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Random eigenvibrations of elastic structures by
the response function method and the generalized
stochastic perturbation technique

M.M. KAMIŃSKI, J. SZAFRAN
Faculty of Civil Engineering, Architecture and Environmental Engineering, Technical University of Łódź,
al. Politechniki 6, 93-590 Łódź, Poland.

This paper addresses the important question in structural analysis how to efficiently model the eigen-
vibrations of the spatial structures with random physical and/or geometrical parameters. The entire com-
putational methodology is based on the traditional Finite Element Method enriched with the stochastic
perturbation technique in its generalized nth order approach, while the computational implementation is
performed by the use of the academic FEM software in conjunction with the symbolic algebra computer
system MAPLE. Contrary to the previous straightforward solution techniques, now the response function
method is applied to compute any order probabilistic moments and coefficients of the structural eigenval-
ues. The response function is assumed in the polynomial form, the coefficients of which are computed
from the several solutions of the deterministic problem around the mean value of the given input random
parameter. This method is illustrated with the stochastic eigenvibrations of the simple single degree of
freedom system and small steel tower modelled as the 3D truss structure with random mass density and
Young modulus. This technique may find its wide application in reliability analysis of the real existing
engineering structures using the commercial Finite Element Method packages as well as the other discrete
computational techniques like the Finite Difference Method at least.

Keywords: stochastic dynamics, Stochastic Finite Element Method, response function method, sto-
chastic perturbation

1. Introduction

The analysis of structures with random parameters plays an important role in
structural design, optimization and reliability modelling. It results from various and
numerous sources of randomness like manufacturing processes, static fracture and
dynamically driven fatigue of the structural elements, stochastic degradation of mate-
rial and geometrical parameters of those elements. The important role play here also
stochastic vibrations resulting from the possible earthquakes and wind induced vibra-
tions, car accidents and at least but not last, some weather influence on the structures
like ice and snow coverage in some colder regions of the world. This variety and the
nature of some structures exploitation leaded to the formulation and the solution to the
eigenvibrations problems for the spatial structures with random parameters. Although
the model presented in the paper is illustrated with the example of the three dimen-
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sional model of the telecommunication tower, it can be applied after some small modi-
fications to the other shell and spatial structures as well.

There are several well established both mathematical and numerical models enabling
for inclusion of randomness in design parameters into the structural dynamics problems
solutions, see [1, 5–9]. Starting from the analytical approaches based on the response
spectrum analysis, through the crude Monte-Carlo stochastic simulation till the computa-
tional spectral methods based on the Karhunen–Loeve or polynomial chaos expansions of
the input random fields. On the other hand, there are the lower order stochastic perturba-
tion methods, however they have fundamental bounds on the input random dispersion
level, so that their application to the real engineering problems may be limited. Taking into
account those limitations, huge time consumptions for the simulation method, large ex-
pansions for the chaos expansions as well as the availability for analytical solutions in the
specific problems only, the new method is proposed here.

This new method is based on the Taylor expansion of any desired order with random
coefficients of all uncertain parameters and state functions around their expected values.
The second new idea here is an application of the response function method in conjunction
with this generalized stochastic perturbation technique. We suppose that the output state
function, namely the particular eigenvalue may be represented by the polynomial form of
the input random parameter. The coefficients for this response polynomium are computed
from the several solutions of the original problem obtained for this parameter values taken
around its mean value. The polynomial form of the response function leads to the easy
determination of its partial derivatives with respect to this random input parameter, which
can be finally employed for analytical determination of the probabilistic moments; it es-
sentially differs from the previous straightforward solution to the equations of an increas-
ing order (like zeroth, first, etc.). The computational implementation of this method is
realized with the classical Finite Element Method program enriched with some stochastic
procedures written in the symbolic algebra computer system MAPLE, where the response
function formation, its coefficients determination as well as the final derivation of the
probabilistic moments is carried out. The nature of this implementation will allow in the
nearest future some similar implementations with the use of the commercial packages of
the FEM and the other computer methods. The entire procedure is tested on the example
of the 3D truss structures with random Young modulus and, separately, mass density of
the structural members. It shows that the method converges relatively fast (eight and tenth
order approaches returns almost the same results).

2. The generalized stochastic perturbation

Let us introduce the random variable b ≡ b(ω) and its probability density function
as p(b). Then, the first two probabilistic moments of this field are defined as

( ) bdbpbbbE ∫
+∞

∞−

=≡ 0][   (1)
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and

( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ., 00 abdbpxbxbxbxbxbxbCov ssrrsr ∫
+∞

∞−

−−=   (2)

The basic idea of the stochastic perturbation approach is to expand all the input
variables and all the state functions of the given problem via Taylor series about their
spatial expectations using some small parameter ε > 0. In case of random quantity b ≡ e,
the following expression is employed:

( ) ,
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10 ∑
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eee ε   (3)

where:

)( 0bbb −=Δ εε   (4)

is the first variation of b  around its expected value and

,)()( 20222 bbb −=Δ εε   (5)

denotes the second variation of b about b0. Symbol (.)0 represents the function value (.)
taken at the expectation b0, while (.) , b, (.) , bb denote the first and the second partial
derivatives with respect to b evaluated at b0, respectively. Let us analyze further the
expected values of any state function f (b) defined analogously to the formula (3) by its
expansion via Taylor series with a given small parameter ε as follows:

( )[ ] ( ) ( ) .)(;
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)(
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Δ+== ε   (6)

Let us remind that this power expansion is valid only if the state function is ana-
lytic in ε and the series converge and, therefore, any criteria of convergence should
include the magnitude of the perturbation parameter; perturbation parameter is taken
as equal to 1 in many practical computations. Contrary to the previous analyses in this
area, now the quantity ε is treated as the expansion parameter in further analysis, so
that it is included explicitly in all the further derivations demanding analytical expres-
sions. Numerical studies performed in the next section demonstrate the influence of
this parameter on the expected values and standard deviations in various orders of the
perturbation methodology. Both moments are obtained in the form of polynomials of
the additional order with respect to the parameter ε.
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From the numerical point of view, the expansion provided by Equation (6) is car-
ried out for the summation over the finite number of components. Considering various
probability distributions, the essential difference is noticed between symmetric distri-
bution functions, where

( )[ ] ( )dbbpb
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ffbbfE
M

n

n
n

n
n

n∫ ∑
+∞

∞− =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

∂
∂

+=
2

1

2
2

2
2

)!2(
10; ε   (7)

and non-symmetric probability functions
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Let us focus now on analytical derivation of the first two probabilistic moments for
the structural response function. According to Equation (6) it yields for the input ran-
dom variable with symmetric probability density function in the second order pertur-
bation approach

( )[ ] ( ) ( )

.)()(0)(
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∞−   (9)

This expected value can be calculated or symbolically computed only if it is given as
some analytical function of the random input parameter b. Many existing models in
various branches of engineering can be adopted to achieve this goal. Computational im-
plementation of the symbolic calculus programs, combined with powerful visualization of
probabilistic output moments, assures the fastest solution of such problems. If higher
order terms are necessary (because of a great random deviation of the input random
variable about its expected value), then the following extension can be proposed:

( )[ ] ( )
...)()(

)()()()(;

6
,6

!6
1

4
,4

!4
1

2
,2

2
10
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bbbbbb
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με

μεμε
(10)

where μn(b) denotes nth order central probabilistic moment of the quantity b and
where all terms with the odd orders are equal to 0 for the Gaussian random deviates
and where higher than the 6th order terms are neglected. Thanks to such an exten-
sion of the random output, any desired efficiency of the expected values as well as
higher probabilistic moments can be achieved by an appropriate choice of the pa-
rameters m and ε corresponding to the input probability density function (PDF) type,
relations between the probabilistic moments, acceptable error of the computations
etc. This choice can be made by comparative studies with long enough (almost infi-
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nite) series Monte-Carlo simulations or theoretical results obtained from the direct
symbolic integration. Similar considerations lead to the 6th order expressions for
a variance; there holds

( ) ( )( ( )
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Hence
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As it can be recognized here, the first integral corresponds to the second order
perturbation, the next three complete 4th order approximation and the rest needs to be
included to achieve full 6th order expansion. After multiple integration and indices
transformations, one can show that
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Quite similarly, using the first and the second order terms only, it is possible to de-
rive third order probabilistic moments as

( )( ) ( )( ) ( )
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 (14)

and the fourth order probabilistic moment also
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Let us mention that it is necessary to multiply each of these equations by the rele-
vant order probabilistic moments of the input random variables to get the algebraic
form convenient for any symbolic computations. Because of a great complexity of
such a solution, the second order perturbation approach is usually preferred. Recursive
derivation of the particular perturbation order equilibrium equations can be powerful
in conjunction with symbolic packages with automatic differentiation tools only; it can
extend the area of stochastic perturbation technique applications in computational
physics and engineering outside the random processes with small dispersion about
their expected values. Hence, there is no need to implement directly exact formulas for
a particular nth order equations extracted from the perturbation. They can be symboli-
cally generated in the system MAPLE, and next converted to the FORTRAN source
codes of the relevant computer software. Finally, it should be emphasized that the
random input variables must express here the uncertainty in space or in time, sepa-
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rately. Quite analogous expansion may be recalled as a function of the perturbation pa-
rameter ε, a perturbation order m as well as the input random variable b
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for any natural m with μ2m being the ordinary probabilistic moment of 2 mth order.

3. Stochastic dynamics with random parameters

3.1. The single degree-of-freedom case

Let us consider the single-degree-of-freedom dynamical system consisting of a mass
m mounted using the spring with the constant k and the dashpot c to the stiff wall and
excited by the function a(τ). The system parameters, i.e. k, c and m are separately de-
fined here as the truncated Gaussian random variables with the specified first two
probabilistic moments. Let us assume furthermore that (1) the spring is linear in this
system, (2) the excitation is given as )(ˆ)( ττ faa = , where f(τ) is a deterministic func-
tion of time, while the magnitude is time – independent, (3) the initial conditions are
homogenous – u(0) = 0 and 0)0( =u& . The general solution to this problem is provided
using the Dirac delta distribution, where the forcing function is express in terms of an
infinitive sequence of the adjacent impulses with their sampling intervals approach
zero; this system response u(τ) at any time τ = t is obtained from the superposition of
the unit impulse responses

∫∫ −=−=
tt

dtwfadtwatu
00

)()(ˆ)()()( ττττττ , ],0[ T∈τ (17)

where w(τ) denotes the response to the Dirac-type excitation δ(τ)

,sin)exp(1),,,()( τωξωτ
ω

ττ c
cm

kcmww −==     ],,0[ T∈τ (18)

where the damped free vibration frequency ωc, viscous damping factor ξ and natural
frequency ω are defined as

2
1

2 )1( ξωω −=c ,     
ω

ξ
m
c

2
= ,      .

m
k

=ω (19)
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Now we consider the uncertainty in (1) spring stiffness k, (2) the dashpot c
and (3) the mass m, separately. Each time we start from the same equation of mo-
tion

).(ˆ)()()( ττττ fakuucum =++ &&& (20)

For the case (1) we obtain the following hierarchical equations:
0th order:

),(ˆ)()()( 0000 ττττ faukucum =++ &&& (21)

1st order:

),()()()( 0,0,, ττττ uukucum kkk −=++ &&& (22)

2nd order:

),(2)()()( ,,0,, ττττ kkkkkkk uukucum −=++ &&& (23)

so for nth order equations one proves easily
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Therefore, solving successively those equations one by one and inserting a solution
of the previous one into the R.H.S. of the partial differential equation it is possible to
collect all components for probabilistic moments expressions for u(τ), )(τu&  and )(τu&& .
The two remaining case studies return very similar results, so that when c is random-
ized then the first order equations equals to

),()()()( 0,,0, ττττ ukuucum ccc &&&& −=++ (25)

whereas the recursive relation of the nth order is equal to
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3.2. The general elastodynamic problem with random parameters

Let us consider the following set of partial differential equations adequate to the
linear elastodynamic problem [2, 5] consisting of
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• the equations of motion

,ˆ uρfσDT &&=+     Ω,∈x     ),,[ 0 ∞∈ tτ (27)

• the constitutive equations

,Cεσ =     Ω,∈x     ),,[ 0 ∞∈ tτ (28)

• the geometric equations

,Duε =     Ω,∈x     ),,[ 0 ∞∈ tτ (29)

• the displacement boundary conditions

,ûu =     ,Ωu∂∈x     ),,[ 0 ∞∈ tτ (30)

• the stress boundary conditions

,t̂Nσ =     ,Ωσ∂∈x     ),,[ 0 ∞∈ tτ (31)

• the initial conditions

,ˆ 0uu =     ,ˆ 0uu && =     ).,[ 0 ∞∈ tτ (32)

It is assumed that all the state functions appearing in this system are sufficiently
smooth functions of the independent variables x and τ. Let us consider the variation
u (x, τ) in some time moment τ = t denoted by δu (x, τ). Using the above equations one
can show that

.0ˆˆ =∂−+−+− ∫∫
∂

)(du)tNσ(u)uρfσD( TTT ΩΩd
σΩΩ

δδ&& (33)

Assuming further that the displacement function u(x, t) has known values at the
initial moment u(x, t1) = 0 and at the end of the process u(x, t2) = 0, so that the varia-
tions of this function also equal 0 at those time moments

( ) ,0, 1 =txuδ ( ) .0, 2 =txuδ (34)

Integrating by parts with respect to the variables x  and τ  we can obtain that

,0ˆˆ
2

1

=∂++− ∫ ∫∫∫
∂

dτΩdδdΩδdΩδδ )](utufεσT[
Ω Ω

TT

Ω

T
t

t

(35)
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where the kinetic energy of the region Ω is defined as

.
2
1 ΩdρT ∫= uuT && (36)

Equation (35) is considered together with the following strain relation

,uDε δδ = ,Ω∈x ).,[ 0 ∞∈ tτ (37)

Next, we introduce the assumption that the mass forces f̂  and the surface loadings t̂
are independent from the displacement vector u, which means that the external load-
ings do not follow the changes in the domain initial configuration. Therefore, Equation
(35) can be modified to the following statement:

( ) ,0
2

1

∫ =−
t

t

τδ dJT p (38)

where Jp means the potential energy cumulated in the domain Ω

,0ˆˆ =∂−−= ∫ ∫
∂

)(utuf
Ω Ω

TT
p

σ

ΩddΩUJ (39)

whereas the variation is determined with respect to the displacement function and U
is the elastic strain energy given by the formula

.2
1 ∫=
Ω

dΩU CεεT (40)

It is well known that Equation (38) represents the Hamilton principle widely used
in structural dynamics in conjunction with the Finite Element Method approach.

