Na prawach rekopisu

206570 L/

INSTYTUT KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKI WROCŁAWSKIEJ

Komunikat nr 398

MODELOWA OCENA SKUTECZNOŚCI ROZMRAŻANIA ŁADUNKU W WAGONACH TOWAROWYCH

Stanisław Kwaśniowski

Rozprawa doktorska

Promotor: Doc. dr inż. Jerzy Marcinkowski

Słowa kluczowe: rozmrażanie ładunków, ładunki sypkie, wagony towarowe

78/20904001

Wrocław 1978

SPIS RZECZY

	Wykaz	z ważniejszych oznaczeń	3
1.	Water		6
2.	Dotyc	chczasowy stan zagadnienia	9
	2.1.	Określenie ładunków sypkich	9
	2.2.	Zjawiska w kadunkach sypkich zachodzące podczas za-	
		marzania i rozmrażania	10
	2.3.	Parametry charakteryzujące własności cieplne ładun-	
		ków sypkich	12
	2.4.	Metody badań własności cieplnych	16
	2.5.	Warunki w jakich następuje zamarzanie ładunków i ich	
	• •	rozmrażanie	17
	2.6.	Analiza przebiegu zamarzania i rozmrażania ładunków	
		sypkich	22
	2.7.	Metody rozwiązywania nieliniowych zagadnień wymiany	
		ciepła	28
3.	Badar	nie własności cieplnych materiałów sypkich	29
	3.1.	Obiekt i metoda pomiaru	29
	3.2.	Pomiary własności fizycznych zwłaszcza cieplnych	
		miału węglowego o obniżonej sypkości	30
	3.3.	Metodyka badań i wyniki pomiarów	36
	3.4.	Podsumowanie	46
4.	Opis	matematyczny procesów zamarzania i rozmrażania	46
	4.2.	Możliwe odmieny opisu matematycznego przebiegu za-	
		marzania i rozmrażania Ładunku	46
	4.2.	Opis uproszczony procesów zamarzania i rozmrażania .	49
	4.3.	Opis dokładny procesów zamarzania i rozmrażania	55
	4.4.	Porównanie wyników obliczeń z danymi doświadczeń	
		obeych	74
5.	Symul	lacja cyfrowa procesów zamarzania i rozmrażania	78
•	5.1.	Badanie procesu zamarzania	80
	5.2.	Badanie procesu rozmrażania (warunki brzegowe	
		III- rodzaju)	85
	5.3.	Badanie procesu rozmrażania (warunki brzegowe	
		II - rodzaju)	.89
	5.4.	Podsumowanie	90
6.	Wnios	ski	91
Lit	terati	Ira	93

atr.

Załączniki

1.	Tok opracowywania wyników pomiarów	97
2.	Opis metody pomiaru własności cieplnych ładunków sypkich	
	o granulacji efektywnej do 25 mm	106
3.	Opis urządzenia do pomiaru przewodności cieplnej i ciepła	
	właściwego materiałów sypkich	108
4.	Tabulogramy programów	109
	Program #KWØ1	
	Program #KWØ4	
	Program # OPTY	
	Program #KWØ8	

Program # KWØ9

-

WYKAZ WAŻNIEJSZYCH OZNACZEŃ

8	m ² B	dyfuzyjność cieplna
C	kJ kg K	ciepło właściwe
° _{ef}	kJ kg K	efektywne ciepko właściwe
с _w	kJ kg K	ciepło właściwe wody
c ^r	kJ kg K	ciepło właściwe lodu
cF	kJ kg K	ciepło właściwe ładunku
° pî	kJ kg	ciepło przemiany fazowej
c	kJ kg K	ciepło właściwe ściany wagonu
°w-1	kJ kg	ciepło przemiany fazowej woda - 16d
Cos	kJ K	pojemność cieplna oskony
Fo	-	liczba Fouriera
Gø	kg	masa próbki suchej
Gw	kg	masa próbki wilgotnej
h	m .	grubość warstwy ładunku

	-	muhada manananiarnai wanatwu kadunku w abwili 1
" 1	ш	Bruppse brzygrauicznej waratwy radnuku w cuwili i
Н	-	zmodyfikowana liczba Biota
i	-	numer węzła siatki róźnicowej
k	8	krok czasowy
к	^m 2	współczynnik kształtu
1	-	numer kolejnej chwili czasowej
1 _k	-	numer końcowej chwili obliczeń
L ·	m	pokowa grubości płyty
m	8-1	tempo chłodzenia
^m ∞	8-1	tempo chłodzenia w metodzie a-kalorymetru
mai	s - 1	tempo chłodzenia -kalorymetru
M	-	liczba bezwymierowa
q	$\frac{kW}{m^2}$	strumień ciepła
quź	kW m ²	użyteczny strumień ciepke
q _{zn}		znamionowy strumień ciepła
r	-	numer węzła przygranicznego frontowi przemiany
rz	kJ kg	ciepło przemiany fazowej wody
R	-	współczynnik korelacji
R	m	połowa grubości płyty w modelu jednowymiarowym
R	m	promień próbki
8	m	grubość ściany wagonu
^s i	m	grubość warstwy tworzącej ścianę wagonu
S	m ²	powierzchnia próbki
T	-	macierz wejść

T	K	temperatura
Tko	K	temperatura końcowa w centrum płyty
Tn	K	temperatura na brzegu badanego obszaru tj. dla i = n
Tpf	ĸ	temperatura przemiany fazowej
Tpocz	K	temperatura początkowa kadunku
Ts	K	temperatura otoczenia
ሪም	m 8	prędkość pociągu
V	m ³	objętość próbki
x	m	współrzędna położenia
A	-	macierz wyjść
х	m	grubość warstwy która uległa przemianie fazowej
x x x x	Z	bezwymiarowe liczby charakteryzujące pole tempe- ratur w układzie przestrzennym
Z		długość kalorymetru
d	$\frac{W}{m^2 K}$	wapółczynnik przejmowania ciepła na powierzchni
olz	m ² K	zredukowany współczynnik przejmowania ciepła
ε1, ε2	-	błąd aproksymacji
H	1	współczynnik proporcjonalności
λ	W	przewodność cieplna
λ_{i}	W	przewodność cieplna ściany
λ _{ob}	W m K	przewodność cieplna obliczeniowa
Mn	-	wartości własne funkcji
8	kg	gęstość
98	kg m ³	gęstość materiału ściany wegonu
r	h	CZAS

ω - stopień zlodowacenia wilgoci

ω - wilgotność ogólna kadunku

ψ - moduł bezwymiarowy

v – funkcja opisująca warunki brzegowe

Indekey

- 1 dotyczy warstwy rozmrożonej lub zamarzniętej w procesach rozmrażania i zamarzania
- 2 dotyczy warstwy nierozmrożonej lub niezamarzniętej w procesach rozmrażania i zamarzania

1. WSTEP

W transporcie kolejowym 30 % ładunków stanowią ładunki sypkie. Z tych 30 % w warunkach zimowych około 90 % ulega zamarzaniu [57]. Wynikają z tego znaczne straty gospodarcze [10].

W warunkach klimatycznych Polski przyjmuje się, że okres zimowy trwa 90 dni przy czym 45 dni [26] to tzw. mroźne.

Warunki zimowe są przyczyną

- niecałkowitego wysypywania się ładunków z pudeł wagonów,
- trudności przy otwieraniu i zamykaniu klap, drzwi, zasuw,

- uszkodzeń wagonów przy wyżadunku,

- pogorszenia efektywności ekonomicznej transportu kolejowego.

Problem zamarzania ładunków w czasie transportu kolejowego występuje we wszystkich krajach o klimacie z ujemnymi temperaturami. Zagadnienie to jest na tyle ważne dla zarządów kolei, że zostało ujęte w programach prac UIC - Międzynarodowego Związku Kolei - ORE (Komitet B-109) oraz było tematem badawczym Organizacji Współpracy Kolei OSŹD (temat VA-34-1/63) [25]. Z opracowań [13, 24, 40, 48, 57] wynika, że prace nad tym zagadnieniem były prowadzone w dwóch kierunkach:

- metody przeciwdziałania zamarzaniu ładunków podczas transportu.

- metody przywracania sypkości ładunkom zamarzniętym.

Klasyfikację dotychczas stosowanych środków profilaktycznych oraz przywracających sypkość zmarzniętym ładunkom przedstawiają rys.1 i rys.2. Przydatność poszczególnych środków profilaktycznych oraz metod przywracania sypkości zależy od; rodzaju ładunku, jego przeznaczenia oraz rodzaju wagonów użytych do transportu.

Z dotychczasowych doświadczeń i analiz ekonomicznych [10, 40] można wnioskować, że najefektywniejsze są sposoby termiczne a w azczególności rozmrażanie w komorach konwekcyjnych i promiennikowych. Rozmrażanie ładunków charakteryzuje się dużym zapotrzebowaniem energii. Przykładowo moc zainstalowana rozmrażalni promiennikowej w Porcie Płn. wynosi ~ 13 MW, a w Swinoporcie IV ~8 MW. W związku z tym istotne jest, aby proces rozmrażania przebiegał we właściwych warunkach, gwarantujących dużą przepustowość rozmrażalni przy możliwie małym zużyciu energii. Analiza parametrów pracujących rozmrażalni [57] wykazuje szerokie zróżnicowanie zapotrzebowania na energię zużywaną do rozmrożenia 1 tony ładunku przy rozmražalni róžnych typów - 8,4.103+8,4.104 kJ/tonę Ładunku. Wskazuje to na mała sprawność niektórych typów rozmrażalni. Kompleksowe rozwiązanie tego zagadnienia wymagałoby rozpatrzenia przebiegu rozmražania na tle: kosztów eksploatacji rozmražalni praz kosztów eksploatacji wagonów kolejowych w sensie strat ponoszonych przez gospodarke na skutek pogorszenia się współczynnika wykorzystania taboru. Określenie właściwych parametrów pracy rozmrażalni jest możliwe na drodze kompleksowych badań doświadczalnych, co jest długotrwałe i kosztowne lub dokładnej analizy matematycznej procesu rozmrażania. Podstawą do wszystkich rozważań teoretycznych w tym kierunku jest znajomość fizycznej strony procesów zamarzania i rozmražania. Opracowania tego zagadnienia [40, 51, 39] to prace doświadczalne, na podstawie których opracowano empiryczne zaleźności określające czas rozmrażania. Zależności te dotyczą ściśle określonych warunków, a przez to nie stanowią podstawy do formowania bardziej ogólnych wniosków. Wstępne obliczenia [33] wykazały, że parametry pracy rozmrażalni; temperatura T, wapółczynnik przejmowania ciepła & na powierzchni wagonu, moc cieplna dostarczona na powierzchnię wagonu Q, silnie wpływają na intensywność rozmrażania jedynie w pewnym zakresie; dalszemu zwiększaniu wartości tych parametrów towarzyszy tylko nieznaczne przyspieszenie czasu rozmrażania. Z tego względu instalowanie urządzeń rozmrażalniczych o mocach, przy których podczas pracy występują wyższe wartości tych parametrów nie jest uzasadnione. Dlatego też celowe jest określenie

Rys.1. Metody przeciwdziałania zanurzania ładunków

Rys.2. Metody przywracania sypkości zamarzniętym ładunkom

Celem niniejszej pracy jest opracowanie modelu matematycznego procesu zamarzania i rozmrażania ładunków z uwzględnieniem specyfiki tego procesu w wagonach kolejowych oraz przeanalizowanie wpływu wielkości charakteryzujących rozmrażanie na jego intensywność.

Na podstawie wstępnego rozeznania [33] sformużowano tezę pracy:

W procesie rozmrażania zawilgoconych ładunków sypkich istnieją takie wartości parametrów T_g , α , q charakteryzujących strumień ciepła na powierzchni rozmrażanego obszaru przy których dalsze ich zwiększanie tylko nieznacznie przyspiesza proces rozmrażania,

W związku z tym przyjęto tytuł pracy: "Modelowa ocena skuteczności rozmrażania ładunków w wagonach towarowych".

Zakres pracy obejmuje:

- opracowanie opisów matematycznych zamarzania i rozmrażania.

- porównanie wyników obliczeń z wynikami doświadczeń na przykładzie wybranych ładunków sypkich.
- symulację cyfrową procesów zamarzania i rozmrażania w różnych warunkach zewnętrznych.

2. DOTYCHCZASOWY STAN ZAGADNIENIA

2.1. Charakterystyka ładunków sypkich

O utracie sypkości materiałów decyduje ilość wilgoci zawartej w materiale oraz temperatura. Tabela 1 przedstawia wykaz ładunków sypkich uznanych przez PKP [26] jako zamarzające.

Stopień zamarzania ładunku jest określony w skali 0-3 na podstawie pomiarów wytrzymałości na zmiażdźenie zamarzniętej próbki materiału sypkiego [40]

 $0 = > 1,5 \cdot 10^{5} \text{ N/m}^{2}$ $1 = (1,6-40) \cdot 10^{5} \text{ N/m}^{2}$ $2 = (41-70) \cdot 10^{5} \text{ N/m}^{2}$ $3 = > 70 \cdot 10^{5} \text{ N/m}^{2}$

Spotyka się również klasyfikacje wg. przewodności cieplnej jako wskaźnika skłonności do zamarzania [39]

$$1 - \lambda = 0,058-0,35$$
 W/mK
 $2 - \lambda = 0,36-1,163$ W/mK
 $3 - \lambda > 1,163$ W/mK

•	8	1	e	b	8	T
	22	1	e	0	а	1

Rodzaj kadunku	Zawartość wilgoci [%]	Granulacja [mm]	Stopień zamar.*	Wilgotność bezpieczna [%]
Wegiel kamienny				
- płukany	5,5-9,0	0-50	3-2	4-6
- gruboziarn płukany	5,0-5,5	80-120	. 1-0	5,0
- surowy	6,5-7,5	0-30	1	5-6
- surowy sortym. gruby i średni	5,5	30	1	4,0
Kamień wapienny	1,2	10-100	2	0,6
Syderyt prażony	0,8	10-125	1	0,5
Ruda żelaza	5,0	0-50	3	1,5
Ruda manganowa	8-10		. 3	
Piaski koalinowe i rzeczne	3-15	0,1-2	3	1,2
Żwir		2-80	2	
Pospółke		08 ob		
Kruszywo łamane		2-80	2	
Koka				

Wykaz ładunków zamarzających

2.2. Zjawiska zachodzące w ładunkach sypkich podczas zamarzania i rozmrażania

Procesy te są ściśle związane ze zmianami stanu skupienia wilgoci zawartej w ładunku. Występuje ona jako:

- para zawarta w porach przy ochładzaniu wystąpi w postaci skroplonej lub jako śnieg.
- higroskopijna absorbowana przez kadunek, jej zawartość zależy od wilgotności otaczającego powietrza.
- w postaci filmu utrzymywanego na powierzchni przez siły molekularne.
- grawitacyjna utrzymywana pod wpływem sił ciężkości, jest ona zawarta w kapilarach, pęknięciach itp.

Wymrażanie wilgoci nie przebiega izotermicznie. Wilgoć zamarza z różną intensywnością w dość szerokim przedziale temperatur. Związane to jest z istnieniem w materiale sypkim tzw. szkieletu mineralnego, który z wodą tworzy związki (roztwory) o obniżonej temperaturze krzepnięcia. Większa część tych związków jek wynika z badań [40, 23, 46] zamarza w przedziale temperatur 273-263 K. Początek wymrażania występuje w temperaturze niższej niż dla czystej wody i zależy od koncentracji i własności związków tworzących szkielet mineralny. W przypadku rudy żelaza i węgla kamiennego w zależności od gatunku, temperatura początku przemiany fazowej [39] wynosi 272.76 do 272.16 K e dla piasku i źwiru 273.16 do 272.76 K. Stosunek ilości wilgoci zamarzniętej do całkowietj wilgotności w funkcji temperatury, określa zależność podana przez Nersesowa [46]

$$\omega = \frac{K_{\omega}}{1 + \frac{K_{\omega}'}{|\mathbf{g}|\mathbf{T} - \mathbf{T}_{\mathbf{pf}} + 1|}} \qquad (2.1)$$

gdzie:

K_ω i K_ω - są współczynnikami empirycznymi, zależą od rodzaju kadunku i tak dla rudy żelaza wynoszą odpowiednio 1.1 i 0,16 a w przypadku węgla kaminnego 1 i 0,5.

Obszerne wyniki badań ładunków sypkich zawiera praca [53], w której postuluje się następującą zależność:

$$\omega = \omega_0 + \Lambda \left[\frac{1}{(1 + a\Delta T - b\Delta T^2)^2} - 1 \right] [-] (2.2)$$

gdzie:

 $\Delta T = T - T_{pf}$ A, a, b - współczynniki charakteryzujące własności ładunku ω_0 - wilgotność całkowita

wg Iwanowa [15]:

$$\omega_{\rm p} = \omega_{\rm p} (1 - e^{-\alpha_{\rm m}(T_{\rm pf} - T)}) [-]$$
 (2.3)

gdzie: a - współczynnik empiryczny.

Na podstawie badań [22, 23, 46] stwierdzono, że procentowa ilość wilgoci wymrożonej dla danego materiału sypkiego niezależnie od jego wilgotności całkowitej, zależy jedynie od temperatury, do której ładunek został ochłodzony. Wilgoć zawartą w materiałach sypkich z punktu widzenia przymarzania i zbrylania moźna podzielić na 3 grupy:

1. niezamarzającą

2. zamarzającą, lecz nie powodującą zbrylania

3. zamarzającą i powodującą zbrylanie.

