniipfung aller Schwingungs-
vorgéinge der Einzelmassen untereinander, die man wohl auch
als eine Koppelung bezeichnet. Den Bewegungsvorgang
selbst spricht man demgeméall als eine gekoppelte
Schwingung an.

1. Beispiel. Beim Vorhandensein einer einzigen Masse m
bleibt natiirlich nur eine freie Schwingung nach Gl. (6a) iibrig,
in der sich der Faktor x;; aus den Auflagebedingungen des
Stabes bestimmt. Ruht z. B. der Stab nach Fig. 75 aul zwei
Stiitzen im Abstande I, wihrend die Masse im Abstande ¢ von
der linken Stiitze befestigt ist, so gilt mit Q = mg fiir die statische
Durchbiegung die Formel (12), § 16, also

Y meg BC e -
] :"3 EGU'——C}E T: -E@-xn bl L e i
s0 dal hierfir
o s 4
:411:5(5—6)'. il sl e e (J&)

wird. Damit geht die Schwingungsgleichung (6a) iiber in

&y’ , - 3EO] =0 8
TN R T it AR

woraus sich die Schwingungsdauer zu

ml—e2er | T ‘
berechnet. Setzen wir hierin noch fir das Trigheitsmoment
um die neutrale Achse @ = F - k2, worin F den Stabquerschnitt
und k, den Triigheitshalbmesser bedeutet, so wird aus (8a)

l—e¢)e m
Natiirlich kann der Stab auch noch senkrecht dazu eine
zweite Schwingung in horizontaler Richtung vollziehen, deren
Schwingungsdauer ¢, aus (8b) durch Vertauschen des Trégheits-
halbmessers &, mit demjenigen &, fiir eine zur neutralen Schicht
normale Achse hervorgeht. Dabei ist vorausgesetzt, dall beide
Achsen Hauptachsen des Querschnittes darstellen.
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Die beiden Auflagedriicke, Fig. 75, ergeben sich im Falle
der Vertikalschwingung allein aus den Formeln

l—¢ ¢
V]:QTv V2:Q'E_s
wenn darin nach Gl (3) und (5b) sowie mit (8)

. A2y 3EG]
(\):m( S (”2)—.’ +(3 , H‘j’

gesetzt wird, zu

l—¢ 3E@
Cimtl pa (l—¢)e? /g
¢ 3EO (9).

V2 =mg £ —f— m

]‘.IIH'

Beide konnen negativ werden, wenn der Absolutwert des dyna-
mischen Ausschlags zu irgendeiner Zeit

n mgll—ecp?e

e = T 7 e R I SRR
wird, so daf ein derartig schwingender Balken im allgemeinen
auch gegen ein Abheben der Enden von den Stiitzen zu sichern ist.

2. Beispiel. Ist der Stab an einem Ende eingespannt,
am [reien dagegen durch die Masse m belastet, so haben wir zu-
néchst die statische Durchbiegung nach Gl. (11c), §17,

e Q1 mgl? mg

1 BEB. 36 Ee'n : ¢ U9

also

3
Wigs e o e SRR

Damit wird die Schwingungsgleichung (6 a)

dgt 3 HEO
qe 2 ne = it S s R 1)

mit einer Schwingungsdauer

. m B
W=2zlz5%a - » + - « . (l1a),
wilhrend der Auflagedruck sich zu

d_z 1] TE

3 EQ
V—=r (g—-(.gég)z’?3-§+_£3_' o e (D)
13%
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ergibt. AuBer diesem wirkt an der Befestigungsstelle noch ein
Einspannungsmoment im Betrage von 9, = VI, das ebenso wie
der Auflagedruck fiir
mgl
> \ EO
sein Vorzeichen wechselt.

3. Beispiel. Trigt der auf zwei Stiitzen ruhende Stab
zwei Massen m; und m, in den Abstinden ¢; und c, vom linken

; . Ende (Fig. 85), so erhalten

G ) | wir zunichst aus den Gleich-

b H F -, 4 19 A0
n .m, pe2 J ungen (11) und (12) des § 16

mit Q; = my g, Oy = my g die

Fig. 85. statischen Durchbiegungen s,

und 7,’ der Befestigungsstellen

My O €2 -
O — ég Ll —e)+myg [(bl+ j) €16 —

9]

4 (12).
gl en R s ch s :
E O ny —'mlg[(‘)l +l) 12— 12"—|- Lf —ﬁ]—l‘
My g cs° 2
T.g b
Vergleicht man diese Ausdriicke mit den Formeln
E@n, =g (11 my + #15m5)
EOny =g (a1 My ~+ #33Ms),
so folgt fiir die Faktoren
< G -
= PUC I e = S 12
(i clcz R S <l
W]ﬂ_"{21—’6 _|' 9 —"-F 62_

Schreiben wir fiir den letzten Faktor

el T : ;
Hig= Hgr = 731 ('f (e 4 ¢ + 20l —3 67— ‘312)
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so folgt
c

%5 = é; (l—ef 0. . = . u(i2h)
wiihrend die beiden anderen Faktoren von vornherein nur positiv
sein konnen. Das Vorzeichen von x;, wiirde sich iibrigens um-
kehren, wenn zwischen den beiden Massen eine Stiitze angebracht
wire, wie man leicht aus der Abschidtzung des Verlaufs der ela-
stischen Linie erkennt.

Die Schwingungsgleichungen des Massensystems lauten
nunmehr nach (6)

d2i FE dz?’g
EOny" + %1y my - d§2 Rt diz :0‘ (13)
A d?y’ d*ny"! -
EOny —|—x21m1 tZ —|—x32m2 di; :U‘
und liefern nach Elimination einer der beiden Variablen.
p g Faaia ot xpamy o’
o EG de
mymy  d*ap”

In dieser Differentialgleichung, die ohne weiteres ebenso
fir die andere Auslenkung #,” gilt, ist der konstante Faktor
des zweiten Gliedes als Summe positiver Betriige selbst positiv,
was dann auch fir den Faktor des letzten Gliedes

s o G :
Hr1¥as — H19" = (L — )2 (1 — )2 —

91z
155 (-'12 (,'2 3 012 + ng g
g oGl e
2 c. 2622 a2
"11"22_"312‘=:;)T(I—Cz)'(ﬁ'z“‘91) (1—( _'_ )>0 (13b)
zutrifft. Setzen wir darum abkiirzungsweise

Hi1n Hao o 5 5, M1 Mo
= 1.;\‘9_22_ =t (211792 — #12°) SR oo B (13¢),

so diirfen wir an Stelle von (13a) auch schreiben

] H’ _i_ a2 dd?;‘; +ﬁ2 @t j]g‘

Ein partikulires Integral dieser Glelchung lautet

i}g”zi?ﬂek‘ . . . - . . . (143.}

=0. . .. (&
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und ergibt eingesetzt in (14) fiir den Faktor & die Gleichung
I-Fefre el =R o o s o (fa),

mit den Wurzeln

— a2 +_]fa4 ——iﬁ'

k2= 5 g o et S L
oder mit }/_1=;,'
- ——
}ngzi ‘lfa +}'2%__*ﬁ —_ j’;f.él ‘
- (15b)
/ z__V 4 2
fgy =11 ]a fﬁ’ 4ﬁ:i552[
wobel die Differenz
a4—4ﬁ9>(}_

ist, wie man durch Einsetzen der Werte (13 ¢) leicht feststellen
kann. Wir erhalten also fiir das Integral von (14) die Summe
von 4 Exponentialfunktionen (14a) mit imagindren Exponenten,
die wir nach dem M oivreschen Lehrsatz durch trigonometri-
sche Funktionen ersetzen und daher fiir die Bewegung schreiben
diirfen

7o' = A; c08 0t 1 B; sin ;¢ -+ A, cos 0yt -+ Bysin 0.t (16),

von denen die ersten beiden Glieder eine Schwingung mit der
Periode

D L ey

die letzten eine dariiber gelagerte Schwingung mit der Periode

2 7 2 :
S e Tﬁv —— > . . = (16Db)

T T e—e—ip
darstellen. Fiir die Bewegung der Masse m,, die ebenfalls der
Gleichung (13a) bzw. (14) geniigt, ergibt sich ein Ausdruck von
derselben Bauart wie (16), der sich nur durch andere Integrations-
konstanten A B davon unterscheidet. Diese hdngen iibrigens,
da die Integrale der beiden Gleichungen (13) insgesamt nur
4 willkiirliche Konstanten besitzen koénnen, mit den Faktoren
“von (16) zusammen, worauf wir uns indessen hier ebensowenig
einlassen wollen wie auf die Berechnung der Konstanten selbst
aus den willkiirlich wéhlbaren Anfangsbedingungen des Be-
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wegungszustandes.l) Hier kam es nur darauf an, diesen als die
Uberlagerung je zweier Schwingungen fiir jede der beiden Massen
zu kennzeichnen.

§ 20. Biegungsschwingungen mit Beriicksichtigung der
Stabmasse.
Aufstellung der Schwingungsgleichung fiir ein Stabelement. Elimi-
nation des statischen Ausschlages. Integration fiir zylindrische Stéabe.
Giiltigkeit der Losung fiir ein Intervall zwischen je zwei Zusatz-
massen: CGrenzbedingungen fiir die Stiitzen und fiir die Ubergangs-
stellen der Intervalle. Beispiele.

Darf die Stabmasse nicht mehr als klein gegen die mit dem
Stabe fest verbundenen Zusatzmassen betrachtet und demgeméf
vernachlissigt werden, so versagt das im letzten Abschnitt
angewandte Verfahren ehenso wie auch fiir eine kontinuierliche
Belastung, zu der ja auch das Eigengewicht eines Balkens zu
rechnen war. In allen diesen Fillen miigsen wir auf die Bewe-
gungsgleichungen eines Stabelementes selbst zuriick-
greifen, welches wir am einfachsten durch zwei Querschnitte im
Achsenabstande dz begrenzen. Mit der Querschnittstliche F
und dem spezilischen Gewichte y des Stabmaterials ist dann
die Masse dieses Elementes

dm:--y—Fciz. e S e
g

Sehen wir, wie bisher immer, bei der Biegung des Stabes
von axialen Kriften ab, so bleibt nur das Gewicht des Ele-
mentes und die Querkraft 7' iibrig, die von einem Querschnitt
zum andern sich um d7 #ndert. Mithin besteht, wenn die po-
sitive Auslenkung # in die Richtung der Erdbeschleunigung
fallt, die Gleichung

dT—gdm+Shim=0. . . .. @y
fiir die wir mit (1) auch
dT S e O

1) Vgl. hierzu die Bewegung eines Doppelpendels in Lorenz,
Techn. Mechanik starrer Systeme, S. 319 {f.
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schreiben kidnnen. Nun ist aber nach fritherem mit hinreichender
Genauigkeit,

A By
Sew el e UL T
also wird mit (2a)
ag 02 ,
EOQ S ‘?—yF-il-glF e—0 . ¢ . . (D),

worin wir sofort die partiellen Ableitungen wegen der gleich-
zeitigen Abhéngigkeit der Auslenkung von z und ¢ eingefithrt
haben. Zerlegen wir weiterhin die Auslenkung, wie in §19 in
einen statischen Betrag 7’ und einen dynamischen 7, so gilt
fir den ersteren
a 9? bz.}?;
At S T 0,
so dal} nach Abzug von (2b) fiir die dynamische Auslenkung
n'=n—n die einfachere Gleichung
%y

E@ _4 -i— F Yo
itbrig bleibt, welche die Bewegung der Stabteile
um die statische Gleichgewichtslage kenn-
zeichnet. Schreiben wir hierin unter Einfihrung des Trigheits-
halbmessers & um die neutrale Achse des Querschnittes @ —
F k? und erinnern uns, daB nach §5

],.-E—g:a.. S e e )
(i
dieSchallgeschwindigkeitim Stabmaterial bedeutete,
so geht (4) tiber in

—p =0,

Sl e gy

a _,; 2 }?n

i B A
+ — T H E e G
Beschrinken wir uns nunmehr auf Stdbe mit unverinder-
lichem Querschnitt, so wird auch dessen Trégheits-
halbmesser % eine Konstante und wir erhalten mit dem An-

Bels =T e T SR SRS |- 1T

worin U = f; (t) eine reine Zeitfunktion, Z = f, (z) eine solche
des axialen Abstandes z von einem Stabende bedeutet, aus (4b)
a*k® d*Z b=l

= av e o AR T

a?k?
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Diese Gleichung kann aber nur bestehen, wenn sowohl die
rechte als auch die linke Seite mit einer und dergelben Konstanten
iibereinstimmen. Wiére diese Konstante negativ, so erhielten
wir fiir U einen mit der Zeit ins Ungemessene anwachsenden
Exponentialausdruck. Dieses Anwachsen miiite dann auch
fiir #"" zutreffen, d. h. die Bewegung wiirde im Widerspruch mit
der Erfahrung stets zum Bruche des Stabes fiihren, der selbst-
verstindlich nur kleine Auslenkungen erleiden kann. Daraus
folgt also, daf die fragliche Konstante nur positiv sein kann, so
dall also (6a) in die beiden Formeln

d? -
—Eg +at PP U =0 ‘
7 S e s ST G T
7 atl—0 ‘
zerfillt. Von diesen liefert die erstere eine periodische Funktion
U=Aqcosc®akt-+ Bysina®akt . . . (7),

die sich unter der Annahme des Beginns der Bewegung fiir alle
Punkte der Stabachse zur Zeit ¢ = 0, wofiir also %" und U ver-
schwinden muf}, in
U= DBysina okl . , . . «. . (18)
vereinfacht. Die zweite Formel (6b) wird dagegen durch den
Ansatz
! A B < N, N T Y ol e
befriedigt, dessen Einfiihrung in (6b) die Bedingungsgleichung
el I S S )

fiir die Konstante » der Exponentialfunktion (8) mit den Wurzeln

=1 a, 9’-—'34:_";6!1: R )
liefert. Ersetzen wir nach dem M oivr e schen Lehrsatze die
Exponentialfunktionen mit imagindren Exponenten von vorn-
herein durch periodische Funktionen, so erhalten wir als voll-
stindiges Integral der zweiten GI. (6b)

Z=Ae«xx+t Be-vz{-Ceosaz-Dsinaz . . (8¢c)
mit den Integrationskonstanten ABCD und a. Bei der Ver-
einigung von (7a) und (8¢) gemél (6) kénnen wir nun unbeschadet
der Allgemeinheit die Konstante in (7a) By, =1 setzen und
erhalten so als ein Integral der Grundgleichung (4a)

n" =sina®akt(Ae*+4 Be—“*4Ccosaz-+ Dsinaz) (9),
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dessen Konstanten durch Grenzbedingungen in jedem Einzelfalle
zu bestimmen sind. Dabel ist zu bemerken, dall im Falle der
Belastung des Stabes durch Zusatzmassen mym, . . . m, in
den Abstdnden ¢ ¢, . .. ¢, vom linken Ende, wie in § 19 die
Gleichung (9) nur fiir die Intervalle zwischen je zwei Massen gilt,
so zwar, dafl in jedem Intervall die Konstanten A BCD und «
im allgemeinen verschiedene Werte annehmen. Fiir n Zusatz-
massen haben wir demnach n - 1 Intervalle mit ebenso vielen
Gleichungen (6), die wir mit der Abkiirzung

WA= s T R O
schreiben diirfen
5"}1" = sin w ¢ (A en% - Bye—4z 4 C) cos a4y 2 4 D, sin a, 2)
7)2 = smv2 A €% z-—[— B (s z—|—0 cosar—{—ngmaz }] (©a).

Dlese Formeln enthalten i, (n—|—1) Konstanten 4BCD und a,
von denen zundchst 4 durch die Auflagebedingungen der Stab-
enden gegeben sind, zu denen noch die Ubergangsbedingungen
von einem Intervall nach dem néchsten hinzutreten. An diesen
Ubergangsstellen miissen nidmlich nicht nur die Ausschliage fiir
beide Intervalle iibereinstimmen, sondern auch in jedem Augen-
blicke deren erste und zweite Ableitungen, welche die Neigung
und Kriimmung der elastischen Linie definieren. Die Uberein-
stimmung der letzteren fiir beide Intervalle an der Ubergangs-
stelle beruht auf der Gleichheit des Biegungsmomentes zu beiden
Seiten, wiithrend die Stetigkeit der Neigung die Vernachlissigung
des Einflusses der Schubspannungen voraussetzt. Schlieblich
haben wir noch zu beachten, daB an der Ubergangsstelle die
Querkraft 7 sich plétzlich um die Kraft

S "

Adi = =70 S (11)

andert, so dal wir im ganzen mit Riicksicht aufl (3) z. B. fiir den

Ubergang vom ersten in das zweite Intervall fiir z=¢, die Be-
dingungseleichungen

(g ")er = (p2")ey
0 Ny oL ( 079" ]
O e O S O

(12)
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erhalten. Da diese Bedingungen unabhingig von der Zeit be-
stehen, so miissen sich die Zeitfunktionen aus ihnen wegheben,
d. h. es wird fiir alle Intervalle

Sin oyt =siny,t--» =singt . . . , (13)
oder wegen (7)

G — g e e e g e

wodurch sich sofort die Zahl der Konstanten um n vermindert.
Mit (9) und (13) gehen die Bedingungen (12) nunmehr iiber in

(4, — Ay et (B, — By) e—«a L (C;— Cy) cos acy
+ (D;— D,) sina¢; =0

(dy—Agjese— (B, — Be %a—(C,—C,) sindge; |
+ (D;—Dy) cos ae; =0

(A, — Ay) ecs | (B, — By) e—#6 — (C; — C,) cos a ¢y —
— (Dy—Dy) sinae, =0

(A; —A,) exts— (B; — By)e—2a L (C, — C,) sin a¢; —
— (D; —D,) cos aey

(12 a).

2 7.9
aak? .
T Sl v o] —re X Y
=m 55 (Adyeccr+ Bie—=er L C, cos aep + D, sin aey)

Die weitere Behandlung dieser Gleichungen im Verein mit den
4 Auflagebedingungen fithrt schlieflich auf die Elimination
von 4 (n-41) Konstanten, so daR schlieflich nur noch 5 (n—-1)
—4 (n-+1)—n =1 Konstante iibrig bleibt, die willkiirlich
gewiihlt werden kann. Da wir von der Annahme ausgegangen
sind, dall zur Zeit ¢ = 0 das ganze System sich in der Ruhelage
befinden soll, so kinnen wir die letzte Konstante etwa durch
die Vorschrift einer Geschwindigkeit bestimmen, mit der eine
der Massen ihre Ruhelage passiert. Man iibersieht ohne weiteres,
daB die explizite Losung des Problems schon beim Vorhandensein
einer einzigen Masse zwischen zwei Stiitzen die Auflésung von
8 linearen Gleichungen und damit recht unbequeme Rechnungen
erfordert, die allerdings prinzipiell keine Schwierigkeiten be-
reiten. Wir wollen uns darum an dieser Stelle nur mit der Durch-
fithrung zweier verhiltnismifig einfacher Fille begniigen, deren
Ergebnisse iiberdies leicht zu iibersehen sind.

1. Beispiel. Fir einen zylindrischen Stab
auf zwei Stiitzen ohne jede Zusatzmasse gilg
ohne weiteres Gl. (9) fiir die ganze Stabldnge, wihrend sich die
Auflagebedingungen auf das Verschwinden der dynamischen
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Auslenkungen und der Biegungsmomente an den beiden Enden
beschrénken. Wir erhalten also mit %" = 0 fiir 2 =0 und z —

aus (9)
A4+B4+C =)
Ae#ltf Be—«l Ccosal-}Dsinal =0

und, da mit den Biegungsmomenten auch die zweiten Ablei-

L

tungen < fiir z =0 und z = [ verschwinden,
A4 B-—-C 0]
Aesl ;- Be—wvl—Ccosal—Dsinal=0 |

Daraus folgt aber .
dr—=h—— ), st —Ges . oo by

d. h. mit einer ganzen Zahl n

(14)

Fl==mats ssn s e ey
s0 daB nunmehr die Schwingungsgleichung (9) sich auf
7' =Dsino*aktsinaz

oder wegen des Wertes von a nach (14c) auf

. 15 2
Hl=1 sm n2:?r3—£}§ t sin (5 S W (15)
reduziert. Da hierin n jede ganze positive Zahl bedeuten kann,
der je eine Schwingung von der Form (15) entspricht, so wird
sich der Gesamtausschlag aus einer unendlich groBen Zahl von
Einzelausschligen zusammensetzen, die aus (15) durch Summen-
bildung hervorgehen. Die allgemeinste Schwingung des unbe-
lasteten Stabes ist hiernach gegeben durch
n=co
e b4 <
1;’=RZ=:L.D,1 sinn?a? —g-isinnm . . . (15a),
in der man das Glied mit n =1 als die Grundsechwin-
gung, die anderen dagegen als Oberschwingungen
bezeichnet. Die Dauert, der Grundschwingung ergibt sich dann aus
mn 2 i it 2 _ak t .
sin 27 5 = sin 7% —
Zu
2
wak °

g i . (15b),
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wihrend allgemein die Dauer der (n — 1)ten Oberschwingung
2P
ntaak

ty= (15¢)
wird.  Der reziproke Wert jeder dieser Schwingungsdauern
liefert die wohl auch als Fre quenz bezeichnete Schwin -
gungszahl in der Sekunde, der durch Ubertragung der
Schwingung an die umgebende Luft ein bestimmter Ton ent-
spricht. Demgemil bezeichnet man auch den von der Grund-
schwingung hervorgerufenen Ton als den Grundton des
Stabes, die weiteren dagegen als dessen Oberténe. Dieser
Erscheinung sind wir schon einmal in §5 bei den Longitudinal-
oder Langsschwingungen eines Stahes begegnet, deren Grundton
nach Gl. (24a) §5 eine Schwingungsdauer

__ 4l
TR
besall. Mit unserer Formel (15b) ergibt dies

o

L = 2nk’
also fiir kleine Werte des Trigheitshalbmessers & im Verhéltnis
zur Stablinge I eine viel grofere Dauer der transversalen Bie-

gungsschwingungen gegeniiber den longitudinalen.

Dadie Stitzendriicke des Stabes absolut genommen
mif den Querkriften an den Enden iibereinstimmen, so erhalten
wir mit Riicksicht auf GI. (3) unter Beschrinkung auf die Grund-
schwingung hierfiir

Vy= Vg_}’)( )E@qu;’}'
also, wie schon in § 19, periodisch veriinderliche Werte, die ins-
besondere ihr Vorzeichen wechseln. Der Stab mufl demnach
an seinen Enden gegen Abheben von den Stiitzen gesichert werden,
was am einfachsten durch eine Lagerung in zwei Zapfen erreicht
wird,

SchlieRlich sei noch darauf hingewiesen, daB sowohl die
Ausschlige als auch die Stiitzendriicke und damit die Stabspan-
nungen von der willkiirlich wéhlbaren Konstanten D abhingen,
die nichts anderes als den absoluten Wert des groBten Aussohlages
darstellt.

R ke
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2. Beispiel. Fir den an einem Ende eingespannten
Stab, der, wie im zweiten Beispiel des vorigen Abschnitts, am
freien eine Masse m trdgt, haben wir zuniichst fiir das einge-

on"” 1
spannte Ende z = 0 die Bedingungen 3" =10, a‘f—— 0, mithin

unter Benutzung von (9)

A+BFC=0] 17

o P e B s el BT

wihrend fir das freie IEnde mit dem Wegfall des Biegungs-
az rr

moments 6}2 =0 wird und auflerdem die Querkraft mit dem

Beschleunigungsdruck der Masse m nach der letzten Formel (12)
iibereinstimmt. Dies liefert die beiden weiteren Bedingungs-
gleichungen
Aett+ Be—«l—(Ceosal—Dsinal =0
Aetl— Be—v«l4 Csin al — D cos al ‘
maa? k>

£E0 (Adevlt+ Be—el + Ccosal-- Dsinal)

Hierin ist mit Riicksicht auf die Bedeutung von a2 nach (5),

(17 a).

R Fly
sowie mit der Stabmasse m, :—;‘(—,- wegen 0 = Fk?
maa*k? m
ETZGIE Bt me sl e S

Fithren wir diesen Wert in die letzte GI. (17a) ein und eli-
minieren dann vermittelst der Beziehungen (17) die Konstanten

o o e
A 2 Y o= 3 2
s0 wird aus (1?3}
el el ___p—ual
C (e it —f-vosal]—l—D(%—}—siuaE)=0
My Irn’i_i_p—(x! egal __p—eal
C(G ?.’. 9 9
—|—sina£-—al%cosa£) (17b).
0 R et O L o |
—|—D(a " 2 2
—cosai—}—alﬁ] sjnal):()
m
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Dafiir konnen wir auch unter Einfiihrung der Hyperbelfunktionen

e;xi_!_e—uf em‘._,e--— al —
B -'—;2—— =Eos al, T = ESinal
kiirzer schreiben

C (Cosal4-cosal) + D (Sinal 4 sin al) =O’

2 Imo--;-—- ) — @i i
(_[a (Cosal — cosal) mal+smal] (17 o).

—i—D[al (@mai‘—sma?}—Lnoal—to-«aﬂ]—O'

Aus diesen Formeln folgt schlieBlich durch Elimination der
Konstanten € und D wegen €032 al — Gin2al = 1 die trans-
zendente Gleichung

1Gu§a£sinu£—-€in alcosal _ my
1+GCo5alcosal ke

welche auf graphischem Wege_fiic ein bestimmtes Verhiltnis
mg : m mit Hilfe der Tafeln fiir die Hyperbelfunktionen eine
unendliche Zahl von Werten al liefert. Jeder dieser Werte be-
stimmt alsdann mit (17¢) und (17) die Verhiltnisse € : D sowie
A :Dund B : D, so dall nur noch eine der Konstanten, z. B. D,
willkiirlich gewiihlt werden kann.

Aus (19) erkennt man weiterhin, dal fir my: m = 0 auch
@l =0 wird, und dafl allgemein kleinen Werten
von my:m auch kleine al zugeordnet sind. In
diesem Falle kann man aber die Hyperbel- und Kreisfunktionen
in (18) nach Potenzreihen fiir al entwickeln und erhilt so unter
Beibehaltung der ersten beiden Glieder die Niherungsformel

(19),

2 L"’ 34
m o ( 3 LBs7 0 ) att
mﬂ 5 : ' a1l4 o (1+ ]’(} “”) Ao,
21 9 )
die sich fiir sehr kleine my : m noch in
il L -
e A e e (O h)

vereinfacht. Damit aber wiirden wir wegen (10) und (13) eine
Schwingungsdauner

],.-:—: SR
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erhalten, fiir die wir mit myg = Fl+y und Fk* = 6, sowie mit
(5) auch
- [ mBP
h=27)3F6
schreiben diirfen. Das ist aber nichts anderes als die Schwin-
gungsdauer Gl (16a), §19, einer Masse am masse-
losen Stabe, ein Fall, der somit die erste Ndherungslésung
unseres Problems darstellt. Fiir eine zweite Anniherung?)
greifen wir auf (19a) zuriick und setzen in den Klammerausdruck
rechts den Niherungswert (19b) ein, woraus
mg _ oV (1 39 m_u)
¥l 8 140 " m
oder 3my
A o O
Bl 33

m = 7 ™o

. (20a)

. (19b)

hervorgeht. Lassen wir nunmehr die Zusatzmasse verschwinden,

80 folgt mit m = 0

Al = % =12,73, al=1,89,

withrend die exakte Bedingung hierfiir nach (19)
14 Co3alcosal =0

lautet und al = 1,87 ergibt. Man erhdlt also, wie schon
Sommerfeld bemerkt hat, die Grundschwingung
des eingespannten Stabes ohne Zusatz-
masse mit hinreichender Genauigkeit als
zweite Naherungsléosung fir eine grole
Zusatzmasse, Dieses gewil iiberraschende Resultat ist
einfach in dem anfanglich raschen Wachstum und darauf-
folgender asymptotischer Niéherung von al an den Wert 1,87
mit abnehmender Zusatzmasse, also zunehmendem Verhiltnis
mg » m begriindet.

Die Periode der Grundschwingung ohne
Zusatzmasse ist demnach mit myg = Fly und Fk* = 0

anlk . 2w [ mgB

1) Vgl. Sommerfeld, Zeitschr. d. V. D. Ing. 1905, S. 1322,
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woraus mit (20a) das Periodenverhiltnis

z e
=0 . 357 —
tl i m,ﬂ
hervorgeht, wenn m : my; > 1 ist. Der mit einer Zusatzmasse
belastete Stab schwingt demnach stets viel langsamer, als ohne

diese Zusatzmasse.

(21a)

§ 21. Biegungssehwingungen zwangliufig bewegter Stiibe.
Ableitung der Grundgleichung mit Riicksicht auf die axiale Stab-
kraft und die Beschleunigungskomponenten in der Stabachse und
normal zu dieser. Beispiele eines elastischen Pendels und der Loko-
motivkuppelstange. Angeniherte Integration der Schwingungsgleichung

in letzterem Falle.

Die in der Technik héufig zur Energieiibertragung benutzten,
vermittelst zweier Fiihrungsbahnen zwangldufig bewegten Stébe
sind im allgemeinen ebenfalls Biegungsschwingungen unterworfen.
Dabei wirkt auf ein Stabelement vom Querschnitt ' und der
axialen Dicke dz wieder der Unterschied der Querkraft 7 an
beiden Schnittflichen, so dall ¥
die Gleichung B b peglaz

ok T Ry 7

oz 0z 4
besteht. Hierin setzt sich der Zu-
wachs der Querkraft zusammen
aus der Normalkomponente des g
Gewichts des Elementes, dem Zu-
wachs der Normalkomponente

p bb_?z? der die Energieiibertragung

vermittelnden axialen Stabkraft Fig. 86.

P und dem Massendruck des

Elementes infolge der Normalkomponente seiner absoluten Bo-
schleunigung. Bezeichnen wir diese Komponente mit dov : dt.
den augenblicklichen Neigungswinkel der Stabachse gegen den
Horizont mit 4, so ist unter der Annahme der Bewegung in einer
Vertikalebene nach Fig. 86 fir nach oben positiv gerichtete
Ausschlige 7

—aid ztgeosydm= ab ( 2}3)“"_ fztf'd”"

Lorenz, Elastizititslehre. 14
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oder wegen
cadm—gdid s s ()

5= —7Feosy+ 5z (P2)—

Damit geht (1) iiber in

0

41-
E(‘)~--E£-—|--y.Fcosqp—{—y?W—P . i

F do 0’ dP dy

0z
Aullerdem aber erhdlt das Element eine Beschleunigung du : dt
in axialer Richtung durch den axialen Zuwachs der Stabkraft P

selbst, so zwar, dal
i o P du

-a;—dz = 'dt-- dm
g 3P F du )
& _"’,g—d.“, S sl el BT,
ist. Fithren wir diesen Ausdruck in (1a) ein und dividieren mit
F :
¥ —, 80 wird mit .
E
yg e p o ppr i s meliey
daraus
oty BB ok dvo  dun dn

TEge Ty e o tm me et O

Zur Berechnung der beiden Beschleunigungskomponenten

bezeichnen wir mit zy die Koordinaten des Elementes auf der

nicht deformierten Stab-

achse im Abstande z vom

linken Ende A, mit 2y’

die zugehérigen Koordina-

ten der in Fig. 87 punktiert,

eingetragenen elastischen

Linie, die mit den ersteren
durch die Gleichungen

2 = x—nsin p )

0° T Yy=y-+neosy| " "

Fig. 87. zusammenhiingen. Daraus

folgen alsdann die mo-

mentanen Geschwindigkeitskomponenten in der z- und y-

Richtung durch partielle Differentiation nach der Zeit, also
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o'  dx  dy dyp
3¢ — 0F az MRSy .

oy 9y L dm dy |
o az g =g iRy dz}

. (7a)

und weiter die entsprechenden Beschleunigungskomponenten
02 2z ¥y oy dy
e M R S L Sy L oG
3~ 38 op BY 23y gy 98y
2

: dy\? d
-i—t;smwp(d—'f) — 1) COS P d:f

(7D).

ol %
o e

3

e dy dy
T s — 25 g sy

dp\* . @
—-—-;30031;;( d!‘j) —-nsmy}—-d%

Aus diesen Komponenten setzen sich dann die in Gl (6)

eingehenden Beschleunigungskomponenten zusammen nach den
Formeln

an g 0%
i a:’z’_"c'”" K S”“*’ 8
du 0%y 0F ! )
7 ey bt2 Sin Y + 55 cosy
die mit (7b) iibergehen in
doer 2 dz 0%y, dy\? |
TR Sl diere Ty Smw"l__a?-’r}_b” (a%) l 82)
N 02 On'dy  dy :
e By G S T e e

In diesen Gleichungen kénnen die ersten beiden Glieder
noch durch Einfiihrung der Koordinaten w3, des Endpunktes A
vermioge der Beziehungen

x=m1+zcosy)l

| . | 9)
Y=Y+ z8myp
umgeformt werden, da
0  dn dy
rmae ame
: (9a)
oY iy dy
T ey
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und
02 a2 x | a2 d \?
_a 2 = Fié.i_ —_—Z sIn Tp —E?—.?f' — 2608 y ( ?;%‘J) qb
2y d*yy Py ; day) - R
bf" = d.{z —|—zroq1p g Asmy W]
~ist. Damit wird aus (8a)
dul NdEg a?zy d? rp i
& = dg OV gg SY+igE T 3a (fu)
g s : d?*x d ’
S dgl—smgu—]— dtﬂl COs Y — ( d?) (8 D).
o0y dy Py
‘Dz dt 1 de

Der letzte dieser beiden Awusdriicke erhilt nun in Gl (6) den
Faktor 07 : 0z, der ebenso wie die Auslenkung # selbst als klein
vorausgesetzt wird. Infolgedessen diirfen in der zweiten Gl. (8a)
und (8b) die mit % und 04 : 0z behafteten Glieder unbedenklich
vernachlissigt und es darf dafﬁr kiirzer
du  d*y, dp\® s
& e vt dz’ ok (d;) R
geschrieben werden. Mit dieser Formel kénnen wir dann auch
noch die absolute Grolle der axialen Stabkraft P ermitteln, fiir
die sich mit (4)
AR e d yl dip B -
oF 3z df y+ gz osv—z(gr) . Ga)
ergibt. Bezeichnen wir die als Zug aufgefalite Stabkraft im Stiitz-
punkte 4, d. h. fir z = 0, mit P;, so folgt durch Integration

: d*x 22 (dy\?
fﬁp——P +(d£2 sin p - cosap)z——g (d‘f) (4b).

In diesem Ausdruck sind 2;y, und % nur noch reine Zeitfunk-
tionen, wodurch sich bei deren Ableitungen die Anwendung der
totalen Differentialzeichen rechtfertigt. Auch P, ist keine Kon-
stante, sondern eine periodische Zeitfunktion, die im allgemeinsten
Falle durch eine Fouriersche Reihe dargestellt werden kann.

1. Beigpiel. Haben wir es mit einem Pendel zu tun,
welches aus einem elastischen Stab von der Tdnge [ mit einer
am freien Ende befestigten Masse m besteht und nur kleine Aus-
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schlige ¢ um die vertikale Ruhelage vollzieht' (Fig. 88), so ist
zunéchst

p =270+ p=¢ — 909, cosp =singp ~ @

L B L o L N
g = der 0 \dt —(d;)“ :

Da weiterhin in diesem Falle sich die eine Fiihrungsbahn
auf den festen Drehpunkt beschrédnkt, den wir als Koordinaten-
anfang O wihlen, so ist z; =0, y; = 0
und wir erhalten fiir den axialen Zug
infolge der angehéingten Masse m aus
(4b)

=, —

Die beiden Beschleunigungskom-
ponenten in der normalen und axialen
Richtung sind ferner nach (8b) baw.
(8¢) unter Vernachldssigung des Qua-
drates der kleinen Winkelgeschwindig-
keit

dv e , ¥y du

& 4age T ope oy 20

=

Damit geht dann die Bewegungs-
gleichung (6) iiber in

Fig. 88.

a1 OO0 mgtin . Wy d*p
a* k? 22 },;1 Nal I 212 + g9+ Sl 0 . (10),

worin der Ausschlagswinkel der Stabachse bei einer Gesamt-
schwingungsdauer ¢, des vorldufig starr gedachten Pendels durch
die Gleichung

p=gosin 2w —gosinw . . . . (1)
g ;
vorgeschrieben ist, so dall an Stelle von (10) auch

at g2 0%y | 02y :
@k S =" 58 5 €70 — @) sinvt =0 (10a)

geschrieben werden kann. Diese Differentialgleichung wird
augenscheinlich durch den Ansabz

=R L i doe e (D)
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erfiillt, in der Z eine reine Funktion des Abstandes z vom Dreh-
punkte bedeutet, fiir welche die Elimination von sin »¢ aus
(10b) und (10a)

A7 mgdiZ

a’ k> 7 —-Fd?-vg(Z—I—z%m*’r—fq) =a s S

mit der Lsung

Z+2g,—800=cpers . . . . (109

ergibt. Deren Einfithrung in (12) fiihrt auf die biquadratische
Gleichung

mg®
a2t :];:Q #E—p2=0 . . . . (123}

mit den Wurzeln

ey 1 ',ff me s mg 2 P e R
=TV Fer - by F2at B2

. (12b),

von denen offenbar zwei reell und zwei andere imaginir sind.
Schreiben wir fiir die reellen und imaginiren Wurzeln ab-
kiirzungsweise

. !I.f m g? i ym? g a2yt F2 a2 |2

) apfas (12¢)

kit m g — Imigt - 4v* 2 P2 a2 )2 EoRky e s
/ 2y Fa® k2 e

so lautet das allgemeine Integral von (12) mit vier Konstanten

~_~j~_a1

Z+zpy—g %?—:A entt-Be—«zdCeosayz+ Dsinayz (10d),

und damit geht (10b) iiber in

7 = sin vt(gﬂ—-z%+A est_L Be "zt

2
—|—Ccusu23+Dsina2z). e SRR L B

Verstehen wir unter der Pendelachse die Verbindungsgerade
des Drehpunktes mit dem Schwerpunkt der Zusatzmasse m
am freien Ende, so verschwindet die Durchbiegung 7 sowohl fiir
z=0 als auch fiir z =1 und ebenso an diesen Stellen das
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Biegungsmoment, d. h. die Ableitung 924 : 0z% Daraus folgen
dann als Bedingungsgleichungen fiir die vier Konstanten in (13)

A+B+C+gtt=0

Aenl L Be—#ld Ccosayl -+ D sin aglmi—g;%]——l% =
@? (A 4+ B) —a,>C =0

a2 (Aenl 4 Be—al) —ay? (C cos ayl -+ D sin ayl) =0
deren Auswertung nebst der sich daran anschlieBenden Diskussion
der schlieBlichen Formel fiir die Durchbiegung n dem Leser iiber-
lassen werden kann.

Hier mbge noch die Bemerkung Platz finden, dall im Falle
des Verschwindens des Elastizitdtsmoduls, also fiir einen ab -
solutbiegsamen Pendelfaden, in Gl (10) das erste
Glied wegféllt, woraus die grofe Allgemeinheit unseres Ansatzes
deutlich erhellt.

2. Beispiel. Fir die Kuppelstange einer gleich-
formig auf horizontaler Bahn ohne Gleiten fortschreitenden
Lokomotive ist zunichsty =0
und weiter wegen der kon-
stanten Winkelgeschwindig-

(134),

keit @ der Riéder mit dem be
Kurbelradius r, Fig. 89

x, =rcos Wi, e BRI T

y,=rsinwt . (14), R e
wonach mit (8b) und (Sc)

d 02 1

d_l;:_bT?"_'rwg sin @ ¢, %:—ﬂ'aﬂ cosmi (14a),
sowie nach (4b)

J2]
—iﬁ—=%——zrco2 CoE bR e a1 Ak

wird. Hierin ist aber bei einem konstanten Drehmoment 9t des
getriebenen Rades

: e ;
Py, =M, 17 rsinwt ° (15),
so dafl (14b) in

g s e 1 — ——Zrafcosmt , . . (thc)

}}F == ?ﬁ? SiI_l {;’J t
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itbergeht. Damit lautet die Bewegungsgleichung (6) fiir die
Kuppelstange

. B By gM . ong ARl
a2 k2 S 4 (}«' Fronmt @ COs mi) 322 + g
., 0%y g0 5 01 -
+b—32__ rmZsinot + ri FBDS (7=l ('Ib),

deren strenge Integration wegen der Veriinderlichkeit der Fak-
toren einzelner Glieder geradezu ausgeschlossen sein diirfte.
Wir miissen uns daher mit einem Néherungsverfahren begniigen,
welches sich zwanglos aus dem iiberwiegenden Einfluf des von
5 freien periodischen Gliedes rw? sin w¢ auf die durch den ersten
Term dargestellte Biegung ergibt. Wir integrieren also zunichst
die Gleichung

0ty . A
a*k? a}i:roﬁsmwt T e b T

nach z und erhalten mit den Bedingungen des Verschwindens
der Ausschlige und der Biegungsmomente fiir die Auflagezapfen
bei z =0 und z = [ analog GI. (6a), § 16,

ro®sinmt

T (A —2124+ 8Bz . . . (16b),
woraus sich dann riickwiirts
L/ -’”“iZ’i‘;j" (4 — 218 | 1y
W IO s iy | . oo
h2£_= H?)_;H;z:wt (2 —1g)

berechnet. Die Einfihrung dieser Ausdriicke in (16) liefert als-
dann mit 2 cos wisin w¢ = sin 2wt nach Ordnung der Glieder

oty Maw? 22—z
5 i SN - L el
a .‘l‘: 62‘4 ——--g( y}(ﬁ Zafskl) 1)
4
—}-rwzsxnwi—]—r&;f:;k?t #—212+ B2
S
_r_wfgi?szi({ﬁza——wlzﬁ-kﬁ) ikt R T

Die Integration dieser Differentialgleichung nach z liefert
dann schon mit Beachtung der erwiihnten Auflagebedingungen
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die Ausschlige, die sich hiernach zusammensetzen aus je einem
mit der ganzen und der halben Umlaufsperiode variierenden
Bestandteil. Wiirden wir noch weiter gehen und aus dem Inte-
grale von (17), dessen Auswertung dem Leser iiberlassen werden
kann, die Ableitungen (16a) berechnen und in (16) einsetzen, so
treten noch Sehwingungen mit weiteren Bruchteilen der Um-
laufsperiode auf. Ganz allgemein erhélt man mit diesem Ver-
fahren fiir die Ausschlige eine Fouriersche Reihe von der Form

n=Zo+Zysin (@14 B,) + Zysin Qot+ B 4+ (18),

in der die Koeffizienten Z,Z,7Z, ... sowie die Phasenverschie-
bungen f8,f, . .. selbst wieder Funktionen von z darstellen.

Hatten wir iibrigens an Stelle von (16a) die etwas allgemeinere
Formel !

e R : :
a2k a;£+-~-a—t§-:m25mm. 2 ey

integriert, so wirden wir mit denselben Auflagebedingungen
fiir den Ausschlag
ool [11—e—ol) ge2 ARt e dng e o
I 2 T . gal_e——ul i

—[—comz—|—tg(—f)l—sinuz—;-| S T Y

erhalten haben, worin die Konstante a durch

: GRalr== oot ()
bestimmt ist. Entwickeln wir dann die in (19a) auftretenden
Exponential- und trigonometrischen Funktionen in Potenzreihen
und brechen mit dem vierten Gliede ab, so geht (19a) wieder
in (16b) iiber, woraus die hinreichende Genauigkeit dieser Nihe-
rungsformel deutlich erhellt.

§ 22. Stibe mit veriinderlichem Querschnitt.

Die Normalspannung und Schubspannung in Staben mit verdnder-

lichem Querschnitt. Karper gleichen Widerstandes. Verteilung der

Schubspannung iiber deren Querschnitt. Ausdriicke fir das Biegungs-

moment und die Querkraft. Beispiele eines Korpers mit konstanter
Héhe und konstanter Breite. Die elastische Linie.

In zylindrischen oder prismatischen Stében, deren Biegung
wir bisher ausschlieflich untersucht haben, wichst infolge der
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Konstanz der Querschnittsform und Querschnittsfliche die
Normalspannung

Pl

in gleichem Abstande y von der neutralen Schicht lediglich pro-
portional dem Biegungsmomente und erreicht mit diesem ein
Maximum im sog, gefédhrlichen Querschnitte. Das
Material wird daher in solehen Stidben sehr ungleichméBig aus-
genutzt, weshalb man gelegentlich auch Stébe mit veréinderlichem
Querschnitt lings der Achse anwendet. Verlangt man, daf} in
diesen die gréfite Spannung
i

o=y e . o o .. (La)
fiic alle Querschnitte denselben Wert erreicht, wobei y, den
Abstand des duBersten Umlangspunktes von der neutralen Achse
bedeutet, so spricht man von Kérpern gleichen Wider-
standes. Da fir Gl (1a) unter Einfithrung des Kritmmungs-
radius ¢ der elastischen Linie auch '

.E_Go :
. e

geschrichen werden kann, so erkennt man, dafl in Kérpern
gleichen Widerstandes der Krimmungs-
radius der elastischen Linie dem Abstand y,
des duflersten Querschnittspunktes von
der neutralen Achse proportional ist.

Um nun festzustellen, welchen Einflull die Verdnderlichkeit
des Querschnittes auf die Schubspannung ausiibt, fassen wir
noch einmal die Fig. 61 ins Auge und bezeichnen mit d.S = adF
das Element der Zugkraft infolge der Normalspannung. Alsdann
ist die gesamte Zugkraft im schraffierten Querschnittsteile von
Fig. 61

Ys Yo :
S:jodF:ZSoxdy R Sl

i1 Y1
wenn 2z, wie in § 14, die Lidnge der zur Ordinate y gehirigen
Parallelen zur neutralen Achse innerhalb des Querschnitts be-
deutet. Schreiten wir um dz in der Stabachse fort, so wird nun (2)
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infolge der Veriinderlichkeit des Querschnitts allgemein
Yo+ d s

dS £ iy
S43ods=2 ((04-—5653) (er-%dz)dy
Y

oder nach Abzug von (2)

38 Yo+-dYo Yo o du s —i—d.;,,
= dz—72 axd‘;-—‘_.(omdu—]—-ZS‘a—dmcdy—}—ng ~—dady,
Y Y Yt Y1

Beachten wir, dafi die Integrale sich auf das in Fig. 61
schraffierte Stiick des Querschnitts erstrecken, so kinnen wir
zuniichst die beiden ersten Terme rechts zu einem Differential
20, xydy, zusammenziehen, in dem 2, die Querschnitisbreite
im #dubersten Abstande y, von der neutralen Achse bedeutet.
Weiter erhellt, dal} fir die beiden letzten Terme der Unterschied
dy, in der oberen Grenze keine Rolle spielt, da er nur Zusatz-
glieder von hoherer Ordnung zur Folge hitte. Ersetzen wir dann
noch in den beiden letzten Gliedern o durch seinen Wert (1)
und beachten, dafl y und z unabhiingige Variable darstellen, so
folgt nach Division mit dz

Ya Yo
08 d m 0w
Dz'—go“ 0 _yo—l—ﬂ ( -)(xyciy—}—..— g‘Jaﬂf?f
Y TJ'A

oder nach Einfihrung der Schubspannung z; im Abstande y,
von der Neutralachse durch
0S8

5z 42=2n%dz
u
i1 o /M 0z :
Ty & = Gy Ly d{U i (0) (xjdy—]— ) q—ydy (2a).
?}1 i1

Hierin verschwindet das erste Glied rechts, wenn mit z, = 0
der Querschnitt im Abstande y, einen endlichen Kriimmungs-
radius besitzt, auBerdem aber auch im Falle einer zur neutralen
Achse parallelen Begrenzung an dieser Stelle, wenn der Abstand ,
in allen Querschnitten denselben Wert besitzt, insbesondere fiir
Querschnitte von gleicher Hohe, aber wechselnder Breite .

: ) ; s ol ;
Das letzte Glied endlich verschwindet mit b_-:O, wenn die
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innerhalb des Querschnitts im allgemeinen variable Breite sich
langs der Achse nicht dndert, d. h. wenn alle Querschnitte im
gleichen Abstande g, von der Neutralachse dieselbe Breite z,
besitzen. Fiir Stibe mit konstantem Querschnitt geht unsere

) d i ; .
Gleichung wegen —gy—;" =10 und %;:O naturgemdl wieder in
Gl. (3a) § 14 iiber.

Néhern wir die Schnittgerade y, immer mehr dem #ufersten
Umfangspunkte im Abstand y,, so riicken die Grenzen der beiden
Integrale in (2a) zusammen, so daB diese Integrale selbst fiir
Y1 = Yo verschwinden. Alsdann aber geht auch ganz allgemein z,
in z, iiber, und es bleibt schlief-
lich als Schubspannung im #ulersten
Querschnittspunkte

rozao%-‘z—" AR

ein. Wert, der nur fiir konstantes y,,
wie beim zylindrischen Stabe, ver-
schwindet. Von der Richtigkeit die-
ser Folgerung kann man sich auch
Fig. 90. unmittelbar durch Betrachtung der
unendlich  kleinen Kappe Fig. 90

iiberzeugen, die durch zwei unendlich nahe Schnitte am
dufersten Rande des Stabes einerseits parallel der Stabachse
und der neutralen Schicht, andererseits normal dazu entsteht.
Das Gleichgewicht dieser Kappe von der axialen Lénge dz und
der Hohe dy, erfordert, dab 7ydF’" = g,dF ist, woraus mit
dF . i
dF.~ dy;

wieder (2b) resultiert.

Differenzieren wir ferner Gl. (2a) partiell nach y,, d. h. nach
der unteren Grenze der beiden Integrale, so folgt wegen

Yo Ya i Y+ din
j‘;vydy—jxydy::j:vydy:—jmya’.? = — 1, y,dy,
Ui+ dy, i n+diy i
U:b 'Uaa 1i'1+db!h 3
D x x 5
g—a'; yffy—gj'g ydy :——(—az—yd? =—<"ydy

Yit+dus U1 Y1
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unter Wegfall des konstanten ersten Gliedes von (2a)
0 (11 24) ' 0 /! M oz
N — 1 [ ( )xl —+ 5 __1_]

0y . oz |\ @ O oz

oder auch
o1 o o 4
sttt o

Mithin erhalten wir fiir ein Maximum oder Minimum
von 7; die Bedingung

A, GEUE il Q5 1y )

151 b_y_1 =T e (xl ?) = g (‘xl @;f

welche fiir die neutrale Schicht mit y; = 0 auf da, : dy, = 0,

d. h. auf einen rechteckigen Querschnitt fiihrt.

Ob es sich dabei um ein Maximum oder Minimum handelt, héingt

von dem Vorzeichen des Differentialquotienten auf der rechten

Seite von (3) ab.

Ll

Fiir einen Korper gleichen Widerstandes ist

nach (1a) _
o (M 0y dyy
bz(@)_ - S e T

Y2 dz
und damit wird aus (2a)

Yo .
d 1 ox .
Tlxl'—'ao[ dsj']'{xu‘y j‘x%’dy)‘f_y g. ?de] (4)-

KH !4'1

Ist die Hohe des Kérpers, also auch y,, konstant und nur
die Breite x, mit z variabel, so vereinfacht sich diese Formel in

S ;
tlxl:_;ijb_:ydy S e s e,

withrend wir fiir eine von z unabhéngige Breite, die nur beim
rechteckigen Querschnitt exakt realisierbar ist, wegen dx:9z=10
Ua
1
— 5\ tydy <« . (4b)
0 . /

h

dy
s [ Lt | &zu (930

und insbesondere mit z; = x,

d J —J =A &
= (J'— 2y 1) 3 (.1+y§) e
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erhalten. Dieser Ausdruck geht ersichtlich fiir die #uBerste
Faser mit 3, = y, in GIl. (2b) iiber, wéhrend in der neutralen

Schicht mit », =0
X0 r—To—

] 0] dJo Ty =
[ B s T e o e (5a),
.3 .;r,I also ein Minimum wird im Ge-

| gensatze zu dem Maximum
bei Stdiben mit konstantem
1 Querschnitt. Dieses in Fig. 91
LTm-l  verdeutlichte Ergebnis erscheint so selt-
Fig. 91. sam, dafl wir es noch einer Priifung
unterziehen wollen, und zwar durch

Berechnung der Querkraft, die sich mit (5) zu

dy % d o
T= 25r1x1dy_- %109 u;o F(l—]—- )dyl 7 X1l % _&i‘] (5b)
— Yo — Yo
ergibt. Andererseits ist das Biegungsmoment nach (1a) mit

2
932551?‘5’03

A =
M =062 —%o‘]xlyo‘l B RRR Ay
also fir konstantes a;
r— ali 8 d o

dz 3 %h% g,
wie oben, womit die Gl (bb) ihre Bestitigung gefunden hat.
Daraus berechnet sich die mittlere Schubspannung
in der ganzen Querschnittsfliche F = 4y,
T 2 dy 2 .
T B B 5280 b, i = )
Bei konstanter Hoéhe des rechteckigen Querschnitts wird
aus (4a)

7-1’\1
Oy bxl dmy Yo> — yi* g
L ey ydy =g, oA ()
]‘J'l
mit einem Maximum fir y; = 0
GoYo Ay
Ty = }Da‘:] d,.. g b B (Ta),
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welches, wie bei Stdben mit konstantem Querschnitt, in die neu-
trale Schicht fallt. Weiter folgt aus (7) fiic die Querkraft
+iyo d =+ Yo 5 h 5

‘ | Yoo —yi® ;

:zg i g AL e T B Aot ok 2

r U?'lﬁd?f e S Yo dyy 5 %Yo

Yo — Yo
wie sich auch aus der fiir Kérper gleichen Widerstandes mit
rechteckigen Querschnitten allgemein giiltigen Formel (5) ergibt.

a5
iz

(7b),

Aus GL (12) folgt weiterhin ganz allgemein fiir rechteckige
Querschnitte, daB an Stellen, wo MM = 0 ist, der Querschnitt
oder, was auf dasselbe hinausliuft, eine der beiden Querschnitts-
dimensionen verschwindet. Diese Bedingung ist aber mit einer
dort herrschenden endlichen Querkraft unvereinbar, da sonst
unendliche Schubspannungen auftreten. Man wird deshalb im
Falle konzentrierter Einzellasten stets zu einem Kompromisse
von der Art des nachfolgenden ersten Beispiels gendtigt, wihrend
bei kontinuierlicher Belastung (vgl. 2. Beispiel) derartige Schwie-
rigkeiten nicht entstehen.

1. Beispiel Fir einen auf die Lingeneinheit gleich-
formig belasteten Tréager ist allgemein

T a
q=—3, = const,

also im Falle eines Korpersgleichen Widerstandes
mit konstanter Hohe wegen (7h)

LS 00 yoz d—z'zl —_— g i » . . . . {8)!

woraus

folgt. Soll nun am Ende des Trigers aullerdem noch die Last Q
hidngen, so ist fir z = 0, T' = @, mithin wegen (7b) €, = Q oder

A S :

und nach nochmaliger Integration mit einer anfanglichen Breite
22 = b fiir z2=10

e

: , Biles <
Eagyoz(m——g-)=-§z2+(_)z o e (B
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3

Da nun fiir z = 0 nach (8a)
4 (da:

3 %Yo’ .E)o =¢

ist, so berechnet sich nach (7a) die an-
tangliche Breite 2z; = b aus der grifiten
L _Eb Schubspannung 7, zu

A

3 ¢
= . (50).
Ty 4 Yo (Bc)
Fig, 92. Aus (8b) geht hervor, dall der

Grundriff des Balkens durch zwei Pa-
rabelzweige begrenzt wird (Fig. 92), die fir 4 =0 in zwei
Gerade iibergehen bzw. sich fir Q = 0 und & = 0 am freien
Ende beriihren.

2. Beispiel. Haben wir es mit einem Konsol-
trdger von konstanter Breite 2z, zu tun, der
auller einer gleichféormigen Last g, auf der
Lingeneinheit noch sein Eigengewicht tragt,
Fig. 93, so ist mit einem spezifischen Gewicht y des Tréger-
materials bei einer Hohe 2y,

g=4y%Yo+49% - - + - - - (9.
Andererseits folgt aus (5b)
s 4 d? (174>
1=73z — 3 %% d?y'*n_}“'
also
d* (ye*) _ 3y 3 4 ;
A2 —Tﬂyo‘l‘gm- e v g(8a)
oder mit den Abkirzungen
oo S % :
o = % GoxD—Zb e = o 14
q= (a2 . -
o) _soy k28 . oo . (8).

Multipliziereﬁ wir diese Formel mit d (yy?) = 2y,dy,, S0
wird mit '
d (y5%) @ (4o%)
d—; = d (3o2) = f’ = udn

udu = (6ay?+ 40y, dy,.
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also nach Integration
2

i ) .
5 =2ay’ +2by?+C,

oder

0 24 ]2
{g%ﬂ] =hayl+4by?+2C, (11).

dz

Nun wirkt am freien Ende des
Trégers, also fir z=0, weder ein *
Moment noch eine Einzellast, also ist dort nach Gl. (1d) und
(5b) gleichzeitig

dye\ 1 [d(yd) 1
Yo=0, (ynjzp‘)a“o‘(_d; ).,:0 s pithaly

womit die Konstante € in (11) verschwindet. Gl (11) selbst
aber geht iiber in

oy,
(23/0—%) =hay’+4by,

oder
2
(%";_ﬂ) e S,
Hiernach gibt {5 unmittelbar die Neigung der oberen bzw.
unteren Trégerbegrenzung gegen die Achse am freien Ende an.
Setzen wir in (11b)

dy, 1 do
LT N et
so wird daraus
do } Eion Arpaid
T ] dv=uadz

oder
20" —az-+2C,
(az Sk
ago+b=(% +G)

(12).

Da wir schon festgestellt hatten, dall y, = 0 fiir z =0 ist,
so folgt C,2=b, und die Gleichung der Begrenzungslinien
unseres Korpers von gleichem Widerstand lautet

& 5 9,
Yo = ii—;“ﬁ—:]-’b B o e O )

Lorenz, Elastizititslehre. 15
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oder wegen (10)

Yo = :;fyﬁ +~% Lt o o (121,

In der Praxis wird man natiirlich nach Fig. 93 die obere
Begrenzung geradlinig ausbilden, so daB als untere Begrenzung
eine Parabel mit der Ordinate 2y, erscheint, und die Stab-
achse strenggenommen eine Kriimmung erfahrt, die aber ohne
nennenswerte Bedeutung ist.

Durch Einfithrung von (11b) in (5) ergibt sich schlieBlich
die Schubspannung bzw. umgekehrt aus deren Héchstwert
(2b) fiir y, = O die Breite 2z, Schlieblich sei noch bemerkt,
daf im Falle des Hinzutritts einer Einzellast am freien Ende
in Gl. (11) die Konstante C; nicht verschwindet, sondern ihr
proportional ausfillt, wie sich aus der Formel fiir die Querkraft
am Stabende ergibt. Dann aber fiihrt die weitere Behandlung
von (11) auf ein unbequemes elliptisches Integral bzw. auf
Reihenentwicklungen, die ihrer geringen praktischen Bedeutung
wegen hier nicht weiter verfolgt werden konnen.

Zur Bestimmung des Verlaufes der elastischen Linie miissen
wir auf Gl (1b) zuriickgreifen, aus der sogleich erhellt, da B}
die Achse von Korpern gleichen Widerstandes
mit konstantem y, im gebogenen Zustande
stets einen Kreisbogen bildet, und zwar ohne
Riicksicht auf die besondere Querschnittsform.

Ist dagegen y, variabel, wie im zweiten Beispiel, so hat man
in GL (1b) die aus der Korperform bestimmte Funktion von z
fiir y, einzufiihren und erhilt fir kleine Durchbiegungen »

E Fn - Gy 5
=N ?}r”:— yo— fl))
und nach Integration
- dz :
B =) 5 TG )
dz : :
Ey =0, g’d:(—JrCls—]— EEve g L sk
% e yU

wobei die Konstanten €, und C, wie frither aus den Grenz-
bedingungen folgen.
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3. Beispiel. So hat man fiir einen Korper glei-
chen Widerstandes von konstanter Breite 2z,
mit gleichformiger Belastung ¢, ohne Riicksicht aul das Eigen-
gewicht nach (12a)

yozsrb'zz'l;—‘f--— S T

also eine geradlinige Begrenzung, die in Fig. 93 punktiert ein-
getragen ist. Damit wird (13a)

oder wenn fiir z = [ die Neigung der Stabachse infolge der
Einspannung verschwindet,

dy g 5

E dz‘ ZTE..—Jgn St e 5 S LA
Daraus folgt durch weitere Integration mit 5 = 0 fir z = [

] 0, 4 '
En= ]2_ ( Ign +z—;) e LB

mit dem Biegungspfeil fiir z = 0 2
gl A

Ho :m o TR S LTy TR . {lfl U}.,

womit die Gleichung der elasti-
schen Linie Fig. 94 die iibersicht-
liche Form

iy (Ign 22, 1).

annimmt. Man erkennt aus (14a), daB sie fiir z = 0 eine vertikale
Tangente besitzt, die naturgemaf mit der Vernachlissigung von
( fﬁi); gegen 1 in (13) unvertrdglich ist. In Wirklichkeit wird an
dz

glicsul' Stelle nach Gl (1b) mit %, = 0 auch ¢ =0, so dall die
oben benutzte Niherungsmethode auf das freie Stabende nicht
anwendbar ist, wihrend die exakte Integration von (lc¢) sehr
grolle Schwierigkeiten bietet.

§ 5%



Kapitel IV.
Die Biegung krummer isotroper Stdbe.

§ 23. Die Spannungsverfeilung in krummen Stiben.
Beschrankung auf eben gekrimmte dinne Stabe. Annahme der
Erhaltung der Querschnittsebenen. Verschiebung der neutralen Achse
aus dem Schwerpunkte bei verschwindender Resultante in der Stab-
achse. Volumdehnung. Das Biegungsmoment und die Normal-
spannung im Querschnitt. Schubspannung im Querschnitt und Nor-
malspannung in der Richtung des Kriimmungsradius. Beispiel zur

Priiffung der abgeleiteten Niaherungsformeln.

L ]

In §13 haben wir uns einen krummen Stab im Anschluld
an Fig. 56 dadurch erzeugt gedacht, dal wir auf einer als
Achse bezeichneten Raumkurve Normalebenen errichteten und
auf diesen durch geschlossene Kurven die Querschnitte derart
abgrenzten, daB ihre Schwerpunkte in die Stabachse fallen.
An dieser Stelle wollen wir uns zuniichst auf solche Stébe be-
schriinken, deren Achsen im unbelasteten Zustande ebemne
Kurven bilden. Wirken auf einen derartigen Korper in der
Ebene der Stabachse dufere Krifte, so entsteht durch deren
Parallelverschichung bis zum Schwerpunkt eines beliebigen
Querschnittes neben ihrer dort angreifenden Resultante ein
Kriftepaar, welches den Querschnitt selbst gegen die Nachbar-
querschnitte zu verdrehen und damit den Stab zu biegen strebt.
Sehen wir dabei von der Wirkung der im allgemeinen schrig
zom Querschnitt stehenden Resultante vorlaufig ab, so dirfen
wir analog der Biegung gerader Stibe die Formédnderung
der Querschnittsebene um so eher vernach-
lissigen, je kleiner die Querschnittsabmes-
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sungen gegen den urspringlichen Krim-
mungsradius der Stabachse ausfallen. Diese
Annahme ist neuerdings durch optische
Beobachtung von Spannungslinien in
belasteten Glasstiben als fiir tech-
nische Zwecke hinreichend genau be-
stitigt worden?).

Alsdann  geht im Stabelement
AogA BBy, Fig. 95, die eine End-
fliche AB in die Lage A'B’ iiber,
entsprechend einer Drehung um den
Punkt O in der neutralen Schicht 0,0
des Stabes.  Bezeichnen wir nun
mit ds die Linge der Faser C,C
im Abstande y von der neutralen
Schicht, mit dg den Offnungswinkel
des Elementes und mit ¢ den Kriimmungsradius Oy M der neu-
tralen Schicht, so ist zunéichst die urspriingliche Faserlinge

fE—(0/~1 )il ke cadn s e o e ()
und ihre Verlingerung CC’ = dAs mit dem Verdrehungswinkel
dAd ¢

dids=rd A o o e el ilia)s
Andererseits folgt aus (1) auch

dds=pddo+ dode+yd. e,

mithin nach Abzug von (1a)
oddop+4 dodp=0
oder
dde dg
B D
also eine Beziehung zwischen der Anderung des Winkels ¢ und
derjenigen des Kriimmungsradius der Kurve, die ersichtlich
mit der Bedingung iibereinstimmt, dall die Liange des
Elementes 000:(;{30.:9{1'()0 der neutralen Faser
keine Anderung erfdahrt. Dies wiederum setzt den

PROEIRER g - (o

1) A ue: Zur Berechnung der Spannungen in gekriimmten Stiaben
(unter Anwendung der optischen Methode), Dissertation Jena 1910,
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Wegfall einer Resultante normal zur Quer-
schnittsfliche ebenso voraus, wie bei der Biegung des
geraden Stabes.