3.3. The generalized perturbation-based eigenvalue problem

Let us consider a deterministic eigenproblem in its matrix description for its further
stochastic expansion

.0φM)(K 2 =−ϖ (41)

Its zeroth order version looks like

,0))(( 00200 =− φMΚ ϖ (42)
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whereas the first order equation has the following form:

.'))((')()(' 0200020020 bbb

db
d φMKφMMK ϖϖϖ −−=⎟

⎠
⎞

⎜
⎝
⎛ −− (43)

After some algebraic transformation one can get that

,'))(()')('2'( 020002000 bbbb φMKφMMK ϖϖϖϖ −−=−− (44)

which finally takes the following form:

.0')('')('2' 02000200000 =−+−− bbbbb φMφKφMφMφK ϖϖϖϖ (45)

As it was expected, the perturbed first order equation is much more complicated
than the first order equation in the linear elastostatics. The next differentiation of
Equation (44) with respect to the input random variable b gives

.'))((')')('2'(

')')('2'(

)')(()'2('(

02002000

2000

02000

bbbbbb

bbbb

bbbb

bb

φMKφMMK

φMMK

φMMK

ϖϖϖϖ

ϖϖϖ

ϖϖϖ

−−−−−=

=−−

+
∂
∂

−
∂
∂

−

(46)

After its simplification we obtain

0')('')('))((

''''')(')(

'))((''2''2

'2')2('''

02020020

020020

0200000

0000000

=−+
∂
∂

−

++−−
∂
∂

−−−

−
∂
∂

−+

bbbbb

bbbbbbbb

bbbbb

bbbbbbb

b

b

b

φMφMφM

φKφKφMφM

φMφMφM

φMφMφKφK

ϖϖϖ

ϖϖ

ϖϖϖϖϖ

ϖϖϖϖ

(47)

Finally, one can show that the second order equation is equal to

.0'''2'()()''('4

'2)'(2'''2'
0020000

000002000

=++−+−

−−++
bbbbbbbbb

bbbbbbbbb K

φMφMφMφMφM

φMφMφKφφK

ϖϖϖ

ϖϖϖϖ
(48)

It is quite clear here that the generalized version of the stochastic perturbation tech-
nique based on the nth order Taylor series expansion may lead to the very complex
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equation corresponding to the highest order closure of the entire system [3, 4]. The left
hand side of this equation denoted by LHS(n) should be equal to

,)()(
0

)()(∑
=

−=
n

k

kknn
k knLHS φ (49)

where obviously

.)(
k

k
k

b∂
∂

=
φφ (50)

An application of the similar nth order differentiation procedure to the right hand
side of zeroth order statement results in

.)())(()(
0

)()(

0

)(2∑ ∑
=

−−
−

=

−=
n

k

mknm
kn

m

kn
m

kn
knRHS φMϖ (51)

Therefore, the remaining issue is to give a formula for the k-th order partial derivative
of the eigenvalues second with respect to the input random variable. There holds

.)()2)(()2()()(
0

)()(2
1

1
)1(2 ∑

=

−
+

+
+

∂
∂

=
∂
∂
⋅

∂
∂

=
∂
∂

=
k

l

klkn
lk

k

k

k
k

bbbb
ϖϖϖϖϖϖ (52)

Therefore, one can easily get

.)2()()( )1())1((
1

0

1)(2 +−−
−

=

−∑= llk
k

l

k
l

k ϖϖϖ (53)

Hence, the Equation (51) may be rewritten in a form

.)()2()()()(
0

)()(

0

)1())1((
1

0

1∑ ∑∑
=

−−
−

=

−++−
−

=

− ⋅=
n

k

mknm
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kn
m

llk
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l

k
l

n
knRHS φMϖϖ (54)

A comparison of the Relations (49) and (54) returns

.)()2)(()()( )()(

0

)1())1((
1

0

1

00

)( mknm
kn

m

kn
m

llk
k

l

k
l

n

k

n
k

n

k

kknn
k

−−
−

=

−++−
−

=

−

==

− ∑∑∑∑ ⋅= φMφK ϖϖ (55)

A solution to his equation makes it possible to determine up to the nth order eigen-
values together with the corresponding eigenvectors.
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4. Computational implementation

Let us consider a discretization of the displacement field ),( τxu using the follow-
ing forms [2, 5]:

),1313 ττ α
xNNx

α
x (e)(e)

(q(x))(x,u ϕ≅ ),(1313 ττ xNNx
α

x
α(x)rΦ)(x,u ≅ (56)

where:
q  is a vector of the generalized coordinates for the considered finite element,
r  is a vector for the generalized coordinates of the entire discretized system,
N(e) is the total number of the finite element degrees of freedom,
N is the total number of degrees of freedom in the structure model,
ϕ  and Φ  are the corresponding the shape function matrices (local and global).
The generalized coordinates vector for the entire structure model and for the final

element are related by the transformation matrix as

.11 )()(

α
xNNxN

α
xN ee

a qr = (57)

Contrary to the classical formulations of both FEM and the perturbation-based Sto-
chastic Finite Element Method we introduce here the additional index α = 1, ..., M to
distinguish between different solutions of the elastodynamic problem obtained to build
up the response function around the mean value of the input random parameter. There-
fore, the strain tensor can be expressed as

).(~) 161616 τBτBτ xNNx
α

x(e)N(e)Nx
α

x
αε (x)r((x)q)(x, == (58)

Application of those relations to the Hamilton principle in Equation (38) leads to
the statement

,0
2
12

1
11

2
1

1
∫ ∑∑∑ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

===

t

t

E

e

T
E

e

T
E

l

T dτδ αααααααα qQqkqqmq (59)

so that the global notation gives here

∫ =⎟
⎠
⎞

⎜
⎝
⎛ +−

2

1

.0
2
1

2
1

t

t

ααTαααTαααT τdδ rRrKrrMr && (60)

The element and global mass matrices are defined as

dΩρ
(e)

e

(e)(e)(e) Nx
Ω

T
xN

αα
NxN )()()( 66 xBxBxm ∫= (61)
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and

.dΩ)(~)(~)( 66 xBxBxM Nx
Ω

T
xN

αα
NxN ρ∫= (62)

The stiffness matrices at the element and at the global scales are defined as follows

dΩ6666 (e)

(e)

(e)(e)(e) xN
α

x
Ω

T
xN

α
xNN BCBk ∫= (63)

and

,d~~
6666

)(

Ω= ∫ xN
α

x
Ω

T
Nx

α
NxN

e

BCBK (64)

the vector R (x, τ) represents the vector of nodal loadings. The time variation over
Equation (59) results in a relation

0.dτδδ
2

1

=−+− ∫ r)RKrMr(rMr TTTT
t

t

&&& (65)

Considering the assumptions that

,0)(δ 1 =tr ,0)(δ 2 =tr (66)

we finally obtain the dynamic equilibrium system

,αRrKrM =+ αααα && (67)

which represents the equations of motion of the discretized system. When we com-
plete this equation with the component αα

1xNNxN rC  getting

,ααε RrKrCrM =++ αααα &&& (68)

then we receive the equations system corresponding to the system with nonzero
damping; it is frequently defined as

,10
αKMC αα αα += (69)

where the coefficients α0 and α1 are determined using the specific eigenfunctions for
this problem, so that
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,10
ααααα αα RrKrKrMrM =+++ αααα &&&& (70)

where no summation over the doubled indices α is applied here. As it is known, the
case of undamped and free vibrations leads to the system

,0rKrM =+ αααα && (71)

and the solution tα
αα ωAr sin=  leads to the relation

,sinsin2 0ωAKωωAM =+− tt αααα
ααα (72)

so that for 0ω ≠tαsin  and 0A ≠α  there holds

.2 0KωM =+− αα
α (73)

When the index α is postponed, then the stochastic problem is solved in a straight-
forward manner analogously to the previous methods and the methodology follows the
successive solutions of the increasing order equations proposed in Section 3.3.

As shown during derivation of equations for the generalized perturbation based ap-
proach, one of the most complicated issues is numerical determination of up to nth
order partial derivatives of the structural response function with respect to the ran-
domized parameter. It is possible to determine this function first by multiple solutions
of the boundary value problem around the expectation of the random parameter to
complete this task. The response function for each eigenvalue is built up from uniform
symmetric discretization in the neighborhood of this expectation, with equidistant
intervals. A set of classical deterministic re-computations of the all the components of
the eigenvalues vector leads to the final formation of the responses function for all ωα.
That is why we consider further a problem of the unknown response function ap-
proximation by the following polynomial of n – 1 order:

,... 0)(2)(
2

1)(
1 bAbAbA n

nn ααα
αω +++= −− (74)

having the values of this function determined computationally for n different arguments.
With this representation, the algebraic system of equations is formed
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(75)

where the coefficients ωα (i) for i = 1, ..., n denote the approximated function values in
ascending order of the arguments bi.
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Therefore, the following algebraic system of equations is formed to determine the
polynomial coefficients δγβα

iA :
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(76)

The crucial point of this method is a proper determination of the set of input pa-
rameters { 0

1b , ..., 0
nb } inserted into this equation. This determination is started with

a choice of the computational domain [ ]bbbb Δ+Δ− , , where 2Δb = 0.05b. Then, this
domain is subdivided into the set of equidistant n – 1 intervals with the length

1
2

)1,( −
Δ

=Δ + n
bb mm  for any m = 1, ..., n–1.

So, that assuming that b0 = b – Δb it is obtained that 
1

2
−
Δ

+Δ−=
n

bmbbbm . Let us

note that since this linear system of equations is non-symmetric, its solution cannot be
done by the integration with the FEM solver, and some separate numerical procedure
based on the Gauss–Jordan elimination scheme must be employed. The unique solution
for this system makes it possible to calculate up to the nth order ordinary derivatives of
the homogenized elasticity tensor with respect to the parameter b at the given b0 as

1st order derivative:

( ) ( ) ,...21 )(
1

3)(
2

2)(
1

ααααω
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−− ++−+−=
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n
nn AbAnbAn

b
(77)

2nd order derivative:
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kth order derivative:
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Providing that the response function of the structural eigenvalue has a single inde-
pendent argument, that is, the input random variable of the problem, it is possible to
employ the stochastic perturbation technique based on the Taylor representation to
compute up to the m′-th order probabilistic moments μm(ωα). It is clear from the deri-
vation above that to complete the m′-th order approximation we need to solve the ini-
tial deterministic problem m times, with its number of degrees of freedom and
a single system of algebraic equations m × m, to find a single response function. Includ-
ing the formulas above for the derivatives of the response function in a definition of the
probabilistic moments, one can determine the expectations, variances as well as any
order random characteristics of the structural response.

5. Numerical experiments

5.1. The single-degree-of-freedom system with random parameters

The first computational example is devoted to the 1 D.O.F. system without the
damping. The mass m and the spring stiffness k are separately considered as the Gaus-
sian random variables with the expected values equal to E[k] = 24E6 and E[m] = 1000.
Their coefficients of variations belong to the interval [0.0, 0.3] and sometimes are
limited for a more transparent results presentation to the narrower interval [0.1, 0.2].
All the equations and computer visualization has been prepared using the symbolic
computations system MAPLE, v.11. Using the methodology described above consist-
ing of the straightforward differentiation approach and the well-known classical for-
mula we study here:

1. The expected values for (a) randomized spring stiffness (all the diagrams at the
left) and (b) randomized mass (the right diagrams) computed according to the 2nd,
4th, 6th, 8th and 10th order approaches Figure 1;

     

Fig. 1. The expected values for the 1 D.O.F. eigenvalue for the random stiffness (left)
and the random mass (right)
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2. The variances for (a) the perturbation parameter variability ε ∈ [0.8, 1.2] – Fig-
ure 2 and (b) for the perturbation parameter arbitrarily defined as ε = 1 – Figure 3 (ac-
cording to the 2nd, 4th and 6th order methods); the lowest surface on Figure 2 corre-
sponds to the 2nd order results, the intermediate surface results from the 4th order
approach and the upper surface is equivalent to the results of the 6th order analysis;
Figure 3 contains the solid lines (2nd order analysis), the dot line for the 4th order
method and dash-dot line for the 6th order approach;

     

Fig. 2. The variances for the 1 D.O.F. eigenvalue for the random stiffness (left)
and the random mass (right)

     

Fig. 3. The variances for the 1 D.O.F. eigenvalue for the random stiffness (left)
and the random mass (right) [ε = 1]

3. The standard deviations for (a) the perturbation parameter variability ε ∈ [0.8,
1.2] – Figure 4 and (b) for the perturbation parameter arbitrarily defined as ε = 1 –
Figure 5 (according to the 2nd, 4th and 6th order methods); the data presentation is exact
the same like in Figures 2 and 3;
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4. The lowest order approximation of the third central probabilistic moments as
the function of both perturbation parameter and the input coefficient of variation
varying as before – see Figure 6;

5. The lowest order approximation of the fourth central probabilistic moments as
the function of both perturbation parameter and the input coefficient of variation
varying as before – in Figure 7.

      
Fig. 4. The standard deviations for the 1 D.O.F. eigenvalue for the random stiffness (left)

and the random mass (right)

      
Fig. 5. The standard deviations for the 1 D.O.F. eigenvalue for the random stiffness (left)

and the random mass (right)

The expected values shown in Figure 1 nonlinearly decrease together with an in-
crease of the input coefficient of variation of the spring stiffness and systematically
and monotonously increase together with an increase of the input coefficient of varia-
tion of the random mass. Those changes become more transparent for each next order
of the perturbation analysis, however the differences between the neighboring
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Fig. 6. The third central probabilistic moments for the 1 D.O.F. eigenvalue

for the random stiffness (left) and the random mass (right)

     

Fig. 7. The fourth central probabilistic moments for the 1 D.O.F. eigenvalue
for the random stiffness (left) and the random mass (right)

stochastic expansion orders systematically vanish. It means that the proposed tech-
nique based on the stochastic perturbation analysis the Response Function Method
converges rather fast even for the very large random dispersion of the input variable as
0.3 in this figure. The variances showed in Figure 3 shows a little different character –
as one may expect both variances increase monotonously together with an increase of
the input coefficient of variation. Those increases become larger together with the
perturbation order taken in the analysis and, as before, the differences between the
neighboring orders systematically decrease, however not so fast as in the case of the
expectations. Figure 2 brings the information about both variances two-parametric
behavior including the perturbation parameter changes. All the three surfaces corre-
sponding to the 2nd, 4th and 6th order computations show that the larger perturbation
parameter the larger final value of the variance. The only exception is obtained when
the input coefficient of variation equals 0 but this is the limiting deterministic case,
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when the perturbation does not matter at all. Let us note that the differences between
the neighboring orders are larger for the randomized mass than for the randomized
spring stiffness. Analogous observations can be drawn for the standard deviations
shown in Figures 4 and 5 quite similarly to the presentation of the variances in Figures
2 and 3, accordingly. The only difference is that the standard deviations do not change
so nonlinearly as the variances before. The essential changes are observed for the third
central probabilistic moments (Figure 6), where the spring stiffness results in the nega-
tive values and the randomized mass of the system gives the positive values. Therefore,
the probability density function of the system eigenvalue is non-symmetric in both cases
and demonstrates negative skewness for the spring stiffness (more probability mass below
the expected value) and the positive skewness for the random mass. The absolute values of
the third moments for the randomized mass are about two times larger than for the random
spring stiffness. The last figure shows the fourth central probabilistic moments, where
their values monotonously and nonlinearly increase together with the increases of the per-
turbation parameter and the input coefficient of variation. Contrary to the previous case,
the fourth central moment must be positive everywhere, but similarly to the third mo-
ments, the values obtained for the random mass as twice as much as those computed for
the randomized spring stiffness. Finally, let us note that we can easily extract from Figures
6 and 7 the coefficients of asymmetry and kurtosis for probability density functions of the
eigenvalue by dividing them by the third and fourth powers of the standard deviations,
accordingly. Then, the comparison with the Gaussian probability density function would
be more transparent.

5.2. The elastic 3D truss structure

Computational analysis has been tested on the example of the telecommunication
tower given schematically in Figure 8 with the height equal to 5.0 meters.

Fig. 8. Structural scheme of the transmission tower
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Table 1. Input data for the particular structural members
Element no. Cross-sectional area [m2] Mass density [kg/m]

1 6.450E–06 1.780E–02
2 9.030E–06 2.500E–02
3 6.450E–06 1.780E–02
4 9.030E–06 2.500E–02
5 6.322E–04 1.750E+00
6 1.135E–03 3.143E+00
7 1.574E–03 4.357E+00
8 6.322E–04 1.750E+00
9 1.135E–03 3.143E+00

10 1.574E–03 4.357E+00
11 6.322E–04 1.750E+00
12 1.135E–03 3.143E+00
13 1.574E–03 4.357E+00
14 6.322E–04 1.750E+00
15 1.135E–03 3.143E+00
16 1.574E–03 4.357E+00
17 2.129E–05 5.890E–02
18 1.300E–03 3.598E+00
19 1.821E–03 5.041E+00
20 1.300E–03 3.598E+00
21 1.821E–03 5.041E+00
22 1.300E–03 3.598E+00
23 1.821E–03 5.041E+00
24 1.300E–03 3.598E+00
25 1.821E–03 5.041E+00

The entire structures has been discretized using the two-noded 25 linear space
structure finite elements (3D truss elements) joined in 10 nodal points. All the struc-
tural members have been manufactured with the stainless steel with Young modulus
equal to E = 210 GPa. The cross-sectional areas and mass densities for all those mem-
bers have been collected in Table 1.