Powstajądy lód cementuje cząstki materiału, tworzy mostki lodowe zmniejszając cieplny opór kontaktowy pomiędzy poszczególnymi kęsami. Tłumaczy się to większą przewodnością cieplną lodu $\lambda \cong 2,325$ [W/mK] w porównaniu z wodą $\lambda = 0,605$ [W/mK].

W przypadku rozmrażania następuje topnienie lodu i struktura ulega rozluźnieniu. Najmniej zbadane są procesy cieplne w pobliżu temperatury początku przemiany fazowej. Wyniki badań [39] wskazują, że występuje w tym obszarze przechładzanie wody o ~ 3,5 K poniżej temperatury przemiany fazowej, co dodatkowo komplikuje proces. W rozważaniach teoretycznych modeli zamarzania fakt ten jest najczęściej pomijany.

2.3. Parametry charakteryzujące własności cieplne żadunków sypkich

Do obliczania rozkładu temperatur podczas zamarzania i rozmrażania niezbędne jest określenie własności ładunków, a przede wszystkim przewodności cieplnej, ciepła właściwego oraz intensywności przemiany fazowej. W materiałach sypkich w temperaturach poniżej 273 K nawet niewielkie zmiany czynników mających wpływ na ich własności wywołują duże ich zmiany. Materiały sypkie posiadają złożoną strukturę, z tego względu można mówić jedynie o ich uśrednionych własnościach tzw. efektywnych.

2.3.1. Przewodność cieplna

Na efektywną przewodność cieplną materiażu sypkiego składa się przewodzenie ciepła przez szkielet usypanej struktury. Zależy ono od rodzaju materiału tworzącego szkielet oraz termicznego oporu kontaktowego na styku ziaren, zależącego między innymi od obecności wody lub lodu w obszarze stykowym oraz nacisków w tym obszarze decydujących o wielkości styku. Część strumienia ciepła jest przewodzona przez powietrze, wodę i ewentualnie lód w porach. Procesowi temu może towarzyszyć konwekcja swobodna wewnątrz porów, a przy większych gradientach temperatur może wystąpić dyfuzja masy (wody lub pary) Składową strumienia ciepła jest również promieniowanie pomiędzy ściankami ograniczającymi pory. Mimo złożoności mechanizmu przewodzenia ciepła w materiałach sypkich podejmowano próby analitycznego opisu tych zjawiek. Prezentację takich modeli matematycznych oraz obszerną bibliografię na ten temat zawierają prace [6, 31, 8]. Ze względu na przemianę fazową wody w lód, proces przewodzenia ciepła w temperaturach poniżej przemiany fazowej przebiega nieco inaczej niż w temperaturach wyźszych.

Przewodność cieplne jest funkcją kilku zmiennych.

 $\lambda = f(\lambda_{pf}, \omega_{o}, \varsigma, T)$

Biblioteka Pel.Wreci.

Można ją wyrazić jako funkcję przewodności cieplnej λ_{pf} w stanie suchym w temperaturze 273 K, wilgotności, gęstości i temperatury. Najbardziej złożony jest wpływ wilgotności. Przy małym stopniu nawilżenia, woda zalega kapilary, wywołuje to prawie liniowy wzrost przewodności wraz ze wzrostem wilgotności. Przy większym nawilżeniu tworzą się pomiędzy cząsteczkami tzw. wodne mostki cieplne, zmniejszając kontaktowy opór cieplny. Przy większych nawilżeniach woda wypiera powietrze z por, przewodność rośnie i osiąga swoje maksimum przy pełnym nawilżeniu.

W temperaturach > 273 K wpływ wilgotności określa się funkcjami o postaci [23]

;	z	200	20'6	aω		(2.4)
;	a	18	8 +	bω°		(2.5)

Wyniki badań rudy żelaza oraz węgla kamiennego zawarte w pracy [40] wskazują na zależności liniowe. W przypadku rudy żelaza

$$\lambda = 0,186 + 4,652 \omega_{0}$$
 (2.6)

Wartości efektywnej przewodności cieplnej węgla w funkcji wilgotności i gęstości przedstawiono na rys.3. W temperaturach poniżej początku przemiany fazowej zmiany efektywnej przewodności cieplnej mają podobny charakter jak zmiany wilgotności żadunku w funkcji temperatury $\omega(T)$.

W pracy [39] poleca się stosować do tego obszaru następującą zależność:

$$\lambda = \lambda_{pf} + \frac{b}{1 + \frac{b}{1g|T - T_{nf} + 1|}}$$
(2.7)

gdzie: a i b stałe dla rudy żelaza 0,9 i 0,2 dla węgla kamiennego 0,7 i 2,0.

Wpływ gęstości i wilgotności ogólnej - zawarty jest w λ_{pf} - rozumianej jako przewodność cieplna w temperaturze przemiany fazowej. Zależności te zostały omówione wcześniej.

Rys.3. Efektywna przewodność cieplna węgla w funkcji wilgotności i gęstości w temperaturach 273 do 293 K o - wg [40] x - wg [23]

Zależność przewodności cieplnej w funkcji temperatury i wilgotności względnej ω_0 , wyznaczonej na podstawie zależności (2,7) przedstawiono na rys.4.

Ry8.4.

Zależność efektywnej przewodności cieplnej węgla w temperaturach poniżej przemiany fazowej woda - lód dla g = 700 kg/m³

2.3.2. Ciepło właściwe - efektywne

Ciepło właściwe - efektywne zależy od ciepła właściwego składników oraz ich udziałów w jednostkowej masie materiału sypkiego. Jeśli przyjmiemy, że ciepła właściwe substancji tworzącej materiał sypki, lodu i wody są wielkościami stałymi, to efektywne ciepło właściwe materiału sypkiego wyrazi się następującą zależnością:

$$\mathbf{c}_{ef} = \mathbf{c}_{E} \left(1 - \omega_{o}\right) + \mathbf{c}_{W} \left(1 - \omega\right) \omega_{o} + \mathbf{c}_{L} \omega g + \left(\frac{d\omega}{dT}\right)_{T} \omega_{o} \mathbf{r}_{z} \qquad (2.8)$$

Ostatni czkon podanej zależności ujmuje nieizotermiczny proces wymrażania wilgoci, który w przypadku zawilgoconych żadunków sypkich jest dodatkowym czynnikiem wpływającym na zdolność akumulacji ciepża przez żadunek. Występujące w zależności (2.8) ciepżo przemiany fazowej r_{x} (woda - lód) jest funkcją temperatury [5, 44, 50]

$$r_{\mu} = 333,29 + 2.093 (T - 273,16) [kJ/kg]$$
 (2.9)

W temperaturach powyżej przemiany fazowej efektywne ciepło właściwe wyraża się zależnością

$$\mathbf{c}_{\mathrm{ef}} = \mathbf{c}_{\mathrm{E}} \left(1 - \omega_{\mathrm{o}} \right) + \mathbf{c}_{\mathrm{w}} \omega_{\mathrm{o}} \tag{2.10}$$

Jak widać z powyższych zależności wilgotność ładunku oraz przebieg jej wymrażania w funkcji temperatury decyduje o wartościach efektywnego ciepła właściwego. Efektywne ciepło właściwe - w odróżnieniu od przewodności cieplnej - nie zależy od granulacji materiału sypkiego. W bardzo dokładnych obliczeniach należałoby ponadto uwzględniać wpływ temperatury na ciepło właściwe ładunku, wody oraz lodu. Na rys.5 przedstawiono zależność efektywnego ciepła właściwego węgla kamiennego od temperatury i wilgotności. Wartości c_{ef} zostały wyznaczone na podstawie zależności (2.8) i (2.10), w których uwzględniono zmiany wilgotności $\omega(T)$ od temperatury (zależność (2.1)).

Z przedstawionych wykresów przewodności cieplnej λ_{ef} (rys.4) i ciepła właściwego c_{ef} (rys.5) wynika, że własności te silnie zmieniają się w zakresie temperatur 269 do 273 K. Jest to związane z procesem wymrażania wilgoci. Proces wymrażania zależy nie tylko od rodzaju materiału, ale również od jego granulacji oraz składu tzw. szkieletu mineralnego. Wypływa stąd wniosek, że przy dokładnych badaniach rozkładów temperatur, zwłaszcza tam gdzie chodzi

o weryfikację modeli matematycznych z modelami fizycznymi, niezbędne są badania laboratoryjne własności cieplnych materiałów sypkich tworzących badane modele fizyczne.

Intensywność przemiany fazowej w funkcji temperatury została omówiona w rozdz.2.2.

2.4. Metody badań własności cieplnych

Metody pomiarowe są oparte na teoretycznych rozwiązaniach zagadnień wymiany ciepła w ciałach o prostych kształtach geometrycznych jak; nieograniczona płyta, walec, kula, półprzestrzeń. Najogólniej pomiar własności cieplnych można podzielić według warunków w jakich jest przeprowadzany.

1. w stanie ustalonym

2. w stanie uporządkowanym

3. w stanie kwaziustalonym

4. w stanach nieustalonych.

od.1. Jest najbardziej rozpowszechniony w pomiarach przewodności cieplnej. Metody te są najdokładniejsze, ich wadą są stosunkowo długie czasy pomiarów. M. in. na tych zasadach oparte są aparaty Poensgena i Bocka - do pomiaru przewodności cieplnej [5, 6, 16].

ad.2. Wykorzystuje się stan, w którym rozkład temperatur badanej próbki nie zależy od początkowego rozkładu temperatur, zależy jedynie od intensywności wymiany ciepła na powierzchni ośrodka. Pole temperatur w tym przypadku można opisać pierwszym wyrazem szeregu Fouriera, uzależniając rozkład temperatur od wykładnika zależności wykładniczej (tzw. tempo zmian temperatur). Na podstawie pomiarów w ośrodkach o różnej intensywności wymiany ciepła na powierzchni próbki określa się jej własności cieplne. Zmiany temperatury w stanie uporządkowanym zachodzą w każdym punkcie próbki z taką samą prędkością względną. Na zasadach stanu uporządkowanego oparte są pomiary; α -, λ -, a - kalorymetrem oraz bi - kalorymetrami. Podwaliny teorii stanu uporządkowanego dał Kondratiew w swoich pracach [28, 29]. Badania nad możliwościami zastosowań tych metod prowadził Gogół [14, 15]. Zaletą tych metod są stosunkowo krótkie czasy pomiarów.

ad.3. Wykorzystuje się rozwiązania rozkładów temperatur przy liniowych lub periodycznych zmianach temperatury ośrodka, w którym jest umieszczona badana próbka. Realizacja tych warunków jest trudna technicznie. Szczegółowe informacje na temat tych metod zawierają prace [5, 6, 36].

ad.4. Są to przeważnie metody sondowe. Zaletą ich jest prosty i szybki pomiar. Nie wymagają skomplikowanych urządzeń i aparatury pomiarowej. Metody te są niestety mniej dokładne i nie umożliwiają pomiaru własności w różnych temperaturach. Ich użycie powinno być poprzedzone dość wnikliwą analizą teoretyczną, w celu określenia dokładności pomiaru i warunków, które powinny być spełnione, aby pomiar był prawidłowy. Opis przyrządów opartych na tych zasadach oraz dokładną analizę warunków pomiarów podają prace [6, 9, 14, 17].

2.5. Warunki w jakich następuje zamarzanie ładunków i ich rozmrażanie

2.5.1. Uzasadnienie przyjęcia jednowymiarowego modelu wymiany ciepła

Transport ładunków sypkich odbywa się przeważnie w wagonach węglarkach lub w wagonach samowyładowczych. Powierzchnia górna ładunku w wagonie tworzy łagodne kopce. W wielu krajach ze względu na bezpieczeństwo pasażerskiego ruchu kolejowego oraz straty przesypowe w czasie transportu, zaleca się w miejscach załadunku stosować rolowanie bądź zgarnianie stożków usypowych powstałych przy załadunku. Stożki usypowe są również przyczyną uszkodzeń urządzeń grzejnych w rozmrażalniach. Do podjętych w niniejszej pracy rozważań wymiany ciepła ładunku z otoczeniem przyjęto prostopadłościenny kształt ładunku w wagonie. Ze względu na wymiary wagonu oraż na stosunkowo małą przewodność cieplną materiałów sypkich, oddziaływanie poszczególnych kierunków układu przestrzennego uwidacznia się jedynie w narożnikach wagonu oraz na krawędziach przecięć płaszczyzn ścian becznych i czołowych z podłogą oraz górną powierzehnią ładunku [40]. W związku z powyższym w pierwszym przybliżeniu procesy zamarzania i rozmrażania można rozpatrywać jako jednowymiarowy przypadek wymiany ciepła.

Przyjęcie takiego zakożenia nie wypacza jakościowo przebiegu, a pod względem ilościowym otrzymane wyniki będą ze względu na czas trwania zamarzania lub rozmrażania warstwy o określonej grubości, nieznacznie zawyżone. Obliczenia dotyczące modelu jednowymiarowego wymiany ciepła powinny być przeprowadzone w odniesieniu do tzw. przekroju reprezentatywnego. W pracach [19, 39] uznano, że najbardziej reprezentatywny pod tym względem jest kierunek wzdłuż osi symetrii poprzecznej wagonu przechodzący przez punkt przecięcia osi podłużnej i pionowej.

Rys.6.

Usytuowanie kierunku reprezentatywnego dla jednowymiarowego opisu wymiany ciepła w wagonie towarowym

W bardziej dokładnych obliczeniach wpływ oddziaływania pozostałych kierunków wymiany ciepła można określić zgodnie z regułą Newmana [2, 20, 37], wyrażając pole temperatur w postaci bezwymiarowej.

$$Y_{x} = \frac{T_{1x} - T_{s}}{T_{pocz} - T_{s}}$$

gdzie: T_{ix} - jest temperaturą w badanym punkcie liczoną dla przypadku jednowymiarowego w kierunku osi x.

Temperaturę w punkcie i - określonym w przestrzeni xyz można wyrazić w postaci bezwymiarowej jako iloczyn temperatur składowych liczonych w poszczególnych kierunkach.

 $Y_{1} = Y_{x} Y_{y} Y_{z}$ (2.11)

2.5.2. Warunki zewnetrzne przewozów.

Warunki zewnętrzne przewozu ładunków w wagonach decydują o przebiegu zmian temperatur w badanym obszarze. Warunki zewnętrzne charakteryzują takie wielkości jak: temperatura otoczenia T_g , współczynnik wymiany ciepła na powierzchni α . Wymiana ciepła pomiędzy otoczeniem i ładunkiem w wagonie przebiega wg prawa Newtone (warunki brzegowe III rodzaju)

and wa(T_N - T_)

Temperatura otoczenia T_g - jest zmienna w czasie, podlega zmianom dobowym oraż zakłóceniom atmosferycznym. Jej zmiany zachodzą w zakresie O^OC - -50^OC. W Polsce jako najostrzejsze warunki przyjmuje się -25^OC. Dobowe zmiany temperatury można przyjąć np. w postaci funkcji periodycznej [43]:

 $T_a = T_a + A \sin \omega_T T$ [K]

gdzie:

 \overline{T}_{g} - średnia temperatura dobowa [K], A - amplituda zmian temperatury [K], ω_{τ} - częstość zmian [1/24 h⁻¹], τ - czas [h].

Wapółczynnik przejmowania ciepła a na powierzchni ścian wagonu również jest wielkością zmienną w czasie, zależy głównie od prędkości przepływu powietrza względem ścian wagonu oraz etanu powierzchni (suche, mokre). Ze znanych zależności opisujących zależność tego współczynnika od prędkości należy wymienić wzór Francka [40]

$$\alpha = 6.31 v^{0.656} + 3.25 e^{-1.91v} \frac{\text{kcal}}{\text{m}^2 \text{h K}}$$
 (2.12)

wzór wg H. Dubla [58]

$$x = 6.12 \cdot v^{0,78}$$
 keal (2.13)
 $m^2 h K$

wzór Gusiews, Jakowlewa [58]

$$x = 4,2 + 13\sqrt{v}$$
 koal (2.14)
m² h K

W odniesieniu do wagonów towarowych zalecane są wartości ∝ podane przez Biełokonia [40], (rys.7).

Rys.7.

Wykres zmian współczynnika przejmowania ciepła w zależności od temperatury powietrza i prędkości jazdy pociągu

(2.15)

W obliczeniach zwykle przyjmuje się wartości średnie $\overline{\alpha}$, \overline{T}_{g} reprezentatywne dla całego rozpatrywanego okresu. W przypadku, gdy pojemność cieplna ścian (np. izolacja na cienkiej ścianie metalowej jest mała, to opór cieplny ściany można uwzględnić poprzez tzw. zastępczy współczynnik przejmowania ciepła [19, 27].

$$\alpha_{\mathbf{z}} = \frac{1}{\frac{1}{\alpha} + \sum_{i=1}^{n} \frac{\mathbf{S}_{i}}{\lambda_{i}}}$$

gdzie:

S, λ - odpowiednio; grubość i przewodność cieplna i-tej warstwy tworzącej ścianę wagonu.