Aus den Formeln (1) und (1a) folgt nunmehr die Dehnung

St dds _ y dAg _p  4p @)
. £

der eine Normalspannung
e ieh 1 Ey dd(p___ Ey A_Q_ )
o=Be=y1ydp ~ ety o 5

entspricht. Das Verschwinden der Resultante normal zur Quer-
schnittsfliche fithrt weiterhin auf die Bedingung

_pdde (ydF ’
fodF =E i SO_'_-J e PR ey fe

die nur durch das Verschwinden des Integrales auf der rechten
Seite erfiillt werden kann. Dieses Integral lit sich andererseits
stets auf analytischem oder graphischem Wege auswerten, wenn
die Querschnittsform bekannt ist. Da wir aber nur solche Fille
im Auge haben, bei denen die Querschnittsabmessungen, also
auch die Ordinate y, klein gegen den urspriinglichen Kriim-
mungsradius o sind, so diirfen wir an Stelle von (5) auch an-

genihert
ydF 1 P ydF 1 g’ ' Y
§9+?;_E gy 'I_?)":ﬁ'”
1—1'-? 2 W
@

oder (de:%(yidF e S I T

schreiben. Daraus erkennt man sofort, daf die neutrale
Achse im Gegensatz zu den geraden Stédben
nicht durch den Schwerpunkt § des Quer-
sechnitts hindurchgeht, der vielmehr wum eine
kleine Strecke Ak aus der neutralen Schicht, und zwar im
Sinne der positiven y, verschoben erscheint (Fig. 96). Bezeichnen
wir dann noch den Trigheitshalbmesser des Querschnitts um
seine Schwerachse parallel zur neutralen Schicht mit £, so ist

SydF=F Ah

l
(y2dF =@+ AW F | ° ©),
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womit (ba) iibergeht in

oder auch wunter Vernachlissigung
von A hk* hinreichend genau

k2 -
th“? dhals {i"El).

=

Uber die GroRenordnung dieser
Verschiebung der neutralen Achse aus Fig. 96.
dem Schwerpunkt gibt uns auch noch
die Voluminderung des Stabelementes Auskunft, die beim
Wegfall einer Resultante normal zum Querschnitt ebenfalls ver-
schwinden mufl. Fiir das Volumelement erhalten wir zunéchst

A e — SdFds = (iqﬁj(g +y)dF=dplo+ Adh)F,
also
ddV=(dFdds=ddq[ydF=ddg. ALF,

worin die Volumdehnung mit Riicksicht auf (2) und
(7a) sich zu
dA4dV Ak dde K dog

O i AT oAk d r,f-' R o (8)

berechnet. Da wir nun in unseren Betrachtungen im allgemeinen
noch Groflen zweiter Ordnung beriicksichtigen (vgl. §16), so
erfordert die Vernachléassigung der Volum-
dehnung, dab diese klein von dritter Ordnung, d.h. daB
das Verhiltnis % : ¢ ebenso klein von erster Ordnung sei, wie
die Anderung Ap :p des Kriimmungsradius. Dies wiederum ist
nur moglich, wenn die dem Trigheitshalbmesser der Grolien-
ordnung nach gleichwertige Querschnittshohe klein gegen den
urspriinglichen ~ Kriimmungsradius — ausfallt, womit nach (3)
schon die lineare Dehnung klein von zweiter Ordnung erscheint.
Die Anwendung unserer Theorie, d.h. die Ubertragung der
Bernoullischen Annahme der Erhaltung der Querschnitts-
ebenen auf dicke Stibe von starker Kriimmung, z. B. auf sog.
Haken, muf demnach als ganz unzuldssig bezeichnet werden, weil
sie auf Volumiinderungen fiihrt, die nicht durch dulere Krafte
gerechtfertigt sind. Der innere Grund fiir diese in der Technik
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héuflig unbeachtet gebliebene- Tatsache liegt wesentlich in der
Unbestimmtheit der Lage der Stabachse und der dazu normalen
Querschnitte, die bei willkiirlicher Festsetzung die Oberfliche
unter Winkeln schneiden, welche sehr bedeutend von 90°abweichen.
Dieser Widerspruch mit den Voraussetzungen unserer Theorie
laft sich nur durch eine Ermittlung der Spannungsverteilung
auf viel allgemeinerer Grundlage beheben, worauf an dieser
Stelle nicht eingegangen werden kann. Wir werden uns daher
hier grundsétzlich auf die Untersuchung diinner Stiabe
beschrénken.

Fiir diese wird alsdann das Biegungsmoment

mit (4)
£ dA ¢ (y*dF
Hi— T G Dt 9
fou o -
oder angenéhert
Eddey ( | Y
e §y2(1—?)dF SIS el

Setzen wir im Integrale der rechten Seite unter Einfiihrung
des Abstandes y' des Flichenelementes von der zur neutralen
Schicht parallelen Schwerachse nach Fig. 96
y=y +4h 1
P=y?+2y Adh+ AR
P=y? L3y AR L3y AR A1 |

so wird mit _S'y’sz 0 unter Vernachlissigung von A %3

ofy_ ¥ ,_(f TS e
jy (1 Q)dl”_uyzd_f- ij dF

=(A:2 LAy D

(10),

)F_i\ y3 dF.
L,

Ist ferner der Quersehnitt symmetrisch um die

Sehwerachse, so verschwindet das letzte Integral der

rechten Seite, da in ihm jedes positive y'3dF durch ein gleich

grofles negatives aufgehoben wird, und es bleibt mit Riicksicht

auf (7a)

F (1—-9)(51«—(1—2&—)&2;? AR A

so dall wir nach Einfiilhrung des Trigheitsmomentes um die
Schwerachse
SO S AR P R R
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an Stelle von (9a) auch haben
E@ dd k* ‘ 2
ana:-—i—-‘?i(1_2 - )ﬁ—ﬁo 19( ?k—) (9b).
e do e
Infolge der Kleinheit des Trigheitshalbmessers gegen den
Kriimmungsradius kann praktisch fast immer das Quadrat
ihres Verhaltnisses gegen die Einheit vernachlissigt werden,
womit sich (9b) vereinfacht in

M= F gl ' @,

Bezeichnet man ferner den Kriimmungsradius
nachder Biegung mit ¢, so ist

o= S e sen LSt S MRl R 1)
also
dop  o—0o o—o’ 1 (|
e sk i o Pl s 12
2 T o2 23 00 o R (12a).
Damit wird aus (9¢)

= il 4
znt:E(-)(—,—---) R 3 S 1y

e e

Vergleicht man diesen Ausdruck mit dem entsprechenden
fiir den geraden Stab, ndmlich

fr— & (9 .
e

so erkennt man, daB der Ubergang aus der Kriimmung 1 :p
in 1:0" néherungsweise ersetzt gedacht werden kann durch
Aufhebung der urspriinglichen Kriimmung vermittelst eines
negativen Momentes und Herstellung der neuen Kriimmung
an dem nunmehr geraden Stabe vermittelst eines positiven Mo-
mentes, 80 zwar, dal} die algebraische Summe beider Momente
wieder (9d) ergibt.

Die Normalspannung ¢ berechnet sich nunmehr fiir jedes
Querschnittselement im Abstande y von der neutralen Schicht
durch Elimination von dAg : dg aus (4) und (9b) zu

sz—' BT e e 1
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woraus sich die Spannunginder dullersten Faser
mit y = y, zu

Moy, ;
G s S
und damit das Verhiltnis beider

y ety ¥ ('1+ yn—y)
0

a,

T Yoty Y
ergibt. Die Spannungsverteilung iber den
Querschnitt eines krummen Stabes ver-
lduft demnach nicht linear, sondern hyper-
bolisech, wofir in erster Annidherung auch eine Parabel
treten kann. Infolgedessen sind auch die Spannungen in den
dulfersten Fasern zu beiden Seiten der neutralen Schicht eines
symmetrischen Querschnitts einander nicht entgegengesetzt
gleich, wie beim geraden Balken, vielmehr wird der abso -
lute Wert der Spannung auf der starker ge-
krimmten Innenseite stets groBer ausfal-
len wie der auf der AuBenseite.

g
G_ﬂ . (4d)

Wirkt, was bei krummen Balken die Regel ist, auBer dem
Moment mnoch eine Stabkraft § tangential zur
Balkenachse, also normal zum Querschnitt, so tritt
zu der Normalspannung (4b) eine Zusatzspannung

A

so daB wir im Querschnitt insgesamt eine Normalspannung
S Moy
— g = s
g,=0-F0 j AR o7 rE
erhalten. Fiir urspriinglich gerade Stiibe geht dieser Ausdruck
mit p= % und 5=z iiber in

(13a)

A 12
U,=FT+W§ . X . . . (']Db),
wobei y wieder den Abstand von der Schwerpunktsachse des
Querschnitts bedeutet.
Zur Ermittlung der Verteilung der Schub-
spannung bezeichnen wir, wie in §14, Fig. 61, die ganze
Breite des Querschnitts im Abstande y von der neutralen Schicht
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mit 2, dann liefert die Schubspannung z auf der Fliache 2, ds,
= 2z, (o+y,) dp eine Tangentialkraft 27, 2, (0 + ¥, de,
welche durch den Zuwachs b—:;; d @ der Normalspannung von einem

Querschnitt zum benachbarten derart ausgeglichen wird, daf

Ye
00

2z o+ de = g Y dg dF
1:')’

oder nach Wegheben von dg sowie wegen (4b) fir konstante
Querschnitte

Yo
: o ( M o )
27y & sl e B SE R
i ](9_{_?)’1) @yjb(p 0+yf (14)
Hierfiir diirfen wir mit Riicksicht auf die Kleinheit von y
gegen o auch schreiben
; 1 (" T
27, 2, (0 + yy) = _5<W (sm — M g) ydF

W

Ua 0
1 oM (* 1 /1 9Mm M do S o5 5
Zﬁo—w!gy"-‘”“@'(;“w— o dgo);y e

e

U1 Y1

oder auch nach Einfithrung der Querkraflt
o om

T=O—S0:_QB(p e Ve S wiam S
y o

T P R R 5 :

2z (e+y) = _'(ng c’y B~ 6 i o drp) Cy-dF (14b),
0 2om Z

worin das zweite Glied in der Klammer auf der rechten Seite
stets klein gegen das erste ausfillt und darum um so eher
vernachlissigt werden sollte, als bei der Integration iiber den
ganzen Querschnitt zwar die linke Seite von (14b) und wegen
(7d) die Differenz

ofydF —(yrdF=(dh—k)F =0

wird, nicht aber das zweite Integral der rechten Seite als solches
verschwindet. Wir erhalten also unter gleichzeitiger Vernach-
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lassigung von y; gegen o mit hinreichender Genauigkeit
Ua Yo Ya

21 931=—(J: jy fiF—@—j;-jyzszé—j;j.y’dF (l4e),
1 251 {51
woraus man eine Abnahme der Schubspannung
von der neutralen Achse bis zum Verschwin-
denanden dullersten Fasern erkennt.

SchlieBlich darf nicht iibersehen werden, dall infolge der
Neigung dg der beiden Endquerschnitte eines Stabelementes
die Spannungen ¢ fiir jedes Flichenelement dF eine in die Rich-
tung des’ Kriimmungsradius fallende Elementarkraft odFdg
ergeben, deren Resultante durch eine Normalspannung o,

auf der Fliche 2, (o + y,) de aufgehoben wird, so zwar, dal&
Ha

20,2, (0Fy) dop = So dF dg
ETE
oder
3 Wio [ ydF
. o [ ydF -
Vorge et | i‘adF_ il e BMREES
U 1 +J1 y 9 yv g—i‘—y }

ist. Da es sich hierbei, wie schon bei der Schubspannung, nur
um einen rohen Mittelwert iiber die ganze Breite 2z, handeln
kann, so geniigt es vollkommen, an Stelle von (16) unter Vernach-
lassigung von g, gegen p

Ua

2 a0y = wﬁ g‘y guBelmaie s v sl e e oy

yl

zu setzen, wobei man auf der rechten Seite, wie in (13¢), die Ordi-
naten y'=y-—Ah von der zur neutralen Schicht parallelen
Schwerpunktsachse rechnet, damit das Integral iiber die ganze
Flache mit den Spannungen ¢, in den &uRersten Fasern ver-
schwindet. Weiter erkennt man, daB die Normalspannung o,
iiber den ganzen Querschnitt dasselbe Vorzeichen besitzt,
d.h. daf sie im Falle eines Zusammenbiegens
als einer VergréBerung der Krimmung,
eine Zusammendruckung, beim Aufbiegen,
d.h. einer Verkleinerung der Stabkrimmung,
dagegen eine Querdehnung des Stabes zur
Folge hat,
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Durch die vorstehenden Betrachtungen sind nunmehr die
drei Spannungskomponenten g,, 6, und 7 in der Ebene der Stab-
kriimmung fiir jede Stelle bestimmt, so daB der Berechnung
der Hauptspannungen nach dem Verfahren des § 2
sowie der Ermittlung der Spannungstrajektorien
nach § 15 nichts mehr im Wege steht. Dabei ist allerdings von
golchen Spannungskomponenten abgesehen worden, welche senk-
recht zur Kriimmungsebene wirken, eine Vernachldssigung, die
strenggenommen nur fiir Stdbe mit rechteckigem Querschnitt
zuldssig erscheint.

Beispiel. Fiir den rechteckigen Querschnitt von der
Hohe & und der Breite 2z, = b, dessen neutrale Schicht um #,
von der Oberkante bzw. A, von der Unterkante entfernt ist,
liefert die Bedingung (5) mit dF = bdy

4 Ry Ty

7 ydy 5 e I
d =P} hyg — 11172(3,
9+y y=Mh-+h—olg Ry
woraus mit iy 4-h, = h
o+ h h
Ign g——fsl =
2
oder
h
hee I3
O = g—hz:T
e¢ —1 et —1

folgt. Danach ist der Abstand des Schwerpunktes von der neu-
tralen Schicht

h
: —hy hoee+1 ko[ h 20
SR e e g 1
e —

Ist z. Bu hio=1:5, 50 folgt

h {x A5
Ctg 90 =4003. ah—0.015%

! ! h
wihrend wir aus der Nédherungsformel (7a) mit !.:2:1‘) er-
halten

Ah k2 h g o

B Wp o lag B0
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Daraus geht nicht nur hervor, dafl die -Anndherung (7a)
ausreicht, sondern auch, dall man angesichts der Kleinheit des
Verhéltnisses Ak : kb fiir praktische Zwecke fast immer die Ver-
schiebung der neutralen Achse aus dem Schwerpunkt génzlich
vernachldssigen darf. Dies trifft auch fiir das Biegungsmoment
zu, in dessen Niherungsformel (9b) mit unseren. Werten der
Faktor

7 h?
0° ~  6g?
sich nur duferst wenig von 1 unterscheidet. Wir brauchen uns
daher mit der fiir das Rechteck unschwer durchfiithrbaren exakten
Ausfithrung des Integrales in Gl (9) ebensowenig aufzuhalten,
wie mib dessen graphischer Ermittlung fir andere Querschnitts-
formen, auf die von verschiedenen Seiten viel Miihe verwendet
wurde.

— 1 — 0,0067

§ 24. Die Forminderung krummer Stibe.
Berechnung der Dehnung des Stabelementes durch eine Stabkraft.
Die Verdrehung und die Komponente der Verschiebung. Niaherungs-
gleichung fiir geringe Abweichungen von der Kreisform. Beispiele
eines Kreisbogentrigers mit einer Einzellast und eines Kolbenringes.
Ableitung der Verdrehung aus der Forminderungsarbeit. Uner-
heblichkeit des Einflusses der Stabkraft und der Schubkraffe auf

den Verdrehungswinkel. Beispiel.

Im vorigen Abschnitt haben wir festgestellt, dall in einem
eben gekriitmmten diinnen Stab die neutrale Achse des Quer-
schnittes eine so kleine Verschicbung nach dem Kriimmungs-
mittelpunkte zu erfiihrt, dafl deren Einflull praktisch kaum in
Frage kommt. Insbhesondere konnte die davon herriihrende
Volumdehnung bei der Wirkung eines reinen Biegungsmomentes
ginzlich vernachlissigt werden, so dalb eine wesentliche D e h -
nung des Stabelementes & nur durch eine in seine Achsen-
richtung fallende Kraft

S Foh RS TS T
hervorgerufen wird. Dabei ist es gleichgiiltig, ob wir die Linge ds
des Elementes auf der durch die Querschnitte gehenden Stab-
achse, oder auf der nur wenig davon abweichenden neutralen
Schicht abmessen.
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Zu der Dehnung des Elementes tritt dann noch seine Ve r -
drehung, die sich aus der Naherungsformel (9¢), § 23,

. EO dAdg :
P=—=F (2)
o dg

mit pde = ds hinreichend genau zu

Jf;):—E1@‘59TE Qd(p =T3%j?)t (ACT L SR ]
berechnet. Mit diesen beiden Werten & und A¢ ist dann auch
die totale Formanderung der Stabachse, d. h
thre elastische Linie, unter dem Einflusse des Mo-
mentes I und der Stabspannung S bestimmt, wenn wir vom
Einflusse der Schubspannung vorliufig absehen. Man erkennt
dies deutlich, wenn man aus den Projektionen des Stabelementes
mit den Koordinaten w und » der Stabachse

du=dscosp, dvo=dssing . . . . (3),
deren Verschiebungen

ddu=d Iscosp—dssing J¢ |

ddv=dAdssingp—4dscosp A | ol

berechnet, die mit d4s= gds in
ddu=(gcosp— dpsing)ds b
d Jv = (gysinp -+ Apcosg)ds )

ibergehen. Die Integration dieser Formeln setzt natiirlich die
Kenntnis der Grofien g und A¢ aus (1) und (2a) als Funktionen
von s und ¢ voraus. Dafiir kann man auch wegen (3) schreiben

dduw=gydu—Adpdo= (60 —dy %) i

- (3e),

(.4
ddv =¢dv+Jpdu :(59%'5‘-193) du

wenn g und A@ als Funktionen einer der Koordinaten u o des
Stabelementes gegeben sind.

Weiterhin folgt aus der Formel fir das Bogenelement ds
= odg

dds=Adodp+odde
oder mit dAs= gyds
do [ ddg .

Gl E d{p . - . . . . (-1)_
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Fithren wir in diese Gleichung noch die Werte fiir & und
dA@:de aus (1) und (2) ein, so ergibt sich die Anderung des
Krimmungshalbmessers

Ao S o o
T=EF—E(_) W | e .[—kd).

Haben wir es insbesondere mit einem Stabe zu tun,
dessen Achse nur wenig von einem Kreis-
bogen mit dem Radius r abweicht, so hingt
diese Abweichung Ar mit dem Kriimmungsradius ¢ durch die
schon in § 4 unter Gl (19) benutzte Niherungsformel

1 1 it a2 dr .
= —wlar+55H ®)
zusammen. Hiernach ist der Zuwachs des Kriimmungsradius
Ao ; d2Ar ”
. —g(— —) (Ar—{— P ) o ey
oder im Verein mit (4a), sowie mit g ~r
d A P S; ANt r2
L R B e e,

Diese Formel hefert nach zwelmahger Integration ebenso die
Abweichungen vom urspriinglichen Kreisbogen wie die uns ge-
laufige Dilfferentialgleichung der elastischen Linie die Abwei-
chungen von der geraden Stabachse. Diese Differentialgleichung
ergibt sich sofort aus (6) als Spezialfall nach Division mit 72
sowie mit Ar =y, rdp = dz, und darauf folgender Substitution
: — oo

Fiir praktische Zwecke spielt iibrigens die Dehnung &, der
Stabachse meist eine so verschwindende Rolle, dal man sie
unbedenklich vernachldssigen kann, was in unseren Formeln
auf eine Unterdriickung der Stabkraft § im Ein-
klang mit den Entwicklungen des vorigen Abschnittes hinaus-
lauft. Trotzdem darl man von dieser Kraft nicht mehr absehen,
wenn es sich um die Ermittelung des Momentes aus der kontinuier-
lichen Belastung des Stabes handelt, die wir, auf die Lingen-
einheit der Achse bezogen, mit ¢ bezeichnen wollen. Wohl gilt
auch hier wieder die Formel fiir die Querkraft

ddMm  dM

s . |
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von der wir schon im vorigen Abschnitt zur Bestimmung der
Schubspannung Gebrauch machten. Dagegen hat der Zuwachs
dT der Querkraft bei krummen Stiben

nicht nur der Belastung gds des Stab- o g T+dT
elementes, sondern auch noch einer —— dis
infolge der Stabkriimmung nach dem i s
Kriimmungsmittelpunkt M gerichteten . I: Sdeo Jf'
Komponente Sdg der Stabkraft das i /
3 3 5 ” ! 4
Gleichgewicht zu halten. Greift dem- ! /
nach am Elemente Fig. 97 selbst keine : /
" . ' !
tangentiale Last an, so 1st g !
- B
dT=qds-4 Sde, i
wenn die Querkraft 7' positiv nach é;:__f
aullen gerechnet, § als Zugkraflt an- e o

gesehen wird und ¢ auf der kon-
vexen Stabseite lastet. Nach Division mit ds folgt daraus

A1 dop S
A g g il
- e e i e e (®)
oder nach Elimination von 7 aus (7)
d M e : -
ds° :gT}; e R e (83.).

Man iibersieht, dall auch diese Gleichungen mit o= oo
unter Wegfall der mit der Stabkraft behafteten Glieder in die
fritheren Formeln fiir den urspriinglich geraden Stab tibergehen,
die ihrerseits nicht ohne weiteres aul krumme Stédbe anwendbar
sind. Der Hinzutritt des Gliedes mit der Stabspannung in (8)
und (8a) erschwert natiirlich die Ermittelung des Biegungsmo-
mentes und der Querkraft aus diesen Formeln, so dall man
von ihnen nur ausnahmsweise Gebrauch machen wird. Dazu
kommt, dal} man hierbei besondere Vorsicht auf die Richtigkeit
der Vorzeichen der einzelnen Glieder verwenden mul, wiithrend
die unmittelbare Aufstellung eines Ausdruckes fiir das Moment,
welches wir immer dann positiv rechnen, wenn es die Kriimmung
vergroRert, kaum Schwierigkeiten bietet.

1. Beispiel. Am Ende eines horizontal eingespannten
Kreishogentrigers vom Radius 7 und dem Offnungs-
winkel ¢, greift eine Kraft @ an, deren Horizontal- und

Lorenz, Elastizititslehre. 16
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Vertikalkomponenten bzw. H und V sein mégen, Fig. 98. Unter
Vernachldssigung des Balkengewichtes ergibt sich dann an einer
beliebigen Stelle, deren Radius mit der Vertikalen den Winkel ¢
bildet, ein Biegungsmoment

M = Vr(sin gy— sin @) — Hr (cos ¢ — cos ¢,)
oder :
M= (V sinpy+ Hcosgg)r— (Vsing -+ Heosg)r  (9).

Danach folgt sofort aus (8a)

die Stabspannung mit ¢ = 0,
o=r und ds=rde

S=Hcosp-+Vsing. (9a),

die man natiirlich aueh aus der
Projektion der beiden Krifte H
und V auf die Tangente an der
Stelle ¢ erhalten hatte. Aus (9a)
erhalten wir dann mit (9) fiir den
Verdrehungswinkel 4 ¢, der an der
Einspannstelle, d. h. fiir =0 ver-
schwindet,

(o
E@A(pzSSJ?rd(pz(Vsin o+ H cos ) P
0 Ui

-—rzj (Vsin @+ H cos ) dg
i

oder
EO A g=(V singy-+H cospy) r2e—V r2(1 —cos @) — Hr2sin ¢ (10),
wihrend sich unter Vernachldssigung der Stabdehnungen g, dle
Verschiebungen der beiden Koordinaten

43 -}"S]I‘lfi{), I'—-IJ:':'?‘COS(P

nach Gl (3b) zu

L rfil
du=—\dpsinpds =—r S dgsinpde
0 i

*

Av == e

= IS

0
A cospds — erq; cos pdg
0
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berechnen. Dies liefert mit (10)

qm

EOAdu=—(V sin gy + H cosg,) r3 @ sin gpdg
5
W S'sm(pd(p Vﬂjeosq; sin pdg - Hﬁfsinaqodqp
0
EOQ v = (V sin g, + H cosq,) r3 j @ cos pdgp
1]

/1) I’Jr‘. iJ[:
— V3 ‘S{cos pde-+Vr? jcos%pdqo——ﬂﬁjsin @ cos pde,
U 0 0

worin
l‘f.' /4
‘Jgo sin pdg =—£rpd(cus @) = sin ¢ — @ cos @
) ]
& i
5(pcostpd(p= jqod{sincp)=cosgo—|—rpsinqa—1
i i
wird. Damit erhalten wir schlieflich
EGdu = (V sin g+ H cos @y) 13 (¢ cos ¢ — sin ¢)
g B o Hps 1
—-lr*(cosep—i—]—jsm*‘ga)-}- (rp—-—stqp
EQ dp= (Vsingo,]-|—Hcos<p0)r3(cosgo—]—qnsmfp—1
—Vr'*(singo —.E—}—sm Zqo)—%smz

Die infolge der Stabspannung hin-
zutretenden Verschiebungen sind nach (3b) 4

(1

Uil
r Lq

2 = "550 cos pdg = EF SS cos pdg

(A48

0
Aoy = 3-580 sin pdp = ﬁSS QIR P Fig. 99.
0
oder mit (9a)
H' ' sin 2¢ ' Vit
1 Vr % (11a)

Hr .. ., r sin 2
EF Avy= T? sin? g+ —5- ((p — "__) ||
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SchlieBlich wollen wir noch die Radialverschie-
bung ohne Riicksicht auf die Lingsinderung des Stabes
ermitteln, die sich nach Fig. 99 zu

— dr=Adveosp—dusing . . . . (12)
oder nach Einsetzen von (11) zu
— EO Ar=(V sin g, + H cos qy) 13 (1 — cos ¢)
Vr'* Hi3 A
—— (p cos @ —qm(p) 5 @sing . . (12a)
ergibt. Dieses Ergebnis wollen wir noch einmal an Hand der
Gl. (6) priifen, welche mit Vernachldssigung der thbapannunq S
sowie mit (9) tibergeht in

2 4 Vi3 v Boosmss
dd T HAr=r5 e = 5oos q;——s’%";“()“oqq A (13)

oder abkiirzungsweise
a? Ar
de®
Es ist dies die Differentialgleichung einer erzwungenen
Schwingung, die mit

4 Ar=A;sinp -+ Byeosp —A,. . (13a)

S, L R S SR )
zerfillt in
Aol '
da2dr iy 3 5
Cde? .
d2A o e,
= A=A sinp |- Byeos @ ‘
Die erste dieser Formeln liefert ohne weiteres das Integral
Ar=Csingp~+Deosgp . . . . . (14),

in dem zwei noch zu bestimmende Integrationskonstanten € und )
auftreten. Dagegen wird die zweite Formel (13¢) nicht durch
einen derartigen Ansatz fiic 47" befriedigt. Wir schreiben daher
an ihrer Stelle unter Einfithrung einer neuen Konstante k

d"_h"

4 Ar' =A;sinkg 4+ Byeosky . . (1D),

woraus
A, sin kq -+ By eos ko
Adrr=22 {—ffl— "

L]

. “ 5a)
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folgt. Mithin lautet das allgemeine Integral von (13a) nach Ver-
einigung von (14), (15a) und (13b)

Aysink Bycosk
dr=Csinq -+ D cos ¢ - Lo Ii_kz il

Soll nun fiir ¢ = 0 sowohl =0, als auch wegen der Ein-

— A, (16).

P : ;
spannung : d5 0 sein, so ist

B kA
Do g amde o Qb — =0
also
.J";f':.--'ilﬁmhg$“’f + B, [OM“T#—A (cosp—1)(16a).

Da fiir k=1 die beiden ersten Terme rechts unbestimmte
Werte annehmen, so muf in ithnen vorher der Zihler und Nenner
nach % differenziert werden, woraus

ahp— —;; (sin p — ¢p cos kqp) - Mc sinkop 4+ A, (eos g —1)
und mit k=1
. B
Ar= A, (cosgi— 1)~ # (sin i — ¢ cos ) -+ 5-1 @sin g (16h)

hervorgeht. Dieses Ergebnis stimmt aber nach Ersatz der Ab-
kiirzungen A, A4, B, durch ihre Werte, vgl. (13) und (13a), voll-
stindig mit di?m 'sc'hon oben erhaltenen Ausdrucke (12a) iiberein.
Dieser Rechnungsgang zeigt zwar die Verwendbarkeit der Formel
(6) fiir Kreisbogentriger, 1ilt aber auch die Umstindlichkeit
des Verfahrens gegeniiber der Verwendung von Gl. (12a) deut-
lich erkennen.

.2 Beispiel. Von einem Kolbenringe verlangt
man zur vollkommenen Abdichtung eine gleichférmige An-
pressung an die Zylinderwand. Wir
haben es also mit einem Stab zu
tun, der in belastetem Zustande
einen Kreisbogen bildet, nach seiner
Entlastung aber ecine davon ab-
weichende Form annimmt. Diese
konnen wir uns naturgeméfl durch
Forménderung des Kreisbogensunter : .
einem gleichférmigen Innendruck p Fig. 100,
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entstanden, den Ring selbst (Fig. 100) aber an dem der Schnitt-
stelle gegeniiberliegenden Querschnitt eingespannt denken, so
dall die Betrachtung einer Ringhélfte geniigt!). Bezeichnen wir
ferner den Ringradius wieder mit 7, die Ringbreite mit b, so ist
an einer beliebigen Stelle mit dem Winkel ¢ das aufbiegende
Moment

5)33=——-— - —[sm2q -+ (1 -+ cos )2 =— pbr? (cos g+ 1) (17)
und aus Sa) mit ¢ = — pb die Stabkraft §= pbr (1} cos ¢).

Weiter erhalten wir fiir die Verdrehung 4¢, die infolge der
Einspannung fiir ¢ =7z verschwindet,
!IJ
E@Aq =§§)er(p =—pbB(singptq) . . (18),

und fiir die Verschiebungen der Koordinaten u = r sin ¢,
v=r-—rcos @ ohne Riicksicht auf die Stabdehnung

Ju:—j:lgc-dssincpzﬁ g sinqpdg
i

i
dn= .S‘Aqr.d.scosrp =
i

s
j p cos .
Mit (18) gibt dies
i
EGAdu=pbrt s (sin® ¢ 4 o sin ) dop
0

Ll
EQ Afv= —plfﬂf(sin @ cos ¢ - cos o) dip
0

oder

EQOdu=pbr (11 — —B-l—nqlzﬂi — p cos ¢ - sin qr.)

(19).

3 :
EOdo=— pbrt (st . - ¢ sin g -+ cos ¢ — 'I))
Daraus folgt endlich fiir die Radialverschiebung mit (12)
EQdr=pbrt (1 —cos ¢ 4 % sin zp) s {‘;".0).,

1) Vergl. hierzu Reinh ardt: Selbstspannende Kolbenringe,
Z. d. Yer. d. Ing, 1901,
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die ebenso wie die Koordinatenverschiehungen Au und Ao fiir
die Einspannstelle ¢ = 0 verschwindet. Zu demselben Ergebnis
gelangt man natiirlich auch durch die Integration von (6) unter
Vernachlidssigung von S, wobei wieder der im vorigen Beispiel
angewendete Kunstgriff der vorldufigen Substitution von kg
an Stelle von ¢ im Ausdrucke fiir das Moment zu Hilfe genommen
werden und aullerdem beachtet werden mul, dall an der Einspann-
stelle A7 und seine erste Ableitung nach ¢ verschwindet.

Zur Priffung der Zuléssigkeit der Vernachlidssigung der
Stabspannung § sowie der in den vorstehenden Beispielen iiber-
haupt nicht erwihnten Querkraft 7' kann nur der Ausdruck
fir die Formédnderungsarbeit L herangezogen wer-
den, der offenbar in die Arbeiten des Biegungsmomentes und
diejenigen der beiden Kriéfte S und 7 derart zerfdllt, dall

QL= MdAq +SdAs+TAqg"ds) . . . (20).

Hierin bedeutet A¢’ die von der Querkraft bzw. den von
ihr geweckten Schubspannungen hervorgerufene Verdrehung
der Stabachse, die zu derjenigen A¢" aus den Formeln hinzu-
tritt. Mit

e S AT
A 0 A, Sl
dAq =560 ds, dds EFds’ A GE’
worin f# einen Mittelwert bedeutet, der fiir rechteckige und Kreis-
querschnitte § ~ 1,2 ist (vgl. § 14), wird dann aus (21)
e
SsEN e F G

Die totale Verdrehung folgt daraus durch Diffe-

rentiation nach dem Moment Mt
__Lfd£):2_f”_(aL)Zq ddg
“om \ ds HEs

(21a).

ds \ oMt

!

so zwar, daf}
adg L (B 5 45\, 4T 4T
ds  E\O@ TFdAM)T GF dm
Hierin ist aber mit Ricksicht aul (7)

dT ad ds dT
Yo =Ll am—ds
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und
S dS ) ds ds . & 48
PO 1 S B B
also wird mit @ = Fk? aus (22)
ddg S L sE o o,
EO-—- —-——Sll —|—k2(T 7= + ds“) (@3a),
oder wegen ds = gdg
L ddpe | SdS . pE 4T o
E6 odg = E—_(f dep o7 G dq;) (22b).

Der Faktor des Klammerausdrucks rechts ist aber nach
Gl. (7a), § 23, dem schon im letzten Abschnitt als sehr klein
erkannten Schwerpunktsabstand von der neutralen Achse gleich,
woraus man in allen praktisch wichtigen Fillen auf eine ent-
sprechende Kleinheit des damit behalteten Gliedes in GI. (22b)
schlieBen darf. Ist der Balken gerade, so wird ds=pdp =dz
und auferdem Agp= dy :dz so dall wir an Stelle von (22a)

d*y S ds ,SE A
RN 2
B g =m+#(r g+ 76 )
erhalten. Dies ist die allgemeinere Form der Differentialgleichung
der elastisechen Linie eines geraden Balkens unter schrdager
Belastung.

(22¢)

3. Beispiel. So erhalten wir fiir das erste Bei-
spiel aus (9) und (9a)

M= (V sin @, H cos @) — Sr

d M ;
T=—g="Veosg—Hsing

e . :
dg —=—(Vsing-+ Hcosg)=—25
ds 1 dm
d {-ﬁ-: T rde =—1T;

also wird aus (22b)

d pr
EO— (V‘%llltpg—i—ffr‘os%)

_[- (1+ )] Vg Bonwh. . . @20



§ 25. Binfach statisch unbestimmte Belastung krummer Stibe. 249

Ganz analog folgt fiir das zweite Beispiel aus (17)

= £ d M ds .
M=—3Sr, :_.r_d; Sy if = pbrsin g
aT 4
Ay — pbrcos i,
also
<\ gzt i k2 E!
EO i{g”— — . pbr2 {1 +cosq + 5 {1 < (1 ik ﬂ(, ) cos f,r]} (24).

In beiden Fillen ist demnach der Einflufl der Stabspannung
und der Stabkrifte auf die Verdrehung um zwei Grofienordnungen
kleiner als diese selbst, so dall man sich praktisch stets mit der
Niherungsformel (2) begniigen darf.

§ 25. Einfach stafisch unbestimmfte Belastung krummer Stibe,

Statisch bestimmter Bogentriager mit einem festen und einem Gleit-

lager. Unbestimmtheit des Horizontalschubes bei Festhaltung beider

Enden. Ermittelung des Horizontalschubes aus der Unverinderlich-

keit der Sehnenlinge mit Hille der elastischen Linie sowie aus der

Forminderungsarbeit mit Ricksicht auf den Einfluf der Stabkraft,
der Querkraft und der Temperatur. DBeispiele.

Wird ein eben gekrimmter Stab, Fig. 101, den wir in der
Folge kurz als Bogentridger bezeichnén wollen, an einem
Ende A durch ein Gelenk festge-
halten, wiithrend das andere B aul
einer unter dem Winkel a gegen
den Horizont geneigten Gleithahn
beweglich ist, so ruft die Be-
lastung durch ein  Kraftsystem
mit der vertikalen Resultante @
im Abstande ¢ von 4 an den
Stiitzen Vertikalkrafte V, Fig. 101.
und V¥V, und Horizontal-
krdafte H, und H, hervor, von denen die letzteren wegen
des Gleichgewichts in horizontaler Richtung von vornherein
1-_=.n'l;g(ager]g!.!éui-;sL gleich [/ sein miissen.  Weiterhin liefern die
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statischen Gleichgewichtsbedingungen

V :Q.’?’___c_+_5£ .
% l l ()
¢ b i

‘wenn [ den Horizontal- und & den Vertikalabstand der Stiitzen
bedeuten. Da ferner die Gleithahn in B, wenn keine Reibung
auftritt, nur eine Normalkraft NV aufnehmen kann, deren beide
Komponenten H und V, sind, so ergibt sich mit dem Neigungs-
winkel «a _
sk e s e
wonach diese Komponente bei horizontaler Gleitbahn ver-
schwindet. -
Durch Vereinigung mit (1) folgt daraus fiir alle drei Kompo-
nenten V,, V, und H

e e btgw

H=S 'f'Terb'tg_u

2 @B

Y= I i (2)
_ Qetga

=T Cits

Da hiernach im vorliegenden Falle sdmtliche am Stabe
angreifenden dufieren Krifte aus den statischen Gleichgewichts-
bedingungen hervorgehen, so diirfen wir ebenso von einer st a -
tisch bestimmten Belastung sprechen wie Dbei
einem geraden Balken auf zwei Stiitzen. Man iibersieht leicht,
dafl auch die im letzten Abschnitt behandelten Fille hierher ge-
hiren, da in ihnen das Biegungsmoment, die Stabkraft S und
die Querkraft T sich sofort als lineare Funktionen der vorgelegten
duberen Krifte angeben lassen. Bei der Berechnung der Ver-
drehung Ag und der Verschiebungen Au und Ao der Koordi-
naten der Stabachse verfihrt man im Falle der Fig. 101 genau
wie bei einem geraden Stabe mit Einzellasten, d. h. man integriert
die Gleichungen i

EOdAdge=Mds |
ddun=— dpsinpds=—Jdqgdv ; . . (3)
ddv=-d¢cosqpds=-++ Adpdu ‘
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innerhalb jedes Einzelintervalles und bestimmt die Integrations-
konstanten aus den Grenz- und Ubergangsbedingungen der
Intervalle. Diese laufen bei Fig. 101 auf das Verschwinden der
Verschiebungen 4u und Av im Punkte 4 und auf deren Uber-
einstimmung fiir die beiden Intervalle an den Angriffsstellen
der #uberen Krifte hinaus, wozu noch dort die Ubereinstim-
mung der Verdrehungen tritt, welche nur bei Beriicksichtigung
der Querkraft eine praktisch vernachlissighare Modifikation
erfahrt.

Halten wir jedoch auch den zweiten Endpunkt B vollkommen
fest, Fig. 102, so dal} der Bogentriger mit zwei Gelenken sich
gegen die gewthnlich als Kdampfer bezeichneten Wider-
lager stiitzt, so bleiben zunichst
die Gleichungen (1) fiir die Ver-
tikalkomponenten bestehen. Da-
gegen kann man ohne weiteres
nichts iiber die Richtung der Re-
sultante IV in B aussagen, womit
auch der Horizontalschub A, un-
beschadet seiner Gleichheit in
A und B, unbestimmt wird. Man
nennt darum diesen Belastungsfall mit demselben Rechte
statisch unbestimmt, wie den durchlaufenden geraden
Balken und berechnet, wie in §17 die unbekannte Stiitzen-
druckkomponente aus einer Auflagebedingung.

In unserem Falle, Fig. 102, besteht diese Auflagebedingung
in der Unverdnderlichkeit des Abstandes 4B,
so zwar, daBl mit den Verschiebungen 4 u, und A v, des Punktes
gegeniiber dem Fixpunkte A

(I Au? + (b + Avy2 =1 412
oder mit Vernachlassigung der Quadrate von Au, und Av,
A stehdito =0 . e )

ist. Hierfiir diirfen wir aber mit Riicksicht auf die Gleichungen (3)
auch schreiben
[ l
35 Jipdo=10b S.Ar;adu
0

il
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oder nach partieller Integration unter Wegfall der mit Au; = 0

und Ap; = 0 behafteten Glieder mit w, =1
l

1
l (bﬂ @ — Sudd (p)zb (LAqo—jduqu (p).
0 4]

Daraus folgt schlieflich
1

\(9—-—- ? ra)(ﬁAtp:O -

&

L
oder mit der ersten Gl (3)

]

b

g.(‘v—-T u)-‘))n‘:ds:ﬁ e R T

{
. Das in diese Bedingungsgleichung eingehende Biegungs-
moment fndert sich nun in unserem Belastungsfalle beim Durch-
gang durch den Angriffspunkt der Last, so zwar, dal} links und
rechts bzw.

M — Ho—V,u

W' =0Q (u—e) +Ho—Vu

oder wegen (1)
il ZH(U—I.—; za)—Q? (I—¢)

b e e

T

mw:n@—-:ﬁ—ogu—m

woliir wir auch kiirzer allgemein

M — H (u—— ?-EL)J,—ED'E“ i)
Damit geht dann (4b) iiber in

setzen diirfen.
1

f 2
ffo—faffa oo os o

(6),

0
worin das zweite Integral fiir jedes Intervall mit dem nach (5)
zugehorigen Werte von 9, getrennt auszuwerten ist, so zwar,
daB fir M, M,” usw. in den Intervallen von 0, ¢, ¢..!
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i (151
| o, o — i’ u.) ds—_—SSJi‘u’ o ? u.) i
ol / g \
: { h ’
e (sm =1 &) ds s s 1 (Ba
wird. ;

In Gl (6), die sich iibrigens fiir den gewoéhnlichen Fall der
gleichen Héhenlage von A und B mit b =0 in

[ i
H{v2ds+ (Moods=0 . . . . . (6b)
[} U

vereinfacht, ist weder auf die Wirkung der Stabkraft S, noch
auf die der Querkraft 7' Riicksicht genommen, deren Einfluf3
auf den Verdrehungswinkel wir am Schlusse des vorigen Ab-
schnitts als unbedeutend erkannt haben. Wollen wir exakter
vorgehen, so miissen wir auch noch den Einflufl einer etwaigen
Temperatursteigerung 9° in Rechnung ziehen, die
mit. einem linearen Ausdehnungskoeffizienten g
des Stabmaterials eine zusétzliche Dehnung

dAs'
T — i

e

<

hervorruft, der infolge der in gleicher Richtung wirksamen Stab-
kraft § ein Zusatz der Forminderungsarbeit

Al =8d A = oy hSds o W e o id)

entspricht. Fiigen wir diesen Ausdruck der durch Gl (21a),
§ 24, gegebenen Arbeit hinzu, so folgt fiir die totale Form -
dnderungsarbeit des Bogentrédgers

l l
40 it gl i E
e ..)b F( @ % _f‘r;‘) dS—I—Z-Gt —F—-ds—l—ao-ir Sds . (8},
0 0 0

deren partielle Ableitung nach H nach dem Satze von Casti-
gliano die Horizontalverschiebung der beiden Enden A und
B gegeneinander ergibt. Soll diese im Falle der Fig. 102 ver-
schwinden, da der Temperatureinflul sich erfahrungsgemil
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nicht auf die Widerlager erstreckt, so erhalten wir aus (8)

1
- 1 (/Mmom S S BrEOT S :
= ((@ sm TFoE Pt e 5? ¥ +“°‘9ij b
i
Hierin ist aber nach (5a)
ot b

oy et 7 L A R {(ha). |
und nach Gl (8a), §24, ganz allgemein |
oz
SZQ(W— 9) 9),

worin ¢ eine kontinuierliche Normalbelastung auf dem Bogen-
triger bedeutet, deren Resultante natiirlich in unserem Falle
in Q mit enthalten sein mufi. Wegen der Unverdnderlichkeit
des Horizontalschubes H lings des Triigers ist aber mit Riicksicht
auf (5a)

dM _ dI, do. 0 h du
Y tae e H(d.s 57 W)
oder
y d?s
PR {2;]2 IR (sm @ — ? cos (p) . (1
und
a2Mm d2JJE dq
e = H(cos rp+ 7 sin q] _fﬁ
oder
a2 A, H R ]
= + 5 (cos o+ 7 sin rp) wTow (Alal
Somit haben wir an Stelle von (9) auch
(29 ,
.S':-g(dﬂ?‘(;E )—}—H(cosq + sin q) . ga)
und daraus, sowie mit (10)
g—gr:cos ¢+ I; sin ¢ \
5 » (I

r : b
_b_]?: s o — T cos g

Mit diesen Ausdriicken, sowie mit (5a) geht dann die Be-
dingungsgleichung (8a) unter gleichzeitiger Einschrinkung auf
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konstanten Stabquerschnitt iiber in
1

1R H
= mj .EDE,I (‘U — ? ) E(:')“ g‘( 1 EL. d.S
0

0
!

¥

il d>M,
% l?'_'FTjQ( ds?
0

) (eos ¢ -[— sin q)

I

2

H l
-+ 0T g.(ms qu—;—v-g sjnq:) ds
g

1 i

\2

J : AT b
i Gl%j d{;}:‘*- (sm o ? 08 f,f-) ds -+ f}F 5(3111 = ; cos q-) ds
0 0
l

rxoﬂ\(cnsqa-l-bsmq)ds DR S O SRS TS R T 2 1

L

Diese allgemeine Bedingungsgleichung zur Bestimmung des
Horizontalschubes vereinfacht sich offensichtlich durch Ver-
nachlissigung der mit Winkelfunktionen behafteten Glieder,
welche den Einflub der Stabkraft §, der Querkraft 7 und der
Temperatursteigerung ¢ enthalten, wieder in (6). Haben wir
es insbesondere mit flachen Bogen zu tun, fir welche
sowohl der Winkel ¢ als auch das Verhiltnis b : I stets klein aus-
fallen, so diirfen wir mit hinreichender Genauigkeit in den Zusatz-
gliedern

cos ip oo 1, sin ¢ —i)— ~ 0

und wie beim geraden Balken

a*M, :

e =0 af ds 1
setzen. Damit wird aus (11) die Niherungsformel
1 1

b Ol G e : '
jsnt (v — —n)ds —|—H[ -I—S‘(v — —I—u) ds]+auﬁbt9l——-0 (11a),
0 0
die fiir die meisten praktischen Zwecke geniigt, wenn man die
Genauigkeit von (6) fiir nicht hinreichend halt.
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Es braucht wohl kaum nochmals betont zu werden, dal
in den Bedingungsgleichungen (11) und (11a) die iiber M, und
seine Ableitungen erstreckten Integrale nach Analogie von (6a)
fir jedes Einzelintervall mit dem dafiir giiltigen Ausdruck von
M, M,” usw. besonders ausgewertet und dann zusammengefalit
werden miigsen.

1. Beispiel. TFiir einen Bogentréiger nach Fig. 102 mit
einer vertikalen Einzellast im Horizontalabstand ¢ vom linken
Ende gelten die beiden Formeln (5) unmittelbar, so dall wir im
Intervalle von 0 bis ¢ und von ¢ bis [ bzw.

My =— 0, Mr=—Qc+QTu . (12)

haben. Mithin ist in diesem Falle
1

i b s [—e¢ i L
j?.ma(u___.l_a,)d.s_—Q t—v (rw——l u,)ds

0 0

—Qe 5(0 — % u —%—I— B ra’z) ds
oder mit (6) angenédhert
7

H ﬂu zs) =) f(uu ol )ds +Qe g{( %u) ds
[ 0 ¢ ’

1]
{1}

Liegen beide Stiitzen auf gleicher Hohe, so wird daraus
mit =0

e
(]

1 c l I
[
H (u‘ln's:(_) grwd.s—() = (uuds + Q¢ (ads « {434).
} ; :

Haben wir es insbesondere mit einem Kreisbogen vom
Radius r und einem Offnungswinkel 2¢, zu tun, der eine vertikale
Symmetrieachse besitzt, Fig. 103, so haben wir unter Einfiihrung
des Winkels ¢ des Fahrstrahls » mit dieser Symmetrieachse
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u:—;— ~+ 7 sin @ = r (sin ¢, 4 sin @) ‘

v=r(cosg—cosgy), s=r(gp+ )
¢ =7 (sin @, 1 sin ¢,), I =2rsin g,

(14)

Fig. 103.

Z1 ‘-}t‘liZOIl Damit aber werden die Integrale in (13a)
~ ity
\v“ds‘ — 135 (cos g — cos )2 dep

o

3 .
— i ('To — 5 8in 2 qg + 2y cos? f,f=0)
C ‘er .

S wode =7 g(bos f — €08 ) (sin ¢y 4 sin ) dop

i} — i

== r3[sin g, (sin @y + sin @o) — (g + @) sin g €08 @]

2
+ 13 [Sm $1 sz 80 L oos @ (cOs @y — cos (po}]
=+ s
C G
T Snmia =3 rf‘j'(cog @ — €08 ) (sin g, - sin @) de
(] — o

=73 (sin @y — @, €08 @) (sin @y -+ sin @;)

I Uil
cj'ud,s :chE(GOSQJ—cos @) Ao

: =rs [éi‘n o — SNy — (o — 1) €08 4] (sin ¢y + sin ),

mithin folgt aus (13a)
3 sinfaoy , : :
I sin® g, — - 2_—"17(‘05%(‘305%'1'9715'11%—%Sm ®o)
0.~ o IR . —————— Ea)
Po — 5 Sn 2@y + 2, cos? @,

Lorenz, Elastizititslehre. 17
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Greift die Last Q im Scheitel des Bogens an, so wird mit g, =0
oS sin? g, — 1 4 cos g, (1 — @4 sin @)

= ————— . (15a).

3 >
¢ Po— 5 S0 2¢p + 2, COS*

Alsdann kénnen wir uns aber den vollkommen symmetrisch
belasteten Balken nach Art der Fig. 98 im Scheitel eingespannt

denken, wihrend die Krifte — // und V:‘—%)am freien Ende

derart angreifen, daB dessen Horizontalverschiebung verschwindet.
Mit dieser Bedingung fithrt Gl (11), § 24, fiir @ = ¢, sofort auf
die vorstehende GIl. (13a).

Ganz allgemein kann man bei beliebiger Belastung eines
an sich symmetrischen Bogentrégers durch Hinzufiigen einer
symmetrischen Last die ganze Belastung symmetrisch gestalten,
wodurch der Horizontalschub auf den doppelten Betrag an-
wichst. Seine Berechnung gestaltet sich natiirlich in diesem Falle
nach den Methoden des § 24 mit eingespanntem Scheitel bequemer
als bei unsymmetrischer Belastung, fir welche das oben ent-
wickelte Verfahren wieder rascher zum Ziele fiihrt.

2. Beispiel. Ein zur Vertikalen durch den Scheitel
symmetrischer Bogentriiger sei gleichfdrm ig mit ¢kg
auf die Léngeneinheit der Spannweite I belastet. Alsdann ist

i l
Vi=Vy=q+
und =
ﬂJE:HU—qQ—(I—u)ZHU—i—*JJ?a R et e
Dies liefert mit (6b)
I I
S ; gun(l-—u)a’s e ety

worin fiir den Kreisbogen wegen (14)
l
jr.w (l—u)ds=
- tpg 0
= r4 | (sin? ¢y — sin? @) (cos ¢ — cos @y) d @
ol

4
=rh [% $in3 oo - €08 @, (Sin g €08 Py — Py €08% ¢y — 2 o SIn* rp,]],
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also
sty g
gl — 2¢grsing,

i : :
= 8% g - €08 @, (Sin @, €08 @y — @ 082 gy — 2 g sin? )

— - sin (‘pﬂ.iitpo—fjsjn 29;0—'—4990 o %o )

wird.

Haben wir es dagegen mit einem Parabelbo gen
mit der Scheitelhdhe A, Fig. 104, :

ru tun, so ist : W///////M//////////////////////j

e ; I
e 0 -
e S i :
oder
2
(l—u)u :i—:: . (18). Fig. 104,

Damit aber wird aus (17) sofort unter Wegheben des Inte-
l
grals S'ua ds
0 gl
H: STl . . . . . . - (18 a).
Dieses iiberaus einfache Ergebnis ist natiirlich nun durch
die Vernachlassigung der oben erwithnten Nebeneinfliisse mog-
lich geworden. Andernfalls diirfen wir fiir flache Parabelbogen
hinreichend genau
l l s il
i 16 42 8
5 p2ds oo Soﬂdu == l: 5(1%:2 — 2lud 4 wt) du =15 Ml
0 0 0

setzen und erhalten dann aus (11a)
o 8 ] qBh

i (T T k)=t adE6

oder mit @ = Fk?

b9y gl b g NG |

B+ 5=t T . . . s,

woraus deutlich der Einflull der Stabkraft und der Temperatur-

dnderung erhellt, wéhrend derjenige der Querkraft praktisch
keine Rolle mehr spielt.

1
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§ 26. Mehrfach statiseh unbestimmte Belastung krummer Stibe.
EinfluB der Einspannung der Stabenden. Ableitung der Auflage-
driicke und des REinspannungsmomentes aus der Forminderungs-
arbeit. Beispiel eines gleichformig iiber die Stitzenweite belasteten
Bogentrigers. Theorie der ebenen Spiralfedern mit gelenkigen und
eingespannten duBeren Enden. Anwendung auf die Triebfeder und die
Unruhe von Uhren. Schwingungsdauer der Unruhe. Einflull der
Temperatur.

Ist der Bogentriger an einem Ende A einge-
spannt und am anderen B gelenkig festgehalten (Fig. 105),
50 konnen wir uns zunéchst dieses letztere Ende nach Anbringung
der Horizontal- und Vertikalkomponenten // und V des Stiitzen-
druckes frei beweglich denken und die Forménderung des Balkens
nach den Methoden des §24 bestimmen, als wenn H und V
bekannt wiren. Diese selbst ergeben sich alsdann aus den Bedin-
gungen des Verschwindens der beiden Verschiebungskomponenten
von B, so daB wir in diesem Falle von einem zweifach
statisch unbestimmten Bogentrédger im Ge-
gensatz zu demjenigen mit Kampfergelenken sprechen konnen.
Die beiden Unbekannten H und V erhdlt man natirlich auch
aus dem Verschwinden der partiellen Ableitungen der Form-
dnderungsarbeit nach ihnen, also

: L BL L(mAMm,.
. e 1 - Sl S N OWRY Bt M W
W Bhe il g?‘?ﬁ..@dq_o o g
aF — B @ OF oo b
Fig. 105.

wobei, wie oben, aul die Verschieden-
heit des Momentes in den Einzelintervallen zu achten ist.

Ist endlich auch das zweite Ende B einge-
spannt, so konnen wir uns die Unverdnderlichkeit des
Neigungswinkels ¢ an dieser Stelle durch ein Einspannungsmoment
M, erzwungen denken, welches dann ebenfalls zu dem Biegungs-
moment der #uberen und der Auflagekrifte H/ und V hinzu-
tritt, aber auch in die Forménderungsarbeit eingeht. Seine
Bestimmung erfolgt entweder aus dem Verschwinden der Ver-
drehung A fiir B, oder, was auf dasselbe hinausléuft, aus der

Bedingungsgleichung
oL 1 (E’Eﬁ” jaig 9
D, )6 ik, e e M el

o
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die zu den beiden Formeln hinzutritt. Daraus erhellt, dafi der
zweifach eingespannte Bogentrdger als dreifach unbe-
stimmt zu bezeichnen ist.
' 1. Beispiel. Fiir einen nach Fig. 106 gleichformig
belasteten Bogentrdger mit gleich . o
hohen Enden, Eon degnen das linke A D 97 ////Z]I
eingespannt ist, lautet der Ausdruck | £ i
fiir das Biegungsmoment in C, wenn |
wir die Abszisse von B aus rechnen, !
2

M=Ho—Vu-tgq -l;- + (3]

Fig. 106.

also ist die darauf entfallende Forménderungsarbeit
2

- 2 : ﬂ"ﬂ 4 Lot
L:'Q_E_é)_,% ds=-2-E—@ ( v— u+q—2— s

oder d { ¢ '
2EQL=H? s v2ds - V2 g‘ugds e Su“d.s-

—2HV fuvds+Hq(uvds—Vq(udds (3a).

Fiihren wir die Differentiationen nach (1) hieran aus, so er-

geben sich zur Berechnung von A und V die beiden Bedingungs-

gleichungen q
1[5‘02053— Vv “u r)ds+-§5u90ds =) ‘
. | Al

Vjuzds—ffjjuuds—%j”w" ds==0 ‘

Wiire auch noch das Ende B eingespannt, so hétten wir fiir
das Biegungsmoment an Stelle von (3) zu setzen

2
M=Ho—VutMy+qy - - - - @
und fir die Forménderungsarbeit
212
2EOL =5(H0—Vu+ 9Ja[,+g“7) . k),

durch deren Differentiation nach H, V und M, gemal (1) und
(2) die drei Bedingungsgleichungen

Ifjvgds——Vj.zavds—f—t]JEgEudsﬁ- —g—guznds=0

Vv gu'-’d.s—ﬂj‘wucts—‘lh‘o‘gu ds——g— E. ud ds=0 }(2a)

o i

My s —i—Hju ds —V juds—%-g—fu? ds=0
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resultieren. Man iibersieht leicht, dal die Ermittelung der statisch
unbestimmten Gréfien trotz des linearen Charakters der Glei-
chungen in jedem Einzelfalle recht umsténdliche Rechnungen
erfordert, die grundsitzlich nichts Neues bieten und darum
hier iibergangen werden kionnen. Von praktischer Bedeutung
ist noch die Ermittelung der Stelledes groBtenBiegungs-
momentes, das sich durch Differentiation von (3) oder
(4) fir
do

H du__V-i_gu:O e s f3a)

ergibt.

Dagegen wollen wir hier noch den Fall untersuchen, dafi der
krumme Stab an einer seiner Einspannstellen
A durchein Moment M, verdreht wird, wihrend
das andere Ende B entweder gelenkig oder eingespannt festge-
halten wird. Das Moment
M, stellt dann die dubere Be-
lastung am Ende 4 dar, wel-
ches der Stab iiberdies mehr-
fach umkreisen kann, indem
er dadurch -zu einer ebe-
nen Spiralfeder wird.

Bezichen wir dann in
Fig. 107 die Koordinaten wo
eines Punktes C' dieser Feder
auf die feste Drehachse A des Momentes I, und beachten, dali
zum Ausgleich der Kréfte // und V im anderen Festpunkte B
gleichgrofie entgegengesetzte Krifte in A wirken miissen, so ist
das Biegungsmoment in C

=il s=Bfin =g s o i oL ),
mithin die Verdrehung
EQAdp=|Mds=My[ds+H fpds+V fuds . (6).

Fiithren wir die Integration tiber die ganze Lénge s, der Feder
aus, 80 erscheint auf der linken Seite die Differenz der Verdre-
hungen A@, und A¢, der Stabenden in A und B, so zwar, dal

E@(J¢2—1@1)=9J£nse+Hagnds—i—VJu ds. . (6a)
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wird. Hierin verschwindet die Verdrehung Ag, des Endes B
nur im Falle dessen Einspannung, von der wir zunéichst absehen
wollen. Dann aber, d.h. fiir eine gelenkige Befestigung in B,
erfordert das Gleichgewicht des ganzen Systems, Fig. 107, dal

S p U SR T R (R e
wodurch die Komponente V schon bestimmt ist. Weiterhin
liefert die Bedingung des Verschwindens der Horizontalver-
schiebung der Punkte A und B gegeneinander

8
du,=— 5..1 gdvo=0,
i
oder, partiell integriert
B
vy Aoy — vy Ay + fod A9 =0,
0

wofiir wir mit v, = 0 und v, = 0 fiir A und B, sowie wegen E@dAg
— Mds auch schreiben dirfen

VR ods =00 o 58 S e

0
oder mit (5)
8 8a 8
5[13059££3+Ij Svgds—}—l”juu gis =1t el
0 0 0
Daraus ergibt sich im Verein mit (5a) die Horizontalkompo-
nente H, so dall nur noch die Verdrehung 4 ¢, des Stabendes B
in Gl (6a) zu bestimmen ist. Diese folgt aus der Bedingung
des Verschwindens der Vertikalverschiebung von B, d. h.

Sy
..!02=_Sg’fqadu=0,
]

oder, partiell integriert, mit u,=1, u; =20

8 1 g
ldg,= Cuddq-zng‘m T e MR
[ 0

und nach Einsetzen des Wertes von I
8y 8q

EOLAq, =M, ﬁ'n ds—+ H g wods 4 Vjuﬂ ds . (8a).
0 0 0



264 Kapitel IV. Die Biegung krummer isotroper Stabe.
Ziehen wir hiervon die mit ! multiplizierte Gl (6a) ab,

so folgt sehlieBlich fiir die Verdrehung der Federachse A fiir den
Fall eines Gelenkes in B

dy 2 50 8y
E@ldg, =M, (Eu ds —lso} +H (Swv ds—lju ds)
0 0 0

o

st foo
)

oder o 5

EOLAqy=M, f(u—1l)ds+H [(n—Dods+
0 0

+V@—nuds . . . . . . (8h).
(1]

Ist schliefllich auch das Ende B eingespannt,
so verschwindet dafiir die Verdrehung 4¢,, wogegen natiirlich
ein Einspannungsmoment M, = M, — VI hinzutritt, welches
die Giiltigkeit der Beziehung (6a) aufhebt. Wir haben mithin
fitr diesen Fall an Stelle von (6a), (7a), (8a) die drei Formeln

—EO dg, =My 5, —|—va r.f,.S'—l—VSuds
b 0

8a g 8y
0=, (ods + H (o2 ds+V fuvds | (9),
4] 0 0 {
[

8o 8 5
0= §U’;‘05u ds —}—H_Suuds —|—V5 u? ds
0 0 0

aus denen hervorgeht, dall die Spiralfeder mit beiderseitig einge-
spannten Enden wie jeder andere krumme ebenso befestigte
Stab zweifach statisch unbestimmt ist, wihrend bei einem ge-
lenkigen Ende nur noch eine statisch unbestimmte Kraft iibrig
bleibt. Trotzdem gestaltet sich dieser Fall fiir die Berechnung
nicht einfacher, da er im allgemeinen die Ermittelung der Ver-
drehung des gelenkigen Endes erfordert, die bei der Einspannung
fortfallt. '

Nachdem die Krifte H und V aus den Gleichungen (5a)
und (7a) fiir das gelenkige Ende B, bzw. aus (9) fir den Fall
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der Einspannung dort bestimmt sind, erhalten wir fiir die Quer-
kraft 7 und die Stabspannung S mit du = ds cos ¢, dv = ds sin @
und ds= pdp die Beziehungen

e BT s .
T=—=Hsing+Veosq

i am ,‘ (10).
Y ::L—J (‘I.S"z" = H cos r,r:-_V sin P |

- Das Verschwinden von T liefert dann fiir die Stelle grofiter
Biegungsmomente und Stabkrifte

V
t.grh:—-? el e R

woraus sich die Winkel ¢,, ¢, + 7, ¢, 4 27 ... ergeben, denen
die Schnittpunkte eines Durchmessers unter dem Winkel ¢,
gegen die Achse A B mit der Spirale entsprechen.

2. Beispiel. Fiir den Fall einer Spirale mit
sehr vielen Windungen (Fig. 108) diirfen wir in
erster Annidherung den Sehwerpunkt in die Drehachse selbst
verlegen, also die beiden Integrale chﬂs und (vds vernach-
lissigen, wodurch sich Gl. (6a) in i

EO dg, =E QO dip, — Mys, (11)
vereinfacht.  Hierin ist nun die
Neigungsiinderung 4@, der Feder
im Gelenke B stets so klein, daf \8
wir sie gegenAd @, in A vollkommen & iﬁ
‘vernachlissigen diirfen, so dal
genau genug

E@ dg;=—Mys, . (1la),

eine Formel, die wir auch aus (9) PV T P
unter der Bedingung des Zu- Fig. 108.
sammenfallens des Schwerpunktes

der Feder mit der Drehachse erhalten hétten. Daraus geht
also hervor, daf fiir eine Feder mit sehr vielen
Windungen die Befestigung des #uBeren
Endes keine nennenswerte Rolle .spielt.
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Im Falle eines Gelenkes in B verschwindet nun dort die
Querkraft 7, und damit wird der Durchmesser A B der geome-
trische Ort der ausgezeichneten Werte fiir das Biegungsmoment
und die Stabkraft, wiihrend der Horizontalschub wegen der
geringen Abweichung des Winkels ¢; von 90° nur sehr gering
ausfillt. Das grofte Biegungsmoment tritt alsdann, wie auch
ohne weiteres evident sein diirfte, in dem Gegenpunkte B’ zu
B auf dem Durchmesser auf und hat mit (5a) den Wert

Minar==2 [ol=— 2 os s s 2

wihrend die zugehorige Stabkraft mit ¢, =90 S ~ ¥V wird.
Demgegeniiber nimmt die Querkraft (und mit ihr die Schub-
spannung im Federquerschnitt) die gréfiten Werte 7 ~ V auf
dem zu A B senkrechten Durchmesser an; so dafll nunmehr die
Berechnung der Feder mit rechteckigem Querschnitt aus vorge-
legten Hochstspannungen ¢ und 7 keine Schwierigkeiten mehr
bietet.