Table 2a. Probabilistic moments of the eigenvalues for the telecommunication tower for the randomized
Young modulus

Eigenvalue
number

The expected values
(2) 3rd order moments 4th order moments

1 22.063E5 –0.076E11 0.521E16
2 34.377E5 –0.180E11 0.308E17
3 70.148E5 –0.196E12 0.532E18
4 75.312E5 –0.264E12 0.710E18
5 95.066E5 –0.805E12 0.180E19
6 114.884E5 –0.990E12 0.388E19
7 136.843E5 –0.626E12 0.773E19
8 152.818E5 –0.290E13 0.120E20
9 157.610E5 –0.439E13 0.143E20

10 226.452E5 –0.851E15 0.243E21
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Two groups of numerical tests have been performed (a) with randomized Young
modulus of the tower, (b) with randomized mass density of the structural members
of it. Each time the parameters collected in Table 1 were treated as the expected
values (or their deterministic counterparts), while the coefficient of variation was
assumed as the parameter in the perturbation-based expansion and belonged to the
interval [0.10, 0.20].

The results of computational analysis are presented in Tables 2a, 2b and 3a, 3b as
well as in Figures 9–14.

Table 2b. Probabilistic moments of the eigenvalues for the telecommunication tower for the randomized
Young modulus

Eigenvalue
number

Expected values
(2)

Expected values
(4)

Expected values
(6)

Expected values
(8)

Expected values
(10)

1 22.063E5 22.063E5 22.063E5 22.063E5 22.063E5
2 34.377E5 34.377E5 34.376E5 34.377E5 34.377E5
3 70.148E5 70.148E5 70.149E5 70.147E5 70.148E5
4 75.312E5 75.314E5 75.312E5 75.313E5 75.313E5
5 95.066E5 95.069E5 95.065E5 95.067E5 95.067E5
6 114.884E5 114.886E5 114.887E5 114.884E5 114.885E5
7 136.843E5 136.842E5 136.846E5 136.840E5 136.843E5
8 152.818E5 152.823E5 152.817E5 152.820E5 152.819E5
9 157.610E5 157.605E5 157.650E5 157.566E5 157.612E5
10 226.452E5 227.444E5 225.402E5 227.380E5 226.600E5

As we may observe in the attached tables, the expected values of the eigenval-
ues for the random Young modulus and mass density converge very fast. Of
course, this convergence depends on the eigenvalue number being analyzed – the
higher eigenvalue the larger differences between its expectations obtained from the
neighboring orders of the perturbation. The quality of this method should be fur-
ther compared against the results of the Monte-Carlo simulation for the same input
quantities of random parameters. The comparison of Tables 2 and 3 leads to the
second important conclusion that the expected values of all eigenvalues for the
randomized Young modulus are somewhat smaller than those obtained for the
randomized mass density. This result holds true for the fourth order probabilistic
moments of all eigenvalues also. Let us note by the way that all of the probabilistic
moments increase together with the eigenvalue number analyzed as it is observed
in deterministic analysis. According to the method character, those results are sup-
ported by the additional response functions we have collected in Figures 9–11
(1st, 2nd and 4th eigenvalues) for the randomized Young modulus as well as in Fig-
ures 13 and 14 (1st and 2nd eigenvalues) for the randomized mass density. Figure 12
shows the expected value of the tenth eigenvalue for the random Young modulus,
where the coefficient of variation is taken as the parameter belonging to the inter-
val [0.1, 0.2], out of the second order theory validity.
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Table 3a. Probabilistic moments of the eigenvalues for the telecommunication tower for the randomized
mass density

Eigenvalue
numbers

Expected values
(2) 3rd order moments 4th order moments

1 22.134E5 0.615E13 0.304E17
2 34.483E5 0.212E14 0.222E18
3 70.364E5 0.173E15 0.329E19
4 75.532E5 0.188E15 0.511E19
5 95.369E5 0.471E15 0.124E20
6 115.230E5 0.721E15 0.268E20
7 137.257E5 0.124E16 0.498E20
8 153.013E5 0.160E15 0.778E19
9 158.080E5 0.180E16 0.918E20

10 227.243E5 0.510E16 0.422E21

Table 3b. Probabilistic moments of the eigenvalues for the telecommunication tower for the randomized
mass density
Eigenvaluenum

bers
Expected values

(2)
Expected
values (4)

Expected
values (6)

Expected
values (8)

Expected
values (10)

1 22.134E5 21.999E5 22.197E5 22.026E5 22.092E5
2 34.483E5 34.297E5 34.555E5 34.344E5 34.420E5
3 70.364E5 69.952E5 70.546E5 70.051E5 70.231E5
4 75.532E5 75.139E5 75.690E5 75.237E5 75.401E5
5 95.369E5 94.814E5 95.600E5 94.950E5 95.186E5
6 115.230E5 114.618E5 115.494E5 114.736E5 115.035E5
7 137.257E5 136.506E5 137.566E5 136.693E5 137.009E5
8 153.013E5 152.861E5 152.954E5 152.920E5 152.926E5
9 158.080E5 157.224E5 158.443E5 157.433E5 157.800E5

10 227.243E5 226.054E5 227.736E5 226.349E5 226.852E5

As it can be recognized from Figures 9 and 10, the polynomium obtained for
the first and second eigenvalues is very smooth (almost linear), so that is guaran-
tees a reliable determination of its derivatives (no saddle points and fast oscilla-
tions).

Figure 11 shows the same tendency for the fourth eigenvalue polynomial response
function around the mean value of the randomized parameter. One of the final results
of the stochastic perturbation technique is given in Figure 12, where the expected val-
ues computed as the function of an input coefficient of variation converge very well
together with the perturbation order. It is seen that the difference between the second
order approach results (given by the red curve) and the remaining results cannot be
neglected. The green curve reflects the fourth order theory, the yellow one – the sixth
order approach, the blue and the black curves are plotted for the eight and tenth order
theories. Obviously, the differences between the neighboring orders increase together
with an increase of the coefficient of variation input value, however any differences
between the last two orders cannot be noticed from this figure. Of course, the larger
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coefficient of variation, the higher expected value of the tenth eigenvalue being
analyzed. It means that the technique presented here is free from a limitation on
the input random dispersion and may be reliably applied for any random variables
and converges at the same time. At last we compare the response functions for the first
and second eigenvalues, where the mass density of the structural elements is random-
ized.

     

Fig. 9. The approximating polynomium
for the first eigenvalues

Fig. 10. The approximating polynomium
for the second eigenvalues

Fig. 11. The approximating polynomium for the fourth eigenvalues
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Fig. 12. The expected values for the tenth eigenvalue; random Young modulus

The obtained functions in Figures 13 and 14 are not so smooth like those obtained
before, so that the corresponding probabilistic moments may be accompanied by the
relatively larger errors.

Fig. 13. The response function for the first eigenvalues; random mass density
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Fig. 14. The response function for the second eigenvalues; random mass density

6. Concluding remarks

1. As it was demonstrated here, the elastodynamic problems with random parame-
ters may be solved efficiently using the generalized Stochastic Finite Element Method. A
replacement of the straightforward technique with the response function method enables
the relatively easy computations of any probabilistic moments for various eigenfrequen-
cies of the engineering structures. The computational implementation of the traditional
Finite Element Method code in conjunction with the symbolic algebra system MAPLE
makes it possible to visualize the response functions for various eigenvalues as well as
their probabilistic moments as the functions of the initial random input coefficients of
variation.

2. This methodology may be further employed for more complex computational
problems in stochastic mechanics after a successful comparison against the Monte-
Carlo simulations. In particular, an application in the field of reliability engineering
analysis seems to be the very promising. The main value of this technique, contrary to
the straightforward approach implementation [3–5], is the opportunity to provide its
computational realization also for the commercial FEM packages with no access to
their source codes.
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Losowe drgania własne konstrukcji wyznaczone metodą funkcji odpowiedzi i uogólnioną
metodą perturbacji stochastycznej

Artykuł ukazuje metody analizy konstrukcji pozwalające efektywnie modelować drgania własne
konstrukcji przestrzennych z losowym parametrem fizycznym bądź geometrycznym. Całkowita
metodologia komputerowa jest oparta na tradycyjnej Metodzie Elementów Skończonych, wzboga-
conej metodą perturbacji stochastycznej i jej podejściem n-tego rzędu. Komputerowa implementa-
cja została wykonana w programie Metody Elementów Skończonych w powiązaniu z systemem
komputerowym algebry symbolicznej MAPLE. W przeciwieństwie do poprzednich rozwiązań
bezpośrednich, metoda funkcji odpowiedzi jest zastosowana do obliczeń probabilistycznych
momentów dowolnego rzędu i współczynników wartości własnych konstrukcji. Funkcja odpo-
wiedzi jest przyjęta w formie wielomianowej, a współczynniki zostały wyznaczone na podstawie
kilku rozwiązań zagadnienia deterministycznego w otoczeniu wartości średniej odpowiedniego
parametru losowego. Metoda ta jest zilustrowana na przykładzie stochastycznych drgań własnych
prostego układu z jednym stopniem swobody i małej wieży stalowej modelowanej, jako kratowa
konstrukcja 3D z losową gęstością masy, a także losowym modułem Younga. Metoda może
zostać szeroko zastosowana w analizach niezawodności istniejących konstrukcji inżynierskich
przy użyciu komercyjnych programów MES, jak również innych dyskretnych metod obliczenio-
wych, np. Metody Różnic Skończonych, czy Metody Elementów Brzegowych.
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In this paper a numerical estimation of hydrodynamic torque converter model is discussed. During the esti-
mation it was assumed that the flow through in working area contains multiple flow streams. A contribution of
each individual flow stream in transferring torque was assumed based on a pre-selected torque function. Model
estimation relied upon proper equation and function parameter selection that provided minimization of the
modelling error. Statistical factors were selected for accuracy evaluation of the modelled torque function.
In this case torque functions were converted to diverging series, where values of fundamental statistical
factors were calculated. Based on tests and numerical calculations for a pre-selected hydrodynamic torque
converter it was concluded that there is a relation between modelling accuracy and values of some of the
statistical factors. Application of statistical factors drastically simplified numerical calculations during
modelling estimation.

Keywords: hydrodynamic torque converter model, model estimation, statistical factors

1. Introduction

Hydrodynamic torque converters (HTC) are widely applied in vehicle power
transmission system. Their main advantages are attenuation of sheer vibrations and
self adjustment to the applied load. Typical HTC contains three impellers of pump,
turbine and stator completely sealed in one frame and filled with working fluid. Power
transfer from turbine to pump is obtained via working fluid stream flow within impel-
lers blade passages creating working area of HTC.

Non-dimensional steady-state characteristic is a fundamental function determining
HTC. Graphic representation of this function is always provided within a technical
specification of each HTC. Typically, non-dimensional steady-state characteristic of
HTC provides three curves determining torque ration id, torque coefficient λM, effi-
ciency η as a function of speed ratio ik = ω2/ω1, where ω1,  ω2 are angular velocities of
inlet and exit shaft of HTC. Non-dimensional steady-state characteristics are prepared
for a selected angular velocity ω1 and ko (typically 10) values of ik ranging from 0 ≤ ik
< 1. In order to provide non-dimensional steady-state characteristic it is necessary to
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determine torques M1, M2 on inlet and exit shaft of HTC for each value of ik and out-
side diameter of HTC – D.

In order to properly select HTC for a vehicle power transmission system and to op-
timize HTC construction, development of a mathematical model of HTC is required. It
is necessary to properly select HTC to vehicle power transmission system and to op-
timize its construction. Due to a complicated working fluid flow through multidimen-
sional twisted working area, models based on average stream theory are still used for
HTC working fluid flow calculations. Higher modelling accuracy can be obtained
through the consideration of additional parameters, such as temperature of working
fluid [1], quantitative division of fluid flow into multiple streams [2, 3] or through
diligent estimation of modelling parameters [2]. During estimation calculations of
HTC random methods are applied including Linja, Monte Carlo or Genetic Algorithm
[2–4]. Proper estimation still requires empirical measurements of the modelled HTC.
In order to simplify the estimation process of HTC mathematical modelling of statisti-
cal factors was proposed in this paper.

2. Mathematical model of hydrodynamic torque converter

Mathematical model of HTC used here is numerical and called a model of multiple
streams. This model was introduced based on the following assumptions:

• entire flow through within working area of HTC contains no independent streams,
• torque carried through HTC is a sum of torques carried by each stream. The contri-

bution of each stream is not constant but varies and depends on a selected torque function.
The model calculates non-dimensional steady-state characteristic of HTC for pre-

selected values of speed ratio ik therefore becomes a discrete model.
A modelling solution is a sum of results for each individual stream contained

within the entire fluid flow through inside a working area of HTC. Each individual
stream is described as a single-dimensional model of an average stream [5]. Each
stream on inlet and exit from the impeller of HTC has different radii and angles due to
varying angles along blade edge. A number of streams are limited only by calculating
capabilities of the applied computer and calculation time.

Flow through in working area of HTC is not uniform due to non-uniform wall re-
action of working fluid flow passages. Most of the loads are concentrated:

• on active blade side (direct pressure on fluid stream),
• beginning of the blade length (influent fluid stream to the impeller runs directly

into blade edges then twists and flows along the blade,
• external tours (due to centrifugal force acting on fluid stream).
Non-uniformity results in non-uniform fluid velocities within working area of the

HTC, therefore non-uniform utilization of the working fluid to transfer torque [6]. Due
to this non-uniformity a different contribution to torque transfer by each HTC working
fluid stream was assumed.
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Contribution of each HTC working fluid stream was described by a function called
torque function. The torque function contains independent variable x which is defined
as a division of consecutive number n of working fluid stream by the overall number
of streams no within the working fluid flow through. A dependent variable of this
function is a contribution factor in the torque transfer ranging 0–1. Based on analysis
of actual velocities within HTC working space published by Flack [6] it was assumed
that the torque function should be sloping up, real, differential, and continuous in the
range of 0 ≤ x ≤ 1. The torque function determines values of a, b, c, d, f taken from an
assumed variables range.

A main disadvantage of the average stream model is typically lower torque calcu-
lated values than tests reveal [7, 8], therefore in order to obtain a value of stream con-
tribution higher than 1, the contribution factor was multiplied by an increasing factor z
constant for all flow through streams. Values of the constant z were selected from 1 ≤
z ≤ 3 range. This range was obtained from initial calculations. A sample application of
torque function model is shown on Figure 1.

Fig. 1. Application of torque function in a mathematical model
of sample HTC for pump and for no = 3 streams

Mathematical model of HTC used to obtain non-dimensional steady-state charac-
teristic can be described by the following equations:
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where:
i – number of impeller (i = 1 – pump, i = 2 – turbine, i = 3 – stator);
j – inlet or exist of impeller (j = 1 inlet, j = 2 exit);
for inlet rw = rgw, rz = rgz, but for exit rw = rdw, rz = rdz.
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where n decreases from 1 to no and determines stream number.
Remaining radii of average line of streams for the rest of the impellers were ob-

tained as follows:
• for turbine – inlet radius of turbine is equal to exit radius of pump, exit radius of

turbine is equal to inlet radius of pump;
• for stator – inlet radius of stator is equal to exit radius of pump.
Method of radii tagging for impellers is shown on Figure 2, and sample tags of

stream radii for pump and no = 3 streams is shown on Figure 3.
The model input data is as follows:
• HTC working point parameters – ik and ω1;
• mode parameters – number of values of speed ratio ko, number of streams no,

value of flow losses coefficient ψ, torque increasing factor z;
• HTC geometry and its working area dimensions – D, rgz = D/2, rgw, rdz, rdw, βij,z,

βij,w;
• torque function and its parameters – a, b, c, d, f.
A computer program used to calculate the mathematical model of HTC contains

primarily two nested calculation loops: exterior loop “for ik = 0 to ko” and interior loop
“for n = 1 to no”.