2.5.3. Warunki rozmrażania

W zależności od metody rozmrażenia warunki rozmrażenia określają: temperatura rozmrażalni T_{μ} , współczynnik przejmowania ciepła α , natężenie strumienia ciepła na powierzchni q. Podczas rozmrażania metodami oporowymi oraz indukcyjnymi, gdy straty energii do otoczenia są małe (np. istnieje izolacja) można przyjmować stałą wertość strumienia ciepła g - na powierzchni (warunki brzegowe II rodzaju). Wartość strumienia g zależy od mocy zainstalowanej urządzeń. W przypadku rozmrażania indukcyjnego mieści się w granicach (1,5-45) kW/m², [1, 21], przy ogrzewaniu oporowym (grzejniki elektryczne) (0.25-2) kW/m² [51, 53, 63]. Przy rozmrażaniu w komorach konwekcyjnych (gorące spaliny, powietrze, promienniki elektryczne lub gazowe) wymiana ciepła zależy od temperatury w rozmražalni T_e (zmieniającej się w granicach 243-433) [19,40] oraz od współczynnika α, (od kilku do kiludziesięciu W/m²K). Moc zainstalewana w tego typu rozmrażalniach w zależności od przepustowości. wynosi 2-30 kW/t rozmrażanego żadunku, tj. ~0,6-10 kW/m² 00wierzchni wagonu [10, 40, 42, 57].

Omówione warunki rozmrażania są wyidealizowaną formą warunków rzeczywistych. Procesowi rozmrażania metodami oporowymi lub indukcyjnymi (warunki brzegowe II rodzaju) towarzyszyć będą straty ciepła do otoczenia na drodze konwekcji. Dlatego też rzeczywisty strumień energii na powierzchni rozmrażanego obszaru wyrazi się zależnością

 $q_{uz} = q_{zn} - \alpha (T_N - T_g)$

Podobnie będzie w przypadku rozmrażania promiennikami elektrycznymi lub gazowymi (warunki brzegowe III rodzaju), gdzie znamionowy strumień ciepła będzie pomniejszony bądź powiększony przez wymianę ciepła na drodze konwekcji

 $q_{u2} = q_{2n} + \alpha (T_N - T_R)$

w zależności od znaku różnicy temperatur (T_N - T_S). Przykładem zwiększania współczynnika przejmowania ciepła na powierzchni « jest stosowanie w niektórych rozmrażalniach solgazów.

Rzeczywiste warunki rozmrażania wymienionymi wyżej metodami w dalszej części pracy będą określane jako warunki brzegowe mieszane.

2.5.3. Warunki rozmrażania

W zależności od metody rozmrażania warunki rozmrażania określają: temperatura rozmrażalni T_e, współczynnik przejmowania ciepła a, natężenie strumienia ciepła na powierzchni q. Podczas rozmrażania metodami oporowymi oraz indukcyjnymi, gdy straty energii do otoczenia są małe (np. istnieje izolacja) można przyjmować stałą wartość strumienia ciepła q - na powierzchni (warunki brzegowe II rodzaju). Wartość strumienia q zależy od mocy zainstalowanej urządzeń. W przypadku rozmrażania indukcyjnego mieści się w granicach (1,5-45) kW/m², [1, 21], przy ogrzewaniu oporowym (grzejniki elektryczne) (0.25-2) kW/m² [51, 53, 63]. Przy rozmrażaniu w komorach konwekcyjnych (gorące spaliny, powietrze, promienniki elektryczne lub gazowe) wymiana ciepła zależy od temperatury w rozmrażalni T_s (zmieniającej się w granicach 243-433) [19,40] oraz od współczynnika α, (od kilku do kiludziesięciu W/m²K). Mec zainstalewana w tego typu rozmrażalniach w zależności od przepustowości. i wynosi 2-30 kW/t rozmrażanego ładunku, tj. ~0,6-10 kW/m2 00wierzchni wagonu [10, 40, 42, 57].

Omówione warunki rozmrażania są wyidealizowaną formą warunków rzeczywistych. Procesowi rozmrażania metodami oporowymi lub indukcyjnymi (warunki brzegowe II rodzaju) towarzyszyć będą straty ciepła do otoczenia na drodze konwekcji. Dlatego też rzeczywisty strumień energii na powierzchni rozmrażanego obszaru wyrazi się zależnością

$$q_{uz} = q_{zn} - \alpha (T_N - T_S)$$

Podobnie będzie w przypadku rozmrażania promiennikami elektrycznymi lub gazowymi (warunki brzegowe III rodzaju), gdzie znamionowy strumień ciepła będzie pomniejszony bądź powiększony przez wymianę ciepła na drodze konwekcji

$$q_{u\dot{z}} = q_{zn} + \alpha (T_N - T_s)$$

w zaleźności od znaku różnicy temperatur ($T_N - T_s$). Przykładem zwiększania współczynnika przejmowania ciepła na powierzchni α_z jest stosowanie w niektórych rozmrażalniach solgazów.

Rzeczywiste warunki rozmrażania wymienionymi wyżej metodami w dalszej części pracy będą określane jako warunki brzegowe mieszane.

2.6. Analiza przebiegu zamarzania i rozmrażania materiałów sypkich

Zagadnienie dotyczące procesu zamarzanie wilgotnych żadunków sypkich w transporcie kolejowym należy do grupy określanej w literaturze mianem zagadnienia Stefana. Klasyczne zagadnienie Stefana dotyczyło zamarzania gruntów [38, 49, 52]. W technice spotyka się procesy, których przebiegi można opisać podobnie jak proces zamarzania gruntów. Przykładowo można tu wymienić: procesy krzepnięcia odlewów hutniczych [35, 47, 56, 65], procesy zamrażania produktów spożywczych [54, 61], procesy krzepnięcia roztworów na ściankach urządzeń chemicznych [12] i inne. Zagadnieniom tym poświęcono wiele uwagi w pracach o charakterze ogólnym [27, 32, 36, 52, 55, 59, 62]. Szczególnie w ostatnim okresie obserwuje się rozwój badań tych zagadnień.

Do problemów dotychczas nierozwiązanych w tej klasie zagadnień należy zaliczyć:

- Brak dokładnych rozwiązań dla brył o złożonych kształtach, Znane rozwiązania dotyczą; półprzestrzeni, płyty nieograniczonej, walca, kuli, prostopadłościaniu.
- Brak rozwiązań nawet dla prostych kształtów, które ujmowałyby nieliniowe zmiany własności cieplnych w funkcji temperatury oraz niejednorodne warunki początkowe i brzegowe.

Znane rozwiązania dotyczą periodycznych zmian warunków brzegowych tzw. fal temperatury i odnoszą się do pól temperaturowych bez przemian fazowych.

Nieznane są wystarozająco dokładne metody określania szybkości przemieszczania się frontu przemiany fazowej, a co za tym idzie ozasu zamarzania i rozmrażania. W prostych przypadkach, gdy na powierzchni obszaru, w którym zachodzi przemiana fazowa panuje stała temperatura (warunki I rodzaju), w rozwiązaniu wykorzystuje się przekształcenie Bolztmana [55, 62], zakładając, że grubość warstwy zamrożonej lub rozmrożonej jest proporcjonalna do pierwiastka z czasu

$$y = \Re \sqrt{\tau}$$
(2.16)

Zagadnienie zamarzania i rozmrażania żadunków w wagonach towarowych stanowiżo przedmiot badań Matażasowa i jego wspóżpracowników [39, 40]. W pracach tych zaproponowano następujący wzór na obliczanie czasu zamarzania lub rozmrażania warstwy żadunku.

$$\tau = \frac{\omega_0 \cdot \mathbf{r}_z \cdot \boldsymbol{\varsigma} \cdot \mathbf{y}}{(\mathbf{T}_{\text{pf}} - \mathbf{T}_{\text{g}})} \left(\frac{\mathbf{y}}{2\lambda} + \frac{1}{\alpha} + \sum \frac{\delta_1}{\lambda_1} \right) \quad [h] \quad (2.17)$$

Powyższa zależność znana jest w literaturze jako zmodyfikowany wzór Planka [54, 61]. Wzór ten oparty jest na następujących założeniach:

- wymrażanie wilgoci jest izotermiczne,

 nie uwzględnia zmian entalpii obszaru zamarzniętego i rozmrażanego,
 przewodność cieplna rozważanej warstwy jest wartością stałą.
 Przyjęte uproszczenia czynią powyższy wzór bardzo przybliżonym,
 dlatego też wyniki obliczeń znacznie odbiegają od wyników eksperymentalnych.

Warunki graniczne zostały dokładniej uwzględnione w zależnościach; D.G. Rjutowa [61], Londona i Sebana [61], Konczakowa [30], Tamarina [60].

Zaleźności te są oparte na następujących założeniach:

- własności cieplne λ_{ef} i c_{ef} są odcinkami stałe, ich zmiana zachodzi w punkcie przemiany fazowej,
- przemiana fazowa zachodzi natychmiast po przekroczeniu temperatury faz (izotermiczność przemiany).

- rozkłady temperatur są zgodne z przyjmowanymi a priori funkcjami. Wymienione zależności dokładniej opisują rzeczywiste przebiegi zamarzania i rozmrażania niż zmodyfikowany wzór Planka (2.17), ale ich dokładność jest jeszcze niezadowalająca. Wynika to stąd, że zostały one opracowane do opisu określonych procesów, w przypadku których przyjmowane w rozważaniach założenia były dopuszczalne. Adaptacja tych zależności do opisu podobnych zjawisk, lecz o nieco innej specyfice, nie przynosi zadowalających wyników.

Klasyczne zagadnienie Stefana dla jednowymiarowego przypadku wymiany ciepła (rys.8) opisują dwa równania przewodnictwa cieplnego; fazy zamarzniętej (2.18) i niezamarzniętej (2.19) oraz warunek przemieszczania się frontu przemiany fazowej (2.20) i warunki graniczne (2.21 i 2.24).

Rys.8. Rozkład temperatur w polu z przemianą fazową

$$\frac{\partial T_1(x,\tau)}{\partial \tau} = \frac{\partial^2 T_1(x,\tau)}{\partial x^2} \quad 0 \leq x < y \quad (2.18)$$

$$\frac{\partial T_2(x, \tau)}{\partial \tau} = \frac{\partial^2 T_2(x, \tau)}{\partial x^2} \quad y \leqslant x \leqslant R \quad (2.19)$$

$$\sigma_{\text{przem}} \circ \frac{\partial y}{\partial \tau} = \lambda_1 \frac{\partial T_1(x, \tau)}{\partial x} - \lambda_2 \frac{\partial T_2(x, \tau)}{\partial x}$$
(2.20)

$$T_2(x, \tau) = T_{pocz}$$
 (2.21)
 $\tau_{=0}$

$$\lambda_{1} = \frac{\partial T_{1}(x, \tilde{v})}{\partial x} = \alpha (T_{N} - T_{g}) \qquad (2.22)$$

$$\begin{array}{c|c} \partial T_2(x, \tau) \\ \hline \partial x \\ \end{array} \\ x = R \end{array}$$

$$T_1(x, \tau) = T_2(x, \tau) = T_{kr}$$
 (2.24)

W równaniu (2.20) nieznana jest postać funkcji dy/dť i z tego względu trudno jest uzyskać dokładne rozwiązanie ogólne.

Lame i Clapeyron [38] podali rozwiązanie przypadku półprzestrzeni, gdy

$$T_2(x, \tau) = T_{pf}$$
$$T_1(0, \tau) = T_8$$

Są to warunki I rodzaju, a temperatura obszaru nieżamarzniętego jest równa temperaturze przemiany fazowej.

Układ równań (2.18-2.24) dla przypadku półprzestrzeni tj. gdy równanie (2.23) zostanie zastąpione równaniem

$$T(x, \tau) = T_{\text{pocz}}$$
(2.23)

rozwiązał Stefan [38, 59, 62]. W obu przypadkach grubość warstwy y, która uległa przemianie fazowej określano jako prostą funkcję czasu.

gdzie: X - jest współczynnikiem proporcjonalności wyznaczanych z równania (2.20).

V = 30 V 7

Metoda podana przez L.S.Leybenzona [27, 38] polega na zakożeniu a priori rozkładów temperatur w obszarze 1 i 2 (rys.8). Takie zakożenie uzależnia dokładność rozwiązania od postaci przyjętych funkcji opisujących rozkłady temperatur. Od tych funkcji zależą wartości pochodnych & T/3x branych pod uwagę w równaniu (2.20). Aby tego uniknąć dla przypadku jednowymierowego wymieny ciepła (układ równań (2.18)-(2.24)) Leybenzon zaproponował równanie (2.20) w nieco innej postaci [27, 38]:

$$\begin{bmatrix} \mathbf{r}_{\mathbf{z}} \mathbf{y} - \mathbf{c}_{1} \mathbf{y} \int \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{y}} d\mathbf{x} - \mathbf{c}_{2} \mathbf{y} \int \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{y}} d\mathbf{x} \end{bmatrix} \frac{d\mathbf{y}}{d\tau} = \lambda_{1} \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}} \begin{bmatrix} 2.20 \end{bmatrix}$$
(2.20)

Równanie to powstało przez wyrażenie strumieni ciepła $2 \frac{\partial T}{\partial X}$ wymienianych przez poszczególne fazy 1 i 2, za pomocą zmian entalpii obszaru zamarzniętego i niezamarzniętego. Zmniejsza się przez to niedokładność metody.

W pracach [55, 59, 62] podano rozwiązanie zagadnienią dla półprzestrzeni, w postaci uwikłanej. Poprzez rozwiązanie równania uwikłanego wyznacza się Współczynnik proporcjonalności X.

Galperin i Fikatow [12] rozważyli przypadek jednowymiarowego procesu krystalizacji roztworu przy warunkach III rodzaju (2.22) Wprowadzając fikcyjną warstwę ośrodka sprowadzili wymianę ciepła na powierzchni do warunków I rodzaju (stała temperatura powierzchni) Rozwiązanie podano w postaci zwyczajnego równania różniczkowego nieliniowego, które należało rozwiązać numerycznie.

Na uwagę zasługuje rozwiązanie podane przez Juszkowa i Gejnca [27]. W rozwiązaniu wykorzystano równanie (2.20) propagacji izotermy zerowej w postaci podanej przez Lejbenzona. Rozwiązanie dotyczy jednowymiarowego przypadku zamarzania przy warunkach III rodzaju. W obszarze zamarzniętym przyjęto liniowy rozkład temperatur, a w obszarze niezamarzniętym w postaci wielomianu drugiego stopnia. W konsekwencji uzyskano nieskomplikowaną zależność wygodną do obliczeń inżynierskich.

Większość rozwiązań zagadnień zamarzania i rozmrażania jest oparta na następujących założeniach:

- przewodność cieplna i ciepło właściwe są przedziałami stałe,
- proces wymrażania wilgoci jest izotermiczny,
- wartość temperatury otoczenia T i współczynnika przejmowania ciepła na powierzchni α są stałe w czasie.

Założenia te nie umożliwiają określenia wpływu zmiennych w czasie warunków zewnętrznych oraz specyficznych zmian własności cieplnych materiału sypkiego w czasie trwania procesu. Niedogodności tych można uniknąć stosując obliczenia numeryczne przy wykorzystaniu ETO. Istnieje szereg prac poświęconych rozwiązaniom numerycznym nieustalonych pól temperaturowych z przemianami fazowymi zamarzania gruntów [49] krzepnięcia odlewów [47, 56], zamarzania produktów spożywczych [61] i inne.

Wiele cennych wskazówek na temat wykorzystania metod numerycznych do rozwiązywania zagadnień typu Stefana można znaleźć w pracach [3, 32, 64].

W pracy [19] przedstawiono wyniki obliczeń numerycznych rozmrażania rudy boksytowej w wagonach towarowych. Proces rozmrażania przeanalizowano na jednowymiarowym liniowym modelu wymiany ciepła przy warunkach brzegowych III rodzaju, przy założeniu izotermiczności przemiany fazowej. W pracy nie podano metody numerycznej, której użyto do rozwiązania. Przedstawione wyniki dotyczą porównania przebiegów rozmrażania w komorze konwekcyjnej przy różnych wartościach współczynnika przejmowania ciepła na powierzchni wagonu α_{z} , temperatury w rozmrażalni T_s i temperatury początkowej kadunku T_{pocz}. Wniosek końcowy dotyczył stwierdzenia, który z sześciu skojarzeń temperatury i współczynnika α było najefektywniejsze. W przedstawionym modelu wpływ ścien wagonu uwzględniono poprzez zastępczy współczynnik α_z przejmowania ciepła na powierzchni ładunku (2.15). W cytowanej pracy model obliczeniowy nie został zweryfikowany z modelem fizycznym.

Na szczególną uwagę zasługuje niejednokrotnie już cytowana praca [61], w której przeanalizowano jednowymiarowy proces zamrażania mięsa (warunki III rodzaju). Przyjęty do obliczeń model matematyczny został opisany następującym układem równań:

$$\beta_1 \cdot c_1(\omega) = \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} \left[\lambda_1(\omega) = \frac{\partial T}{\partial x} \right] \quad 0 \leq x \leq L - y \quad (2.25)$$

$$R_2 \cdot c_2(\omega, T) = \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} \left[\lambda_2(\omega, T) = \frac{\partial T}{\partial x} \right] L - y \leq x \leq L$$
 (2.26)

$$\alpha (\mathbf{T}_{g} - \mathbf{T}_{n}) = \frac{\partial}{\partial \tau} \left[c_{1}(\omega) \mathbf{T}_{1}(\mathbf{L} - \mathbf{y}) \cdot \mathbf{g}_{1} + c_{2}(\omega, \mathbf{T}) \mathbf{T}_{2} \cdot \mathbf{y} \cdot \mathbf{g}_{2} \right] \quad (2.27)$$

$$\alpha (T_n - T_g) = -\lambda(\omega, T) \frac{\partial T}{\partial x} |_{x=n}$$
 (2.28)

$$T(y, \tau) = T_{kr}$$
(2.29)

$$T(x, 0) = \Psi(x)$$
 (2.30)

$$T(0, \tau_k) = T_{k0}$$
 (2.31)

gdzie:

L

- T_n temperatura na brzegu obszaru,
- Tko temperatura końcowa w środku płyty,
- τ_k czas końcowy zamarzania.