Die in einer solchen Feder durch Verdrehen der Achse um
Ag, aufgespeicherte Arbeit ist unter Vernachlassi-
gung der Kréfte f/ und V )

1 o M2 5o E© z -
L= TEG f‘ﬂ{o— i — 550 2 St A R SR (1)

und kann z. B. in einer U hr zur Uberwindung der Bewegungs-
widersténde des ganzen Werkes wieder nutzbar gemacht werden.
Diese Widerstdnde duBern sich nun an der Achse der Feder als
ein widerstehendes Moment 9, so daR im ganzen ein Uber-
schuff M, — M, zur Winkelbeschleunigung der Rider des Trieh-
werkes vorhanden ist, die wir uns durch eine Masse m, mit dem
polaren Trigheitshalbmesser %, in bezug auf die Federachse
derart ersetzt denken konnen, dal

B @ Aq
Ty — Doy = 1t Jog? g

(14)

wird. Hierin zerfdllt das Moment 9, in einen dem konstanten
Gewichte mgyg der Triebwerksteile und einen dem treibenden
Momente 9, selbst proportionalen Bestandteil, wobei die Pro-
portionalititsfaktoren f; und f, sowohl durch die Reibung der
Zapfen und Lager, als auch der Zihne, sowie durch die Lage
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der Einzelteile gegeneinander bestimmt sind. Somit diirfen wir
an Stelle von (14) auch setzen

=

Mo (1 — fy) — fo mo g = mg kg =1
oder wegen (11a)

0 24"“!"1

E® d
=fymy g + . (L —F) dg1+ mok® —=— (l4a).

Ziehen wir dann noch die beiden ersten Glieder zusammen,
schreiben also
d“erl E@ el fo magsy 1/
Bt i O it - TR =0 4,

so erkennen wir, dafl der Ablauf der Uhrfeder eine Schwingung
um die Ruhelage

fa Mg S
A A
darstellt, also bis zur Ruhelage selbst beschleunigt vor
sich geht. Da dies mit den Grundbedingungen des gleichférmigen
Uhrganges durchaus unvertréglich ist, so mull der Ablauf der
Treibfeder durch eine weitere Vorrichtung geregelt werden.
Diese besteht in einer sog. Hemmung, d.h. einer Sperr-
klinke, welche in sehr kurzen, mdéglichst genau gleichen Zeit-
abschnitten das Triebwerk aufhélt und wieder frei gibt. Hierzu
ist diec Hemmung bei Wanduhren mit einem Pendel, bei Taschen-
uhren mit einer zweiten Spiralfeder, der sog. Unruhe, ver-
bunden, deren mit einem Schwungrad versehene Achse ebenfalls
Pendelschwingungen vollzieht, welche durch den Anstoll der
Hemmung mit einem Zahnrade des Triebwerkes immer wieder
aul Kosten der Energie der Triebfeder erregt werden. Infolge-
dessen diirfen wir fiir die Unruheschwingungen die aullerdem
viel kleinere Reibung giinzlich vernachlissigen und an Stelle
von (14b) hinreichend genau
@ A g EO
de +3 mo ,"r 2
schreiben, worin natiirlich jetzt mg kuﬂ das polare Triagheitsmoment
des Schwungrades allein bedeutet, wihrend sich die GriBen
E, 0, s, auf die Unruhefeder beziehen, deren Masse gegen die-
jenige des Schwungrades vernachlissigt ist. Aus (15) folgt dann
die Schwingungsdauer der Unruhe

(l4c)

Af,rl-—(} PR 6)
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[ mg ko2 s
th=2m 1 BEZ) T s o]
die somit ebenso von der gesamten Federlinge s, abhingt
wie die eines Pendels von dessen Lénge. Da nun nicht nur die
Federlinge, sondern auch der Elastizititsmodul durch Tempe-
raturschwankungen derart beeinflufit wird, daf
so=81+ad), E=E (1—p9)
gesetzt werden kann, so wird aus (15a) mit Riicksicht auf die
Kleinheit der Glieder a@ und pd
\ g MR U ad) _
1 | B0 (1 =5
| PR
:2:5(1. et o d 0) | ”’*"T’;‘"@?l Sl ifshy.

Die Ubereinstimmung dieses Wertes mit der urspriinglichen
Schwingungsdauer erreicht man in der Praxis durch Regulierung
der Federlinge mit Hilfe des sog. Ruckers, d. h. eines Hebels
auf der Federachse, der an einem Ende eine Gabel tragt. Diese
umfaBt den duBeren Bogen der Feder im Punkte B, durch dessen
Verschiebung somit die Linge s, gedindert wird.

Weitere Feinheiten der Uhrregulierung, - insbesondere den
EinfluB der besonderen Form der Spiralfeder auf ihre Schwin-
gungsdauer, welche die Auswertung der Integrale in den Glei-
chungen (6) und (9) sowie die Beriicksichtigung der Kréfte [
und V erfordert, miissen wir an dieser Stelle iibergehen?).

15a),

{§ 27. Gerade Rohre unter gleichférmigem Druck.

Bestimmung des Einspannungsmomentes, der Stabkraft und Quer-

kraft fiir den allgemeinen Fall, sowie fiir die Endpunkte von Symmetrie-

achsen. Beispiel des elliptischen Rohres und eines nur wenig von der

Kreisform abweichenden. Kritischer AuBendruck fir das letztere.

Grenzfall des beidseitig eingespannten geraden Balkens. Forménde-
rungsarbeit und Querschnittsvergrolierung.

Wiihrend die Wand eines Rohres mit kreisférmigem Quer-
schnitt unter innerem oder #uBerem Uberdruck nur Zug- bzw.

1) Vergl. hieriiber u. a. Grashof, »Theoretische Maschinen-
lehre¢, Bd. II, Hamburg und Leipzig 1883, 8. 387ff., sowie Casti-
gliano »Theorie der Biegungs- und Torsionsfederns, deutsch von
Totz, Wien 1888,
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Druckspannungen ausgesetzt ist, miissen wir bei Abweichungen
des Querschnittes von der Kreisform auch noch das Auftreten
von Biegungsmomenten und Querkriften erwarten, denen
dann in der Wand Schubspannungen
entsprechen werden. Jedenfalls kénnen
wir die Wand eines solchen Rohres als
einen geschlossenen Bogen-
triager aunffassen, Fig. 109, den wir
uns an der betrachteten Stelle A ein-
gespannt denken.  Schneiden wir 1hn
dort noch auf, so wird der Zusammen-
hang wieder hergestellt durch An-
bringung eines Biegungsmomentes ),
einer Stabkraft S, und einer Querkraft 7'y,
welche das abgeschnittene Ende nach
der Ausbiegung durch den Druck p wieder in seine ur-
spriingliche Lage und Richtung zuriickbringen. Beziehen wir
die Koordinaten wp eines beliebigen Umfangspunktes € der
Rohrwand auf ein rechtwinkliges System mit dem Anfang in
der Einspannstelle A und deren Tangente als Abszissenachse,
so ist unter der Annahme eines Innendruckes p das Biegungs-
moment in €

*JJ?ZEWO—FT“.'&—FS“U—Q’(uz—i—vﬁ) Lo

Fig. 109.

und die daraus folgende Verdrehung 4 ¢ an derselben Stelle nach
Integration iiber den Bogen AC =s
&

10 Ag = (Mds=Mos+ T, fuds+ S fods—
0 0

(1]
!] o ]
o [zt ey iaeel SR R RO e (D),
p

wihrend die Verschiebungen des Punktes C sich aus
Aun—— E'Aq;du =—vde+ gvdﬂtp l

i 0

f 8
Av=+\Adpdu= u.Arp—SuquJ ~

0 i

berechnen.
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Aus Gleichung (1) folgt weiter, dafl alle Stellen des Rohres
mit gleichem Momente 3¢ auf einem Kreise liegen. Insbeson-
dere gilt dies von den Stellen, an denen mit 9 = 0 nach
Gleichung (2), § 24,

dAg

= ==l
also die Verdrehung A¢ ecin Maximum oder Minimum wird.
Derartige Punkte, in denen die deformierte Stabachse die ur-
spriingliche schneidet, bezeichnet man wohl auch als Knoten
und demgeméill den sie verbindenden, in Fig. 109 punktiert
eingetragenen Kreis nach dem Vorgang von Marbecl) als
den Knotenkreis

Lassen wir C iiber den ganzen Umfang s, wandern, so gelangen
wir wieder an den Anfang A zuriick, der weder eine Verschiebung,
noch eine Verdrehung erleidet. Mithin wird fiir das abgeschnittene
Ende u=10, =20

; S
E@Agy=N M de=i0" o 5 (28
$ 0

1 Sy
EOAuy= (vddp= (Qvds=0 ‘
0 0

i o . (3a)
EO Avy=—[uddp=— [Muds=0 ‘
0 0
oder mit (1)
g 8y Sa
J.Tioso —:—To(uds—{—,ﬁ'j vds:%f(u?-:—v?)ds
0 §
, gu ds+ T, Suva’s—]—S Szﬂ da—%\(wg—l—uz}uds (4).
0 0 0 5
-‘fo g Sy
*JJEOjnds--k Tuj‘u‘*ds—;—SoSrwds ‘? 5u3+92 uds
0 0 0 0

Mit diesen drei Gleichungen berechnen sich dann, da die
Integrale bei bekannter Umfangsform sich stets analytisch oder

1) Marbec, Théorie de I'équilibre d’une lame élastique sou-
mise a une pression uniforme. L’association technique maritime, 1908.
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graphisch auswerten lassen, die drei statisch unbestimmten Griflen
My Ty Sg, mit denen schlieBlich das Moment (1) fiir jeden Umfangs-
punkt eindeutig gegeben ist. Wir haben es also mit einem drei-
fach statisch unbestimmten System zu tun, wie bei dem beider-
seitig eingespannten Bogentriger. In der Tat kénnen wir den Zu-
sammenhang der beiden Wandenden in 4 infolge Verhinderung der
Drehung und Verschiebung als eine doppelte Einspannung ansehen.
Der in Fig. 109 dargestellte allgemeine Fall einer beliebig
gestalteten Rohrwand, dessen weitere Behandlung die Berech-
nung einer Anzahl unbequemer Integrale voraussetzt, ist nun
gliicklicherweise ohne praktische Bedeutung. Eine solche ge-
winnt das Problem erst, wenn die Rohrwand eine oder mehrere
Symmetrieachsen aufweist, durch die sich vermutlich die Be-
dingungsgleichungen (4) erheblich vereinfachen werden.
Besitzt die Rohrwand eine Symmetriachse, so
werden wir zweckmiBig den Punkt A an das eine Ende
derselben verlegen, Fig. 110. Alsdann verschwinden sofort alle
Integrale, in denen ungerade Potenzen von u auftreten, da jedem
Element ds mit positivem wu ein
dazu symmetrisch gelegenes mit
negativem wu zugeordnet ist, so
dall beide sich aufheben. Infolge-
dessen reduziert sich zunichsts die ¥ —f —
dritte Formel (4) auf

8y

TDSu‘zdS:U oo e )
4 ;

Fig. 110.

d.h. auf 7y=0. Dieses Ver-
schwinden der Querkraft an den Enden der
Symmetriachsen hdtten wir auch voraus-
sehen konnen, da dort offenbar das Bie-
gungsmoment ein Maximum oder Minimum
wird. In den beiden iibrig bleibenden Formeln (4)

My So + 8, g e — ﬂ g‘(uz + 0?) ds
by 0
8q Sy 89 . (-fi_b)

3

*]JFoguds—l— So \02(3.9:-2; SI(H'Z_[_ v2) ds

0 0 0
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setzen wir unter Einfilhrung des Schwerpunktsab-
standes AO0=0 des ganzen Umfangs von 4, so-
wie der Tragheitshalbmesser & und A, in bezug

aul die Schwerachsen
v=="b-+v,

also

8y 8g &g
jv ds="bs, Su’z s —in= 5, 50’2 i s—le 5 '
b i 0

1 (9)
8o 80 84
Sv’ ds=10, 592 ds:j(b? 4 200 v ds=(0>+ k) s
0 0 0
und erhalten so
M + Syb =5~ b + k2 + kz?)
b
Mo b+ So (B2 + Iy?) = B (02 + 2 + 3 ) o
E0
+ 4L (w4 v?) o' ds
25, e :
(1]
Daraus folgt schlieflich
So=pb+ 2&23 S(RZ'JI‘U’B}U ds
Y (6a),

((n- + o) v'ds

My = % (By® + kes® — s B kz .S‘U :

worin die Integrale der rechten Seite beim Vorhandensein einer
zweiten Symmetriachse verschwinden. Fiir diesen
praktisch wichtigsten Fall wollen wir die groBe Halbachse des
Rohrquerschnittes mit @, die kleine mit & bezeichnen und er-
halten dann fiir die Stabkréfte und Momente an den Enden der
beiden Achsen

Sy=pa, Wy=5 (k2+k2—a? \
% . (6b),
Sy=p b, W= (e + ki —5)

withrend die Querkrifte an diesen Stellen natiirlich wieder ver-
schwinden. Durch Einfithrung je eines dieser Werte geht die -
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allgemeine Formel (1) fiir das Biegungsmoment iiber in
M="L (k24 k2—u2—v2) . . . . (la),

wihrend sich fiir die Verschiebungen der Achsenenden, welche
keine Drehungen erleiden, analog (3) durch Integration iiber
die Quadranten s = §,/4

Arz:—(u’d.&]q):—ﬁ—?— NMo'ds
t;[ 051 (7}
1 _ .
Ab:—(udd = Muds
§
oder wegen (1a)
8y 8y
E@Aaz——p(f’r‘~’—1—fr9){v'ds—i—ﬂ(ugu’d‘s
e 7))
i 0
- 'T; (v’sds
¥
i s, (7a)
EOAb=—2L 24k \uds+ L\ w2
=—-5 (& 2)) \uds+5 | u ds
i o
5'1
—{—‘;-guv@ds
§

ergibt. Beide Verschiebungen haben stets entgegengesetzte Vor-
zeichen, so zwar, daB fiir inneren Uberdruck die kleine Achse sich
vergrofiert und die grofe abnimmt, wihrend fiir #uleren Uber-
druck das Umgekehrte stattfindet. : |ab

1. Beispiel. Ist die Rohr-
wand nach einer Ellipse mit den — ([

=
Halbachsen @ und & gestaltet, Fig. A
111, so lautet deren Gleichung -
12 2 S ]
wErm=L .. (8. Fig. 111.
Setzen wir darin unter Einfiihrung eines Hilfswinkels v
u=acosy, v'=bsiny . . . . ., (8a),

18

Lorenz, Elastizititslehre,
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g0 wird zuniichst

ds=Ydur+dv?=dy|a®sin’y + b cos’y

oder wegen
2sin2yp=1—cos2yp, 2cosPyp=1-4cos2yp . (8b)

2

* @ FOR
dsy =jd 1P 'Il.f = ¢ T l 1— TR

(4]

cos 2.
[ 1 . 1 Vi 4 - - e 2 £
Entwickelt man die Wurzel nach Potenzen von o cos 2y

und fiihrt die Integration gliedweise durch, so erhélt man fiir
den ganzen Umfang

2+52 1 [a2—b? 5 [a2—b2\¢
= ”“[ e [1 16(a-— 62) e 384_(_?21 b‘f_) o J ©)-
Ebenso wird

i
thedii= Su,g = Scosz w | a®sin®y + B2 cos?y dy
0

LY i g o S tay
o 8= 5 v'2ds= b S sin® Va2 sin2yp -+ b2 cos?y dyp
i i
oder mit (8b) nach Entwicklung der Potenzreihe und glied-
weiser Integration

_ y ,az+bz i a2 — b2 a® —h2\2
kj?-so.:a“:r] [ = 1( ) ( ‘

a2+ b2 a2+ b?)
_3_(a, —bﬂ)s 15 ——b") \
a:+ 2] T 1024 a—+bz (10).
MBS CET PR R |
2" So | bk (aurbz 16 a,2+bz)

3 [a2—P2 5 (a2— b2\ '
198 (aT+z7) ‘1024(a 4’3&) J

Durch Einfiihrung dieser Werte mit (9) und (6b) ergeben
sich dann sofort die beiden Einspannungsmomente 9t und ;.
Weiterhin haben wir fiir die in die Verschichungen (7a) eingehen-
den Integrale mit (Sa)
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Su ds=ua Scos w7 a®sin2y 4 b2 cos? y dy
Sv’ ds=b S‘ sin y 1 a2 sin? g - b2 cos?y dy
oder

L cos®y dy

5 o se=a- (cos Y ' . ;

e

v'ds=ab \sin p l 1— P cos®y dp,

12 —

woraus nach Entwicklung der Potenzreihe fiir cos?y und

gliedweiser Integration zwischen den Grenzen v = 0 und = —;
sich ergibt!)

8y

i 1 fa2— b2 1 —b"‘
jud&:ﬂz[i_?(‘_ag )—15(‘ ﬂ:"‘ )
1 [a®>—b2\8 1 (a?—b%\4
_Tﬁ_( aﬁ_')—63( a2 )_]
1 L(@—8\ 1 [a—b®
uds:ab[’l——h.—( — )—40(--- — )

e '.f?-f:ﬁ)“ . _ﬂﬂr
_1.:1_2( a? _1152( A i o e

Auf dieselbe Weise erhalten wir schlieBlich fir die letzten

vier Integrale in (7a)
8

' 2 4 (a*—p® 2 (a2 —b?
j‘IfB dS —£I4 Ii? 15 ( ,{12 )_. 3 s _)

5
L e ) 10 ( aF =
315 ( 693 ) )
&y
b ram el s 1 (a*—¥
JU’J ds —ab? [3 e 15 (-._ a? ) 140 L a'-—)
]

1 [a®2— ) a* —b2
— 504 a 633b ( e

1) Diese beiden Integrale (12) lassen sich natiirlich auch in ge-
schlossener Form durch lgn bzw. arc sin ausdriicken, indessen sind
die oben stehenden Reihen fir die praktische Anwendung viel be-
quermer.

0

1]

(13),

18%
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1

R 1 1 [a2—b? B Gl 5
, wv'ds=a*b [3 —TO_(?)_')G( a )
¢ .
1 (a2—D2\ B al—b3)4
—144( a )__4_0’ o '
3 1 1 (a2—02 1 [&— " it
s aaal R R @D e —
uv'?ds—a*b [3 15( a2 ) 105 ( o> )

LY
D

1 3. pafe B faas pa :
—ais( )~ () — |

womit auch die Forminderung der Ellipsenachsen vollstindig
gegeben ist.

So erhalt man fiir das Achsenverhiltnis a : b = 2

F—h 38 a®—bt 3
a? b2 5’ e

also
3q= 4,847 a, Fete —L 088 a?, kots,=0,702 a*

8; &y

fuds =0,695a* fvds =o0428a

0 D

8 8y :

fusds =0,419a", fv2ds =0,076a’

0 0

& B

futv'ds =028 a4, [uv'®ds=0,069 2",

0 i

Damit wird
ky? - ko = 0,565 a2,
also
M= % (0,565 a* — u* — v'?)

M, =— 0,218 pa?, My =+ 0,315 pa*

und
E@da=—0,0215 pat, E@4b=- 0,0475 pa'.

Die kleine Achse andert sich demnach mehr als doppelt so stark
wie die groBe, was durch die Erfahrung auch vollkommen bestatigt
wird. Zur Konstruktion der deformierten Rohrwand ist es noch zweck-
miBig, deren Schnittpunkte mit der urspriinglichen Ellipse festzu-
legen, an denen offenbar der Verdre hungswinkel ein
absolutes Maximum erreicht. Nach der Grundformel

ze 222 _n

ds
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tritt dies ein fir M = 0, also nach (1) fiir diejenigen Ellipsenpunkie,
welche zugleich auf dem Knotenkreise

ut o' =k? -+ k,?
liegen, dessen Radius in unserem Falle

r—a] 0,565 =0,752a

ist. Ware die deformierte Rohrwand eine Ellipse mit der Gleichung

. at? p'd u? Ada v'? ifi)
1_1&+4a)ﬂ+{b+45)2°’?ﬁ2‘(i_QT)+""'- (1 o

so wiirde diese die urspriingliche Ellipse

'

u* i
g R
in Punkten schneiden mit den Koordinaten u, v, gegeben durch
b
o L A g ehint s
= e
o Ab—idu . Ab—-gda
@ @

denen ein Radius r; = yu,®+ p,* entspricht. Mit unseren Werten
liefert dies

ry® = 0,861 a® Py = 09350
gegeniiber dem oben gefundenen Werte fiir den tatsichlichen Schnitt-
punkt, woraus eine ganz erhebliche Ab-

weichung der deformierten Wandung von )
der Ellipsenform resultiert.
2. Beispiel. Weicht die Um- fi .. _ . W
fangsellipse nur wenig von der Kreis- go
form ab, Fig. 112, so dirfen wir in _
den Formeln des wvorigen Beispiels TR
a=ry+ Ar,, Fig. 112.

b=ro—dry. . . (14)
setzen und die Quadrate von Ar, vernachlissigen. Auf diese
Weise ergibt sich

at=ry% 4 2ry dr,, P=r2—2r,4r,
@ =0k @ —bt=brydr, (L4
a®—b? Ary a2 — 82 47, %
2—5—322 ) —?2_:{_[
a? -+ To a Ty

Damit aber wird aus den Formeln (9) und (10)
S0 e SRR, S Gy
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key2 5y = 73 (1 +5 A:D) ‘
0

gl o 25 S D))
3 Aru) | (
ko2, :;r3(1—f———
ty" Sy = Ty T Tl |
und weiterhin
S
Bfchiaiete s LR ON).
0

Mit (14a) liefert dies fiir die beiden Momente (6b) an den
Achsenenden
Wy =—prodr, W=-Kpregdrg . o (15},
die natiirlich mit Ar, selbst verschwinden. Ferner wird aus (12)
und (13)

81
.

[ 20 Ap
ﬂuds = r[,>(1+——9-]
5l
By \ 0
o . (12a)
P
0 ' .
¢ 2 12 4
: Eanaly
j b ?"J( T )
0
REL %GRy _4( 12 Ary
furas =gneft—5 4
0%1 : ORI !
gbrzv’ds— = rﬂ“(l - :_: 4}:-@)
6,: 0
g A e (1 _.17 {‘?i‘])
. 0
und nach Einsetzen in (7a)
- Y s .
Aa_—db_-_—ﬁ-- £EO 1, 7 M EE R & L

Die in der Wand auftretende Spannung setzt sich nun zu-
sammen aus der Biegungsspannung, die bei einer

Wandstéirke & mit 6 = L

e k3 im Abstande y von der neutralen
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Sechicht
oy =127 (17)
wird, und der Normalspannung infolge der Stabkraft S
02:%22 xrmertn X sl Gxa ki T e
so daB durch Uberlagerung eine resultierende Spannung
6= al+og_12%” e h Jorll s A
auftritt. Diese erreicht ihre Hochstwerte an den Enden der
beiden Achsen, und zwar in den éuflersten Fasern fiir y — + g,
so daf wir mit S ~ pry und (15) hierfiir erhalten
oy =272 (1 16 ";:0) S L

Daraus erhellt ohne weiteres, daB z. B. ein Unterschied der
beiden Achsen von !/, der Wandstirke die Spannung schon auf
das Doppelte von derjenigen des genau kreisférmigen Rohres
erhoht.

Verlangen wir nunmehr, dall der Innendruck gerade
ausreicht, um die Abweichung von der Kreisform riickgéingig

zu machen, so erhalten wir aus (16) mit da=—Ab =Ar,
hierfiir
36 __E (16a)
Ee — i ah L e e o SIS
Po 7o RN

Umgekehrt wiirde dieser Druck von aufBen, auf das
kreiszylindrische Rohr wirkend, demselben eine Abplattung Ar,
erteilen, die in (16a) gar nicht vorkommt und daher ganz beliebig
anwichst. Daher miissen wir den durch (16a) bestimmten
Wert als kritischen AuBendruck fir das zylindrische
Rohr ansehen, der jedenfalls nicht dauernd darauf lasten darf,
wiihrend grofiere oder kleinere Driicke keine Abweichungen des
Rohrquerschnitts von der Kreisform hervorrufen.

Zu demselben Ergebnis wire man auch gelangt, wenn man
den aus (1a) mit (10b) und u? +-0"2==r*=rs2 4 2r,dr folgen-
den Ausdruck fiir das Biegungsmoment, nimlich

S——emreAPl o s a5 a)
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in die Gl. (6), § 24, cingefiihrt hiatte. Deren Integral Ar geht fiir
p =0, d.h. fiir Innendruck in eine Exponentialfunktion, fiir
Aufiendruck p << 0 aber in einen periodischen Ausdruck iiber, des-

sen Ableitungen dAr : d¢ fir ¢ = 0 und g verschwinden, woraus
schlieBlich die Bedingung (16a) resultiert.

3. Beispiel. Verschwindet die kléine Achse der Ellipse,
so geht diese in einen geraden Doppelbalken (Fig. 74)
itber, dessen beide Enden infolge der dort verhinderten Verdre-

hung als eingespannt zu gelten haben. Alsdann hat man, da
mit v’ = 0 auch k= 0 ist, wegen ds—=—du

4
so=4a, Fey?sy = % a®, ky? = % l
d & SRR
2 4 . 5).
Suds — C;, guﬁds- — % ’
0 [
Infolgedessen wird aus (6b) §;= pu, §,=20
2 2
m = (5=t
o | ol ey
%2: 6 !

von denen das erstere das Einspannungsmoment am Stabende,
dag letztere den Hochstwert des Biegungsmomentes (1 a), néamlich

R L Ll T
113?—2(3 u) R S )
in der Stabmitte, d. h. fiir u =0 darstellt. Fiir die Durchbie-
gungen erhalten wir endlich aus (7a) 4a—= 0 und

B A B0 B P
E@Ab_—2(6 4)_ G D)
oder unter Einfiithrung der ganzen Stablinge [— 2a
sl s o 9
Ab—= T R (20 a),

eine Formel, die ersichtlich mit Gl (7b), §16, fiir den beid-
seitig eingespannten geraden Balken unter gleichférmiger Be-
lastung iibereingtimmt, wenn wir unsere Bezeichnungen A&
und p durch die friither benutzten 5, und ¢ ersetzen.
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Hierzu sei noch bemerkt, dall man mit unseren Formeln
natiirlich auch Rohrwandungen behandeln kann, die aus ver-
schiedenen Kurvenstiicken, z. B. Geraden und Kreisbogen, zu-
sammengesetzt wird, wie dies u. a. Westphall) an einem
schonen Beispiel gezeigt hat.

Die in den Darlegungen dieses Abschnittes noch nicht heran-
gezogene Formédnderungsarbeit ergibt sich — wieder
unter Vernachlissigung des Einflusses der Stabkraft und der
Querkraft — allgemein zu

So
1 ¢
=\ MRde 5
E@,.”tdé NG i e
0
und wird durch den Druck p geleistet, der die ganze Fliache I
des Rohrquerschnitts um AF vergrofert bzw. verkleinert, je
nachdem er innen oder auflen auf die Rohrwand wirkt. Infolge-

dessen haben wir auch

IJ:

o] |

e

z 2

. (21a)
oder mit (21) und s;= 4s;

EOpA fr*:j"s.lnzd.s:s?snﬂds. AT .

Im praktisch wichtigster(i Falle desudoppult symmetrischen

Rohrquerschnitts ist M durch Gl. (1a) gegeben, wofiir wir auch
mit den Abkiirzungen

e S e 14 e S = pE e IR (28
schreiben diirfen
m:%(koﬂ—r‘z) I TE SN W e S
Damit geht (22) tber in

EQAF=p (k2 —r?ds
0

oder 8 8
E(_')A}p:p(kud-sl_2;502S?‘2d3+514d3) ke (221-1).
0 0

1) Westphal, Festigkeit von ovalen Réhren gegen inneren
und AuBeren Fliissigkeitsdruck, mit Bemerkungen von J. Schmid t.
Zeitschrift des Vereins deutscher Ingenieure 1909, S. 383,
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Hierin ist aber

8 8 8
Sr%s = guzds -+ gv’zds = (k% + k%) sy = k¢’ 5y ‘
/ (23 a),

ér’*ds‘_ 5 (u2 - 022 ds — H u“da - 251&5 2ds 4 ixu"‘ds
so dal 22?1) mit (23) ubergeht in
E@ff — flu‘*ds -+ 2;11520’21513 -}-_?v"’ds — (k2 EY)% sy (22D).
Differeuzuieren wir focmer den ;usdruck (21) nach p, so wird
mit Riicksicht auf (1b)

5

oL 1 bJJE 4 oM
_E@jﬂj}t 50 X206 gSIR ds_f,O (ky> — r?)3ds
oder wegen (23a) bzw. (221))
g—J;':AF S A R S 2 A

d.h. die Ableitung der Formédnderungsarbeit
nach dem Drucke liefert die von diesem
hervorgerufene Fldchendnderung des Rohr-
querschnitts. Beim geraden Balken entspricht dem
natiirlich die zwischen der urgpriinglichen Stabachse und der
elastischen Linie liegende Fliche.

4 Beispiel Fiir die Ellipse ergeben sich die in GI. (22b) auf-
tretenden Integrale nach dem im 1. Beispiel angedeuteten Verfahren zu

& R

\1 i 1 at a2__|_b2 i 1_ a? — pt _l az__be-)z l
) Seel S T ) 54(a2+bf{ '
o

_ig_?’z) _{5_5__“"—“)‘_ ]
6% (a.z—H?f 2048 (a'*—l—b’
Ba @0 [3 , 1 2—b 7 (a2—B%\
fd ot S bt L e Mo 0 LTI, W S Y | MR
foeds = e T AP ea(aﬂ-;-bﬁ)

3 [a®—b%\? 55 [a® — B2\t
() — 3 (o) +

¢ @2tn [0 [1 1 az—bz)z
2.,2 e [ I T T
ju e ]:I 5 [.2 64 {ag—f-b“,

5 [af—b2\¢
2048 (E’!—Hﬂ) _]




§ 28. Die Wirkung von Einzelkriften auf geschlossene Ringe. 283

und nehmen fiir den oben betrachteten Fall a= 25 die Werte

8y A 81
ju'ids: 0,373 a®, 5v*"ds:—0,0!-}&a5, Suz v'?ds=0,038 a®
] 1] 0

an. Mit diesen und den frither berechneten Werten

=0 =12%a, k-l =0,565a
£ 3
folgt dann aus (12 b)
p a®
E®
Hatten wir die Flachenanderung aus den im 1. Beispiel ermit-
telten Verschiebungen der Achsenenden . a und ./ b unter der An-
nahme berechnet, daf die deformierte Wand wieder eine Ellipse wiare,
so hitten wir erhalten

AF = A(ab)=n(adb-|bda)
und nach Einsetzen der fritheren Werte
E®da——0,0215 p a*, E®Ab=-0,0475 p a’

; o PP
=01 £’
also einen erheblich groBeren Wert. Auch hieraus miissen wir im Ein-
klang mit den Bemerkungen am Schlul} des 1, Beispiels schliefen,
daB die deformierte Wand ganz wesentlich von der Ellipsenform
abweicht, und zwar um so mehr, je kleiner das Verhéltnis b : a ist.
Dies geht besonders klar aus dem obigen 3. Beispiel des Ubergangs
in den eingespannten geraden Balken hervor, dessen elastische Linie
Wendepunkte besitzen mufl, welche keinesfalls mit einem Kegelschnitt
vertriglich sind.

AF = 0,080

§ 28. Die Wirkung von Einzelkriiten auf geschlossene Ringe.

Der allgemeine Fall als beiderseitig eingespannter Bogentrager. Be-

sehrankung auf einfach und doppelt symmetrische Ringe mit Kraften

in den Achsenenden. Beispiele des Kreisringes, des elliptischen Ringes
und eines viereckigen Rahmens mit steifen Ecken.

Befindet sich ein in sich zuriicklaufender krummer Stab,
den wir kurzweg als einen Rin g bezeichnen wollen, unter der
Wirkung einer Anzahl dufierer Krifte in seiner Ebene im Gleich-
oewicht, so gehen diese Krilte alle durch einen Punkt und liefern
weder eine Resultante noch ein Kriftepaar. Infolgedessen kinnen
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wir, ohne Storung des Gleichgewichts, irgendeinen Punkt A
des Umfangs wie im vorigen Abschnitt festgehalten und einge-
spannt denken. Schneiden wir
den Ring an dieser Stelle auf,
so wird der Zusammenhang
durch  Anbringung je eines
Biegungsmomentes M,, einer
Stabkraft §; und einer Quer-
kraft 7, an beiden Schnitt-
flachen wieder hergestellt. Die
dufleren Krifte Q selbst zer-
legen wir nach den Richtungen
des Achsenkreuzes durch A,
Fig. 113. dessen  Abszissenachse nach
Fig. 113 zweckmifig mit der
Tangente dort zusammenfillt, in je zwei Komponenten X Y
und erhalten dann am abgeschnittenen Stiick fiir den Punkt C
das Biegungsmoment

E)R:mzc—l_Tﬂn—i_SUU_E[Xn(U'n_U)_Yn(uﬂ_uﬂ (1)!‘

worin sich die Summe rechts nur iiber die Krifte auf einer Seite
von € erstreckt. Bilden wir diesen Ausdruck fir jedes Intervall
zwischen den Angriffspunkten zweier Krifte (, so erhalten
wir eine Reihe von Momenten %,,, 9M;, usw., denen dann die
Forménderungsarbeiten

1 2 0
1 1
SEO g‘,mm ds, JEO (mm ds;. “SEO Myo2ds
n
entsprechen. Mithin folgt fiir die totale Forménderungsarbeit L
des Ringes

1 2 0
2EOL=[My2ds+ (Wy2ds+ ...+ [Me2ds . (2),
[ 1 n

eine Summe, deren jedes Glied nach (1) die drei Unbekannten
M, T, S, enthiilt. Diese selbst ergeben sich aus (2) mit Hilfe
der Bedingungen fiir die Einspannstelle A, ndmlich

dL oL L ,
=% 35=% =0 ...
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wiihrend die Ableitungen nach den beiden Komponenten irgend-
einer Kraft Q, die zugehdrigen Verschiebungen des Angriffs-
punktes ergeben, so zwar, dab

oL oL &
ALLﬂ=m-, Avﬂ:FYﬂ— (3).

Die vorstehenden Formeln, wel-
che im Falle eines beliebig gestal-
teten Ringes aul recht umsténd-
liche, wenn auch nicht schwierige
Rechnungen fiihren, sind nun gliick-
licherweise ohne praktische Be-
deutung, da es sich in Wirklichkeit
fast stets um doppelt sym-
metrische Ringe handelf, deren
Achsen mit den Kraftrichtungen zusammenfallen. Ist zunéchst
nur eine Symmetrieachse vorhanden, an deren bei-
den Enden die gleich groBen Kréfte + Q einander entgegen-
wirken, so kénnen wir uns mit der Betrachtung einer Ringhalfte
(Fig. 114) begniigen. Das eine Ende A derselben sei eingespannt,
withrend am anderen B aufier dem Momente 9, die Krifte S,
und T, angreifen, von denen die letztere aus Symmetriegriinden

sich solfort zu 0

Tazj . . . . . . . . {"'1}

berechnet. Bezeichnen wir ferner mit 25 den Abstand A B der
beiden Scheitel, so ist das Biegungsmoment in einem beliebigen
_Punkte C mit den Koordinaten wv

M=y + S, (26 —0)y—Tou . . . - (9
Daraus folgt dann die Querkraft
d N W) du ) : -
AN S e o Ty e — (Sysin ¢ 4+ Tycos @) (5a)
und die Stabkraft
' ¥ d*Im ; -
S —_—g—(zsz—:T231n(p—S2cosrp AT R 5T o

Da ferner die Verdrehung der Stabenden in A und B gegen-

einander versehwinden muB, so ist bei einer gesamten Ringlange s,
Sg

E@Ap=[Mds=0
i
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oder mit (5) 8, 2
= 3
Emgr b5, 8y S2§vds—T25udS=O e R )18
0 0

Ebenso verschwindet die Verschiebung des Punktes B normal

zur Symmetrieachse, also ist
Sq
i

Ay —— l[Jq do = l{vdA = le@ siﬂt vds=—10

§
oder
S fo S0 <
2 2 2 K
My fods+208, fods —8, (o2ds — T, fuods =0 (7).
0 0 0 0

Zu genau denselben Gleichungen wiiren wir natiirlich auch
durch das Verschwinden der Ableitungen der Forménderungs-
arbeit nach M, und S, gelangt, wobei es wieder geniigt, die
Arbeit nur fir die eine Ringhélfte anzuschreiben. Setzen wir ab-
kiirzungsweisc

il ] Sa
2 2 ’
jv = UO 60 ; wds “gb.“ : {93 GS= fﬁ-;" ol
o
0 0 0
so wird mit der Substitution
eSO chh ta e b baite e (800
aus (6) und (7)
e, v[—Zb.S —Sety—Laug=0 . . . . (Ba)
Sl .
(Mg 4+ 20 8y) vg— Sy k2 —T'5 b uy— Z‘Sf,i ! wv' ds=0 (7a).
@

Im Sonderfalle eines doppelt symmetrischen
Ringes (Fig. 115) mit der Halbachse v,= b verschwindet
das letzte Integral in (7a) und wir erhalten an Stelle der beiden
Formeln (6a) und (7a)

detehSee—TL mae=li . < 0 . (6D,

Dbl @RI S = Tsbug=0 . . . (7B
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oder kurz
de =0 = 1 — (‘))— SR
Damit vereinfachen sich die Formeln (5), (ba), (5b) in
M= % (t2g — u) ‘
)

) . (9a),
T:—-?‘—cﬂsqs, 5 — = RN l

L\ulQ

so daB also in einem doppelt symmetrischen
Ringe die Stabkraft an den Angriffsstellen
der auBeren Kraft und die Querkraft an
den Enden der zur Kraft-
richtung normalen Sym-
metrieachse verschwindet.
Am Ende D der Halbachse a wirkt
demnach auber der Kraft —g— in tangen-
tialer Richtung ein Moment, welches
gich aus der ersten Formel (9a) mit

=0 2l o s )
=7 (tg—a) . . (9b)

berechnet. Bringen wir demnach an den
beiden Achsenenden 4 und B die ent-

Fig, 115,

gegengesetzt gerichteten Kréfte —-(2}_ an

und lassen dort die beiden Momente 9, und M, wirken, so
kinnen wir uns vollstindig mit der Untersuchung des Qua-
dranten A D = s, begniigen, ohne von der Einspannung eines
der Enden Gebrauch zu machen.

Alsdann ergeben sich die Verschiebungen der beiden Achsen-

enden zu

8 By . il
v i 10 it
.da:jdcpu’.u’ = gv'dA‘P:—";'@” SE‘RU'ds
o 0
. 5 5 (10)
] o 1 o
Af):jﬂq:edu:— i‘i-ffil(pr-——-'E(_)"swfadS

0 0 0
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oder nach Einsetzen von (9a)

E@Aa:—— u\u*ds—l— ?— uv' ds
0 &

; ; (10a)
E@Ah:—-g-uoguds—i—g—{u?ds ‘

&

U ]
Die Verschiebung des Angriffspunktes der Kraft @ konnen
wir natiirlich auch aus der Forménderungsarbeit berechnen,

die sich fiir den ganzen Ring zu
3y 81

& o U
i mj EUFGTS’:mj EFJ{- ds
0 0

ergibt. Nach Einsetzen von I aus (9a) und Differentiation
nach Q folgt daraus die Verschiebung 245 der beiden Angriffs-
punkte der Kraft gegeneinander im Einklang mit der zweiten
Formel (10a). Auf die Verschiebung A a der Enden der zur Kraft
normalen Achse ist dieses Verfahren natiirlich nicht anwendbar.

Greifen schlieflich noch an den Enden der Achse 2a
zwei Krifte + P an, so werden durch diese in den Punkten A
und D neue Momente geweckt, die sich aus den Gleichungen (9)
und (9b) durch Vertauschen von Q, u, und a mit P, vy und b er-
geben und zu den fritheren Momenten algebraisch addieren.
Dies trifft dann auch fiir die Verschiebungen der Achsenenden zu,
die sich, wenn P und @ Zugkrifte sind, zu

8y -‘f-:
E@Aa:-—g—(uo \9' ds—gzw’ds)
g !r

=5 3"
o uo’ s phids — g v'? ds)
\ - e
0 0

(10b)
'E@AZ):—Q)(HG

[
1]

8
Sza d‘s—mj u? ds
0
o %

-+ g(%’ Suds——juv'ds)
i i
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berechnen. Ist eine der beiden Kréfte eine Druckkraft, so hat
man nur in den Formeln (10a) bzw. (10b) ihr Vorzeichen umzu-
kehren.
1. Beispiel Fir einen Kreisring mit dem Ra-
dius r,, Fig. 116, ist
u=reysing, v=rycosqp, ds=rode . . (11),

s

also L

5y 2
s E" e 2710
uu—nruuuds_?—jsmrpd(pzz— o LB R
0 0

so dab wir fiir das Moment nach G (9a)
2
?D?:%ru(n —sin(p) SRE A

erhalten. In den Quadrantenenden nimmt dieses die Werte®

2—7
Wy =Q 1y 5 =—0,182Q 7,
o i (12a)
My = '?EQ = 03180,
an, deren Unterschied
Mgh =20 a2

das Moment des Kriftepaares an den Qua- Fig. 116. %
drantenenden ergibt. Das absolut grofite
Moment M, tritt demnach an der Angriffsstelle der duBeren
Kraft auf und fithrt dort auf eine maximale Spannung
aw%yozo,als()’({;?”-" B oy
wenn i, den Abstand der duBlersten Faser von der als Stabachse
anzusehenden Kreislinie mit dem Radius r, bedeutet, wobei
Yo als klein gegen r, vorausgesetzt wird. Diese Annahme recht-
fertigt auch die Vernachlissigung der Stabkraft und der Quer-
kraft in unseren Formeln. Zur Berechnung der Verschicbungen

der Achsenenden (10) haben wir fiir den Quadranten

8y 8y
s zds= Su’ =
0 0

Lorenz, Elastizititslehre. 19
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8y 2 ."|3
ju o' ds = !0355111 peospdp = -
] 4 bk Wb,
s ? 'I
: e 3. 70
§ s — r0365 sinfgdg =i 5
also A |
EOAa=—Qry _lfc — = 0,069 Q ry? 1
o (11c).
BO An— b —---_— — = 00740 ry? ‘

Infolge des geringen Unterschiedes dieser beiden Verschie-
bungen i#indern sich die beiden Radien eines Kreisringes, der in
swei zueinander normalen Richtungen durch gleich grofle Krilte
auseinandergezogen oder zusammengedriickt wird, nur je um
Qre?

E@

2. Beispiel. Fir einen Ellipsenring mit Zug-
kriften an den Enden der groBlen Achse, wie
er hiufig als Kettenglied Verwendung findet, haben wir nach
Fig. 115 bzw. aus (9a) durch Vertauschen von u mit v’

+ (da+ Ab) = + 0,005

=% @y —v)
G (13),
T:——'g—sinrp, S:‘——%BOSQ} |;

also fiir die Achsenenden v =0 und v=2>

g,)j—e]_: % UO'J 9,]&2': % {1‘0—-2}) = . = {‘I:‘Z}a},

woraus dann
g}gl_s)ﬁz:%b RS S )

sich ergibt. Da nun fiir die Ellipse zwischen den Extremen
b= undeh =10

v b o
T >l as b< G

ist, so wird auch stets b— vy, < vy, also absolut MW, => M,
sein. Das groBte Biegungsmoment herrscht also auch hier an
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der Angriffsstelle der Zugkraft, die mit dem Ende der groien Achse
zusammenlillt. Das Moment 9t selbst ergibt sif'h aus (13a)

mit v, aus (8) nach Einsetzen der Werte (9) und (12), § 27. Fiir
die Verschiebungen der Achsenenden fnlgt nach (10] mit (13)
8y
EQdg— g— vn\v’u’.s—(-) v2ds
0 i
s " (14),

=

B AY—— g vogu ds + quu’ds
0 0
worin die ersten beiden Integrale rechts wieder aus (12), §27,

das zweite der ersten Formel, welches mit /2 4“ identisch ist,

aus Gl. (11) ebenda zu entnehmen ist, wiihrend sich das letzte
in geschlossener Form berechnen liRt. Man hat nimlich mit dem
Ansatze (8a), § 27,
5 uv'ds=ab Ssin P COS ]/a,‘l sin?yp + b2 cos? ylnd P
b ¢ e :
s F’,)--’ E]/ (a® — b%) siny - b2d (sin® )

PR

ab

= ey @ =) sinty + 04 C,

mithin nach Einfithrung der Grenzen ¢ =0 und y = " fir die

Scheitel y .
S ab(a®—b3) o
j no'ds = 7 ey e ROR T (15).
0
Ist z. B. a= 25, so folgt
o e C A O
G+ 57 B 4
also s 8
cl ‘; [
So = 4,847 a, gu’ ds="0428 a2, v, = S—‘j v'ds =0,353 a
/ 0
0
LN 8y
gu ds=10.695a2, gv’2ds=0,702 as, Yuv'd3=0,194a3
0 0 0

und damit fiir die Momente in den Scheiteln

ml = {},1_76@ a, mg = — 01073 Q a,
19*
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sowie die Verschiebungen der Achsenenden
E@Aa=0275Qa3, EOAp=—0025Qad® (14a).

Wiirden dieselben Krifte Q an den Enden der kleinen Achse

angreifen, so wiren die Verschiebungen nach (10a) aus

EOAa=—0,0055Qa3, EOAb—082Qa® . (14D)
zu berechnen, woraus eine viel stérkere Forméinderung des Ringes
als im ersteren Falle resultiert.

Nimmt fiir den Kraftangriff am Ende von b die kleine
Achse immer mehr ab, so nihert sich der Belastungsfall dem
eines beidseitig eingespannten geraden Bal-
kens und es wird schlieBlich in Ubereinstimmung damit fiir
b=0 aus (10a)

Aa=0, E@Ab:%-oaa. Weassh Yo

3. Beispiel. Fir einen Rahmenmit versteif-
ten Ecken, Fig. 117, und den Seitenlingen 2a und 2b,
der von 2 Kriften Q in der Mitte der
Seiten 2@ auseinandergezogen wird, st
das Moment mit

\

|

]

e &
;ﬁ'
!

]

| @ a ) "
‘..'l | ;‘ ILU:I__'I_—(E—I— b) SR 2
W .
]I £ : N nach (9a)
| l i | | 44 i — Q ( )_ 7
aa.“ . R i _,|1 i i 2[ To\2 b)) —au| . (17),
| :
I : | also lings der Seite u=— a konstant, und
¢ || "\ zwar gleich
: i \ e _Qag -
G My = G T,
ab wiihrend an den Angriffsstellen der Kralt
Q =
o
Fig. 117. 3313:% Uy = z(aQ—i—b} ( 4 b) (17b)
wird. Beachten wir ferner, dafl fir den Quadranten
LR : B2
fud.s zﬂf—-—|— ab, ru'(ls_——ab—il— f) ~

(16 a)

o] | ;34__

)|

J.av’ds: 9 (a -+ b), ‘J‘ ds—a-(()—|—
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ist, so folgt
Fa AL (R
E@Aa——s(a+3)— ol
Qa AT
EOAb= e

a b
Tt 12+ 35)
Von diesen beiden Werten entspricht der erste der Durch-
biegung eines geraden Stabes von der Linge 25 unter der Wir-
kung des konstanten Momentes (17a), mit einer kreisférmigen
elastischen Linie. Der zweite dagegen ergibt wieder mit b= 0
den Wert (14b), also die Durchbiegung eines beidseitig einge-
spannten Balkens von der Lidnge 2a unter einer Einzellast in
der Mitte.

§ 29. Gerade Rohre unter ungleichformigem Druck.
Beschrankung auf kreiszylindrische Rohre unter Flissigkeitsdruck.
Ableitung des Biegungsmomentes und der Radialverschiebung. Ein-
flufl der Rohrdehnung durch den Wasserdruck und des Rohrgewichtes

auf das Moment und die Formanderung.

Der auf einem Teil der Wandung eines geraden Rohres
von beliebigem Querschnitt ruhende gleichformige Druck kann
stets durch den Druck auf die
Sehne ersetzt werden, die gleich-
zeitig dem Rest der Wandung
zugehort. Lings dieser Sehne
heben sich alsdann die ent-
gegengesetzten Driicke auf, so
dal  keine #uBere Resultante
existiert.

Haben wir es dagegen mit
einem ungleichférmigen
Drucke auf die Rohrwand
zu tun, so werden wir im 3 :
allgemeinen auf eine Resul- Fig. 118,
tante zu rechnen haben, die g
durch eine &uflere Kraft aufgehoben werden muB, damit das
Gleichgewicht nicht gestort wird. Dieser Fall gewinnt eine prak-
tische Bedeutung fir kreisféarmige Wasserrohre
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mit groBem Durchmesser, wie sie in der Neuzeit
héufig in Wasserversorgungs- und Energieanlagen Verwendung
finden.

Denken wir uns ein solches Rohr (Fig. 118) vom Radius ry
an der tiefsten Stelle aufgeschnitten, so herrscht dort am Wan-
dungsquerschnitt die Stabkraft S, und die Querkraft T, die in
bezug auf eine Stelle A mit dem Zentriwinkel ¢ gegen die Vertikale
das Biegungsmoment Ny - Sy 7o (L — cos @) | Ty ry sin @ liefern.
Der an einem Elemente 7y d w mit dem Zentriwinkel v wirkende
Druck p ergibt eine Elementarkraft rop dw normal zur Rohr-
wand, aus der durch Multiplikation mit dem Hebelarm
7o Sin (@ —1) das Moment rg®p sin (p — ) dw in bezug aul
den Querschnitt A4 hervorgeht. 'Das gesamte Biegungsmoment
an dieser Stelle ist mithin '

M=—=My -+ Syrp (1 —cos @) -+ Turnsin<p—~r02§p sin (g—y)dy (1),
i
withrend wir fiir den Druck unter der Annahme einer Spiegel-
héhe @ iiber der Rohrmitte und einem spezifischen Fliissigkeits-
gewicht y
pey et rgeonyg) e aih e (2)
zu setzen haben. Damit folgt fiir das Integral in Gl (1)
r:.' fj’.'
"025!’ sin (@—y)dyp=ry?y g{u - rpcosy) (sin pcosy — cos gsiny) dy
0 i
r.3
—=re2ya (1 —cos ¢) -3 ygsin ¢,

also
M =My + Soro (1 — cos @) + Tory sin @

— T2y [a (1 —cos @) 4+ 3]— @ sin q)} L I

Die hierin auftretende Querkraft 7T, wirde, wie aus den
Darlegungen des § 27, Gl. (4a), hervorgeht, fiir einen konstanten
Druck p verschwinden, wihrend sie fiir den in vertikaler Rich-
tung veriinderlichen Wasserdruck die an der einen Hilfte der
Rohrwand angreifende dufere Kraft, d. h. die Halite des im tief-
sten Punkte des Rohres konzentriert gedachten Auflagedruckes
des Rohres darstellt, der keinesfalls verschwinden kann. Man
konnte natiirlich auch eine andere Lagerung des Rohres nach dem
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Vorgange von Forchheimer!) untersuchen; indessen ist
dies ohne besondere Annahmen nicht durchfithrbar. Auferdem
hat der konzentrierte Auflagedruck unter sonst gleichen Verhalt-
nissen.ersichtlich Maximalwerte des Biegungsmomentes zur Folge
und fithrt damit auf den ungiinstigsten Belastungsfall, der
praktisch niemals aufler acht zu lassen ist. Hierbei ist der obere
Scheitel des Rohres unbelastet gedacht, so daf fir ¢ = keine
Querkraft auftritt. Diese berechnet sich aber aus (la) zu
T d I

= ?‘U&E:S" sin @ -+ T, cos @

— Ty {a sin @ -+ I? (sin @ + @ cos qo)] b

und liefert mit 7= 0 fir p ==

J

7T o
Sl e . (3a),

Li=—

so dal der Auflagedruck im unteren Scheitel
: Q=" =y r e S SRR (5 )
mit dem Gewichte des Wasserinhaltes des Rohres iibereinstimmt,

und zwar unabhéidngig von der Druckhohe a iiber
der Rohrmitte.

Die in Gl. (1a) noch enthaltenen weiteren Konstanten I,
und S, kénnten wir nun, wie in den letzten beiden Abschnitten,
durch die Bedingungen bestimmen, dafl die beiden Scheitel
des Rohres gegeneinander weder eine Verdrehung noch auch eine
Horizontalverschiebung erleiden. Wir wollen indessen, um so-
gleich die Formiéinderung des Rohres zu erhalten, auf die fir ge-
ringe Abweichungen von der urspriinglichen Kreisgestalt der
Wandung giiltige Gl (6), § 24, fiir die Radialverschiebung Ar
zuriickgreifen, die sich unter Vernachlissigung der Stabkraft § in

Ar Wi, Herg®
de? e EO %)

Y Forchheimer, Zur Festigkeit weiter Rohre, Zeitschrift
des osterr, Ing.- u. Arch.-Vereins 1904, Nr. 9 und 10. In dieser be-
merkenswerten Abhandlung ist auch der obenstehende Fall mit der
unwesentlichen Binschrankung eines druckfreien oberen Scheitels
durchgefiihrt.
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vereinfacht und mit (la)

(d Ar +Ar)_._r0 5 La(i—cosrp)—é—%ﬂ—(psinrp}
— My — Soro (1 —eos @) — Tyrpsing  (5)

=
o

ergibt. Schreiben wir diese Gleichung abkiirzungsweise

E® (d*A
. (d ;—} Ar)~—40—|— A, cos @ -+ By sin ¢ + B, ¢ sin ¢ (5a),

worin
S e e = —T.r
Ag=r*ya —2 Solos By=—T4ry ‘

Ay = Sory—ritay, By=25"7 \

ist, so lautet ihr allgemeines Integral’) mit zwei willkiirlichen
Konstanten € und D

FO A Ba e o B Bo
: ( 21 A T2) @ sin @ — j-l— @ eoS ¢ — - 42- @2 cos @
+Ceosp-t+Dsmg. . . .. . (6)
Die hieraus folgende Ableitung
E@ dAr B ;
= ( ----- —f———) (sin @ -+ @ cos @) — 21 (cos @ — @ sin )

__22 (qo cos(p_fp-h;n—gp)_{jsin p-+Dcosgp (6a)

verschwindet nun im oberen und unteren Scheitel des Rohres
fiir =0 und @=m wegen der dort horizontal bleibenden
Tangenten, woraus die Bedingungen
By
Deggusl |
By A B

. (6b)
B
—2-—D ( 2.._ . )T‘f‘Tg-T—_O

hervorgehen, von denen die erste die Konstante D festlegt,
wihrend die Addition beider

Bk Ve Bk e e

1) Hierzu gelangt man, wenn man sich nicht mit der Prifung
der Richtigkeit durch Ableitung begniigen will, am einfachsten durch
Entwicklung von Ar in eine Potenzreihe, deren Koeffizienten sich
mit Riicksicht auf (5a) berechnen lassen.
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oder mit Riicksicht auf (5b)
: To |
S=nrlet] . .. ... @

ergibt. Zu einer weiteren Bedingungsgleichung gelangt man
durch Multiplikation von (4) mit de und Integration, nidmlich

dAr 3
0 —I—jArdrp—~——r@ Sﬂ)?ff(p,
woltir auch mit £ @ddp = Mrydg
Lff:;—i—\ﬂrdq'_—rﬂjqa dhad e URERIN

geschrieben werden kann. Waihlt man den oberen und unteren
Scheitel als Integrationsgrenzen, so verschwinden dort die Ab-
leitungen dAr: de und die Verdrehungen Ag, so dall

gArdtp—O A e s ()
iibrig bleibt. Durch FEinsetzen von (6) und Integration wird

daraus / \
A B B 4
A (G + 22|74+ By R a 2D =

oder mit Riicksicht auf die Bedeutung der Konstanten nach
(5b) und (3a) sowie die Bedingungen (6b) und (Gc)

3 ;
Hlg= 2t . e e (D,

Mit diesem Werte und den Ausdriicken (7) und (3a) fiir die
Krifte S, und T, geht schlieBlich die Formel (1a) iiber in

Em:_?‘o? [1_‘]’_(‘08? (R—QJ)SI:DQD] A RN

woraus man die Unabhéngigkeit des Biegungs-
momentes von der Druckhdéhe a erkennt, welche
ihrerseits einen gleichférmigen Druck ya auf die Bohrwand von
der Dicke 7 und damit eine zusitzliche Spannung derselben

im Betrage . 2reay _ reay
=i =—1 | e Ry
mit der Dehnung Ar a' Tody
. ___TU..:E:_-}E— A

zur Folge hat.
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Zur Ubersicht der Anderung des Biegungsmomentes ent-
nehmen wir der Arbeit von Forchheimer a. a 0. die
nachfolgende aus (9) berechnete Tabelle, vgl. Fig. 119. Es ist

fiirg = 0° ym:a — 0,750 fiir g = 105° ﬁta — 1 0,197
0 LI}

150 — 0,368 1200 + 0,078
300 — 0,062 1350 — 0,046
45° 40,156 150° — 0,152
600 |- 0,282 1659 — 0,225
750 + 0,320 180° : — 0,250
900 40,285

Da wir von vornherein unter positiven Momenten solche
verstanden haben, welche die Kriimmung verstérken, den Radius
also verkleinern, so deutet
das negative Vorzeichen in
der Umgebung der Scheitel
auf eine Verflachung hin, die
an den Stellen M= 0 ent-
sprechend den Hochstwerten
des Verdrehungswinkels A g
in eine Aulbauchung iiber-
geht. Das erkennt man am
bequemsten aus der Formel
fiir die radiale Verschiebung,
die wir an einer Stelle will-
kiirlich festsetzen konnen.
Wihlen wir demgeméf Ar=0 fir ¢ =0, d.h. fiir das Auf-
lager am unteren Scheitel, so folgt aus Gl (6)

Ay+C=0

oder mit (5b) und (8)

RS L
i 2
Damit aber, sowie nach Einfithrung der anderen schon
bestimmten Konstanten wird aus (6)
E65 A=
Yo ]
:%— [1 — cos@ + 7—2; (peosq —sing) - qtz) (Sin(p ——% COS(p)] (11),

\

3
}‘0_

. (64d).
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also fiir
w B Jis by
—_ = S e 215
o= 2 yrns A? 9 (1 ii) I O,_i-)
E6O a1 o
p=m }’rga_Ar 1‘—?:—0,23"1,

wihrend der Gesamtverlauf der Forménderung des Rohres aus
Fig. 120 ersichtlich ist. Um noch den Einflufl der durch (10a)
gegebenen radialen Dehnung infolge des hydrostatischen Druckes
zu beurteilen, bilden wir den Quotienten mit dem Werte von
(11) fiir den oberen Scheitel, d. h. fiir ¢ ==z und erhalten mit
o 3

12 Ar i

e T . (11a), .

also einen unter normalen Verhiltnissen recht grolen Wert,
der die Vernachldssigung von Ar" gegen A7 in den meisten Fillen
rechtfertigen diirfte.

In der vorstehenden Unter-
suchung ist aber auch der Ein-

b

-9

Fig. 120, Fig. 121,

fluB des Eigengewichtes der Rohrwand auf
das Biegungsmoment und die Forminderung stillschweigend
vernachlissigt worden. Zur nachtréiglichen Priifung dieser An-
nahme bezeichnen wir das spezilische Gewicht des Wandmaterials
mit 7,, s0 daB auf ein Element ry dy in Fig. 121 die Vertikalkraft
Yoh 1y dy mit dem Hebelarm 7, (sin ¥ — sing) in bezug auf A
entfillt, dem ein Moment gk ry? (sin @ — sin @) dy entspricht.
Alsdann erhalten wir im vollstindig entleerten Rohre mit den
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beiden Kriften S,”, T,)"" und dem Moment 9, an der unteren
Schnittstelle in A das Moment
M =My + Sy rg (1 — cos @) + Ty rg sin g
U
— yohry? S(Sin @ —siny) dy

oder :
M =My + Sy""ro (1 —cos @) + Ty rysin ¢
—yhrlpsinp-fcosp—1) . . . . (12).
Setzen wir hierin analog (5b)
Ay = —yohirg? — My’ — Sy ros By =—T'ry | (12a)
A= 8y'rg + pohred, BY' = phre? | ’

 worin T, wie frither, den halben Auflagedruck bedeutet, also
mit dem halben Gewichte der Léngeneinheit des Rohres iiberein-
stimmt, d. h.
B g B o = = e ety o 4 )
ist, so folgt in Verbindung mit (4) fiir die Radialverschiebung A r"’
unter der alleinigen Wirkung des Rohrgewichts
E@ (dzAr" i
gt ( de % )ﬂ
=Ag" -+ A" cosp+ B singp+ B, @sing . (12¢).
Das Integral dieser Gleichung lautet analog (6)

E@ s A 1 B r : B "
ro Ar'= Ay +(—§—+—42—)‘?73m¢'—' 21 @ COB @
el @2cosp -+ C"eosp-+-D"sing . . (14)
und liefert mit
dAr" "
do =0 fir p=0 und p=an
die Bedingungen, vgl. (6b) und (6¢),
B n B L4
D" = 21 3 Al”z_g_ <o v . (14a),
oder mit Riicksicht auf (12a)
. 3
So”:—-&?, My’ =— 5 vl . . {1.5}.
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Nach Einsetzen dieser Werte mit (13) in (12) erhalten wir
schlielilich
COS

WM = — yohre? [H_—-— (@ — @) sin(p] . (16),

also einen Ausdruck?), der sich nur durch einen anderen Falktor
von dem Momente (9) des Wasserdruckes unterscheidet. Dem-
gemil erhalten wir auch jetzt fiir die radiale Verschiebung 47"
an Stelle von (11)

yifo Ar”:l—cosgu—{« (@ cos g — sin )
—i—(p(smqo—mcosap F S A b
so dall wegen
i!if;_ 9 J;’rﬁ LU RO | ey

beide sich in Wirklichkeit iiberlagernden
Verschiebungen einander proportional sind.
Fiir eiserne Rohre und Wasserfiillung ist nun y,:y=75
bis 8, also

” % sl
SRl R
iy To o

woraus hervorgeht, daB im Gegensatz zu dem Ein-
fluB des Wasserdruckes auf die Rohrdeh-
nung, vgl. (11a), die Wirkung des Rohrgewich-
tesimallgemeinen praktl schnicht vernach-
lissigt werden darf.

1 Vgl. Birault, »Calculs des parois et armatures des tuyaux
4 section ecirculaire posées sur le sol« Génie Civil XLII. 1902
bis 1903. S.104. Der Verfasser dieser Arbeit, auf die Forch -
heimer a. a. 0. Bezug nimmt, geht itbrigens an Stelle der Gl (4)
von der noch einfacheren Niherungsgleichung £ @ 4r — —p2 M aus.
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§ 30. Die Biegung krummer Rohre.

Abweichendes Verhalten krummer Rohre und krummer Vollstabe bei
der Biegung infolge des Auffretens von Normalkomponenten der
Biegungsspannungen. Aufstellung der Gleichgewichisbedingung und
Einfithrung der mittleren Schubspannung bei der Forminderung des
Querschnitts unter der Annahme der Erhaltung der Achsensymmetrie.
Bestimmung der Kriimmungsinderung der Rohrachse aus der Form-
inderungsarbeit und Vergleich des Ergebnisses mit Versuchen.

Ein gerades Rohr verhilt sich gegeniiber einem Biegungs-
momente, dessen Achse senkrecht zu einer Mantelgeraden steht,
genau wie ein voller Balken mit demselben Triagheitsmomente
des Querschnittes, so daf also seine Durchbiegung nach den
Methoden des vorigen Kapitels ermittelt werden kann. Besitzt
dagegen die Achse des Rohres von vornherein eine Kriimmung,
so fallt deren Anderung unter dem Einflusse eines Biegungs-
momentes erfahrungsgemél viel grofler aus, als man nach der
Formel (9¢), §23, fir volle krumme Stéibe

Ao Mo
A AARBOR AT R ()

erwarten sollte, wihrend gleichzeitig der Querschnittsumfang
eine Forminderung erleidet. Dieser Vorgang findet seine Er-
klirung in der Tatsache, dall die auf der Querschnittsebene
senkrechte Biegungsspannung vermége der Rohrkriimmung
eine Normalkomponente zur Rohrwand besitzt und daher diese
wie ein (ungleichférmiger) Aublen- oder Innendruck abzuplatten
oder aufzubldhen sucht. Das wiederum setzt die Wirkung eines
Biegungsmomentes auf den Querschnittsumfang voraus, dem
unter der Annahme emer kleinen Wandstirke £ im Verhiltnis
zu den sonstigen Querschnittsabmessungen innerhalb der Wand
eine mittlere Schubspannung 7 in der Normalrichtung entsprechen
moge.