3. Estimation of the hydrodynamic torque converter model

In order to provide construction calculations it is necessary to provide a precise
mathematical model of HTC. Therefore an estimation of the model has to be per-
formed. In other words it is necessary to provide model parameter selection that leads
to minimal modelling error. In such model the following are estimated: torque func-
tion parameters a, b, c, d, f and parameters z, ψ. Number of streams no is obtained as
a maximum value at a predetermined calculation time.
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Fig. 2. Impeler radii tagging method

Fig. 3. Stream radii tagging method, for a pump and no = 3 streams

As a modelling precision criteria [2] average relative error of a non-di-
mensional steady-state characteristic HTC model was taken as described by the
equation:
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where:
u – weigh determining contribution of each characteristic error,
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diδ – relative error of torque ratio,
δλ – relative error of torque level coefficient.
Relative modelling errors of HTC characteristics are described by equations:
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where index:
b – value obtained empirically,
m – value obtained from mathematical model calculations.
The modelling quality criteria, in other words the relative error, should obtain its

minimal value.

4.  Calculations of statistical factors

In order to calculate statistical factors based on torque function, it is necessary to
convert the function into a divergent series yn after values of the torque function con-
stants were determined. It was done by dividing a range of independent variable
0 ≤ x ≤ 1 for each torque function onto no sub ranges and determining middle elements
values yn, Figure [9, 10]. Next for each divergent series statistical factors were ob-
tained.

In order to evaluate divergent series and their torque functions the following statis-
tical factors were used:

• average value:
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whereϖ is average relative frequency;
• standard deviation:
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where m is series size and y& is value of average weigh;
• classic variation factor in [%]:
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• average deviation:
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• classic factor for measurement of asymmetric value:
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where:
w – relative frequency,
t – value of considered size.

Factors S(y), V(y), D(y) determine how far and how dense the obtained values are
from average value y . Asymmetric measure A(y) is used for slope analysis variables y,
but concentration measure K(M) is related to asymmetric measure and determines
density of variables y.

In order to obtain statistical factors, numerical calculations do not require sophisti-
cated programming techniques therefore calculation time is relatively short.

Fig. 4. Statistical factors determination scheme
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5. Evaluation of function with statistical factors application

In order to prove that there is a relation between statistical factors and the accu-
racy of mathematical model, testing and measurements required for modelling esti-
mation  were performed for HTC type PH1.410.14 with active diameter D =
410 mm.

5.1. Testing

The testing was performed on a test rig. The test rig allowed continuous modulation
of torque load applied to HTC while varying angular velocities of inlet and exit
shafts. The empirical testing was performed with a constant angular velocity of inlet
shaft equal to ω1 = 210 rad/s. Measuring data were speed ratio ik in a range of 0 to 1.
Assumed ko = 24 measurement points, from ik = 0 to ik = 0.5 every 0.1, and from
ik = 0.5 to ik = 0.6 every 0.05 and from ik = 0.6 to ik = 1 exchangeable every 0.03 and
0.02. Values of speed ratio ik for each measurement point were obtained through the
application of a braking system to vary angular velocity of exit shaft. For each
ko = 24 measurement point exit angular velocity and torque on inlet and exit shaft
were measured. The measurement results of torque, angular velocities of inlet and
exit shafts for HTC and values obtained from calculations are shown in Table 1.

Table 1. Measurement results of the tested HTC type PH1.410.14 for ω1 = 210 rad/s
ω2 M1 M2 ik id η λ⋅10–3

No. [rad/s] [Nm] [Nm] [–] [–] [–] [1/rad2]
1 0 1645 3865 0 2.35 0 3.92
2 21 1653 3680 0.10 2.23 0.223 3.93
3 44 1643 3432 0.20 2.09 0.418 3.91
4 63 1634 3185 0.30 1.95 0.585 3.90
5 85 1632 2934 0.40 1.80 0.721 3.88
6 105 1603 2581 0.50 1.61 0.805 3.82
7 126 1510 2149 0.60 1.42 0.852 3.59
8 147 1384 1738 0.70 1.26 0.882 3.29
9 168 1201 1324 0.80 1.10 0.881 2.85
10 189 919 843 0.90 0.92 0.828 2.19
11 200 729 601 0.95 0.82 0.779 1.74
12 206 594 455 0.98 0.76 0.745 1.41

5.2. Numerical calculations

Calculations were performed using a computer program written in the Turbo Pascal
programming language applying numerical random method Monte Carlo [2, 11].
Multiple stream type models contain values that have to be determined before the
application of the model. For the analyzed HTC such values of parameters are as fol-
lows: z, ψ, ko, no and also the torque function and values of parameters a, b, c, d, f.
Additionally a number of selections lo for the Monte Carlo method and values of
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weigh u have to be determined. Fifteen function curves, as the torque functions were
selected in these calculations representing various types of functions used in technical
modelling [3, 12]. Type of equations and a number of constant parameters of the func-
tion are provided in Table 2. Torque function from Table 2 was converted to values
ranging 0 ≤ yn ≤ 1 by dividing actual function value by the maximum possible function
value available for the referenced range. Declining functions were converted to in-
clining for the range 0 ≤ x ≤ 1 through the application of x: = 1 – x conversion in the
computer program. Values and ranges of the remaining parameters of the model are
shown in Table 3.

Table 2. Torque functions selected for initial calculations; e – Neper number
No. Function tag Function equation No. of constant parameters
1 2 3 4

1 F1 dxcxbxaxy +++= 234 4

2 F2 ))()(1( cxbxxaxy −−−= 3

3 F3 dcxbxxaxy +−−−= ))()(1( 4

4 F4 xaay )1( −+= 1

5 F5 axy −= 1 1

6 F6 ))(1( cxxbxey ax −−⋅= 3

7 F7 ))(1()1( bxxaxey x −−⋅= − 2

8 F8 fdxecxbxxaxy +−−−= ))()(1( 5

9 F9 3cxb
ay
+

= 3

10 F10 3)1( xcb
ay
−+

= 3

11 F11
)1( 3xcb

ay
−+

= 3

12 F12
)ln(

1
cxba

y
−

= 3

13 F13 )]()([ 22 sincos
2

cxdcxbey ax +⋅= − 4

1 2 3 4

14 F14
)]}1()]1([{ 22)1( sin[cos

2
xcdxcbey xa −+−⋅= −−

4

15 F15 x
xdc
xbay ⋅

−
−

=
sin
cos

4
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Table 3. Parameter values and ranges applied in numerical calculations of the HTC model
lo no u a, b, c, d, f Ψ Z

30 000 30 0.5 1–2 0.3–0.4 1–3

Calculations of each variable were repeated 10 times due to the randomness of
the applied calculation method which resulted in obtaining different function curves
each time. For each repetition randomly selected values of a, b, c, d, f were different.
As a calculation result minimum and maximum values of the calculated data were
taken.

Calculations were done in two steps. For each torque function the following were
calculated:

• modelling error,
• statistical factors.

Table 4 shows calculation results of modelling errorδ for the analyzed torque
function obtained from 10 repetitions of the computer program and parameter val-
ues for which these errors were obtained. Per Table 4 minimum modelling er-
rorδ was obtained for torque functions F9, F10 and F11 as multidimensional in-
verted functions. Error magnitude deviates for about 0.02, while error difference
between each function with small errorδ F12 and functions F10 and F11 was
about 0.1, therefore is was five time higher. Small modelling error valuesδ are
noticeable and these functions are distinctive among others. The torque function
curves for extreme value of constant parameters a, b, c determined by assumed
ranges 1–2 are shown in Figure 5.

Table 4. Minimum values of modelling error δ  and corresponding modelling parameter values for the
analyzed torque function per Table 2

No. Function tag δ [%] a b c d f ψ z
1 F1 10.98 –0.979 0.622 0.210 0.147 – 0.395 2.596
2 F2 9.52 1.012 1.957 1.988 – – 0.399 2.977
3 F3 5.74 1.119 1.576 1.132 1.076 – 0.380 2.795
4 F4 5.03 1.289 – – – – 0.395 2.877
5 F5 12.93 1.996 – – – – 0.368 2.931
6 F6 5.18 1.587 1.008 1.621 – – 0.384 1.909
7 F7 9.18 1.150 1.973 1.678 – – 0.309 1.127
8 F8 5.87 1.049 1.063 1.000 1.292 1.345 0.329 2.327
9 F9 4.57 1.418 1.618 1.180 – – 0.393 1.944

10 F10 4.59 1.726 1.795 1.003 – – 0.395 2.092
11 F11 4.59 1.093 1.381 1.111 – – 0.387 2.252
12 F12 4.69 1.561 1.160 1.060 – – 0.385 1.893
13 F13 4.73 1.575 1.175 1.509 1.268 – 0.391 2.742
14 F14 6.09 1.063 1.022 1.107 1.982 – 0.355 2.759
15 F15 6.08 1.015 1.535 1.754 1.230 – 0.343 1.240



A. KESY, A. KADZIELA44

Table 5. Statistical factors ranges V( y), A( y), K(M ) calculated for torque function per Table 2
No. Function tag V( y) A( y) K(M )

1 F1 50.7–63.8 1.2138–1.2964 0.2871–0.3649
2 F2 50.9–69.5 1.1989–1.3773 0.2803–0.3972
3 F3 8.4–32.8 1.3133–5.4279 0.0405–0.1829
4 F4 6.0–64.1 1.2177–6.2231 0.3596–0.3659
5 F5 9.1–59.2 1.1162–5.7463 0.0399–0.2249
6 F6 42.9–69.5 1.1989–1.5773 0.3003–0.3972
7 F7 13.2–49.9 1.3171–3.2192 0.0588–0.2857
8 F8 46.9–204.1 1.1268–2.3426 0.2527–0.8203
9 F9 12.8–24.1 1.3713–2.1102 0.0655–0.4327

10 F10 12.6–26.1 1.3370–2.1422 0.0760–0.1444
11 F11 6.6–50.9 1.3007–13.8178 0.0132–0.2929
12 F12 30.8–66,5 1.3592–1.5696 0.1754–0.3638
13 F13 23.2–44.3 1.2982–1.6452 0.1166–0.2469
14 F14 12.6–46.6 1.2570–1.6049 0.0759–0.2640
15 F15 53.2–148.9 1.2905–2.3535 0.2801–0.6757

Tables 5 and 6 show results of minimum and maximum values of statistical factors
for torque function according to Table 2 determining ranges of these factors obtained
during calculations for ten computer program repetitions. Analysis of average value y
(Table 6) reveals that function curves are moved upward toward value of y = 1. Only
for torque functions F8 and F15 minimal values of factor y are smaller than 0.5. These
functions provide significant values of classic coefficient V( y), where they are dis-
tinctive among other functions.

Table 6. Statistical factors ranges y , Sy, Dy calculated for torque factors per Table 2
No. Function tag y Sy D( y)
1 F1 0.5371–0.6185 0.3137–0.3425 0.2750–0.3072
2 F2 0.5105–0.7054 0.3004–0.3545 0.2623–0.3196
3 F3 0.7144–0.9428 0.0638–0.2318 0.0603–0.2034
4 F4 0.5432–0.9495 0.0463–0.3481 0.0397–0.3118
5 F5 0.4881–0.8962 0.0818–0.3347 0.0546–0.2828
6 F6 0.5105–0.7054 0.2304–0.3545 0.2023–0.3196
7 F7 0.5808–0.9122 0.1207–0.3898 0.0832–0.2703
8 F8 0.1286–0.6490 0.2625–0.3870 0.1840–0.3769
9 F9 0.7975–0.8955 0.1146–0.1925 0.0943–0.1686
10 F10 0.7816–0.9798 0.1081–0.2041 0.0872–0.1798
11 F11 0.5330–0.9655 0.0639–0.2714 0.0202–0.2351
12 F12 0.3567–0.6623 0.2042–0.2402 0.1727–0.2000
13 F13 0.6762–0.8479 0.1966–0.2999 0.1631–0.2647
14 F14 0.6382–0.8459 0.0915–0.2980 0.0902–0.2641
15 F15 0.1419–0.6786 0.2114–0.3862 0.1515–0.3112
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6. Comparison of modelling error values and statistical factors

Table 7 shows values of modelling errorδ together with values of statistical factors
for torque functions per Table 2. Based on the table data it can be determined that
there are torque functions with different values of modelling errorδ and closely simi-

Fig. 5. Function curves where modelling error is minimal for parameter a, b, c values ranging 1–2
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lar values of statistical factors. In the example, torque function F11 where δ  = 4.57%
average value of y  = 0.6428, and for F15 with average value δ  = 6.08%, therefore

with error higher than 33% average value y is very similar and equal to y = 0.6497.
However statistical factors for these torque functions differ considerably as follows:
for function F11 V( y) = 18, but for function F15 V(y) = 55.1. On the other hand torque
functions F9, F10 and F11 have similar values of all statistical factors. Therefore,
there are functions which are more suitable for application as torque functions in the
mathematical model of the analyzed HTC. These functions contain much closer values
of statistical factors and these factors can be applied to evaluate the usefulness of each
function as a torque function.

Table 7. Value comparison of statistical factors and modeling error δ for torque function per Table 2
No. Function tag δ [%] y Sy D( y) V( y) A( y) K(M )
1 F1 10.98 0.5605 0.3330 0.2970 59.4 1.2313 0.3396
2 F2 9.52 0.6171 0.3162 0.2775 51.2 1.2931 0.2900
3 F3 5.74 0.9128 0.0863 0.0610 9.5 5.2316 0.0421
4 F4 5.03 0.8865 0.0855 0.0594 9.6 5.0152 0.0439
5 F5 12.93 0.4990 0.2901 0.2515 58.1 1.2977 0.3347
6 F6 5.18 0.6426 0.3070 0.2669 47.8 1.3334 0.2684
7 F7 9.18 0.6523 0.3042 0.2634 46.6 1.3503 0.2610
8 F8 5.87 0.5300 0.3550 0.3193 67.0 1.2056 0.3823
9 F9 4.57 0.8682 0.1376 0.1163 15.8 1.7133 0.0837

10 F10 4.59 0.8930 0.1169 0.0965 13.1 2.0552 0.0673
11 F11 4.59 0.6428 0.1154 0.0891 18.0 2.0261 0.0867
12 F12 4.69 0.6462 0.2089 0.1771 32.3 1.3819 0.1843
13 F13 4.73 0.7844 0.2432 0.2089 31.0 1.4432 0.1648
14 F14 6.09 0.8272 0.1290 0.1141 15.6 1.5663 0.0854
15 F15 6.08 0.6497 0.3577 0.2995 55.1 1.5105 0.3085

7. Conclusions

Numerical model of HTC assumes that flow through in working area contains
multiple streams. Each stream takes part in torque transfer. Contribution of each
stream in torque transfer was determined based on a pre-selected torque function.
During the process of model estimation it is necessary to select a form and parameter
values for torque function in such a manner that allows obtaining a minimal modelling
error. In order to obtain acceptable accuracy, statistical factors are used and calculated
for divergence series obtained from these functions.

Based on empirical testing and numerical calculations for the analyzed HTC type
PH1.410.14 it was determined there is a relation between modelling accuracy and statisti-
cal factors values. Use of statistical factors significantly simplifies the estimation process
of the described by a mathematical model HTC, because it allows neglecting the step of
selecting a form of torque function equation. Therefore estimation relied only on the se-
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lection of modelling parameters.  Taking into account the computer programming time
and calculation time with application of random methods based on repetitive calculation
for randomly selected set of parameters the estimation effort becomes about 50% simpler.
Statistical factors calculations do not require a sophisticated computer programming tech-
nique and calculation time is relatively short.