W modelu tym uwzględniono zmiany przewodności cieplnej i ciepła właściwego w funkcji temperatury, aproksymując je wielomianami potęgowymi. Ponadto model obliczeniowy umożliwiał symulację wartości $\alpha(\tau)$ i $T_{\alpha}(\tau)$ zmiennych w czasie. Układ równań (2.25-2.31) rozwiązano metodą różnic skończonych, wykorzystując schematy różnicowe jawne i niejawne. Program na maszynę cyfrową został napisany w języku MOST1.

Drugim kierunkiem wykorzystania ETO są obliczenia na maszynach analogowych. Zaletą tych technik rozwiązań jest to, że wyniki uzyskuje się w postaci wykresów. Wadą są stosunkowo małe możliwości badania złożonych układów ze względu na małą ilość miejsc operacyjnych służących do modelowania. Pewne przykłady wykorzystania EMA w omawianych zagadnieniach przedstawiono w pracy [32].

Podsumowując przegląd literatury należy stwierdzić, że mało jest prac z dziedziny zamarzania i rozmrażania ładunków sypkich uwzględniających zależność ciepła właściwego i przewodności cieplnej od temperatury.

Ze względu na różny charakter zmian wartości ciepła właściwego oraz przewodności cieplnej ładunku, konieczne jest opracowanie dwóch opisów matematycznych: zamarzania i rozmrażania. Opracowanie takich opisów umożliwi badania symulacyjne, a przez to głębsze poznanie procesów cieplnych zachodzących w ładunkach podczas transportu lub w czasie przywracania im sypkości w miejscu wyładunku.

2.7. Metody rozwiązywania nieliniowych zagadnień wymiany ciepła

Do najczęściej stosowanych metod rozwiązywania nieliniowych zagadnień cieplnych należą:

- Metoda całkowa [32, 38]. Opiera się ona na zakożeniu tzw. nienaruszonej warstwy termicznej o zmiennej grubości równej grubości warstwy, która ulega przemianie fazowej. W metodzie tej rozkład temperatur w nowopowstałej fazie aproksymuje się wielomianami. Zakłada się, że temperatura fazy, która jeszcze nie uległa przemianie jest stała. Metoda zawiera pewne uproszczenia i nie zawsze jest wygodna w użyciu.
- Metoda podstawień [32, 62]. Polegająca ona na wprowadzaniu nowych zmiennych, sprowadzających równania cząstkowe do równań zwyczajnych nieliniowych, które katwiej jest rozwiązać.
- 3. Metoda wariacyjna [11, 32, 45]. Polega na znajdowaniu funkcji charakteryzującej własności cieplne układu. Charakterystyczne dla metod wariacyjnych jest:
 - a) ujęcie warunków granicznych w równaniu podstawowym,
 - b) poszukiwanie wartości współczynników, założonej postaci funkcji rozwiązania.

Najbardziej znana z nich jest metoda Biota.

- 4. Metoda iteracji [32, 45]. W metodzie tej zakłada się początkowe przybliżenie szukanego rozwiązania przy uproszczonych zakożeniach. W oparciu o otrzymane rozwiązania można zbudować rozwiązanie dokładniejsze, posługując się specjalnym podstawieniem. Proces powtarza się aż do osiągnięcia wystarczająco dokładnego rozwiązania.
- 5. Metoda prostych [7, 32]. Metoda ta polega na zastąpieniu pochodnych względem wybranej zmiennej ilorazami róźnicowymi, a pochodne względem pozostałych zmiennych pozostawia się bez zmian. W ten sposób układ równań róźniczkowych cząstkowych zostaje zastąpiony układem równań róźniczkowo-róźnicowych, który moźna rozwiązać do końca, stosując np. metodę Rungego-Kutty.
- 6. Metoda różnic skończonych [3, 32, 45, 61, 64]. Metoda ta polega na zastąpieniu wszystkich pochodnych różnicami skończonymi. W ten sposób równania różniczkowe cząstkowe zostają sprowadzone do równań różnicowych, które można rozwiązać algebraicznie. Metoda ta ma wiele zalet, umożliwia uwzględnienie, w odróżnieniu od pozostałych metod, złożonych warunków granicznych. Ze względu na masową powtarzalność operacji obliczeniowych, jej realizacja jest możliwa jedynie przy wykorzystaniu maszyn cyfrowych.

Z przedstawionych metod dwie ostatnie są najbardziej uniwersalne i rozpowszechnione. W dalszej części pracy do rozwiązania dokładnego opisu procesów zamarzania i rozmrażania posłużono się metodą różnic skończonych.

3. BADANIE WŁASNOŚCI CIEPLNYCH MATERIAŁÓW SYPKICH

3.1. Oblekt 1 metoda pomlaru

Ładunkiem szczególnie podatnym na zamarzanie (tabela 1) i zarazem stanowiącym poważną część masy towarowej jest węgiel kamienny, a w szczególności miał węglowy o tzw. obniżonej sypkości. Jest on podstawowym paliwem w wielu zakładach energetycznych. Stanowi mieszaninę miału węglowego oraz mułów węglowych pochodzących z przykopalnionych odstajników, uzyskaną w procesie homogenizacji. Wilgotność miału dochodzi do 20 %, co jest przyczyną jego zamarzania. Próbka pobrana ze zwału elektrociepłowni "Wrocław", wykazała wilgotność względną 15,1 %. Miał węglowy o obniżonej sypkości został wybrany jako obiekt, na którym przeprowadzono badania zależności Z przedstawionych metod pomiarowych (rozdz.2.4) ze względu na wygodę eksperymentowania wybrano metody; a – λ – α – kalerymetru – oparte na pomiarach w stanie uporządkowanym. Zaletą wymienionych metod jest możliwość stosowania próbek o małych wymiarach. W celu przeprowadzenia pomiarów własności cieplńych miału węglowego ww. metodami skonstruowano λ – kalorymetr o regulowanej temperaturze wnętrza (p.3.2.2). Pomiary dyfuzyjności cieplnej (p.3.2.1) były prowadzone w ultratermostacie. Do pomiaru własności cieplnych materiałów o większych granulacjach zaprojektowano przyrząd, którego konstrukcja i sposób przeprowadzenia w nim pomiarów zostały przedstawione w p.Z-2, Z-3.

3.2. <u>Pomiary własności fizycznych miału weglowego o obniżonej</u> sypkości

3.2.1. Dyfuzyjność cieplna

Pomiary dyfuzyjności cieplnej przeprowadzano metodą a-kalorymetru. Próbki miału węglowego umieszczono w specjalnie wykonanym miedzianym kalorymetrze (rys.9)'o kształcie walcowym i wymiarach

Rys.9. Widok kalorymetru walcowego

zewnętrznych \$ 32.75 x 70.01 mm i grubości ścianek ~ 0.5 mm. Powierzchnie zewnętrzne były chromowane i polerowane. Zmiany temperatury próbki w kalorymetrze mierzono termoparą różnicową miedź-konstantan o średnicy drutów 0.15 i 0.3 mm. Jedna spoina termopary była umieszczona na 1/2 wysokości kalorymetru w jego osi. Druga spoina znajdowała się w Ośrodku w którym był ochładzany kalorymetr. Pomiar dyfuzyjności cieplnej polegał na wyznaczeniu tempa chłodzenia "m" (względnych zmian temperatury próbki w czasie), przy chłodzeniu próbki w ultratermostacie wypełnionym cieczą chłodzącą (alkohol etylowy, woda). Ultratermostat (rys.10) byk-wypocażony w mieszadko o prędkości kątowej regulowanej za pomocą autotranaformatora. Umożliwiało to spełnienie warunku wymiany ciepła na powiorzchni kalorymetru B₁ = $\alpha/\lambda \cdot R \rightarrow \infty$. Realizacja $\alpha \rightarrow \infty$ polegała na badaniu tempa chłodzenia próbki "m" przy stopniowo wzrastających obrotach mieszadła aż do uzyskania m , maksymalnej wartości tempa

Rys. 10.

Widok ultratermostatu przystosowanego do pomiarów metodą a - kalorymetru

(3.1)

chłodzenia. Przy określonych obrotach mieszadła dalszy ich wzrost wywoływał silnie burzliwy opływ kalorymetru przez ciecz chłodzącą, co było przyczyną zauważalnego spadku tempa chłodzenia próbki. Temperaturę cieczy chłodzącej utrzymywano poprzez dostrojenie wydajności chłodniczej agregatu tak, że w czasie pomiaru zmiany temperatur cieczy chłodzącej były mniejsze od ±0.04 K, czego nie mógłby zapewnić termostat.

Dyfuzyjność cieplną badanej próbki wyznaczano z zależności:

$$a = K \cdot m_{\infty}$$

 m_{∞} - tempo chłodzenia przy $B_i \rightarrow \infty$

gdzie:

K - współczynnik kształtu próbki, w tym przypadku próbka posiadała kształt walcowy, dla której [14]

$$K = \frac{1}{\left(\frac{2.4048}{R}\right)^2 \div \left(\frac{\pi}{Z}\right)^2}$$

R - promień próbki,

Z - długość próbki.

Dla stosowanego kalorymetru stała K = 4.2413,10⁻⁵ m². Pomiary dyfuzyjności cieplnej w temperaturach poniżej 300 K prowadzono w ultratermostacie napełnionym alkoholem etylowym, w wyższych temperaturach - wodą.

3.2.2. Przewodność cieplna

Pomiary przewodności cieplnej przeprowadzano w specjalnie wykonanym termostacie powietrznym (λ - kalorymetrze), sporządzonym z duraluminimw postaci cylindrycznej rury o średnicy wewnętrznej ø 500mm, wysokości 600 mm i grubości ścianek 6 mm. Od góry i od spodu umieszczono płyty izolacyjne (płyta pilśniowa 15 mm, styropian 120 mm, płyta pilśniowa 15 mm). Powierzchnie zewnętrzne części walcowej omywane były przez ciecz chłodzącą, krążącą spiralnie wokół części walcowej. Ciecz była doprowadzana z ultratermostatu. Jej temperatura w czasie pomiarów była utrzymywana z dokładnością większą niź ±0.04 K (p.3.2.1). W ten sposób możliwe były pomiary w termostacie powietrznym przy różnych temperaturach powietrza. Zewnętrzne powierzchnie chłodnicy zaizolowano warstwą wełny mineralnej o grubości ~100 mm. Opisywany termostat powietrzny przedstawiona na rys.11.

Pomiar polegał na wyznaczeniu w warunkach konwekcji swobodnej tempa chłodzenia kalorymetru napełnionego miałem węglowym.

Do wyznaczenia przewodności cieplnej metodą stanu uporządkowanego niezbędna jest znajomość wartości współczynnika przejmowania ciepła α na powierzchni kalorymetru oraz tempa chłodzenia próbki przy maksymalnym odbiorze ciepła na jej powierzchni tzw. m $_{\infty}$. W przeprowadzonych pomiarach współczynnik α wyznaczeno metodą α - kalorymetru (rys.12) wykonanego specjalnie z miedzi (pełny walec) o wymiarach zewnętrznych identycznych jak w przypadku a - kalorymetru. Powierzchnia zewnętrzna α - kalorymetru była chromowana i polerowane koniec termopary znajdował się na głębokości 2/3 długości α - kalorymetru. W celu zmniejszenia oporów kontaktowych pomiędzy α - kalorymetrem a umieszczoną wewnątrz niego termoparą, otwór wypełniono pastą silikonową. Z zewnątrz otwór zabezpieczono żywicą epoksydową.

Drugą nieznaną wielkość tj. m $_{\infty}$ wyznaczano metodą a - kalorymetru (p.3.2.1).

Rys.11. Schemat termostatu powietrznego (A - kalorymetru)

- 1 chłodnica cylindryczna
- 2 płyty izolacyjne
- 3 izolacja zewnętrzna
- 4 kalorymetr
- 5 ekran osłaniający wolny koniec termopary
- 6 termoelektryczny róźnicowy układ pomiarowy
- 7 przewody doprowadzające ciecz
- 8 ultratermostat
- 9 agregat chłodniczy zasilający ultratermostat

Rys.12. Widok \propto - kalorymetru

Przewodność cieplną próbki określano z zależności [14]:

$$K = \frac{K \cdot m \cdot \psi \cdot S}{M \cdot V} \left(\frac{\alpha}{m} - \frac{C_{OS}}{S} \right)$$
(3.2)

gdzie:

K = współczynnik kształtu próbki K = 4.2413.10⁻⁵ [m²]
 m = tempo chłodzenia próbki w λ = kalorymetrze [h⁻¹]
 S = powierzchnia próbki S = 8.745.10⁻³ [m²]
 V = objętość próbki V = 57.663.10⁻⁶ [m³]
 α = współczynnik przejmowania ciepła na powierzchni kalorymetru = wyznaczany α = kalorymetrem.
 C_{os} = pojemność cieplna osłony C_{os} = 1.487.10⁻² [kJ/K]
 M = liczba podobieństwa

$$M = \frac{m}{m_{\infty}}$$

m_∞ - tempo chłodzenia przy maksymalnym odbiorze ciepła na powierzchni kalorymetru (pomiar w a - kalorymetrze)

y = M - liczba podobieństwa charakteryzująca nierównomier-H ność pola temperatury

H - zmodyfikowana liczba Biota, wyznaczana z równania (3.3) [14].

$$M = \frac{H}{\sqrt{H^2 + 1,437 H + 1}}$$
(3.3)

lub po przekształceniu:

 $(M^2 - 1) H^2 + 1,437 M^2 H + M^2 = 0$

Pomiary przewodności cieplnej w termostacie powietrznym prowadzono jednocześnie z pomiarami współczynnika przejmowania ciepła ∞ α - kalorymetrem. W ten sposób można byżo wyeliminować wpływ ewentualnych zmian warunków wewnątrz termostatu powietrznego, które mogły zachodzić w czasie pomiarów.

W układach pomiarowych wykorzystano galwanometry lusterkowe typu GL-2 o regulowanej czułości w zakresie $(5,2-20,5)\cdot10^{-9}$ [A/dz] i oporze wewnętrznym R_W= 193 \Re oraz o czułości (21,5-69)·10⁻⁹ [A/dz] i oporze wewnętrznym R_W= 20,7 \Re okresy wahań wynosiły 1,42 i 1,27 s.

3.2.3. Ciepko właściwe

Ciepło właściwe miału węglowego wyznaczano na podstawie pomiarów przewodności cieplnej i dyfuzyjności z zależności:

$$c = \frac{\lambda}{a'g}$$
(3.4)

lub też uwzględniając, że

oraz $C = c_{S} \cdot V$, $a = \lambda/c_{S}$ gdzie:

Gestość badanego materiału [kg/m³]

Po przekształceniach wzoru (3.2) otrzymuje się zależność

$$C = \psi \left(\frac{\alpha \cdot S}{m} - C_{os} \right)$$
(3.6)

3.2.4. Pomiary innych wielkości

<u>Cieżar objętościowy</u> 9 - badanego materiału wyznaczano przy kaźdorazowym napełnianiu kalorymetru o znanej objętości i ciężarze ważąc go po napełnieniu badanym materiałem. Do ważenia próbek używano wagi analitycznej WA-32 o dokładności 10⁻⁵ g.

Wilgotność próbki - uzyskiwano poprzez nawilżenie wodą destylowaną oraz stopniowe suszenie do uzyskania przez próbkę wymaganej wilgotności. Suszenie przeprowadzano w suszarce przy temperaturze
~323 K (50°C). Wilgotność względną odnoszono do masy suchej próbki.

$$\omega_{0} = \frac{G_{W} - G_{S}}{G_{S}} \cdot 100 \%$$
 (3.7)

<u>Granulacja miału weglowego</u> - była określona dla suchej próbki, którą przed analizą sitową rozdrabniano w celu skruszenia zeschniętych wskutek odparowania wilgoci grud próbki. Tak przygotowaną próbkę przesiewano przez 7 sit. Wyniki analizy sitowej przedstawiono w tabeli 2.

Tabela 2

Lp	Rozmiar sita ¢ [m]	Ciężar frakcji [g]	Udziek procentowy [%]
1	> 3200	40.833	36.55
2	> 2500	8.290	7.25
3	> 2000	4.785	4.05
4	> 1600	6.866	5.75
5	>1000	10.919	9.45
6	> 710	9.298	8.00
7	> 63	28.039	24.20
8	< 63	5.526	4.70
	Rezem:	- 114.556	100.00

Wyniki analizy sitowej próbki miału - węglowego

3.3. Metodyka badań i wyniki pomiarów

Celem badań jest określenie własności cieplnych, tj. ciepła właściwego c oraz przewodności cieplnej > w funkcji temperatury, wilgotności i gęstości materiaku.