Wir schneiden nun nach Fig. 122 aus dem eben gekrimmten
Rohre durch zwei benachbarte, um den Winkel dy gegeneinander
geneigte Querschnittsebenen mit der gemeinsamen Geraden ZZ
ein keilférmiges Rohrelement heraus und bezeichnen den Sehwer-
punktsabstand SO des doppelt symmetrisch angenommenen
Rohrquerschnitts von ZZ, d.h. den Kriimmungshalbmesser
der Rohrachse, mit 7y, den Abstand 4 € eines beliebigen Punktes 4
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des Rohrumfangs von ZZ mit r. Denkt man sich das keilformige
Rohrelement durch Drehung um ZZ erzeugt, so beschreibt der
Punkt A den Bogen AA’'=ds’=rdy mit dem Kriimmungs-
mittelpunkt M’ im Sechnitt der Normalen der Rohrwand in A
und der Geraden ZZ. Der zugehérige Kriimmungshalbmesser
AM =p' ist dann, wenn
@ den Neigungswinkel der
Tangente an der Rohr-
wand in A4 bedeutet
i 2
€= osg
Auf der Normalen 4 M’
liegt ferner auch der Kriim-

-9y

Fig, 122,

Fig. 123. \

mungsmittelpunkt M eines Bogenelementes A B=ds"" =g d ¢ der
Rohrwand, das mit 4 A" ein rechteckiges Wandelement 4 A" B' B
— ds'ds"”" begrenzt, welches in Fig. 123 der Deutlichkeit halber
nochmals herausgezeichnet sein moge. An dessen Schnittflichen
hds und hds” wirken nun die Normalspannungen ¢” und o

r

- "F' r r
mit der nach innen gerichteten Komponente (Q,——i—p,, hds ds"”,

der ein konstanter Innendruck p mit der Normalkraft pds’ ds"”
entgegensteht. AuBerdem aber greift infolge der obenerwihnten
Biegung des Querschnittsumfanges lings 44’ die Schubspan-
nung 7 mit einer Normalkomponente thds'=ztrhdy an, die
auf der gegeniiberliegenden Seite, d. h. im Abstande r - dr von
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' d
ZZ auf h [rr—!— -—gr{‘-)— dr] dy angewachsen ist, so dal hiervon

eine nach aulien gerichtete Normalkomponente hd—ég_i}dr dy tibrig
bleibt. Diese steht mit den oben angefithrten Kréften im Gleich-

gewicht, wenn

£y il N e d(tr)
pds ds :fa(-g,—{—z),,)ds ds —thmiz
oder wegen ds' = rdy, dr=ds" sing
p_ o o dir) sing ,
ool b . dr Bige gl (3)

ist. Hierin wollen wir nach Analogie eines Rotationskérpers um
die Achse ZZ die Spannung ¢ als Ringspannung und

r

¢ als Meridianspannung bezeichnen.

Setzen wir weiterhin voraus, dafl, wie beim geraden Rohr,
die Scheitel des doppelt symmetrischen Querschnittes erhalten
bleiben, so wird dort das Biegungsmoment 3t ausgezeichnete
Werte besitzen und demgemil die
zugehorige Querkralt
p 4

ds

(4)

an den Scheiteln verschwinden. Fiir
ein Rohr mit kreisformiger Achse
und einer Bogenlinge y ist aber

: T—=zryl . o fha),

—— 0 also mit (4)

1 ; an’ :
Tryh = e % ¢ ()

|

1
7o
l

so dafl nach unserer Annahme

die Schubspannung sz in
den vier Scheiteln des doppelt symmetri-
schen Querschnitts verschwindet.

Fig, 124.

Schneiden wir daher aus unserem Keil, Fig. 124, durch
Parallelkreise durch den Punkt A4 und den Scheitel [ einen
Bogen heraus, so wirkt auf diesen in der Richtung ZZ der Innen-

druck p mit der K_raftg (12 —r1yY) dy und entgegengesetzt im Schnitte
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durch A die Kraft (6" cos ¢ — 7 sin @) hrdy, wihrend im Schnitte
durch D keine Querkraft vorhanden ist. Mithin bedingt das
Gleichgewicht in der Z-Richtung

2hr
und liefert nach Elimination der I\-leridianspannung ¢’ mit (3)

P sl s LE DLl !
h (1 R cosg:;) o' \T ] ar o0 r;.-)

a"' cos g — 7 8in g o
@ r

oder mit —p" dp=ds" = - da mit wachsendem Radius r

sin ¢’
und Bogen s der Winkel ¢ abnimmt,

Pify a) b B Tot s
}'.1,(1 2rg" u)stp\_ "+ (T?‘tg(}”-l

ao )

Fiir die rechte Seite dieser Formel diirfen wir aber mit Riick-
sicht auf (2) auch schreiben

if, 1 ¥irame 1 dr) g AN 8S S r_r_)
o [n e '9”( cos? @ T Gos ¢ do )] o [G A g"drp(,'cosgv ’
so dal wir als Ergebnis der Elimination von ¢" aus (3) und (5)
[ s e _1 3 d ( trai
h (1 2rg"” Lub(p) [ + o dg COS(p)_ o
erhalten. Herrscht insbesondere im Rohre kein Druck, so verein-
facht sich mit p= 0 diese Gleichung in

’ 1 S
GZ_FW(COSQD) s e s B

und ergibt fiir die Normalkraft auf den Querschnitt
durch Integration iiber dessen Umfang

19!:50";},1&3”:—]& gd( 2.1 ):0 . . . (?):‘

€08 @

entsprechend der sog. reinen Biegung durch ein
Meoement ohne Stabkraft.

Als Beispiel wollen wir den Fall eines Rohres
mit kreisformiger Umfangslinie des Quer-
sechnittes untersuchen, wobei der Radius ¢ mit dem
Kriimmungshalbmessser ¢/ des Meridians tibereinstimmt. Der

Lorenz, Elastizititslehre. 20
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Bedingung des Verschwindens der Querkraft (4a) in den vier
Scheiteln des Querschnittes werden wir am einfachsten gerecht
durch den Ansatz

Tr— o sin Jipe R S
woraus
Tr . !
- =27rysn @
cos @
und mit (6a)
2y 210,
0 = — 2—-—[-)— COS (@ = — - ;,--0- (F—Tg) = = = (8]

hervorgeht. Die Ringspannung wird demnach
proportional dem Abstande von der Paral-
lelen zu ZZ durch den Kreismittelpunkt, die
somit die neutrale Achse des Querschnittes bildet. Weiter folgt
fir das Biegungsmoment um diese Achse mit r—r,=1y

25570 27 _
W= \oydr = — =% \yzdr— _ =00 g, (9a),

worin das Trigheitsmoment um die neatrale Achse
Gt M e e B (e
zu setzen ist.

Das Biegungsmoment M, welches den Kreisquerschnitt
zu deformieren sucht, folgt mit (8) aus (4b) mit ds"” = adg

W =hy grrd’s” = i Toly (10 Esin 2 dyp
oder

2 h
P e S, B USRS | ()

Hierin bestimmt sich die Konstante 3%, aus der Bedingung,
dall zwei gegeniiberliegende Querschnittsscheitel keine Ver-
drehung gegeneinander erleiden, d. h. daf

i i

ko
(== (SJJE” gt — e S ;—’C—;—i s cos2@pde+Nyan

L e/
i

oder My =0 wird. Mithin bleibt

Tolo & ?5__"{{ ;

W= (v1e T o EROME L SR SRl 4 1
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mif, dem Tragheitsmomente
Rt Iy YErd s n R Y0 aibi )
(¢ e ) (12)

Nunmehr berechnet sich die auf einen Sektor von der Off-
nung y entfallende Forminderungsarbeit

% 2t
1 (e 1 ("2 .
L= 5T j._(_., rody + QE.Q. o adg o (43)
i

oder mit Benutzung der Ausdriicke (9a), (10), (11a), (12)

?,_ r
JEL  W2r, | 3 a* [cos?

e (& 4:;:'0;1“

}’p d(p) (13a).

Hierin ist r=r, - a cos ¢, also wegen der Kleinheit des
Verhéltnisses « : r, angenihert

cos*2¢ 1 a
= .3_.*‘; (1 4 cos4 ) (1 G cos rp)
a
= ;}0 (1 ~ :l cos @ —+ cos 4 ¢ — T 08 & ¢ cos
also
20 @ 29
"eos? 2 @ i 08" 7
Bl d(p:?\ : (pdq)—
] r ! Ty
i it

womit (13a) abergeht in
2EL  M3r 1 il It
AT L 4 ry? kg)
Da nun die ganze Forminderungsarbeit durch das dullere
Moment MM’ geleistet wird, welches eine Verdrehung des Ring-
gektors um Ay bedingt, so haben wir auch

(13D).

e S S S R e ()
und eingesetzt in GL (13b)
A W r T e k
xy S O? ( =+ e ro? MZ}) . (15).

Bei der Ableitung dieser Formel bzw. der Einfithrung des
Momentes MM durch GL (4b) wurde vorausgesetzt, dafl dieses
lings des Ringsektors x konstant sei. Trifft dies nicht zu, so ist

20%
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natiirlich dy an Stelle von ¥ und d4y fiir Ay zu setzen, so daff man
fir die Querschnittsverdrehung eines Rohres
mit kreisférmigem Querschnitt allgemeiner
dady " Wirgf 3 a

dy  EO ( LR

schreiben und diese Gleichung auch der Berechnung im Falle
verdnderlicher Biegungsmomente M und
Krimmungsradien ry, der Rohrachse zugrunde
legen darf.

Die Formel unterscheidet sich von derjenigen des vollen
gekritmmten Stabes durch den Klammerausdruck, der fiie /= 0
unendlich wird und mit A= oo in 1 iibergeht. Ein massiver
Balken kann demnach als ein Rohr mit unendlicher Wandstirke
aufgefalit werden. Der Klammerausdruck néhert sich aber auch
dem Werte 1 bei unbegrenztem Anwachsen des Kriimmungs-
halbmessers r, der Rohrachse. Fiir ry= oo geht daher Gl. (15a)
in die Differentialgleichung der elastischen Linie des urspriing-
lich geraden Stabes iiber, die somit auch fiir ein gerades Rohr
mit kreisformigem Querschnitt gilt. Von der Richtigkeit der
letzteren Folgerung kann man sich jederzeit durch Biegungs-
versuche an geraden diinnwandigen Rohren iiberzeugen, wihrend
zur Priifung unserer Formel (15a) Beobachtungen von Ban t 11 n?)
an Rohrkriimmern zur Verfiigung stehen. Diese boten v. K ar -
m 4 n2) Anlafl zur Aufstellung einer Theorie der Biegung krummer
Rohre, die im Gegensatz zu der hier vorgetragenen sich nicht
auf das Gleichgewicht der Spannungen am Wandelement stiitzt,
sondern von der Form#nderung der Umfangslinie im Querschnitt
ausgeht. Insbesondere wird fir die Tangentialverschiebung
eines Umfangspunktes eine periodische Reihe angeschrieben
und daraus die Forménderungsarbeit entwickelt. Da die Koeffi-
zienten der Reihe statisch unbestimmte GroBen darstellen, so
berechnen sie sich, wie derartige Kriifte, aus dem Verschwinden
der partiellen Ableitungen der Formé&nderungsarbeit nach ihnen.
d. h. aus der Bedingung des Minimums dieser Arbeit, die somit

(154a)

3 A. Bantlin, Forminderung und Beanspruchung federnder
Ausgleichrohre, Z. d. V. d. Ing. 1910, S. 45.

_ 3 Th. v. Kdrméan, Uber die Forminderung dinnwandiger

Rohre, insbesondere federnder Ausgleichrohre, ebenda 1911, 5. 1889.
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die Gleichgewichtsbedingung ersetzt (vgl. § 7). Unter Beschran-
kung auf nur ein Glied der Reihe von der Form csin 2¢ analog
unserem Ansatz (8) fiic die Querkralt bzw. die mittlere Sehub-
spannung erhélt v. Karm an an Stelle von (15a) die Gleichung

.d_-_'?'_x_(i___ 9 vl N e 0
dy il R 5 T
e

welche ebenfalls fiir 2= oc und 7= oo in die Formel fiir den
vollen krummen bzw. den geraden Balken iibergeht, wihrend
fiir A= 0 der Klammerausdruck 0,1 wird.
Man iibersieht, dall man ganz allgemein sowohl die K ar -
m & n sche Formel als auch unsere Gleichung in der Form
ddy M 1y
7 ke 0
schreiben kann, worin % einen aus den Klammerausdriicken zu
berechnenden Koeffizienten des Trédgheitsmo-
m e n t e s bedeutet, der im Falle :
einer verdnderlichen Rohrkriim- :
mung mit dieser variiert. Dies
trifft nun fir die Bantlinschen
Versuche zu, die sich auf sog.
Ausgleichrohre bezogen,
deren Achse sich nach Fig. 125
aus drei Kreisbdgen mit den beiden
Radien r; und r, zusammensetzt,
wiihrend der Querschnitt lings
des ganzen Rohres unverinder-
lich ist. Bedeutet alsdann A4z
die Verschiebung des Angriffs-
punkts der Kraft P gegen die
Mittellinie Oy M, so ist die Form-
inderungsarbeit einer Hélfte des

- (o)

Fig. 125.

Ausgleichsrohres L = i PA x, oder mit dem Momente 9 — Pz

in bezug auf einen Punkt D der Rohrachse im Abstande z von
der Kraftrichtung

1 s B ("22ds
E® T 2E) @
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so daf

= Sl Y
wird. In dieser Gleichung ist ds ein Lingenelement der Rohr-
achse, @ das mit dem Faktor » behaftete Trigheitsmoment €'
der Rohrachse, der fiir die Bogenstiicke A B und BC verschiedene
Werte #, und x, besitzt. Mithin zerfillt die rechte Seite von (17)
in zwel Teile, ndmlich

B C
B gL %t
J:EZE_G)-’. (Zs,a“ d‘sl-!—x—zj i Lf.&g) e (11"3)-,
A

woliir wir auch kiirzer Ado=Aa, +4Ax, schreiben konnen.
Die beiden Integrale lassen sich leicht auswerten durch die Sub-
stitutionen z=z; 4 rycos y und ds;=r;dy bzw. z=r, (1 —
cos 7), dsy= rydy und ergeben

B

A1 \
: e
2dsy=ry \(z+rycosy)Pdy=nr (312‘{_%) il
A \ -
(e S L
+ 5 sin 291+ 2z 7280 gy

=L

U x M _
& 3 sin 2 7, :

Sf.‘z sy = r235(1 —cos x)2dy =r’ (2 ¥a—+ %’/—z -+ 2 sin y, ]

B 0 : i

Nun war fiir einen fluBeisernen Krimmer, vegl. Fig. 125,

2y =—143.9 cm ¢ =—107,5 ¢cm .
Fo=_ a4 ¥y— 900 ¥
21 =129019" =y,

a—10,4 cm h— 0,665 cm.

Weiterhin ergibt die Rechnung mit P = 300 kg, E = 2 100 000
kg/gem

C
Bl x S :
E—Qi S,’S"dsizo,-ﬂg? CIm, —E§ 5}.’.2 ds=10,033 cm,
A B
woraus mit %, = %, — 1 eine Totalverschiebung des Kraftangriffes
A x = 0,43 cm folgen wiirde. Nun ist aber
Bry o507 25— 0350,

aa a'ﬂ
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mithin nach Gl (15 a)

1 § 3 at 1 1
== |1 — s - — 309 - — " 0N
* (l iy 4 h? r*)’ i 54 %5 5
nach v. Karmén
9 : 2
i e ) L
g pefgeahital ing ¥ %a

(l"’
Mithin liefert unsere Formel
dx=—0,397 - 3,92 40,033 - 7,44 = 1,80 cm
und die v. Karmansche
Az = 0,397 - 3,20 40,033 - 4,75 = 1,43 cm,
wihrend der Versuch Bantlins Ha— 109 e
ergeben hatte. Die Ubereinstimmung unserer Theorie mit der Wirk-

lichkeit ist demnach eine sehr befriedigende und tbertrifft sogar die-
jenige v. Karmans.

Nach dieser wichtigen Feststellung wollen wir die grofiten
Spannungen berechnen, die im Querschnitte des Rohres auftreten.
Die grofBte Ringspannung ist offenbar nach Gl (9)
und (9a) mit r —ro=a

N

“adh (18),

Gy’

withrend die dazu normale Biegungsspannung sich
mit (11a) und (12) zu

a
e R
berechnet. Hierzu tritt noch die Meridianspannung
6" =1tg @, so dall eine Gesamlspannung

Ty E 5 Fy
ea=agy}0"'=3 (}E coqu;—}—ZtﬂTsmﬂqu

oder genau genug
a y :
a=71 (.'5 7, €08 2 @ + 2 sin? (p) oty )
resultiert mit den Hochstwerten fir ¢ =0 und ¢ — :r_)

a i a
01:-3 7 Tos 02:(2_3I)r01
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wofiir wir auch mit Riicksicht auf die Bedeutung von 1,
aus (9)
3 W 3 al W b
— e = — e S Ye
e Gk Yol %2 (1 2 h,)r“ak {5a)
schreiben diirfen. Hiervon kommt, da ki :a stets ein kleiner
Bruch sein soll, nur der erste Wert als absolut grifiter in Betracht.
Dividieren wir diesen in (18), so folgt

0 3 a i
E]T: jm (20),
wonach also fiir a®>ryh, wie in dem besprochenen Aus-
gleichsrohre, die Spannung der Querbiegung der
Umfangskurve die Ringspannung weitaus
iiberwiegt.

Zum Schluff mége darum noch die Forménderung
des urspriinglich kreisféormigen Rohrquer-
schnitts ermittelt werden, wobei wir an die Gl (11a) und
(12) ankniipfen konnen. Es ist némlich die Verdrehung an der
Stelle ¢

il

3 2
do=Fgm 53}6"d3” gq—z—zsm'}gp
0
3 Wa :
=3 E Pk, “sm 2o o o (21)

und daraus die Verschiebung eines Punktes in der
Richtung r gegeniiber dem inneren Scheitel
Ll i

] 2 {*
=5Aqocosqyd.s‘” ggtla jst(pcosgoflgc
U
oder ' o2
dv = E'Jaha (RoBg—1) oo« e o (22).

Ebenso ergibt sich die Axialverschiebung (in der
Richtung ZZ) zu

’I" L

. I L
A= -—jdqnsmqods — IZI_E"hsrg_Jsm 2¢sin@de
0 0

’ 2

Agﬁhasmrp............{%).
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Die totale Zusammendriickung des Kreisquerschnitts

in radialer oder axialer Richtung ist demnach (Fig. 126)
Al

AU":_QT'PDM
und wir erkennen, daB der ur-
spriingliche Kreisquer-
schnitt durch ein posi-
tives Moment MM, welches
den Krimmungsradiusr, Fig. 126. i
des Rohres zu vermin-
dern strebt, in der Richtung vonr, durch
ein negatives Moment dagegen in der Rich-
tung ZZ zusammengedrickt wird.

=—2 A uy, |, 4 z




Kapitel V.
Knick- und Kipperscheinungen.

§ 31. Die axiale Knickung gerader Stibe.

Die Durchbiegung eines Stabes durch eine Axialkraft. Knicklasten.

Bestimmung des Biegungspfeiles aus dem Unterschied der Stab- und

Sehnenlinge. Ermittlung der Arbeit der AuBeren Kraft und der
Biegung.

Bei den bisher untersuchten Vorgéingen haben wir die Gleich-
gewichtsbedingungen meist ohne Riicksicht auf die elastischen
Forménderungen des betrachteten Korpers aufgestellt, also deren
Einflufl auf die sog. Konfiguration des Kraftfeldes als unerheb-
lich vernachlissigt. Daraus resultierte dann der als Verallgemeine-
rung des Hookeschen Gesetzes aufzufassende lineare Zusammen-
hang zwischen den Verschiebungen und Einzelkriften an einem
System, aus dem schlieflich der M a x wellsche
Satz iiber die Gegenseitigkeit der Verschiebungen
folgte, die nach Castigliano mit den partiellen
Ableitungen der Formiénderungsarbeit iiberein-
stimmten.

In der Folge wollen wir nun eine Anzahl wvon
Belastungsfillen studieren, bei denen die einge-
tretene Formiénderung die Wirkung der &ulieren
Krifte wesentlich oder gar ausschlieflich bedingt.
Als cinfachsten derartigen Fall betrachten wir einen
diinnen geraden Stab unter dem EinfluB
einer Axialkraft P, Fig. 127, die erfahrungsgemil zu-
nichst nur eine — nach dem Hookeschen Gesetz kaum merk-
liche — Zusammendriickung, bei weiterer Steigerung dagegen
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eine kréftige Durchbiegung des Stabes hervorruft und dann
sehr rasch zum Bruche fithrt. Da derartig belastete Stdbe als
Stiitzen bzw. Séulen in Bauwerken, als Druckglieder in Eisen-
konstruktionen hiufig Verwendung finden, so ist dieser Fall
der sog. Knickung von grober praktischer Bedeutung.

Bei der Untersuchung des Problems wollen wir sogleich
den Zustand der Durchbiegung ins Auge fassen und die Aus-
lenkung eines Punktes der Stabachse im Abstande z von einem
Ende mit 7, die ganze Sehnenldnge mit z, bezeichnen. Sehen
wir ferner der Einfachheit halber von der kleinen axialen Zu-
sammendriickung und der ebenfalls nur kleinen Schiebung
darch die Querkraft unter Vorbehalt der spiteren Feststellung
dieser Nebenwirkung ab, so ist die Kriimmung 1 :p der Stab-
achse an der betrachteten Stelle wesentlich durch das Biegungs-

moment 0 N e ol S L NI € T

bedingt, dem mit einem kleinsten Trégheitsmoment @ des Quer-
schnitts und dem Elastizititsmodul £ des Stabmaterials das

Moment der inneren Krifte E )
== }\]JE . & . - . . - - 2

das Gleichgewicht hilt. Tiir die letztere Gleichung diirfen wir
auch bei kleinen Auslenkungen , also kleiner Kriimmung der
Stabachse, hinreichend genau

d? ¥ I
BO L. o e (08)
schreiben, woraus in Verbindung mit (1)
d?
EO dz;—:im; 8 "B, vt
hervorgeht. Setzen wir zur Abkiirzung hierin
ke
E@'—-—a...,,...(o},
also 2
7 :
Ezg--:-—:iazw; IR M D a)

so fragt sich zuniichst, welches der beiden Vorzeichen dem wirk-
lichen Vorgange zukommt. Im Falle des positiven Vorzeichens
wiirde die Loésung von (3a)

e Lol o



316 Kapitel V. Knick- und Kipperscheinungen.

lauten, worin sich die beiden Konstanten 4 und B aus dem
Verschwinden der Auslenkungen fiir 2=0 und 2=z, zu 4 =
— B=20 ergeben. Da hiermit allgemein auch =0 wird,
also gar keine Auslenkung entsteht, so hat das positive Vorzeichen
fiir den Fall der Knickung keine Bedeutung.

Mit dem negativen Vorzeichen der rechten Seite hat aber die
Differentialgleichung

a2 7 ; a
d—z:z— =—q? R g Lo i L {-;'i h)
das allgemeine Integral
p—dcosaz-— B sinag 0T (4)

oder mit 9= 0 fir z2—0 und z=—2z,

0 =:4; . 0="FBginag sib s HGEA).
Die letzte dieser Bedingungen wird nun erfiillt fiir
B=0 oder sinazy=0. Hiervon hat B= 0 keinen Sinn,

da es mit A =0 wie der obige Exponentialausdruck allgemein
auf =0 fihren und damit die erfahrungsgemill eintretende
Durchbiegung ausschlieBen wiirde. Es bleibt also nur die Be-
dingung sin « z,= 0 ibrig, die fiir ganzzahlige n auf
o3y = NI - . . . . . v . (:J)
oder mit Riicksicht auf die Bedeutung von ¢ nach Gl (3) auf
n?atE@ Y
e st s e (6
=0

fithrt. Wir erhalten also, wie schon in §4, beim gedriickten
Rohr eine Reihe sog. Knicklasten
a2 B @ b2 EE 9n2 E 6 i

- P2:T, B — "y usw. (6a),
die, da man von den geringen Unterschieden der Sehnenlingen z,
absieht, mit den Quadraten der ganzen Zahlen fortschreiten.
Nur diese Knicklasten sind in der Lage,
Durchbiegungen hervorzurufen, die sich aus (4)
mit A =0 und (5) zu

Piss

P1:

‘ Z r
nzBsmaz=Bsnlnnz— R el A
0

ergeben und die in Fig. 128 dargestellten Formen der elastischen
Linie liefern. Fiir Zwischenwerte mit nicht ganzzahligen n, die
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somit der Bedingung (5) nicht geniigen, muB in der zweiten Formel
(4a) auch die Konstante B verschwinden, so dafl hierfiir gar keine
Durchbiegung eintritt. In diesem 1&1[9 bleibt als Wirkung
der Axialkraft nur die Zu-
sammendriickung iibrig.
Wenn auch durch die vor-
getragene Theorie, die in ihren
Grundziigen auf Euler zu-
riickgeht und darum nach ihm
benannt wird, die einzelnen
Knicklasten vollstdndig fest-
gelegt sind, so dafl man mit der
SLabb(,]ast,ung nur unterhalb
der niedrigsten Last zu bleiben Tig. 198.
braucht, um der Knickgefahr zu
entgehen, so haftet ihe doch ein schwerwiegender Mangel in der Un-
bestimmtheit der Konstanten B und damit der GroBe der Auslenkung
selbst an. Da in Wirklichkeit nach méBigem Uberschreiten der
Knicklast sich eine mit der Belastung wachsende Durchbiegung
zeigte, die nicht sofort zum Bruche fiihrte, so war man in der
Praxis mehrfach geneigt, die vorstehende Theorie ganz aufzu-
geben und sich mit empirischen Formeln zu begniigen, die von
verschiedenen Forschern aus zahlreichen Versuchen abgeleitet
wurden.

Indessen ldlt sich die Unbestimmtheit der Konstanten B,
die offenbar mit der grofiten Auslenkung 7, des gebogenen Stabes
iibereinstimmt, durch Heranziehung des Unterschiedes der
Sehne z, und der eigentlichen Stablinge [ beseitigen, wobei
man vorldufig von der Verkiirzung der letzteren absehen kann.
Es ist ndmlich fiir kleine Auslenkungen und daher kleine Werte

Z

von dy : dz angenéhert
II s d
J_ﬁl ) dzo H1+,}(d?3):|d i)

worin nach (4b) mit B =1,

d?}——a cosaz {
d,z_:qo F ot e B SR

e

= !

o
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zu setzen ist. Daher wird

0

\ ( (‘052 a z) dz
0

:S(i—{—w-}-—a:gﬂ—— c-osLaz)rE;. - . (Fa)

0
und nach Ausfithrung der Integration, wobei wegen (5)

EHI2 0r Ay = B et e =— (e Sl SR e

1st,
Bl

(1+ ”'J et e el

Hiernach erscheint die Differenz der Stablinge und der Sehne
als eine Grille zweiter Ordnung, die indessen nach den Aus-
fithrungen des § 16 bei Biegungsproblemen nicht ohne weiteres
unterdriickt werden darf, in unserem Falle sogar von ausschlag-
gebender Bedeutung ist. Quadrieren wir nun Gl (9) und kom-
binieren sie mit (6), so wird unter Beachtung der Kleinheit von
a®176®

et B e Bni\? n2a2EO [ a®n?
e -a_'_J T
sowie wegen (3)

nn? K6 g*

P="" ( +E@ T] o

oder aufgelost nach 7?02
6T i ('I g1’ natE (@] )

) L U

Durch diese Formel ist die grofte Auslenkung in ihrer Ab-
hingigkeit von der Belastung P derart bestimmt, dall sowohl
positive wie negative Werte von 7, moglich sind, d. h. dal} auller
den in Fig. 128 stark ausgezogenen elastischen Linien auch die
dazu symmetrisch in bezug auf die Kraftrichtung gelegenen sich
einstellen kénnen. Weiter erkennt man, dafl nur fiie

n®m? K6
- .{2

(10).

(11)
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reelle Auslenkungen #, auftreten, so daB fiir kleinere
Lasten!) im Einklang mit der schon oben ge-
zogenen Folgerung der Stab iiberhaupt keine
Biegung erleidet, sondern in gestrecktem
Zustand stabil bleibt. Fir Belastungen, welche der
Formel
n2a2 EO
. —32—-‘
mit n=1, 2, 3... geniigen, die sich von Gl (6) bzw. (6a)

nur durch die Stablinge [ an Stelle der Sehnenlinge z, unter-
. . vy - ?20
durch kundgibt, daB hierfiic die
d?})}.’:j{‘: [ (IU&) - I [ ,‘2

scheidet, befindet sich der Stab gerade im labilen Gleich -
Ableitungen

werden, wiihrend sie fir 2— co ver- 0 B Pk
schwinden. Die der GL (10), fiir die \ p

gewicht, was sich schon da-
(2 /
wir mit (11a) auch K
2 oo
20 P)wm

pP,— (11a)

=

i n2 o2 ( P

schreiben konnen, entsprechenden Fig. 129,
Auslenkungskurven, Fig. 129, wel-

che den elastischen Linien, Fig. 128, fiir n=1, 2, 3... zuge-

ordnet sind, besitzen demnach auf der P-Achse die Scheitel
Py, Py= 4Py, Py= 9P usw. und niihern sich auf der positiven
bzw. negativen Seite je einer der P-Achse parallelen Asymptote,
deren Abstinde sich aus (10b) mit P = co zu

A ol d
0 ()
berechnen und fir n=1, 2, 3... die Werte

m=0451, n=0221, 5 =051
besitzen. Das sind natiirlich Betrége, die in Wirklichkeit auch
nicht anniihernd erreicht werden und iiberdies unserer Grund-

') Bs braucht wohl kaum noch betont zu werden, daf die
Ungleichung (11) nur in der Umgebung der durch Gleichung (11 a)
definierten Knicklast einen Sinn hat.
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annahme kleiner Auslenkungen widersprechen. Die weitere Folge
dieser Annahme ist, nach Gl (10b), die Moglichkeit einer nur
geringen Uberschreitung der jeweiligen Knicklast, so daB keines-
falls, wie es nach Fig. 129 den Anschein haben kinnte, jeder
Belastung P mehrere stabile Gleichgewichtslagen znkommen.
Dies geht auch aus dem nur kleinen Unterschied
zwischen der Stablinge und der Sehne hervor,
fiir den wir mit (9) und (5)
a1t g ne a2 9,2
323_50:__.__%1_..0_,_\; JH?“
sowie mit (10b)
i P
4325(1—-;-) G et il SRS
schreiben konnen. Diese Gleichung bestimmt fiir die verschiede-
nen Werte von P, eine Schar gleichseitiger Hyperbeln, Fig. 130,
deren eine Asymptote die Ordinaten-
achse ist, wihrend die andere im

|_—"" Abstande 0,51 von der Abszissen-

Wy achse parallel zu dieser verldauft.
o Da weiterhin
S aly gdz 1P,

& oy S e
also fir P= P,

dAdz ] ;
(?P)mZER%(“m
Fig. 130, ist, so schneiden sich alle Tan-
genten an den Punkten P, der
Abszissenachse in einem um 0,5 unter dem Anfang liegenden
Punkte A der Ordinatenachse.

1&2

Mit Hilfe des Unterschiedes A4 z berechnet sich aullerdem die
Arbeit L der duBeren Kraft P, die bei der Knickung
von P, auf P anwiichst, so zwar, dall mit (13a)

v P Fd'P 1P p
L:._ PdAz:Tu B e 1gn~p;— SER T
P’I‘ PN

Diese Arbeit muf iibereinstimmen mit der Biegungs-
arbeit, die sich aus (1) und (4b) mit B = 7, sowie mit Riick-
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sicht auf (5) zu

Zy Zg
1 ’ L%
e L 27— — 24~
L_QEQJSR e 350 72 dz
0 0
Zn
e R o ;
=356 ) sin?azds=—;po s D)
0

ergibt. Durch Gleichsetzen von (14) und (15) folgt schlielilich
2EOQLP 2

"o :——'p':z'g'ﬂ—]gﬂ P

n

ein Ausdruck, der fiir kleine Unterschiede P — P,, fiir die

P
P,lgnp-~ P—P,

wird, wobei dann auch z;oo ! gesetzt werden kann, in (10b)
iibergeht. Damit darf an Stelle von (14) hinreichend genau

l
L:,)

[Bes By o v omdtiatlin)

geschrieben werden, so dafl also die d&ullere Arbeit
beim Knickeneines Stabes nur vonder Uber-
schreitung einer Knicklast, nicht aber von
deren Grofe selbst abhingt. Verbindet man (14a)
mit (13), so haben wir mit

B0 e S DA s e e 51 o)

eine Formel, die ebenfalls aut die Unwirksamkeit von Kriften
auBerhalb der Knicklast hinweist.

Jedenfalls erkennt man, dall in dem bisher behandelten
Falle der Stabknickung weder die Auslenkung der Stabachse
noch auch die mit dem Kraftwege zusammenfaliende Differenz
der Stabliinge und der Bogensehne der zugehdrigen Belastung
proportional sind.

Lorenz, Elastizititslehre. 21
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§ 32. Die Knickspannungen.
Die Abhangigkeit der grofiten Biegungs- und Gesamispannung von
der Belastung. Zahlenbeispiel. Die Stabilitit der verschiedenen
Knickbelastungen. EinfluB der Querkraft. Zulassige Druckspannung.
Rankinesche Formel.

Der Eintritt der im vorigen Abschnitt betrachteten Form-
dnderungen ist vor allem an die Bedingung gekniipft, dalh die
dabei auftretenden Spannungen die Elasti-
zitdtsgrenze des Stabmaterials, d. h. den
Giiltigkeitsbereich des Hookeschen Gesetzes
nicht idiberschreiten. Diese Spannungen nehmen
ihre absoluten Hochstwerte g," auf der Innen- und AuBenseite
des gefihrlichen Querschnitts an, dem der Hochstwert des Bie-
gungsmomentes entspricht, das in unserem Fall an der Stelle
der groBten Auslenkung 1, erreicht wird. Ist unter Voraussetzung
der Symmetrie des Stabquerschnitts um die neutrale Achse
+ y, deren Abstand von der Aullen- und Innenkante, so besteht
bei linearer Spannungsverteilung die Momentengleichung

6, @
=P =i el 1 2
o =X "y (1)
aus der sich in Verbindung mit der Gl. (10b), § 31, [iir die grofite
Auslenkung Ay2l2 P2 P
o= 1= 7
oder wegen GL (11a), §31,
Dol ol 15
02 = ..._y% ==\ Pz( }]) L 0 }1)) (2)

ergibt. Die hieraus berechneten Spannungen sind, wie schon
die Ausschlige y,, nur so lange reell, als P > P, ist, und ebenso
werden die Ableitungen

dd,
(Zﬁ)?:m:m. b b AR (7).

Da es sich hier, wie im vorigen Paragraphen, nur um kleine

" Uberschreitungen P — P, der Knicklasten handeln kann, deren

Quadrate zu vernachléssigen sind, so darf man an Stelle von (2)
auch einfach schreiben

= By e ok
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d.h. fiir kleine, untercinander gleiche Uber-
schreitungen aller Knicklasten erhdalt man
nahezu dieselben Biegungsspannungen.

Hierzu tritt alsdann noch die Druckspannung o, durch
die Belastung des Querschnittes /, die wir mit hinreichender
Genauigkeit unabhingig von der nur kleinen Stabkriimmung
und iiber den ganzen Querschnitt gleichmélig verteilt annehmen
diirfen, so zwar, dafll

T R S

und damit die grofte Gesamtspannung mit (2)

-, A P TR
Gy G T Oyll=— Bt Yo | 2\ pn———p') (4)

wird. Hierfiir 140t sich unter Einfithrung des Trigheitshalb-
messers & des Stabquerschnitts, d. h. mit

6’_ (5}3
sowie unter Beachtung der Gl (11a), § 31, auch schreiben
; %
Uy — [1 + n;kv l (l __]_?_)J . (4 a).

Zur bequemeren Ubersicht des durch unsere Formeln dargestellten
Verhaltens sind in der nachstehenden Tabelle die Forménderungen g,
und Az sowie die grofiten Spannungen ¢,”, o,”” und o, im gefihrlichen
Querschnitt eines Stabes von der Liange [ = 100 cm und den Quer-
abmessungen 2 x 0,5 em fir verschiedene Belastungen eingetragen,
wobei der Elastizitatsmodul zu £ = 2 000 000 kg/qem und eine un-
begrenzte Giiltigkeit des Hookeschen Gesetzes angenommen isl.

Man erkennt daraus, daB schon nach Uberschreiten der .Knick-
lasten Py, P, Py um je 1 kg die Spannungen die fiir Stahl zwischen
3000 und 4000 l\g;qcm liegende Elastizititsgrenze erreichen, so daf
daritber hinausgehende Belastungen nur ein theoretisches Interesse
bieten. Mit dieser Einschrankung geht aus der Tabelle die angeniherte
Gritltigkeit unserer Gleichung (2 b) deutlich hervor, wiahrend der
Einflufi der reinen Druckbelastung fiir diesen Fall nahezu verschwindet.

Dies trifft dann in noch viel hoherem Male auf die hiervon herrithrende

il ; !
Stabverkiirzung 41— T zu, die wir darum gar nicht erst eingefiihrt
haben.

2%
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Beﬁsi—?g -+ s Axem 40y’ kg/qem | 6, kg/gem oy
Py= 41 o 0 -4 | —
42 6,97 1,2 3520 — 52 — 38562
43 9,65 2.3 4 980 — 43 — 5028
4 | 11,74 3,4 6200 — 44 — 6244
50 19,10 9,0 11 400 e 50 — 11 450
100 34,80 29,5 41900 |. —100 — 42 000
o0 45,0 50,0 o0 — o0
Py—164 0 0 0 — 164 — 164
165 1,74 0,3 3 450 —165 | — 3615
166 2,36 0,6 5700 | —166 | — 4866
167 293 08 | &8y | —i187 | — 6037
168 3,42 1,2 | 6900 — 168 — 7068
200 9,55 9,0 22 900 — 200 — 23100
o0 22.5 50,0 00 - 0 —_ 00
P, =369 0 0 0 — 369 SR
370 0,67 011 | 2975 — 370 — 3345
371 1,06 0,25 4720 2ogeh — 5091
372 1,34 0,40 5980 —372 — 6352
373 1,57 050 | 7020 | —373 | — 7393
400 ] 543 | 388 19 840 — 400 — 20 240
500 | 7,66 131 | 45960 ‘ —500 | —46460
o ‘ 15,0 50 | o e

Die Richtigkeit unserer Formeln 4Bt sich auch leicht versuchs-
m#Big prifen, z. B. an einem diinnen Metall- oder Holzlineal mit
zugeschirften Endkanten, deren untere auf eine Wagschale drickt,
wihrend die obere abgestiitzt wird. Hat man vorher durch einen
Biegversuch die Grife E® bestimmt, so ergibt sich bei vorsichtiger
Belastung der anderen Wagschale tiber die erste Knicklast hinaus
die Auslenkung 7, in guter Ubereinstimmung mit GL (10 b), §31.

Die Uberschreitung der Elastizititsgrenze kennzeichnet sich
durch eine fortwihrende Zunahme der Auslenkung ohne weitere
Steigerung der Last, wobei kein Gleichgewicht mehr besteht. Will
man den Versuch mit der zweiten Knicklast wiederholen, so mul
zuvor die Auslenkung in der Mitte durch kriftige Seitenstiitzung
verhindert werden, ebenso fiir die dritte Knicklast die Aus-
lenkung in 1 : 3 der Liinge usw. Nach Wegnahme dieser Seiten-
stiitzen springt der Stab sofort in die dem Uberschreiten der



§ 32. Die Knickspannungen. 325

ersten Knicklast entsprechende Lage, bzw. geht zu Bruche.
Daraus geht hervor, dal — ohne Seitenstitzen — die
héheren Knicklasten Gleichgewichtslagen
von geringerer Stabilitdat als die erste be-
dingen, wie man auch sofort aus der Arbeitsgleichung (14a),
§ 31, daran erkennt, daB z. B. fiic einen Wert P > P,

PLp=p_ppip.

und darum auch die dufere Arbeit beim Uberschreiten der ersten
Knicklast ein absolutes Maximum darstellt.

Angesichts der aullerordentlichen Zunahme der Spannungen
schon bei miRigem Uberschreiten der Knicklasten erscheint es
zweckmilig, den bisher vernachlissigten Einflull der Sehub -
krédafte auf den Verlauf des Vorgangs noch kurz festzustellen.

Bezeichnen wir zu diesem Zwecke mit ¢ den Neigungs-
winkel der gebogenen Stabachse gegen die Kraftrichtung, so zer-
féllt dieser in einen Betrag ¢’, der lediglich von der Verdrehung
des Volumelementes /d{ als Ganzen durch das Biegungsmoment 0t
herrithrt, und eine Forménderung ¢'* durch die im Querschnitt
wirkende Querkraft 7, so zwar, dal mit dem Gleitmodul G
und einer von der Querschnittsform abhéngigen Erfahrungszahl §,
die nach § 14 im allgemeinen nicht viel von 1 abweicht,

M m T ;
iy =pgii=pgis ¢'=¢p- - - O

Mithin ist die gesamte Elementarverdrehung
r

m aT
dp=dg' +dg" = § o) dz + %F

und wegen

dop _ a1 4, S g
di T g Mt s dz ()
nach Division mit dz
a2 2 P &y
iz =" Fe T GF i

oder
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Mit der Abkiirzung

P :
= . . . .. (9

b()(i f”)

nimmt die Gleichung wieder die Form (3b), § 31, an und licfert
mit der Grenzbedingung azy= nz die Losung
2 2 1 ;
TR L S R . (9a).
2 n? m* gy
B+ BT ey

Ersetzen wir hierin mit Gl. (9), §31, die Sehnenlinge z,
durch die Stablinge [, und nennen wir die grifite Auslenkung 1,
so folgt fiir die letztere

et —u;()(

n® a2 EE i (,!f Ty R (10).

Da nun diese Auslenkung erst oberhalb der Knicklasten P,
reell wird, g0 sind diese durch die Formel')
il fx n2a? EO
2 b it EQ )
wmrpe+dr Pt S
an Stelle von Gl (11a), §31, bestimmt. Dieser Ausdruck ist
nunmehr in die obigen Spannungsgleichungen einzufiihren,
wenn sie dem Einflusse der Schubkraft gerecht werden sollen.
Man iibersieht, daff die nach Gl (10a) berechneten Knicklasten
durchweg etwas kleiner, die Spannungen dagegen bei gleichem P
etwas grofler ausfallen als nach den fritheren Formeln, und
weiterhin, dall diese Abweichungen mit »n selbst, d. h. fiir hohere
Knicklasten, stark zunehmen. Schreibt man jedoch in Gl (10a)
nach (5) @ = Fk2 so erkennt man, daB infolge der Kleinheit
des zweiten Gliedes im Nenner von (10a) hinreichend genau

22 BF k2 s kP
n2a2 EF k (1_?32“2‘3%";_2 SN0

i 1)

£ (10a)

2
ist, und dafi demnach die Schubkraft nur bei

Stiben mit erheblichen Querdimensionen
praktisch in Betracht kommt, wihrend ihr Ein-

2=

1) Diese Formel wurde neuerdings fir n=1 von Nul-
baum, »Die genaue Siulenknicklast«, Zeitschrift [. Math. u.
Physik, 1907, Bd. 35, abgeleitet,
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fluf fir lange diinne Stdbe, wie im oben berechneten Bei-
spiel, verschwindend bleibt.

Das in der lefzten Formel auftretende Verhiltnis I : & bezeichnet
man wohl auch kurzweg als die Schlankheit des Stabes
und den Quotienten P,:F =g, als die Druckspannung
beim Knicken des Stabes. Fiar die praklisch allein in
Frage kommende erste Knicklast hiitte man alsdann mit n =1, § ~ 1
und der Anndherung s = 10 an Stelle von (10 b)

k2 E B
T &)
also  z. B. fir TFluBeisen, fiir welches E = 2000000 kg/qem,
G = 800 000 kg/qem ist,
k2 I
o1 = 20000000 - - (1 =20 )

Von diesem Betrage pflegt man in der Technik den vierten Teil,
den man alsdann die zuldssige Druckspannung bei
vierfacher Sicherheit nennt, nicht zu iiberschreiten.
AuBerdem aber beschrankt man sich dabei auf Stiabe, deren Schlankheit

-i—}il]ﬁ

6 =10-E (1—10

ist, da nach Versuchen von Tetmajer fir dickere Stabe die
Eulerschen Formeln versagen und durch rein empirische ersetzt
werden missen, von deren Wiedergabe wir hier absehen.

Dagegen wollen wir noch kurz eine Formel erwihnen, die hiufig
an Stelle der Eulerschen benutzt wurde und auf der angeniherten
Ubereinstimmung der elastischen Linie, Fig. 127, mit einem flachen
Parabelbogen beruht. Der aus Gl (1) und (5) hervorgehende Aus-
druck fiir die groBte Druckspannung

2l d PR P
amsi o= P (i)

kann alsdann mit i
N ==C0 my, =ty =5

in der Form P 1

%z_—,H—;n--;. Eo i e S A
7 (1o )

geschrieben werden. In dieser von Rankine u a. aulgestellten
Formel soll die Konstante £, nur von der Querschnittstorm und Grifle
abhangen, wihrend ein Vergleich mit (4) bzw. (4a) zeigt, daB sie auch
mit der Belastung selbst variiert, was schon von Tetmajer be-
merkt wurde. Darum ist die Gl. (12 a) als grundsitzlich falsch zu ver-
werfen, zumal sie ja auch der Bedingung des Verschwindens der Kriim-
mung an den Stabenden nicht gerecht wird.
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§ 33. Andere Axialbelastungen gerader Stibe.

Die Knickung von Stiben mit einem und zwei eingespannten Enden.
Knickung des einseitig eingespannten Stabes unfer Verhinderung
der Auslenkung des freien Endes. Exzentrische Belastung des Stabes.

Bei dem bisher untersuchten Knickvorgang haben wir
uns die beiden Stabenden normal zur Stabachse unverschiebbar,
aber doch — etwa durch Gelenke oder Schneiden in Pfannen —
frei drehbar gedacht, so dafl dort jedenfalls keine Biegungs-
momente aufgenommen werden konnfen.

I. Ist dagegen der Stab an einem Ende, wie in
Fig. 131, eingespannt, so erhalten wir, wenn der An-
fang des Koordinatensystems O in das freie Ende verlegt wird,

wieder die frithere Momentengleichung

e 1
£ L@—dz—ZZ—Pﬁ e, e
4 fiir einen beliebigen Stabpunkt C.  Setzen wir
! hierin wieder P
: p7 e a2 o e 7.1
I
4 Schreiben also fiir (1)
ig. 131. dn?
Fig. 131 dg 4a2n=0 . . . . (1a),
A

so ergibt die Integration
y=»HA covaz- Beingz . o oo nl (3)

mit den Grenzbedingungen

7 =0 fiir 2=0, also A—0 ‘

£.
fﬂ:@ fiir z=12;, also aBcosaz; =10 i

o ).

Die letzte Bedingung ist aber nur erfiillbar, wenn az, ein

ungerades Vielfaches von -

5 ist, also

azlz(Zn—i)f;- e i R i

wird, woraus sich im Verein mit (2) sowie nach Vertauschen der
Sehnenlinge OA'=2z, mit der Bogenlinge 04 = [, die
Knicklast zu @n—1)2 2EO

P“ — 4 _ —Elz— . . . . . ('}i }
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mit den Werten fiir n= 1,2, 3 usw.

72 E O 972 E0O 2oarEE |
b= 4—312—, g = 4 llg A P3=--— 4‘1;2—— {-l.-a.)

berechnet. Diesen verschiedenen Knicklasten, von denen natiir-
lich wieder die erste allein eine praktische Bedeutung besitzt,
entsprechen nach der aus (3) mit (3a) und (3b) folgenden Glei-
chung der elastischen Linie

2n—1 z 2n—1 z

— =, Bin—F—— T
2 Pk 2

n==B sin (3e)

%y
ebensoviele Formen derselben. Diese lassen sich iibrigens auch
leicht aus Fig. 128 dadurch ableiten, daf man, wie es in Fig. 132

Fig. 132.

geschéhen ist, jeweils den untersten Scheitel der Sinuslinie durch
die Einspannung ersetzt und in den Formeln (6) bzw. (11a) des §31

el — 1 2 ) TR n
: 4 6 8 2n
W=%4 TAH F A gA o
4 6 8 2n
bzw. [=21; 3 Iy ?ll 731 —zﬁ.ll

einfiithrt. Auf diese Weise ergibt sich auch die gréB8te hori-
zontale Auslenkungy, des freien Endes gegen
die Einspannungsstelle aus Gl. (10) bzw. (10b), § 31, zu
e P ( T (2n—1)272 E(i)
2 (2rn—132n2 412 P

8 fi s
== - B
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und schlieflich der Unterschied zwischen der
Bogen-und Sehnenlédnge aus (13), §10,

1 [ 72 .

Durch die Auslenkung #, ist auch noch das Einspan-
nungsmoment

Azl:.ﬂl——-zl

e e i T L s o e o Y
bestimmt.

II. Ist der Stab an beiden Enden einge-
spannt, so tritt zu dem Momente Py der Axialkraft noch
das Einspannungsmoment M, welches aus Symmetriegriinden
fiir beide Enden entgegengesetzt gleiche Werte besitzt. Mithin
lautet die Gleichgewichtsbedingung fiir einen

e Stabpunkt €' im Abstand z von einem Ende
§ (Fig. 133)
s 2 Y
EO Iz +Py+My=0
oder
2 r It
28l Tt g S
! wofiir wir auch mit (2)
' Ny
B4 e (e ) o o

‘gé; schreiben diirfen. Fiir das allgemeine Integral
o~ dieser Gleichung

Fig. 138, n+ JJ‘“ =Acosaz+ Bsinaz (9)
bestehen dann die Gr.’enzbedmgungen
9 =0 fiir 2= 0, also A =0 I
d 3
L (9a),

7, =0 fir 2=0, a]so B—
iz
d

d—g-:o fir z—=2zp, also Aasinaz,=0

von denen die letzte aufl

(1 ey e S PR 2 )
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mithin wegen (2), sowie nach Vertauschen von z, mit [, aul die
Knicklast
ntatE0O
Pﬂ:’_"%z s - 11l
tithrt, die ersichtlich mit der fiic freie Stabenden iibereinstimmt.
Weiter enthélt die Gleichung der elastischen Linie

e z
n=- p"cosua-—?;umqnﬁz—— e Lxl Io(0e)

~0

den cos az gegeniiber sin az in Gl. (4b), §31, weil in unserem
Falle der Anfang mit einem der emgespdnnLen Emlen zusammen-
Z )

Fig. 134.

fillt. Wie man aus Fig. 134 erkennt, lassen sich die der Formel
(9¢) zugeordneten Fille aus Fig. 128 einfach dadurch ableiten,
daf nach Ersatz je eines Scheitels der Sinuslinien durch die Ein-
spannung das abgeschnittene Stiick am anderen Ende wieder
angefiigt wird, wodurch dann die Gesamtlinge z, bzw. | keine
Anderung erfihrt. Infolgedessen behalten auch die in § 31 fiir
die groBte Auslenkung 7, sowie den axialen Lastweg 4 z entwickel-
ten Formeln ihre volle Giiltigkeit. Dabei ist nur zu bemerken,
daB fiir alle ungeraden n, also 1, 3, 5 usw., das eine Stabende sich
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gegen das andere um 2, horizontal verschiebt, wihrend fiir
gerade n, also 2, 4, 6 usw., keine derartige Verschiebung eintritt.

Von den hier dargestellten Féllen haben iibrigens nur die
beiden fiir » = 1 und n = 2 eine praktische Bedeutung, von denen
der erste bzw. der zweite eintritt, je nachdem das eine Stabende
horizontal ausweichen kann oder nicht. Das Einspannungs-
moment wird, wie aus Gl (9¢) hervorgeht, wieder durch die
Formel (7) dargestellt, ist mithin ganz allgemein durch die
Auslenkung #, bestimmt.

ITT. Bei dem unter I. behandelten Belastungszustande
erleidet das obere freie Stabende eine horizontale Verschiebung,
die man nur durch eine Horizontalkraft H rickgingig
machen kann, wodurch die elastische Linie die in Fig. 135 dar-
gestellte Form annimmt. Alsdann lautet, wenn wir den Koordi-
natenanfang wieder in das obere Stabende verlegen, die Gleich-

o y gewichtsbedingung fiir einen Punkt C mit den

y Koordinaten z und »

o
E@—L_-g—;f + Pn+4Hz=0
oder

bzw. mit (2)

Fig. 135. d,, -}—aQ(;a;—f— Pd)—(} sive | bikbal,

Das allgemeine Integral dieser Gleichung

H
N+ ps=Acosaz+Bsinaz . . . . (12)
mufl die Grenzbedingungen
=0 fir z=0, also 4 =0
=0 Hie' 5=z ala0 gy B 1

??-—- ur m—-ZD’ also P Zo— SlnazO {128)
d H
%:o Hir 2=z, alio o =PBacosag

erfiillen. Dividiert man die beiden letzten Formeln durcheinander,
so wird
b az —agn o whetvns olie (42h)
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woraus sich durch Probieren oder auf graphischem Wege durch
den Schnitt der beiden Kurven y=tg az, y= az, Fig. 136,
eine unendliche Zahl von Wurzeln ergibt, von denen wir — ab-
gesehen von azy=0 — nur die erste

gy — 4 ad sz D06 s L (12is)

in Betracht ziehen wollen, die uns mit (2) auf die erste Knick -
last

P =—20,16 5‘9 ~ 20,16 Ef
2

fiihrt, wihrend die den anderen Wurzeln zugeordneten hoheren
Knicklasten keine praktische Bedeutung besitzen.

. (13)

0 XL /T azl3X /27
|2 2

Fig. 136.

Weiter folgt aus den beiden Bedingungsgleichungen (12a)

H2
ﬁ(1+a2202):}}2ﬂ2 S DAl B TR “.!J)
oder mit (12¢)
H B !

wodurch die beiden vorldufig noch unbestimmten Konstanten H

und B miteinander verkniipft sind.
Aus der Gleichung der elastischen Linie, die mit Riicksicht
auf die erste Grenzbedingung (12a) in

1;+--g--z=Bsinaz. SR
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iibergeht, folgt durch Differentiation mit Riicksicht auf (l4a)

d " o) 5
_dj Bocosaz—p = Ba(coqa‘,——m . (15).

Hiernach bestimmt sich die Abszisse des groliten Aus-
schlages #, aus
1 : o
GOR Gy — 7 022, ezi=T71" =134
oder wegen (12¢) aus
z 1,34
Siat 1 R [ £y 15
PR aadl g rliatas o (dBa).
Fiir die Ermittlung des Ausschlages selbst, der offenbar
durch die Konstante B in (12d) gegeben ist, miissen wir, wie
schon in § 31 , auf den Unterschied zwischen der ganzen Stab-
linge [ und der Sehne z, zuriickgreifen. Dabei bedienen wir uns
der Niherungsformel [iir kleine Ausschlige 7

Zo
1 [dn)\2 "
= \ [l + '2;- (a?) ]{EZ ow e W e (Ib}r
0 X
die mit (15) auf

Zo 12 2 ) B2 g2

5( -+ i By %—Bacos az—]—B = + —  COS 20!» dz

0

fithrt und nach Ausfithrung der Integration

| B2 | Bra®\ H Ba .
(l+2 P ) —p Bsin azy-f—g—sin 2az

liofert. Mit Riicksicht auf die beiden - Bedingungsgleichungen
(12a) sowie (14) wird aber daraus

222 H? 20,16 H2\ y
z_m(1+(‘ )—%(H— —_,_;—’Tm-} . (16a)

und nach Quadrieren angenihert
2() T =
P-
Eliminieren wir mit Hilfe dieser Gleichung die Sehnen-
linge z, aus (13), so folgt

P-201b (1-{—1008

. (16Dh).

)
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oder angenéhert
gt Bios B ool i
P 10,08 ('2’0716_139 ~1) e
Ersetzen wir hierin / : P durch Ba mit Hilfe von (l4a),
s0 wird

BEgalr S b T pp _1‘
21,16~ 10,08 (E(Utjb‘l‘) B )
oder mit (12¢) bzw. al ~ az,= 20,16

a2 Py ] I)E? .I
B" = (),i[)—ﬂ! (_.E._O,ﬂW = 1)
In diesen Formeln sind also die Konstanten // und 2 nur

so lange reell, als

(18).

2016 £ @
g
ist, wodurch der rechts stehende Wert im Einklang mit (13)
als Knicklast deutlich gekennzeichnet wird, nach deren
Uberschreitung erst eine Auslenkung des Stabes eintreten kann.
Dessen Gestalt ist alsdann durch unsere Entwicklungen voll-

stiindig gegeben, wihrend das Einspannungsmoment am unteren
Stabende sich zu

berechnet.

IV. Im Falle einer exzentrischen Belastung
des Stabes, bei der die Kraftrichtung den Abstand @ von der
urspriinglichen Stabachse hat, Fig. 137, ist die
Gleichgewichtsbedingung

EOTL L oty =

oder wegen (2)

&2 :
Trtaetn=0 . . . (19)
mit dem allgemeinen Integrale
n4a=Acosaz+ Bsinaz . . (19a). & 17

Da an den beiden Enden, d.h. fiir z= 0 und 53— 7y die
Auslenkung verschwindet, so ist

@=L a(l—cosaz)=Bsinaz, . . (19b),
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womit (19a) iibergeht in

Liaad 1 — cos azZy . ol
e mman e
oder wegen
1 — cos azy = 2sin? E—;—O ; 8in @ zy = 2 sin ;0 cos %ﬂ
7= a(tﬂ' a;zo sin @z -+ cos az — 1) TR R 1 G
Die Ableitung dieses Ausdrucks
d ¥ .
d?_z = aa (’sg-({gﬂcosaz—sinaz) sy s fAVE)
verschwindet fiir
tg az = tg “2"“ Bk Betined @i
d. h. fir
az = a‘fo 1 E;l] +$"£, i E-:).JU —l—ns‘z,

wovon indessen nur der erste Wert, der auf z= 2 fithrt und

der Fig. 137 entspricht, praktische Bedeutung hat. Mit diesem
Betrage wird die groBte Auslenkung nach (20)

o =4d la:D—_‘]_ Rt e i),
608~
Man erkennt, dal} sie
fiie azy =10, bor, +o++ AN T
verschwindet und
fiir azy =, 3m, - Qn—1N=

unendlich gro B ausfillt. Die diesen letzten Werten nach
(2) mit z, ~ [ zugeordneten Kréfte

P— (‘)n—l)ﬂnzj-::;e— sepnle” ook

sind demnach als die Knicklasten fiir exzentri-
schen Kraftangriff anzusprechen. Fiir die darunter
bzw. dazwischen liegenden Belastungen ist der endliche Ausschlag
infolge der Exzentrizitat « unmittelbar durch Gl. (20¢) bestimmt,
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ohne daf} es notwendig ist, hierfiir den Unterschied der Stablinge
und der Sehne heranzuziehen. Dies wird erst notig fiir a = 0,
d. h. fiir den in § 31 behandelten Fall, fiir den Gl. (20¢) allgemein
7y = 0 und mit den Knicklasten unbestimmte Ausdriicke ergibt.
SchlieBlich sei noch bemerkt, dafi im Falle einer grofen Exzentrizi-
tit a die Auslenkungen # bzw. 1, nur so lange klein bleiben, als

ot : : i
cos Tﬂ sich nur wenig von 1 unterscheidet. Alsdann aber diirfen

wir angenihert

a o> 7>
cosT":—i——w-—f"—
] +
und
1 a?zy?
=i —2
0% o 4
608
2
setzen, womit (20¢) in
 aa®zy?
=
oder wegen (2) in
Pagy?

W= 4RO £
itbergeht. Dies ist aber nichts anderes als die Auslenkung der
Mitte eines Stabes, der durch ein iiberall konstantes Moment
M = Pa gebogen wird. Zu diesem Ergebnis wiren wir unmittel-
bar auch durch Integration von Gl (19) nach Unterdriickung
von # gegen a in der Klammer gelangt.

V. Unterwirft man einen sehr schlanken Stab,
z. B. ein diinnes Stahlband, einer Axialbelastung, so wachsen
die Auslenkungen ohne Gefahr des Bruches rasch so stark an,
dal} die den bisherigen Entwicklungen zugrunde liegende Néhe-
rungsgleichung (2a), §31, fiir die elastische Linie ihren Sinn
verliert,. Wir miissen vielmehr in diesem Falle wieder auf die
strengere Formel
-
e

zuriickgreifen, die mit

Loren z, Elastizititslehre, 22
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und
|
A sl il ?‘l_ _
o Tdn\2 e e 2;]3__
g - Lol L4-#%)2
[1+(3]
iibergeht in
?..J'J'
== —ap
(L=f 7%

Multiplizieren wir diese Gleichung beidseitiz mit d# und
beachten, dald

dy
i = é dyp=un'dy
ist, so wird aus (23)
rd r
N T —eydy
A+
oder integriert
2
C— ST a2
(14922

L d
Setzen wir hierin #' = d—z =0 fiir =19, so folgt

C—2=4da? ?.‘1021
und das Integral von (23) lautet nunmehr
2

et auan
(L
Hierin ist aber unter Einfithrung des Tangentenwinkels ¢
der elastischen Linie
1 1

a? (12 — o) =2 — . (23a).

T e
womit (23a) tibergeht in
P—nt)=2(1l—cosg) . . . . (24).

= cos> @,

Die dieser Gleichung entsprechende Kurve besitzt offenbar

fir ¢ =0 die Minima #;* = 5® ‘ )
/ . (24a).

fir ¢ =z die Maxima 7% = 72 + -:2
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Lost man (24) nach dem Winkel auf, so wird
5 .
cos p=1— -%‘ Kot R 5 R

und fiir SL‘.lmi_tT.-ptmktﬂ mit der Achse =0
95
L

cospp=—1-}F— . (24 ¢).

Dies liefert aber keine reellen Werte fiir ¢, so daB also
die durch (24) gegebene elastische Linie fiir endliche Werte

i |
A
k ¥
\\\ oy :I
- !
£ ¥ i
|
) 1
1
Il‘\ i ~hf? ol
)‘.‘__’a' : ik
! Pt e e,
' I :S( |
Y S ! { et
:'(\‘_," : |
.'f (]
| | |I
' |
A I ]
\\.’"‘} N
il il
] i
! X
! Py
Fig. 138. - Fig. 4139,

von 7, die Achse nicht schneidet. Auch ohne weitere Unter-
suchung erkennt man, dall es sich um eine Schleifenkurve
nach Fig. 138 handelt, die im Sonderfalle 5, = 5,= 0, 5, = w2
in Fig. 139 ausartet. Da wir bei der Ableitung von (23) I = e
gesetzt haben, so wirkt die Axialkraft als Z u g in der Richtung
der Asymptote der elastischen Linie, die entsprechend dem
Quadrate der Ausschlige in (24) zwei hierzu symmetrische
Zweige besitzt.

Im Falle eines axialen Druckes, entsprechend den
bisher untersuchten Knickvorgingen, ist nur das Moment I —
— Py zu setzen, womit in (23) die rechte Seite das Vorzeichen
wechselt und als Integral an Stelle von (24)

@ (g —nt)=2(1—cosg) . » . . (2)
22%
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resultiert. Da hierbei fiir =0

aE?z 2 %
cos gy =1 —- )m P s e s

wird, so existieren reelle Schnittpunkte der durch (25) definierten
Kurve mit der Achse, solange

et R S RS e s h)
bleibt. Weiterhin ist
L ] ‘ i
firime—nr 1;2‘3:?;02——6:.7 |' {50,

woraus wegen (25b) kein reelles #, hervorgeht.

Wir erkennen somit, dal die der Gl (25) entsprechenden
elastischen Linien nach Fig. 140 die Achse schneiden und zu
deren beiden Seiten die Maxima + #, besitzen. Von diesen
Linien kommt die erste unserer
bekannten Sinuskurve nahe, deren
Bogen sich bei  weiterem An-
wachsen von P immer stirker wol-
ben und schlieflich mnach Uber-
schreiten einer Lemniskatenform
in die letzte Sechleifenkurve iiber-
gehen, die somit nur scheinbar
einer Zugkraft entspricht.

Fig. 140, Die weitere Behandlung der

elastischen Linien mit groBen
Ausschligen, insbesondere die Ableitung ihrer Gleichungen
durch nochmalige Integration!) von (24) bzw. (25) mit Hilfe
elliptischer Funktionen, mag hier unterbleiben, da die Kurven,
die man leicht mit einer gestreckten Uhrfeder auf dem Tisch
bilden kann, keine praktische Bedeutung besitzen.