Wider application of this torque function selection method during estimation of
HTC model requires further testing and numerical calculations for other types of HTC.
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Użycie wskaźników statystycznych w modelowaniu przekładni hydrokinetycznej

Artykuł dotyczy estymacji numerycznego modelu przekładni hydrokinetycznej, w którym
założono, że przepływ w przestrzeni roboczej składa się z wielu strug. W tym modelu udział
poszczególnych strug w przenoszeniu momentu obrotowego określono na podstawie arbitralnie
dobranej funkcji rozkładu momentu. Estymacja modelu polegała na doborze postaci równania
i parametrów tej funkcji, tak żeby uzyskać najmniejszy błąd modelowania. Do oceny funkcji
rozkładu momentu pod kątem dokładności modelu zaproponowano użycie wskaźników staty-
stycznych. W tym celu dobierane funkcje rozkładu momentu zamieniono na szeregi rozdziel-
cze, dla których następnie obliczano wartości podstawowych wskaźników statystycznych. Na
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podstawie badań doświadczalnych i obliczeń numerycznych wybranej przekładni hydrokine-
tycznej wykazano, że istnieje związek między dokładnością modelu, a wartościami pewnych
wskaźników statystycznych. Użycie wskaźników statystycznych znacznie upraszcza obliczenia
numeryczne podczas estymacji.
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There are various processes for production of turbine blades. Hot forging has been the most common,
especially for automotive, marine and industrial turbochargers or aero-engines turbines. Advanced com-
puter modelling has become a powerful tool for process planning and tool design in order to get near-net
shape blades in hot forging. This paper presents the effect of die cavity positioning on metal flow and
distribution of lateral forces in the die during aero-engine turbine blade hot forging. An influence of
torsional moment on dies offsetting introduced by these lateral forces has also been pointed out.

Keywords: turbine blade, forging, lateral forces, torsional moment, computer modelling

1. Introduction

Analysis of lateral forces in the dies for turbine blade forging has been the main aim
of this paper. Small lot production is rather typical for turbine blades what could be re-
garded as not suitable for hot forging because of high cost of tools. However, forgings
are characterized by very advantageous distribution of grains and relatively high
strength what has usually been regarded as more important than relatively high cost per
piece. There is a growing demand to produce turbine blades in near net-shape geometry.
This demand requires special design of dies and special control of forging process. Nu-
merical simulation of blade forging process is difficult due to three-dimensional twisted
shape of the blade, non-steady state contact between the die surface and the workpiece,
and thermo-mechanical loads. Hence numerous works have been done to develop 3D
FEM simulation in order to get deformed configurations on the forging stages and to
find the optimized die and preform shapes [1, 2, 7]. Also, minimization of the forging
errors with the inclusion of press and die deflections has also been performed [3, 4].

One of the ways to minimize tolerances and allowances is limitation of lateral forces
which are present in the dies during forging process. They would cause offsetting of upper
and lower dies what results in unacceptable geometrical errors of the forgings. Lateral
forces depend mainly on arrangement of die cavity in the die block and positioning of the
parting surface [5, 6]. As for industrial practice, finding an optimized die design with low
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lateral forces usually requires some number of tool sets to be tested. This way is very ex-
pensive. On the other hand, computer modelling provides a possibility to carry out virtual
test with different sets of tools what considerably decreases cost of trials [8].

As for this paper, computer modelling of turbine blade forging has been carried out
by means of SuperForge software based on finite volume method FVM. Analysis of
numerical results has provided data on die loading including lateral forces as well as
on an appropriate filling of die cavity in order to limit material folding and fracture.
This opens the possibility to counteract the lateral thrust by a proper die design and
machining counterlocks into the parting surfaces of the dies.

2. Turbine blade forging

Square bar made of alloyed structural steel PN 18H2N4WA (0.18% C, 1.4% Cr,
4.2% Ni, 1% W), equivalent to DIN 1.5919, has been used to prepare a preform for
forging of turbine blade in industrial process. Preform was heated to 1150 °C. Slight
upsetting of the preform was used to remove scale from the surface. Next, the preform
was forged just in one die cavity. After trimming the flesh, the forging was subjected
to drop sizing. Figure 1 presents photos of industrial dies and the final forging.

Fig. 1. Industrial dies (a) and the final forging – turbine blade (b)

3. Computer modelling

There were taken into account two cases in computer modelling of turbine blade
forging. Case I was related directly with the industrial forging. As for case II, two
forgings were made simultaneously at the same stroke of hammer. There were two
cavities in one die block. The cavities were positioned in opposite directions as re-
garding the shape of turbine blade, see Figure 2. Computer models of the dies were
prepared by using Unigraphics files on detailed die design.
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Dies were preheated before forging to 300 ºC. Friction conditions between lubri-
cated die surface and deformed material were described by friction factor m = 0.2.
Forging parameters were defined according to crank forging press LKM1600. Thermo-
mechanical numerical analysis took into account temperature dependent changes of
material properties during forging. Tools were modelled as elastic bodies and heat
transfer was taken into account. A shape of forging obtained by means of computer
modelling is shown in Figure 3. This shape corresponded very well with the shape of
industrial forging and was the same for cases I and II.

Fig. 2. Computer models of upper and lower dies for turbine blade forging;
case I – industrial dies (a), case II – dies with doubled cavities (b)

Fig. 3. Turbine blade with a flesh (computer modelling)

4. Numerical results

Figures 4 and 5 present changes in X and Y lateral forces acting on die cavity for
case I and case II. The direction of x and y axis are shown in Figure 2. Forces had op-
posite directions for upper and lower dies, Figure 4. Generally lateral force X is much
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bigger than lateral force Y. Maximum values of lateral forces X were equal to about
5% of forging force Z. These relatively high values would cause offsetting of the up-
per and lower dies.

Fig. 4. Changes in X and Y lateral forces for case I (industrial die)

Fig. 5. Changes in X and Y lateral forces for case II (dies with doubled cavities)

To minimize an influence of lateral forces on accuracy of forgings, a die design
with doubled cavities was proposed. The arrangement of the cavities in opposite
directions was supposed to counterbalance X lateral forces for each die cavity. It
has really been observed – summary of the forces was a few times lower than the
force in case I. Origins and values of lateral forces vectors are shown in Figure 6.
Though the directions of X lateral forces are opposite for each cavity and the
summary of the lateral forces is minimized, some torsional moment and tensile
stresses in the upper die appeared. Torsional moment should be counterbalanced
by special counterlocks.
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Fig. 6. Summary vectors of maximum lateral forces X and Y for upper (a) and lower (b) dies (case II)

Tensile stresses are dangerous for hard tool material and would increase a sen-
sitivity to crack initiation in the die.

5. Conclusions

1. Numerical modelling of turbine blade forging revealed considerably high lateral
forces in die cavities which would cause offsetting of the lower and upper dies leading
to geometrical inaccuracies of the forgings.

2. Doubling die cavities for the same stroke resulted in a considerable decrease
in values of X lateral forces. However, some new undesirable phenomena appeared
– torsional moment between upper and lower dies and tensile stresses in the upper
die.

3. An analysis of causes of upper and lower dies offsetting should take into ac-
count not only lateral forces but torsional moments as well. Then appropriate coun-
terlocks could be carefully designed for the near net-shape forging dies.
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Analiza numeryczna sił bocznych w matrycy do kucia łopatki turbiny

Wiele jest sposobów produkcji łopatek turbin, a kucie na gorąco zaliczane jest do klasycz-
nych. Poprzez kucie produkuje się łopatki do sprężarek różnych silników samochodowych,
okrętowych, przemysłowych itd. Zaawansowane modelowanie komputerowe stało się poważ-
nym narzędziem w opracowaniu procesów technologicznych i konstrukcji narzędzi do kucia
łopatek prawie na gotowo. W referacie przedstawiono wpływ umiejscowienia wykrojów
w matrycy na płynięcie metalu i zmiany sił bocznych działających na wykrój matrycy w trak-
cie procesu kucia łopatki. Wskazano również, że powstaje moment skręcający matryce dolne
i górne, prowadzący do błędów wynikających z przesadzenia matryc.
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An approach for analysis of shape of composite dowel shear connector focused on finding a location
of the point of maximal principal stress in steel dowel is presented. It is based on analogy between equa-
tions of boundary of closed area under plane stress conditions and beam in two dimensional space. Equa-
tions are derived from Airy’s potential and polar coordinates are used.
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1. Introduction

The VFT-WIB® construction method [1–3] represents a new technology in Europe
using prefabricated composite beams with innovative type of shear force transfer mecha-
nism. A new type of shear transmission – the composite dowel – allows composite girders
without any upper steel flange and an enduring shear connection especially between high
strength steel combined and high strength concrete and FRUHPC also [4]. The composite
dowel is a co-product from the processing of rolled beams in steel construction without
any additional resource (Figure 1).

   

Fig. 1. Different cutting lines for composite dowels [4]
(Puzzle, Fin-cut, Tenon-shape) and cutting process

2. Subject of analysis and the method proposed

The object of work is to find a method to analyze location of point of maximum
principal stress (maximum tension) by means of dowel shape and pressure distribution
only. Contrary to currently used formulas for resistance of steel dowels based on plas-
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tic distribution [5, 6] and FEM [7], this approach would be quite different and based
on some analogies in equations of plates and beams [8]. Such a method, if successfully
derived, would be efficient tool to solve some of problems considering shape of steel
dowels and to prove generally some predictions from FEM analysis – some important
aspects regarding cutting shape are still to be solved. It is logical to use some ap-
proaches considering boundary problems, as it is interesting to focus only on part of
the edge, not the whole dowel. For simplicity that curve with constant radius is ana-
lysed at this stage and constant pressure profile. The method (if efficient) would be
used for other shapes also, but rather circular arcs and clothoid curves are interesting
from practical point of view. Nonlinear pressure profile is easy to introduce by some
changes in equations. Uplift forces seem to be possible to include also.

From theory of elasticity [8] for plane stress

,02 4

4

22

4

4

4

=
∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

yyxx   
(1)

can be expressed by means of polar coordinates:

.01111
2

2

22

2

2

2

22

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
Φ∂

+
∂
Φ∂

+
∂
Φ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂
∂

θθ rrrrrrrr
  (2)

The problem of location of critical point (Figure 2) can be handled by means of study
of σφ (if φ = θ). Puzzle shape presented in Figure 2 is substituted by purely theoretical
“full arc” shape for later analysis, just to simplify and clarify later FE study.

Fig. 2. Scheme of steel dowel with stress state at critical point

The radial stress is
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Assuming that only location of point B is important and the point B belongs to boundary
S one can notice, that for extreme value of stress (changing with s) it should be satisfied
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what leads to
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There is connection between function Ф for closed area V with boundary S and inter-
nal forces in virtual beam of shape S and the same boundary loads what can be expressed:

( ) ( )

( )sN
s

sMs

=
∂
Φ∂

=Φ
,   (6)

where M and N are bending moment and axial force in virtual beam, respectively
(Figure 3).

Fig. 3. Beam

With assumption that location of point B expressed by φ and r is of the same φ
value for dowels of the same shape (so it does not dependent on size of dowel) and
value of stress in point B is the same for the same p0, Equation (6) may be reduced to:
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for s = φ × r0.
After substitution of second Equation of (6) to (7) equation for location of critical

point B versus φ is:
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r
N

ϕ
  (8)

If assumed that dowels of different shapes (but the same p0) and constant radius r0
are under consideration (e.g. different puzzle shapes), one can notice that for every
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particular shape, size effect would result in connection of internal force N (for differ-
ent sizes) by means of linear function:

.
0

0 r
rNN rr ⋅=   (9)

Hence for location of point B it would be enough to study shapes with one radius r0
only and it results in equation for location of point B:

.00 =
∂
∂
ϕ
N (10)

One can notice it should be possible to determine φB on the basis of HA, VA and p0
only. For every B ∈ S between points A and C (described by φ) according to Figure 3:

( ) ( ) ( ),sinsincos
0

000 ϕϕϕϕ
ϕ

⋅+⋅⋅−⋅= ∫ AA VdprHN (11)

( ) ( )( ) ( ),sincos1cos 000 ϕϕϕ ⋅+−⋅−⋅= AA VprHN (12)

what after substitution to (10) gives
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that leads to equation for location of point B:

( ) ,tg
00 prH
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A
B ⋅+
=ϕ (14)

where HA and VA are calculated for radius r0 and p0 is a constant value.

3. Numerical study

Numerical study was conducted to check method proposed and to study any practi-
cal difficulties. One particular dowel shape with constant geometry was analysed
(“full arc” shape) under four loadcases (different level of resultant force and pres-
sure/no pressure next to B point). Three types of FE models were necessary to study:
M1 – beam model e1, p2 (shape of boundary S), M2 – shell model e2, p2 (shape body V
with boundary S) M3 – shell model e2, p2 (dowel connected to almost infinite space).
They are presented in Figures 4 and 5.
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Fig. 4. M1 model and M2 model

Fig. 5. M3 model: a) whole model and b) dowel region

Fig. 6. Load cases: a) constant pressure at whole dowel height, b) constant line load
with moment distributed along the edge, c) constant pressure at upper part

of dowel – half of dowel height d) constant line load
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Total force value per dowel is:

.0∫=
S

dypP (15)

The study was conducted for every of four loadcases as follows:
1. Calculation of M3 models with external loads acting the dowel to obtain the

stress fields.
2. Study of σx, σy and τxy stresses distribution at cuts created in M3 model. The cuts

are (geometrically) boundary edges of M1 and M2 models.
3. Defining the external forces according to assumption of distribution of p and t

according to Figure 7. Distribution of p and t represents external forces for M1 and
M2 models. It should be similar to distribution of σx, σy and τxy stresses from M3
model and it must fulfil equations of equilibrium of global forces acting on model,
hence for support point Rx = Ry = Mz = 0.

4. Study of M2 models with distributions of p and t and external loads acting the
dowel. Comparative study of principal stress distribution and their extreme values for
M2 and M3 models – they must be comparable in dowel region to claim that boundary
geometry and p and t are proper approximation of M3 model.

5. Study of M1 (beam) model focused on internal loads distribution, especially
axial forces. Determination of HA and VA.

6. Determination of φB on the basis of HA and VA from (14) what should be con-
firmed by location of maximal axial force for M1 model (graphically).

Fig. 7. Distribution of p and t

With assumption that p = t (τxy = τyx at lower corners) and from ΣX = 0, ΣMZ = 0 it
can be derived for scheme presented in Figure 7:
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Forces distribution presented in Figure 7 is one of many possible solutions – it is
linear approximation of nonlinear stress distribution. It was chosen on the basis of
stress distributions from Figures 8, 9, 12 and 13 and it fulfils some basic conditions
like symmetry, etc.

4. Results

Results are presented in Figures 8–12, angle φB from (14) for forces from M1
model is presented in Table 1. Straight line tangent to arc and crossing point
described by symmetry axis of dowel and level of resultant force is shown in addi-
tion.

Table 1. φB from Equation (14), LC = loadcase number

LC P [kN] e [m] H0 [kN] V0 [kN] r0 [m] p0
[kN/m]

r0×p1
[kN] tg (φ )

B
φ [0]

2 1 0.05 0.614 0.254 0.05 10 0.5 0.2280 12.8
3 1 0.05 0.5 0.219 0.05 – – 0.4380 23.7
5 1 0.75 0.553 0.342 0.05 – – 0.6184 31.7
10 1 0.10 0.5 0.436 0.05 – – 0.8720 41.1

H0 and V0 in Table 1 are obtained from M1 model at point A.

Fig. 8. Model M3, loadcase 2: principal stress σ1, normal stress σy and σx distribution at cuts
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Fig. 9. Model M3, loadcase 2: principal stress σ2, shear stress τxy and τyx distribution at cuts

Fig. 10. Model M2, loadcase 2: principal stress σ1

Fig. 11. Model M1, loadcase 2: axial force
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Fig. 12. Model M3, loadcase 3: principal stress σ1, normal stress σy and σx distribution at cuts

Fig. 13. Model M3, loadcase 3: principal stress σ2, shear stress τxy and τyx distribution at cuts

Fig. 14. Model M2, loadcase 3: principal stress σ1
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Fig. 15. Model M1, loadcase 3: axial force

Fig. 16. Model M3, principal stress σ1, a) loadcase 5 and b) loadcase 10

5. Interpretation of the results

Stress layouts, extreme values of main principal stress and their location (point B)
are similar for M2 and M3 models, hence M2 model seems to be good approximation
of M3 model (B(s)|M3 ≈ B(s)|M2 both for value and location). For all four loadcases
point B calculated by new approach from (14), (B(s)|M1), with M1 model is situated
lower than one from M3 model. Moreover, straight line tangent to arc and crossing
point described by symmetry axis of dowel and level of resultant force is tangent to
arc (point T) between points B(s)|M1 and B(s)|M3. Hence results of new approach con-
firms some logical predictions (eg. higher e value – higher location of B point) and
their show regularities like B(s)|M1 →T → B(s)|M3, but exact location of B(s)|M1 is
too low. One should notice, that external loads of M1 model presented in Figure 7 are
not the same as stress distribution in model M3 (Figures 8, 9, 12, 13), what is impor-
tant factor for sure. Geometry of M1 model is only one of many possible solutions and
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maybe it should be set in a different way; some basis should be figured out and limita-
tions of Airy’s stress functions may be important.