Ze względu na nieciągkość funkcji wkasności cieplnych w temperaturze przemiany fazowej, badania zaplanowano w temperaturach poniżej i powyżej temperatury przemiany fazowej (p.3.3.1).

3.3.1. Badanie własności cieplnych w temperaturach powyżej temperatury przemiany fazowej

Na podstawie prac [23] [40] przyjęto liniową zależność przewodności cieplnej od : T, ω_{α} , φ , wówczas

 $\lambda = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$ (3.8)

gdzie:

x₁ - temperatura T K

- x_2 wilgotność względna ω_0
- x3 gęstość ? kg/m³

Ze względu na możliwości eksperymentowania oraz potrzeby praktyczne określono przedziały zmienności <a, b> parametrów x,

> $x_1 \in \langle 273; 323 \rangle$ $x_2 \in \langle 0; 0.20 \rangle$ $x_3 \in \langle 925; 1200 \rangle$

Ze względu na wygodę obliczeń oraz eksperymentowania wykorzystano zasadę planowanego eksperymentu. Przeprowadzono eksperyment czynnikowy o $N = 2^3 = 8$ doświadczeniach (tabela 3). Punkty referencji wyznaczono zgodnie z planami optymalnymi eksperymentu wg zer wielomianów Czebyszewa. Dla eksperymentów na dwóch poziomach odpowiada to wartościom (-0,7071; 0,7071) standaryzowanych zmiennych niezaleźnych z przedziału <-1; 1> . Wartości zmiennych, przy których będą wykonywane eksperymenty określa zależność [41]:

$$x_{i} = \frac{x_{i}(a-b) + (a+b)}{2}$$
 (3.9)

gdzie: x_i'- standaryzowana zmienna niezaleźna, a, b - dolna i górna granica przedziału zmienności parametrów x_i.

Punkty referencji x_i wyznaczone z zależności (3.9) wynoszą temperatura T: 279 K, 315,51 K wilgotność ω_i : 0,03, 0.17 gęstość g: 964.05, 1157.935

Oznaczając dolny poziom badanej zmiennej -1 oraz górny poziom +1, plan eksperymentu przedstawiono w tabeli 3.

Tabela 3

Nr eksp. x3 X2 X4 -1 -1 -1 2345678 +1 -1 -1 +1 -- 1 -- 1 -1 -1 +1 +1 +1 -1 +1 -1 +1 -1 +1 +1 41 +1 +1

Plan eksperymentu $N = 2^3$

Wyniki pomiarów dyfuzyjności cieplnej, przewodności i ciepła właściwego przedstawiono w tabeli 4. Sposób wyznaczania tych wielkości przedstawiono w załączniku (Załącznik 1). W związku z tym, że pomiary przeprowadzono w warunkach probabilistycznych, realizację każdego eksperymentu powtarzano kilkakrotnie.

Dla przeprowadzonych pomiarów centralne punkt eksperymentu wynoszą:

$$x_1^0 = \frac{a_1 + b_1}{2} = 297,6 \text{ K}$$

 $x_2^0 = 0.1$
 $x_3^0 = 1061 \text{ kg/m}^3$

a kroki robocze

 $\Delta x_1 = \frac{(b_1 - a_1) \ 0.7071}{2} = 17,85 \text{ K}$ $\Delta x_2 = 0.07$ $\Delta x_3 = 96.925 \text{ kg/m}^3$

Macierz wejść standaryzowanych oraz macierz wyjść, tj. przewodności cieplnej mają postać:

	1	-1	-1	-1		0.1358
	1	+1	-1	-1		0.1885
	1	-1	+1	-1		0.2586
m	1	-1	-1	+1		0.1663
1	1	+1	+1		J J =	0.3089
	1	+1	-1	-1-1		0.2014
	1	-1	+1	+1		0.3190
	1	+1	+1	+1		0.3527

Wykorzystując zasadę najmniejszych kwadratów poszukiwano współczynników funkcji regresji

$$y = k_0 + k_1 x_1 + k_2 x_2 + k_3 x_3$$
 (3.10)

w której współczynniki k określono wg [18, 41] z zależności:

$$k = (T^T T)^{-1} T^T y$$
 (3.11)

Tabela 4

Wyniki badań eksperymentalnych własności cieplnych - miału węglowego (temperatury dodatnie)

T - temperatura

ω - wilgotność względna - gęstość

m - tempo chłodzenia próbki

Nr	Rr Parametry zmienne			Dyfuzyjność cieplna			Wapółcz.przejmowania ciepła					Przewodn	ość ciep	Ciepło właś.efektyw				
	T [K]	ω • [-]	? [kg/m ³]	Nr pom.	∎ <u>⊸</u> 10 ³ [s ⁻¹]	a × 10 ⁷ [m ² /a]	ā • 10 ⁷ [m ² /a]	Nr pom.	m _x ·10 ⁴ [h ⁻¹]	∝ [∎/m ² K]	. α [π/m ² K]	Nr pom.	m ₂ ·10 ⁴ [h ⁻¹]	λ [w/mK]	λ [w/mK]	Nr pom.	cef [kJ/kgK]	cef [kJ/kgK]
1	2	3	4	5	6	7	8	9	10	11	12	13	- 14	15	16	17	18	19
1	279.8	0.03	964.05	1 2 3 4	3.5863 3.5068 3.4395 3.4161	1.5211 1.4873 1.4588 1.4489	1.4790	1 2 3 4	2.4897 2.4319 2.5400 2.5347	5.6031 5.4780 5.7214 5.7095		1 2 3 4	6.7364 6.6172 6.1781 6.1808	0.1266 0.1262 0.1468 0.1435	0.1358	1234	0.8881 0.8848 1.0292 1.0063	0.9521
2	315.5	0.03	964.05	1 2 3 4 5	3.7533 3.9783 4.1439 4.2014 4.3397	1.5919 1.6973 1.7576 1.7832 1.8143	1.7321	1 2 3 4	1.8176 1.8551 1.7095 1.8410	4.0941 4.1785 3.8508 4.1470	4.0676	1 2 3 4	4.2411 4.4842 4.6636 4.0297	0.1969 0.1885 0.1613 0.2072	0.1885	1 2 3 4	1.1792 1.1290 0.9657 1.2407	1.1298
3	279.8	0.17	964.05	1 2 3 4 5	4.4032 4.3801 4.3214 4.3813 4.2778	1.8675 1.8577 1.8328 1.8582 1.8143	1.8461	12345	2.9744 2.7194 2.6787 2.7658 2.6631	6.6996 6.1254 6.0338 6.2302 5.9987		1 2 3 4 5	5.0339 4.8186 5.1569 5.0069 4.6081	0.1979 0.2831 0.2554 0.2750 0.2816	0.2587	12345	1.1120 1.5902 1.4347 1.5451 1.5817	1.4530
4	279.8	0.03	1157.94	1 2 3 4	3.4403 3.6855 3.3372 3.5169	1.4591 1.5632 1.4154 1.4916	1.4823	1234	2.6617 2.5000 2.7375 2.6325	5.9954 5.6312 6.1662 6.9621		1 2 3 4	5.9042 6.1450 5.7008 5.6269	0.1657 0.1454 0.1797 0.1745	0.1663	1 2 3 4	0.9653 0.8468 1.0466 1.0161	0.9687
5	315.5	0.17	964.05	1 2 3 4 5	5.0747 5.0014 4.9075 5.0950 4.9547	2.1523 2.1212 2.8014 2.1609 2.1014	2.1235	12345	1.9333 1.9333 2.0056 1.9792 1.9042	4.3549 4.3549 4.5176 4.4580 4.2891		12345	3.6458 3.6450 3.5703 3.9125 3.8019	0.3123 0.3124 0.3342 0.2942 0.2913	0.3089	1 2 3 4 5	1.5251 1.5256 1.6325 1.4371 1.4228	1.5086
6	315.5	0.03	1157.94	1 2 3 4	4.2586 4.2008 3.9522 3.6544	1.8062 1.7817 1.6762 1.5495	1.7035	1 2 3 4	1.9033 1.9328 2.0050 2.0514	4.2873 4.3536 4.5163 4.6207		1. 2 3 4	4.5925 4.5225 4.2006 4.1942	0.1805 0.1876 0.2156 0.2221	0.2014	1 2 3 4	0.9148 0.9508 1.0929 1.1290	1.0219
7	279.8	0.17	1157.94	12345	4.2608 4.5278 4.1656 4.7053 4.2406	1.8071 1.9204 1.7667 1.9956 1.7986	1.8577	1 2 3 4 5	2.5225 2.6007 2.6789 2.4783 2.5411	5.6819 5.8580 6.0342 5.5824 5.7238		1 2 3 4 5	4.1292 4.1600 4.2356 4.0986 4.1231	0.3161 0.3244 0.3281 0.3126 0.3192	0.3190	1 2 3 4 5	1.4693 1.5076 1.5249 1.4530 1.4828	1-4828
8	315.5	0.17	1157-94	1 2 3 4 5 6	5.0316 5.1551 5.0744 5.1389 5.1551 4.1114	2.1341 2.1864 2.1522 2.1796 2.1864 1.7437	2.0971	1 2 3 4 5	2.0964 2.1050 2.0375 2.0793 2.1817	4.7221 4.7414 4.5885 4.6836 4.9141		1 2 3 4 5	3.4472 3.6111 3.5333 3.6444 3.9111	0.3741 0.3552 0.3517 0.3466 0.3362	0.3527	1 2 3 4 5	1.5404 1.4624 1.4476 1.4270 1.3843	1.4523

39

stad:

$$k_{0} = \frac{1}{8} (0,1358 + 0,1885 + \dots + 0,3525) = 0,2381$$

$$k_{1} = \frac{1}{8} (-0,1358 + 0,1885 - \dots + 0,3525) = 0,01817$$

$$k_{2} = \frac{1}{8} (-0,1358 - 0,1885 + \dots + 0,3525) = 0,07171$$

$$k_{3} = \frac{1}{8} (-0,1358 - 0,1885 - \dots + 0,3525) = 0,02175$$

Uwzględniając związek pomiędzy zmiennymi x_i oraz x'_i (wzór 3.9), wartości współczynników b w równaniu (3.8) można wyznaczyć z zależności:

(3.12)

(3.14)

bo	23	$k_0 - b_1 x_1^0 - b_2 x_2^0 - b_3 x_3^0$	
b ₁	83	k_1 Δz_1	
^b 2	***	k₂. ∆ x₂	
^b 3	203	$\Delta \mathbf{z}_{3}$	

Na podstawie przeprowadzonych obliczeń, przewodność cieplną opisuje zależność:

 $\lambda = -0.08468 + 1.081 \cdot 10^{-3} (T - 273, 16) + 0.97714 \omega_0 + 1.9035 \cdot 10^{-4} g^{-1}$

(3.13) Jako mierę zgodności otrzymanej funkcji z wynikami pomiarów przyjęto współczynnik korelacji wielowymiarowej określony wg [18] zależnością

$$R = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

gdzie:

 \hat{y}_1 - oznacza wartość obliczeniową, \bar{y} - wartość średnią.

Dla zależności (3.13) uzyskano współczynnik korelacji R = 0.9868. Podobne obliczenia przeprowadzono dla ciepła właściwego w wyniku obliczeń uzyskano zależność:

$$c_{ef} = 1.0367 + 1.787 \cdot 10^{-3} (T - 273, 16) + 3.2589 \omega_0 - 1.51 \cdot 10^{-4} g$$
 kJ kgR

Wartość współczynnika korelacji dla zależności (3.15) wynosi R = 0.9866.

Jak zaznaczono w p.2.3.2 komentując zależność (2.10), ciepło właściwe jest funkcją wilgotności. Wyznaczona zależność (3.15) potwierdziła to. Wpływ temperatury oraz gęstości na wartość efektywnego ciepła właściwego jest w rozpatrywanych przedziałach wielokrotnie mniejszy niż wpływ wilgotności.

3.3.2. Badanie własności cieplnych w temperaturach poniżej temperatury przemiany fazowej

W zakresie temperatur poniżej temperatury przemiany fazowej badano wpływ temperatury na własności cieplne miału węglowego. Wpływ wilgotności ω_0 oraz gęstości uwzględniono podobnie jak w pracy [39] poprzez przewodność cieplną oraz ciepło właściwe w temperaturze przemiany fazowej (p.2.3). Pomiary dyfuzyjności cieplnej a, przewodności cieplnej 2 i ciepła właściwego c_ef prowadzono w temperaturach: 253.16, 263.06, 267.06, 269.96, 270.56 K dla próbki o wilgotności $\omega_0 = 0.17$ i gęstości g = 1157.935 kg/m³.

Wyniki pomiarów przedstawiono w tabeli 5. Punktem charakterystycznym dla funkcji opisujących wkasności cieplne jest temperatura początku przemiany fazowej. Kilkakrotne pomiary tej temperatury dla badanej próbki miażu węglowego, wykazaky, że wynosi ona ~ 271.96 K (-2,2°C), $\Delta T = \pm 0.2$ K. Dokładne pomiary w tym obszarze temperatur są utrudnione ze względu na skłonność próbki do przechładzania (p.2.2).

Wyniki pomiarów przewodności cieplnej (tabela 5) zasproksymowano funkcją o postaci,

$$\lambda = \lambda_{pf} + \frac{b}{1 + \frac{b}{1g[T - T_{pf} + 1]}}$$

Ze względu na złożoną postać funkcji obliczenia przeprowadzono przy użyciu maszyny cyfrowej. W obliczeniach posłużono się programem #OPTY. (Załącznik 4) opartym na metodzie Gaussa-Seidela, poszukując współczynników a, b przy kryterium:

 $\sum_{n=1}^{n} (\lambda_{n})^2 = \min_{n=1}^{n} \lambda_{n}$

(3.17)

(3.16)

(3.15)

febela 5

Wyniki bedań eksperymentalnych własności cieplnych – miału węglowego $g = 1157.935 \text{ kg/m}^3 \omega_0 = 0.17$ (temperatury ujemne) **T** – temperatura **T** – temperatura **T** – temperatura

 ω_0 - wilgotność względna

e - gestość

m - tempo chłodzenia próbki

Ir	Temperatura]	Dyfuzyjność cieplna				Współ.przej.ciepła			Przemod	ność cie	Ciepło właś.efekt.			
-	T [K]	Nr pom	m _∞ ·10 ⁻⁴ [s ⁻¹]	a.10 ⁻⁷ [m ² /8]	a.10 ⁻⁷ [m ² /s]	Nr pom	[a ⁻¹]	a [w/mK]	Nr pom	m ₂ ·10 ⁻⁵ [s ⁻¹]	λ [w/mK]	⊼ [₩/mK]	Nr pom	c _{ef} [kJ/kgK]	ef [kJ/kgK]
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	270.56	1 2 3 4	3.3458 3.4531 3.0917 3.0867	1.4191 1.4646 1.3113 1.3137	1.3772	1 2 3 4	3.0336 2.9947 3.0156 3.0908	6.8332 6.7456 6.7225 6.9621	1 2 3 4	3.4730 3.2250 3.0425 3.6372	0.3763 0.4006 0.4094 0.3885	0.3937	1 2 3 4	23.5945 25.1140 25.6669 24.3580	24.6825
2	2 69 . 96	1 2 3 4	8.1250 7.4530 7.6617 9.2608	3.4460 3.1610 3.2496 3.9280	3.4462	1 2 3 4	2.7060 2.6794 2.6414 2.7969	6.0952 6.0354 5.9497 6.3001	1 2 3 4	6.1975 5.7930 6.1350 6.6419	0.4767 0.5075 0.4703 0.4599	0.4786	-1 2 3 4	11.9447 12.7158 11.7827 11.5232	11.9916
3	263.06	1 2 3 4 5	42.4322 41.5989 40.1192 38.2183 38.2347	17.9968 17.6433 17.0157 16.2095 16.2165	17.016	1 2 3 4 5	2.1900 2.0050 2.0975 2.1986 1.9964	4.9330 4.5163 4.7246 4.9524 4.4969	1 2 3 4 5	15.483 17.812 17.175 17.462 17.942	0.7565 0.5907 0.6453 0.6662 0.5833	0,6484	12345	3.8389 2.9972 3.2743 3.3805 2.9597	3.2902
4	263.06	123456	62.3786 58.537 78.799 74.270 91.321 74.754	26.4566 24.8274 33.4211 31.5000 38.732 31.705	31.111	1 2 3 4 5 6	2.7758 2.5280 2.4172 2.5730 2.6508 2.4961	6.2526 5.6944 5.4448 5.7958 5.9710 5.6225	1 2 3 4 5 6	30.426 34.000 34.042 33.719 34.564 33.167	0.8736 0.6950 0.6478 0.7154 0.7188 0.7050	0.7259	1 2 3 4 5 6	2.4246 1.9287 1.7978 1.9856 1.9950 1.9565	2-01147
5	253.16	1 2 3 4 5 6	116.172 112.611 - 107.212 109.253 120.048 111.068	49.272 47.752 45.472 46.337 50.916 47.107	47.811	1 2 3 4 5 6	2.7830 2.7489 2.6792 2.9286 2.6411 2.6414	6.2688 6.1919 6.0348 6.5967 5.9491 5.9497	127456	48.722 40.528 22.505 47.286 50.800 54.253	0.7854 0.9577 0.9881 0.8516 0,7021 0.6484	0.8222	123456	1.4184 1.7296 1.7845 1.5380 1.2679 1.1709	1.4849

42

W wyniku obliczeń wyznaczono a = 1.198, b = 1.8. Ostatecznie funkcja opisująca przewodność przyjmie postać:

$$\lambda = \lambda_{pf} + \frac{1.198}{1.8} [W/mK] \quad (3.18)$$

$$1 + \frac{1.8}{1g[T - T_{pf} + 1]}$$

Drugim parametrem, dla którego poszukiwano postać funkcji opisującej jego zmiany jest efektywne ciepko właściwe. Jak zaznaczono w rozdz.2.3.2 (wzór (2.8)) jest ono funkcją wilgotności ω_0 i temperatury. Ze względu na to, że względna ilość wilgoci ω , która ulega przemianie fazowej zależy od temperatury (2.1), poszukiwano wartości współczynników K_{ω} i K'_{ω} charakteryzujących intensywność przemiany fazowej wilgoci w miale węglowym. Ze względu na to, że wilgoć w miale węglowym tworzy roztwór eutektyczny z solami mineralnymi, zależność (2.1):

$$\omega = \frac{K_{\omega}}{1 + \frac{K_{\omega}}{\lg \left[T - T_{pf} + 1\right]}}$$

powinna spełniać dwa warunki [61], a mianowicie

$$\lim_{T \to T_{pf}} \left(\frac{d\omega}{dT} \right)_{T} = 1$$
 (3.19)

co odpowiada największej szybkości wymrażania wilgoci w temperaturze przemiany fazowej (wymrażanie wilgoci o małym zasoleniu). oraz

$$\left(\frac{d\omega}{dT}\right)_{T \to T_{eut}} = 0$$
 (3.20)

co odpowiada całkowitemu wymrożeniu wilgoci w temperaturze eutektycznej.