1) Vgl. hieriiber u. a. Saalschiitz, Der helastete Stab,
Leipzig 1880, und Kriemler, Labile und stabile Gleichgewichls-
figuren, Karlsruhe 1902.
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§ 34. Dynamiseche Knickvorginge an geraden Stiben.
Transversalschwingungen eines axial gedriickten Stabes. Rotation
eines geraden Stabes um seine Achse mit drehbaren und festen End-
lagern. Gleichgewichtslagen und kritische Winkelgeschwindigkeiten.
Schwingungen derartiger Stdbe. Schwingungen und Gleichgewichts-
lagen einer am masselosen Stabe exzentrisch angebrachten Masse.
Selbsteinstellung dieser Masse und kritische Winkelgeschwindigkeit.

Die bisher betrachteten Knickvorgéinge bezogen sich auf
Stdbe, die im Ruhezustande einem Axialdrucke ausgesetzt
waren. Es fragt sich nunmehr, ob nicht auch in Bewegung
befindliche Stdbe sowohl unter dem Einflusse eines
Axialdruckes als auch der Bewegung selbst ausknicken kon-
nen. An die Feststellung dieser Moglichkeit kniipft sich dann
sogleich die weitere Frage nach den Bedingungen, unter denen
der Eintritt, der mit der Knickung verbundenen groflen Auslen-
leungen vermieden werden kann,

Dabei wollen wir uns auf solche Fille beschrinken, bei
denen die beiden Stabenden selbst festge-
halten werden, so dall nur die dazwischen liegenden
Stabelemente kleine Bewegungen vollziehen kénnen.

I. Wir beginnen zunéchst mit den Biegungsschwin-
gungen eines axial gedriickten Stabes, fir
die wir schon in § 21 unter (la) die Bewegungsgleichung ange-
schrieben haben. Steht der Stab, was hier vorausgesetzt wer-
den soll, vertikal, so verschwindet in dieser Gleichung der Ein-
{luf} des Eigengewichts gegeniiber der konstant angenommenen
Axialkralt P, die als Druck mit den entgegengesetzten Vorzeichen
einzufiihren ist. Da auflerdem der Stab als Ganzes keine Bewe-
gungen vollzieht, so ist die in Gl. (1a), § 21, auftretende Normal-

geschwindigkeit v = f,? zu setzen, so dal} die Differentialgleichung

unseres Vorgangs nunmehr lautet

oty 0%y £ oty -
EOa t Pzt 5 =

(1).

Hierin tritt aufler den uns geliufigen Grofien E, @, P und F
nur noch das spezifische Gewicht y des Stabmaterials mit der
Erdbeschleunigung ¢ neben der Zeit ¢ auf. Dividieren wir (1)
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mit %@ und setzen abkiirzungsweise

78 y}f

—9:(.[2 GLO (a ¥ - " - . (2),
80 haben wir

0ty . OR%

o a2 azz e=l—0 . . . . (a

Dieser partiellen Differentialgleichung geniigt der Ansatz
S AR A S i hor e Sl
in dem Z eine reine Funktion des Achsenabstandes z und U eine

reine Zeitfunktion darstellt. Nach Einfihrung von (3) in (la)
und Division mit Z - U wird daraus

1 diZ j’/ 2 A2l .
% ('(fyli —I—a )_!‘TW:O SRR o)
oder mit einer neuen Konstanten 2
d*z 2z

_4+a d” _ﬁZ—(‘

U Slay
LT P

Solange f2 positiv bleibt, liefert die letzte dieser Formeln
U:Aucosgi—}}'f{)sin ff R ML e

Wenn wir verlangen, dal fiir { = 0 der ganze Stab sich noch
im Ruhezustande befindet, also tiberall == 0 sein soll, so muf
Ag=0 sein, und (3a) vereinfacht sich in

U:anmg:. G e e

Die erste der beiden Formeln (1¢) wird durch den
Ansatz
=t TR O e

erfiillt, dessen Einfithrung in (1¢) fiir 2 auf die Gleichung

sl fepEa At R ——IEE O s D)
oder
2 ot f

:——%- I gl—i_ﬁ 2t S e
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fiihrt. Setzen wir hierin

ot

iR D +]; 4 + =2

il . (5b),
2 492 1 =
ot e
so lautet entsprechiend diesen 4 Wurzeln mit Riicksicht auf (4)
das allgemeine Integral der ersten Gl (1¢)
Z=—Ajenz - Bie—#z | Ccosnz+ Dysinasz . (4a).
Verlangen wir entsprechend den drehbar festgehaltenen
Stabenden, die keine Biegungsmomente aufnechmen konnen,
) et :
dab fir =0 und s =1 baw. y=0 auch 7= = 0 sein soll,
so ist

A+ B+ Cy —]
Aqenl 4 Beal 4 Cy cos #yl -+ Dy 8in xyl =1 l 6
#1% (Ay + By) — %52 Cy =0 ’ ©)
2 (Aqenl-f Byel) — 22 (C) 008 %yl - Dy sin 2,1) =0
also
A =" =0 =1 Deswmsel—0 . . .. [(64a)
oder !
git == SRR I L (G

Verbinden wir dieses Resultat mit der zweiten Formel (5h),
so folgt ad e o2 2
Tt iy
Sl 132ﬂ2 '_n2:_r2 2)

= 2 ( e £

Nach (6a) bleibt nunmehr von (4a) nur noch das letzte
Glied iibrig, dessen Vereinigung nach (3) mit (3b) unter Zusammen-
ziehung der beiden Konstanten ByD, = C, die Lisung

oder

(7).

Bt z . nm. _[m?a®
g pio AR n ) z oy e
7= C, 8in #p3 81N~ = C,sin nw 7 sin— t] B0 (3c)

liefert, die fiir jedes ganzzahlige n gilt, so dal die allgemeine
Losung durch die Reihe

iy nm | nim? 5

nzzlcﬂsinm res =LY —d . (3d)

dargestellt wird.



344 Kapitel V. Knick- und Kipperscheinungen.

Jedem dieser Glieder entspricht fiiv einen gegebenen Augen-
blick, d. h. fir t= Const, eine der Stabformen, Fig. 128, mit
der Schwingungsdauer

2 .
s e B L
..nz’rz—‘
n I i
fiir die wir wegen (2) auch
g sl R P L] Y . (8a)
Bl nzn )
—I.' or() - E@—

oder unter Einfihrung der Schallgeschwindigkeit ¢ des Stab-
materials und des Trigheitshalbmessers & des Stabquerschnitts
durch
gE — 2 _@ — L2 (
y—ea, F—fr AT e e
schreiben diirfen

o~ o IR R T

| n2m? P

e e

Diese Schwingungsdauer wird unendlich
grob, d h der einmal ausgelenkte Stab
kommt nicht wieder in seine Ruhelage, wenn

E@

P = n2x2 B e ~Thhe iy (9,

Iy

also wenn der Axialdruek mit einer der Knick-
lasten zusammenfallt. Wirde gar

EoO
= g B :
so hdtten wir in (7) f2< 0, womit an Stelle der periodischen
Losung (3a) bzw. (3b) von vornherein ein Exponentialausdruck
treten wiirde, der ein beliebiges Anwachsen des irgendwie hervor-
gerufenen Ausschlages bis zur Zerstorung des Stabes bedingt.

(9a),

Nach dieser dynamischen SchluBfolgerung befindet sich
der unter Knicklast stehende Stab offenkundig in einem labilen
Zustande.
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II. Ein um seine vertikal stehende Achse
zwischen zwei Lagern rotierender Stab moge
durch irgendeine Ursache aus der Mittellage gebracht sein, wo-
durch er die Form Fig. 141 angenommen hat. Auf ein um 7
ausgelenktes Stabelement von der Masse

dm = sl iz
g

wirkt dann, wenn m die Winkelgeschwindigkeit bedeutet, nach
aullen die Beschleunigung ¢ = nw? also die Fliehkraft

dQ = gdm = 'F‘;?--wzr;dz S e e
=]
und nach der Achse hin der Zuwachs der Querkraft
. d2 din
= —"dz— R — T 2
d i g2 dz=FE@ 7 R A B

Durch Gleichsetzen der beiden unendlich kleinen Krifte
wird dann
d*n _ Fyw?

dzt — gE@ ' (13),
oder wenn wir mit (10)
CFyw? w2
T T
setzen, kiirzer
din

£ — 7l 4
== e R ()
dzt ! dba)
3 e _ Pig. 141,
Fithren wir in diese Differentialgleichung probe-
weise 7= C ¢** ein, so geniigb die Konstante » der Gleichung
#t = g mit den vier Wurzeln

T mede=tardgia. ok o Lal(ddsan,

g0 dal das allgemeine Integral von (13a) lautet
n—=Ae**4 Be—¢21 Ccosaz+ Dsinaz . (15).
Verlangen wir nunmehr, dall die beiden Lager an den Enden
zwar festliegend, aber doch — etwa nach der Anordnung des
Amerikaners Sellers in Kugelgelenken — drehbar sind,
so konnen dort vom Stabe keine Momente aufgenommen werden

und es ist fiir

2
?} sowohl =0 als auch -(-g%:()_

Il

L T ]
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Dann aber wird nach Analogie von (6) bzw. (6a)

= () Dsinal=0
oder
A L S NI ] S

woraus mit (14) sich die Winkelgeschwindigkeit zu

alk
2

o = n2x? (16)
berechnet. Wir erhalten also eine mit den Quadraten
der ganzen Zahlen fortlaufende Reihe von
Winkelgesehwindigkeiten, mit denen der
Stab im ausgelenkten Zustande rotieren
kann, wiahrend er fir dazwischen liegende
Werte sich geradestreckt. Da in der Formel fiir
die ausgelenkte Mittellinie (vgl. Fig. 128)

bl

: . (15a)

5 =D sin nm
die Konstante D, wie beim Ausknicken unter der Knicklast,
jeden belichigen Wert annehmen kann, womit jedenfalls die
Gefahr des Bruches verbunden ist, so bezeichnet man die durch
(16) mit n=1, 2, 3 usw. definierten Winkelgeschwindigkeiten
als kritisehe. Nidhert man sich einem solchen Wert bei
allméhlicher Steigerung der Winkelgeschwindigkeit, so beginnt
die Welle unter heftigen Aussehldgen unruhig zu laufen, um nach
dem Uberschreiten wieder in die Ruhelage zuriickzukehren.
Deshalb empfiehlt es sich, bei praktischen Ausfithrungen stets
unterhalb der ersten kritischen Winkelgeschwindigkeit (fiir
n= 1) zu bleiben.

Das allgemeine Integral (15) behilt seine Giiltigkeit auch noch
fir den Fall, daff die beiden Endlager der rotierenden Welle
nicht mehr drehbar angeordnet sind, so dali die Form
der ausgelenkten Mittellinie der eines beidseitig einge -
spannten Druckstabes #hnelt. Dagegen haben wir
jetzt die Grenzbedingungen




§ 34. Dynamische Knickvorgiinge an geraden Stiben. 347

zu erfiillen, oder

A 4+ B +C 10
Aeet L BeetdL Ceosal+ Dsinal=0 17
A e D =0 | (17),

Ae¢t — Be' —Csinal-++ Dcosal=0

woraus nach Elimination der Konstanten A, B, C, D die Be-
dingung

(_,_rr.I o—a b )
—%—-cnsal:@néal-cosab:1 s (e

A
cos al
R VY
. Al K S0 5T ot
o Bty e 2
cos al
Fig, 142,

resultiert. Deren Auflosung erfolgt am einfachsten auf graphi-
schem Wege, d. h. durch den Schnitt der Kurven, Fig. 142,

PRl
R

u—=~0n3al= #ﬂ ;
woraus sich ergibt, dall die Wurzeln, abgesehen von al= 0,
nahe an ; 7T, E_)TS'T usw. liegen. Setzt man z. B. fiir den ersten
Wert i

aiz%n—|—x:4,712—|—-x,
s0 wird

3 A s
cosui:cosi—ncosx—sm-z- T8N & o @
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3 3
Smkm Lo —=n
e e 2 o2 g @
CBal= a ~ LUt a) + L (1 —2)
%,-z+—i1 %.r —-Z;—r
e e ity S P
s . — 5 2 =555 (1 + %).

Dies liefert mit (17a) die quadratische Gleichung
5ol myzr=1,

worats

#=—0,5 -+ 70,268 = 0,018,
also fiir den ersten Wert

Tl ;"r -+ 0,018 = 4,73 oder a? > = 22)4

sich ergibt, withrend (3;) 22.5 ist. Fiir die hoheren Werte von

» |—

al fallen die Unterschiede von -L 7 usw. schon so klein aus,
-I

i 2
dal sie vollstindig vernachlissigt werden konnen. Nach Ein-
setzen in (14) erhalten wir somit fiir diesen Falldiekritischen
Winkelgeschwindigkeiten geniigend genau

972 ak 2572 ak 2n-+ 0% S ak s
CUZT'?’ T I, ";7?5‘?‘ » {lb),

=+

deren jeder eine durch die Gleichung
% D
-r}:CLros aﬂ-—(SUnaZ,—l— (sin a,c.—x:oma")] (15b)

mit dem aus (17) hervorgehenden Verhiiltnis

D  cosal+sinal—e 2 cosal—0Co3al+-sinal 4 Cinal

i co%uﬁ—smai et ~ cosal—Go3al—sinal —Ginal

gegebene Form der Auslenkungskurve entspricht, die naturgemal
den Knickungslinien mit eingespannten Enden sehr nahe kommen.
Die Konstante € selbst bleibt auch hier wieder unbestimmt,
so dab fiir jede der kritischen Winkelgeschwindigkeiten die
Ausschlige beliebig hoch ansteigen konnen.

IIT. DaB es sich in diesem Falle stets um labile Gleich-

gewichtslagen handelt, erkennt man deutlich aus der Unter-
suchung der Schwingungen des rotierenden
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Stabes um seine Mittellage, welche der nach Ana-
logie von (1) und (13) leicht ableitbaren Differentialgleichung
L i ke
3zt T g |\ o

geniigt, flir die wir mit (14) auch

4 a
'a_.if'_fﬂf‘i‘wz bz~ Sy RO e G

schreiben diirfen. Diese Gleichung wird wieder durch den An-
satz (3) erfillt, womit (19a) in
1 dZ at 1 U
Zdg  Chovpan

itbergeht und mit der Konstanten $* in die beiden Formeln

E@- —'qwg)zo e (ELY

— B s el

drZ
_dA__(a4+ﬁ4)Z:0 } 4

t (19¢)
a@au ﬁ U=0 J

zerfillt. Die zweite dieser Gleiclumgen liefert, wenn der Aus-
schlag 9= Z U beim Beginn der Zeitrechnung, d. h. =0, fiir
den ganzen Stab verschwindet, nach Analogie von (3b) die

Lisun
¥ b
U:BBSIHQ—QJ Ve e e

wihrend die erste GIl. (19¢) mit a* - p* = 3* durch
Z—=Aer» Be## L Coosuz+ Dsinxz . . (21)

erfiillt wird. Sind die beiden Endlager der rotie-
renden Welle, wie in Fig. 141 angenommen, frei
drehbar, so erhalten wir fir die Konstanten 4 =B = (C
— 0, Dsinxl=0, oder wegen der Bedeutung von #
1
xl=1 (a4 fY* = nm,
Woraus

4.4 ;
ﬁ4:n%-_aﬂ. o4 R R (7

hervorgeht. Somit vollzieht sich die Einzelschwingung
der rotierenden Welle mit drehbaren End-
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lagern nach der aus (20) und (21) mit B — (.. bervor
gehenden Formel
; 200 Wi | o _ ¥
n=_C, sin nm JSin 3 l - li——u* s R
wihrend die Gesamtbewegung sich aus einer Summe solcher
Glieder mit n=1, 2 usw. nach Analogie von (3d) zusammen-
setzt. Die Dauer jeder solchen Einzelschwin-

gung

2 a2 2 51 02
e S el SR oy AR )
o f3 Pt it o
II ;’:1__

bleibt reell, solange atlt < n*z% d.h. solange die
Winkelgeschwindigkeit den kritischen Wert
nochnicht erreicht hat, beidem ¢, unendlich
wird. Damit ist der zugehdrige Bewegungszustand der Welle
als ein labiler gekennzeichnet.
Ganz ebenso folgt fiir nicht drehbare Endlager
nach Analogie von (17) und (17a) aus (21)
Codxl-cosxl=1,
also angenihert wegen #* = a4 f*
1 <
= 2 1
L 4 T o 2212
2n 14 =t

ﬁ{l - —“T’"— 54 — Cﬁ - . . . . (24)7
woraus sich mit (20) die Schwingungsdauer zu
A7 a? 277 o
T — i — "T“i (24a)
B B
/ 16 [

ergibt, die dann wieder fiir die kritischen Winkelgeschwindig-
keiten (18) unendlich grof wird.

Bemerkenswert ist iibrigens, daB in beiden Fillen, d. h.
fiic feste und drehbare Endlager, nach Uberschreiten der krifi-
schen Winkelgeschwindigkeiten mit f? die Schwingungsdauer
imaginiir wird. Das heift aber nichts anderes, als dall an Stelle
des Ausdruckes (20) fiir die zeitliche Anderung von # eine Expo-
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nentialfunktion tritt. Da derartigen Winkelgeschwindigkeiten
nach den Ausfiihrungen unter II. im Beharrungszustande keine
Ausschlige entsprechen, so miissen die einmal hervorgerufenen
wieder abklingen, was nur mit negativen Exponenten von e,
wie bei einer Démpfung, miglich ist.

IV. Trégt der Stab von der Linge ! im Abstande ¢ von einem
der beiden Endlager ein schweres Schwun grad von
der Masse m, der gegeniiber die Stabmasse vernachlissigt wer-
den darf, so wird es praktisch kaum moglich sein, diese Schwung-
masse 0 genau zu zentrieren, da$ ihr Schwerpunkt in der Ruhelage
in die Stabachse fillt. Es wird vielmehr stets
eine kleine Exzentrizitdt ¢ vorhanden sein, ver-
moge deren die Masse m bei der Rotation des
Stabes diesem eine Auslenkung n erteilt, deren
Grole am zugehorigen Punkte € mit 5 bezeichnet
sei, Fig. 143. Alsdann wirkt nach auBen auf die
Masse die Fliehkraft

OGi=mn+aw® . . . . (25),

nach innen aber die elastische Kraft, welche
dem Stabe im Punkte € die Durchbiegung 5
erteillen wiirde. Sind die Endlager des Stabes drehbar, so
bestimmt sich diese Kraft nach § 16, Gl. (12), zu
3EO-
02:W—"—T?}‘ . . i . . . (26),

c)?

S

Fig. 143,

so dafl bei der Rotation eine Beschleunigung der Masse m nach
aullen eintritt, die sich aus

24, 3EQ!
mga =0 — = g Lt vymeons &)

bzw. nach Division mit m zu

d2q ! 3EOL &
TP =0t — g - . @)

ergibt. [ierfiir diirfen wir aber mit der Abkiirzung

3EOI :
_(,'2?_'0}2?3 - {J)2 = [12 W G W e {28)
auch schreiben d2
d;j__i_az fj—w2a:0 o e (273),
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woraus dann fir ¢2>>0 ein Schwingungsvorgang
des Punktes € nach der Gleichung

2
n—-ﬁga:_llcosat—i—Bsinar a2
um die Mittellage
w2a w?a :
W% 3E0l i

E(l—cPm 3
resultiert. Diese mittlere Auslenkung wird fiir
a2 FEl
O s As B

Wo" = FET—c)Pm

unendlich grof, womit diese Winkelgeschwindigkeit als eine
kritische und der zugehorige Bewegungszustand als ein
labiler gekennzeichnet sind.
Im allgemeinen ist die Ab-
héngigkeit der Mittellage von m?®
durch die Hyperbel Fig. 144
dargestellt, aus der ein Vor-

. zeichenwechsel des Ausschlages
7o beim Uberschreiten von m,?
hervorgeht, entsprechend dem
Ubergange von der in Fig. 143
stark ausgezogenen zur punk-
tierten Anordnung. Im TFalle
dieser Abweichung von C aus
Fig. 144, der zugehorigen Mittellage voll-
zieht sich in diesem Bereiche

(w2 = y?) die Anderung von » nach einer Exponentialfunktion

Y =i e —
»r,a—l-;g—a:Ac”“ WLt pan TR e o,

in der A = 0 sein muf, da sonst fiir wachsendes ¢ der Ausschlag
beliebig zunimmt, wihrend doch jedem o nur eine Gleichgewichts-
lage

w? w? a?
e & —diorar R I T 30a
"o o> 02 — ? (30a)

zukommt.
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Da auf der nicht rotierenden Welle nach (27)
die Masse m eine durch

d? 7 3EOy 5
ae T E{l—efm T Q0 (5
gegebene Schwingung vollzieht, deren Dauer
2z
t,]:—n-}u 5 e Gl

offenbar mit der kritischen Umlaufszeit
ibereinstimmt, so hat man, wie zuerst Stodola
bemerkt hat, ein bequemes Mittel zur versuchsmifBigen Fest-
stellung der letzteren bzw. der kritischen Winkelgeschwindig-
keit @, Dies trifft auch noch, ebenso wie die sonstigen vor-
stehenden Entwicklungen, fiir den Fall nicht drehbarer
Endlagerder Welle zu, fiic den nur die GréBe w, einen anderen
Wert annimmt.

Der hier vorgetragene Fall der sog. Selbsteinstel-
lung exzentrisch auf einer Welle sitzender
Massen erlangte in der Technik mit dem Auftreten der
tiberaus rasch rotierenden Lavalschen Dampftur-
bine praktische Bedeutung und wurde 1895 ziemlich gleich-
zeitig von Foppl und Dunkerley?!), unabhingig von-
einander, wissenschaftlich geklart. Der letztere behandelte auch
noch die Stabilitit der Rotation beim Vorhandensein mehrerer
exzentrischer Massen, worauf wir indessen hier nicht weiter
eingehen kinnen.

§ 35. Kipperscheinungen.
Definition der Kippung. Aufstellung der Gleichungen fiir die Bie-
gungen und die Verdrehung. Integration durch Reihen; Berechnung
und Darstellung derselben durch Tabellen und Diagramme. Bestim-
mung der Kipplast und der elastischen Forménderung fir den einfach
eingespannten und den beidseitig frei aufliegenden Balken. Ausdehnung
der Untersuchung auf beidseitige Einspannung.

Die Spannungen und Auslenkungen eines normal zu seiner

Liéngsachse belasteten Balkens ergaben sich nach den fritheren

Y Foppl, Civilingenieur 1895, S. 333, und Dunkerley,
Phil. Transact. of. the Roy. Society 1895, Bd. 185, S. 270. Vgl. auch
die zusammenfassende Darstellung in S tod olas Werk »Die Dampi-
turbinen«, 4. Aufl., 1910, S. 284 If., in der jedoch nur die Berechnung
der kritischen Winkelgeschwindigkeiten ohne die Unftersuchung der
Schwingungen wiedergegeben wird.

23

Lorenz, Elastizitatslehre,



354 Kapitel V. Knick- und Kipperscheinungen.

Ausfithrungen um so kleiner, je grofer das Tragheitsmoment um
die neutrale Achse bei der Biegung ausfiel. Dieses wiederum
wiichst mit der dritten Potenz der Abmessungen des Querschnitts
normal zur neutralen Achse, so daB es zweckmilig erscheint,
diese Abmessungen so groff als irgend moglich zu wéhlen. Geht
man indessen hiermit iiber ein gewisses Mall hinaus, so zeigt die
Lingsachse des Balkens das Bestreben, aus ihrer urspriinglichen

Fig. 145.

-, —slf e

Ebene herauszutreten, wihrend gleichzeitig eine Verdrehung
der Balkenquerschnitte gegeneinander auftritt. Diesen Vor-
gang, den man am einfachsten an einer hochkantig an einem
Ende festgehaltenen Reilischiene, die am anderen Ende durch
den sog. Kopf belastet ist, beobachten kann, bezeichnen wir
nach dem Vorgange von L. Prandtl') als eine Kippung.

Diese Erscheinung wollen wir an einem einseitig fest einge-
spannten horizontalen Balken untersuchen, dessen Querschnitt
die beiden Haupttrigheitsmomente €, < @, besitzt. Die zuge-
ordneten Hauptachsen des Querschnitts mégen im unbelasteten
Zustande des Balkens vertikal bzw. horizontal stehen. Weiter-

1) Vgl. dessen ausgezeichnete Miinchener Dissertation »Kipp-
erscheinungen« (Niirnberg 1899), der wir in unserer Darstellung mit
einigen unwesentlichen Abweichungen gefolgt sind.
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bin sei der Balken durch eine Anzahl von Vertikalkriiften belastet,
deren Resultante Q von dem zunichst ins Auge gefaliten Quer-
schnitt F' den Horizontalabstand z hat. Infolge der Kippung
erleidet dann der Querschnitt sowohl eine als klein angenommene
Verdrehung ¢ als auch eine Verschiebung in horizontaler und
vertikaler Richtung, Fig. 145, welchen Biegungen um die dazu
normalen Achsen entsprechen. Die zugehérigen Biegun gs-
momente ergeben sich aus der Uberlegung, daB zunichst die
Resultante @ in zwei den um ¢ geneigten Hauptachsen parallele
Komponenten
01:QSin’PNQﬁ"} 1
G=Qcosgp~Q |- @)
zerfdllt, deren Hebelarme in erster Anniherung mit dem Hori-
zontalabstande z des Querschnitts von der Resultante selbst
iibereinstimmen. Bezeichnen wir dann noch mit & und % den
Horizontal- bzw. Vertikalabstand des Schwerpunkts § des aus-
gelenkten Querschnitts vom Angriffspunkte A der Resultanten,
der natiirlich auch mit dem Schwerpunkte eines anderen Balken-
querschnitts zusammenfillt, so erhalten wir fiir die Auslenkungen
die beiden Differentialgleichungen
dz i :
— B0, EZ:% =@z2=0Qz¢ l
2 5
— 86, =0,s—0; |

Aulier den beiden Biegungsmomenten wirkt aber auf den
Querschnitt noch ein Torsionsmoment, welches mit
dem Gleitmodul G und einer von der Querschnittsform ab-
hiingigen, mit dem Flachentrdgheitsmoment dimensionsgleichen
GroBe J (vgl. Kap. 11, §11) sich zu

ergibt, worin man sich die Konstante € =G J am einfachsten
durch einen Verdrehungsversuch bestimmt denken kann. Das
negative Vorzeichen der linken Seiten von (2) und (3) ist darin
begriindet, daB infolge der Einspannung sowohl die Neigungs-
Winkel d¢ :dz und dy :dz als auch der Verdrehungswinkel @
mit wachsendem z abnehmen.

23%*



356 Kapitel V. Knick- und Kipperscheinungen.

Das Torsionsmoment 9%, rithrt nun ebenfalls von der Resul-
tante Q her, deren Hebelarm in bezug auf eine Querschnitts-
normale durch den Schwerpunkt § mit £ bezeichnet werden moge.
Dann ist infolge der geringen Abweichung der elastischen Linie
von der Geraden im Grundril der Fig. 145 hinreichend genau

. (3a).

Die Verbindung dieses Ausdruckes mit (3) liefert weiter

dq Q (. d&) =
&;— _ — C (Q—ZE) . . . B b {{J}
und nach nochmaliger Differentiation
d? 12 r
9 — e E- T o R e

d2 C2dz
Multiplizieren wir diese Formel mit der ersten GL (2), so
fallt die Verdnderliche & heraus und es bleibt

a2 02z ; )
Geto ol amEl g L e e MO,
dz £0,C 7 (6)
wofiir mit der Abkiirzung
Eg;c:“‘ = ie)

auch geschrieben werden kann
d? 2
d—z‘ﬁ-+a2z‘2(p=o T i T

Bevor wir diese Gleichung integrieren, mige noch der Sonder-
fall eines ldngs des Balkens konstanten Bie-
gungsmomentes 9M; behandelt werden, bei dem, wie
friiher gezeigt, keine Querkraft auftritt. Die Wirkung eines
reinen Kriiftepaares geht nun aus dem bisher Betrachteten dadurch
hervor, daB wir Q beliebig abnehmen und den Abstand z ins
Unbegrenzte wachsen lassen, oder, was auf dasselbe hinauslault

O S NS S
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setzen. Alsdann wird aus (6)
g pllee

— s — — T A S R age St (5
dz Eo,C ¥ )
oder mit der Abkiirzung
m,2 . :
BO, 0™ PCala s il & 2 0 S0
a2 -

d;‘;’ gyl o Al Ly
Diese uns geldufige Differentialgleichung hat aber das Integral
p—=Acos gz Bainpe . 0 . (9

dessen Konstanten 4 und B die Grenzbedingungen ¢ = 0,
do:dz=0 fir die Einspannstelle z— [ zu erfiillen haben. Von
diesen Bedingungen beruht die letztere darauf, daB an der Ein-
spannstelle das Moment 9, jedenfalls keine Komponente besitzt,
welche nach (3) eine Verdrehung hervorrufen konnte. Dann

Gl A cos Bl -+ B sin f1=0.
A sin fl— Beos f1=0.
sein, was nur mit A = B=0, also allgemein ¢ = 0 vereinbar
ist. Daraus folgt, daf ein reines Biegungsmoment
in der Vertikalebene durch die Balkenachse
keine Kippung des Balkens hervorrufen
kann.
Nach dieser Abschweifung kehren wir zu unserer Differential-
gleichung (6a) zuriick, deren Integration leicht durch den Ansatz
p=Ao+ A2+ 4,24+ A, B+ A2 4+... . (10)
also
o? 5 102
“?j';%: 2. Ay +2.3-A;248-4-A,224... (109)
gelingt. Nach Einfiihrung dieser Ausdriicke in (6b) liefert die
Methode der unbestimmten Koeffizienten

,442-:01r A3:01 “16:0? 14?20.--

o? a?
Ay=—g 740 As=—7 54
oder allgemeiner die Rekursionsformel
o
S e 0 M SO 1113
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Dadurch sind alle Faktoren A bestimmt bis auf die beiden
Ay und A, die somit als Integrationskonstanten anzusehen sind;
und die Reihe (10) nimmt die Form an

o2 z* at 28 AL '
‘P:A"(i_ 34 ! BA:7:8 " 01h-7,8,11-12 +)

5 ok 20 iP it 98
+A1(z_ e trren Toanmn )00

!

Um daraus die Gleichung der elastischen Linie, d. h. der
horizontalen Auslenkung &, zu gewinnen (wihrend die Vertikal-
auslenkung # sich unmittelbar, d.h. ohne Riicksicht auf ¢,
aus der zweiten Formel (2) berechnen 1d6t), bedienen wir uns am
einfachsten der Gl. (5), fiir die wir auch nach Umformung der
rechten Seite schreiben diirfen

d d (& <
%:%ZZE(?) LR (B
Mithin ist umgekehrt mit einer neuen Konstanten B
Gzt d o v
f:BZ—i—?gz—g dfdz Rl R

und nach Einsetzen von (11) und gliedweiser Ausfiihrung der
Integration

&= AC! @B a7 b 711
L B e r e v e o kLT
A€ ol 74 at 2 i 16
+_Q"(_1_3-4—i"f}-5-7-8_4—5—8—9-11-12+")(u)'

Durch Differentiation dieses Ausdruckes folgt dann noch
dé Ao(?( as = o g8 ab 719 )

RS T S e e

4 77 b 711
=

a223 o |.3
+_Q_(_ 3 +4.J.7'—4.5-8-9-1_-1.+") fbe).

Die in den Formeln (11), (12) und (13) iibrig gebliebenen
Integrationskonstanten lassen sich leicht ermitteln, wenn man
z=—0 setzt und die zugehdrigen Anfangswerte von ¢, & und
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d& : dz mit dem Index O versieht. Alsdann ist

i d
Ao = o, sz—fSu, B=(£)0 oA

Fiir die praktische Verwendung der Formeln (11), (12) und
(13) empfiehlt es sich nun, nach dem Vorgange von Prandtl,
die darin auftretenden Reihen als Funktionen einer und der-
selben dimensionslosen Grofie

Gegt=—nt R ORI (D)

tabellarisch darzustellen. Setzen wir demgemél

ul ub

> {1
b a8 358 Al
u ut L
L IRt A o
u ut ub
P v R Y T [ R T R L
= & u’ ub e (16),
_3'4+4-5-'7.8_4.5.8.9.11,12+--—— 9
u? ut ub
R T R R AT TR T i
" ut ub
£ LT AR Y T R

so erhalten wir an Stelle der obigen Formeln unter Beachtung
von (14)

=g +Qb°zv g e R G 52
dé C

2 (dz) 45 L R T

dé dé

* -5 g RO - W),

worin die Werte der U, V der folgenden Tabelle bzw. den Dia-
grammen Fig. 146 und 147 zu entnehmen sind.
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2w U, U, Ls Vi ‘ V. : Va
0| + 1,000 0,000 0,000 [ — 1,000 | -+ 1,000 ‘ + 0,000
1| 40918 , —0465 | —0,486 | — 0,950 1,082 0,326
2 | 40,690 I 0,636 | —1,788 | —o0,811 ‘ 1319 | 1,223
3| 40362 | —1,369 | —3,479 | —0,603 1,682 2,466
6| +o00s | —2211 | —5006 | —02361 2125 3,744
5| —o0313 | —3118 | —5,853 | —o0421 2,600 4,746
6| —os526 | —3978 | —5737 | L0083 | 3059 | 5238
71 —0597 | —a7 | —aees | o233 3,463 5121
8| —o523 | —52317 | —3,062 | 0286 3,781 4 465
9| —o033 | —5776 | —1,487 | 0,276 4,022 3,487
10 | —0,078 | —614% | —o0642 | 10,203 5179 2,494
1 | 40200 | —6478 | —1,080 | 40,097 4,280 1,807
12 | + 0,404 ‘ — 6,851 ‘ —3037 | 40,014 4,554 1,676

1. Beispielsweise erhalten wir fiir den in Fig. 145 dargestellten
einfachen Belastungsfall £,— 0 und an der Einspannstelle z =1,
@, =0; damit wird aus (11a)-

@ Up=0. . (11b). ° T ahaaELE
e JSNEZaNEE
N% i : 2% R
05] | : 3 )
il | 12 0
rl [ O 0.7 | - é‘.‘-. P \\ LN | |
= 1 N ™ ! o
as || /y\\ % \\t' /i Il
' q.___/l,_#l_ 05 e N 3 9070 9 1
AP 1 FERFCTL TN

Fig. 146. Fig. 147

Hierin kann nun ¢, d.h. die Verdrehung des Endquer-
schnitts, nicht verschwinden, da dies ein Kippen selbst ausschliefien
wiirde. Es verschwindet also U, was nach der Tabelle auf Argu-
mente u fithrt, deren erstes wenig grofer als 4 ist. Durch genauere
Ermittlung fand Prandt1 hierfiir

IhE—a I E o vel a8 T et LT
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Diesem Werte mull nach (15) die Stablinge ! geniigen, da
nur fiir z=0 in Gl. (11b) U, verschwindet. Mithin ist

40126
i -1")£L"Q (17a).
woraus sich mit (6a) die erste sog. Kipplast zu
4 0126
Ql_a]i“()lc = }FOC A S

ergibt. Infolge des wellenartigen Ver]aufes der Funktion U,
verschwindet diese natiiclich auch noch fiir unendlich viele hiéhere
Werte von u, z. B. tiir w ~ 10,1, dem dann nach (15) diezweite

Kipplast 01 2
O=—1 1 0,6 wulsite; cilgs

entsprechen wiirde usw. Daraus erkennt man, dal der Balken
unter der Wirkung der aufeinander folgenden Kipplasten sich
dhnlich verhdlt wie ein Druckstab unter den Eulerschen
Knicklasten, insbesondere dali fir Belastungen Q << Q,
iiberhaupt kein Kippen zu befiirchten ist. Infolgedessen kommt
auch hier praktisch nur die erste Kipplast in Betracht.

Die ihr zugeordnete elastische Linie berechnet sich aus den

Formeln (12a) und (13 a) mit der Einspannungsbedingung (d ) =1
womit (13a) in

Cyq
0=(45),+ ROk -« . . . (13D)
tibergeht. Eingesetzt in (12a) liefert dies unter Elimination
e
von (_z) C /
dz/g &= Q(ZPQO [_ U ‘_Z(Ua){l e B |

und fiir die totale Auslenkung &; fiir z=1
(5
&= "0 (Va— Uy,
wofiir wir auch unter Einfithrung der ersten Knicklast (18) fiir
Q, sowie nach Ermittlung der Werte von U, und U, fiir I bzw.
fiir = 4,0126 aus der Tabelle, d. h. mit (U; — U,); = — 5,018
~+ 2,222, erhalten

51:0,691 '(pﬂl‘-l..' Fér LA (19}.
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Die groBte Verdrehung ¢, tritt in den Formeln als Konstante
auf, bleibt aber selbst unbestimmt, wie die grifite Auslenkung
des geknickten Stabes, solange wir den Unterschied der Sehne
der elastischen Linie mit der Stablinge vernachlissigen. Da
die Beriicksichtigung dieser Differenz nach dem in § 31 angegebenen
Niaherungsverfahren in unserem Falle zu erheblichen Weiterungen
tiihrt und iiberdies praktisch nur geringe Bedeutung hat, so wollen
wir uns damit nicht aufhalten.

2. Als zweites Beispiel sei ein in der Mitte
durch @ belasteter Balken, Fig. 148, gewahlt, des-
sen beide Enden durch Parallelfiihrungen am Auslenken und
Kippen verhindert sind.

Verlegen wir im Einklang mit den fritheren Ansitzen den
Koordinatenanfang in eines der Auflager, so bezeichnet &, die
Horizontalauslenkung der Balkenmitte, wihrend ¢, = 0 und

3 g 01 vgag i gy L
]”4 | also nach Gl. (12a) und (13a)
gL, h
2
d 2
Fig, 148, (dé)[)—’_ fo (V )i — 0 (13¢)

wird. Diese Bedingungsgleichungen sind aber nur dann mitein-
ander vertriaglich, wenn

] e e T S S S e T

o
ist, was nach der Tabelle fiir Werte von u eintritt, deren erster
zwischen 2 und 3, deren zweiter dagegen zwischen 8 und 9 liegt.
Durch Interpolation findet man fir den ersten Wert genauer
o2

4

also nach (7) mit Riicksicht darauf, dall als Belastung der

iy — - lh — (20a),

Auflagedruck G gilt,

2
16,92 _;
Q;_:'?a]-IEQIC:-- 12 ¥

fes]

8,0 ¢ = 4 2
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Die dieser Kipplast entsprechende elastische Linie
ergibt sich dann nach Ermittlung der dem Argumente (20a)
zugeordneten Werte von ¥, und ¥, mit Hilfe der Tabelle aus den

L4

Formeln (11a) und (12a), wobei natiirlich wiederum Q—
zu setzen ist.

Der vorstehende Rechnungsgang versagt iibrigens in dem
Falle einer beidseitigen Einspannung der Bal-
kenenden, welche deren seitliches Ausweichen derart be-
einflulit, daf dort d& :dz= 0 wird. Alsdann tritt zu der ersten
Gl (2) noch ein Einspannungsmoment I, hinzu,
wodurch dieselbe in

d2
EO TS — —0zpiy . . . 2D)

P2
ubertht wofiir wir auch unter Einfilhrung des Wertes (d :) fiir
=1} Sl

& d2& n
=6 [a{vz (d'zz)J:—“QZ(P 5 e ([22a)

schreiben diirfen. Eliminieren wir aus dieser Formel und der
allgemein giiltig bleibenden Torsionsformel (3a) die Variable &,
s0 erhalten wir an Stelle von (6) als Differentialgleichung

L (e Q (dﬂg) A

dz TV EOCYTTC

oder nach Einfiihrung der Abkiirzung (7a)
L )

Auch diese Formel it sich durch den Ansatz (10) integrieren
und liefert unter Hinzunahme von (5b) Losungen, die sich von
sl (11), (12), (13) nur durch Zusatzglieder unterscheiden, in
denen drei neue Reihen von der Form

1 H-?' ut

R e Y i S PR T Y — T4/

5.3 G T
1 n" ut Gk 5
o B R P T T et ¢

u2 ut e

o e e Sl
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auftreten, deren Werte in der folgenden Tabelle (vgl. auch
Fig. 149) zusammengestellt sind. Die Losungen selbst, deren

@ 3 B |
I <1 | | II
l. \\'f |
el b by [ =
05 \;,_“{/5—
5 N
e
P s

Fig. 149.

Berechnung nach dem Muster der friiheren dem Leser iiber-
lassen bleiben kann, lauten jetzt

=g Uy +Q on1+gz (d )OW
dé‘

5“(&) 2 8 B0 Uyt &V, + 2 ( -z-] W, | . (25).
e s C ‘Pu El‘l d
- + 6 (28]

u W, Wa ‘ W
0 0,1667 | 0,5000 1,000
1 0,1627 0,4945 0,967
2 01514 0,4785 0,874
3 0,1337 0,4534 0,734
4 0,117 04216 | 0,569
5 0,0875 0,3858 0,404
6 0,063% 0,3488 0,258
7 0,0412 0,3133 0,151
8 0,0223 0,2815 0,092
9 0,0092 0,2548 0,080
10 0,0004 0,2334 0,107
11 — 0,0039 0,2186 0,159
12 — 0,0042 0,2081 0,220
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3. Beispiel. Es mige nun der Balken an beiden Enden
derart ngcspdnnt sein, daB nach Fig. 150 fir z=0 und z=1
(d
{d—&-) =0 ist. Auferdem haben wir hier §= 0 und o =0 fur,,_%,_
&3 [0 &
so dal aus dcr zweiten und dritten Formel (25)

a e,
7 .

g

=2 ;)f—!— (d”)o(u-ghzo!

oder (VaWy— Vo Wy); =0 . (26)
<

Fig. 150,

hervorgeht. Diese Bedingung wird, wie
man durch Interpolation der Tafelwerte erhilt, durch das Argument

2
(26a)

l

uy=3,20 = a—.

erfiillt und ergibt mit (7) unter Beachtung, daf an den Auflagern

nur die halbe Last in Frage kommt, fiir die I(Ip plast

leﬁa}/EOL():-F— FERIE e e J30)

Eliminiert man dann noch aus einer der Formeln (25a)

die zweite Ableifung {fﬁ), so ergibt sich fiir die Verdrehung

\& Z%/o

und die elastische Linie im Grundrif} aus (25)

Q . 2V
=t f l'l—zi-l.--w—f-—

Lot L »
&= CO(I"z—""ﬁ‘ wf}l o SR
d& & 22 Vs,
dz = T(Vs”éﬁm)_l

worin die GroBen Vy V, Vy W, mit dem Argumente (26a) den
Tabellen zu entnehmen sind.

Bemerkenswert ist ferner noch der Umstand, dal} die aus der
zweiten Gl. (2) zu berechnende Form des Aufrisses der elastischen
Linie ganz unabhiingig von der Kippung verlduft und darum in
unseren Beispielen nicht weiter beriicksichtigt zu werden brauchte,

Die oben erwiihnte Prand tlsche Abhandlung enthilt
noch eine Anzahl weiterer Belastungsfille, deren Wiedergabe
uns hier indessen zu weit fiithren wiirde.



Kapitel VL.
Allgemeine Elastizitdtstheorie.

§ 36. Der riumliche Spannungszustand.
Die Zerlegung von Spannungen in Normal- und Schubspannungen:
Paarweise Gleichheit derselben am Volumelement. Gleichgewichts-
bedingungen am Elementartetracder. Hauptspannungen und Re-
duktion der Spannungsgleichungen auf die Hauptachsen. Ermitt-
lung éer Schubspannungen mit ihren ausgezeichneten Werten.

Schon in § 2 haben wir gesehen, daR der auf ein Flichen-
element dF im Innern eines Korpers entfallende Betrag d P
einer dufleren Kraft P sich stets in eine Normalkomponente
dS und eine Tangentialkomponente d7 zerlegen 14Bt, denen
dann ebenso gerichtete Spannungen

ds aT
O:W’ T:W Szt s e
entsprechen.  Ordnen wir dem zu dF im allgemeinen schrig
gerichteten Kraftelemente d P ebenfalls eine Spannung p von
gleicher Richtung zu, so berechnet sich diese zu

dP _Vd$E+dr ,
E=rmy dF =Hot e (A

Ebenso kénnen wir natiirlich auch die in das Flichenelement
fallende Komponente d 7' in zwei zueinander senkrechte, dabei
aber in der Ebene der Flichenelemente bleibende Komponenten
dT, und d T, derart zerlegen, daB mit dem Neigungswinkel ¢
von T gegen die a-Achse

AT, =dT cos g, dT,=dT sing

oder BT Lo 3
Te="gp — 7089, By="gF —tsmg. . (3)
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wird. Daraus geht hervor, dafl man die Spannungen
an einem und demselben Flichenelement
ebenso zerlegen und zusammensetzen kann,
wie die Kréifte selbst.

Schneiden wir uns nunmehr ein Volumelement (Fig. 151)
aus dem Korper heraus, dessen Kanten die Richtungen eines
rechtwinkligen Achsensystems und demgemifl die Lingen da,
dy, dz besitzen, so wirken infolge des Einflusses duBerer Krifte
nach dem Vorstehenden auf allen Seitenflichen des Elementes
sowohl Normal- als auch Tangential- oder Schubspannungen.
Die ersteren haben von vornherein die Richtung der Koordinaten-

Fig. 151.

achsen und migen daher mit dem zugehérigen Index bezeichnet
und als positiv betrachtet werden, wenn sie als Zugspannungen
von der zugehorigen Fliche weggerichtet sind. AuBerdem wollen
wir, wie schon frither, in § 2, Fig. 8, die gleichgerichteten Span-
nungskomponenten auf einander gegeniiberliegenden Seiten-
flichen des Volumelementes durch einfache und doppelte Striche
unterscheiden. Infolge der Zerlegung der Schubspannungen
nach (3) entfallen aul jede Seitenfliche zwei Komponenten,
die wir mit dem Index derjenigen Achse zuordnen, auf der sie
normal stehen. Nach diesen Bemerkungen haben wir in der
@-Richtung die Normalspannungen o,” und ¢,” auf der linken und
rechten Seitenfliche des Elementes, dieSchubspannungen z,’7,”
aul der Hinter- und Vorderfliche und schlieBlich die Schub-
spannungen z,’ 7, auf der Ober- und Unterfliche. Die diesen
Spannungen zugeordneten Krifte ergeben sich durch Multipli-
kation mit den Fliachen dydz, dzdy und dzdx und miissen,
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algebraigsch addiert, verschwinden, wenn in der x-Richtung
Gleichgewicht herrschen soll, wobei etwaige Massenkrifte als
Differentiale dritter Ordnung keine Rolle spielen. Wir erhalten
demnach unter gleichzeitiger Hinzufiigung der Gleichgewichts-
bedingungen fiir die beiden anderen Richtungen durch zyklische
Vertauschung der Indizes ¢

(6, —o)dydz -+ (v} — vV dzdy + (z) — 1)) dzdae =0

(0, —0/)dzdz+ (v, — /) dydz + (v,)) —7,)/)dxdy=0

(0, —o)dady + (z,)) — /) dade 4+ (r,)) — 7)) dydz= 0.

Dividieren wir diese Formeln bzw. durch dyds, dzda,

dx dy, so folgt

dx dx

@ =i (T-:.r” — T dz Skt d y' =
d d

gyl g e g =) —d—?’;— a0} ?g =0 (4).
dz dz

gt —tgl ey N s (g e gl — 0
dy dx

Damit diese Gleichgewichtsbedingungen unabhingig von
der Form des Volumelementes, also von den Verhéltnissen
o Ndy e
dz’ dz' dy’
konnen, miissen die Faktoren dieser Verhéitnisse selbst ver-
schwinden; folglich st allgemein

deren Werte vollkommen willkiirlich sind, bestehen

4

G =i = g =ua | (4

T = Tp T T it ] G
d. h. die in gegeniiberliegenden Seiten eines
elementaren Parallelepipedons angreifen-
den gleichartigen Spannungskomponenten
im Gleichgewichtszustande des Elementes
sind einander entgegengesetzt gleich. Dabei
kommen natiirlich unendlich kleine Anderungen dieser Span-
nungskomponenten als Grofen héherer Ordnung nicht mif in
Betracht.

Weiter erscheint bemerkenswert, dall in den Formeln (4)
und (4 a) nur drei Paare von Schubspannungskomponenten auf-
treten, wiithrend doch in jeder Fliche zwei zueinander senkrechte
wirken, die zusammen auf die doppelte Anzahl fithren. Man
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iibersieht indessen sofort, daB, wie schon beim elementaren Span-
nungszustand in § 2 infolge des Gleichgewichts des Elementes
gegen Drehung, z. B. das Kriftepaar der Schubspannungs-
komponenten 7, =7,/ aul der Vorder- und Hinterfliche dem
um dieselbe Achse drehenden Paare der Komponenten (z,)"” =
(r,)’ in den Seitenflichen (Fig.151) gleich sein muf}, woraus
danite oy =iz} de ohi dielGleichkhoit der Sehab-
spannungen normal zu einer Kante, resultiert.

Somit haben wir es im ganzen nur mit sechs Spannungskom-
ponenten zu tun, fiir die wir mit Weglassung der Striche kurz
Gy Oy 0, To Tt

schreiben diirfen.

Um aus diesen Komponenten die resultierende
Spannung p nach GréfBe und Richtung zu er-
mitteln, schneiden wir von unserem Elementar-Parallelepipedon
(Fig. 151) vermittelst der Ebene durch die Ecken 4 B C ein
Tetraeder (Fig. 152) heraus. Die Normale dieser Ebene
moge mit den Achsen die Winkel ¢, w, & bilden, so dafi, wenn
wir die Fliche des unendlich kleinen Dreiecks 4 BC mit dF
bezeichnen,

dydsz dzdx dxdy

20F = méo'sqa Fi oS = cos® < utsyita)

ist. Sind ferner %, 4, u die Neigungswinkel der resultierenden
Spannung p gegen die Achsen, so entspricht dieser in der Fliche
dF ein Kraftelement pd# mit den Komponenten pdF cos x,
pdF cos 2, pdF cos u in den Achsenrichtungen. Diese

Lorenz, Elastizititslehre. 24
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miissen der Summe der von den gleichgerichteten Spannungs-
komponenten in den Seitenflichen geweckten Krifte das Gleich-
gewicht halten, so dall z B. in der X-Richtung

padF cosx :%(omdydz—]—rzdzda: +r,dxdy)

wird. Dividieren wir diese Formel mit d F und beachten (5),
s0 folgt unter Hinzufiigung der ganz gleichgebauten Bedingungen
fiir die beiden anderen Achsenrichtungen
P COS % = 0, COS @ - 7, cOS Y + 7, cos & ‘
pcosi = g, eosyp -+ 1, co8d 4 7, cos
p €os pt =g, cos & 4 7, cos @ -+ T, cos

(6).

Hieraus berechnet sich p durch Quadrieren und Addicren

unter Beachtung der bekannten Relation
cos?x { cos?Atcostu=1 . . . . (6a),
womit auch die Einzelwinkel %, 1, u gegeben sind.

Von besonderem Interesse erscheint nun der Wert der
Normalspannung ¢ zur Fliche d F, der sich mit dem
Neigungswinkel » zwischen p und der Flichennormale zu

6= pcosv=p(cosxcos ¢+ cosiecosy -} cos pucosd) (7)
ergibt. Multiplizieren wir demgemil die drei Formeln (6) der
Reihe nach mit cosq, cosy, cosd und addieren, so erhalten
wir mit Riicksicht auf (7) fiir die gesuchte Normalspannung

G = 0, cos® ¢ + 6, cos?y + o, cos? ¢

+ 27, cos y cos & 4 27, cos ¥ cos ¢ + 27, cos p cosy (Ta).

Diese Gleichung fithrt auf eine wichtige Folgerung, wenn
wir nach Division mit ¢ die neuen Verinderlichen

cos? @ cos® c0s* i _
R s g s e
emfiihren. Damit schreibt sich néimlich (7 a)

1 =g6,u*+F 0,0+ 0,0+ 2(r0w 7, wn-Lr,uv) (Sa),
worin die Spannungskomponenten a,0,0,, 7,7,7. als Konstantes
auftreten. Dann aber stellt (8a) die Mittelpunkts-
gleichung einer Fliche zweiten Grades in
den Koordinaten u o w dar, deren Fahrstrahl nach (8)

n2

r= yu? _l_Ua _[_wz T AL RO |
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als reziproke Wurzel aus der Normalspannung erscheint, die
hier natiirlich mit ihrem Absolutwerte einzusetzen ist. Beachten
wir nun, dafl jede Fliche zweiten Grades drei zueinander normale
Hauptachsen besitzt und zu den hierdurch bestimmten
drei Ebenen symmetrisch liegt, so kann die auf dieses Ko-
ordinatensystem bezogene Flichengleichung nur mehr rein
quadratische Glieder enthalten. Es mull daher durch Drehung
des Koordinatensystems gelingen, die mit den Produkten v w,
Wiz, o behafteten Glieder aus (8a) zu entfernen. Das Ver-
schwinden dieser Glieder in der Flichengleichung in bezug
auf die Hauptachsen bedingt demnach auch das Ver-
schwinden der Schubspannungskemponen-
ten in den Hauptebenen. Bezeichnen wir dann die
Normalspannungen g, 0, 6; dieser Hauptebenen als die Haupt-
spannungen, so lautet mit ihnen die Flichengleichung
(8 a) cinfacher ot o0t fogwt =1 . . . . . (80).

Da die Hauptspannungen hiernach den Scheiteln dieser
Spannungsfliche zugeordnet sind, so besitzen sie gegeniiber
benachbarten Punkten mit von den Hauptachsen wenig abweichen-
den Normalen ¢, v, ¥ ausgezeichnete Werte. Unter ihnen selbst
wird auflerdem eine ein absolutes Maximum, eine andere ein
absolutes Minimum sein, wihrend bei Ubereinstimmung aller
drei Werte Gl. (8¢) in die Mittelpunktsgleichung einer Kugel
iibergeht. In diesem Falle hat offenbar die Normalspannung
nach allen Richtungen denselben Wert, womit das Auftreten
von Schubspannungen iiberhaupt ausgeschlossen ist, entsprechend
den Eigenschaften der vollkommenen Fliissigkeiten®).

Zur' Berechnung der Hauptspannungen
selbst greifen wir noch einmal auf die Formeln (6) zuriick. Soll
die Ebene A BC in Fig. 152 eine Hauptebene sein, so wird p
mit einer Hauptspannung o identisch und gleichgerichtet, so

dal} also hierfir  _ Gyin WA=t =

ist und an Stelle von (6) mit p =0
(6, — 0) cos @ -+ 7, cos @ + 7, cos & = 0
(g,—o0)cosy +1,008¢ 4T,c080=0; . . (9)
(6, — a) cos & - 7, c0s @ + 7, cos p = 0

. ‘) \gl_b 20, siehe auch Lorenz, Techn. Hydromechanik, §. 3.

94k
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geschrieben werden kann. Darans folgt durch Elimination der
Richtungskosinus die kubische Gleichung
(6. — 0) (0, — 0) (6, — ) + 27,7, 7,
= (o —0) ;> + (0, —0) 2 + (6, —0) %2 (9a),

deren Wurzeln mit den drei gesuchten Hauptspannungen o, g, g,
identisch sind. Fiir jeden dieser Werte liefern dann die Formeln (9)
riickwirts drei Winkel @ w9, @s ., und @, wy; welche
die Hauptspannungsrichtungen bestimmen.

Liegen die Hauptspannungen nach GroBie und Richtung
von vornherein fest, wofiir das Fehlen von Schubspannungen
in den zugehorigen Hauptebenen das Kriterium bildet, so kénnen
wir an Stelle der drei Formeln (6) in bezug auf das Haupt-
spannungssystem mit

Oy, = 0y, Oy = 0Oy, 0= 0Oy Ix:Iu:rszﬂ

bequemer schreiben

peosx=og;co8@, pecosl=gaycosy, pcosy=odgcos? (10),
woraus sich fiir die resultierende Spannung

p? =02 cos® ¢ + o2 cos?yp 4 g2 cos*d . . (10a)
und fir die Normalspannung analog (7)

6 =0,0082 @ + 0y c08%p + oyc08° P . . . (10D)
ergibt, deren Richtung durch die Winkel ¢, 3w, 7 selbst ge-
geben ist. Schreiben wir diese Gleichungen fir drei zu-
einander senkrechte Ebenen an, deren Normalen-
winkel gegen die Achsen ¢ yp'd, ¢"” 9" 9" und @" "G
sein mogen, so haben wir an Stelle von (10a)

p? =0 cos?@ + atcos?y’ 4 og? cos? i}
p'"% = 6.2 cos? @' | ag? cos? " |- ay® cos? &
P2 = oy® cos? "' + a5 cos® """ -+ 0,2 cos? I
und durch Addition mit Riicksicht auf die Normalstellung der
drei Ebenen zueinander, d. h. wegen cos?q’ - cos*g" +cos?e’”
=1 LISW., p,g + Pnz _i_ ng WK 012 _| 622 ‘I_ 032 AN {ll}l
Bezeichnen wir dann noch die Normalspannungen in diesen
Ebenen mit ¢ 6" ¢’", so wird auf dieselbe Weise aus (10 b)

ot o, O e I O P R e ¥
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d. h. die Summe dreier zueinander senkrech -
ter Normalspannungen ist fiir jeden Kérper-
punkt konstant, Zu demselben Ergebnis gelangt man
auch auf Grund der Gl (9a) nach deren Ordnung in Potenzen
von o. Da in den Formeln (10 a) und (10 b) nur die Quadrate
der Richtungskosinus auftreten, welche niemals gleichzeitig
verschwinden, so erkennt man, dall bei endlichen Werten der
Hauptspannungen auch die resultierende Spannung nicht zu
Null werden kann. Die Normalspannung dagegen
kann fiir eine bestimmte Richtung nur ver-
schwinden, wenn eine der Hauptspannun-
gen ein anderes Vorzeichen besitzt wie die
beiden anderen.

Nachdem wir sowohl die resulticrende Spannung p als auch
die Normalspannung ¢ mit den Richtungswinkeln @& gegen
die Hauptachsen durch die drei Hauptspannungen ausgedriickt
haben, ergibt sich aus ihnen die zu ¢ normale Schubspan -
nung ¢ nach der Formel

oder mit (10 a) und (10 b)
72 = 0,2 cos® ¢ -+ 0,2 cos? y + g4® cos2 P
— (07 c08% @ - 05 cos2 p -+ g5 cos2P)2 (12a).
Hierfiir kénnen wir auch schreiben
72 = 0% (1 —cos? ) cos® @ -+ 0,2 (1 — cos2y) cos?yp
+ 652 (1 — cos2?) cos?P
— 2 (0, 05 C08% @ cOs2 |- 0y 64 cOs2 1 082 P - 04 05 OS2 cOs? )
oder wegen 1-—cos?q@ = cos?yp -} cos?d usw.
172 = (0, — 0)? c0s? @ cos2p +- (0, — 03)2 cos2y cos?§
=0y 0p)R costheosR iR IR Sl S (2 b
Daraus geht hervor, dali die Schubspannung fiir alle Rich-
tungen verschwindet, wenn, wie schon erwidhnt, im Falle der
vollkommenen Fliissigkeiten o, = 0y <= 65 ist. Behalten die

Differenzen der Hauptspannungen dagegen endliche Werte, so
verschwindet 7 nur, wenn gleichzeitig

cos? @ cos?p = cos®y cos? ) = cos? y cos? § = 0,
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also wenn mit Riicksicht auf cos®g | cos?yp ++ cos?9 = 1
cos ¢ =0, cosyp =0, cosf =1

oder cos g =0, cosw =1, cosd =0

oder cos @ =1, cosy =0, cos =10

ist. Das sind aber die Richtungskosinus der drei Hauptachsen

selbst, womit also nur eine schon oben ausgesprochene Folgerung

aus der Mittelpunktsgleichung (8 a) der Fliche zweiten Grades

eine weitere Bestitigung erhalten hat.

Dagegen entsteht die Frage, ob die Schubspannung 7 in
bestimmten, durch ihre Normalenwinkel g 3?9 gegebenen Ebenen
ausgezeichnete Werte annimmt. Zu ihrer Beantwortung setzen
wir in (12 b) der Kiirze halber

L e i ) — i cos?d =9 | (13
atf+y=1 St
also
= (0, — 092 af+ (06— ) fy+ (03— 0,2 ya (12¢).

Dieser Ausdruck wird ein Maximum oder Minimum, wenn

d (z?) = 0 oder
[(01—0p)% f + (03— 0y)?y] da i
—+[(ay— 052y + (0g —au)2a]ldf | =0- . . (14).

+ [log— 64)* @+ (6, — 03)* fl d y
Da nun nach (13) da = — dp — dy ist, so diirfen

wir hierfiir schreiben

[(ga—05)2 v+ (61— 0p)2a—(01—60)* — (05— 09)%¢1d B

+[(03—0y)* @+ (05— 03)% f—(0,—0p)* f— (03— 0y 7]"5?1 s -

Infolge der Willkiir des Verhiltnisses df : dy miissen aber
die beiden XKlammerausdriicke fiir sich wverschwinden, woraus

[(6s— 03)2 — (63— 01)%] ¥ = (07 — 0,)? ﬁ a) |
[{02"‘03} = (01—02) ]‘8 01—61 E.I [ (141})

hervorgeht. Hierzu tritt® noch durch zykhsc-he Vertauschung
eine dritte Formel, die man aus (14 a) durch Elimination einer
anderen Variabeln statt da gewinnen kann, ndmlich

[(63— 01)2 — (0, — Ga)? ] a = (0p—03)2 (y — B) . (lhc).
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Diese drei Gleichungen sollen nun bestehen fiir ganz
beliebig vorgelegte Werte der Hauptspannungen o, 0,0, was
aber nur moglich ist, wenn mit Riicksicht auf (13)

y =10 a:ﬁ:—;—_,d.h.ﬁzf){)o, fp:iw=i450|

oder a =0 ﬁ:y:%» » =909 yp= 1+ ¢ = 1 459 (15).

1
oder =0 y =d=-

=

P =909 G =% p= £ 450

Die ausgezeichneten Werte der Schub-
spannungen, die sog. Hauptschubspannungen,
liegen also in Ebenen durch je eine der
Hauptachsen, welche den rechten Winkel
der beiden anderen halbieren Die Werte selbst
ergeben sich durch Einsetzen der Winkel (15) in Gl. (12b) zu

: Og = gl == o
u=t25, =t B =t ATH (5,

Zum Schlusse sei noch hervorgehoben, dafl die bisher ent-
wickelten Beziehungen zwischen den Spannungskomponenten
im Innern eines Korpers ganz unabhiingig von dessen Beschaffen-
heit ihre Giiltigkeit behalten, wie sie denn auch im Sonderfalle
den fliissigen Aggregatzustand mit umfafiten. Liegt insbesondere
der ins Auge gefalite Punkt an der Oberfliche des Korpers,
der etwa einem lediglich normal wirkenden Flichendrucke
(z. B. dem Atmosphérendruck) ausgesetzt ist, so nehmen die
Gleichungen (6), in denen jetzt ¢ @ die Richtungswinkel der
Oberflichennormalen bedeuten, wihrend infolge der nach Innen
gerichteten Druckwirkung cos % = cos @, cosd = — cos vy,
cos p = — cos ¥ ist, die Form
(p—+a,) cos ¢+ 7. cosyp 47, co89 =0 ‘
(p~to0,)cosy - r,c080+7,c080=0 ;. . (164)
(p+ 0,) cos ¥ 41, co8 p—+4T1,c089P =0 ‘

an und sind als Grenzbedingungen zu betrachten.

Der schon frither, in §2, untersuchte ebene Span-
nungszugtand ergibt sich natirlich aus dem rdumlichen
durch Wegfall der Komponenten o.7,7,, wodurch auch in (6)
die Glieder mit cosd verschwinden, wihrend gleichzeitig cos 3 —
Sin ¢ zu setzen ist.
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§ 37. Der riumliche Dehnungszustand.

Einfithrung der Verschiebungen eines Korperpunktes. Zusammen-
hang derselben mit den Dehnungen. Allgemeiner Ausdruck fiir die
Dehnung in einer bestimmten Richtung. Definition der Schiebungen
und Verschwinden derselben in der Richtung der Hauptdehnungen.
Bestimmung der Lage und Griofe der Hauptschiebungen,

Die im vorigen Abschnitt besprochenen Spannungskompo-
nenten an einem Korperelemente entziehen sich der unmittel-
baren Beobachtung. Sie stehen dagegen in einem Zusammenhange
mit den Verschiebungen der einzelnen Kérperpunkte
gegeneinander, welche wir zunéchst zu untersuchen haben.