6. Summary

An approach for analysis of shape of composite dowel shear connector focused on
finding a location of the point of maximal principal stress in steel dowel has been pre-
sented. It is based on analogy between equations of boundary of closed area under plane
stress conditions and beam in two dimensional space. Equations are derived from Airy’s
potential and polar coordinates are used. The approach presented at this stage should be
treated rather as an outline of the method proposed. The important point is to choose
appropriate geometry of M1 model and external loads distribution. Expressing external
loads by means of continuous functions and appropriate geometry of M1 model (if pos-
sible) could lead to reduction of complex task to functional problem or maybe even to
algebraic one. Hence it could result in efficient tool to solve theoretically many prob-
lems regarding shape of steel dowels in aspect of stress distribution.
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Podejście brzegowe w analizie kształtu zespolenia typu „composite dowels”

W artykule przedstawiono metodę umożliwiającą określenie położenia punktu maksymal-
nych naprężeń w stalowej części zespolenia typu „composite dowels”. Podano podstawy teo-
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retyczne, rozwiązano numerycznie wybrane problemy, porównano wyniki i przedstawiono
wnioski. Metoda wykorzystuje analogię pomiędzy równaniami brzegu zamkniętego obszaru
w płaskim stanie naprężeń a belką w przestrzeni dwuwymiarowej. Równania wyprowadzono
wykorzystując funkcję Airye’go i współrzędne biegunowe. Proponowana metoda jest na obec-
nym etapie szkicem podejścia, istotne jest dobranie odpowiedniej geometrii modeli wycinko-
wych i rozkładu obciążenia zewnętrznego jako warunków brzegowych, najlepiej w postaci
funkcji ciągłych. Jeżeli byłoby to możliwe, to skomplikowane obecnie zagadnienie najprawdo-
podobniej sprowadziłoby się do problemu analizy funkcjonału i możliwe byłoby zbudowanie
efektywnego narzędzia matematycznego do rozwiązywania wielu problemów dotyczących
kształtu zespolenia w aspekcie rozkładu naprężeń w części stalowej.
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Application of internal variable convection
for modelling of T-shape mould filling
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Numerical methods for thixoforming modelling are shortly reviewed in the paper. Present applica-
tions, especially for thixotropy phenomena modelling, are presented. Advantages and disadvantages of
methods based on solid mechanics or computational fluid dynamics are pointed out. Internal Variable
Convection (IVC) method is introduced as an alternative for classical Lagrangian or Eulerian methods.

Numerical simulations of T-shape mould filling, based on the data taken from literature, are shown.
Presented results confirm possibilities of thixoforming processes modelling with Internal Variable Con-
vection method. However, some deficiencies of the present solution are pointed out in the paper as well.
It concerns mainly material front tracking methods and treatment of boundary layer. Some ways to re-
solve existing constraints, as well as plans for future are presented.

Keywords: thixoforming, internal variable convection, numerical modelling, computational fluid dynamice

1. Introduction

Semi-solid forming processes, like thixoforming, rheocasting, some continuous
casting variants and some others, combine phenomena from fluids and solids behav-
iour. High deformations and time dependent properties of materials cause that neither
structural, nor fluids computational methods are fully applicable. Structural solutions
are commonly based on Lagrangian motion description and remeshing is required
when mesh becomes too distorted. Remeshing dramatically increases time consump-
tion and decreases accuracy of solution. On the other hand, Computational Fluid Dy-
namics (CFD) methods, based on Eulerian or ALE motion descriptions, are not suit-
able for behaviour modelling of history dependent materials. Nevertheless, CFD
solutions seem to be more flexible and more promising than based on Lagrangian de-
scription. The objective of the paper is to suggest an alternative approach, which is
based on the convection of the internal variable.

1.1. Thixoforming modelling

Thixoformed materials are usually described as viscoplastic or elastoviscoplastic
(Bellet & Moto Mpong [1], Kopp et al [2]), as well as shear-thinning fluids or Hershel-
Bulkley fluid (Huilgol, You [3]; Alexandrou [4]). Compatibility of CFD methods with
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viscous, non-Newtonian fluids and structural mechanics based solutions with viscoplas-
tic material was proved by Zienkiewicz and Cormeau [5]. However, in solid computa-
tions, dynamic effects are usually omitted. In high speed forming, like thixoforming,
dynamic effects are significant, what had been shown by Sołek et al. [6]. Moreover, due
to high deformations, solid mechanics based methods need remeshing. It entails high
numerical errors and high costs of computations. It is a reason that, despite some disad-
vantages, the majority of researchers uses CFD methods for thixoforming modelling.

When CFD techniques are employed, thixotropic effects are one of the most im-
portant obstacles. These phenomena are connected with long lasting variations of
rheological parameters after changes of the flow conditions. Detailed description of
this problem could be found in the paper of Muyumdar et al. [7]0. Numerical mod-
elling of rheological parameters dependency on process history needs storage of
material state in computational domain. Unfortunately, it is not possible, when clas-
sical CFD methods are applied. More detailed description of this subject is presented
by Macioł [8].

2. Numerical model of thixotropy

There are several models of thixotropic behaviour described in the scientific lit-
erature. Wide review could be found in publications of Atkinson [10], Mujumdar et al.
[7] and Barnes [9]. Presently, two families of thixotropy models are used, direct and
indirect. Direct models are better grounded on physical basis, but its application re-
quires determination of some thixotropic fluid parameters. It could be extremely diffi-
cult, especially for high temperatures, which are typical for thixoforming processes.
Indirect models parameters could easily be nominated with inverse method, which
makes them easier for practical application. The main measure of thixotropy effects in
those models is agglomeration coefficient λ   Muyumdar et al. [7]).

In this paper, a modification of indirect model proposed by Modigell and Koke
[11] is employed:

( )[ ]λγλλ γ −= − &&
e

bae
dt
d   (1)

+= aa  when ( ) 0≥− λγλ &e

−= aa when ( ) 0<− λγλ &e

where:
a+, a– and b – constants,
λe  – equilibrium structural parameter,
λ – structural parameter,
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γ& – shear rate. In original Modigell–Koke equation, both a+ and a– coefficients are
equal.

Relationship between viscosity and structural parameter is based on equation:

( ) ,0
mcf

s def s γλμμ &+=   (2)

where:
c, d and m – constants,
μ – viscosity,
μ0 – viscosity when ,∞→γ&
fs – solid fraction. In this work, only constant solid fraction is taken into account, so

μ0 and ecfs are constant. Equilibrium structural parameter is described by equation

( )
,

1
1

ne γα
λ

&+
= (3)

where α = 1 second and n is a coefficient.

3. Internal variable convection (IVC)

IVC methodology is an attempt to overcome difficulties with modelling of history
dependent materials with CFD. Description of basic assumptions of this methodology
can be found in works of Macioł [8] [12]. These assumptions are repeated briefly be-
low.

IVC is based on convection of “artificial species”, which represents internal vari-
able, similarly to mass transfer problems. Convection of the physical quantities (like
volume or solid phase fraction) is introduced in the presently available publications.
On the contrary, the convection of the state variable (aggregation coefficient) is used
in the present solution. Numerical solution of one time step in transient simulation is
divided into two steps – computation of velocity field and subsequently IV convec-
tion. If flow parameters (viscosity) are strongly dependent on internal variable distri-
bution, these steps could be iteratively repeated for the quasi-stationary solution.

For the first step, whichever transient CFD method could be employed (Streamline-
Upwinded Petrov Galerkin, Characteristic Based Split (CBS) and many others). Second
step is typical convection problem with known velocity field. IV changes in time are
included with a source mechanism. Reassuming, IVC methodology allows simulation of
transient flows of history dependent materials, with arbitrary geometry, taking into ac-
count both IV convection and IV variations with time and flow parameters. From nu-
merical point of view, IVC method is identical with coupled problem of fluid flow with
mass transport, when fluid viscosity is dependent on mass fraction. The main difference
is in treatment of a “mass” – a real species in mass transfer and internal variable in IVC.
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4. Numerical results

Computer program CompFlower, based on the IVC methodology, has been devel-
oped. It is written in C++ language, but some advanced techniques, like policy based
programming and metaprogramming allow keeping high efficiency of the code.
Navier–Stokes equations, as well as convection problem are solved with Characteristic
Based Split algorithm (Zienkiewicz & Taylor [13]). PETSc library is employed for
linear equation system solving. Some numerical tests confirms robustness of the
CompFlower code (Macioł 2008).

4.1. Thixotropy modelling

The main task of the CompFlower software is thixotropy modelling. In order to
validate the program’s capability to model thixotropy, numerical model of the Modigell
& Koke experiment [14] was performed. Viscosity and internal variable derivative are
computed with equations (1–3). Computations for a series of shear jumps and drops,
identical with those shown in the mentioned paper, were carried out. Computational
results, compared with experimental data, are presented in Figure 1.
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Fig. 1. Comparison of experimental and computed viscosities in shear jump/drop test

Thixotropic behaviour, shown by Modigell & Koke [11] are revealed in two ef-
fects. Firstly, delay of reaching equilibrium shear stress when shear rate jumps or
drops occur. Secondly, short peaks or pits appear after shear jumps or drops. Classical
CFD methods are unable to replicate those effects. As it could be seen in Figure 1,
IVC technique gives such a possibility. Differences between experimental and nu-
merical results in high shear stress are caused by numerical model’s imperfections.
Model’s coefficients were chosen manually and could be still optimized with auto-
matic methods, such us inverse method.
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Although numerical and experimental data are not completely agreeable, viscosity
peaks and pits are predicted properly.

4.2. T-shape form filling

The majority of thixoforming processes is connected with mould filling. Present
work is inspired with the experiment presented by Modigell et al. [14]. The shape of
computational domain is shown in Figure 2.

Fig. 2. Dimensions of the T-shape mould

Transient model was designed to check whether the IVC methodology can be suc-
cessfully used for numerical modelling of mould filling with thixotropic fluid. Unfor-
tunately, CompFlower software has some constraints. The main two issues are simpli-
fications in front tracking and some problems with boundary layer. Front tracking
algorithm is based on IVC methodology. IV values can vary in the range [–1; 1].
When value is less than zero, it is assumed, that there is no fluid in this element. In such
a case, rheological model describes an air and IV corrections have only convective char-
acter. When IV is grater than zero, element is assumed to be filled with liquid metal.
Then, full IVC metod is applied, with both convective and source based mechanisms of
IV changes. There is no special treatment of boundary layers.

Computations for the three inlet pressures were carried out. In all cases, mould ini-
tially was filled with air. No-slip conditions were assumed on boundaries and zero-
pressure condition on outlet. Distributions of the IV value for inlet pressure of 1000 Pa
is presented in Figure 3. Distributions of the IV values in selected time steps for inlet
pressure equal to 300 Pa and 1700 Pa are shown in Figure 4.
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t = 0.25 s t = 0.75 s

Fig. 3. Internal variable values for following time steps
(inlet pressure equal to 1000 Pa)

a) p = 300 Pa, t = 2.0 s b) p = 1700 Pa, t = 0.5 s

Fig. 4. Internal variable values for chosen time steps
(inlet pressure equal to 300 Pa (a) and 1700 Pa (b))

Computed flow front could be compared with experimental results presented by
Modigell et al. [14] (Figure 5). Piston velocity in experiment is approximately 20%
lower than in computations with inlet pressure equal to 1700 Pa. Computational and
experimental results are generally agreeable. Differences are caused mainly by men-
tioned simplified boundary layer treatment, front tracking method and some artificial
diffusion, necessary to obtain convergence in numerical solution.

Presented results show that inlet pressure in given range has no significant influence
on flow directions. Of course, since forming speeds are dependent on inlet pressure, this
conclusion cannot be extrapolated to higher or lower pressures. On the other hand, the
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higher pressure in inlet constraints higher shears. It could be seen, that internal variable
values are lower, when forming speeds are higher. It is in agreement with the expecta-
tions and confirms good predictive capabilities of the IVC based model.

The main disadvantage of developed model is a boundary layer. Homogenous finite
element mesh, no-slip condition and fluid motion tracking with internal variable effects
with artefacts on boundary layer – the gap between formed material and the walls.

Fig. 5. Flow front of an isothermal filling experiment, vpiston = 50 mm/s; source: Modigell et al. [14]

5. Conclusions

With IVC methodology, it is possible to simulate flows of fluids, which rheological pa-
rameters are dependent on processes history. Such an approach is not possible with classi-
cal CFD techniques. IVC can be used for both steady-state and transient cases. Transient
mould filling simulations are possible as well. However, presently used front tracking
method and boundary layer solution are strongly simplified. This is an obstacle in obtain-
ing fully reliable results. Presently it is not possible to quantitatively compare numerical
and experimental results. It is necessary to further improve the developed software. Al-
though, it is only a technical problem. Hitherto results clearly prove that IVC methodology
can be efficiently used for modelling of any flows of history dependent fluids.
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Zastosowanie metody konwekcji zmiennej wewnętrznej
do modelowania wypełnienia formy T-kształtnej

W pracy omówiono metody komputerowe obecnie stosowane do modelowania procesów
tiksoformingu, ze szczególnym uwzględnieniem zjawiska tiksotropii. Analizowano zagadnie-
nia związane z modelowaniem przepływów cieczy tiksotropowych przy zastosowaniu opisu
kinetyki Lagrange’a lub Eulera. Zaproponowano nową metodę konwekcji zmiennej wewnętrz-
nej, która pozwala na modelowanie takich przepływów w oparciu o rozwiązanie zagadnienia
konwekcji dodatkowo wprowadzonej zmiennej, opisującej stan materiału.

Przedstawiono symulacje procesu wypełnienia formy T-kształtnej, oparte na doświadczeniu
opisanym w literaturze. Przedstawione wyniki potwierdzają możliwość modelowania procesów
tiksoformingu w oparciu o metodę konwekcji zmiennej wewnętrznej. W artykule przedstawio-
no jednak także istotne niedoskonałości obecnie stosowanej metodyki, szczególnie w zakresie
modelowania frontu materiału i warstwy przyściennej. Wskazano również perspektywy roz-
woju metody i kroki planowane w celu poprawy jakości rozwiązania.
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In this paper the main aspects that are associated with stress concentration created by corrosion are
reviewed and separate functions are produced for fatigue notch factor in terms of average corrosion pene-
tration and exposure time. In particular, the relation of fatigue notch factor in terms of exposure time
gives a direct, accurate, and quantifiable assessment of corroded members and it needs only the time of
weathering. Finally the fatigue notch factor of corroded steelwork compared with the fatigue notch factor
of various classes of structural detail as classified in BS 5400, the UK code requirements for fatigue.
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Nomenclature
dc [mm] – average corrosion penetration,
K [–] – constant term relating to mean-line of log σr – logN curve,
Kf [–] – fatigue notch factor,
Kfc [–] – fatigue notch factor due to corrosion,
m [–] – inverse slope of the mean-line log σr – logN curve,
N [–] – number of cycles,
σr,B [MPa] – stress range for class B,
σr,C [MPa] – stress range for class C,
σr,x [MPa] – stress range for class x,
Rmax [mm] – maximum roughness,
Sd [mm] – standard deviation of roughness,
t [year] – exposure time.