Dla przyjętej postaci funkcji warunek (3.19) wyraża się tożsamością:

$$K_{\omega} \cdot K_{\omega}$$

2.303 (T - T_{pf} + 1) [lg (T - T_{pf} + 1) + K_{ω}]² = 1

Po uwzględnieniu $T = T_{pf}$ otrzymomy:

Stad

$$K_{\omega} = 2.303 \cdot K_{\omega}$$

W ten sposób zależność (2.1) została sprowadzona do funkcji z jednym nieznanym współczynnikiem. Podstawiając zależność (2.1) do wzoru (2.8) otrzymano zależność:

$$c_{ef} = c_{L} \omega_{o} \frac{K_{\omega}}{1 + \frac{\omega}{\lg x}} + (1 - \omega_{o}) c_{L} + \begin{pmatrix} 1 & \frac{K_{\omega}}{1 + \frac{K_{\omega}}{\lg x}} \end{pmatrix} \omega_{o} c_{w} + \frac{K_{\omega} K_{\omega}}{\lg x} \end{pmatrix} \omega_{o} c_{w} + \frac{K_{\omega} K_{\omega}}{\lg x}$$
(3.22)

+
$$\omega_0 r_z$$
 2.303 (lg $x + K_{\omega})^2$ (3.22)

 $x = T - T_{pf} + 1$ gdzie: po uwzględnieniu warunku (3.21) otrzymano równanie:

$$k_1 u^2 + k_2 u + k_3 = 0$$
 (3.23)

gdzie:

$$u = \frac{k_{\omega}}{\log x + K_{\omega}}$$

$$k_{1} = \frac{1}{\pi} c_{pf} \omega_{0}$$

$$k_{2} = (c_{L} - c_{w}) \omega_{0} \ln x$$

$$k_{3} = (1 - \omega_{0}) c_{L} + \omega_{0} c_{w} - c_{ef}$$

Dysponując wynikami pomiarów efektywnego ciepła właściwego cef (tabela 5) wyznaczono wartości u rozwiązując równanie (3.23), a następnie określono współczynniki Kw Kw dla każdej wartości ce i na tej podstawie wyznaczono wartości średnie K $_{\omega}$ i K $_{\omega}$

$$K_{\omega} = 1.116$$

 $K'_{\omega} = 0.519$

Zależność (2.1) w przypadku miału węglowego ma postać:

$$\omega = \frac{1.116}{1 + \frac{0.519}{1 - T_{re} + 1}}$$

(3.21)

(3.24)

Porównując wyniki obliczeń ω - dla zmierzonych wartości c_{ef} oraz wyniki obliczeń ω na podstawie zależności (3.21) określono współczynnik korelacji R = 0.9316, co świadczy o dobrej zgodności funkcji (3.24) z funkcją rzeczywiatą. Wyniki obliczeń ω oraz wartości wyznaczone z pomiarów przedstawia rys.13.

Ostatecznie zależność opisująca zmiany efektywnego ciepła właściwego miału węglowego w funkcji temperatury (rys.14) ma postać:

$$c_{ef} = c_{L} \omega_{o} \omega + (1 - \omega_{o}) c_{L} + (1 - \omega) \omega_{o} c_{W} + K_{\omega} K_{\omega}' + \omega_{o} r_{z} \frac{K_{\omega} K_{\omega}'}{2.303 \cdot [lg (T - T_{pf} + 1) + K_{\omega}']^{2}} kJ/kgK \quad (3.25)$$
gdzie:

$$\omega - wg zależności (3.21),$$

$$\omega_{o} - wilgotność względna,$$

$$c_{L}, c_{L}, c_{W} - ciepło właściwe; lodu, węgla, wody,$$

$$r_{u} - ciepło przemiany fazowej woda - lód.$$

Rys.14. Własności cieplne miału węglowego o wilgotności $\omega_0 = 0.17$ i gęstości $\gamma = 1157,935$ kg/m³

3.4. Podsumowanie

- 1. Ze względu na trudności utrzymania niezmiennych w czasie pomiarów w termostacie powietrznym warunków brzegowych, pomiary współczynnika przejmowania ciepła & na powierzchni kalorymetru powinny być prowadzone jednocześnie z pomiarami tempa chłodzenia kalorymetru z badaną próbką. Poprzez koordynację pomiarów zmniejszyć można błąd metody pomiarowej.
- 2. Podczas pomiarów dyfuzyjności cieplnej metodą a kalorymetru pożądane jest utrzymywanie stałej temperatury cieczy chłodzącej [14]. Stabilizacja temperatury jedynie za pomocą standardowego termostatu powietrznego (ż0.04 K), jak wykazały próby (nie opisane w pracy), była niewystarczająca, co objawiało się dużymi zakłóceniami tempa chłodzenia. Dokładniejszą stabilizację moźna osiągnąć poprzez odpowiedni dobór mocy źródła ciepła lub chłodu, sterując mocą grzałek ultratermostatu poprzez autotransformator, a w przypadku źródła chłodu odpowiednio nastawiając zawór dławiący agregatu chłodniczego. Wydajność cieplna źródeł ciepła lub chłodu powinna być taka, aby przy ciągłej pracy pokrywała straty ciepła do otoczenia.
- 3. Przeprowadzone pomiary potwierdziły dotychczasowe opinie [23, 39, 46] o przebiegu zjawisk i charakterze funkcji w temperaturach ujemnych (rys.14).
- 4. Funkcje opisujące proces wymrażania wilgoci powinny spełniać warunki (3.19) i (3.20), co w przypadku funkcji ω (T) o postaci (2.1) nakłada warunek (3.21) na współczynniki K_{ω} i K_{ω}, dotychczas nie było to uwzględniane przy wyznaczaniu funkcji (2.1) (p.2.3).

4. OPIS MATEMATYCZNY PROCESÓW ZAMARZANIA I ROZMRAŻANIA

4.1. <u>Możliwe odmiany opisu matematycznego przeblegu zamarzania</u> i rozmrażania żadunku

Z krótkiego przeglądu znanych modeli obliczeniowych (p.2.6) wynikają różne możliwości opisu procesu zamarzania i rozmrażania. O zkożoności i dokładności rozwiązania decydują zakożenia poczynione przy opisie matematycznym. W tabeli 6 zestawiono parametry wpływające na przebieg zamarzania i rozmrażania oraz sposoby ich uwzględniania. Możliwości opisu matematycznego przebiegów zamarzania i rozmrażenia

Parametr wpływający na przebieg zamarzania i rozmrażania	Opis uproszczony	Opis dokładny
Wpływ ściany wagonu	Uwzględnienie poprzez zredukowany współ- czynnik a _z (5.4)	Uwzględnienie wielkości ^S , 9 _S , c _S , T _n
Przebieg przemiany fazowej	izotermiczny	nieizotermiczny
Wielkości charaktery- zujące stan cieplny rozpatrywanego ośrodka c ₁ S ₁ ² 1 ² 2 ² 2	staže	zależne od tempe- ratury
Wielkości charaktery- zujące otoczenie «, T _g , q	stałe	zmienne
Wymiarowość ośrodka	jednowymiarowy	trójwymiarowy
Warunki początkowe	state $T(x,0) = T_{pocz}$	dowolne $T(x,0) = \psi(x)$

Ponadto możliwe są opisy uwzględniające częściowo charakter opisu dokładnego i uproszczonego. W niniejszej pracy zostaną przedstawione propozycje opisu uproszczonego i opisu dokładnego.dla jednowymiarowego przypadku wymiany ciepła.

Podczas zamarzania i rozmrażania można wyróżnić trzy zasadnicze okresy:

- 1. Wstępne ochładzanie lub ogrzewanie, które trwa do chwili osiągnięcia przez powierzchnię kadunku temperatury przemiany fazowej.
- Okres wędrującego frontu przemiany fazowej okres ten kończy się z chwilą całkowitego przejścia ośrodka w jedną z faz: zamarzniętą lub rozmrożoną.
- 3. Okres przemarzania lub przegrzewania, podczas którego istnieje jedna faza w ośrodku. Stan taki występuje podczas długotrwałych przewozów w ostrych warunkach zimowych lub podczas rozmrażania, gdy proces ten jest kontynuowany bez potrzeby.

W zaproponowanym w pracy opisie uproszczonym (p.4.2) rozpatrzono dwa pierwsze okresy zamarzania i rozmrażania. Trzeci okres, tj. przemarzanie lub przegrzewanie nie byż rozpatrywany ze względu na to, że występuje sporadycznie, a w przypadku przegrzewania jest technicznie nieuzasadniony.

Proponowany w precy opis dokładny (p.4.3) umożliwia analizę zamarzan() i rozmrażania we wszystkich trzech wymienionych wyżej okresach.

4.2. Opis uproszczony procesów zamarzania i rozmrażania

4.2.1. Wstepne ochładzanie lub ogrzewanie

W opisie uproszczonym wpływ ścian wagonu jak zaznaczono w tabeli 6 w niniejszej pracy proponuje się ująć za pośrednictwem zredukowanego współczynnika przejmowania ciepła « na powierzchni ładunku – zależność (2.15). Pole temperatur w tym okresie proponuje się określić na podstawie znanych w teorii wymiany ciepła rozwiązań dla jednowymiarowych przypadków wymiany ciepła. Podczas zamarzania oraz rozmrażania w komorach konwekcyjnych i promiennikowych (warunki brzegowe III rodzaju (p.2.5)) pole temperatur określa zaleźność [37, 55]:

$$T(x, \tau) = T_g + \sum_{n=1}^{\infty} \frac{2(T_{pocz} - T_g)}{\mu_n + \sin \mu_n \cos \mu_n} \cos \mu_n \frac{x}{R} \exp\left(-\mu_n^2 \frac{a\tau}{R^2}\right) (4.1)$$

gdzie:

 μ_n - wartości wkasne funkcji wyznaczone z równania

$$\operatorname{ctg} \mu_n = \frac{1}{B_1} \mu_n$$

Przytoczona zależność jest słuszna przy zakożeniach:

- w chwili początkowej temperatura całego obszaru wynosi T(x,0) = T pocz
- w rozpatrywanym przedziale czasu wartości α_z i T_z są stałe,

- własności cieplne rozpatrywanego ośrodka są w rozpatrywanym przedziale temperatur stałe.

Na wykresach (rys.15 i rys.16) przedstawiono wpływ warunków brzegowych oraz początkowych na czas ochładzania ładunku w wagonie. Obliczenia czasów ochładzania przeprowadzono na przykładzie węgla kamiennego. Ze względu na słabą zbieźność szeregu Fouriera w obliczeniach czasu T uwzględniono 100 wyrazów szeregu. Obliczenia przeprowadzono wg procedury # KWOB (Załącznik 4).

Z przedstawionych wykresów wynika wniosek, że przy małych wartościach α_z okres ochładzania znacznie się wydłuża, co przy przewozach na krótkie odległości nie spowoduje zamarzania ładunku. Wartość współczynnika przejmowania ciepła zależy od prędkości jazdy i praktycznie mieści się w granicach 5-90 [W/m²K] (rys.7). Straty ciepła można obniżyć przez zastosowanie izolacji termicznej na ścianach. Przez zastosowanie izolacji z pianki poliuretanowej o grubości 40 mm i przewodności cieplnej $\lambda = 0.05$ [W/m²K] zgodnie z zależnością

Rys. 15.

Wpływ współczynnika przejmowania ciepła d oraz temperatury otoczenia T_s na czas ochładzania T

Rys.16.

Wpływ temperatury początkowej T_{pocz} i współczynnika przejmowania ciepła & na czas ochładzania T

(2.15) współczynnik α_z dla podanych wyżej wartości obniży się do 1-1,24 [W/m²K]. Przeprowadzone pomiary w kopalni węgla brunatnego Fortuna [4] wykazały, że zastosowanie tego typu izolacji natryakiwanej na ściany wagonów wydłuża czas ochładzania ładunku przy temperaturze początkowej +2°C i temperaturze powietrza $T_g = -4^{\circ}C$, z.6 do 35 godzin.

Przeprowadzone na podstawie zależności (4.1) obliczenia okresu wstępnego ogrzewania kadunku dla typowych warunków rozmrażania w komorach konwekcyjnych lub promiennikowych wykazaży, że okres ten jest stosunkowo krótki - rzędu kilkudziesięciu sekund. Podobne wartości otrzymali autorzy pracy [19].

W przypadku rozmraźania grzejnikami elektrycznymi, przy zakożeniu stałej mocy strumienia ciepła na powierzchni ośrodka (warunki brzegowe II rodzaju - p.2.5) rozkłady temperatur w tym okresie opisuje zależność [37, 55]:

$$T(x, \tau) = T_{\text{pocs}} + \frac{q_c}{\lambda} \left[\frac{Fo}{R} - \frac{R^2 - 3x^3}{6 R} + R \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{\mu_n^2} \cos \frac{x}{R} + \mu_n \cdot \exp(-\mu_n^2 Fo) \right]$$

gdzie:
$$q_c = \text{strumień ciepka na powierzchni,}$$

Fo = liczba Fouriera,
$$\mu_n = n \cdot \pi - \text{wartość wkasna funkcji.}$$

(4.2)

Przeprowadzone obliczenia czasów ogrzewania w oparciu o zależność (4.2) wg procedury # KWO9, wykazaky że czasy ogrzewania są podobnie jak w przypadku warunków brzegowych III rodzaju - krótkie. Zważywszy jednak na fakt, że urządzenia rozmrażalnicze pracujące na tej zasadzie (rozmrażanie oporowe, indukcyjne) charakteryzują się dużym zapotrzebowaniem energii (p.2.5), nawet stosunkowo krótkie czasy nie mogą być pominięte.

Rys.17. Rozkład temperatur w jednowymiarowym ośrodku z przemianą fazową

Rozkład temperatur w tym okresie procesu (rys.17) proponuje się opisać następującym układem równań:

$$\frac{\partial T_1(x,\tau)}{\partial \tau} = \frac{\partial^2 T_1(x,\tau)}{\partial x} \qquad 0 \leq x \leq y \qquad (4.3)$$

$$\frac{\partial T_2(x, \tau)}{\partial \tau} = \frac{\partial^2 T_2(x, \tau)}{\partial x^2} \qquad y \leqslant x \leqslant R \qquad (4.4)$$

$$T_{2}(x, \tau) |_{\tau=0} = f(x)$$

$$2_{1} = \frac{\partial T_{1}(x, \tau)}{\partial x} |_{x=0} = \begin{cases} -q - \text{warunki II rodzaju} \\ (4.6) \\ \alpha_{z}(T_{N}-T_{z}) - \text{warunki III rodzaju} \end{cases}$$

$$\frac{\partial T_2(x, \tau)}{\partial x} = 0 \qquad (4.7)$$

$$\mathbf{T}_{1}(\mathbf{x}, \tilde{\boldsymbol{\tau}}) = \mathbf{T}_{2}(\mathbf{x}, \tilde{\boldsymbol{\tau}}) = \mathbf{T}_{pf}$$
(4.8)

$$c_{pf} s \frac{dy}{d} = \lambda_1 \frac{\partial T_1(x, \tau)}{\partial x} = \lambda_2 \frac{\partial T_2(x, \tau)}{\partial x}$$
 (4.9)

gdzie:

Indekay 1 - dotyczą warstwy, o grubości y, która uległa przemianie fazowej, tj. zamarznięciu lub rozmrożeniu. 2 - dotyczą warstwy, która jeszcze nie zamarzła lub nie rozmroziła się.

W trakcie obliczeń należy zwracać uwagę na znak wartości ciepła przemiany wode - lód r_z .