Wenn der Zusammenhang des Korpers nirgends gestort
werden soll — womit der Fall des Bruches an einer Stelle vor-

dd’l
e 54
o e 62 4
! ; o L odp
I I S I 1
e ! i &
M oo L
dz'-« ar dx I J,/'
) e it

laufig ausgeschlossen ist —, so kénnen sich die Verschiebungen
zweier unendlich benachbarter Korperpunkte auch nur nm un-
endlich kleine Betrige voneinander unterscheiden. Dann aber
sind die Verschiebungen selbst stetige Funktionen der urspriing-
lichen Koordinaten a2y z der einzelnen Korperpunkte. Jede
solche beliebig gerichtete Verschiebung kénnen wir nun in drei
den Koordinatenachsen parallele Komponenten £#( zerlegen,
so dal fiir den Punkt z y 2z, unter einem vorgelegten Belastungs-
zustand, allgemein die Bezichungen
‘E:E{xsy:z)! '??:n(mﬂaz)u C“_"C(‘x:yz} (I)
bestehen. Wihlen wir diesen Punkt als Ecke A eines Volum-
elementes (Fig. 153) mit den Seitenldngen da dy dz, so ergeben
sich daraus die Verschiebungskomponenten der diagonal gegen-
tiberliegenden Ecke D mit den Koordinaten
x4 duz, Yy dy, z4dz
“l §+d§1 ’?_E—d??! C+dcv
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worin infolge der Stetigkeit
o0& 0é

df._._ d'r'-’,—a dy —{——--d’
di?:gidwrb—”d? +3 ---dz S P
?) 0 0
' —Cd B ai

zu setzen ist. Diese Ausdriicke sind demmnach als die durch
die Spannungen hervorgerufenen Verschiebungskomponenten
der benachbarten Korperpunkte zyz und z-dw, y-+4dy,
5 -+ dz gegeneinander oder als relative Verschiebungskompo-
nenten zu betrachten. Sie haben zur Folge, dall auch die
Diagonale A D = ds des Volumelementes, welche urspriing-

lich durch
ds?=da2edyt+dz2. . . . . . (2

gegeben war, in A D, iibergeht und dabei eine Verléngerung
Ads erleidet, die sich hiernach zu

dsAds =dxddx+dyAddy +dzAdz

berechnet. Hierin sind aber die Verlingerungen Adx, Ady,
Adz der Seiten d z, dy, dz nichts anderes als die Verschiebungs-
komponenten (1a), so dal wir nach Division mit ds auch
schreiben diirfen

dds=2E g4 3 g

—d" AR (2

woraus sich durch nochmalige Division mit ds die Dehnun g
der Diagonale

dds _dx d§¢ | dy dq :

B Gl ds_'—ds ds+ds T -

ergibt. Bezeichnen wir weiterhin die urspriinglichen Neigungs-
winkel der Diagonale gegen die Achsen mit @y#, setzen also
d"

dw d z
qs = s, d—z: cos 1y, e ecosdi . (3),

so wird aus (2b)

d
i lf LOS‘P-Fd—"OSW"“i“'g—CDS@ AR .



378 Kapitel VI. Allgemeine Elastizititstheorie.

wihrend (1 a) mit (3)

gf E?:z, coaa(p—f—é—cosw—]——— cos® |

i |

dqi b?? (os(p—f——cosy —|— b cos D)
< i

j{’? g:c r‘os¢—}—b&‘ cos y - aé- cos ¥

ergibt. Fiithren wir schlieBlich diese Ausdriicke in (2¢) ein,
so folgt fiir die Dehnung der Diagonale oder all-
gemeiner einer Strecke mit den Achsenwinkeln @ i

E— g‘: cos? g - < a5 coszy,r - g—; cos?

+(Bﬁ+ )noqwmsﬁ-{ ( +é )L-OS’&COS-‘;{?.

bs. D?;P -

+(By+b )(osr; HOda. oo s e S S A
Hierin sind, da lings jeder Achse einer der Winkel verschwin-

det, wihrend die beiden anderen 90° werden, die D e hn un gen

inden Achsenrichtungen

Lddsue
)N
Ady 0
gy = d‘?J — 'Dg (-’l&).
Adz _ o
S 0z

Die diesen Dehnungen entsprechenden Verlingerungen der
Seiten des Volumelemontnq erkennt man deutlich aus dessen
Projektion auf die XVY-Ebene im
Zusammenhange mit der punktiert
Co-- eingezeichneten urspriinglichen Seiten-
ansicht, Fig. 154. Neben diesen Ver-
lingerungen

. o0&

s ek T BBy=Ade= g
4 8 B, 3

Fig. 154, CCl=Ady=b—dy=e dy

de=¢,dx

treten offensichtlich auch Normalverschiebungen der Endpunkte B

und €, namlich

o
B, By — g% de, . L= 'a‘g dy,
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anf, so dal die beiden Seitenkanten kleine Drehungen um die
Winkel

L goh uBaBs nsgait i 0y
BiABy="4p, =%c datddz " dw
GiAl CL0, ) Wt By . e

AC, oy dy+Ady dy
erleiden. Die Summe dIE}SP[' beiden Winkel

+ [’)1}

stellt demnach die And erung des rechten Win-
kels der in der Kante dz sich schneidenden Seitenflichen
unseres Volumelementes dar, der natiirlich zwei analoge Winkel-
dnderungen '

. (4b)

°”+ =

um die beiden anderen Kanten entsprechen. Diese drei Winkel-
inderungen wollen wir als die Komponenten der Schiebung
oder Gleitung bezeichnen.

Fithren wir die Abkiirzungen (4 a), (4b), (4¢) in Gl (4)
ein, so schreibt sich die allgemeine Dehnung der Dia-
gonale

& =g, co8® g+ ¢, cos®yp -+ e, cos? P

by, cosy cos D 4 y, cos D cos @ + y, cospeosy . (D).

Die Gleichung stimmt aber formal mit Gl. (3a) des vorigen
Paragraphen fiir die Normalspannung in der Richtung ¢ 9
iiberein und 1Bt sich wie diese durch eine Fliche zweiten Grades
darstellen, deren drei Hauptachsen in unserem Falle drei zuein-
ander normale Hauptdehnungen entsprechen. Bezeich-
nen wir diese analog den Hauptspannungen des
vorigen Abschnitts mit & e &, so konnen wir auch die Rich-
tungen der Hauptdehnungen als neues Koordinatensystem
wihlen und erhalten dann [iir eine beliebige Dehnung infolge des
Verschwindens der Glieder mit Produkten der Richtungs-
kosinus

g=g; cos2 ¢ + gy cosy L ggecos?d . . . (Ha).
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Sind ¢ ', @' " d"', ¢ """ die Winkel der friihe-
ren X-, Y-, Z-Achsen gegen die neuen Hauptdehnungsachsen,
80 erhalten wir fiir die drei Dehnungen in den urspriinglichen
Koordinatenrichtungen

gy =eyco8? @' g o082y’ e cos2

&y, = &1 0082 " | g5 0082 " | g5 cOS2 P

&, = ec08% @ - &5 c0s? '’ - g4 cosZ P,
woraus nach Addition mit cos® ¢’ -+ cos? " -+ cos2¢”’ = 1
usw. wegen der Normalstellung der drei fritheren Achsen
gegeneinander

£m+€y+5z:81+82+€3 Ll s (6)

sich ergibt. Zur Feststellung der Bedeutung dieser konstanten
Summe der drei linearen Dehnungen betrachten wir den Zuwachs
des Volumens des gedehnten Elementes, Fig. 153, welcher sich
offenbar als das Produkt der neuen Seitenlingen

dx(l 1), dy (1 -+ ¢, dz(l+¢g,)
unter Vernachlissigung von GriBen héherer Ordnung zu

A4dV =dadydzs (1 + e3¢, &) —dV
ergibt, so dal mit dV = dxdydz

-—r'dq-}]—:sﬁ-{—ey-}—ez:sﬂ A ot e (5 )
dV

die sog. kubische Ausdehnung oder Volumdeh -
nung des Korpers an der Stelle xyz bedeutet, die natur-
gemdl nicht von den Achsenrichtungen abhiingig sein kann
und auch von den Schiebungen unbeeinflufit bleibt.

Es bleibt uns nur noch die Ermittelung der Schiebung
in einer Normalebene zur Diagonale AD = ds
unseres Volumelementes (Fig. 153) iibrig. Diese Diagonale er-
leidet durch die Forminderung des Elementes eine Drehung
um den kleinen Winkel D A D;, der gleichzeitig die Abweichung
vom urspriinglich rechten Winkel mit der
Normalebene darstellt und folglich als
resultierende Schiebung y an-
zusprechen ist.  Zeichnet man sich der
Deutlichkeit halber das unendlich schmale
Dreieck A D D, in Fig. 155 nochmals her-
Fig. 155. aus, und setzt die Verschiebung DD, = dr,
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s0 ist mit Ads =eds

wEds?—gps— R g se
oder

2_(2'2 7
x'ds)ﬂ“’ T S e SRS B (721

Da weiterhin 1) D, als Resultante der drei Achsenverléinge-
rungen im Hauptachsensystem durch

drt=e2da? + e2dy® -+ e2d2?

bestimmt ist, so folgt mit den Achsenwinkeln ¢y

(%)“: & cos? g + & costy ey cos?d .. (8),

wihrend & sich aus (5 a) berechnet. Mithin wird
y2 = &;® cos® @ - &,% cos? p -+ g2 cos? )
— (&g cos® p | egacos?p Fegc0829)2 . . . (Ta)
oder umgeformt nach Analogie der Gleichungen (12a) und
(22 b), § 36,
72 = (£ — &5)? c08> @ c0s> Y + (85 — £3)” cos?® y cos? &
ol (gp—83)2 0088 FicosP @i ir & ot ow w (TD).

Wegen des formal durchaus gleichen Autbaues dieser Glei-
chung mit (12b) des vorigen Paragraphen lassen sich die dort
fiir die Schubspannung gezogenen Folgerungen unmittelbar
auf die Schiebung y iibertragen. Insbesondere verschwindet
diese in den Richtungen der Hauptdehnungen und besitzt aus-
gezeichnete Werte im Betrage von

£y — & £q— & & —E .
xl C o _t 2_;'.! i + = 1 i ..t __2_ (U)

in den 6 Ebenen, welche durch je eine Hauptachse gehen und die
rechten Winkel der beiden anderen halbieren. Diese Werte kinnen
wir entsprechend den Hauptschubspannungen (15 a), §306, als
Hauptschiebungen bezeichnen.

Es braucht wohl kaum noch hervorgehoben zu werden,
daB die vorstehenden Sitze iiber die Dehnung ebenso unab -
hingig von der Natur der Korper ihre Giltigkeit
behalten, wie die im vorigen Abschnitt iiber die Spannung er-
haltenen Resultate.
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§ 38. Spannungen und Verschiebungen in isotropen Korpern.
Linearer Zusammenhang zwischen Spannungen und Dehnungen. Ab-
leitung der Formeln fir die Hauptachsen isotroper Korper aus dem
Versuch. Ausdehnung auf beliebige Achsen vermittelst der allgemeinen
Gleichungen. Ableitung der Bezichung zwischen dem Elastizitiats-

modul, Gleitmodul und QuerkoﬁtrakLionskoefﬁzienten.

Die in den vorigen beiden Abschnitten angestellten Unter-
suchungen iiber die Spannungen und Dehnungen bzw. Glei-
tungen waren ganz alleemeiner Natur und daher unabhingig
von jeder besonderen Korpereigenschaft. Sobald es sich aber
darum handelt, Bezichungen zwischen dem Spannungs- und
dem Dehnungszustande aufzusuchen, sind wir wieder auf die
Erfahrung angewiesen. Diese liefert uns, solange wir uns auf
kleine Forméanderungen beschranken, fiic alle festen Korper
einen linearen Zusammenhang zwischen den Deh-
nungen bzw. den Gleitungen einerseits und den Spannungen
andererseits, so dal also, da von jeder Art 6 Komponenten
vorliegen, zwischen ihnen ebenso viele Gleichungen mit ins-
gesamt 36 Konstanten bestehen, die sich aus Symmelrie-
griinden auf 15 reduzieren lassen. Diese Gleichungen fithren auch
in den einfachsten Fillen zu so verwickelten und zeitraubenden
Berechnungen, dall sie fiir praktische Zwecke ganz hinfillig
werden. Gliicklicherweise braucht man deshalb noch nicht auf
jede theoretische Verfolgung von Spannungszustinden zu ver-
zichten, da die meisten und fiir die Technik wichtigsten Bau-
stoffe ganz oder doch nahezu als isotrop angesehen werden
konnen (vgl. §1). Auf solche Kédrper, bei denen keine Richtung
physikalisch vor der anderen einen Vorzug aufweist, wollen wir
uns, wie schon bei der fritheren Behandlung spezieller Probleme,
nunmehr auch fir allgemeinere Untersuchungen beschrinken.
Daher diirfen wir an den in § 1 geschilderten Versuch an einem
Stabe ankniipfen, der unter der Wirkung einer positiven oder
negativen Axialkraft entsprechend einer Normalspannung o, im
Querschnitt eine durch die Gleichung

Ber= oy - (1)
bestimmte Dehnung e erlitt, wihrend gleichzeitig im Quer-
schnitt sich eine Querkontraktion

b e L il
gl — PN Eﬂ......(id)
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geltend machte. Die in diesen Erfahrungsformeln auftretenden
beiden Konstanten, d. h. der Elastizitdtsmodul B
und der Querkontraktionsfaktor u ergeben sich
bei isotropen Kiorpern als unabhéingig von der Richtung der
Spannung o.

Rufen wir in unserem Stabe durch eine zur Achse normale
Seitenkralt die damit gleichgerichtete weitere Spannung o,
hervor, so wird nicht nur in deren Richtung eine Dehnung ein-
treten, die sich der von o; herrithrenden Querdehnung iiber-
lagert, sondern es wird auch die Achsendehnung & um einen

: 0y : s : &
Betrag E,L-r vermindert. Wir erhalten daher jetzt fiir Dehnungen

in den Richtungen von o, und o,

E£1 = 01_' ;’f
; @)
EE‘2 = ng—{f_.:.

und normal zu beiden Spannungen die von ihnen bedingte
Querkontraktion
0y - G:
Ee =— ijl-_—ﬁ. L e
K
Wirken schlieBlich drei zueinander normale Kriifte mit den
zugehdrigen Spannungen o, 0y 03, 80 ruft jede aul?-m.- der gleich-
gerichteten Dehnung normal dazu ihr proportionale Querkontrak-
tionen hervor, so dall wir alleemeiner

Eg =0, — 02_?73_
Egy= 92—0—3—;‘;'& b (3)
Egy = 05— 21#3

erhalten. Da in den zu den Spannungen normalen Ebenen keine
Schubspannungen wirken, so haben wir 6,0,05 als Haupt-
spannungen anzusehen. Aullerdem beobachten wir, daf
diese Ebenen ihren rechten Neigungswinkel gegencinander nicht
dndern, dall also in ihnen keine Gleitungen herrschen. Damit
aber sind auch die Grolen e, e e als Hauptdehnungen
gekennzeichnet, und die Giiltigkeit der drei Erfahrungsformeln (3)
ist vorlidufig auf drei Hauptachsen eingeschrinkt.
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Addieren wir die drei Gleichungen (3) zueinander und er-
innern uns, dal nach dem vorigen Abschnitt
il e - lal =) g e (3, e, G
die von der Richtung unabhéngige Volumdehnung bedeutet,
so ist
— 2

8”:(01+U2+03)_;L

Daraus berechnen sich weiter die Summen je zweier Normal-
spannungen

(5).

Ep

Oy + 03 = u—z sl
E

03+ 01 = #f-z-s,,,—og { . (3a),
En

01—‘—02:“—_2"5@"—5‘91

deren Einsetzen in (3) fiic die Einzelspannungen

2 22

1= g1
Eu |
AT (2+ #—?)
En
iy S (”L H-‘})l
ergibt. Aus Gl. (5) erkennt man noch, daB fiir u = = 2 die Volum-
dehnung verschwindet, womit das zweite Glied der Klammer-
ausdriicke rechts in den Formeln (3b) unbestimmt und diese
selbst unbrauchbar werden. Es liegt dies einfach daran, dal

die Addition von je zweien der Gleichungen (3), z. B. der zweiten
und dritten

g

. (3b)

1 20
E (g -+ &) = (02 -+ 03) ( "”')_ ‘ul
fiir u = 2 und &, = 0 wieder die erste Gl. (3) ergibt, so dall also
in diesem Falle die drei Formeln (3) voneinander nicht mehr
unabhiingig sind.

Um nun den Zusammenhang zwischen der
Dehnung ¢ und der Spannung o in einer
beliebigen Richtung ¢@ud gegen die Hauptachsen
zu ermitteln, greifen wir auf die, Gl (10b), § 36, némlich

0 = o; cos? ¢ 4 g5 cos®>y 4oz cos? P . . . (6),.
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zuriick und fithren in diese die Ausdriicke (3 b) ein. Dadurch
geht sie mit Riicksicht auf cos?¢ -+ cos? p + cos?d = 1
iiber in

g— U i l (al cos? @ + &5 cos?y + &5 cos® D - ——---—.)-) (Ga),

worin nach GL (5a), §37,

gcos?p 4 ggc08% Y f-ggcos2d=¢ . . . (7)
die Dehnung in der Richtung ¢ & bedeutet. Somit haben wir
auch an Stelle von (6)

g:—ﬂ-*(w & ) Sl e e

womit die Allgemeingiiltigkeit des bisher nur fir die Haupt-
achsen aufgestellten Zusammenhanges zwischen den Normal-
spannungen und Dehnungen im isotropen Korper erwiesen ist.
Wir diirfen daher jetzt fiir drei beliebige, zueinander senkrechte
Achsen XY Z an Stelle von (3b) schreiben
— E‘.‘_L ( | i) )
L w1 el u—2,
Eu | Bl
=T [ay+”_2--) & reiemiondl
Eu
%= a1 ("+ ,uw—-Z)
und wegen der Unabhﬁngigkeit der Volumdehnung von der
Richtung, vgl. Gl (6), §37,

en:el—}—eg—l—ss:em—i—sﬂ—i—eg o e e LG
diese Formeln (8) umgekehrt nach den Dehnungen auflosen,
WOraus

Eax:ox—%l
Eeg=o,,—% Yt 2 ol 218
.Eezzoz—o’“‘_;&

hervorgeht. Es sei noeh besonders hervorgehoben, daf in
diesen Gleichungen weder die Gleitungen g
noch die Schubspannungen z auftreten, ob-
wohl sie in den jetzt beliebig gewihlten Koordinatenebenen

Lorenz, Elastizititslehre. 25
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nicht verschwinden. Um i{iber deren Zusammenhang Auf-
schluB zu erhalten, setzen wir in die fir jede Richtung giiltige
Formel (6a) den allgemeinen Ausdruck (5), § 37, fur die Deh-
nung in der Richtung @y gegen die Achsen XY Z, niamlich
& =g, 008% @ + &, cos® yp + ¢, cos?
~+ 5. cosp cos P -+ y, cosd cosp+ g cospeosy . (9)
ein und erhalten so

I\'
o= _‘i i (e, cos® @ + g, cos® y 1+ &, cos* )
LJL& S.v L 2 a L
R e e R e

Eu
G o }.'_—}—_1 (s cOs y cos & -+, cos ) cos @ + 7, COS @ cos ).

Ziehen wir hierin die mit gleichen Richtungskosinus behaf-
teten Glieder der ersten beiden Klammern zusammen, so wird
daraus mit Beachtung von (8)

6 = 6, c0s®> ¢ -+ g, cos? p + g, cos? &
#i i (55 cOsyp costh - y, cosd cos @ -y, cosqcosiy) (9a).

Fiir diese Spannung in der Richtung ¢ v ¢ gegen die Koordi-
natenachsen hatten wir aber in § 36, Gl (7a), den allgemeinen
Ausdruck

0 = 0, C08% @ -+ 0, cos? y + g, cos* &
-~ 27, cosy cosd + 27, cosd cosp -+ 21, cosp cosy  (9b)

abgeleitet, der von (9 a) abgezogen

(ul_fi i 2:0,) cosy cos i
E
+(#—lf¢1 T 2%)@0515‘009.@; =0." % @Ge)

+( E+1 Ae — 21:2) COS ¢ COSY

ergibt. Infolge der Willkiir der gewéhlten Richtung kann diese
Gleichung aber nur dann bestehen, wenn gleichzeitig
Eu Ep Eu

=@+t =2t n T aEFnt 10
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besteht, d. h. wenn alle drei Gleitungen in den Koordinaten-
ebenen den drei zugehorigen Schubspannungen derart proportional
sind, daf ihre Quotienten

&:T_ﬂ:f&:_‘. E_fﬁf R SR L (T

e v X 2+
einer und derselben Konstanten gleich sind, die wir schon {riither
als den Gleitmodul oder Schubelastizitdts-
modul bezeichnet haben. Auch die Bezichung zwischen
dieser Grofe und dem Elastizititsmodul £ sowie dem Quer-
kontraktionskoeffizienten g haben wir schon in §2 aus dem
speziellen ebenen Spannungszustand eines Volumelementes abge-
leitet, wihrend sie hier als Folgerung der allgemeinen Gleichungen
fiir den rdumlichen Spannungs- und Dehnungszustand am iso-
tropen Korper erscheint. Dieser ist somit nur noch durch zwei
physikalische Konstanten gekennzeichnet, wiéhrend die dritte
aus ihnen durch Gl (11) berechnet werden kann. Diese Gleichung
ist geradezu als ein Kriterium far die Isotropie
eines Korpers anzuschen; ihre Erfillung sollte darum stets
gepriift werden, wenn es sich um den Vergleich von direkt ge-
messenen mit den aus der Elastizitdtstheorie berechneten Ver-
schichungen oder Kriften handelt.

§ 39. Grundformeln der Bewegung und des Gleichgewichts
isotroper Korper.
Entwicklung der Grundformeln aus der stetigen Anderung der Span-
nungskomponenten. Vernachlassigung der Anderungen des spez. Ge-
wichts und Beschriankung auf kleine Bewegungen. Elimination der
Spannungen und Dehnungen. Diskussion der Grenzbedingungen.
Die Formanderungsarbeit.

Wirken auf einen elastischen Korper dufiere Krilte, deren
Resultante die drei Komponenten X Y Z in den Achsenrich-
tungen besitzt, so entfallen davon auf ein Massenelement dm des
Korpers, welcher mit dem spezifischen Gewichte y das Volum-
element dx dy dz derart erfiillt, daB

dngdxdydz i iy e T (O
ist, die Betriige d X, dY, dZ. Hierdurch werden nun in den

Seitenflichen des Elementes die Spannungskomponenten o, g, 0.,

25%
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7, T, T, geweckt, die ihrerseits im Korper stetig verdnderlich sind.
Daher wird z. B. in der X-Richtung die auf der linken Seiten-
fliche, Fig. 156, wirkende Normalspannung g, bis zur rechten
; : : : 06
Seitenfliche von gleicher Grofie, ndmlich dy d z, auf g, 4- a—; dax

angewachsen sein, wihrend in gleicher Richtung die Schubspan-
nung 7, in der Hinterfliche daxdy bis zur Vorderfliche auf

0T
Ty a/y

o7
bis zur Oberfliche auf 7, ; d y zugenommen hat. Daraus

dche dzdx

ergeben sich die in der X- Richtung treibenden Krifte durch

1:" 9Tz
I Tt ay
R
e
gl o i
<{-- | Ty*a—z!
Syl gutaling
,'-Cz-c -———
e dx
iz

Fig. 156,

Multiplikation mit den zugehdrigen Fldchenelementen, so zwar,
daB infolge der paarweise entgegengesetzten Spannungen die
Krifte

' ; d :
(Um e %‘;“‘—d:r) dyds— oxdydzz%dmdyd;

d
(r,, Sk a’—”rzz) dady—rz,dady =%fj’— dadydz

( +b n’J)d de —1.dz d:{,-—; dedydz

iibrig bleiben. Deren Summe tritt nun zu der gleich gerichteten
Komponente dX der #ulieren Kraft hinzu und erteilt der Masse dm
eine Beschleunigung dw, : dt, wenn wir die momentane Ge-
schwindigkeitskomponente in derselben Richtung mit w, be-
zeichnen. Auf diese Weise entsteht die Gleichung

(boI 0T, s hrz

tl,t:dydz—}—cfz\’:{im.d—%"— o L

3 di
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wofiir man auch nach Division mit dm unter Beriicksichtigung
von (1) schreiben kann

104 ‘|‘ r\r?_. arz_ b dX :i"ﬂ_r

by " dm dit

Hierin bedeutet aber das zweite Glied links nichts anderes

als die 2-Komponente der Beschleunigung der iuferen Kraft.

Setzen wir dafiic unter Hinzufiigung der beiden anderen Kom-

ponenten dX 4 d_Y = (_E_Z_ s 2
m. gy Tl g e e 8

so erhalten wir schlieBlich an Stelle von (2a), sowie daraus
durch zyklische Vertauschung fiir die beiden anderen Richtungen
die Gleichungsgruppe

00, B‘r,, _dw,
ettt e=t
g (99, B : b % d
_y_( a, + T. (4 )+ Gy = ;;v Wi, (4).
g boz : brm i rr’w
y(_bz _'—_by bx)+ Q=

In diesen Formeln, die ebenso wie die Entwicklungen der
§§ 36 und 37 von der Natur des betrachteten Korpers ganz un-
abhéngig sind, haben wir das spezifische Gewicht » als eine un-
verinderliche Grofe behandelt. Das ist indessen nicht streng
richtig, vielmehr ist mit Riicksicht auf die Volumdehnung exakter

= Poonl—s) . ... @

zu setzen, worin y, das spezifische Gewicht des noch spannungs-
freien Korpers an der fraglichen Stelle bedeutet. Man sicht
jedoch, dali der durch die Vernachlissigung des bei elastischen
Forménderungen stets sehr kleinen Bruchteils e, gegen 1 he-
gangene Fehler um eine Griflenordnung niederer ist als die
Einzelglieder der Formeln (4), womit die Vernachlissigung
selbst gerechtfertigt erscheint.

Die in den Bewegungsgleichungen (4) auftretenden G e -
Sschwindigkeitskomponenten sind weiterhin ledig-
lich durch die zeitlichen Anderungen der Lage der einzelnen
Kérperpunkte bestimmt, so dah, da die Koordinaten zy z im
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unbelasteten Ruhezustande von der Zeit unabhingig sind,

e Lo ape o
a s Warste el By S o (6)

gein mufl. Setzen wir nun voraus, dall diese Geschwindigkeiten
ebenso wie die Verschiebungen & % £ sehr klein bleiben, so diirfen
wir in dem allgemeinen Ausdrucke fiir die Beschleunigung

dw ow ow oW dw

T TRttt Ry

die Produkte kleiner Grifien vernachlissigen und uns auf das
erste Glied beschrinken. Dann aber haben wir in Gl (4) mit (6)
zu schreiben

ol P G

d¢ 3t o

dwy _ 0wy _ 09 |
dt 9t 1 e |

. (6a)

dw, _ 0w, _ 020
T ey ek,

und fiir die Formeln (4) selbst
(bax bry Drz)_l_ h 0%

0a, brz b‘.':m

( oy T s T )

0a B?: 61'1 . 02

( i a;f;)""@i'f=az2

Im Falle des Gleichgewichts verschwinden natiir-

lich die rechts stehenden Beschleunigungskomponenten, womit
sich die Formeln in

S a).

?;(Bom bry_i_ Orz)_i_gmzo
0 01, 07,
y(-?“r St ) 44, =0 (4b)

boz bi,'x ar,1l o

vereinfachen. Solange als &uBere Kraft nur die Schwere an
der Erdoberfliche, d. h. das Eigengewicht des Korpers, in Frage
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kommt, ist es meistens auch noch zuldssig, die Komponenten
s Gy q» der Erdbeschleunigung g, welche iiberdies unter Vernach-
lassigung des Einflusses der kleinen Verschiebungen als Kon-
stante betrachtet werden konnen, gegeniiber den Klammer-
werten zu unterdriicken. Das ist indessen nicht mehr gestattet,
wenn das Eigengewicht des betrachteten Korpers die einzige
Ursache seiner Forménderung bildet. Insbesondere im Falle der
Rotation des Korpers um eine Achse mit der Winkelgeschwindig-
keit @ stellen die GroBen g, ¢, ¢. die Komponenten der Zentri-
fugalbeschleunigung ¢ = r ®® im Achsenabstande r dar, deren
Einfluf auf die Forménderungen und die Spannungen im Innern
des Korpers ausschlaggebend sein kann. Jedenfalls aber kinnen
wir {iir unsere weiteren Untersuchungen die Gréfen ¢, q, ¢, als
von vornherein gegebene Funktionen der Koor-
dinaten xyz ansehen, wihrend die Spannungskomponenten
0y 0y G,y Ty Ty T, SOWie die Verschiebungen & % ¢ zu berechnen sind.
Wir haben es also im ganzen mit 9 abhéngigen Variabeln zu
tun, zu deren Bestimmung als Funktionen der Koordinaten
sowie der Zeit die drei Bewegungsgleichungen (4 a) keinesfalls
ausreichen. Die hierzu noch fehlenden 6 Formeln liefert uns
nun der in § 38 behandelte Zusammenhang zwischen den Span-
nungen und Dehnungen des Korpers, den wir von jetzt ab stets
als einen isotropen betrachten wollen. Dann haben wir
zundchst fiir die Normalspannungen nach GL (8), § 38,
unter gleichzeitiger Benutzung der Beziehung (11) zwischen den
Elastizitiatskonstanten £, G und p sowie wegen (4 a), § 37,

s _on L 8L
fa= 3’ Sw_by’ =2z 0
pE , on ol

8y = Ey &y T 8 = a,t—i_ dy +az

die drei Formeln

R B e
'awz‘aﬂr[gﬁ—l— ;z—?ﬂ(bx_'_b_y_k a:ﬂ l
07 1 (?}5 oy 0f l
ag-;zc[sy- w=2 \b:u:—i_'by_l_bz_) 8)
e RS o og _9_5)
o ZG{E‘ﬁ'm(aﬁ y T3]
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Andererseits hatten wir fiir die Gleitungskomponenten nach
(4b) und (4¢), § 37,

25 07 ol
S
ol o0&
ﬂ_a—I_ oz (U]v
e
& oy + ow

womit die Formeln (

11), § 38, fiir die Schubspannungen
iibergehen in

(10).

Fithren wir die Ausdriicke (8) und (10) in die Klammeraus-
driicke der Bewegungsgleichungen (4 a) ein, so erhalten wir nach
Zusammenziehung der mit gleichen Faktoren behafteten Glieder
z. B. fiir die erste dieser Formeln

00, bry 02& 02& 028\
dx e + a@, (aﬁ 042 D"g)

G 0213
gy s (amz L aa:a )

oder unter Benutzung der neuen Abkurzungl)

22E d2E 2L (_
S af—{ B 2Eh C T T
sowie der Volumdehnung
o0& a7 ot b
> +Ty'+ 35
aav,, \ru AT, p 0Bey _
P ﬁzf_ 2i u—2 dz) - 38).

] Dieses Zeichen A, der sog. Laplacesche Operator, ist
natiirlich nicht mit dem gelegentlich fiir elastische kleine Ver-
schiebungen gebrauchten Differenzzeichen .4 zu verwechseln
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Damit sind die Spannungsglieder vollstindig in den Ver-
schiebungen ausgedriickt und wir erhalten an Stelle der For-
meln (4 a) nach Aufstellung analoger Ausdriicke fiir (11 a) durch
zyklische Vertauschung

L u Qg e
7 ( £t n—g El.l.)_!_g"" oL
029
ﬁ ( _-' Y )‘1’" !’_652? .« (4o,
g 7 ba 04g
?G(&{:J'_ n—2 _b_m)—i_ = =3¢

aus denen die entgprechenden Gleichgewichtsformeln wieder
durch Verschwinden der rechts stehenden Beschleunigungs-
komponenten hervorgehen.

Das Ergebnis unserer Betrachtungen sind nunmehr drei
partielle Differentialgleichungen zweiter
Ordnung fir die drei Verschiebungen & ¢, denen auch bei
vorgelegten Funktionen ¢, ¢, ¢, von den Koordinaten eine grofe
Mannigfaltigkeit von Losungen geniigen kann. Von diesen haben
in jedem Einzelfalle nur solche eine praktische Bedeutung,
welche den Grenzbedingungen an der Kérper-
oberflache geniigen. Diese Bedingungen besagen nichts
anderes, als dall an jeder Stelle der Oberfliche die drei von den
Spannungen herriihrenden Komponenten mit der gleichgerich-
teten Komponente der auf der Oberfliche lastenden Aufen-
spannung tibereinstimmen miissen. Hat die Normale zur Ober-
fliche die drei Neigungswinkel ¢ @ gegen die Achsen, so sind
die in die Achsenrichtungen fallenden Spannungskomponenten
durch die Gleichungen (6), § 36, gegeben, welche wir darum hier
nochmals anschreiben wollen. In diesen Formeln

Gy COB @ + T, COSY - T, cos® = p cosx 1
0, cos Y -+ 7, cos ¥ + 7, cos @ = p cos (12)

0, 08 ¥ -7, cOS @ + 7, cOSY = p cos ‘
bedeutet p die resultierende Oberflichenspannung mit den
Neigungswinkeln » 4 u gegen die Achsen, die im Falle eines reinen
Flissigkeitsdruckes mit den Normalenwinkeln ¢ y@ zusammen-
fallen. Steht die Kérperoberfliche, wie dies sehr hiufig der Fall
sein wird, lediglich unter dem Atmosphirendrucke, dessen Grobe
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gegeniiber den im Innern herrschenden Spannungen keine Rolle
spielt, so wird man in den Grenzbedingungen (12) unbedenklich
p = 0 setzen diirfen.

An solchen Oberflichenteilen, in denen zwei elastische feste
Kérper sich beriihren, haben aulerdem noch die Verschiebungen
dort gewisse Bedingungen zu erfiillen, die wesentlich davon
abhiingen, ob an den Berithrungsstellen ein Gleiten der Kérper
aneinander stattfinden kann oder nicht. Bei der groflen Mannig-
faltigkeit der Grenzbedingungen erscheint es nicht zweckmélig,
diese generell von vornherein zu formulieren; wir wollen dies
vielmehr im Anschlufl an die spéter zu behandelnden Einzelfille
durchfiihren.

Dagegen wollen wir zum Schlusse noch die beim Anwachsen
der Spannungen von Null bis zu ihren Endwerten geleistete
Forminderungsarbeit berechnen, deren Kenntnis sich
gelegentlich als niitzlich erweist. Zu diesern Zwecke erinnern
wir uns, daf, wenn z. B. unter der Spannung g,, also einer Kraft
o,dydz, sich die gleichgerichtete Dehnung um de, vergriofert,
dies einem Kraftwege d z de, entspricht, so dall also

gyde,dadyds = o,de, dV

das zugehorige Element der Forménderungsarbeit darstellt, zu
dem noch zwei analog gebaute fiir die Normalspannungen in
den beiden anderen Richtungen hinzutreten. In gleicher Weise
leistet aber das von der Schubspannung t, herrithrende Krifte-
paar 7, dy dzdx = 1, dV durch VergroBerung der Gleitung um
dy, die Arbeit 7, dy, dV. Unter Hinzufiigung der Arbeitselemente
der beiden anderen Schubspannungen erhalten wir somit fiir
die Gesamtarbeit an unserem Element

dL=dV {(0,de,~+0,de,+ 0,de, + Tud o+ Tyd gy + T2d 2:) (13),

worin sich die Integration iiber die Dehnungen von Null bis zu
ihren Endwerten entsprechend einer stetig zunehmenden Be-
lastung zu erstrecken hat. Driicken wir nun die Dehnungen durch
die Spannungen aus, setzen also nach den Gleichungen (8 a)
bzw. (11) in § 38

oy + G,

Ee, = 0,— TR e G oo =Ty USW.,
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s0 wird aus (13) unter gleichzeitiger Division mit dV diespezi-
fische Formédnderungsarbeit

‘ﬂ‘___lg 0,40y + 0,d0; 1 Sﬂ

T7="F | eston— L %0 TG )T
1 a,do, + o,do, | i

s Tf(oydoy — ﬁ—y—) Zatran j oty
o 06,do, + 0,dg, 1 (

+ 7 j (ozdfcz — . )—I— ! 7,47,

oder nach Zusammenziehung je zweier mit 1 :p behafteter
Glieder nach dem Schema o, d 6, + 0, d 5, = d (0, 0,) und darauf
folgender Ausfiihrung der Integration von 0 bis g, usw.

dL Ty (gﬁ—i—gﬁ—i—gz __i;gz+gzom+ai?1)

1 N

2 7
tog @ hnitd . . (13a)

Fiir die erste Klammer auf der rechten Seite dieser Formel
diirfen wir aber auch schreiben

Oy Oy+0\ | oy 0:+0:\ [ _Gto
2(°”ﬂ I )+ (O”’_ 7 )+2(Gz "

=5 (0 &+ 0,6,+0.¢
und fiir die zweite
e e e 7 e Te X
damit geht (13 a) iiber in
aL !
i e (Osky + Oyl 1 Guba -+ T o+ taxs +7as) (1Sb)e

Soll dagegen die Arbeit in den Dehnungen ausgedriickt
werden, so sind die Normalspannungen durch die Formeln (8)

e ' ’!F
o, =2G (Sx-l“ B= 2) USW.
und die Schubspannungen wieder durch 7, = G 4, usw. zu eli-

minieren, woraus dann wegen &, = &, ¢, + ¢,

aL _ . el elte?t & _i_‘.l..{ 2L y2t 0| (13¢
i A Sy 2 o 9 K K Az 5 C)
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wird. Aus den Formeln (13) bis (13 ¢) ergibt sich danndietotale
Formadnderungsarbeit nach Einsetzen der Spannungen
und Dehnungen als Funktionen der Koordinaten durch Inte-
gration iiber das ganze Kiorpervolumen.

Im Falle des Gleichgewichts unter der Einwirkung
dullerer Krifte ¢ mull die von diesen geleistete Arbeit L,
die sich mit den Verschiebungen s der Angriffspunkte dieser
Krifte zu

L, = j(Qldsl + Qodsy+ ) = _}','_S‘st - - (14)

berechnet, der oben ermittelten Forménderungsarbeit L der
inneren Krifte gleich sein, so dall also z. B. mit (13 ¢)

T g 2 T 2

zj 0ds =G R (&:ﬁ—l—eﬁ—l—sﬁ T %"—) dv (15)
wird. Es ist dies nichts anderes, als der Ausdruck des Prinzips
der virtuellen Verschiebungen in seiner Anwen-
dung auf isotrop -elastische Korper, die man Kirechhoff
verdankt. Dabei darf nicht ibersehen werden, dall die Be-
zichung (15) nur so lange exakt gilt, als die durch (7) und (9)
definierten Dehnungen bzw. Verschiebungen neben allen Grenz-
bedingungen des Problems auch den aus (4b) durch Weglassung
der Beschleunigungskomponenten hervorgehenden Differential-
gleichungen des Gleichgewichts

g phanges Foug
g (L\.f T =3 b.x;_) Sl

v

g S AoEs]

?G(&’H'}IZE ay)+f?u=0 s el
£l e

?G(m" i —2 'W)Jrqz—f)

geniigen. Mit den daraus hervorgehenden &x{ sind dann auch
die Verschiebungen s der Angriffspunkte der Krifte Q bekannt,
so dall auch die linke Seite von (15) berechnet werden kann.
Es hat sich nun gezeigt, dall die Auffindung derartiger strenger
Lisungen der Gl (4d) nur in wenigen Fillen gelingt; daher ist
man im allgemeinen auf Nédherungsldsungen ange-
wiesen, wovon in der technischen Praxis ein umfassender Ge-
brauch gemacht wird, ohne dafl man sich immer iiber deren
Tragweite und Zuléssigkeit Rechenschaft ablegt. T
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§ 40. Niiherungslosungen elastischer Probleme,
Zusammensetzung einer Néherungslsung aus Funktionen, welche
den Grenzbedingungen geniigen. Bestimmung der Koeffizienten aus
der Bedingung ausgezeichneter Werte der Forménderungsarbeit. Bei-
spiel fiir das Verfahren. Umformung auf den Ansatz von W. Ritz.

Es liegt nahe, Ndherungslésungen nach dem Vor-
gange von W. Ritz einfach aus einer Reihe von Funktionen
der Koordinaten F,F,.. @, D,.. ¥, ¥, welche die Grenz-
bedingungen des Problems fiiv sich erfiillen, nach dem Schema

E=a Fi -+t asFy—++ ‘
N=0Dy 4 b,Dy4-+++ . . . . . (1)
(= c1g11_|_ LT S J
zu bilden, worin die Koeffizienten a; ay..b;by..¢;¢5... vor-
laufig statisch unbestimmte GroBen darstellen.
Berechnet man mit diesen Ausdriicken zunéchst die Arbeiten L
der innern und L, dpr EiuBercn Krifte, so liefert deren Uber-
einstfimmung nach Gl (15), § 39, d. h.
MR A e R Rl |

eine Bedingungsgleichung zwischen den Koeffizienten abec.
Enthélt die Niherungslosung iiberhaupt nur einen solchen
Koeffizienten, so wird er durch Gl (2) eindeutig bestimmt,
womit das Problem schon vollstindig geldst wire. Es entspricht
dies etwa dem in § 30 eingeschlagenen Verfahren zur Berechnung
der Biegung krummer Rohre, wo allerdings an Stelle. einer Ver-
schiebung eine Spannung als Funktion der Koordinaten mit
einem unbestimmten Faktor eingefithrt wurde.

Im allgemeinen Ialle mehrerer Koelfizienten a b e diirfen
wir vermige der Gl. (2) einen derselben, z. B. @y, durch sdmtliche
andere als gegeben ansehen. Diese Koeffizienten sind nun so zu
withlen, dafl die Forménderungsarbeit nach den Ausfithrungen
des § 7 ein Minimum wird, woraus die Gleichungsgruppe

OL | dL dg 0 0L, | 3L, d0ay AL
das ' Oay O0ay 7L TR Mo
oL da; oL, i O0Ls day
% _f)_c_fl _a?f; = af.'g, f)iil Gn‘rs. i e
E)I_ EIL afgf_l_ i DL“ \”‘_’:"_ % e
0by ' 0ay 0by 0b; 0ay 0by
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resultiert, Eliminieren wir aus je zwei nebeneinander stehenden
3 ' day Oa da . :
Formeln die Ableitungen < ~— -+« <7 usw., so bleiben die
= Ody Odg 0y
Bedingungsgleichungen

OL dL, dL oL, _
0ay 0dy dilop Dagl B
3L 3L, ¥ dLy _

day 'b:(]ia'__hfrr.s 0y Sanhmad i
o, oL, "t alorl

da; 0by by vy

iibrig, deren Zahl im Verein mit (2) gerade zur Berechnung der
Koeffizienten @ b ¢ ausreicht. Da die innere Arbeit die Koeffi-
zienten als Quadrate bzw. als Produkte miteinander enthilt,
die duBere Arbeit dagegen nur linear in den Koeffizienten ist,
s0 sind die Gleichungen (4) sdmtlich linear, wodurch jede Mehr-
deutigkeit ausgeschlossen ist.

Um das Verfahren an einem einfachen Beispiele zu erldutern,
betrachten wir einen einseitig horizontal einge-
spannten Balken, der am freien Ende die Last Q trigt.
Ist & die Durchbiegung im Abstande z von der Einspannung,
s0 wird die innere Arbeit bei einem Tréagheitsmomente @ des
Balkenquerschnitts

L&

-(dzg)gdz. mERlaiay e

dz

EQ

L=~

S

withrend die &uBere Arbeit mit der Durchbiegung & des freien
Endes

Lazgcgﬂ........ (6)

ist. Schreiben wir nun gemall Gl (1)
E—mPbag2® . s o s e (7),
so lolgt
if-é—:2(11;a~1(-i-’u5r,2z2 OBy el o7 1
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wonach, der als Grenzbedingung anzusehenden Einspannung
geniigend, sowohl & als auch die Ableitung d & :dz fir z =0
verschwinden. Weiter ist fiir das freie Ende z =z,

LRSSt e il o S RSSO ) 3 )
und auBerdem d2&
ﬁ=2f¢1+6uzz R L o T

Dies liefert fiir die innere Arbeit (5) nach Ausfithrung der
Integration

L=2E@ (a2 + 3aya,52 + 3a2z3) . . . (5a)
und fiir’ die duflere Arbeit
Lo S ge® L aa
also
B ; oL Q
a_a =2E0 (20120 + 3ay5?), ba: =g %°
Sl 8L) . 0
e e aa ORI b 7 2 3 LL I 3
aaz—ZL@(S’al‘ﬂ 164,557, da, 9 %o

Eingesetzt in die Gleichung
DL Ly DL AL, _
0ay 0dy das O0ay
liefert dies nach etlichen Kiirzungen
b aegm =0y o D,
wihrend die Gleichheit der beiden Arbeiten (2) auf
4E O (a2 + 3 aya55° 4 3 a522) = Q (212> + a25%) (2a)
fiihrt und mit (4 b)

ala)

Z
“22_%* aizz(iﬂ() T

ergibt. Mithin ist die gesuchte Losung mit (7)
Q 2
§=m(zzzo=-§) v w8 el

was man auch unmittelbar durch Integration der Momenten-

formel
d2E
E @_-d? = (ZU - Z)

erhalten hétte. Das Resultat unseres Verfahrens ist also in diesem
Fall sogar eine exakte Losung, an der auch nichts geindert
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wiirde, wenn wir etwa unter Hinzufiigung eines dritten Gliedes
zu (7)
E=a,2%2 -} a,z + ay3*
gesetzt hitten. Alsdann wiirde zu (4 a) einfach noch eine weitere
Bedingungsgleichung treten, die aber, wie man rasch nachweisen
kann, mit der ersten nur dann vereinbar ist, wenn @y = 0 ge-
setzt wird.
Kehren wir noch einmal zu den Bedingungsgleichungen (4 a)

zuriick, so lassen sich diese offenbar auch in der Form

ol oy,  ob. 8Epal sk (9)

Ay~ 0y o el R
schreiben, worin 4 einen konstanten Faktor bedeutet. Das heil3t
aber nichts anderes, als daB

oL oL,
TR \
oL OLG | 5 (9 a),
5 A am =0 |
oder dali ganz allgemein die Koeffizienten a; ay... so zu be-
stimmen sind, daB die Differenz
Sl bl T e s o

im Falle des elastischen Gleichgewichts einen ausgezeichneten
Wert annimmt. Bevor man mit diesem Ansatz etwas anfangen
kann, ist es offenbar nitig, den Faktor 4 zu bestimmen, dessen
Elimination aus den Gleichungen (9 a) wieder auf (4) fihren
wiirde.

Zu diesem Zwecke nehmen wir den einfachsten Fall einer
einzigen Konstanten a; an, mit der fiir die beiden Arbeitsbetrige

=0 =5
also
B oL,
0y gl T
zu schreiben wire. Wegen der Gleichheit L = L, wird aber
=0
= o
also
oL oL
A St =0,
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Haben wir es mit zwei Konstanten zu tun, entsprechend
dem Ansatze o e
so wiirden die Arbeiten die Form
L=a2A;4 a?45 + 0,054,
Ly=a,B,+ a, B,

annehmen, woraus dann

ol oL
a—alzzﬂlflz“‘l‘%ﬂlz a—a:=31
oL oL,

Bl 2a9 A5+ a3 Aqs P B,
hervorgeht. Setzen wir dies in die beiden ersten Formeln (9a)
ein, so folgt Qaidy Ao — B,
20945 + a; A1y = A B,.
Multiplizieren wir die erste dieser Formeln mit a,, die zweite
mit @, und addieren, so wird daraus
2 (a2 Ay + ag? Ay + ayas Ayy) = A (ay By + ax By)
oder S
also wegen L = L, wieder
IRt R Gl IR O AR L)

Zu demselben Ergebnis wiirden wir auch fir drei und mehr
Koeffizienten a gelangen, da auf jeden Fall diese Koeffizienten
in der innern Arbeit quadratisch, in der duBeren dagegen linear
erscheinen.  Wir diirfen mithin ganz allgemein an Stelle der
Formeln (9 a)

oL 5 0L, =h

0y 0y X

oL o Oy ' (9b)
b{}.zl Ty _?)rzz 2 ‘

setzen oder mit andern Worten die Koeffizienten @ so bestimmen,
dal} die Differenz

T e e e (e
der innern und der doppelten dufiern Arbeit im Falle des elasti-
schen Gleichgewichtes einen ausgezeichneten Wert annimmt.

Lorenz, Elastizititslehre. 26
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Die Gl (10 a) ist es nun, welche W. Ritz fiir einen speziellen
Fall durch Variationsbetrachtungen!) bestéitigt und seiner
Néherungsmethode zugrunde gelegt hat, die somit als Folgerung
des Castiglianoschen Satzes iiber die innere Forminderungs-
arbeit elastischer Systeme erscheint.
Auf unser Beispiel angewandt, liefert das Rit z sche Ver-
fahren sofort die beiden linearen Gleichungen
2E0 (2a,25 + 3a:7°%) = Q2%
2E 0 (3ay2* + 6ay2%) = 0 z®,
woraus sich ohne weiteres die beiden Koeffizienten ¢; und a,
in Ubereinstimmung mit (8) ergeben. Daraus erkennt man,
dall die Formeln (9b) rascher zum Ziele fithren, als die gleich-
' zeitige Anwendung der Gleichungen (2) und (4).
Hétten wir fiir unser Beispiel des an einem Ende belasteten
Balkens den Ansatz gewéhlt

(s doga a) S JivE e U R T A
woraus.
as . dz
2 — g SN G2 = maficesas L . {123
i a * 2 aa= cos a { )

folgt, so erkennen wir, dafl den Grenzbedingungen geniigt wird
durch £z

GRRT e o e e (12b),
also dab & = a fir z = z, ist.

Damit wird
2o Z

EOQ ((d2&\2 E@ad* . E@a2g
.L:T (Ez) d ZTJ cos2azdz=ng (13),
0 i
wihrend
La:%fuz%a G p R e s A
ist. Aus der Gleichheit von (13) und (14) folgt dann mit (12 b)
20 1 82058 O

Sy=a=—pp =t 6 S0 k0!

wihrend der genaue Wert im Nenner die Zahl 3 enthélt.

Y} W. Ritz: Uber eine neue Methode zur Lisung gewisser
Variationsprobleme der mathematischen Physik. Crelles Journal 1908 ;
siche auch Gesammelte Werke, Paris 1911, S. 192,
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Wollen wir noch genauer vorgehen, so kinnen wir an Stelle
von (12) mit zwei Konstanten fir die Niherungslosung
§=ua;(l—cosaz)+ay(l —cos3az) . . (15)
setzen, die mit (12b) wieder den Grenzbedingungen geniigt
und furz =z, £ =a,4-a
liefert. Aus B2E
= a®(ay cos az—+-9ayc083az) . . . (15a)

folgt dann fiir die innere Arbeit

EO (g2 AEO :
L=-—T5(€£-E§;) dz =2 % (a2+81a2) . (16),

P
withrend die dufiere Arbeit

La:_g_fn:'%(ﬂl‘i"%)- oo G

ist. Setzen wir diese Werte in (10 a) ein, so liefert die partielle
Differentiation -
Hierentiatio DJ _GQE'_@'ZQ_

.

oJ al .E@Zo ; =

—a?z ——‘_,‘—819‘2—0— 0,
woraus _ 32 03° 1 32 Qz° q

W H EO BT3Bl o EG Bl
folgt. Die Kleinheit des zweiten Koeffizienten ist natiirlich
nur eine Folge der praktisch véllig ausreichenden Genauigkeit
des einfachen Ansatzes (12), der somit durch das R itz sche
- Verfahren seine Rechtfertigung findet.

§ 41. Die Formiinderung einer gleichférmig helasteten Kugelschale.

Ableitung der Radial- und Tangentialdehnung in der Kugelschale bei

rein radialer Verschiebung. Differentialgleichung fiir die Tangential-

dehnung und Zurickfihrung der Spannungskomponenten auf diese,

Unmittelbare Ableitung der Gleichungen am Volumelement der Kugel-

schale. Beispiele einer Kugelschale mit innerem und #uBerem

Drucke, sowie einer eclastischen Vollkugel unter dem Einflusse dep
Gravitation.

Eine von zwei konzentrischen Kugelflichen mit den Ra-
dien r; < r, begrenzte S ¢ h a le mdge unter dem Einflusse einer
Zentralkraft und gleichférmiger Normaldriicke auf der Innen-

26%
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und AuBenfliche stehen. Alsdann konnen fiir alle Punkte der

Kugelschale schon aus Symmetriegriinden lediglich radiale

Verschicbungen Ar in Frage kommen, durch die der zugehorige
Radius eine Gesamtdehnung
Ar

g ey, G andls SRR RS i

r
erfahrt, die offenbar selbst noch mit r variiert. Da die resul-
tierende Verschiebung A r die Richtung des Radius selbst besitzt,
so ergeben sich daraus die Verschiebungen in den Koordinaten-
richtungen durch Multiplikation mit den Richtungskosinus
des Radius, so zwar, dal

_":Ar%:a-x, 7= &Y, el A S Y

wird. Um hieraus die Dehnungen in den Achsenrichtungen zu
berechnen, sind diese Formeln partiell nach x, y, z zu differen-
zieren. Dies liefert mit Riicksicht auf die Gleichung

Ta— i Bt SRR e SRR S ]
woraus
or % B, ol Of (3
T g g oo R L
0& de or de
=y P e +_‘ dr
09 de or 2. de .
U et ZRE | 9.
(T 0y £kl dr dy &+ PREGE LS (24)
it { 1
am sl Yy 2

und nach Addition aller- drei Ausdrurke dle Volumdehnung
—Je—}—r(h o Pt e o 61

Fiir den Fall des Gleichgewichts haben nun die Verschie-
bungen die Gleichungen (4 ¢) des § 39 zu erfiillen, in denen ¢, ¢, ¢.
Beschleunigungskomponenten irgendeiner #ufleren Kraft be-
deuten, die bei einer lediglich radialen Formanderung der Schale
auch nur eine Zentralkralt vom Kugelmittelpunkt aus sein kann.
Wir wollen uns zunichst begniigen, nur eine der drei Gleichge-
wichtsbedingungen anzuschreiben, und wihlen dazu die erste,

némlich q
aé4 M+’”= e

ol

‘.‘{.
p—2
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WOrin

=-'—+ +_b_73_' Rt e o

ist. Die hierin vorkommenden drei Ableitungen ergeben sich aber
aus (2) unter Beachtung von (3) und (3 a) zu

EE:%(B_- xz)@__i__i,a_dzs

DJ“

0 a2 e s
Ul I S
2z : 2 S
e G

wird. Ebenso erhalten wir durch Differentiation der Volum-
dehnung (2 b) Bey. . ha de e
und nach Einfiihrung der letzten beiden Ausdriicke (2 ¢) und (5 b)
in (4) die Gleichung
z de d 2g L — 9

WG gl
der dann zwei ganz analog gcbaute fiir die beiden andern Achsen-
richtungen entsprechen. Wir brauchen diese gar nicht erst an-
zuschreiben, sondern erinnern uns, daf mit der resultierenden
Zentralbeschleunigung g

Jo =0 SRR

= ¥ z .

sein mufl, womit (4a) und ebenso die beiden andern Formeln
sich in ’

e e g S W :
E e ey
vereinfachen. Daraus mrd durch Multiplikation mit 74
de w—2 oy
Gie 4 _____ ey M S e
i - Fres T il

und nach Zusammenfa%sung der linken Seite
fl —32
¢ b L
Cpmlids. TR TR
dr dr w—1 Gg
Die hieraus durch Integration hervorgehende Gesamt-
dehnung & des Radius r, die auch mit derjenigen des Kreisumfangs

(7).
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97 r identisch ist und deshalb wohl auch als Tangential-
d e hnun g bezeichnet wird, ist ersichtlich mif zwei Konstanten
behaftet, die sich aus Grenzbedingungen an der innern und &duliern
Schalenoberfliche berechnen. Im Gegensatz zu dieser Tangential-
dehnung steht die Radialdehnung, d. h. die radiale
Dehnung eines Volumelementes von der Dicke dr, die durch
die Gleichung Akl
sr—dr........(S)

definiert ist und wegen (1), also mit 4 r = er sich zu
—s-i—rgi SRR GsA s e Sl
ergibt. Vergleicht man dies mit (2 a), so erkennt man, dal fiir
2 = r, d. h. wenn der Radius in die z-Achse fillt, e, = &, wird.
Fiir einen solchen Punkt ist aber auch y =z=0 zu setzen, wo-
mit dann &, = ¢, = ¢ wird und die Volumdehnung sich aus der
Radialdehnung und zwei hierzu sowie untereinander normalen
Tangentialdehnungen zusammensetzt. In der Tat liefert die

L At e SR R
mit (8 a) dasselbe Ergebnis wie (2 b).

Da in den obenerwiihnten Grenzbedingungen die Nor -
malspannungen eine groBe Rolle spielen, so mogen diese
sogleich in der Tangentialdehnung ausgedriickt werden. Zu
dem Zwecke greifen wir auf die Formeln (8), § 39, zuriick, fir
die wir unter Einfiihrung der Volumdehnung &, schreiben

o0& &4
_ZG(bx-F_::a—Q)
_26( S ] v Vo e AR
s’?}
Daraus wird nach Einsetzen der Werte (2 a) und (2 b)
il TEn r de
G“':_'E(J[_JLL—Z é+(T T 55—2) dr]
ekt e e el
o= \';{—2 e—}-—( r i ;.{-—2) cir'] L
A1 2% r de
Gz:?(rl:”_Q a—i—(-?',——r‘u_— 2) zh]
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Legen wir nun wieder den Radius in die z-Achse, was wegen
der rein radialen Anderungen stets zuldssig ist, so wird mit
x=r, y=z=0 die Radialspannung ¢, =0, bzw.
die Tangentialspannung o =g, =g,

(& d
[+ e+ =1 e|
‘ | ar |

M—Zbﬂ+“£+ ’Eﬂ

Zu diesen Formeln hatte man auch unmittelbar aus der
Betrachtung des Volumelementes Fig. 157 von der Dicke dr
gelangen konnen, dessen Grundfliche von zwei zueinander
normalen Bogenelementen ds; und ds, mit dem gemeinsamen
Radius » gebildet wird. Da in den
beiden Seitenflichen drds, und
drds, aus Symmetriegriinden die-
selbe Tangentialspannung o herrscht,
so ist zunéchst

O,.—u

. (9b).

i ——

2
Ee,=0,—— ‘u—o— ’
(10)
: o+tor
B =l i Fig. 157.
oder aufgeldst nach den Spannungen
_ e 1) (u —
E [, (u—1) + 2¢] = 0, ;f et wed M =2
LN, (10 a).
i sl e (’u+1)( 2)
7 yz
Beachten wir ferner, daBl nach GIl. (11), § 38,
) iy T VSRR | )

ist, und eliminieren noch e, durch Gl (8a), so gehen die Formeln
(10 a) in (9 b) iiber.

Aber auch die Spannungsgleichung (4), aus der durch Ein-
fiihrung der Tangentialdehnung & die Differentialgleichung (7)
hervorging, laft sich unmittelbar durch die Gleichgewichts-
bedingung an unserem Element Fig. 157 ersetzen. Bezeichnet
man némlich die zu den Seiten des Elementes gehorigen Winkel
mit de und dy, setzt also

ds;, =rde, dsy, = rdy,
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so ist der nach auBen wirkende Uberschuff der von der Radial-
spannung herrithrenden Kraft

(GT ’+d(o’

Dagegen liefert jede der beiden Tangentialspannungen eine
nach innen wirkende Komponente im Betrage

2
dr)dedy — o r*dedy = 8 {;r: ) drdedyp.

odrds,dy=odrds,de = ﬂrdr.rtq:-d'ep,

so daB fiir das Gleichgewicht mit dem Elemente dQ der nach
aublen positiven Zentralkraft die Bedingung

2
[%—201‘]-&3?‘&7@561;}-{*{{@ —0
besteht, Hierin ist aber mit der Masse dm des Elementes

dQ =qgdm =%qr2drd(pdtp,

also
d (g,r?)

dr

-— 20 r-}——grz—-(J i i

Fiithren wir dann in diese Formel die beiden Spannungs-
komponenten (9b) ein, die wir ja unmittelbar auch aus (10)
mit (8 a) berechnen konnten, so wird

) _ 26 [t 028 4 oy (o 2]
20r = “2_62 [(;.r—}—i)zsr 4 22 ‘fif]
oder
L [%(r de) ;ﬂf]
el ﬁ_i‘%%(”"%) SRR o\t

womit dann der Ubergang von (12) in Gl. (7) vollendet ist.
Aus den vorstehenden Formeln (10) bis (12) sieht man, dafi es
fiir den Fall der Kugelschale nicht notig war, auf die allgemeinen
Gleichungen der Elastizititstheorie zuriickzugreifen. Wenn wir
oben trotzdem von dieser ausgegangen sind, so geschah dies,
um dem Leser neben der Kontrolle den Gang derartiger Um-
formungen an einem einfachen Falle vorzufithren und ihn damit
fiir spiiter zu behandelnde schwierigere Probleme vorzubereiten.
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Bevor wir an die Betrachtung einiger Sonderlédlle heran-
treten, mogen noch die Schubspannungen in der Kugel-
schale berechnet werden, die wir bisher ganz aufier acht gelassen
haben. Dies hatte seinen Grund nur darin, daf sie fir die Radial-
dehnung keine Rolle spielten, aulierdem aber das Element Fig. 157
keine Winkelinderungen erfihrt. Infolgedessen waren die beiden
Normalspannungen ¢, und ¢ als Hauptspannungen
sowie g, und e als Haunptdehnun gen aufzufassen, wihrend
die  Begrenzungsflichen des Elementes Hauptschnitte
waren. In schrig dazu gelihrten Ebenen sind natiirlich Schub-
spannungen zu erwarten, die sich nach Gl (10), § 39, mit Riick-
sicht auf unsere Formeln (2) und (3) zu

b bn 0o Y2 de

riar
08 zx de i
%=G&x+sﬂ et a1
B IS g L zy de
r"FG(-By'_{-Bx)_JG 7 ar

berechnen und z. B. fiir # =r, y = z = 0, entsprechend der
Lage des Elementes auf der z-Achse, verschwinden. Liegt das
Element dagegen, was fiir die Kugel y A

aus Symmetriegriinden keine Einschrén-
kung bedeutet, in der XY-Ebene (Fig.
158), so wird mit z2=0 auch 7,=17,=0,
und wir erhalten mit

T =rcoso, Y ==rsin @

aus der dritten Gl (13)
rz=2Grsinqocosq9-E§- Gr 5111.3rp s (3.

Daraus erhellt im Einklang mit lruheren Sehlubfolgerungen,
daB diese Schubspannung ihren Héchstwert in Ebenen erreicht,
welche die rechten Winkel der Hauptebenen halbieren.

1. Beispiel Wirkenauf die Kugelschale nur der I nn e n-
druck pyundder AubBendruck p,, so entfillt die Zen-
tralbeschleunigung ¢ und die Differentialgleichung (7) fiir die
Tangentialdehnung vereinfacht sich in

d [, de _
= dr) om0
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woraus mit zwei Konstanten C; und C,

de €y ;
e LN S ORI . 1

und

£=Cy— 36;3 S biies AR

resultiert. Mit diesen Ausdriicken erhalten wir fiir die Haupt-
spannungen (9 b)

C ¢
Gol e
o6 (=2 = (1) [Co— 3;3) L

Infolge des Innen- und AuBendruckes bestehen nun die
Grenzbedingungen

(15).

Gp=—p; fur r=n.
Or=-—Ps ¥ P=Ty,

womit die erste Formel (15) die zwei Bedingungsgleichungen
Gy 2 ; 4
Wrrtl bt s gl == <p—A5x
_Cz. ..2 GnE 9 Pr
(1) Co+ r8 3 (B —2)=—(p—2) 29G
liefert, aus denen schlieBlich
C 3 nfrd pp—p
e [l: ?"23 — ."'1 G

—Epr—-pr g (16)
Gz i s i Balsy ‘

WL 26— 1)
resultiert. Somit wird die Radialverschiebung wegen
“br —=cr

A?.___i-_(a“ 2 P’"l —ngz 4 riéry? !32—'191) (17)

P7RE R W rE—r® 278
und die Spannungskomponenten (15) ergeben sich zu

B B
P1rs® — pars® + (p2 —p1) 1_r32_

i T

?' —
B rarg (0 (8

Pary® — Pole® — (pa—p1) 55—
o e 5 s —

ry® — ryd
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Daraus folgt, dal fir gleichenInnen-undAufen-
dir wie ko aldo mitips = pie=
p p—2
Ar=—26_:'é?—T’ O, =0=—0pD a7 (1?&)
wird, wihrend die Formeln bei verschwindendem
Aullendruck p, =0 mit p, = p iibergehen in
e L ¢ 7
Ar_?G(r23—-r13j ) 9,8 - - (17b)
S A
r= s

. (18D).

Da nun stets r < r, ist, so erkennt man, daB in dem Falle
eines starken Innendruckes in radialer Richtung stets eine Druck-
spannung, in tangentialer dagegen eine Zugspannung in der
Kugelschale herrscht. Die absoluten Betréige beider Spannungen
nehmen von innen nach aullen zu ab.