1. Introduction

Steel bridges are susceptible to pitting corrosion when subjected to severe environ-
ments. The pits which result from pitting corrosion can be dangerous because they extend
into the metal, showing little external evidence of their existence, and are usually confined
to a point or small area. In practice, any fatigue life assessment must include an under-
standing of the effects of notch geometry and the associated stress field on both the crack
formation and subsequent propagation phase of life. The geometrical discontinuities which
create stress concentrations are frequently responsible for providing the origin of fatigue
crack formation in engineering structures. There is voluminous literature in the field of
pitting corrosion and corrosion fatigue [1–5]. But the amount of published work on fatigue
notch factor due to corrosion is limited. Albrecht et al. [6] identified three significant fac-
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tors which contribute to the total reduction in fatigue strength of a corroded member. Ac-
cordingly, the fatigue notch factor or fatigue strength reduction factor is equal to the prod-
uct of all factors. However, for simplicity Albrecht combined these factors as a single
factor, known as the fatigue strength reduction factor. This factor is an appropriate pa-
rameter for quantifying the effect of corrosion deterioration on fatigue strength which can
be calculated for each specimen on the basis of applied stress range and the number of
cycles to failure. The most commonly accepted definition of fatigue notch factor is the
ratio of the fatigue strength of a smooth specimen to that of a notched specimen under the
same experimental conditions and the same number of cycles [7]. The main goals in this
paper are: (1) to review the main aspects that are associated with stress concentration cre-
ated by corrosion, (2) develop of a function which could represent fatigue notch factor in
terms of average corrosion penetration, (3) development of a relation for fatigue notch
factor in terms of exposure time and (4) to investigate the fatigue notch factor of corroded
steelwork compared with the fatigue notch factor of various classes of structural detail as
classified in BS 5400, the UK code requirement for fatigue. In this research the results
obtained for roughness measurements of corroded steelwork and cyclic tests have been
used from Rahgozar [8] to develop the required relationships for fatigue notch factor.

2. Methods of calculating fatigue notch factor

The presence of discontinuities or pits on the surface of steel structural members
due to corrosion can result in a lower S-N curve. The reason for this is the stress con-
centration at the root of the pit which promotes the initiation of cracks which reduce
the fatigue life. The effect of stress concentrations on fatigue resistance can be quanti-
fied by using a fatigue stress concentration factor or fatigue notch factor.

Two approaches for determining fatigue notch factors can be considered. The first
requires testing smooth specimens, then utilising the Neuber’s rule [9] to calculate the
fatigue notch factor based on the number of cycles to failure for corroded specimens.
The second involves a comparison between test results for corroded specimens and
a mean regression line for stress range versus cycles to failure in plain rolled beams. The
regression line which was used in the comparison is the same one used in BS 5400: Part
10 [10] for allowable stress range for class B (plain rolled beam) fatigue detail. Further
discussion regarding the second approach is presented in this section.

The severity of various classes of structural detail in BS 5400: Part 10 [10] can be
expressed in terms of fatigue notch factors, kf, before considering corrosion. It is more
meaningful to select the fatigue strength of the plain rolled beam as the reference line
for which the fatigue notch factor is then defined as unity, kf = 1.0. The fatigue notch
factor for any other class x is then equal to the ratio between the stress ranges for the
class B and class x means at a fixed number of cycles, as shown in Figure 1.
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Fig. 1. Definition of fatigue notch factor and computation of loss in stress range and fatigue life

Table 1. Calculation of fatigue notch factors for mean lines of BS 5400
Detail Class K m σr at 500.000 cycles kf at 500.000 cycles

B 2.34×1015 4.0 262 1.00
C 1.08×1014 3.5 241 1.09
D 3.99×1012 3.0 200 1.31
E 3.29×1012 3.0 189 1.39
F 1.73×1012 3.0 151 1.74
F2 1.23×1012 3.0 135 1.94
G 0.57×1012 3.0 105 2.50
W 0.37×1012 3.0 91 2.88

Since the slopes of the eight mean regression S–N lines vary, the fatigue notch
factors were computed at 500.000 cycles of loading, which is about the logarithmic
mean of the number of cycles to failure of the beams tested by Fisher et al [11] that
form the basis of the design requirement in the Standard Specification of Highway
Bridges. This reference (N = 500.000 cycles) is about midway on the range of N for
which test data exist and has been used extensively by different authors [12–14].
The stress ranges for different classes listed in Table 1 (more details can be found in
Reference [15]). Dividing these stress ranges into 262 MPa, the stress range for class
B yields kf in accordance with equation 1 (Table 1 and Figure 1).

3. Calculation of fatigue notch factor for corroded specimens

Fatigue notch factor due to corrosion, kfc, can be defined as the ratio of the stress
range of a non-corroded base metal, (σr, x), to the stress range of the same metal with
corrosion, (σr, x)c, under the same experimental conditions.
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Table 2. Calculation and results of fatigue notch factor
Specimen no. dc (mm) Rmax (mm) Sd (mm) (σr,B)c (MPa) N (Cycles) (σr,B ) (MPa) kfc

1 0.13 0.34 0.067 200 36.900.000 89 0.45
2 1.59 1.20 0.226 200 23.525.000 100 0.50
3 0.19 0.94 0.112 250 506.200 260 1.04
4 1.23 1.53 0.357 250 990.900 220 0.88
5 1.71 0.73 0.110 250 1.843.500 189 0.76
6 0.09 0.47 0.090 250 795.200 233 0.93
7 2.28 1.75 0.324 350 40.960 489 1.40
8 1.83 2.79 0.630 350 990 1270 3.63
9 1.25 2.62 0.465 350 15.590 622 1.78

10 0.13 0.39 0.064 350 244.690 313 0.90
11 0.16 1.01 0.170 350 298.170 298 0.85
12 0.38 1.15 0.271 350 161.660 347 1.00
13 1.61 1.68 0.317 350 24.790 554 1.58
14 2.31 1.78 0.349 350 25.420 551 1.57
15 2.34 1.36 0.232 350 15.570 623 1.78
16 2.68 3.37 0.775 350 3.360 914 2.61
17 1.93 2.70 0.483 350 38.640 496 1.42
18 1.58 0.60 0.101 350 94.180 397 1.13
19 1.61 1.58 0.105 350 218.940 322 0.92
20 1.06 0.56 0.098 350 241.750 314 0.90
21 2.06 2.01 0.515 250 512.090 260 1.04
22 1.26 0.82 0.159 250 1.479.890 199 0.80
23 1.34 0.98 0.210 250 969.380 222 0.89
24 1.12 0.93 0.202 250 1.116.900 214 0.86
25 1.19 1.23 0.215 250 770.800 235 0.94
26 1.23 1.21 0.227 250 870.960 228 0.91
27 1.52 1.15 0.261 250 560.300 254 1.02
28 2.05 2.29 0.469 250 389.010 279 1.12
29 1.64 1.80 0.304 250 594.100 251 1.00
30 2.16 2.06 0.522 250 463.070 267 1.07
31 1.56 1.67 0.366 250 634.200 246 0.98
32 1.46 1.26 0.217 250 676.080 243 0.97
33 1.39 1.28 0.254 250 741.300 237 0.95
34 2.06 2.59 0.717 250 268.000 301 1.20

Where (σr,x) is the mean stress range for class x at a reference number of cycles.
This can be calculated by substituting the number of cycles to failure, N, into the fa-
tigue power law equation. The value of (σr,x)c, represents the stress range which has
been applied to the corroded specimen in the plane of crack. This relationship is illus-
trated in Figure 1, where the equation is evaluated at the mean cycle life for a group of
specimens tested at a given stress range. In this study the base metal has been taken as
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class B and the values of (σr,B) have been calculated and listed in Table 2 by using the
following equation as fatigue power law:
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Where K is the constant term relating to the mean-line of the results and m is the
inverse slope of the mean-line log σr – logN curve. The values of K and m were taken
to be 2.34 × 1015 and 4.0 respectively for class B. It should be noted, that the speci-
mens performed better than class B. These had a notch factor of less than 1.0, and
were included in the regression analysis.

4. Fatigue notch factor in terms of corrosion penetration

Further investigation was carried out to develop a relation for fatigue notch factor,
kfc in terms of average corrosion penetration, dc. Two approaches were considered. The
first requires measurements of the average corrosion penetration, dc, the standard de-
viation of roughness, Sd, the maximum roughness, Rmax and the calculation of fatigue
notch factor, kfc based on the fatigue test.

Fig. 2. Fatigue notch factor versus standard deviation of roughness

The fatigue notch factor for corroded specimens was calculated and plotted against
standard deviation of roughness, Sd as shown in Figure 2. The following equation was
produced from Figure 2 based on a mean regression line through the data points with
the intercept of 1.0 calculated with the least-square-fit method:

kfc = 1 + 0.99Sd.  (4)

The fatigue notch factor of a corroded member by having measurements on aver-
age corrosion penetration is given by

kfc = 1 + 0.2dc.   (5)
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The following equation was produced for fatigue notch factor of corroded specimens in
terms of maximum roughness, Rmax by using the same procedure as used for Equation 4.

kfc = 1 + 0.2Rmax.   (6)

5. Fatigue notch factor in terms of the exposure time

An attempt has been made to develop a relation for fatigue notch factor in terms of
the exposure time. The following relationship was developed for corrosion penetration
in terms of exposure time [8]:

( ) .74.90 75.0tdc =   (7)

In order to relate the effect of exposure time, t, to fatigue notch factor, kfc, average
corrosion penetration, dc, from Equation 7 has been substituted into Equation 6.

( ) .018.01 75.0tk fc +=   (8)

Equation 8 can be used to calculate the fatigue notch factor of a corroded specimen
or a member at any given exposure time in years.

6. Comparison of the fatigue notch factor with BS 5400 classes

The relationship developed for fatigue notch factor in terms of corrosion penetra-
tion (Equation 5) is plotted in Figure 3. Superimposed on this graph is the corre-
sponding fatigue notch factor for different classes of structural detail as classified
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Table 3. Fatigue notch factor of new steelwork detail classes compared with corroded steelwork
of equivalent corrosion penetration

Detail class log K m kf at 500.000 cycles Equivalent dc (mm)
B 15.37 4.0 1.00 0.00
C 14.03 3.5 1.09 0.40
D 12.60 3.0 1.31 1.65
E 12.52 3.0 1.39 1.95
F 12.24 3.0 1.74 3.75

F2 12.09 3.0 1.94 4.75
G 11.76 3.0 2.50 7.50
W 11.57 3.0 2.88 9.40

in BS 5400: Part 10 (1980), the UK code for fatigue design (Table 1) [10]. This equa-
tion was then used to obtain the equivalent value of d c  which corresponded to each of
the structural detail classes. For example the fatigue notch factor curve intersects class
F at a value of dc = 3.75 mm. This is shown in Figure 3. This procedure was repeated
for all classes and the results are given in Table 3.

Based on the results of the present study, two cases are possible, depending on
whether the fatigue notch factor due to corrosion is smaller or greater than that of
a given type of detail. If the fatigue notch factor due to corrosion is smaller than the
fatigue notch factor for non-corroded detail, kf ≥ kfc, then the fatigue notch factor of the
detail, kf, will govern. If, on the other hand, kfc ≥ kf, the fatigue notch factor due to
corrosion, kfc, will govern.

7. Conclusions

It has been found that the fatigue notch factor is an appropriate parameter for
quantifying the effect of corrosion deterioration on fatigue life and a comparison
between the fatigue notch factor developed for corrosion penetration and the fa-
tigue notch factor for a particular class should be made and the one of higher mag-
nitude governs. Also two relationships developed for calculating fatigue notch
factor which can be used for the assessment of corroded steel structures. The first
is in terms of average corrosion penetration which increased on average with the
average corrosion penetration and the second is in terms of exposure time. The
assessment of the remaining fatigue life of existing corroded steel structures, in
terms of fatigue notch factor, requires only information of the average corrosion
penetration or the time of exposure at the time of the assessment. In particular, the
relation of fatigue notch factor in terms of exposure time gives a direct, accurate,
and quantifiable assessment of corroded members and it needs only the time of
weathering.
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Wpływ korozji na zmęczeniowy współczynnik karbu w mostach stalowych

W artykule przeanalizowano główne aspekty związane z koncentracją naprężeń powstałych
na skutek korozji, opracowano funkcje zmęczeniowego współczynnika karbu w zależności od
średniej penetracji korozji i czasu ekspozycji. W szczególności związek pomiędzy zmęczenio-
wym współczynnikiem karbu a czasem ekspozycji umożliwia bezpośrednią, dokładną i wy-
mierną ocenę skorodowanych elementów na podstawie czasu ich wietrzenia. Ostatecznie zmę-
czeniowy współczynnik karbu skorodowanej konstrukcji stalowej porównano z bazującymi na
brytyjskiej normie BS 5400 zmęczeniowymi współczynnikami karbu różnych elementów kon-
strukcyjnych.
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Examination results of microstructure, mechanical properties, fatigue strength and residual stresses
of laser welded joints in dual phase HDT580X steel have been presented. The main goal of these stud-
ies was to verify whether Nd:YAG laser welding without filler metal can be used for welding of dual
phase steel. In the frame of this investigation the microstructure has been studied by optical and scan-
ning microscopy. Mechanical properties have been analysed by tensile, bend and hardness tests. Addi-
tionally fatigue tests and residual stress measurements were carried out. The results revealed that the
HDT 580X steel is characterized by good laser weldability. The tensile strength of welded joints is at
the same level as that of the base metal and the maximum hardness does not exceed 343 HV. The
microstructure of welded joints is mainly composed of lath martensite in the weld and a mixture of lath
martensite, bainite and ferrite in the heat affected zone (HAZ). The fatigue class FAT was determined,
which is equal to 284 MPa and 150 MPa for base material and welded joint, respectively. Residual
stresses determined by the hole drilling method and the videoextensometer were: σmax= 573 MPa and
σmin= –126 MPa.

Keywords: dual phase steel, Nd:YAG, fatigue ,residual stress, videoextensometer

1. Introduction

Fuel economy and, thereby, weight reduction have become a point of consider-
able interest in the car industry over the past 20 years. The body-in-white, the
heaviest and largest car component, comprises about 25–30 percent of the total
weight of a medium-sized passengers car. Hence, it has to fulfill a variety of mate-
rial – relevant requirements. For car manufacturer, five demanding areas can be
distinguished: cost, production, styling and space optimization, physical charac-
teristics and quality, environmental impact [1]. The dominating role of steel as the
material for car bodies is attributed to its good response to most of these require-
ments and its adaptability. Cold rolled, high strength sheet steels have been devel-
oped predominantly for automotive applications, and newly developed high
strength steels are measured by the five criteria listed. Hence, the aim is to in-
crease strength without decreasing formability, joinability, coatability, and also
process ability [2]. Various new grades of steels – IF (Interstitial Free), DP (Dual
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Phase), HSLA (High Strength Low Alloy) –have been developed which show ex-
cellent formability and are able to meet the most automotive requirements. The
most popular grades of automotive steels are DP grades [1–3].