Jak zaznaczono w p.2.7 dokładność wyników obliczeń można podnieść przez zastąpienie równania (4.9) równaniem o postaci (2.20). Wyrażając strumienie ciepła dopływające i odpływające w punkcie przemiany fazowej przez zmiany entalpii w obszarze zamarzniętym i rozmrożonym otrzymamy:

$$\lambda_{1} \frac{\partial T_{1}(x, \tau)}{\partial x} |_{x=y} = \lambda_{1} \frac{\partial T_{1}(x, \tau)}{\partial x} |_{x=0} - c_{1} \int_{0}^{y} \frac{\partial T_{1}(x, \tau)}{\partial \tau} dx$$

$$\lambda_{2} \frac{\partial T_{2}(x, \tau)}{\partial x} |_{x=y} = c_{2} \int_{0}^{R} \frac{\partial T_{2}(x, \tau)}{\partial \tau} dx$$

$$(4.10)$$

$$(4.11)$$

Uwzględniając że:

otrzymamy:

$$\begin{bmatrix} c_{pf} + c_{1} \\ 0 \\ 0 \end{bmatrix}_{0}^{y} \frac{\partial T_{1}(x, \tau)}{\partial y} dx + c_{2} \\ y \end{bmatrix}_{y}^{R} \frac{\partial T_{2}(x, \tau)}{\partial y} dx = \frac{\partial T_{1}(x, \tau)}{\partial x} |_{x=0}$$

$$(4.12)$$

W tej postaci równanie (4.17) zostało zaproponowane przez Leybensona [27]. Rozwiązanie zagadnienia przy podanych założeniach dla przypadku zamarzania przy warunkach brzegowych III rodzaju podano w pracy [27]. Podobnie można przeprowadzić rozważania dla rozmrażania przy warunkach II rodzaju. Rozkłady temperatur w obszarze zamarzniętym i rozmrożonym, przyjmuje się w takiej postaci, by spełniały one warunki graniczne, w przybliżeniu opisywały rzeczywiste rozkłady temperatur i były możliwie proste. W chwili początkowej w rozpatrywanym obszarze istnieje rozkład temperatur wynikający z zależności (4.1) lub (4.2) charakteryzujący końcową fazę ochładzania lub ogrzewania. Rozkłady te można aproksymować w przybliżeniu funkcją o postaci:

$$T_2(x, \tau) = f(x) = T_{pocz} + (T_{pf} - T_{pocz})(\frac{R - x}{R})^2$$
 (4.13)
 $\tau = 0$

Przyjmując liniowy rozkład temperatur w obszarze rozmrożonym po uwzględnieniu warunków (4.6) i (4.8) otrzymujemy:

- dla warunków III rodzaju:

$$T_{1}(x, \tilde{c}) = T_{pf} + \frac{T_{g} - T_{pf}}{\lambda_{1}} (y - x) \qquad (4.14)$$

- dla warunków II rodzeju:

$$T_{1}(x, \tau) = T_{pf} + \frac{q}{\lambda_{1}}(y - x)$$
 (4.15)

W obszarze zamarzniętym przyjęto rozkład temperatur w postaci wielomianu drugiego stopnia. Uwzględniając (4.5) i (4.8) i (4.13) po przekształceniach otrzymano:

$$T_2(x, \tau) = T_{pocz} + \frac{T_{pf} - T_{pocz}}{R} \left(y + \frac{R - x}{R - y}\right)^2$$
 (4.16)

Wstawiając wyznaczone zależności $T_1(x, \tau)$ i $T_2(x, \tau)$ do równania (4.12) oraz wykonując zaznaczone dziażania otrzymano równanie różniczkowe:

- dla warunków III rodzaju:

$$d\tau = dy \left[\frac{c_{pf} \cdot g}{\lambda_2 (T_g - T_{pf})} \left(\frac{\lambda_2}{\alpha} + y \right) - \frac{c_2 g}{2 \lambda_2} \left(1 + \frac{\lambda_2}{\alpha^2 (\frac{\lambda_2}{\alpha} + y)} \right) \left(\frac{\lambda_2}{\alpha} + y \right) + \frac{2 c_1 g (T_{pf} - T_{poc2})}{3 \lambda_2 R (T_{pf} - T_g)} (R - y) \left(\frac{\lambda_1}{\alpha} + y \right) \right]$$
(4.17)

- dla warunków II rodzaju:

$$d\tau = dy \left[\frac{c_{ef}'g}{q} + \frac{c_2g}{2} + \frac{2c_1g}{3Rq} (T_{pocz} - T_{pf}) (R - y) \right] (4.18)$$

Po scałkowaniu równania (4.17) otrzymano:

$$\tilde{c} = \frac{y}{2} \left(\frac{2\lambda_1}{\alpha_2} + y \right) \left(A + CR \right) - B \ln \left(1 + \frac{\alpha_2 y}{\lambda_1} \right) - C y^2 \left(\frac{\lambda_1}{2\alpha_2} + \frac{y}{3} \right) (4.19)$$

$$A = \frac{c_{pf}}{\lambda_{1}} \left(T_{pf} - T_{g} \right) + \frac{c_{1}}{2\lambda_{1}}$$
$$B = \frac{c_{1} \gamma \lambda_{1}}{2 \alpha_{2}^{2}}$$

$$C = \frac{2 c_2 \beta (T_{pocz} - T_{pf})}{3R \lambda_1 (T_{pf} - T_g)}$$

Po scałkowaniu równania (4.18) otrzymano:

q

$$\tau = (A + CR) y + (B - C) \frac{\sqrt{2}}{2}$$
(4.20)

$$\frac{c_{pf} \, \beta}{q}; \qquad B = \frac{c_2 \, \beta}{2}; \qquad C = \frac{2 \, c_1 \, \beta \, (T_{pocz} - T_{pf})}{3 \, R \, q}$$

2

Otrzymane zależności pozwalają w przybliżeniu oszacować czas rozmrażanie lub zemerzanie w funkcji parametrów charakteryzujących te procesy.

Zależności opisujące rozkłady temperatur zwłaszcza w obszarzerozmrożonym przyjęte jako funkcje liniowe mogą odbiegać od rzeczywistych rozkładów temperatur, ze względu jednak na to, że w rozwiązaniu zagadnienia posłużono się zależnością (4.12) zamiast (4.9) błąd rozwiązania powinien być mniejszy.

4.3. Opis dokładny procesów zamarzania i rozmrażania

W dokładnym opisie matematycznym uwzględniono warunki podane w tabeli 6, przy czym model dotyczy jednowymiarowego procesu Wymiany ciepła, co zostało uzasadnione w p.2.5. Schemat badanego obszaru przedstawiono na rys.18

Rys. 18.

Schemat rozpatrywanego obszaru

- 1 obszar niezamarznięty lub nierozmrożony,
- 2 obszar zamarznięty lub rozmrożony
- 8 ściana wagonu

Opis matematyczny

$$g_{1} c_{1}(T) \frac{\partial T(x, \tau)}{\partial \tau} = \frac{\partial}{\partial x} \left(\lambda_{1}(T) \frac{\partial T(x, \tau)}{\partial x} \right) \qquad R - y \leq x \leq R$$

$$(4.21)$$

$$g_{2} c_{2}(T) \frac{\partial T(x, \tau)}{\partial \tau} = \frac{\partial}{\partial x} \left(\lambda_{2}(T) \frac{\partial T(x, \tau)}{\partial x} \right) \qquad 0 \leq x \leq R - y$$

$$(4.22)$$

$$(4.22)$$

$$\frac{\partial}{\partial T} \left[\overline{c_1} \ \overline{T_1} \ g_1 \cdot y + \overline{c_2} \ \overline{T_2} \cdot g_2 (R - y) + c_g \ g_g \ g \ T_n \right] = \begin{cases} -q - \text{warunki II} \\ \text{rodzaju} \end{cases}$$
$$\alpha(T_n - T_g) \text{ warunki III} \\ \text{rodzaju} \end{cases}$$

(4.23)

$$\frac{\partial T(x, \tau)}{\partial x} = \frac{c_g r_g g}{x=R} = \frac{\partial T(x, \tau)}{\partial \tau} = \begin{cases} -q - warunki II rodzaju \\ \alpha (T_n - T_g) warunki III rodzaju \end{cases}$$
(4.24)

56

$$\frac{\partial \mathbf{T}(\mathbf{x}, \tau)}{\partial \mathbf{x}} = 0 \qquad (4.25)$$

$$T_1(x, \tau) = T_2(x, \tau) = T_{pf}$$
 (4.26)
x=y=0 x=y=0

$$\mathbf{T}(\mathbf{x}, \mathcal{T}) = \mathbf{f}(\mathbf{x}) \qquad (4.27)$$

W proponowanym opisie matematycznym wpływ ścian wagonu został uwzględniony w równaniach (4.23) i (4.24). W opisie tym przyjęto, że temperatura stalowej ściany wagonu jest jednakowa na grubości ściany. Założenie to nie wprowadza dużych rozbieżności.

Równanie (4.23) stanowi zmodyfikowaną postać równania (4.12), w którym nieizotermiczny proces wymrażania wilgoci zostak uwzględniony w średnim cieple właściwym (efektywne ciepko właściwe p.2.3.2). W równaniu tym uwzględniono zmiany entalpii ścian wagonu, a strumienie ciepła na brzegu obszaru wyrażono za pomocą warunków zewnętrznych.

Przedstawiony przebieg wymiany ciepła jest opisany równaniami róźniczkowymi cząstkowymi o nieciągkych i nieliniowych współczynnikach.

Symbole C T – oznaczają średnie wartości całkowe efektywnego ciepła właściwego i temperatury.

4.3.1. Opis metody rozwiązania

Z omówionych w p.2.6 metod rozwiązywania nieliniowych zagadnień wymiany ciepła do rozwiązania układu równań (4.21-4.27) wybrano metodę różnic skończonych. W rozpatrywanym zagadnieniu pole temperatur rozpatruje się w funkcji współrzędnych oraz czasu. W przypadku jednowymiarowego przewodzenia ciepła, badany obszar moźna określić jako:

$$\overline{D} = \left\{ 0 \leqslant x \leqslant R, \quad 0 \leqslant \tau \leqslant \tau_k \right\}$$

Zgodnie z zasadą metody różnic skończonych badany obszar pokrywa się siatką różnicową dzieląc odcinek $0 \le x \le R$ na n równych części o długości h punktami $x_i = (i-1)$ h, $x_n = R$, i = 2...n. Odstęp czasu $0 \le T \le T_{1,k}$ dzieli się na l części o długości k

$$T_{\gamma} = 1 \cdot k$$
 $1 = 0 \dots 1_{k}$

Pochodną funkcji wzdłuż długości z dowolną dokładnością można obliczyć na podstawie rozwinięcia funkcji w szereg Taylora w otoczeniu punktu badanego (x + h i x - h), gdzie h jest dowolnie małą wartością; wtedy dla punktu x + h

$$T(x+h, T) = T(x, T) + h = \frac{\partial T}{\partial x} + \frac{\partial^2 T}{2! \partial x^2} + \frac{\partial^3 T}{\partial x^3} + \cdots$$
 (4.28)

dla punktu x - h

$$T(x-h, T) = T(x, T) - h \frac{\partial T}{\partial x} + \frac{\partial^2 T}{2! \partial x^2} + \frac{\partial^3 T}{\partial x^3} + \cdots$$
 (4.29)

Przy małych wartościach h wystarczy wziąć pod uwagę jedynie trzy pierwsze wyrazy szeregu, odrzucona reszta szeregu R(h²) będzie mniejsza od h², co w praktycznych obliczeniach jest wystarczające. W obliczeniach wykorzystuje się ilorazy przednie, wsteczne i centralne. Dla przypadku pochodnej temperatury względem współrzędnej x iloraz róźnicowy przedni wyraża się zaleźnością:

$$\partial \mathbf{T} = \mathbf{T}(\mathbf{x} + \mathbf{h}, \tau) - \mathbf{T}(\mathbf{x}, \tau) + \mathbf{R}(\mathbf{h}^2)$$
(4.30)
$$\partial \mathbf{x} = \mathbf{h}$$

iloraz wsteczny ma postać:

$$\frac{\partial T}{\partial x} = \frac{T(x, \tau) - T(x - h, \tau)}{h} + R(h^2)$$
(4.31)

iloraz centralny można otrzymać jako zmianę wartości funkcji na odcinku 2h odejmując od siebie stronami równania (4.28) i (4.29) z ograniczeniem do 3 pierwszych wyrazów szeregu.

$$\frac{\partial T}{\partial x} = \frac{T(x + h, \tau) - T(x - h, \tau)}{2h} + R(h^3) \qquad (4.32)$$

Podobnie można skonstruować różnicę centralną aproksymującą pochodją drugiego rzędu.

$$\partial^2 T = T(x - h, \tau) - 2T(x, \tau) + T(x - h, \tau) + R(h^4)$$
 (4.33)
 $\partial x^2 = h^2$

Z analiz stabilności rozwiązań [7, 45, 61] wynika, że najbardziej stabilne są rozwiązania oparte na równaniach, w których użyto ilorazów centralnych. W oparciu o te ilorazy buduje się schematy róźnicowe jawne, niejawne i jawno-niejawne (rys.19).

Rys.19. Schematy różnicowe a - jawny, b - niejawny

Schemat jawny

Ilorazy różnicowe wg tego schematu mają postać:

$$\frac{\partial T_{1,1}}{\partial \tau} = \frac{T_{1,1} - T_{1,1-1}}{k} + \varepsilon_1$$

$$\frac{\partial^2 T_{1,1-1}}{\partial x^2} = \frac{T_{1-1,1-1} - 2T_{1,1-1} + T_{1+1,1-1}}{h^2} + \varepsilon_2$$

gdzie: E, i E, są błędami aproksymacji.

Równanie przewodnictwa cieplnego o stałych współczynnikach zapisane przy użyciu schematu jawnego przyjmuje postać:

$$\frac{T_{1,1} - T_{1,1-1}}{k} + \varepsilon_1 = 2 \left(\frac{T_{1-1,1-1} - 2T_{1,1-1} + T_{1+1,1-1}}{h^2} + \varepsilon_2 \right)$$

Użycie w obliczeniach schematu jawnego pozwala wyznaczyć na podstawie znajomości rozkładu temperatur w chwili poprzedniej temperaturę w danym punkcie pola T_{il} w chwili następnej (rys.19a):

$$T_{1,1} = \left(1 - \frac{2ak}{h^2}\right) T_{1,1-1} + \frac{ak}{h^2} \left(T_{1-1,1} + T_{1+1,1}\right) + k R$$

gdzie: $R = a \mathcal{E}_1 + \mathcal{E}_2$.

Schematy te są wygodne w obliczeniach, ich wodą jest niestabilność rozwiązań przy nieprawidłowo dobranych krokach h i k, co zostanie dokładniej omówione w p.4.3.6.

Schemat niejawny

Ilorazy róźnicowe dla tego schematu mają postać:

$$\frac{\partial T_{1,1}}{\partial t} = \frac{T_{1,1} - T_{1,1-1}}{k} + \varepsilon_1$$

$$\frac{\partial^2 T_{1,1}}{\partial t^2} = \frac{T_{1-1,1} - 2T_{1,1} + T_{1+1,1}}{k^2} + \varepsilon_2$$

Równanie przewodnictwa cieplnego w tym przypadku przyjmie postać

$$\frac{T_{1,1} - T_{1,1-1}}{k} + \varepsilon_1 = e \left(\frac{T_{1-1,1} - 2T_{1,1} + T_{1+1,1}}{h^2} + \varepsilon_2 \right)$$

Zgodnie z podanym równaniem wartość temperatury w punkcie $T_{i,1}$ jest uzależniona od temperatury w tym punkcie w poprzedniej chwili $T_{i,1-1}$ oraz od temperatury w sąsiednich punktach $T_{i-1,1}$ i $T_{i+1,1}$ (rys.19b). W celu określenia temperatury w danym punkcie należy ukożyć równania dla wszystkich punktów "i" rozpatrywanego układu.

Wynik uzyskuje się poprzez rozwiązanie układu równań. Zaletą schematów jawnych jest ich absolutna stabilność, niezależnie od wartości kroków h i k.

Schematy jawno-niejawne

Obliczenia według tej zasady polegają na wyznaczaniu temperatury w kolejnych punktach na przemian wg schematu jawnego i niejawnego. Oddzielny problem stanowią obliczenia wartości temperatur na brzegu obszaru D. Wykorzystuje się wtedy z warunki brzegowe. W celu uzyskania prawidłowych wyników na brzegu obszaru, stosuje się różne podziały strefy przybrzegowej siatką różnicową (rys.20).

Rys.20. Schematy slatek różnicowych

- a) zwykła,
- b) Schmidta,
- c) amerykańska.

Z obliczeń przeprowadzonych w pracy [61] wynika, że zadawalające wyniki uzyskuje się dla sistki zwykłej, przy czym w rozważaniach należy uwzględnić akumulację ciepła w warstwie przybrzegowej.

4.3.2. Opis różnicowy procesu zamarzania i rozmrażania

Badany obszar \overline{D} { $0 \le x \le R$, $0 \le \tau \le \tau_k$ } podzielono na n czę (rys.21) po współrzędnej x i przyjęto krok czasowy k dyskretyzujący zmienną τ .