Handelt es sich um eine Vollkugel, die nur unter dem
AuBlendruck p, = p steht, so wiirde fiir » = 0 in Gl. (14 b)
& = @ werden. Da dies unmoglich ist, so mul fiir diesen Fall
die Konstante C; = 0 werden, womit die Formeln sich auf (17 a)
reduzieren.

2. Beispiel Ziehen sich die Teile einer homogenen
isotropen Vollkugel nach dem Newtonschen Gra-
vitationsgeselz an, so besteht an jeder Stelle im Zentralabstand r
eine Zentralbeschleunigung?)

g _f% AT - [19}9

worin f die sog. Gravitationskonstante und
e R _
= it e R e

m 3 g ar (19 a)
die Masse der Kugel vom Radius r bedeutet, deren Oberfliche
durch den betrachteten Punkt hindurchgeht. Aus der Vereini-
gung von (19) und (19a) folgt dann

4 ¥y
=——gmher L, .. . (19
q 3 wf g" (19 b)

1) Lorenz, Techn. Mechanik starrer Systeme, S. 160.
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und nach Einsetzen in die allgemein giiltige Formel (7)

a ( de\ 2 af y* p—2 (20
ar dr-J—.‘;} e 20,
oder mit der Abkiirzung
2 DR
gﬂf?‘!—j'_l SRR e R
d de 73 __
e e s Sy 2
dr (r dr) R TR
und nach Integration mit den Konstanten €; und C,
de ard ’
P r T e
de ar C
e U ‘
. I 4
dr 062 E SRCETEROATY
L e
S=ae T e e
woraus dann
ard [0
WA AT Bl L D IR 29
i o AL

hervorgeht. Da nun die Radialyerschiebung fiir r=0 nicht
unendhch grofi werden kann, so mull zunichst die Konstante C,
verschwinden, womit sich die Formeln (21) und (22) in

de ar ar? A -
ard

Ar-:m+02r SRS )
vereinfachen. Daraus ergeben sich die Hauptspannungen (9 b)

o, ; or? ;
9¢ #—2A=0Bp—)pat+k+1)C

o ; G

3¢ W—2) = {#+=3}m+(ﬂ+1302

Soll nunmehr an der Oberfliche der Kugel, d.h. fiir

(23).

r=ry der Druck p herrschen, so ist dort 6, = —p zu
setzen, also
: . ary? ;
(ﬂ¢+1)02:—'§;' (,it—Z)—(.B,um'l)—moG (24).
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Addiert man diesen Ausdruck zu den Gl (23), so werden
die Hauptspannungen unter Wegfall des Faktors G

I ) |
g el (Bu—1)re
B 2 —p
oder mit (20 a)
2 y2 ,’-;H SR ;
0, = T?ﬂf i l_ (;"‘2 L ?'0-) gl
e ' (23 a)
B T L S
STk g2 e 7

Um aus diesen Formeln auf die Spannungen im Innern
des homogen gedachten Erdballes zu schliefen, werden
wir zweckmiiBig die Gravitationskonstante f durch die Erd-
beschleunigung g an der Oberfliche vermittelst der aus (19Db)
hervorgehenden Gleichung

S 9
:;-ﬂ:f--grn:g TR e S (e

eliminieren und erhalten dadurch mit Vernachlassigung des
kleinen Oberflichendrucks p

NI AL o AT B,
G o1 0 o
i ;o _(;i_—_}—-_;:'{) pB i, (;/” = rﬂg. e (DA
— 10r, u—1
Hiernach wird fiir das Kugelzentrum
Y1, ey N et
el T

AuBerdem verschwindet zwar, im Einklang mit der Vernach-
lissigung von p, die Radialspannung a, an der Oberfliche r = r,
die Tangentialspannung ¢ aber nur fiir g = 2, d. h. fiir den Fall,
dab keine Volumdehnung moglich wire. Andernfalls liefert die

zweite Formel fiir r =1y
0g=— % = y

also auch fiir Werte von g, die nur wenig iiber 2 liegen, infolge
der GroRe des Erdradius Druckspannungen von einer Hihe,
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welche die Giiltigkeit des H 0 o k e schen Gesetzes vollkommen
ausschlieBt. Fiir 4 = 2 wird dagegen allgemein

i

P 4

r_—ro) T S R

Tn

entsprechend dem Gleichgewichte einer homogenen Flussigkeits-
kugel!) unter der Wirkung der Gravitation.

Aus diesen mit der Erfahrung in Widerspruch stehenden
Resultaten geht jedenfalls hervor, dal der Erdkérper durchaus
nicht als ein homogener isotroper Kérper im Sinne der gewihn-
lichen Elastizitédtstheorie aufgefaBt werden kann.

§ 42. Die reine Verdrehung isotroper prismatischer Stiibe.

Die Bedingungen einer reinen Verdrehung, Aufstellung der Spannungs-

gleichung und der Randbedingung. Feststellung des Drehpols. Der

Prandtlsche Spannungshiigel und seine Anwendung auf hohle und

schmale Querschnitte. Beispiele des kreisformigen und des elliptischen
 Querschnitts.

Wirken auf einen gewichtslos gedachten Kérper keine Massen-
krifte, so vereinfachen sich die Grundformeln (4), § 39,
fiir den Fall des Gleichgewichts unter Wegtall der GriBen G @y Gz
sowie der Beschleunigungskomponenten dw, : d¢ usw. in

00, 07, a"'-"u =

dx o 0y o Pl

00, , 07, a1,

- +_&..+mﬂ0i T b AN
b‘sz O'Ly ar{t =3

o5 3 Ty =0 |

Haben wir es inshesondere mit einem prismatischen
Stab zu tun, dessen der z-Achse parallele Mantel-
flache spannungsfrei bleibt, so lauten die Rand -
bedingungen (12), §39, hierfiir mit den Normalenwinkeln
U=90% ¢ =90°"—y und p=20

Oy Sinp 417, co8p =0 ‘
g, cosy -7, sin y =0 |
Ty Sy -1, cos p = 0

(2)-

') Lorenz: Techn. Hydromechanik, 8. 16.
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Wirkt ferner am Endquerschnitte des Stabes ein
Kraftepaar, so ist dort mit den Normalenwinkeln ¢ = y
=90% & =0 sowie mit u=90° wegen der Normalstellung
der Ebene des Kriftepaares zur z-Achse

Ty = PlCO8 %, Ty — PICOS /s P et R ]

Schneiden wir den Stab an irgendeiner Stelle durch, so
haben wir nur, um das Gleichgewicht zu wahren, das Kréfte-
paar des Endquerschnittes dorthin zu verlegen. Daraus folgt
sofort, dali die Spannungsverteilung in allen
Querschnitten des Stabes dieselbe sein wird,
womit zugleich fiir den ganzen Stab g, verschwindet. Schneiden
wir ferner den Stab einmal parallel zur XZ-Ebene und dann
zur YZ-Ebene durch (Fig. 159), so muBl, da auf der Mantelfliche

Fig. 159,

keine Kréafte angreifen, wihrend in den Endquerschnitten ent-
gegengesetzt gleiche Schubspannungen wirken, in den Schnitt-
fléchen
Soxdydz=(}, j‘tzdydz=0
j;oudmdz=0, Fr,,a‘xdz:O
sein. Dies wiederum ist fiir be]iebige Lagen der Schnittflichen
nur moglich, wenn im ganzen Stabe

(4)

Gi—nipi—eie=s S L RSt s Bl )
ist. Fiigt man hierzu noch die Bedingung o, = 0, s0 reduzieren
sich die drei Formeln (1) auf

o,

Dx_f—"

0T,

Ey =0. s . . H .‘ . ('la),
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wihrend als Randbedingung fir den Querschnitt
Ty n = cesar =000 o o o (2a)

iibrig bleibt, worin ¢ die Neigung der Normalen der Randkurve
gegen die y-Achse bedeutet.

Den durch diese Gleichungen gekennzeichneten Spannungs-
zustand wollen wir nach dem Vorgange von De St. Vénant,
der ihn zuerst erschipfend behandelt hat, als die reine
Verdrehung des prismatischen Stabes be-
zeichnen. Infolge des Weglalls aller Normalspannungen erleiden
nun die Stabelemente weder eine Verkiirzung noch eine Ver-
lingerung, so dall sowohl die linearen Dehnungen

o0& 07 of N
aﬁza—x:() Syz'é'_; =i &, == 5 ==l i)

als auch die Volumdehnung
o=t el TR R R (G

werden. Das Verschwinden der Schubspannung 7, schliefit
ferner Winkeldnderungen innerhalb des Querschnittes
aus, der somit im gespannten Zustande seine
Form behdlt. Er erleidet daher als Ganzes gegen den
im Achsenabstande z davon entfernten Anfangsquerschnitt
eine Verdrehung, wobei ein Punkt O, durch den wir die Stab-
achse hindurchlegen wollen, seine Lage
nicht éndert. Bezeichnen wir jetzt in
Fig. 160 den Winkel des von O aus-
gehenden Fahrstrahles » eines Flichen-
elementes dF des Querschnitts mit g,
80 sind

T=T 008 @, y—=rEing. . (6

die Koordinaten des Flichenelementes
im ungespannten Zustande. Infolge der
nur klein angenommenen Verdrehung A ¢
und der Unverdnderlichkeit von » verschiebt sich das Fléchen-
element in den beiden Achsenrichtungen um

Fig. 160.

E=Adz=—rsinpdeo=—ydp |
p=dyg= respdp=  ade|"’
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withrend fiir den Verdrehungswinkel, da keine Scheibe von der

axialen Dicke dz gegen die andere bevorzugt ist, die Beziehung
ddg A4 1
== ... ®
gilt, worin ¢ eine konstante Lange bedeutet. Damit aber werden
die beiden Verschichungen (7)

z X3 -
EZ__E.:..’ -3?: ¢ . . . = - [,.ra),
woraus o0& Y on _
= e . (7h)
0w 0y

in Einklang mit (5), d. h. dem Wegfall der Normalspannungen, -
folgt. Zwischen den Verschiebungen und den Schubspannungen
bestehen aber die Gleichungen

(ol 07
=63y +31) |
i el i
n=¢{5e +52)|

wofiir wir mit Riicksicht auf (7 b) auch

L 1

rsz(-gg——{—%), zv=G(g;--—‘£—) . (B
schreiben diirfen. Hierin ist £ die axiale Verschie-
bung eines Querschnittspunktes, die im all-
gemeinen mit dessen Lage variiert, so dall der im unge-
spannten Zustande ebene Querschnittdurch
die Verdrehung eine Woélbung erfdahrt. Diese
Walbung bzw. Axialverschiebung der Querschnittspunkte ist
natiirlich die Folge der in die Achsenrichtung fallenden Schub-
spannungskomponenten, welche mit den dazu normalen 7,
und 7, im Querschnitt selbst wirkenden iibereinstimmen. Da nun
die Wirkung von reinen Kraftepaaren um die Stabachse keine
Verschiebung der ganzen Stabmasse in der Achsenrichtung
heryorrufen kann!), so mufB das Volumen der Wolbung des

Querschnitts j‘;-dF___:D_ eV U

(8),

1) Dem scheint die sog. Schraubenwirkung zu widersprechen ;
indessen handelt es sich dort stets um die gemeinsame Wirkung eines
Kriiftepaares und einer Axialkraft, die in unserem Falle nicht existiert.

Lorenz, Elastizititslehre, 27
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sein. Daraus ergibt sich nun eine wichtige Folgerung fiir die
Lage des Punktes O, der im Querschnitt keine Verschiebung
erfihrt und durch den wir daher die Stabachse hindurchgelegt
haben. Der Wegfall einer Resultante in der Querschnittsebene

bedingt némlich . ;
V1. dF =0, fndF=0 . . . . 0}

worin sich die Integrationen iiber den ganzen Querschnitt zu
erstrecken haben. Mit (8 a) wird aber aus diesen Bedingungen
fiels . B
“NaaP=— \2=dF =+ \zar
¢ oy

= e .
Lyar= [Frar— 2 \ear

)

“ac
oy

e

oder, wenn wir die Schwerpunktskoordinaten z, und y, einfithren
und (9) beachtel‘l’ % i U’ y()F R N {10 a)?

so daB also mit #y=y,=0 der Drehpol des Quer-
schnitts mit seinem Schwerpunkt zusammen-
fallt.

Setzen wir nunmehr die Werte (8a) in die Grundformel
(1 a) ein, so erhalten wir die Differentialgleichung-

2L 0%

—sz——i—gyz—:{) P Tl S (li},
der die Axialverschiebung £ zu geniigen hat, und die wir auch aus
der dritten allgemeinen Formel (4 ¢), § 39, als Spezialfall hitten
ableiten konnen.

Andererseits konnen wir in Gl. (1 a), welche Formel mit der
Kontinuititsgleichung einer ebenen Strémung iibereinstimmt?),
wenn wir die beiden Spannungskomponenten 7, und 7, als Ge-
schwindigkeitskomponenten auffassen, diese als Ableitungen
einer Spannungsfunktion derart betrachten, daf

o o
To =3 Tﬁ':—b—y' (12).
Alsdann definiert die Funktion
e T RS (1

eine Schar in sich geschlossener Kurven, zu denen auch der
Querschnittsumfang gehort, deren Tangenten an jeder Stelle

1) Lorenz: Techn. Hydromechanik, 5. 276.
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die Richtung der resultierenden Schubspannung angeben, wie
dies schon in § 11 ausfiihrlich dargelegt ist.
Differenzieren wir dann die erste der Formeln (8 a) nach
x, die zweite nach y und ziehen beide voneinander ab, so
wird
o1, or, 2_(}

oz DT e el Sk (13)
oder nach Einfithrung von (12)
b e o L
0 x> ayt e
Schreiben wir nun unter Einfithrung einer neuen Ver-
anderlichen »

(13a).

YW=ko=¥(z,y). . . . . . (I12b),
so diirfen wir » als die Ordinate einer Fliche iiber dem Quer-
schnitt auffassen, deren Tan gentenwinkel nach (12)
bzw. nach

ov

kax’ I”I_'kby S )
den Spannungskomponenten proportional
sind. Diese Flache wollen wir nach dem Vorgange von
Prandtl'), dem man ihre Einfiilhrung verdankt, als den
Spannungshiigel bezeichnen. Um uns davon eine be-
queme Vorstellung zu verschaffen, fithren wir (12 b) in (13 a)
ein und erhalten

0% R

0 a% TS o0y: ~ ck

Hierin konnen wir nun, falls die Fliche nur schwach ge-
kriimmt ist, die zweiten Ableitungen von » nach x und y als die
beiden Kriimmungen parallel den Achsen auffassen, also mit den

(14).

Kriimmungsradien o’ und p”
%z%, $=$----MM
schreiben. Dann aber wird aus (14)
%+%:%....Hum,

1) Prandtl: Eine neue Darstellung der Torsionsspannungen
usw. Jahresbericht d. deutsch. Math. Vereinigung. 1904,

7
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eine Formel, die mit der Gleichgewichtsbedingung einer diinnen
Fliissigkeitshaut iiber dem Querschnittsumfang!) unter kon-
stantem einseitigen Druck p und der Oberflachenspannung S,

némlich
1 1 -
?Jr?:—g— R T
vollstandig iibereinstimmt, wenn wir setzen
2G
--ck--:% Sk e AR SRS LT (1

Derartige Oberflichen kann man sich aber sehr leicht da-
durch herstellen, daff man das Ende eines diinnwandigen Prismas
mit der zu untersuchenden Querschnittsform in eine Seifen-
16sung eintaucht und durch Einblasen in das andere Ende einen
konstanten Uberdruck erzeugt. Da nun nach den Ausfihrungen
in §11 (Fig. 49) das von den Spannungen v zwischen zwei um
d¥ verschiedenen, also unendlich nahen Spannungskurven be-
dingte Torsionsmoment

a2 Fd P e e L L kD
war, worin F die von der Kurve ¥ umschlossene Flache bedeutet,
80 haben wir auch mit (12 b)

AN —2RFdY s w e L w(15a)

oder nach Integration mit dem Volumen V' des Spannungs-
huge]s_ e s U Flo= 2RV o Lmetd 5 (15D

Das Volumen des Spannungshiigels iiber
dem Stabquerschnitt ist demnach dem Tor-
sionsmoment direkt proportional. Da nun nach
(14 d) gleichen Werten von k& auch gleiche Verdrehungswinkel
der Liangeneinheit (1 :¢) entsprechen, so bietet der Prandtl-
sche Spannungshiigel ein treffendes Bild von der Widerstands-
fihigkeit verschiedener Querschnitte gegen die Verdrehung.
Dieg tritt besonders deutlich hervor fiir den Fall eines
hohlen Querschnitts (Fig. 162), in dessen Innern
natiirlich keine Spannungen herrschen, so dall dort nach (12 ¢)

ov ov

s

) Lorenz: Techn. Hydromechanik, § 8.
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sein mul. Das heifit aber nichts anderes, als dall der Spannungs-
hiigel iiber der Hohlung einen ebenen Teil hat, wihrend er iiber
die Wandung hin abfillt. Da das Volumen dieses Tafelbergs
sich nur wenig von dem Volumen des Hiigels iiber dem Voll-
querschnitt unterscheidet, so trifft dies bei gleicher Verdrehung
auch fiir das Torsionsmoment (15 b) zu. Schneiden wir dagegen
die Seitenwand des Hohlprismas nach Fig. 163 auf, so miissen
die Spannungslinien an der Schnittstelle wieder umkehren, so
daB die vom Umfang eingeschlossene Fliche sich auf die Wand
selbst beschrinkt. Daher beschriinkt sich der Spannungshiigel

L7 o,

Fig. 161, Fig, 162, Fig. 163.

hier auf einen niedrigen Wall tiber der Wandung, dessen Volumen
naturgemil viel kleiner ausfallt als das des Tafelbergs (Fig. 162).

Fiir die rechnerische Verwertung geniigt es im Falle ge-
schlossener Hohlzylinder, den Abfallwinkel des Tafelberges
(Fig. 162) iiber die Wandstérke hin als konstant anzusehen,
was dann mit (12 c¢) aul eine iiber die Wandstirke konstante
Torsionsspannung fiihrt. Auf dieser Annahme beruhten aber die
Ausfithrungen in den §§9 und 10 iiber die Verdrehung diinn-
wandiger Hohlzylinder, die hierdurch ihre Bestitigung erfahren.
Im Falle eines aufgeschnittenen Hohlkérpers nach Fig. 163
darf man angendhert den Schnitt durch den Spannungshiigel
als Parabelbogen auffassen, woraus dann mit (12 ¢) eine iiber die
Wanddicke lineare Spannungsinderung resultiert, von der wir
schon bei der Behandlung solcher Querschnitte am Schlusse von
§ 11 Gebrauch gemacht haben.

Setzen wir in die Formel fir das Torsionsmoment

931:5'(%:3—:,,;,:)41? 0 el e
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die Ausdriicke (8a) fiir die Spannungskomponenten ein, so

ol bé‘

wird |
S”m_(’j (5? e )d‘m‘ ((ﬂf“”—Hﬂ) dF . (16a),

worin das letzte Integral rechts mit dem polaren Tragheitsmoment
6, des Querschnitts um den Schwerpunkt iibereinstimmt. Daraus
folgt, daB auch das Torsionsmoment durch die Axialverschie-
bung { der Querschnittspunkte eindeutig bestimmt ist. Das-
selbe gilt natiirlich auch noch fir die Forminderungsarbeit,

fir die wir unter Weglassung des beidseitigen Faktors ) im
Einklang mit GL (7), §11, =

LU é(:auﬂﬁdr. s

schreiben diirfen, womit sich dann zugleich auch die Grife 1: e,
also die Verdrehung der Lingeneinheit ergibt.

1. Beispiel. Um die Querschnittsform zu ermitteln,
deren Ebene durch die Verdrehung keine
Anderung erfihrt, haben wir nur in unseren Formeln
£ =0 zu setzen, wonach (8 a) tibergeht in :

— 2 i
e s L

Hieraus folgt die Radialkomponente der Schubspannung
A 7, = 7, 8in @ -+ 7, cos @ =0,
wiihrend die Tangentialkomponente

Ty = T GOS8 (0 — T, Sin @ =

wird. Da nun am Rande des Querschnitts die Bedingung (2a)
erfiillt sein muf, in der

{ ,
t-gtp:——-:f%, alpgi s d o= rdy e )

zu setzen ist, so haben wir nach Einsetzen von (8 b) als Differential-
gleichung der Randkurve

zdx + ydy =0,
also nach Integration die Kreisgleichung

2?2 4y =ro?
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Dieses Ergebnis konnte natiirlich schon aus dem Verschwin-
den der Radialkomponente und der Proportionalitit der Tangen-
tialkomponente mit dem Radius gefolgert werden.

Verlangen wir dagegen, dafl die Querschnittsebene durch
die Verdrehung nur eine Neigung erfiahrt, so wire mit
zwei Konstanten a und /8

0 0
{=aztfy o= yy=F . (9

zu setzen, womit (8 a) iibergeht in
i " ? ;
II:G(Q—I—-‘::—), IyZG(ﬁ—‘“i‘) . . . (188),
wofiir wir auch mit ac=—y, fe=-4
G
=— (@ —2)  G=—-—y) - (18D

schreiben diirfen. Mit der Randbedingung (2b) wird daraus

(@ —a)de+(y—y)dy=0
oder integriert
(z— a2+ (g—yP=rd . - . . . (19).

Wir erhalten also wiederum einen Kreis, dessen Mittel-
punkt die Koordinaten z;, z; besitzt. Da nun der Drehpol
mit dem Schwerpunkt der Querschnitte zusammenfillt, so
konnen auch die Koordinaten a; und y; verschwinden, womit
der Fall auf { = 0 zuriickgefiihrt ist.

2. Beispiel. Nachdem wir festgestellt haben, dali die
lineare Abhéngigkeit der Axialverschiebung ¢ stets kreisformige
Querschnitte bedingt, gehen wir zu quadratischen iiber, von
denen die einfachste

o By W SO R 9
CR N men o ey
ist, die zugleich der Bedingung des Verschwindens von { im
Koordinatenanfang geniigt. Damit wird aus (8 a)

G
rx:Gc—;:;(c_l_k), ry:—y(c—fc) . . (204),

el
oder eingesetzt in die Randbedingung
(e4+k)zde+(c—R)yydy=0 . . . (20D).



424 Kapitel VI, Allgemeine Elastizitétstheorie.

Die Integration dieser Formel liefert eine Ellipse als
Querschnittsumfang, womit der Ansatz der Proportionalitat
der Schubspannungskomponenten mit den zugehdrigen Ko-
ordinaten fiir diesen Fall in §11 seine Bestiitigung gefunden
; liat. Wir konnen uns deshalb an
dieser Stelle mit der Bemerkung
begniigen, dall ‘der urspriinglich
ebene Querschnitt eines elliptischen
Zylinders nach (20) in ein hyper-
bolisches Paraboloid iiber-
geht bzw. daB die Kurven gleicher

Fig. 164, Werte von £, die man wohl auch

als Niveaulinien der gewdlbten

Querschnittsfliche bezeichnen darf, gleichseitige Hyperbeln sind

(Fig. 164), deren Asymptoten mit den Ellipsenachsen zusammen-

fallen. Aus GL (20) erkennt man weiter, dall durch die Torsion

zwei einander gegeniiberliegende Ellipsenquadranten eine Er-
hebung, die beiden anderen dagegen eine Senkung erleiden.

Fiir k& = o geht schlieBlich die Ellipse in den Kreis iiber,
fiir den dann nach (20) wieder { = 0 wird.

§ 43. Die Verdrehung von Prismen mit rechteckigem Querschnitt.

Gewinnung eines Ansatzes fiir die Axialverschiebung als Produkt

zweier Funktionen der Querschnittskoordinaten. Ubergang zu einer

Reihe durch die Erfilllung der Grenzbedingungen. Bestimmung der

Konstanten, Ableitung der Spannungen und des Torsionsmomentes.
Niherungsformeln.

Als weiteres Beispiel der Anwendung der allgemeinen Theorie
der Torsion wollen wir das praktisch wichtige Prisma mit recht-

WL PIBLS Loy & eckigem  Querschnitt betrachten,
= - N das offenbar um ein den Seiten
</ R paralleles Achsenkreuz durch den
x | T _;g__)_’___)_( Schwerpunkt doppelt symmetrisch
] (e liegt.  Damit sei zugleich das’
bl o=7y| =7, Achsenkreuz der Koordinaten ge-
Y v '.y geben, und weiter festgelegt, daB

Fig. 165. die langere Seite 2 der a-Achse,
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die kiirzere 2 b der y-Achse parallel verlaufen moge. Aus der
zugehorigen Fig. 165 erkennt man nun, dafl von den Span-
nungskomponenten 7, sein Vorzeichen mit @, 7, sein Vorzeichen
mit y wechselt.

Dann aber mufl nach den Gleichungen (8 a), § 42, ndmlich

wmo D) amelt) . w

=

4 0
von den Ableitungen 3y ihr Vorzeichen mit a(: ihr Vor-
zeichen mit y wechseln, was wieder nur moglich ist, wenn
£ selbst sein Vorzeichen bei jedem Durchgang durch eine der
Achsen wechselt. Daher wird die Axialverschiebung £ fir den
rechteckigen wie iiberhaupt fir alle doppelt-symmetrischen
Querschnitte eine sog. ungerade Funktion sowohl von
z als auch von y sein. Deren einfachste Form

xy ‘
STy e o (2

haben wir schon am Schlusse des letzten Abschnitts als die
Axialverschiebung im elliptischen Querschnitt kennen gelernt
und diirfen sie ganz allgemein als ein partikuldres Integral der
Differentialgleichung (11), § 42,

030 0%

0% 0 g2
betrachten. Es liegt nahe, nach dem Schema (2) allgemeinere
Losungen von der Form

= AR CLR e o T

P R e I R

zu bilden, in der X eine reine Funktion von @, und Y eine solche
von y bedeutet. Das Einsetzen von (4) in (3) liefert nach Division

mit XY 1 d2X 1 d‘z Y X
e _|_ e (B
oder mit einer positiven Konstanten a®
a2 X g2k
— 2‘, —_— — 2Y . - ‘ 4 .
dxz oL Y, dy2 o (J’h}}

wonach X=Ceex L De—ex=C,Co3ar—+ D, Sinax | 3
Y = E cos ay -+ F sin ay | I
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wird. Von diesen Ausdriicken kommen aber nach den obigen
Ausfithrungen nur die ungeraden Bestandteile in Frage, so dal
wir an Stelle von (4) mit D;F = A unter gleichzeitiger Hinzu-
fiigung der einfachsten Losung (2)

[=AGnazsinay+2L . . . . . (4a)

schreiben diirfen. Der Sinn der Hinzufiigung der Lésung (2) be-
ruht in der Auffassung der Ellipse als Grundfigur des Rechteckes,
wonach das erste Glied von (4a) den Abweichungen beider
Figuren entspricht. Weiter folgt aus (4a) durch Differentiation

% :Aa(—inﬁamsinay-ﬁ—-i—‘
>z il (4D)
- :Aa@inaxcosay—kyl
und eingesetzt in (1)
% _ R
e :Aa@maxcosay—}—(?—i"'—, x
: - . [La).

Ty

o= AaGos ax sinay—}—(;}i——%_)y ‘

Diese Ausdriicke sollen der Randbedingung (2a), §42
geniigen, welche nur besagt, dall die resultierende Schubspan-
nung am Rande des Querschnitts die Richtung der Tangente
besitzt. Auf das Rechteck angewandt heilt dies, dali 7, =0
unabhéngig von y fiir # = + @ und 7, = 0 unabhéingig von x tir
y = t b wird.

Nun ist aber, wie aus (1a) hervorgeht, 7, eine gerade Funk-
tion (cos ay) von y und 7, eine ebensolche (€03 ax) von x, womit
der Einflufy der Vorzeichen von + ¢ und + b ausfdllt. Es bleiben
daher zur Ermittlung der drei Konstanten 4, a und & in den
Formeln (1 a) die beiden Bedingungsgleichungen

AaGin gz cos ab-l»—(%—f—%)x:[)

A aBosaa sin ay%—(L—l)y:U

k ¢

l. ETER)
|

iibrig, die anscheinend nur fiir bestimmte Werte von # und y
erfiillt werden konnen. Da nun aber gerade die erste dieser
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Formeln fiir jeden Wert von @ gelten soll, so miissen in ihr die
Faktoren von &in axz und x verschwinden, d. h. es mul}

ki — cungveoT o =8 NG ECIRAE ()

sein. Diese letztere Bedingung wird aber durch die Wert-
folge l 3 7

ab:?, o (2n-4-1) e (5a)

erfiillt, so daB an Stelle unseres partikuliren Integrales (4 a)

mit -
e T i R S 5

die unendliche Reihe

¢ =—"Y 4 A, Ginay sin ayy -+ Aq Gin 3apz sin Bagy + -

4+ A1 Gin e+ 1) gpzsin 2+ y+ . . (6)

tritt, deren Einzelglieder fiir sich der Differentialgleichung (3)
gentigen. Darauas folgt weiter

oL o E.
e —+ oy A1 C08 a2 8in oy Y
4 BagA;C08 3aga sin Sagy + - | .
0s T My
a; =—— a4, Gingyz cosay
+ 3apd; Gin3agx cos3agy + -
und nach Einsetzen in (1) an Stelle der Formeln (1 a)
2 = A &in ayx cos ayy
+ 3ayA; Gin 3agx cos 3agy + -+ (6b)
Ei" :—2—f—|—aﬂA1QSDS o & Sin g Y
' + Bagd; Cos 3ayx sin 3agy + -+

Von diesen Ausdriicken verschwindet der erste fir y = + b
wegen der Bedeutung von @, nach Gl (5b), wiithrend das Ver-
schwinden des zweiten fir z = t+ « auf die Gleichung

Y=+ % (A,C03 apasin agy 43 45608 3apasin3agy +-++) (7)

fithrt, welche jetzt die noch gar nicht diskutierte zweite Formel (1b)
vertritt. Mit den Abkiirzungen
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@ B o : B,
%Al‘@oéaﬂa :a_:’ iauc‘43(iow3rzna = E:_

. , B. (7a)
('?'n;{_ﬂaoc“l2n+1@9§ (2n 4 1) a“a:% ‘
5 0

erhalten wir aber an Stelle von (7) die Fouriersche
Reihe

oy = Bysinayy—+ Bysin3agy—+++— By, qsin(2n4+-1)ayy -+ (7h)
oder mit a,y = w noch einfacher

n=2DRBsinu-+ Bysindu-+. -+ By, 1sm2nt+1)ut-. (7Te).

Diese Reihe gilt fiir alle Werte von y zwischen -6 und — b,

7-
Multiplizieren wir sie demnach mit sinuwdu und integrieren
zwischen diesen Grenzen, so folgt unter Wegfall aller anderen
Glieder

also wegen (5 b) fiic alle Werte von u zwischen —i—f;— und —

s L
L irai Sactl

B) ey
Bl
e

.‘h
zasinucizz:Blgsingudt.',: 7
o

r:|i-i

und ebenso nach Multiplikation mit sin 3 # du und Integration

Py 2 i

30 v

el 3

\ usin3undu= By \sin?3udu = —,—f 7
—

L v

il 2

:.
2 2
usf. Durch Anwendung der partiellen Integration auf die linken
Seiten dieser Formeln ergibt sich ferner

Tk N
G nt o
g \mi (cosu) = {u cos u} -} \ cos wduw = -2
T s
5 5 45
By . ucos3u| , 1 g 2 2
5 :_gj”d(“‘)ﬁ“)x‘_“[T]‘l‘B' ms"{ud“:_;,}_z
by _(_ ‘r
s e
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usf., so dall wir fir die Koeffizienten in (7 ¢) erhalten

4 A | & 2
Bl Byt may Bp=ci- - 2a  10b

Eingesetzt in (7 a) ergibt dies fiir die Koeffizienten 4 der
Reihen (6), (6 a), (6b) und (7)

8 8
‘41:_.—2,-.“.?.-_’ A3: 53 . 2‘3,9
7 - ap? e Cos aya 7 38 - e Cod 3 aya (8a)
o acCo3baga N

Damit wird die Axialverschiebung (6)
e Lo ey G ainagy ) ©
SETEtY T gm T Co3aya 3% Cos3aga )
woraus sich nach den Berechnungen von De St. Vénant
die in Fig. 166 dargestellte Kurvenschar fiir einzelne Werte von

T x i \d
ﬂ/ F \\\\\“'w-.._‘-_‘_._.—_- ‘-“.\\

SRR ‘\z‘ D~ =1 / P 'z 5
B s —] f=m bk
e iy ~—~2>0 e
frum e - £<0. 7>
e i <0
----- e o ,—"z"l Z/\
Fig. 166. Fig. 167.

£ berechnet, die wie bei der Ellipse in einander gegeniiber liegenden
Quadranten dasselbe Vorzeichen besitzen. Fiir das Quadrat
(Fig. 167) erfordert die doppelte Symmetrie auch in bezug auf
die Diagonale acht symmetrische Bereiche mit abwechselnden
Vorzeichen.

Fiir die Spannungskomponenten ergibt sich weiter
8G (uua{,'}:cosany Sin 3 ayx cos 3 ayy )
r |

= Tty Co3aya 32. o33 aya =
b A 8G (Codgpasingyy  Cod3ayasin 3q jaej ‘ =2
STl e ( Cosaya - 260830y

Diese Ausdriicke verschwinden fiir die Ecken
da diese Schnittpunkte der Seiten darstellen, sowie im I\IlLtel—
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punkte mit « = 0, y = 0. Sie erreichen ihre absoluten Hochst-
werte in den Mitten der Seiten, so zwar, dall

fiire=ua 8G 1 ]
?]:U Ix]l\ax:+1aoc (Ejana—f— g?aua—i— ) |;a:
tiiee =0 2Gh 3G 1 1 =2
T S +na0c(Cu§aoa+32 Co33 aga + )‘
oder mit Riicksicht auf die Bedeutung von @, nach (5b)
166G - b
Txmex =+~ (Igaﬂa— o Ta3apa - ) =
i S B i el | e
S S (8 Cosape  32Co33a9a ) J

Fiir den Fall des quadratischen Querschnitts,
also mit aya = ayb =—5 stimmen beide Werte miteinander

iiberein, withrend fiir @ =& ersichtlich das zweite iberwiegt.
Auberdem erkennt man, dall wegen

T T
W=

in den vorstehenden Formeln mit hinreichender Genauigkeit

1 1 1
il e e G - = — =
3% - E8 3 ay ¢ Voo i) 9
Cos 3aya 3. 603 a 58
ist, so daB es geniigt, in der zweiten Formel (9 ¢) fir 7, max
nur die ersten beiden Glieder beizubehalten, also

sy 8 it il iy s
Tmax — = E e 7 32@05 g e 'c' I T 1,-)93 {Jd}
zu schreiben, wihrend die erste Gl. (9¢) kein weiteres Inter-
esse beansprucht. Das Torsionsmoment ergibt sich
schliefilich zu

M= ( (v, —1,9) dF = 455 (e —1yy) dady . (10),

also nach Einsetzen der Ausdriicke (9a) und Ausfiihrung der
Integrationen

8Gab® | 32Ga 1 1
e “—47@$+?+§+ﬁ
64G 1 1
e 7 (4900a+3_57\‘:93a0ﬂ+55'395aoa+----
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Ersetzen wir hierin @, durch seinen Wert nach (5b) und be-
achten, daf}

4
1+34+)4+ o ik R T
ist, so wird
16 Gab?d 16-12 b
sﬂ.‘;_—g— - [1— . (Egaﬂa—i— 35 Tg3aga—+-- )] (10a)
oder hinreichend genau, da ¥g3aya ~ TgHhaga ~ 1 ist, unter
Vernachldssigung der kleinen Briiche 1 :3% 1 :55 usw. in der
Klammer -
: ? 1 8 192 b
sm=.._3‘,3 G‘;E‘ ( w—ja——,,qaor;) o oDy,

Beachten wir ferner, dal

gd — p—itya 1_3—..q,a

G gl ULl i i) e el o =), —‘Zr(o
3‘]%“—— cuna,_I_e—{rna 1_+__3—L::.,a ~ 1 e
0 diirfen wir an Stelle von (10 b) auch noch schreiben

3 s
wtzgﬂf)—[i-—o,%g(l—% : b” . (104),
s (¢ a
ein Ausdruck, der sich fir flache Querschnitte, fir

die @ sehr viel grofler ist als b, unter Vernachldssigung von
a .
2e "y gegen 1 in

1€ i

i (1—0,633) e R0
S a

vereinfacht. Die eben abgeleiteten Formeln fiir das Torsions-

moment gehen in die GL (23b), §11,

p 16 ot

i
iiber, wenn wir in der Klammer lediglich das erste Glied bei-
behalten, was aber nur fiir sehr flache Querschnitte zulissig er-

scheint. Fir diese reduziert sich auch Gl. (9d) auf
b 3 M

Tmax = — 2G e 2 R
in Ubereinstimmung mit Gl. (21 ¢), § 11, fiir schmale Querschnitte,
denen dann eine lineare Spannungsverteilung nach

7y =—26
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entspricht. Diese geht ersichtlich aus unserer zweiten Gl. (9 a)
durch Vernachlassigung des Klammerausdruckes hervor, die
wiederum nur fiir grofie Werte von o, @ berechtigt ist.
Die fiir beliebige Verhéltnisse a:b in §11 abgeleitete
Boermisl p_%0 G _ab
T 9 c a2t

wird durch die exakte Theorie jedoch nicht bestétigt, was ange-
sichts der Willkiir in der Wahl der Funktion fiir die Spannungs-
linien in § 11 auch nicht wundernehmen kann.

Daf durch die Formeln (10a) bzw. ihre Niherungsausdriicke
bei vorgelegtem Torsionsmoment It der - Verdrehungswinkel
der Léngeneinheit, d.h. 1 :¢ bestimmt ist, der auch in den
Gleichungen fiir die Spannungen und in der Axialverschiebung
erscheint, braucht kaum noch hervorgehoben zu werden.

Fiir die in unseren Formeln auftretenden Reihen hat De St.
Vénant, der in seinen klassischen Untersuchungen zuerst
die exakte Losung fiir die Torsion von Stében mit rechteckigem
Querschnitt gab, Tabellen aufgestellt!). Von deren Wiedergabe
kann indessen abgesehen werden, da die oben entwickelten
Naherungsausdriicke, zu deren Verwendung die bekannten Ta-
bellen der Hyperbelfunktionen geniigen, eine fir alle praktischen
Zwecke mehr als hinreichende Genauigkeit besitzen, worauf
in einer bemerkenswerten Abhandlung neuerdings R. Goetzke?)
hingewiesen hat.

Dagegen erscheint es auffillig, dal in der Formel (9) die
Axialverschiebung ¢ nicht in gleicher Weise von den Koordinaten
« und y abhingig ist, so daB also die offenbar zuliissige Vertau-
schung dieser Variabeln nicht wieder auf denselben Ausdruck
fiihrt, wie man erwarten sollte. Es liegt dies natiirlich an dem
Ansatze (4 a), fiiv den wir ebenso gutb

{=AGmaysinax _1__3‘;}_

1) Navier: Lecons de mécanique: De la résistance des corps
solides, ed. par De S8t. Vénant, Paris 1864,

2) Goetzke: Zur Theorie der Torsion rechteckig-prismatischer
Stabe. Z. d. V. d. Ingenieure 1909, 8. 935. Auch diese Arbeit enthalt
Tabellen fir die Klammerausdriicke.
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hatten schreiben kionnen. Wir brauchen demnach nur, um eine
gleichartige Abhéingigkeit von 2 und y zu erhalten, in (9) die
Variabeln zu vertauschen und aus (9) und deren neuem Aus-
drucke den Mittelwert zu bilden, ohne daf hierdurch rechnerische
Vorteile erzielt werden. Genau dasselbe gilt natiirlich auch fiir
die Formeln der Spannungen und der Torsionsmomente.

Schliefilich sei bemerkt, daBl durch neuere Versuche von
Bretschneider?) die De St. Vénantsche Theorie ihre
volle Bestédtigung insofern gefunden hat, als die Abweichungen
1,59, nicht iiberstiegen.

§ 44. Die Schubspannung im Querschnitt des gebogenen Stabes.

Nachweis der Unvertriglichkeit der Annahmen der elementaren Bie-

gungslehre mit den Verschiebungsgleichungen. Zuriickfithrung des

Problems auf die Ermittlung einer sog. Biegungsfunktion. Berechnung

der Schubspannungskomponenten und der Gleichung des verzerrten

Querschnitts. Beispiel des nmahezu rechteckigen und des elliptischen
Querschnitts.

Die allgemeinen Gleichungen fiir den Spannungszustand
cines isotropen Korpers bieten uns die Moglichkeit der Prii-
fung der Grundannahmen der elementaren
Bicgungstheorie. Von diesen Annahmen war die
wichtigste die schon von Bernoulli herriihrende der Er-
haltung der Querschnittsebenen, welche im Verein mit der
Vernachléssigung von Normalspannungen o, und ¢, senkrecht
zur Stabachse auf eine in deren Richtung fallende Spannung

Oz:"g?/--------(l)

[ihrte, wenn 9t das Biegungsmoment, @ das Trigheitsmoment
der Querschnittsfliche um ihre neutrale Achse und y den
Abstand von dieser bedeutet. Daraus ergab sich weiter [fir
rechteckige Querschnitte unter Vernachldssigung der beiden
Schubspannungskomponenten 7, und 7, die im Querschnitt zur
neutralen Achse senkrechte
i
Ty = —2-% (i?it (2)2—?}2) s 2 @ (b ‘72}' & el a),

1) Bretschneider: Disserfation Stuttgart, Berlin 1911.

Lorenz, Elastizititslehre, 28
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wenn T die Querkraft und b die halbe Querschnittshthe bezeich-
net, wihrend dessen Breite hierbei keine Rolle spielte.

Durch diese Annahmen werden, da
0, dk y T a7 T

. (1b)

B ax 0 0¥ 3y @eY
ist, die drei Spannungsgleichungen des Stabelementes ohne
Massenkréafte

Da,,, ﬁtz + brﬂ i '
Wo hr br
A BT S T S| 9
Ay " vz i ox ¢ )
Doz ary Vo
Ll T T
identisch erliillt, solange
At
Syt hed il SN kg

= T Y
also T = Const ist, was aber nur fiir den Stab mit einer
konzentrischen Einzellast T am Ende zu-
trifft. Weiter erhalten wir fiir die Dehnungen und Gleitungen
it e igy— g — )

Ly W My 3 o Wy
e N e R ,uﬂo’ 35 B E6
0f 0y __ % _, O 2wl )
ARt S ¢ =01

By DE e | Ek

32 T2 6 2680 ¥)
Hieraus wird mit (4)

o8l o foint uy X GO O Sl iy
o000z~ uE bz pEO' 0dzdydz = wEE 4a),
dagegen mit (5)
il 02 a?} {)C -
“dx0yoz i bx*—( + )—‘] . (Ba)

so dall die Grundannahmen der ‘Blegung schon im einfachsten
Falle auf einen unldsbaren Widerspruch fiihren, der wesent-
lich auf der Vernachlidssigung der Wirkung der Querkontrak-
tion in der elementaren Theorie beruht.

Wollen wir daher zu einer den Spannungs- und Dehnungs-
formeln in gleicher Weise geniigenden Lisung gelangen, so miissen
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wir nach dem Vorgange von De St. Vénant die Zahl
der Annahmen selbst dann einschrinken, wenn wir es mit einem
zylindrischen Stabe zu tun haben, dessen Querschnitt um die
x y-Achsen doppelt symmetrisch liegt. Insbesondere
erscheint mit Riicksicht auf das in § 14 bemerkte Verhalten der
Schubspannung am Umfang nicht rechteckiger Querschnitte die
Vernachlissigung von 7, als unzuliissig, womit auch die Gleichung
(1 a) fiir 7, ihre Geltung verliert. Wir behalten also den Ansatz (1)
bei und setzen auflerdem nur

Gge= =0 —— e SSTEREE SR (G

so dal} die Dehnungsformeln (4) bestehen bleiben. Die Spannungs-
gleichungen (2) vereinfachen sich dann zu

?11:,, = abrj =0
S0 e (200
hry + brm +—"—J—-O
wihrend wir lir die Gleltungen
\}j ] Dl, _Ex_
=3z T oy G
oL o0& T -
o e ag =R g O
g5, on
T T

erhalten. Aus der Verbindung der ersten beiden Gleichungen (2 a)
und der entsprechenden (7) lolgt weiter

e (8),
also die Unabhéngiglkeit der Gleitungen von der Querschnitts-
lage im Stabe. Differenzieren wir ferner die ersten beiden For-
meln (7) partiell nach @ bzw. y und subtrahieren, so wird

a?@’_w__ OZ*’ — 0 (??? a"_{’:) (9)
0z dy 0z \d=z Ay
und nach weiterer Differentiation
0 (Oxy Oy 0 [ 0%y 028
(J:a(am 5 by)_iz_(ascﬁ _EE}TJ) ©
d (O dzy\_ D[ %y Dbg Yl 14D,
3y( v 0y )__E(&t?)? Y )
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Nun ist aber wegen der letzten Gl (7)

027 038 G 029 e
32 = dwdy. o dady (7a),
womit (9 a) tibergeht in
_D_(f’xm b a.ﬁr) il
ax \ ox a9 ‘aﬁayle 91
B (O, Dy 39 ‘ s
oy (_6_56 by) VzdYy 0z

In die rechten Seiten dieser Gleichungen kénnen wir aber
die Dehnungsformeln (4) einfithren und erhalten

03& 1 ot i
s i P
oy . RIS S (da),
dadydz  pEO dz dz0z  uEO dz
also an Stelle von (9 b)
0 Dxm b;{y 3 xT |
F:E'( a:c'__a'y") ~ wko | @0
2 (2o | Folie
0 oy

Da nun nach (8) eine Abhiingigkeit des Klammerausdruckes
links von z nicht in Frage kommt, so liefert die Integration

von (9¢) mit einer moch zu bestimmenden Konstanten 2C
0 07 gL :
Oincl a8 o= 88 80 foug ) ap b, DY

Dz dy pEO

Dieser Gleichung geniigen offenbar die beiden Ausdriicke

By 00 Ta” |
B g o T uER |
‘ - . (10a),
Ty - od
=p=5,+Cy |
in denen wegen (8)
L a(p)_“ 4
az(,_hw ez \oy | oAl DI {ba}.

ist, so dal

(701 e 7 RIS SR (8Dh)

neben einem nur von z abhingigen Zusatzgliede Z noch eine
Funktion @, der Querschnittskoordmaten xy enthilt. Weiter
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erkennt man, dab in Querschnitten, die um die

y-Achse symmetrisch gelegen sind, worauf wir uns

beschrinken wollen, die Konstante C verschwinden mubl, da

das mit ihr behaftete Glied Cz sein Vorzeichen beim Durch-

gang durch die y-Achse &ndert, wovon dann auch die der

y-Achse parallele Schubspannung 7, betroffen wiirde. Schreiben
wir demgemél an Stelle von (10 a)

2

xx:?’f- bD(DJrTa' '

- y ' uE6

20 gl il . (10b)
W=G T s
und setzen die Ableitungen dieser Ausdriicke
01, 2P Drp . o 0ED
= vz %o (b)
in die letzte Gl (2a) ein, so wird daraus mit der Konstanten-
bedingung 2(;(u+ Galemgn s By
02 02 (w+1) Ty e
w~+aya+ el DI

Neben dieser Differentialgleichung besteht nun
noch die Randbedingung fir die Schubspannungen 7,
und 7,, deren Resultante die Richtung der Tangente des
Querschnittsumfangs haben muB, also mit dem Tangentenwinkely
gegen die w-Achse

7,8 4+ 7, co8p =0,
woraus mibt (10 b)
o 2
(---(é-g-—{- YT COs Y —|— \ i — O SR B
oder, wenn wir die Funktion @ auf die linke Seite bringen,
o oD T2
3 cos yp -+ N sin y = ey 7 cosy . . (13a)
hervorgeht, Um nun die Gestalt der Funktion @ zu ermitteln,
kehren wir noch einmal zu den Formeln (10 b) zuriick, fiir die wir
wegen (7) auch schreiben diirfen
on _ 0D s T 22
Dz 0y 0Oy ' uEG
oE 0P 0f
z 0% &

. (10¢).

ol
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Differenzieren wir die erste dieser Gleichungen partiell
nach z, die zweite nach y und addieren, so folgt

R 02 o
Dz( oy ) 2y vyl il T oy 7
oder mit Riicksicht auf die dritte Gl (7)
02 e
dzdy = J=—yE(—)

Die nochmalige Differentiation dieser Gleichung nach =
liefert bei konstantem T mit Riicksicht aul die dritte Formel (4)
in Einklang mit (8 a) und (8 b)

' RO 02 (ac) d (9)2)_0

0x0Yydz T dzdoy \0% s o=

Integrieren wir dagegen (14), so wird mit einer reinen
Funktion Y von y, einer Funktion X von x und einer Funk-
tion f (y, 2)

(14).

. (14a).

h) Tz of (y,2)
e 2;5E@+dy+ 50
Tazy

O=C—g pg TV +X+1@a . 14D)

Die hierin auftretende Funktion f (y, z) kann aber nur ein
Bestandteil von ¢ selbst sein, da die anderen Terme der rechten
Seite von (14 b) die Variable z nicht enthalten. In der Tat folgt
aus der Gleichung fiic die Dehnung in der Richtung der Stab-
achse aé‘_iﬁty— sz

%z EO EO

durch Integration mit einer Funktion @, von z und y

Lo e
CZW"@“—F@U P s TR L )
wonach a
) Tyz s
syl aned) S e o), g el
= EhF ypay= By o il o {45 B)
ist. Fiihren wir den Ausdruck (15 a) in die GL (14 b) ein, so wird
aus dieser
Tyz? Lty ST o
i ey RE Ty i R
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und nach Einsetzen in die Differentialgleichung (12)
Gl g4 Ty a2 X
i = 12
b$2+by-+ dy? 1 E0+ d a? i egii
Hierin konnen wir aber die Summe der beiden ersten
Glieder umformen, und zwar mit Hilfe der letzten Spannungs-
gleichung (2), die nach Einsetzen der Ausdriicke fiir o, und 7, 7,
aus (4) und (7) tbergeht in

o2+ T8 o2 3+ 28]+ 13-

oder wegen der ersten beiden Formeln (4) sowie mit der Kon-
stantenbeziehung (11)

ol =) B

¢

02
x2+bu2+ 32 = T o
Hiernach ist mit (15)
02§ vl QRN T
St —by2 __2—6-;2 ST e (164a)
oder, eingesetzt in (12 a)
a2y d2 Xj
2—{—#]:@—}—{2:62_0 SRR e R

Diese Gleichung zerfdllt offenbar mit einer neuen Kon-
stante B in die beiden

Y 19  op. EX
dyt U pB@ T RN dak
und liefert bis auf bedeutungslose additive Konstanten
- Tys :
S T e e B T
Vil — 6uED" X Bz (17 a),

so daB wir an Stelle von (14 ¢) mit (15) schreiben diirfen
Ta?y Ty
2uE® buEO
Da auf der rechten Seite nur noch Funktionen von z und y
stehen, so kann auch @ nicht mehr von z abhiingen, so daB in
Gl. (8b) das Zusatzglied Z wegfillt. Aulerdem erkennt man
leicht durch Einfithrung der Ableitungen von (18) in die Gl. (10 b),

D =D, —

+Br—a?) . (18).
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dal B aus demselben Grunde verschwinden mul, wie oben in
(10 a) die Konstante €. Schreiben wir nun mit einer anderen
Funktion ¥ von z und y sowie einer weiteren Konstante D an
Stelle von (18)

O=—r (¥ 4 Daty— & 18
“uE® +DBy—F). . . . (18a),
so folgt durch Einsetzen in (12)
g2 A

v T o T@D+ 2+l y=0 . . (o).

Verlangen wir nun, dafll die beiden ersten Glieder dieser
Gleichung fiir sich verschwinden, also

oy "
0 2 + 01 N e e e ki)
1st, so wird
D :_% . (18D),
und Gl (18a) selbst geht iiber in
L s 3> 2u —} 1 ;
(D:,LTE@ {{’——B—— .52_;). e el

womit das Problem auf die Ermittlung der Funktion ¥ zuriick-
gefithrt ist, die natiirlich auch der Randbedingung (13 a) zu
geniigen hat,

Eliminieren wir aus (15 b) und (18) mit B =0 die Grole @,
so ergibt sich fiir die Forménderung des Quer-
schnittes %
woraus man schon erkennt, dal die Annahme der Erhaltung
der Querschnittsebenen im allgemeinen nicht zutreffen kann.
Weiter erhalten wir durch Einsetzen von (18¢) in (10b) mit
Beachtung wvon (11) die Schubspannungskompo-
nenten

/ 2 I
1 1 (DS_U Y __52 & ;:-:2)‘

TJS:_"

2 -1 T T @)
1 B g i ) [ : £
Ty = ‘“_{_1) (ax _(‘-‘a‘“—{_ J"Cy}

Von der hierin auftretenden sog. »Biegungsfunk-
tion¢ ¥ wissen wir nur, dal sie, um den Symmetrie-
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bedingungen der Spannungskomponenten (21) zu geniigen, in
x gerade und in y ungerade sein mul. Setzen wir demgemif
unter Beschrinkung auf Glieder bis zur dritten Ordnung

W = A+ By + ByyS+Caty . . . (22),

50 wird daraus

ot e 02y
sz-::ZA—I—ECy, A =685y,

also nach Einsetzen in die Differentialgleichung (19)
A= C =—3B,,
so dall wir an Stelle von (22) haben
Y=8By+B;(y*—32%y) . . . . (22a).

Hétten wir die Funktion ¥ mit noch mehr Gliedern ange-
setzt, so wiirden jedenfalls infolge von (19) die Koeffizienten
von z?, 2*... verschwinden. Unter Hinzunahme der Glieder
fiinfter Ordnung wiirde sich dann aus (19)

¥ = B,y + Bs (y*— 32%y) + B; (y° — 1022y 4 Sty) (22b)

ergeben usw. Es braucht wohl kaum hervorgehoben zu werden,
dafl man fiir die Wahl der Funktion ¥ nicht etwa allgemein auf
derartige Potenzreihen angewiesen ist, sondern dall man hierzu
auch Reihen, welche nach Kreis- oder Hyperbelfunktionen, wie
beim Torsionsproblem, § 45, fortschreiten, gegebenen Falles
heranziehen mul.

Begniigen wir uns mit dem Ansatze (22 a), so erhalten wir
fiir die Schubspannungskomponenten (21)

rm:ﬁ_(xui—}—_ﬁ(%‘:ﬁl+(333_%).} _(3 Ba‘{‘"u )xzj

ltzla),
|

1 T
1= _1_”0((333—1—);1-{-1 Ty
wihrend wir fiir die Randbedingung kurz
3 e s it e B0

i (117

schreiben kinnen, worin dy : dz der Gleichung der Randkurve
zu entnehmen ist.
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1. Beispiel Im Falle eines rechteckigen Quer-

sechnittes mit den Halbachsen a und b ist

T S e it g-g-z(), also nach (23] e —t

» Y= * B :i—i:(}, » » e ——
Das Verschwinden von z, fiiv irgendeinen Wert von x, unab-
hingig von y, bedingt aber nach (21 a) mit
EB;=—Qut+1 . - « - . o (24
das Verschwinden von z, iiberhaupt in Ubereinstimmung mit den
Annahmen der elementaren Biegungstheorie, deren Unzuldnglich-
keit gerade fiir diesen Fall wir im Eingang dieses Abschnittes
erkannt haben. Soll namlich fiir y = + & die zur y-Achse parallele
Schubspannung 7,, die mit (24) in
1 e
Ty = W—l__l)_ —0 [Bl — (‘H + 1) y2 —|— .’1:2] ot Cn {23]
iibergeht, verschwinden, so miilite unabhéngig von
Bi—(u+1)2+a2=0
sein, was offenbar unméoglich ist. Die Randbedingungen lassen
sich fiir das Rechteck auch nicht durch eine weitere Ausdehnung
der Potenzreihe fiir ¥ erfiillen, so dafi man hier zu ‘der schon er-
wahnten Reihenentwicklung nach Kreis- und Hyperbelfunktionen
greifen miiBte. Dagegen hat Grashof?) bemerkt, dafll das
Verschwinden der Komponente 7, im ganzen Querschnitt mit
einer Begrenzung desselben durch zwei Parallelen z = + a und
die beiden Aste der Hyperbel (Fig. 168)
Bi—(u+10p+a2=0

1) Grashof: »Theorie der Blastizitdt und Festigkeitt, 2. Aufl,
Berlin 1876, S.246. Grashof schlieBt sich in seiner Darlegung der
Schubspannungsverteilung eng an das sehr allgemein gehaltene Werk
von Glebsch: »Theorie der Elastizitit fester Korpere, Leipzig 1862,
8,741, an, der diesen Gegenstand geradezu als das DeSt.V énant’sche
Problem bezeichnet. Wir haben hier einen etwas kiirzeren Weg ein-
geschlagen und nur im Anfang bis Gl (10a) L o ves »Lehrbuch der Elasti-
zitite, deutsch von Timpe, Leipzig 1907, S. 380 ff., benutzt. Von da
ab sind wir allerdings selbstindig vorgegangen, um den von Lo ve ein-
fach hingeschriebenen Zusammenhang zwischen den Funktionen # und #
unter Benutzung der Symmetrieeigenschalten des Querschnittes her-
zuleiten.
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Sger a4y 2
Byt s By
vereinbar ist. Bezeichnen wir die Hauptachse der Hyperbel
mit 2b;, so wird

2 il ot

B o e S N (2ha)
und die Schnittpunkte der beiden Geraden z = + @ mit der
Hyperbel haben die Ordinaten

a?.
=b+— - (26D).

Nach Einfiihrung dieser Werte
in (25) wird die Schubspannung

/6 az--ﬁ |
ey gLl
== _)‘9(\.!)2 Yy 1) (25a), I ; b,
worin fir sehr schmale, | Ld%k’—-‘f——}u—---t-b-)(

Querschnitte, deren einer
in Fig. 168 punktiert angedeutet
ist, sowohl @? als auch 2®> um
so eher vernachlissigt werden
diirfen, als ihre Differenz mit
dem Quotienten w41 = 4 be-
haftet ist. Dann aber wird im
Einklang mit (1 a)

= (b2—y?) (25b),

so dal die Annahmen der elementaren Biegungstheorie fiir
schmale Rechtecksquerschnitte, die um ihre kleine Hauptachse
gebogen werden, ihre Bestétigung finden?).

2. Beispiel Ist du- Querschnitt durch eine Ellipse

'az —]— o =l v wilenE Gk (27)
begrenzt, so lautet mit

dgp frunigih S

dz ~ ya® ' el

1) Es sei hier nochmals betont, daB mit diesem Ergebnisse die in
der Fulinote S. 153 erwihnten Versuche von Coker in einem unlés-
baren Widerspruch stehen.
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die Randbedingung (23)
naty-Erbte—0 .. . . . . ({i3a)
woraus nach Einsetzen der Werte (21 a)
[BI+(BB3——12-) 2—(333+ 5 )x2]a2
—{6B3+2p—[—1)62x2:0 R, e

hervorgeht. Da die beiden Variabeln in dieser Formel der Ellipsen-
gleichung (27) geniigen miissen, so konnen wir eine derselben durch
die andere ausdriicken und erhalten so

| s T
a {BI + (3 Bl 2) b{l = (3 By — | t2a?
2p—1 = . o
— 8By F—5—| 22— (6 By 4+ 2p+ 1) 22?2 =0 (23¢).
Diese Gleichung kann fiir beliebige Querschnittspunkte nur

bestehen, wenn sowohl der konstante Teil, als auch der Faktor
von a2 fiir sich verschwinden, d. h. wenn

foatatany
Bl—bZ(ﬁ- 3 1;3) =0

: : | (28)
Ba(r€-2—|—362)—|—(2‘u+,))3)2+( —Ha=0]
sind, woraus sich
(2,&—[——%—) bg—l*(‘u —%) a?
Bip YA
Wilie a* 432 w288
— b+ 2(pu41)82 [
R SRR

berechnet. Driicken wir der Einfachheit halber nur die Kon-
stante 3 By durch B, vermittelst der ersten Gl. (28) aus, so
ergeben sich die Schubspannungskomponenten (21 a) zu

S T
1 ' ‘ A
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Diese Ausdriicke gelten auch noch fiir den Kreisquer-
schnitt, wenn mit a = b

1
= _lu__j 2 a?

gesetzt wird.

Aus unseren Formeln kann man natirlich auch noch die
grofbten Werte fiir die resultierende Schubspan-
nung mit 72 =12+ 7,2 sowie aus (20) die Gleichung der
verzerrten  Querschnittsebene berechnen.  SchlieBlich ergibt
sich noch durch Einsetzen der Spannungskomponenten in die
Gl. (23) und deren Integration der Verlauf der Schubspan-
nungslinien, die z B. fir den elliptischen Querschnitt
ellipsenihnliche Kurven sind und sémtlich durch die Enden der
zur neutralen Schicht normalen Achse hindurchgehen.



Kapitel VIL
Die Biegung ebener Platten.

§ 45. Ableitung der Grundformeln.
Definition der ebenen Platte und Zuriickfithrung ihrer Formanderung
auf diejenige ihrer Mitteltliche unter Erhaltung der Normalen. Auf-
stellung der Spannungsgleichungen und der Differentialgleichung der
deformierten Mittelfliche. Binfithrung der Kriimmungsradien und
Berechnung der Forminderungsarbeit. Die Differentialgleichung der
schwingenden Platte.

Unter einer ebenen Platte soll ein Kérper verstanden
werden, der von zwei parallelen Ebenen im Abstande 2 sowie
von einer beliebigen geschlossenen Zylinderfliche senkrecht zu
diesen Ebenen derart begrenzt ist, daB die Plattendicke A
klein gegen die Abmessungen der Plattenbegrenzung in den
beiden Ebenen ausfillt. Wird eine solche Platte durch Einzel-
kriifte bzw. durch einen konstanten oder variablen Flichendruck
normal zu ihren Ebenen belastet, wihrend sie gleichzeitig in
punktférmigen Auflagen oder lings ihres Randes gestiitzt ist,
so erleidet sie eine Durchbiegung, ohne daf ihre Ab-
messungen selbst nennenswerte Anderungen erfahren. Die Durch-
biegung kann daher als das Ergebnis von Normalverschiebungen £
aller Punkte der urspriinglichen Mittelebene angesehen werden,
welche dadurch in eine gekriimmte” Fliche mit der Gleichung

E = Bl s s e e v (R

iibergeht, wenn die z y-Ebene des Koordinatensystems mit der.

nicht deformierten Mittelebene der Platte zusammenfillt. Durch
die Form der neutralen Fldche (1) sind dann auch die
Verschiebungen eines Plattenelementes im Abstande z von der
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Mittelebene bestimmt, wenn wir mit Riicksicht auf die Klein-
heit der Plattendicke £ annehmen, dall} die Normalen
zur Mittelebene nach der Biegung wieder
Normalen zur neutralen Fldche bilden, ohne
selbst innerhalb der Platte eine Kriitmmung zu erleiden (Fig. 169).
Diese Annahme entspricht offenbar genau der Bernoulli-
schen Voraussetzung der Erhaltung der Querschnittsebenen in
der elementaren Biegungslehre
gerader diinner Stébe. 0

Auf die Normale NN, Fig.
169, angewendet, liefert sie fiir
die Verschiebungen eines Platten-
elementes in der x y-Ebene, die
wir von jetzt ab der Kiirze
halber als Horizontalver-
schiebungen bezeichnen
wollen

bc B p._a_'{;-_ f 4 Fig. 169.
=—z5, @) s

withrend die in die zRichtung fallende Vertikalver-
sehiebung ¢ mit derjenigen des zugehorigen Punktes der
Mittelebene iibereinstimmt. Die negativen Vorzeichen in (2)
deuten nur an, daf} die Durchbiegung ¢ mit wachsendem z bzw. y
abnimmt, wie es z. B. einer am Rande aufliegenden Platte
entspricht.

Aus den Gleichungen (2) erhalten wir durch nochmalige
Differentiation die Horizontaldehnungen

BN it o A
ST Fx T fodr 9 oy e

. (2a),

die mit den gleichgerichteten Spannungskomponenten g, und g,

durch
Oy - Op . ‘
E(:‘_,.::Gx——”--, heyzoy—-;; S et
zusammenhiingen, wenn wir von der Wirkung der Vertikal-
spannung o, absehen, die ja nach Voraussetzung keine nennens-
werte Dehnung hervorruft, die sich in einer Anderung der Platten-
dicke verraten wiirde. Aus den Formeln (2b) berechnen sich
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nunmehr umgekehrt mit Riicksicht auf (2a) die Spannungs-
komponenten

= qu - h2c _azg_
oy e (’u 0 a2 0y
luf 03¢ 03¢ | (3),
Uyiesiress (/“ D2 Sl D 2) ,
WAL 4 -

aulBerdem aber noch die Schubspannungskomponente

a1 02f
T, (ay+ ) anm—y eil [ o il

welche eine Verzerrung der Plattenelemente in ihrer Ebene
selbst hervorzurufen bestrebt ist, Fig. 170.