Dual Phase steel, so called because they consist essentially of a dispersion of
martensite in a ferrite matrix, are produced by intercritically annealing and cooling
at such a rate as to give the desired structure. Apart from the chemical composi-
tion, the microstructure and mechanical properties in the practical point of view
the most important factor is “jointability” of automotive steels [4]. Traditionally,
resistance welding and fusion welding have been used in the automotive industry.
However, the most prospective welding process in this branch of industry is laser
welding. The main advantages of laser welding are small distortions of the sheets
caused by a small width of HAZ, high welding speed and flexibility of this proc-
ess. Investigations which have been carried out so far and cover laser welding of
DP steels, are focused on mechanical [5, 6] and structural properties [5, 7] of
welded sheets in thicknesses lower than 2 mm. The research have shown [5] char-
acteristics of Nd:YAG laser welded 600 MPa grade DP steel, 1.4 mm in thickness,
in respect of hardness, microstructure, mechanical properties and formability.
They concluded that the hardness in the HAZ was about 380 HV at the welding
speed of 1.2 m/min and the laser power of 3.5 kW. The strength of the welded
joint was higher than that of the base metal. The weld and HAZ was composed of
ferrite and rapidly solidified structure (RSS). Dilthey et al. [6] has presented me-
chanical properties of DP600 steel welded joint 2.0 mm in thickness. They found
that the hardness in the welded zone is higher than 400 HV and the tensile strength
of the joint was at the same level as of the base metal. Krizan et al. [7] reported
mechanical and structural properties of DP laser welded joints 1.5 mm in thick-
ness. Welding was performed by a CO2 laser welding unit operated in the continu-
ous wave mode. The microstructure of the base metal consisted of ferrite, bainite
and martensite. Both the fine-grained and the coarse-grained supercritical HAZ’s
consisted of lath martensite. In the weld a fully lath martensite was observed. Na-
gasaka et al. [8] reported on the improvement of the press formability of YAG
laser welded TRIP/DP tailored blanks. They investigated the DP600 steel 1.2 mm
in thickness. Anand et al. [9] determined the fatigue strength of dissimilar thick-
ness laser-welded sheets and different coatings. The results showed that tailor
welded blanks (TWB) made from zinc-coated/galvanized steels exhibited a lower
fatigue limit as compared to the TWB combination from uncoated bare metal.
Authors [10] presented results of the influence of martensite volume fraction on
the fatigue limit of DP steel. They concluded that the higher volume of martensite
improved the fatigue limit for rolled and not rolled materials. Some results of nu-
merical simulation of distortion and residual stresses of DP steel weldments are
also available [11]. Authors [11] concluded that the demonstrated numerical
simulation of the welding process is a powerful tool for the prediction of distor-
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tions and residual stresses in welded structures. Paper [12] contains microstructure
analysis of DP600 steel after three different welding methods: MAG, resistance
welding and braze welding. The authors conclude that the resistance welded zone
is composed of the Widmannstätten structure with hardness about 420 HV.

However, there have been essentially no reports on laser welding of the DP600
steel more than 2 mm in thickness. Because of this, butt-welded joints 2.4 mm in
thickness have been welded using a Nd:YAG laser, and their microstructure, mechani-
cal properties, fatigue strength and residual stresses were examined and tested. The
aim of investigation presented in this paper is to perform good quality joints of thick
steel sheets. Applications for this kind of joints include mainly automotive industry
etc. bumper reinforcements, pillars and beams.

2. Experimental procedure

2.1. Welding procedure

The 2.4 mm thick hot rolled sheets of dual phase steel (HDT580X acc. to PN-EN
10336:2007 [13]) were laser welded at a robotized laser stand which, was composed of the
solid state laser Nd:YAG TRUMPH HL 2000D, the focusing head TRUMPF D70 and the
robot KUKA – KR 30/2 HA. The chemical composition of the HDT580X steel is given in
Table 1.

Table 1. Chemical composition of HDT580X steel [%]
C Mn Si P S Cu Cr Ni

0.07 0.90 0.09 0.028 0.001 0.04 0.40 0.04
Mo V Al N Nb Ti B Sn
0.01 0.004 0.039 0.0058 0.002 0.022 0.0003 0.003

Ito and Bessyo [15] define the carbon equivalent of steel with the carbon content in
mass % less than 0.18 as follows:
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CrCuMn
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++
++=   (1)

The carbon equivalent of the HDT580X steel is 0.14 %.
Before welding the surface of the specimens was chemical cleaned by acetone.

Butt welding was performed acc. to EN ISO 15614-11:2005 [14]. The joints were
produced by deep penetration welding method (also known as keyhole welding) without
filler metal at the following welding parameters: beam power at workpiece – 2.0 kW,
travel speed – 2.1 m/min, shielding gas – argon at a flow rate of 16 l/min, working dis-
tance – 223 mm. Tensile tests, bend tests and metallographic examination were done
on specimens cut off the welding joints.
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2.2. Testing

Transverse sections of the welded joints passing through the weld centre as well as
sections of base metal were prepared by a standard metallographic procedure and etching
in 3% alcoholic nitric acid solution. The microstructural examinations were carried out by
an optical microscope LEICA MEF4M and scanning electron microscope HITACHI
S-3500N. The microstructure of base metal was also studied by TEM – JEM200CX.

The Vickers microhardness measurement across the weld and the base metal was
carried out on metallographic specimens at a load of 500 g. During microhardness
testing the indentations were randomly made on the matrix without marking the spe-
cific phases. However, in case of welded specimens specific attention was paid to
place the indentations in the region of HAZ and weld. Hardness measurement of the
welded sheet was performed by using the Zwick hardness tester.

The tensile tests of the welded joints (acc. to EN 895 [16]) as well as of the base
metal (acc. to EN 10002-1 [17]) was performed on a mechanical universal testing
machine (INSTRON 1420) by using three specimens. The bend tests were carried out
on a mandrel of 10 mm in diameter acc. to EN 910 [18]. The tensile and bend tests
were performed at room temperature.

The fatigue properties of the laser welds and base metal were determined on the
universal fatigue machine 1000 kN MTS type 311.31 at a frequency in the range from
15 to 20 Hz. Tests were conducted at room temperature at a load ratio R = 0.2 (where
R = σmin/σmax). The analysis of data was performed acc. to the document XIII-2151-
07/XV-1254-07 of the International Institute of Welding (IIW) [19].

The distribution of residual stresses in welded joints was determined by using the
hole-drilling method [20] and videoextensometer type Messphysik ME-46. A full image
video-camera was focused on the test specimen upon which contrasting marks (targets)
have been plotted and the resulting image was analyzed in real time by a PC-based
video processor. The associated software ensures that the distance between targets is
continuously measured during testing. The Video Extensometer automatically acts as
a “strain meter” by directly calculating the measured extension as a percentage of the
original length. Then the extensions were calculated to stresses.

3. Results and discussion

3.1. Base metal

The dual phase structure of the base metal, revealed by nital etching, with marten-
site islands (dark areas) in a ferrite matrix (white areas) is shown in Figure 1a. Due to
the fact that in some cases dark areas can be indicated as ferrite, the colour etching by
the Beraha reagent has been used to unambiguously identify the martensite phase.
Figure 1b shows the effect of colour etching of the base metal – white areas are
martensite, dark areas – ferrite. The authors of the publication [21] have indicated that
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the microstructure of a dual phase steel can consist of martensite and fine pearlite is-
lands in ferrite matrix or martensite and bainite islands in ferrite matrix. The small
content of carbon causes that the presence of pearlite phase is of little probability. To
estimate the real microstructure of the HDT580X steel, the SEM microscope was
used. Figure 2a shows the SEM microstructure of base metal which is composed of
martensite-austenite (M-A) islands in a ferrite matrix. The SEM techniques did not
reveal the bainite and pearlite phases. So, the TEM microscope was used, which
shows that the microstructure of the HDT580X steel is composed of martensite-
austenite islands in ferrite matrix, in some island bainite is also present (Figure 2b).

The mechanical properties of HDT580X steel are given in Table 2.

Fig. 1. Microstructure of HDT 580X steel, a) etched by Nital 3% reagent,
b) colour etched by Beraha reagent

Fig. 2. Microstructure of HDT 580X steel, a) SEM – etched by Nital 3% reagent,
b) TEM. F – ferrite, M – martensite, B – bainite, A – austenite

3.2. Macrostructure and microstructures of the welded joint

Figure 3 shows the macrostructure of the laser weld of DP steel. As can be seen the
weld is well formed and free of imperfections, i.e. without porosities or cracks in the
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fusion zone. The epitaxial crystallisation of the fusion zone initiated on the fusion
boundary with the formation of columnar grains that grew towards the weld centre
line. The quality level of this joint has been determined as B acc. to EN ISO 13919-1
[22].

Etch. Nital 3%                      ×10

Fig. 3. Macrostructure of the laser welded (2.0 kW, 2.1 m/min) HDT 580X steel joint

Table 2. Mechanical properties of HDT580X steel (mean values)
Orientation to rolling direction
longitudinal transverse

Rm 612 MPa 630 MPa
Re 420 MPa 423 MPa
A5 31.5 % 27.9 %
A10 24.5 % 22.23 %

Fig. 4. Microstructure of welded HDT 580X steel. Optical microscope, a) HAZ b) weld

The optical microstructures of the HAZ and weld observed in the welded joint are
shown in Figure 4. The structure of the HAZ is composed of ferrite, bainite and martensite
(Figure 4a). The microstructure of the weld is uniform and consists of lath martensite,
typical for this kind of low carbon steel. The lath martensite is built in packets as shown in
Figure 4b.
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Fig. 5. SEM microstructure of the welded joint, a) HAZ, b) weld

Figure 5 shows the SEM microstructure of the HAZ and weld. The results of SEM
confirmed those achieved by optical microscopy. The HAZ is composed of a mixture
of ferrite, martensite and bainite. In the weld zone a fully lath martensite structure was
observed due to the rapid cooling.

3.3. Microhardness across the welded joint

The changes of hardness across the weld in the cross sectional plane of the laser
welded joint are shown in Figure 6. The base material hardness values did not exceed
226 HV. In the HAZ there was an increase of hardness to 285 HV. The maximum
hardness 343 HV was observed in the weld. These results confirmed that the low car-
bon lath martensite was present in the weld and HAZ.

Fig. 6. Microhardness distribution across the welded joint
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3.4. Mechanical properties

The tensile test revealed that the strength of welded joints is at the same level as
that of the base material, and equals Rm = 631 MPa (average value of three speci-
mens). All specimens fractured in the base metal away from the weld. These results
indicate that the strength of welded joints is not less that that of the base material

The bend tests were performed up to the angle of 180°, for all cases on the surface
of welds cracks or other imperfection did not occur.

So, based on structural and mechanical properties of the welded joints, it can be
concluded that the welding parameters used in the tests guarantee their proper quality.

3.5. Fatigue strength

Fatigue tests were performed to establish fatigue strength curves for the base mate-
rial and welded joint. Figure 7 shows the fatigue sample for the base metal and welded
joints. Statistical methods offer three ways of testing a limited number of samples
from a larger population [19]:

– a specimen to failure,
– first specimen to failure,
– p specimens to failure amongst n specimens.

Fig. 7. Fatigue sample for base metal and welded joints

The presented results are based on the first method – specimen to failure. The test
results were obtained at constant stress ratios R. The S–N data was presented in
a graph showing log(endurance in cycles) as the abscissa and log(range of fatigue
actions) as the ordinate (Figure 8). In order to get the defined fatigue characteristic
values at 2·106, the fatigue test data have been calculated using a statistical method
[19]. These characteristic values are, in principle, values at α = 95% survival prob-
ability (5% probability of failure) associated to a two sided confidence interval of 75%
of the mean xk and of the standard deviation Stdv of β = 75% (12.5% probability of
being above or below the extreme values of the confidence interval).
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Fig. 8. Fatigue resistance for the base material, a) and welded joint, b) P-probability

For the evaluation of test data originating from a test series, the characteristic values
were calculated by the following procedure:

a) computing the log10 of all data: stress range Δσ and number of cycles N,
b) computing the exponents m and constant logC of the formula:

,logloglog σΔ⋅−= mCN   (2)

by linear regression take stress as the independent variable:

)(loglog σΔ= fN   (3)

c) computing the mean xm and standard deviation Stdv of logC through m,
d) computing the characteristic values xk by the formula:

,Stdvkxx mk ⋅−=   (4)

where k is equal 2.4 [19] for 15 fatigue samples.
For the base material, the regression line (2) is expressed as:

),log(96.2449.68log σΔ−=N   (5)

for the welded joint:

).log(51.606.19log σΔ−=N   (6)

The calculated results indicate that the fatigue class – FAT for the HDT580X steel
and welded joint equals 284 MPa and 150 MPa, respectively.



M.S. WĘGLOWSKI et al.94

3.6. Residual stress

The residual stresses in the area surrounding the drilled hole relax. The hole was
made by a drill 1.2 mm in diameter. The method is based on the measurement of the
relieved strains by the videoextensometer and than by computing the stresses. The
measurements of residual stresses in the area of the welded joint were performed acc.
to the following procedure [20, 23]:

– computing the stresses σmax, σmin from:
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where:
A′, B′ – calibration constants,
ε1, ε2, ε3 – relieved strains,
E – Young’s modulus,

– computing the constants A′, B′ from:
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where:
ν – Poisson’s ratio,
a – radius of drilled hole 1.2 mm in diameter (see Figure 9),
r – radius of videoextensometer measurement base circle (see Figure 9),
– computing the relieved strains ε1, ε2, ε3 from:

,
21 r
AΔ

=ε ,
22 r
BΔ

=ε ,
23 r
CΔ

=ε   (9)

where ΔA, ΔB, ΔC – reference bases (see Figure 9),
– computing the angle α (measured clockwise from direction of base ΔC to the di-

rection of σmax – see Figure 9) from:
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For reasons of pictorial clarity in Figure 9, the principal residual stresses σmax,
σmin are shown as uniformly acting over the entire region around the hole location. In



Characteristics of Nd:YAG laser welded joints of dual phase steel 95

actuality, it is not necessary for the residual stresses to be uniform over such a large
region.

The relived strains depend only on the principal stresses originally existing at the
boundaries of the hole. The stresses beyond the hole boundaries do not affect the re-
lieved strains. Because of this, the hole drilling method combined with the videoexten-
someter provides a very localized measurement of residual stresses.

Fig. 9. Schematic diagram of videoextensometer reference bases arrangement

After calculation the residual stresses σmax = 573 MPa, σmin= –126 MPa and the
angle α = 33.8°.

3. Conclusion

The characteristics of Nd:YAG laser welded HDT580X steel joint was investigated
in respects of hardness, mechanical properties, fatigue resistance and residual stress
and the following results were obtained:

– the structural examination of the weld cross sections revealed that the welds were
free of any defects such as porosity, concavity, voids, inclusions or misalignment. This
indicates that the laser welding parameters are appropriate to obtain sound welds;

– the microstructure of the HDT580X steel is composed of martensite-austenite
islands in ferrite matrix, in some islands bainite was observed;

– the macroscopic examination and mechanical tests indicate that it is possible to
achieve good quality welds by the application of proper welding parameters;

– the welding process has an affect on the fatigue class, the FAT for the base ma-
terial is 284 MPa, and for the welded joint 150 MPa;

– the welding residual stresses are: σmax= 573 MPa and σmin= –126 MPa.
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Charakterystyka złączy ze stali typu Dual Phase spawanych laserem typu Nd:YAG

W artykule przedstawiono wyniki badań strukturalnych, własności mechanicznych, oraz
badań zmęczeniowych i pomiarów naprężeń własnych złączy spawanych wiązka laserową ze
stali typu Dual Phase (HDT580X). Celem przeprowadzonych badań było sprawdzenie możli-
wości wykonania prawidłowych złączy spawanych laserowo przy użyciu lasera typu Nd:YAG
bez materiału dodatkowego. Ocenę budowy strukturalnej złączy przeprowadzono przy użyciu
mikroskopu optycznego i skaningowego, a materiału podstawowego dodatkowo przy użyciu
transmisyjnego mikroskopu elektronowego. Badania własności mechanicznych obejmowały
próby statycznego rozciągania, zginania i pomiarów twardości. Dodatkowo przeprowadzono
badania zmęczeniowe i pomiary naprężeń własnych. Przeprowadzone badania wykazały, że
stal HDT 580 X jest łatwo spawalna przy użyciu wiązki lasera Nd:YAG. Wytrzymałość złączy
była na poziomie materiału rodzimego. Maksymalna twardość w obszarze spoiny wynosiła 343
HV. Struktura spoiny składała się głównie z martenzytu listwowego, a SWC z mieszaniny
martenzytu listwowego, bainitu i ferrytu. Kategoria zmęczeniowa FAT dla materiału podsta-
wowego wyniosła 284 MPa, a dla złącza spawanego 150 MPa. Do wyznaczenia poziomu na-
prężeń własnych zastosowano zmodyfikowaną metodę otworkową. Pomiary odkształceń prze-
prowadzono przy użyciu wideoekstensometru. Naprężenia główne wyniosły σmax = 573 MPa,
a σmin = –126 MPa.
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