Sehen wir nun vom Eigengewicht der Platte ab, so gelten
fiir sie die Spannungsgleichungen

:‘[}7’/_"‘5’ bom_+_a1:ﬂ b:i:z :Ol

oo dz
i1
4—#: -?’b-"” a“z 4+ b”-‘ zor . (),
i y da, )rx d7,
i _bz+_"+ du— )

von denen wir zundchst nur die
beiden ersten ins Auge fassen wollen. Setzen wir in die erste
die Ausdriicke (3) und (4) ein, so erhalten wir

3)
at, R sl s i 03¢
PRI o S i i 9 28
03 wr—1" 028 (,u.z—1 ia G)z dx0y?
oder wegen
: - R e SO -
26 =— +1 oder e —}-AG_‘”zml w (B)

unter gleichzeitiger Hinzufiigung der anderen Formel
L o e (e 03¢
0z pE—1 (ax3+3m\?f )l
07 ME 03¢ o8t | |
oz . ga—1 (ays D220y ‘

Integrieren wir diese Ausdriicke nach z und beachten, dali

. doal

h
fiir z = + -, d. h. in der oberen und unteren Begrenzungsebene

2 ]
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nach Voraussetzung keine Schubspannungen herrschen, so ergibt
sich fiir die beiden Schubspannungskomponenten

e (033; 3L 72 kz]
0 a8 dxoy? )\ 2 ; (

W= 2" o
e (335 e\ I '
=21\ T 3220y )\ 2 8

-]
~

Daraus folgt aber eine parabolische Verteilung beider Kom-
ponenten iiber die Plattendicke, ganz analog der von der Quer-
kraft beim rechteckigen Balken ~hervorgerufenen Schubspan-
nung. Ebenso wie deren Verénderlichkeit lings der Balkendicke
im Widerspruch steht mit der Bernoullischen Annahme der
Erhaltung der Querschnitisebenen, so wiirden die Formeln (7)
eine doppelte Kriimmung der Normalen bedingen, die indessen,
wie eine nihere Untersuchung zeigt, praktisch keine Rolle spielt.

Dagegen liefert der Unterschied der Spannungen 7, und 7,
in den einander gegeniiberliegenden Vertikalflichen da dz und
dydz des Elementes nach nochmaliger Integration iiber die
Plattendicke je eine Vertikalkraft, die zusammen dem Flichen-
drucke auf das Element d zdy einer der Begrenzungsebenen
das Gleichgewicht halten, so zwar, daf

{i b?: ar:z:

) ( b; d:r:dy—}—-ub?dyd:x:)dz:pdxdy

I

oder 3

Ll

i A7, 01T,

j(.bx._[_by)dz:p. Tl e e sl S (S)r
I
&

woraus schlieflich nach Einsetzen von (7) und Ausfithrung der
Integration

Tl e S T s T :

u? o at —D$2B?2+ B T ©)

resultiert. Das ist schon die gesuchte Differentialglei-
chung der neutralen Mittelflache der defor-
mierten Platte, deren Integration uns nicht nur mit (2)

Lorenz, Elastizititslehre, 29
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die Verschiebungen aller Plattenelemente, sondern auch unter
Zuhilfenahme der Gleichungen (3 a), (4) und (7) die Spannungs-
verteilung innerhalb der Platte liefert. Ja, sogar die bisher
vernachlissigte Vertikalspannung o, 1t sich nachtriglich aus
der dritten Gl (5) leicht berechnen, wenn man in diese die beiden
aus (7) gebildeten Ableitungen von 7, und 7, wie in (8) einsetzt.
Es ergibt sich so

dag wE (b*;‘_ 9 0L + s __(’52)
0z - pE—1\0aF U 7022y )( 8 )
oder wegen (9) kiirzer
da, — 12p (i SRR, -1 I B __
el (‘2‘_"8")— 73 (“ %) - 6D,

woraus mit g, = 0 fiir die Unterfliche z = - durch Integration

2
AT L S

h3 4 2
LR o h .
folgt. Fiir die Oberfliche d. h. fir z = — <, erhalten wir daraus
im Einklang mit der Voraussetzung o, = — p. Aus dieser Be-

rechnung geht weiter hervor, dal} der absolute Betrag der Ver-
tikalspannung hichstens gleich dem auf einer der Plattenilichen
lastenden Druck wird, dessen Kleinheit die Vernachldssigung
von o, in den Formeln (3) somit nachtriglich rechtfertigt.
Kehren wir noch einmal zur Differentialgleichung (9) zuriick,
so erkennen wir, da man den Klammerausdruck auch in der

Form c :
2 agc 2 - 3 o2
ot (hxz b 62~J+ 0y (b$2 T+ E)y )
schreiben kann, worin wegen der Kleinheit der Durchbiegungen £
028 1 0% 1 o
B T e s (11)
die Krimmungen der verbogenen Mittel-
fliche in zwei Normalabschnitten parallel der - bzw. y-Achse
bedeuten. Somit erhalten wir an Stelle von (9)
o2 [ 1 1 yi g il i LN
e e e e e O

wobei wegen (11)

of el i DA
_O_y?_(@l')_'- 02202 h?(_] Tt o DA
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ist, Durch Einfithrung dieser Kriimmungen bzw. der Kriim-
mungsradien lassen sich aber auch die Spannungsglei-
chungen (3) und (7) umformen in

R _'H
Ow_ JLGZ__JI :’(Ql 92.

= el ( 1__|__#_H o
T = i e
o B (Z‘* 1o 1’12_) L(i i)
T*’"‘u_.z—’l 2 St 91+92 ] (7a)
B e i(i_|_ i” ‘ :
woraus dann
O SR T
. ?j = e i (12).

folgt.

Geht man noch einen Schritt weiter und fiihrt die Bie -
gungsmomente M; und M, sowie die zugehorigen Quer -
krafte 7, und 7, und zwar bezogen auf die Lingeneinheit
des Plattenquerschnitts, durch die Beziehungen

ol h
=5 =i 2
d Ny & d, ¢
dy :él%zdz, da :,_.h"v“fz
~4 .
X (13)
g Tt T Rk
i -Shr‘ffd:’ a §*r1d:’

ein, so erhalten wir mit (3 a) und (7 a)

aily . whE W ( 7 s 1)

dy we—1 12 05 31
Gl e L D e S 0 )
dw =1 '12( 92)

[ ,u.EE_E 0 ('] o
1 1 Qz)l

dy
aT, pRE AR Bl
de ~ w2—1 12 oy (

(7D).
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Die Addition und Subtraktion der beiden Formeln (3 b)
liefert ferner

dml rlimg e 1
l— :u—1 1"’((.; g)‘ =
dsml dsmz pE_ (1 1 ) ‘ S
dy Bz -4 (91 Qz_
wihrend die Bildung eines Momentes um die Nor-
male, welches die Verzerrung eines Plattenelementes zur
Folge hat, mit Gl. (4)
+3 T3
diﬂezdmyj'hzzd,zZ—zc a?m;
— ‘_3_
ergibt. Das heifit natilich nur, dal} die Verzerrungen der oberen
und unteren Plattenhilfte einander entgegengesetzt gleich sind,
so dall die Mittelfliche selbst keine Verzerrungen erleidet.

Vergleicht man dann noch die Formeln (3 b) und (7 b), so
erkennt man, daf infolge der Wirkung der Querkontraktion
die Querkrifte an unserer Platte nicht ohne weiteres als Ab-
leitungen der zugehérigen Biegungsmomente aufgefallt werden
diirfen.

Fir die Berechnung der Forméanderungsarbeit
kommt zunichst die Spannung o, nicht in Betracht, da sie ihrer
Kleinheit wegen keine mit den andern vergleichbare Verschie-
bungen hervorbringt. Aullerdem aber bedingt die Erhaltung
der Normalen, die unseren Ansétzen zugrunde lag, die Wirkungs-
losigkeit der Schubspannungen 7, und 7, fir die Deformation,
80 daff nur mehr g,, 6, und 7, iibrig bleiben. Damit aber erhalten
wir, wie beim ebenen Spannungszustand, die einfache Gleichung

dL 1
)+ZG e e

dV (Um +U'U BT
oder nach Einfithrung der Ausdriicke (3) und (4) sowie wegen (6)

d L ,qu z2 028 02y 02f
V= E—1p ‘{**"H [(axz)Jr(ayﬁHﬂ“'ﬂ-w ;ﬁa}

PR 2 s L L 2 [02L\2
~ =t (0 et o) + o) |
LB ﬂ_)a 2
ut+1\dzoy) °°

2.05, 0y
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Daraus wird durch Zusammenziehung einzelner Glieder

dl. = AR 2 625\2_‘_(_02{ e
VT —13 (bxﬂ ,a?) ERE o T
p—1 [ ¢ \¢ :
—}-2 —,u_(_bxby_) SRR (l"ia),
oder mit dV =daxdydz nach Integration iiber z zwischen
den Grenzen z = + f;—
X ,LLZE Es-gﬂ 02C )2 (ﬁcz _2 azg 525‘;
L_;az—T 24 ) )|\ o2 o oy +,u,_ 0a? oy
gut =1 [ 0AC" 18
+ 2 i (Dxby_' G e L, 5y

worin die Integration iiber die ganze Plattenfliche zu er-
strecken ist.h)

Handelt es sich um eine, wie oben, gewichtslose Platte, die,
an einem Punkte oder am Rande festgehalten, in Schwin -
gungen versetzt wird, so kénnen wir den Druck p auf das

1) Zu einer anderen Niherungsform der Arbeitsgleichung ge-
langt man unter Weglassung des Einflusses der Querkrifte (7b),
welche keine Kriimmung der Normalen hervorrufen, lediglich auf
Grund der durch (3b) gegebenen Biegungsmomente. Diese ergeben
mit den von ihnen erzeugten Winkelinderungen

dﬁ""!:l:%f: ddg, =2y
1

92
multipliziert und addiert das Element der Forminderungsarbeit

AL = (A d 4 gy dMy d I )

oder nach BEinfuhrung von (3b)
T A L 1 2 )

= = e e PR

i 13 (ot aat ) dedy (15a)

Diese Formel, von der u. a. Lord Rayleigh in seiner ,, Theorie

des Schalles* (deutsch von Neesen, Braunschweig 1880) S. 386 ff.

umfassenden Gebrauch macht, unterscheidet sich von der obigen

: —1 [ 0% \?
Gl (15) nur durch den Wegfall des Gliedes 2#7(% 6_1}) , welches

den RinfluB der Schubspannungskomponente 7, enthilt, die eine
Verzerrung der vberen und unteren Plattenelemente gegeneinander
bewirkt.

dl = 3
&1
L4
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® Oberflichenelement d @ d y durch die Beschleunigungskraft auf
das Plattenelement mit dem spez. Gewicht y

d.m.zghdmdy S S
derart ersetzen, dall _
g 02 ;02
pdady =dm %Tg—:%}ea—!gdxdy
oder :
g 02 .

wird. Damit aber geht (9) iiber in die Schwingungs-
gleichung

Dl orE i p o ur—1 93¢

EamiFl; 2 b= Gl el P 0 o ST R N /
o xt iy 0220 y? i 0yt : 2l gt E O (18),

fiir die wir mit der Abkiirzung

BB e
w—1 "y 12 i
auch
BIE . A ML\ L
" ) i M e o e I -
¢ (6:1;4 +25mpE Dy“) S ai ibe

schreiben diicfen. Setzen wir hierin
RSO ES S s -

worin U eine reine Zeitfunktion ist, wihrend (' nur von den

Koordinaten abhiingt, so wird aus (18 a)

il e AR T b%“’)_ 1 42U

. =S .- . (18D).

e R EL TR T

Diese Gleichung kann aber nur dann bestehen, wenn sowohl
die rechte als auch die linke Seite fiic sich einer und derselben
Konstanten gleich sind. Und zwar mui} diese Konstante — a®
negativ sein, damit Schwingungen und nicht mit der Zeit unbe-
grenzt anwachsende Ausschlige auftreten. Mithin zerfdllt (18 b)
in die beiden Gleichungen
a*iCF ) 64;;'" aﬁl-.r‘"

£ fo e
S mgag bt a0 o

02U :
e Tet = |

von denen die letzte eine periodische Zeitfunktion
darstellt, deren Periode 2 : a sich aus den Grenzbedingungen
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im Einzelfalle bestimmt, die damit auch die Lisungen der ersten
Formel (20) festlegen. Diese selbst stimmt iibrigens, wie man
aus p = — a®{ erkennt, formal durchaus mit der Gleichung
fir eine Platte iiberein, deren Belastung der Durch-
biegung selbst proportional ist und ihr ent-
gegenwirkt. Auf diesen Fall werden wir spiter noch einmal
zuriickkommen.

§ 46. Die rechteckige Platte.
Die nur in einer Richtung gebogene Plalte. Biegung einer Platte
durch zwei reine Momente lings der Seifenkanten. Die an allen vier
Seiten frei aufliegende Platte mit zentraler Last und gleichférmigem
Flachendruck. Niaherungslosung fiir die Durchbiegung. Die allseilig
eingespannte Platte unter derselben Belastung. Vergleich der Nihe-
rungslésung mit Bachschen Versuchen.

Nachdem wir im vorigen Abschnitt die fiir alle Platten-
formen giiltigen Grundformeln abgeleitet haben, wollen wir jetzt
eine Reihe von Belastungsfdllen rechteckiger Platten unter-
suchen und fiir diese sowohl die Forménderung als auch die
Spannungskomponenten berechnen.

I. Der einfachste Fall liegt dann vor, wenn wir durch geeignete
Vorrichtungen, z. B. durch aufgenietete Winkeleisen, die Quer-
dehnung der Platte etwa in der y-Richtung verhin-
dern. Dann ist mit &, = 0 nach Gl (2b), § 45, im Einklang
mit Gl. (16), § 18,

Oy
] oy:F--------“}:
also 5
% ) ur—1
if,e&:ax—;?{zgx.._;;z—_ sl sy
und wegen 5 = 0 in Gl (2), § 45,
ol

Tl e

womit die Differentialgleichung (9), § 45, der Platte sich auf
b R ol e (

PO i i

reduziert., Diese unterscheidet sich von der gewdhnlichen Bie-

i
v

10 . 3 y e = ) qe . 4
gungsgleichung eines Balkens nur durch den Faktor e des
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Elastizitdtsmoduls, der nach GI. (1 a) einfach durch die Ver-
hinderung der Querdehnung bedingt ist. Daraus geht jedenfalls
hervor, dab die frither behandelte Biegung eines Balkens nur
einen Sonderfall der Biegung einer Platte darstellt.

II. Wird eine rechteckige Platte durch zwei ldngs
der beiden Seitenkanten von den Lidngen 2a
und 2b gleichformig verteilte Momente I
und M, gebogen, so dirfen wir an Stelle der Gleichungen (3b),

45 i :
§ 1, schreiben }IR-[ o ____ffi E E(E‘s + I )
26 - uE—1 12 \p; ' gy l 3)
My wE ﬁ(i _,u) | !
2a . pE—1 12\0:r ' e
woraus dann umgekehrt folgt
G ( o Jﬁz)
o TR A wa -
{_ 6 (m W 58]
Oy EBREE ;.ab)

Sind die beiden Momente iiber die ganze Platte hin konstant,
so gilt dies auch fiir die beiden Kriimmungsradien bzw. fir die
Gesamtkriimmung : _

; o
01 | 0’

womit dann nach Gl (7b), § 45, auch die auf die Einheit der
Seitenldngen bezogenen Querkrifte

LY S e D

dy 2b° de - 28
verschwinden. Die Platte nimmt in diesem Falle die in Fig. 84
dargestellte Form an; ithre Spannungen ergeben sich nach Gl (7a),

§ 45, mit (3) zu 12 9, 12 90, :
%=Jg9psH W= g% + + -+ @)

wihrend die Schubspannungen 7, und 7, (7a), § 45, wegen der
Konstanz der Gesamtkriimmung verschwinden.

ITI. Die Platte liege am Rande durchweg .
frei auf und werde durch eine in der Mitte
angreifende Kraft Q, sowie durch einen gleich-
férmig verbreiteten Flachendruck p belastet.
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Dann haben wir eine in jedem Normalschnitt durch die Mitte

zu dieser symmetrische Durchbiegung zu erwarten. Bezeichnen

wir die offenbar grofite Durchbiegung der Plattenmitte mit s

80 geniigt diesen Bedingungen

nach Fig. 171 der Ansatz
=C{ycosazxcos By . (H),

wenn mit den Halbachsen « und b

by 2

ae= fib = 5 . (5a)

gesetzt wird. Da hierdurch der
Differentialgleichung (9), § 45, -
der Platte nicht geniigt wird, Fig. 171,

so darf (5) nur als eine Nédhe-

rungslosung angesehen werden, die durch Hinzufiigung
weiterer Glieder nach dem am Schlul von §40 angegebenen
Verfahren nach Bedarf der Wirklichkeit weiter angepaft werden
kann. Einstweilen wollen wir uns jedoch mit dem Ansatze (5)
begniigen und damit die Forménderungsarbeit berechnen. Fiir
diese benutzen wir die Gleichung (15), § 45, ndmlich

__#E B 025) d2C\2, 2 20C dR¢
g i U D +(6y3_) T

L e 1
AL ) (-éx—a-g)}dmdy. it e s g 5)

und erhalten daraus mit (5)
2R p8
=-££“; 1 ;4 o2 “[(a‘-‘—i—ﬁ‘l—f 2 )cosﬂaxcoszﬁy

425 ‘u' —— a?f? sin? g sin? ﬁ?,!:l dady
oder nach Ausfuhrung der Integrationen zwischen den Grenzen
= + a und y = t b mit Riicksicht auf (5 a)

G 5 ; -
r:;; 7 54-(55{,{,%24-,32;2. L eneriBa);

4

Andererseits ist die dulere Arbeit

Qé'n_l_ ngdwu’y. 2 b 8 ()
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oder nach Einsetzen von (5) und Auslithrung der Integration
zwischen denselben Grenzen wie oben

Aus der Ubereinsummung der beiden Arbeitsbetrdge (6 a)
und (7 a) folgt dann
Q

8
: __24(M2——1)_(2¥_Pjﬂ-pab)
= EEBab (@1 PP

Weiter erhalten wir fiir die Komponenten der Normal -
spannung aus GL (3), § 45, mit (5)

(8).

e

f, d
o ”g = (a2 4 §2) 2 &y cos ax cos By i
. ()
L
o — -—-:'-I o2 L wp?) z g, cos aw cos fy 1

: h . ;
mit den Hochstwerten fir z = + ; S — 00 =0 natahich

i) ___‘_u,E 2, L p2 :’e,CQ ‘uF‘r ( )kl,.] )
a=1 1&2—' L (u2—1) \a? FEly Y
; !.r,t:(, auBEw® (1 . ) k&
gg= L ;{ ‘12‘|_ 157 (]2__1) a® = b2 =5

Sodann erkennt man, dal Ii«ings des ganzen Randes, d. h.
fir ® =+ a, y= t b wegen (5a) die Normalspannungen
verschwinden. Die Sehubspannungen Gl (7), §45, wer-
den mit (5)

u B

/ 22 ; )
7, = u‘z —a{rﬂ—}-ﬁ‘a ( - ——) Lo sin aa cos Sy ‘
.

u ﬁ (a2 f2) k———i) £y cOS ax Sin {'J‘y‘

und nehmen am Rande mit # = + « baw. y = + b wegen (5a)
die Werte

(10)

T.
TS “z

ﬂ2E : 'é_h?),u ')
12— a (e f?) | il e By ‘
1t E h?

= E—{ B (a2 %) (—— 8_) £o cOS ax [

an. Diese Ausdriicke verschwinden fiir die Ecken und erreichen
ihre Maxima in den Mitten der Rénder. Integriert man die

Ty =

(11)
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Formeln (11) iiber die ganze Plattendicke, so ergeben sich die
auf die Lingeneinheit des Randes bezogenen Auflage-
driicke, nidmlich .

g
ary _ ¢ WE I A,
_(ir; = !\h Ty e — m D) o (a® + ﬁ“) Lo COS ijy ‘
! - (11a),

: SREA ; 5
= \ e — ;2_“—1 17 p (a4 p?) &y cos ax
g ) ! .

-

die natiiclich dieselbe Anderung lings des Randes aufweisen
wie die zugehorigen Schubspannungskomponenten. Insbesondere
deutet das Verschwinden der Auflagedriicke an den Ecken auf
die Moglichkeit eines Abhebens der Platte von der
Unterlage hin. Dies ist in der Tat an diesen Stellen schon
beobachtet worden, so dafll derartig frei aufliegende Platten
zur Abdichtung gegeniiber einem Fliissigkeitsdrucke jedenfalls
ungeeignet erscheinen.

Integriert man schlieflich noch die Ausdriicke (11a) iber
die ganze Berandung, so erhilt man den gesamten Auf-
lagedrueck, welcher der Totalbelastung der Platte Q +4 pab
das Gleichgewicht halten sollte. Fiihrt man diese Rechnung aus,
und setzt dann liir £, den Wert (8) ein, so ergibt sich keine Uber-
einstimmung. Dies liegt natiirlich ebenso wie die Nichterfiillung
der Differentialgleichung (9), § 45, nur daran, daff der Ansatz (5)
lediglich eine Niaherungslosung des Problems darstellt, deren
Vervollkommnung etwa durch Hinzufiigung weiterer Glieder
indessen das Resultat fiir praktische Zwecke ungeeignet gestalten
diirfte.

IV. Die Platte sei am ganzen Rande fest
eingespannt und werde wieder durch eine Kraft Q
in der Mitte sowie durch einen gleichférmigen Flachendruck
belastet. Auch hier wird die Durchbiegung in jedem Schnitt
durch die Mittelnormale zu dieser symmetrisch ausfallen und
inshbesondere fiic die beiden Schnitte parallel den Plattenréndern
die in Fig. 172 dargestellten Formen annehmen. Bedeutet wieder
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{p die Durchbiegung der Plattenmitte, so geniigt diesen Kurven
der einfache Ansatz
Co

J= 7 (I +cosax)(14-cosfy) . . . (12),
woraus
%:—%—f& sin ax(i—|—cosf}y)‘ .
oy SR e
i 4 psin fy (L + cos ax)
folgt. Da nun
=gt i —( g—%—:O, also cos aa=1, sin aa =0
of

el =11 W:O, hocogph =1, sinf6—10

sein soll, so bestimmen sich die
Faktoren ¢ und § aus

ad—pgb—m . .. (1AbY

ohne dafl damit der Differential-
gleichung (9), §45, Geniige ge-
leistet wére. Begniigen wir uns
trotzdem mit dem Ansatze (12),
s0 miissen wir die noch iibrig
gebliebene Konstante ¢, wieder
aus der Gleichheit der inneren und #uBeren Arbeit berechnen
und erhalten zunichst durch Hinsetzen der Ausdriicke

Fie. 172,

2 F ey
h ;:_ ug_ﬂ Gosax{.l_l_cosﬁy)‘

0 4 | N
02 2 7 Iy %6
%: i 540 cos fy (1 -+ cos ax) 1

in die Arbeitsformel (6) nach Ausfithrung der Integrationen mit
Riicksicht auf (12 b)
o an B RS adiEy? ; ; ;
L= e e [ (a4 pY +2a2p2] . . (13).
Fithren wir dagegen den Ansatz (12) in die GL (7) ein, so
liefert die Integration wegen (12b) fiir die duBere Arbeit

Lo lQtpabiiine L
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und nach Gleichsetzen mit (13)
poo 492t —1) (0} peb)
0T WP E R ab[3 (et B - 2 a2
Fir die Normalspannungen erhalten wir nach
Einfithrung der Gleichungen (12a) in die Formeln (3), §45,

(455

E
gg;:;f—_i- Co? [pea® cos az (1 4 cos ﬂ_;)
-+ p2 cos ﬁy{l -+ cos ax)] .
wE L . ; - (e
T K [a cos ax (1 - cos fy) l
—+ w2 cos fy (14 cos ax)]
mit den Hochstwerten fir =0, y =0, 2=t %
E Lol E
"‘:i(‘ﬂ ol "L—o(iz Tt bﬁ)g"’*l
. 1 (16a),
Goh  plant
U‘éﬁi{u (12+/Lﬁ2} 0= = (,u"‘—l ((Lg—i_ )Co""’"

welche ersichtlich fiir dieselbe mittlere Durchbiegung d o p -
pelt so groB ausfallen, wie die Seheitel-
spannungen (9a)der freiaufliegenden Platte.
Fiir den Rand verschwinden iibrigens, infolge der Wirkung
der Einspannungsmomente, die Spannungen (16) nicht, son-
dern es ist wegen (12 b)

B Lyea
BT (R — -’: g(; —— {1 4 cos fy)
e (16D).
iy _ WwE  yzn? :
i y=20b : 0y — — ﬂz i— 4 {,}2 1 +- COs ax)

Diese Ausdriicke werden nur an den Ecken zu Null und
besitzen in den Seitenmitten je ein Maximum, welches indessen
weniger als halb so grof} ausfillt wie die gleichgerichtete Span-
nung (16 a) in der Plattenmitte.

Von der Berechnung der Schubspannungen bzw. der Auf-
lagekriifte am Rande konnen wir hier absehen, da ein Abheben
der Platte infolge der Einspannung ausgeschlossen ist.

Dagegen wollen wir unsere Formel fiir die Durchbiegung (15) mit
Versuchen vergleichen, die C. Bach?') an rechteckigen und quadrati-

1) (. Bach: Versuche iiber die Forminderung und die Wider-
standsfahigkeit ebener Wandungen. Z.d. V.d. Ing. 1908,
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schen Platten angestellt hat. Diese Platten wurden am Rande durch
eine Nietreihe auf den Flansch eines DruckgefiiBes nach Fig. 173 fest-
gehalten, wodurch wenigstens angenahert
eine Binspannung erreicht wird. Nehmen
wir als freie Linge 2a bzw. Breite 25 der
Platte den Abstand der Mittellinien der
Fie, 173, gegeniiberliegenden Nietreihen, worin aller-
dings eine gewisse Unsicherheit liegt, so
kénnen wir aus unserer fiur reinen Flachendruck p vereinfachten
Formel {15) 192 (u2 — 1) p atbt e
fo= T ER Bl Fb%)2a%7 {iae)
unter der Annahme des Elastizitatsmoduls £ und der Querkontrak-
tionszahl # die Durchbiegung fiiv jeden Druck berechnen. Die Ergeb-
nisse dieser Rechnung sind in der letzten Spalte der nachfolgenden
Tabelle enthalten, wobei £ = 2100 000 kg/qem und @ = 4 gesetzt wurde.

g2

g £ ha <
EV Tl 12 g P geme"ssen 20t | posschinat
e | cm cm kg/qem eI | p em
40 40 0,84 0,6 0,275 0,271 0,281
A0 40 1,68 2,4 0,155 0,306 0,143
40 20 0,86 1,6 0075 | 0,029 | 0,096
40 20 1,65 6,4 0,048 ‘ 0,0360 | 0,051

Unterhalb der angefithrten Driicke p war die Proportionalitil gewahrt,
wihrend daritber hinaus schon merklich bleibende Dehnungen auf-
traten. Angesichts der Ungleichheit der Plattendicke, der Unsicher-
heit der freien Linge sowie der durch das Verniefen hervorgerufenen
Anfangsspannungen und Forminderungen der Platte, auf welche die
Ungleichheit der Quotienten & /2°: p fiir dieselben Werte von a und b
zuriickzufithren ist, kann diese Ubereinstimmung der Rechnung mit dem
Versuch als recht befriedigend gelfen.

Nach unserer Theorie wird fernerhin die Spannung ¢, lings der
groben Achse 2a die absolut grofiten Werte annehmen, woraus her-
vorgeht, daB lings dieser Achse der Bruch der Platte zu befurchten
ist. Dies hat sich in der Tat bei anderen Versuchen von Bach?)
unzweideutig gezeigl, wahrend guadratische Plaften lings einer Dia-
gonale aufrissen, Hierbei dirfte wohl der Binflufy der Schubspannung

3t afG

:2‘ i L, - &,
i (‘zdxdy Tar

geineesngy . . (17),

1) (. Bach: Elastizitat und Festigkeit, 6. Aufl., 1911, 8. 582,
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welche lings der Hauptachsen verschwindet und beim Quadrat in der
Diagonale Héchstwerte annimmt, ausschlaggebend sein,

Die Genauigkeit unserer Ergebnisse laBt sich auch durch den
Ubergang zu einem extremen Fall prifen, fiir den man die grofite
Durchbiegung auf anderem Wege berechnen kann. Als solcher bietet
sich zwanglos der unendlich lange Streifen dar, fiir den Gl (15a)
mit @ =co
164 w*—1 pb*
it : 1“2 ER?

i
&

0 —

(15 b)

liefert. Hitten wir dagegen fiir diesen Fall von vornherein mit ¢ — oo

also a:%:i) an Stelle von (12)

£
§ =3 (1+cos By)
gesebzt, so liefert die Gleichheit der inneren und duBeren Arbeit

}::_‘12-{1 wt—1 pbt
i & Juz EnR?

P (15 ¢),

ein Ausdruck, der bis aufl einen sehr geringen Bruchteil mit dem
Resultat der Integration von (2a), ndamlich

- 1 _n:!—‘l pb'l
i w2 ER

4o

(15 d),

ibereinstimmt.  Von den beiden Werten (15b) und (15¢) ist darum
der lelztere genauer, woraus hervorgeht, dal die vorstehende Naherungs-
theorie der Platte fiir den Grenzfall der unendlich langen, gleichférmig
belasteten Streifen eine um 4/3 zu groBe Durchbiegung liefert. Ganz
analog wiirden wir in IIT fiir den frei aufliegenden, unendlich langen
Streifen eine um 4/m zu grofe ‘Durchbiegung erhalten. Hieraus darf
man schliefen, dall ganz allgemein unsere Theorie etwas zu groBe
Werte fiir die Durchbiegung liefert, was auch durch die obige Tabelle
bestitigl wird, Berechnet man daher nach unseren Formeln (16 b)

mit z==_, x =y =0 die Plattendicke & aus der groBten zulissigen

=
Spanuun;,:, so erhidlt man elwas zu groBe Werte, was aus Sicherheits-
griinden gewill kein Nachteil ist.

Hine erheblich grofBere Genauigkeit lielie sich noch erzielen durch
Hinzufiigung weiterer den Grenzbedingungen ebenfalls geniigender
Glieder zu den Ansitzen (5) bzaw. (12) und Bestimmung der Koeffizienten
der einzelnen Glieder mit Hilfe der Ritzschen Methode (§40). Ob-
wohl die damit verbundenen Rechnungen nicht schwierig sind, so
werden doch die Formeln recht unbequem und kaum noch geeignet
fiir eine praktische Verwendung.
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§ 47. Die Knickung rechteckiger Platten.
Ersatz der Randbelastung durch einen zusitzlichen Normaldruck.
Aufstellung der hierfir giiltigen Differentialgleichung der Platte. Inte-
gration fiir den Fall einer an allen vier Seiten gestiitzten Platte,
Bestimmung der Knicklasten. Ubertragung der Losung auf eine
kastenférmige Hohlsaule und Vergleich der kleinsten Knicklast mit der
Eulerschen. Ausblick aul verwandte Probleme.

Wirken auller dem Normaldruck auf die Plattenebene noch
Krifte auf deren Seitenréinder, so kénnen wir uns diese zuniichst
durch zwei Spannungen ¢; und o, in den Achsenrichtungen er-
setzt denken. Sind die Krifte tiber die Rénder gleichformig ver-
teilt, so haben diese Zusatzspannungen unter der Voraussetzung
kleiner Durchbiegungen der Platte iiberall dieselben Werte.
Bedeuten ferner, wie frither, p; und g, die Kriimmungsradien
in zwei der z- und y-Achse parallelen Normalschnitten zur Platte,
so ergeben die Spannungen zusammen eine Normalkomponente
auf die Fldcheneinheit der Platte im Betrage von

Gk L e L -

p_k(ejJ’_@z) S RRORL.
worin wir auch wegen der Kleinheit der Durchbiegungen £
/! 02¢ 1 20 ¢

01 Y a:_ 0 > (),

also an Stelle von (1)
; 02f 0L :
r ——bh(al—bxz—i—a?—ayg). e

schreiben dirfen.

Das negative Vorzeichen mulite hier eingefithrt werden,
da im Falle von positiven, also Zugspannungen o, und a,, die
Zusatzbelastung (1 a) die Durchbiegung zu vermindern sucht,
dem &duberen Normaldruck p also entgegenwirkt. Dann ergibt
sich die Gesamtbelastung der Platte als Differenz

02¢ 02f :
il :P—f"k(UlW"l“oﬁa.—yz) & s ),
dic nunmehr an Stelle des Wertes p in die Differential-.
gleichung (9), § 45, einzusetzen ist. Diese lautet somit
Lt i S SR S ( s TP 5, 77
B—1 O \ad T 2sdE T o) kT MagEtagE) S
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worin die Normalbelastung p in allen praktisch wichtigen Fiillen
nicht weiter in Frage kommt und darum weggelassen werden
kann. Beschrinken wir uns aulerdem auf reine Druckkrifte P,
welehe in der z-Richtung der Platte wirken, so werden wir bei
einer Gesamtbreite b der Platte
#l
hoy=— g—, e — [ e )
setzen, womit (4) unter gleichzeitiger Einfithrung der Abkiirzung
12 (12— 1) P ! £
..-.J-‘-*_F'fﬁ‘b =i e e )
ibergeht in yap jag 1 ¢
A T 43202 +3 \f St EEr
Bei der Auswahl von Funktionen, welche dieser partiellen
Ditferentialgleichung geniigen, sind nun vor allem die Grenz-
bedingungen zu beriicksichtigen. Diese erfordern fiir
einen nur in seiner Lage festgehaltenen bzw. gestiitzten
Rand auller dem Verschwinden der Auslenkung, d. h.
=0,
noch das Verschwinden des Biegungsmomentes lings
desselben, also nach Gl (3b), §45, z B. lings der belasteten
Kante,

i -I——=0 fiir =0 und «a,
01
wenn wir nach Fig. i‘u+ die Koordinatenachsen in zwei Seiten-
kanten verlegen. Dafiir kénnen wir Ay
natiirlich mit (2) auch schreiben Lol ol mpce:
02 2

52 S Y ie =) far e =0 und a, 3

worin infolge der Festhaltung der 0
Kante b die Krimmung langs der-
selben von selbst verschwindet. Mithin zerfillt die Be-
dingung fiir die festgehaltene Kante in
27 2
g_'r~ g—fy =0 fir =0 und a

Hierzu tritt noch als Bedingung dafiic, daf die ge-

stiitzte Kante nicht aus der Plattenebene

heraustritt g
= =0 fir x=0 und a.
0y

Lorenz, Elaslizitdtslehre, 30
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Ist z. B. die belastete Kante eingespannt, so entfdllt
mit Riicksicht auf das vorhandene Einspannungsmoment die
Randbedingung fiir die Kriimmungsradien, und es bleibt

£=0, --2-53::0, %:0 fir =0 und a.

Natiirlich kann man diese Bedingung ebenso auch [iir eine
der nicht belasteten Kanten aufstellen, also fir y = 0 oder b.

Ist endlich eine der nicht belasteten Kanten vollig
frei, so kann langs derselben die Auslenkung { nicht verhindert
werden. Dagegen verschwindet in diesem Falle nicht nur das
Biegungsmoment lings dieser Kante, d. h. wegen (3 b),
} 45, 02 02f
§ Sty
sondern auch die Querkraft, also mit (7 b), §45,

gl 1 Sl flokEr 0 g
*'@(E+ Q;) Ty (mz oy )

Aus der Mannigfaltigkeit der moglichen Belastungsfalle?)
wollen wir zundchst den eines in der z-Richtung
gedriickten Blechstreilens herausgreifen, dessen
Riander samtlich gestiitzt, aber nicht ein-
gespannt sein mogen. s soll also sein

zOJ

0
e w=0und g 1 d =, a—i:ﬂ‘
ey —= (s S e () ﬁ=0‘
auberdem aber liir alle vier Kanten 2 =0,a, y =0,b
02¢ 02¢ o
-6? —= 0, b ?]2 = 0 G LR, BOG {.-‘ a).
Allen diesen Bedingungen geniigt offenbar der Ansatz
E=Crmarsm iy F Uit s (S,
e sin aa = sin fb =0,
also mit zwel ganzen Zahlen » und 1
HTT Aw :
a = 7 1 ‘3 = T R = e S Y S (8 H)

1) Vergl. hieriiber die sehr lesenswerte Abhandlung von T imo-
schenko: »Binige Stabilitatsprobleme der Elastizititstheories, Z. 1.
Math. u. Physik 1910, der wir in der obigen Darstellung in der Haupt-
sache gefolgt sind.
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gesetzt wird. Bilden wir dann noch die weiteren Ableitungen

2R ¢ Bt

ST Y ey P

- i . . . (8D),
- 1 i e

—:ac —j‘;"

ax‘; 21 ay_j =

so liefert deren Einfithrung in die Differentialgleichung (4 a)
2
(aai + 222+ Bt — ‘;2) 2=

oder, da £ nicht verschwinden soll,
a2
ke o i st O UM S R )
und mit (8a) und (6)
o xR AZAENE o= D (2= 1)
P\ETE) =@ RER
a b a® RERD
Dieser Bedingungsgleichung mul} die Last P geniigen, wenn
die Platte unter ihrer Wirkung sich ausbeulen soll; wobei dann
»# und 1 die Anzahl der halben Wellen angeben, welche sich auf
die Linge a bzw. die Breite b verteilen. Alsdann bedeuten

BACE S SE e

a b
_H_ = E]., j,_ = £2 : 5 - . . . (8 G)

die halben Lingen der Ausbeulungswellen. Die der Formel (9a)
geniigende Knicklast P wichst nun offenbar mit der Zahl
A und wird demnach fiir 4 = 1 kleinste Werte hesitzen. Diffe-
renzieren wir weiter die Last P nach x und setzen

or

b RO e (9b),
so ergibt dies mit (9 a) b i

a-: b = 3 = i 2 " . . (90),

d.h. aber: der kleinsten Knicklast entspricht
ein rationales Verhédltnis der Seitenlédngen
der Platte, welche durch die Ausbeulungen in quadra-

tische Felder zu zerfallen sucht. Insbesondere ist
e FRR R BT

b
Dies liefert dann fiir die denkbar kleinste Knick-
lasp in (9a) 72 pPE R
Pﬂ —: T (’N-E-_ ]}_f)_ & om0 B e . (10{1).,
30%*
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wihrend man z. B. fiir x =4 =1 aus (9 a)
: e B ] R b2

erhédlt. Besonders bemerkenswert erscheint wohl der Umstand,

dal in (10 a) die Plattenliange a iberhaupt nicht auftritt, welche

fir die Eulersche Knicklast ausschlaggebend ist.

Den Grenzbedingungen unserer Lisung geniigen nun die
Wandungen eines kastenartigen Hohlkdérpers von
der Wandstirke 2 mit den Breiten b, b, sowie mit der Linge a
(Fig. 175). Denken wir uns den Axialdruck P gleichférmig aul
den Materialquerschnitt 2 (b, - by) & verteilt, so entfillt auf die
nach Gl. (10 a) am meisten der Ausbeulung ausgesetzte breitere
Seite b; die Last

by P
2 (by +by)
welche jedenfalls kleiner als die Knicklast
Bt B
SR T R ST
ausfallen mufl. Daraus folgt dann die Be-
dingung

P, = (11),

= 2 2ERS I
Fig. 175. P<,{ itihl )1}:;!12_

Andererseits erhdlt man fiir die kleinste Eulersche
Knicklast

().

Worin bt
2

e R hbg /
@:2;;(3;]--4 s 1)) (f e j
das kleinste Haupttrigheitsmoment deb Kastenquerschnitts ist.
Soll daher die Léngsachse des Kastens durch Knicken keine
Forménderung erfahren, so mull die ganze Axiallast P < P,

oder
ot F'%B (bl-i-%). o = (h)

s
sein, Fir die praktische Ausliihrung ist dann diejenige der
beiden Bedingungen (11 a) und (11 b) mafBgebend, deren rechts
stehender Ausdruck den kleinsten Wert besitzt. Bleibt -man
mit der Axiallast darunter, so ist kein Ausknicken der Achse oder




§ 47. Die Knickung rechteckiger Platten. 469

Ausbeulung einer der Seitenwinde mehr zu befiirchten. Des-
halb brauchen wir uns auch mit der weiteren Gestalt der letzteren
nicht weiter aufzuhalten.

Dagegen mufl noch darauf hingewiesen werden, daf im
vorstehenden die Kanten noch als drehbar vorausgesetzt sind.
Dies trifft fir die beiden Endquerschnitte der Siule (Fig. 175)
dann nicht mehr zu, wenn diese, wie es praktisch wohl meistens
geschehen diirfte, durch Winkeleisen verstérkt sind, die in Ver-
bindung mit ihrer Befestigung mit der oberen und unteren als
starr anzusehenden Druckplatte wie eine Einspannung wirken.
Sind auflerdem noch die Lingskanten durch Winkeleisen ver-
steift, so ist im Falle b; = b, die Verdrehung des einen Bleches
lings der Kante entgegengesetzt gleich
derjenigen des anstoBenden Bleches,
also (Fig. 176)

e

was auch mnoch fir das Quadrat
by = by zutreffen diicfte. Durch der-
artige Grenzbedingungen wird natiir-
lich die Ermittlung der Losung von Fig. 176.
Gl. (4a) ganz erheblich erschwert.

Timoschenko beschrinkt sich daher auf solche Fille,
fir die, wie in dem oben durchgerechneten Beispiel, die Unter-
suchung einer Platte allein geniigt, und behandelt insbesondere
noch deren Knickung, wenn eine der Kraftrichtung
parallele Seite frei, die andere dagegen ge -
stiitzt ist. Die Losung gelingt hierbei durch den Ansatz

(12),

SRR
i

worin die reine Funktion ¥ von y, wie man durch Einsetzen in
Gl. (4a) leicht feststellen kann, einer gewdhnlichen linearen
Differentialgleichung vierter Ordnung geniigt, die durch

Y =0 i +Coe™ g Cyco8 fyy + Cysin fyy (12a)
befriedigt wird. Die Exponenten §, und f, sind hierin Wurzeln

der bigquadratischen Gleichung, welche aus (4 a) mit ¥V = C efix
hervorgeht, withrend die Integrationskonstanten C,C,C,C,



470 Kapitel VII. Die Biegung ebener Platten.

aus den Grenzbedingungen in bekannter Weise berechnet werden
konnen. Daraus resultiert schlieflich eine transzendente Glei-
chung zwischen den f; und f,, aus der mit » = 1 die kleinste
Knicklast durch Probieren gewonnen werden kann.

§ 48. Die elliptische Platte.
Ansatz fiir die elliptische Platte, Erfiillung der Differentialgleichung
und der Randbedingung fir diec Einspannung. Bestimmung der
Spannungen und ihrer Hochstwerte. Ermittlung des Auflagedrucks.
Ausdehnung der Untersuchung aul eine konzentrierte Zentrallast.
Versagen der Methode fiir frei aufliegende Platten.

I. Die in § 45 unter (9) abgeleitete Differentialgleichung der
ebenen Platte, ndmlich
MZ F h& ‘)4“ b-ic bif’) -
BT St ismE T o) =2
wird bei konstantem Normaldruck p iber die
ganze Plattenfliche offenbar durch eine Funktion

E—Fpoanl adiilc . ideg o {18

erfiilllt, deren vierte partielle Ableitungen durchweg konstante
Werte annehmen, welche nicht sidmtlich verschwinden diirfen.
Das wiederum setzt voraus, daf die Funktion £ in « und y héch-
stens vom vierten Grade ist. Soll die in Frage stehende Platte
insbesondere eine doppelt symmetrische Randkurve besitzen,
g0 konnen in dem Ausdrucke fiir { keine ungeraden Potenzen
von z und y auftreten. Diesen Bedingungen geniigt nun fir eine
elliptische Platte mit der Randkurve

22 yR _
g“'“%g—'l:“ s g

das Quadrat des links stehenden Ausdrucks, so dall wir fir die
Durchbiegung dieser Platte mit dem Hochstwerte {, im Zentrum

g_guf+i—1. XA RAs T

schreiben diirfen. Damit ist zugleich die Bedingung
des Verschwindens der Durchbiegung am
Plattenrande erfiallt, wdhrend die Linien
gleicher Durchbiegung zur Randellipse dhn-

(1
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liche Ellipsen sind. Weiter erkennt man, daBl die

Ableitungen
0 4w (22 | o
o 4 (£2+__1)l
S co y ( ]
5= A ___1)
nicht nur, wie es die Symmetme erfordert, fiir den Mittel-
punkt z = y = 0 sowie fiir die Achsen z= 0 bzw. y =0
sondern auch noch lings des Randes verschwinden. Die
elastische Mittelflache beriihrt also ldngs

. (3a)

der Ran'dellipse die urspringliche Mittel-
ebene, wonach die Platte als am Rande eingespannt
anzusehen ist (Fig. 177).

Die weiteren Ableitungen von (2) ergeben sich zu
020 _ 4G (_ Sie ) 8Lya? _ 4G, (3x2 y* .1)
dat a \a® " B AN &

a T b2

¥L 4L 8Loy? _ 4L 3y

Sl =) 2 =T+ )

335 - 24.5,-055 _63__;___ 8;09' 63{: _fSC_um ﬁ_ ZﬁCOy

a8 a* ' 0a2dy  a%b?’ dady? a2’ oyt M

0Ll Zégg gl Bl ot 244,

dah T a0 daRoy? | aEb®’ oyt b
Dies liefert nach Eingetzen in die Differentialgleichung (1)

fiir die grofte Durchbiegung

(3b).

g Adeiy b ST
A 212 E 13 _1._f___2__]___§l__ *
G at 3a?b? bt
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wihrend die Ausdriicke (3b) mit den Formeln (3), §45, die
Normalspannungen

SuE 322 y' 3.*;
om:—‘uz L 0[ 2 - ok )+g,2( & % e )] }
4;““" : (5)
e e — 360[62( + R )+E2-( az“i“?,’a__']-)]
ergeben. In gleicher Weise erhalten wir mit der Ableitung
02 8fzy 5
dzdy  a?bh® s )
aus Gl (4), §45, fir die Schubspannung
16G -
T, =— -—a-z—b;!]—xyz it =) tomty . LS

Da diese mit den Koordinaten wichst, so ist ithr Hochst-
wert auf dem Umfang zu suchen, und zwar an dem Punkte
a b

T = ‘}‘E ) ¥ = ]'_2 2 . (6a),
mit dem Betrage 8G -z
T:ZO - — —Tbu . . . . - - (Gb)-

Weiter erkennt man aus dem Verschwinden der Schubspan-
nung léngs der Ellipsenachsen x =0, y =0, dab lings dieser
die Normalspannungskomponenten (5) gleichzeitig Haupt-
spannungen darstellen. Wir erhalten demgemill mit der

Abkiirzung +;1.E s X
iy Bl wois . mbnt o 2y
in der zur Berechnung der absolut gréBten Spannungswerte

h :
z = zu setzen wire, fiir die Ldngsachse y=0:

; 3 ‘ 11]
bl
A ( gdip A x 1 _{__&_‘ o8)
T a2 b2 e b2/
und fiir die kleine Achse 2 =0
_yz ATt
_.(,[ +bz j (a'g—i—bz)_ _'b
Slu y? 1 e\ (35
=cllatE) (et
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Fir den Mittelpunkt =y =0 gehen diese Werte
ither in

2
UE'Z"—G ‘“01-—2——-0( +b2):—(1'——a'2—b2—l

o/ —=Gl=lr= (E i 'a?) e e
wobei wegen w2 und ¢ >b
ay -t pr LR (u—
% Butbl PR LEu— (u——- 1) e
ist. Andererseits erhalten wir fiir den Ellipsenumfang
mit Riicksicht auf (2) die Spannungskomponenten aus (5)

: o 2? Uk
ar=3c(ir 1 -54—)
B ot ®)
O'.y’” — 2 C ( _a4 + ’_6_4_) ‘
mit den Werten fiir die Enden der beiden Achsen, also
20 2¢
bira=a, y=0% 0, =—3E Tam= —o
e 2(: ree ')(‘}'f { {Sa}'
B A — g (= AR lillestnr -

Von allen diesen Werten ist der letzte, d. h. die Span -
nung g, am Ende der kleinen Achse am grdf-

/
ten, so daBf mit z = ; in (7) die Formel

= 4R Eigh
| DL
o,/! = i ey e RS (8b),
die Grundlage fiir die Berechnung der elliptischen Platte bildet.
Von geringerer Bedeutung ist die Ermittlung des Auflage-
druckes T am Plattenrande, den man fiir jede Stelle aus
den beiden Querkraftkomponenten T'
i f‘; B ‘;'_
=y \-tydz, gl —am S Hg R ()
h h
5 5

mit Hilfe des Gleichgewichts an dem in Fig. 177 eingezeich-
neten Plattenelement zu

AT =dT, +dT,=dy (v,dz+dz fv,dz . . . (10)



474 Kapitel VII. Die Biegung ebener Platten.

oder nach Einfiihrung der Ausdriicke (7), § 45, und Integration
iiber die Plattendicke
___gﬁ_F__ BB [[03E 037 3L 037
e vy ( +a$b? ) y+ (01;3+axzuj)d“’”'
berechnen kann.
Setzen wir hierin fiir die Ableitungen die Ausdriicke (3 b)
ein, so wird
ButE §yh? zdy 3 B\tepdz |
el 9 {(az"‘ ;;) +(ﬁ+§)*§2— )

2 — a?

oder nach Ausfiihrung der Integration iiber den ganzen Platten-
umfang, wobei

Sxdyzjy drx=mab

die Ellipsenfliche bedeutet, mit Riicksicht auf die Bedeutung von

o, Gl (4),
B 14T e e M SR I (17

Dieses Ergebnis war natiirlich vorauszusehen und hat des-
halb hier nur die Bedeutung einer Kontrolle.

Aus der Gl (10a) kann man ferner durch Division mit
dem Bogenelement ds den auf die Lidngeneinheit
des Umfangs entfallenden Auflagedruck
a8 B A3 1\ dy ydx
S T s A (a_2+ bz)az ds “'"(bﬂL )bﬁds gos)
nach Einfithrung der Richtungskosinus (11 a) an jeder Stelle
berechnen.

Ferner kénnen wir aus den einzelnen Spannungskomponenten

die tangential zum Plattenrande gerichtete Schubspannung 7,

vermittelst der Gleichung fiir den ebenen Spannungszustand

bestimmen. Wir finden so mit dem Neigungswinkel y der Ellipsen-
tangente

T, = (0, — 0,) cos  siny + 7, (cos? p — sin?y) . . (11),

wo fiir den Plattenrand mit (2)

dzx o yaz
cosy = -‘},S. == W
sin p = Ey = _.'1:762_ (11a),
. W= ds my: }-"i2b4?,y2a_4 |
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also y a2h2 > ya at— x2ht
COs W - Sin P = —3 2oL P cos? 1y — sin w_?~1)4—|—y2_4 (11Db)
ist. Andererseits folgt aus (8) mit (7) und 2G (1) = uE
S u E 2 a2hd 2 gt
0" — 0" = ;z-H(a* d)zé‘ozfl.GG . Al

Fithren wir alle diese Werte sowie (6) in Gl (11) ein, so
folgt 7, = 0 im Einklang mit der Tatsache, dal auf den Platten-
rand keine Tangentialkrafte in der Richtung des Umfangs wirken.
Demgegeniiber verschwindet die resultierende Normalspannung
am Plattenrande nicht, da sie dort dem Einspannungs-
moment das Gleichgewicht halten mufi.

Durch die vorstehende Untersuchung kann die Biegung
einer elliptischen, am Rande eingespannten Platte als voll-
kommen erledigt angesehen werden, solange diese nur durch
einen gleichformigen Normaldruck p belastet ist. Tritt hierzu
noch eine zentrale Einzellast @, so wird davon die
Giiltigkeit der grundlegenden Differentialgleichung (1) zwar
nicht beriihrt, wohl aber unser Ergebnis (4) fir die grofte
Durchbiegung £, die ja nur den Flachendruck enthélt. Der
bisher eingeschlagene Weg bietet aullerdem gar keine Moglich-
keit, die zentrale Einzellast in Rechnung zu ziehen, so dall wir
hierfiir auf ein Naherungsverfahren angewiesen sind. Als solches
bietet sich uns zwanglos die Gleichheit der inneren und dufieren
Arbeit auf Grund eines vorgelegten Amnsatzes fiir die Durchbie-
gung, fiir den wir natiirlich wieder Gl. (3) benutzen konnen.
Wir kommen aber unter Benutzung dieses Ansatzes und der Formel
(4) noch etwas rascher zum Ziele, wenn wir uns zunichst auf die
Berechnung der #ufleren Arbeit beschrinken, fir die wir mit
dem Fliachenelement d F der Plattenebene

1 :
L5006 to\tdr . . . . . (12

oder wegen (3) C PC
“Q+ "Q(anr -)dF. . (128)
zu schreiben haben. Beachten wir, dafi fiir die Ellipse

forap="ab, [ypdF=Gab, [apdF =g o |

Rk (13)
§araF — Fasb, [yrdf=7ab \
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1st, so wird aus (12 a)
aab |

(Q_!_-za,pr:g;O . (p+ffb) - (12b)

Hiernach stellt die Grafie

3Q
et o e e T
P mab : (£
einen fingierten Flichendruck dar, welcher niherungsweise
die zentrale Einzellast ersetzen kann. Dieser Flachendruck sire
somit einfach dem Normaldrucke p in GL (4) zuzufiigen, also

allgemeiner
(A —1) (,D 5 "'mob)

.
e ( +.‘3m'é'+ﬁ)

=

Sp = (4a)

zu schreiben, wenn auller dem Flichendruck p noch eine Einzel-
last Q im Zentrum der am Rande eingespannten Platte wirkt.
In den friiheren Formeln fiir die Spannungskomponenten ist
dann nur £, durch den Wert (4a) zu ersetzen, ohne dal inshesondere
die Randbedingungen eine Anderung erfahren. Es liegt auf der
Hand, daf man von diesem ziemlich rohen Néherungsverfahren
keine grofle Genauigkeit erwarten kann; immerhin diicfte es fiir
praktische Zwecke vorerst geniigen.

II. Fir eine am Rande frei aufliegende
elliptische Platte besteht die Bedingung des Ver-
schwindens der Durchbiegung sowie der Schubspannung und
der resultierenden Normalspannung lings des Randes, also

Oy == 0, 082 -0, 082 4 27, 8in cos @ = 0 ) -
Ty = (0, —0,) sin g cos ¢ 47, cos 2 ¢ :Uf e

worin fiir die Winkelfunktionen die Ausdriicke (11 a) einzusetzen
sind. Die Spannungen g, 6,7, ergeben sich aus den Formeln (3)
und (4), § 45, nach Einsetzen einer Funktion (1 a) fiir die Durch-
biegung. Hierfiir liegt es nahe, irgendeine Potenz der Ellipsen-

gleichung, also
! / A

zu wihlen, nachdem diese Gleichung mit & =2 die Lésung fiir
den eingespannten Rand liefert. Berechnet man dann zuerst
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mit k=1 die Ableitungen, so zeigt sich, dal} fiir den Rand

-
zwar { = 0 wird und die Ableitungen ai sOWie Kl endliche Werte
0x oy

annehmen. Dagegen nehmen mit den zweiten Ableitungen die
beiden Spannungskomponenten @, und g, iiber die ganze Platte
(fir z = Const) dieselben Werte an, wihrend allgemein 7, =0
wird. Dies ist aber mit den Randbedingungen (15) unvereinbar,

Setzen wir dann in (1b) &= 3, 4 usw., so verschwinden
fiir den Rand nicht nur die Durchbiegung £, sondern auch alle
ersten und zweiten Ableitungen. Damit sind zwar alle Rand-
bedingungen erfiillt, der Ansatz (1b) ist indessen trotzdem
unbrauchbar, weil das Verschwinden der ersten Ableitungen
erfahrungsgemill nur fir eingespannte Platten zutrifft. Man
iibersieht sofort, dall an dieser Tatsache auch eine Reihe von
Ausdriicken der Form (1b) mit zunichst noch unbestimmtem
Koeflizienten nichts dndert, dall also auch das in § 40 geschil-
derte Verfahren hier nur zum Ziele fithrt, wenn ftr { ganz
andere als die bisher benutzten Funktionen angesetzt werden,
die indessen noch nicht bekannt zu sein scheinen.

In der Technik, die frei aufliegende elliptische Platten mit
zentraler  Belastung und gleichzeitigem Flachendruck als
Mannlochdeckel an Dampfkesseln viel ver-
wendet, wird man sich darum mit deren Berechnung als ein-
gespannter Platten begniigen. Da diese jedenfalls unter sonst
gleichen Verhiltnissen, durch den Hinzutritt der Randspannungen,
stiarker beansprucht werden als [fiir aufliegende, so liegt darin eine
nicht unerwiinschte Sicherheit, die allerdings den damilt verbun-
denen Mangel an Einsicht in den wirklichen Spannungszustand
nicht ersetzen kann.

§ 49. Umformung der Plattengleichungen in Polarkoordinaten.

Umformung der partiellen Ableitungen des Plattenausschlages. Ver-

einfachung fiir die Kreisplatte. Ermittelung der Spannungen und

Dehnungen in ihrer Abh#ngigkeit vom Radius. Die Arbeitsgleichung

in Polarkoordinaten. Anwendung auf die schwimmende elastische
Platte.

Fiir manche Probleme, insbesondere fiir die Untersuchung
kreisformiger Platten, ist es zweckméBig, an Stelle des recht-
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winkligen Achsensystems in der Plattenebene Polarkoor-
dinaten durch die Substitution

T=rcos @, gIE=—Tasiniy & SRS Sl
einzufiihren. Setzen wir dann noch abkiirzungsweise
02f 02¢ . :
S22 - 39 e e R e (R D £
so wird
ol ol BZ i 021 ;
s S 2
i Oﬂby2+ xz_‘—bz; =L

so daB wir fiir die Differentialgleichung (9), § 45, der ebenen
Platte auch 2n it Ru_ 122—1)p 2
322 T 32 L e

schreiben diirfen. Es wird sich also im wesentlichen um eine

Transformation des links stehenden Ausdruckes in Polarkoordi-
naten handeln. Hierfiir kommen noch die aus (1) folgenden

An—

Beziehungen =g g2 e e

in Betracht, aus denen sich
hsiai g L T
S5 —Los g Sy =—sin @
0  ycosdg sin ¢ l
7 i T Foge 1A
O0p cos’p  cosg ‘ '
S s fk

ergibt. Damit aber wird

Bu - omw ar ou a(p_br ou sing

T ax—l—_‘}(p-h"x or (Osm__bup r ‘

au o br_l__?_)__zs,_i)_(p ou sin +6u Losrp (4)
ay or oy 0@ 0y or
und weiterhin
0% 0 (bu ou SIIlrp) or
LUS(p

vz or 29 r oz
b S conp— 32 Se) 20
:(D;%GOSQJ—-— %m—t(p_'i‘g; Sl:lzqa)cosqj
- (;—ip 008 p — 2% singp — gf; i g_t:; E;g) e
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oder nach Zusammenziehung verschiedener Glieder, sowie unter
Hinzufiigung des entsprechenden Ausdrucks fir die andere
Ableitung, der aus dem ersten auch durch Vertauschung von
c0s @ gegen sin @ und sin ¢ gegen — cos @ erhalten werden kann,

B%‘, 0% u du sin®g ., 0%u singcos@
A sdies By el 2
Dr'zcog(p—i_b 7 brbgo 7
+Bu sin? @ +0 E}u €os @ sin @
gg?  r? re
; o
62 1 SR du 0052 @ 02 sm @ cos @ (
2 PRt et
oy b’Slllq)+§r T2 0ro g r
62 3 cos® @ ou COS @ sin @
Bty 0 @2 D 2 0@ 2
Die Addition dieser Formeln liefert dann
02n 02 0Zu 0 1 0%u
Pk e aﬂ+rar+ﬂgﬁ TR

oder nach Zusammenziechung der beiden ersten Glieder rechts
02u R ) on 1 0%u
6ﬁ'iﬁ—?$TaJ+ﬁm;'- @

Der Vollstindigkeit halber fiigen wir noch hinzu

gtg a ou ou smtp) or
dzdoy or\or P e r oy
ou du sing\ dg
el
o 0% ’u sing | du sin @
_(arg-cosrp ETETT —i—a[p 3 )Sln(p
02u Dk ; 0w sing 0w cos @\ cos @
+(Dra(pcosm_b_rsmtp—"brp2'r _BE_J'—) r
oder nach Zusammenziehung
el e (1 o SR L 021.5) .
dxzoy  \or2  r dr 12 d¢g? e
021 1 ou\ cos>p—sin?gp
St e e R e e ).
{_(a?'btp T aw) r ®

Hiernach lautet die Plattengleichungin Polar-
koordinaten
) u i1 oo L@W—0p
r or (r Dr)+ 29t whRE

. (3a),
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worin u wiederum nach (2) durch

farorfiod 1 v
~ror (,r m’»’) Y
definiert ist.

12

Natiirlich miissen auch an
Stelle der Spannungskomponenten
Gy Oy T, 10 den Achsenrichtungen
solche in radialer und tangentialer
Richtung eingefiihrt werden, die
wir mit o,, 6; bzw. 7 bezeichnen

Pig. 178, wollen. Diese ergeben sich aus
dem Gleichgewichte des Elementar-
dreiccks (Fig. 178) der Plattenfliche nach den Formeln
0, = 0, cos® ¢ + 0, 8in® ¢ - 27, SIn @ €08 @ I
0= G, $in2 @ - 6, c0s? @ — 27, 8in @ 0S @ )
7= (0, — 0,) sin ¢ cos @ 7. (cos® @ — sin? ) ‘
von denen die zweite aus der ersten durch Vertauschen von ¢
gegen ¢ -+ 90° hervorgeht.

In die Gleichungen (9) sind ferner die Ausdriicke (3) und (4),
§ 45, niimlich W E 027 a2z

0”:?——13(“ 0a® ﬁyﬁ)
nE [ 0%C 02 )
o=ar—1it3pt 53]

02 wkE 02L

- um
|

=00 g — A=

5 0xroy w1 " ozxoy '
einzusetzen, nachdem in ihnen die Ableitungen nach den Koordi-
naten z und y in solche nach 7 und ¢ umgeformt sind. Diese Um-
formung wollen wir, da dies praktisch ohne Bedeutung ist, nicht
mehr mit voller Allgemeinheit durchfithren, sondern uns mit
der fiir dic Kreisplatte mit symmetrischer Belastung
giiltigen reinen Abhédngigkeit aller Gréllen vom
Radius r begniigen, womit dann sdmtliche Ableitungen nach
¢ wegfallen. Dann aber diirfen wir auch fiir die Platten-
gleichung (3a) bzw. fir (2a) schreiben
1A(E) L
du 12i{r2—1)p =

e
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withrend sich nach (5) und (8) mit dieser Vereinfachung

02l dz“ di
0L 5 g & s
&L L da coszqo

Pl e
T (. e B
-a?ay‘—-('w = d )SJI‘I(pCD‘;(p

o S )
r\ gy | sing cos @

ergibt. Daraus folgen wieder die Spannungskomponenten (10)
wkE dzg df sin?g
e LS T e I Py e
0= g7 z[‘”(drz cos? @+ )

r

a2 . dl cos?
s S‘“z‘?“ra"r' =4

o aze £ cos? g ;
0“_,}—7‘“‘2.‘_1 [Iu td 5 sin? (p—i— dr - (104a)
¢ sin?g }

dr r

d
+ G o g
& Cpdi o a2l _Ed":)c :
rz_ﬁTg, e e sin @ eos ¢

und schlieflich nach Einsetzen in die Formeln (9)

wE ( @ 1de
BT TRy ‘
Pl RS - SdBe eopl WG (A
T (rfr2+r dr)
syl

Durch Umkehrung der ersten beiden Gleichungen (9 a)
erhalten wir

e _
E z d g — g, — i3 l
“ar i . (9b)
pitee G ‘ ’
e dp 7

wonach die links stehenden Terme als radiale bzw. tan-
gentiale Dehnungen der Platte anzusprechen sind,
die iiberdies im Einklang mit den Voraussetzungen des § 45 dem
Abstande z von der neutralen Mittelfliche proportional ausfallen.

Das Verschwinden der Schubspannung 7 besagt, daff in der
Plattenebene keine Verzerrungen stattfinden, dall also die rechten

Loraenz, Elastizititslehre. 31
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Winkel der Radien mit den Kreisen um den Koordinatenursprung
sich infolge der Biegung nicht dndern. Dieses Ergebnis i