Rys.21. Schemat slatkovy obszaru z przemi ną fazową

 $0 \leq x \leq R \qquad x_{i} = (i-1)h \qquad h = \frac{R}{n-2}$ i = 1...n $0 \leq \tau \leq \tau_{max} \qquad \tau_{1} = 1 \quad k \qquad 1 = \frac{\tau_{max}}{1_{max}}$

1 = 0...1 max

Przyjęty do rozwiązań opis matematyczny (4.21)-(4.27) w zapisie różnicowym wyrazi się następująco:

- równanie przewodnictwa cieplnego - echemat jawny,

$$(\varsigma_{c_{j}})_{i,l-1} \delta_{\tau} T_{i,l} = (\lambda_{j})_{i,l-1} \delta_{xx} T_{i,l-1} + \delta_{x} (\lambda_{j})_{i,l-1} \delta_{x} T_{i,l-1}$$

(4.3)

- równanie propagacji izotermy początku przemiany fazowej, $\delta_{\tau} \left[\overline{c}_1 \ \overline{T}_1 \ (R-y) \, \varsigma_1 + \overline{c}_2 \cdot \overline{T}_2 \cdot y \cdot \varsigma_2 + c_3 \cdot \varsigma_3 \cdot s \cdot T_n \right] = \begin{cases} -q - \text{warunki II rod} \\ \alpha_z (T_n - T_s) \text{ war. III rod} \end{cases}$ (A.3)

y == 0	1 =	1n-1	j	25	1					
0 < y < h	1 =	1n-2	j	12	1					
h < y < 2h	1 =	1n-3	j	-	1					
2h < y < R	1 -	1r-1	j	m	1,	i m	r+2n-1	j	23	2

warunek brzegowy,

$$-(\lambda_{j})_{n,l} \delta_{x} T_{n,l} - \beta_{s} \delta_{s} \delta_{t} T_{n,l} = \begin{cases} -q_{l} - warunki \ \text{II rodzaju} \\ \alpha_{l}(T_{n,l} - T_{s,l}) \ \text{war. III rodz.} \end{cases}$$

$$(4.36)$$

równanie przewodnictwa cieplnego - schemat niejawny,

$$(Sc_j)_{i,l}\delta_T T_{i,l} = (\lambda_j)_{i,l}\delta_{xx} T_{i,l} + \delta_x (\lambda_j)_{i,l}\delta_x T_{i,l}$$
 (4-37)

0 < y < h i=r j=1, $T_{2,1} < T_{pf}$ i=1...n-1 j=2 h < y < R - h i=r j=1, i=r+2 j=2

warunek symetryczności rozkładu temperatur.

$$T_{1.1} = T_{3.1}$$
 (4.38)

warunek ciągłości pola temperatur,

$$\mathbf{r}(\mathbf{y}, \tau) = \mathbf{T}_{\mathbf{p}\mathbf{f}} \tag{4.39}$$

warunek początkowy,

 $T_{1.0} = \psi(x)$ (4.40)

W powyższych równaniach c, T oznaczają średnie wartości całkowe. Indeksami j = 1 lub 2 oznaczono odpowiednio 1 - obszar, który uległ przemianie fazowej, tj. zamarznięciu lub rozmrożeniu. 2 - obszar, który ulega przemianie fazowej, zamarza lub rozmraża się. indeksem r - oznaczono węzeł siatki różnicowej poprzedzającej front przemiany fazowej.

4.3.3. Opis algorytmu obliczeń

Ośrodek jednofazowy

Rozkład temperatur w chwili l = 1 dla punktów i = 2... n - 1 wyznacza się z warunku początkowego (4.40) wykorzystując zależność (4.34) opartą na schemacie jawnym

$$T_{1,1} = T_{1,1-1} + \frac{k}{(s_j c_j)_{1,1-1}} \left({\binom{\lambda_j}{1,1-1}}^{\delta_{XX}} T_{1,1-1} + \delta_{X} T_{1,1-1} \delta_{X} {\binom{\lambda_j}{1,1-1}} \right)$$
(4.41)

gdzie:

$$\delta_{\tau} T_{i,1} = \frac{T_{i,1} - T_{i,1-1}}{K}$$

$$\delta_{x} T_{i,1-1} = \frac{T_{i+1,1-1} - T_{i-1,1-1}}{2h}$$

$$\delta_{x} (\lambda_{j})_{i,1-1} = \frac{\lambda_{i+1,1-1} - \lambda_{i-1,1-1}}{2h}$$

$$\delta_{x} T_{i,1-1} = \frac{T_{i+1,1-1} - 2T_{i,1-1} + T_{i-1,1-1}}{2h}$$

Temperaturę w środku obszeru (punkt i = 2) wyznacze się uwzględniając warunek symetrczności (4.38) (rys.22)

T1,1 = T31

Zgodnie z przedstawionym przebiegiem procesów zamarzania i rozmrażania (p.4.1), okres wstępnego ochładzania lub ogrzewania kończy się z chwilą osiągnięcia przez powierzchnię badanego ośrodka temperatury przemiany fazowej. Jednocześnie powstaje nowa faza (ośrodek dwufazowy) o innych własnościach cieplnych $\gamma_2 c_2 \lambda_2$. Aby zachować dokładność obliczeń istotne jest określenie okresu zakończenia procesu wstępnego ochładzania lub ogrzewania.

W tym celu zastosowano zmienny w poszczególnych iteracjach krok czasowy k

$$k = k \frac{T_{n,1-1} - T_{pf}}{T_{n,1-1} - T_{n,1}}$$
(4.42)

Wytępujące we wzorze wartości $T_{n,l-1}$ - odnoszą się do rozkładu temperatur w poprzedniej chwili iteracyjnej, dopiero końcowe wyniki, po spełnieniu warunku dokładności obliczeń są rejestrowane.

Ośrodek dwufazowy

Rys.23. Schemat rozkładu temperatur w ośrodku dwufazowym w pobliżu granicy rozdziału faz

Ta faza procesu charakteryzuje się wędrującym w czasie frontem przemiany fazowej. Wędrująca granica rozdziału faz zajmuje w poszczególnych chwilach l położenia pomiędzy węzłami siatki różnicowej. Z tego powodu schematy różnicowe dla punktów przygranicznych: r, r+1 frontowi przemiany fazowej (rys.23) mają nieco inną postać niż podano w p.4.3.2.

Wzory obliczeniowe

W obszarze dwufazowym podobnie jak dla obszaru jednofazowego temperaturę w punktach i=2...r-1 i r+2...n-1 wyznacza się z zaleźnośji (4.41). W pierwszym przybliżeniu temperaturę w tym punkcie można wyznaczyć z zależności (4.41), przy czym ilorazy różnicowe występujące w tej zależności mają postać:

$$\delta_{\tau} T_{i,1} = \frac{T_{r,1} - T_{r,1-1}}{k}$$

$$\delta_{x} T_{i,1-1} = \frac{T_{pf} - T_{r-1,1-1}}{2h - h_{1-1}}$$

$$\delta_{x} (\lambda_{j})_{i,1-1} = \frac{\lambda_{pf} - \lambda_{r-1,1-1}}{2h - h_{1-1}}$$

$$\delta_{xx} T_{i,1-1} = \frac{T_{pf} - T_{r,1-1}}{h - h_{1}} - \frac{T_{r,1-1} - T_{r-1,1-1}}{h}$$

Dokładną wartość temperatury w punkcie i = r wyznacza się z zależności opartej na schemacie niejawnym (4.37), w której:

$$\delta_{T} T_{i,1} = \frac{T_{r,1} - T_{r,1-1}}{k}$$

$$\delta_{x} T_{i,1} = \frac{T_{pf} - T_{r-1,1}}{2h - h_{1}}$$

$$\delta_{xx} T_{i,1} = \frac{T_{pf} - T_{r,1}}{h - h_{1}} \frac{T_{r,1} - T_{r-1,1}}{h}$$

$$\delta_{x} (\lambda_{j})_{i,1} = \frac{\lambda_{pf} - (\lambda_{j})_{r,1}}{h - h_{1}} - \frac{(\lambda_{j})_{r,1} - (\lambda_{j})_{r-1,1}}{h}$$

ostatecznie

$$T_{r,1} = \frac{\frac{(9 c_{1})_{r,1}}{k} T_{r,1-1} + \frac{2(\lambda_{1})_{r,1}}{2h - h_{1}} \left(\frac{T_{pf}}{h - h_{1}} + \frac{T_{r-1,1}}{h}\right) + \frac{(T_{pf} - T_{r-1,1})(\lambda_{pf} - \lambda_{r-1,1})}{(2h - h_{1})^{2}}}{\frac{(9 c_{1})_{r,1}}{k} + \frac{2(\lambda_{1})_{r,1}}{h(h - h_{1})}}$$

$$(4.43)$$

Temperatura prawostronnej granicy rozdziału faz (punkt i=r+1) W pierwszym przebliżeniu jest wyznaczana z zaleźności (4.41), w której:

$$\delta_{\tau} T_{1,1} = \frac{T_{r+1,1} - T_{r+1,1-1}}{k}$$

$$\delta_{x} T_{1,1-1} = \frac{T_{r+2,1-1} - T_{pf}}{h + h_{1-1}}$$

$$\delta_{x} (\lambda_{j})_{1,1-1} = \frac{(\lambda_{j})_{r+2,1-1} - \lambda_{pf}}{h + h_{1-1}}$$

$$\delta_{xx} T_{1,1-1} = \frac{T_{r+2,1-1} - T_{r+1,1-1}}{h} - \frac{T_{r+1,1-1} - T_{pf}}{h_{1-1}}$$

Dokładną wartość temperatury w punkcie i=r+1 wyznacza się z zależności opartej na schemacie niejawnym (4.37) w której:

$$\delta_{\tau} T_{1,1} = \frac{T_{r+1,1} - T_{r+1,1-1}}{k}$$

$$\delta_{x} T_{1,1-1} = \frac{T_{r+2,1} - T_{pf}}{h + h_{1}}$$

$$\delta_{x} (\lambda_{j})_{1,1} = \frac{(\lambda_{j})_{r+2,1} - \lambda_{pf}}{h + h_{1}}$$

$$\delta_{xx} T_{1,1} = \frac{T_{r+2,1} - T_{r+1,1}}{n} - \frac{T_{r+1,1} - T_{pf}}{h_{2}}$$

po przekaztałceniach otrzymano:

$$T_{r+1,1} = \frac{\frac{(9 c_1)_{r+1,1}}{k} T_{r+1,1} + \frac{2(\lambda_1)_{r+1,1}}{h+h_1} \left(\frac{T_{r+2,1}}{h} \frac{T_{r+2,1}}{h_1} + \frac{(T_{r+2,1} T_{r+1,1})_{(h+h_1)^2}}{(h+h_1)^2} - \frac{(9 c_1)_{r+1,1}}{k} + \frac{2(\lambda_1)_{r+1,1}}{h+h_1} \right) (4.44)$$

Struktura podanych wzorów ulega zmianie w przypadku przekraczania węzła siatki przez front przemiany fazowej. Obliczenia dla lewostronnej granicy rozdziału faz (punkt r - (rys.23)) przeprowadza się wg zależności (4.41) i (4.43).

Wartości temperatur prawostronnej granicy rozdziału faz (punkt r+1) dla przypadku przekraczania węzła przez front przemiany wyznacza się stosując interpolację liniową [61, 64] (rys.24).

$$\frac{T_{pf} - T_{r+2,1}}{h + h_{1}} = \frac{T_{pf} - T_{r+1,1}}{h_{1}}$$
(4.45)

Stad

$$T_{r+1,1} = T_{pf} - \frac{T_{pf} - T_{r+2,1}}{h + h_1} h_1$$
 (4.46)

Temperatura powierzchni obszaru

W rozpatrywanym procesie zamarzania Ładunku podczas transportu wymiana ciepła przebiega wg warunków brzegowych III rodzaju. W procesie rozmrażania w zależności od sposobu rozmrażania wymiana ciepła zschodzi wg warunków II rodzaju, III rodzaju lub warunków mieszanych, jak o tym była mowa w p.2.5. W bilansie ciepła (4.36) dla przybrżegowej warstwy ośrodka bierze się pod uwagę strumień ciepła q_1 , wnikający lub odprowadzany z badanego obszaru w głąb ośrodka, strumień ciepła q_3 wymieniany przez badany ośrodek z otoczeniem, zmianę entalpii ścian wagonu q_4 oraz zmianę entalpii warstwy ośrodka o grubości z (rys.25).

$$q_1 + q_2 + q_4 = q_3$$
 (4.47)

h

gdzie:

$$q_{1} = -(\overline{\lambda}_{j}) \frac{T_{n_{g}1} - T_{n-1_{g}1}}{z}$$

$$z = h \quad gdy; \quad y = 0, \quad y >$$

$$z = y = h_{1} \quad gdy; \quad y \leq h$$

 $(\overline{\lambda_{j}})$ oznacza wartość średnią przewodności cieplnej

$$\overline{T} = \frac{T_{n,1} + T_{n-1,1}}{2}$$

$$\mathbf{r}_{2} = \mathbf{r}_{j} \mathbf{z} \frac{1}{k} \left(\overline{\mathbf{c}}_{1} \frac{\mathbf{T}_{n,1} + \mathbf{T}_{n-1,1}}{2} - \overline{\mathbf{c}}_{1-1} \frac{\mathbf{T}_{n,1-1} + \mathbf{T}_{n-1,1-1}}{2} \right)$$

gdzie:

: C - średnia wartość ciepła właściwego warstwy o grubości z

$$q_4 = q_8 c_8 s \frac{T_{n_2} - T_{n_2} - 1}{k}$$

 $q_{3} = \begin{cases} -q_{1} - \text{warunki II rodzeju} \\ \alpha(T_{s,1} - T_{n,1}) - \text{warunki III rodzeju} \end{cases}$

Temperaturę na brzegu obszaru wyznacza się z zależności (4.47), która w przypadku, gdy własności cieplne badanego ośrodka nie zależą od temperatury, po przekształceniach przyjmuje postać:

$$T_{n,1} = \frac{\frac{\lambda_{j} T_{n-1,1} - \frac{\beta_{j} c_{j} h}{2k} (T_{n-1,1} - T_{n,1-1} - T_{n-1,1-1}) + \beta_{\beta} c_{\beta} \frac{T_{n,1-1} + d_{L} T_{n-1,1}}{k}}{\frac{\lambda_{j}}{h} + \frac{\beta_{j} c_{j} h}{2k} + \frac{\gamma_{\beta} c_{\beta} \beta}{k} + \alpha}$$
(4.48)

W przypadku, gdy przewodność cieplna i ciepło właściwe są nieliniowymi funkcjami temperatury, wartość $T_{n,1}$ można wyznaczyć jedynie przybliżoną metodą numeryczną.

Propagacja frontu przemiany fazowej

W rozpatrywanym modelu obliczeniowym zagadnienie to opisano równaniem (4.35). Najogólniej równanie to dotyczy bilansu cieplnego rozpatrywanego ośrodka z otoczeniem. Uwzględniając specyfikę metody różnie skończonych równanie (4.35) przyjmie postać:

$$\frac{1}{R} \left[(\overline{c}_{1,1-1} \ \overline{T}_{1,1-1} \cdot (R - y_{1-1}) - \overline{c}_{1,1} \cdot \overline{T}_{1,1} \cdot (R - y_{1})) g_{1} + (\overline{c}_{2,1} \ \overline{T}_{2,1} \ y_{1} - \overline{c}_{2,1-1} \ \overline{T}_{2,1-1} \ y_{1-1}) g_{2} + c_{g} g_{g} g_{1} \cdot (T_{n,1} - T_{n,1-1}) g_{1} \right]^{-q_{3}}$$

$$(4.49)$$

W równaniu tym: c₁, c₂ - średnie ciepło właściwe badanego obszaru 1 lub 2 (rys.18) liczone jako średnia wartość całkowa.

$$\overline{c}_{j} = \frac{1}{T_{g} - T_{d}} \int_{T_{d}}^{T_{g}} c_{j}(T) dT$$

 \overline{T}_1 i \overline{T}_2 - średnie całkowe wartości temperatur. Ze względu na dyskretny charakter pola temperatur, wartości te wyznacza się metodą trapezów:

dla ośrodka jednofazowego y = 0

$$\overline{T}_{1} = \frac{1}{T_{2,1-1} - T_{pf}} \sum_{i=2}^{n} \left(\frac{T_{i,1-1} + T_{i+1,1-1}}{2} \right)$$

dla ośrodka dwufazowego y > 0

$$\bar{F}_{1} = \frac{1}{T_{2,1} - T_{pf}} \left(\sum_{i=2}^{r} \left(\frac{T_{i,1} + T_{i+1,1}}{2} h \right) + \frac{T_{r,1} + T_{pf}}{2} (h - h_{1}) \right)$$

$$\overline{T}_{2} = \frac{1}{T_{pf} - T_{n,1}} \left(\sum_{i=r+1}^{n} \left(\frac{T_{i,1} + T_{i+1,1}}{2} h \right) + \frac{T_{pf} + T_{r+1,1}}{2} h_{1} \right)$$

Przekształcając zależność (4.49) otrzymamy:

$$y_{1} = \frac{q_{3}k - c_{s} \beta_{s} \mathbf{s} (\mathbf{T}_{n,1} - \mathbf{T}_{n,1-1}) - \overline{c}_{1,1-1} \cdot \overline{\mathbf{T}}_{1,1-1} (\mathbf{R} - \mathbf{y}_{1-1}) \beta + \overline{c}_{2,1-1} \cdot \overline{\mathbf{T}}_{2,1-1} y_{1-1} \beta}{\overline{c}_{1,1} (\mathbf{T}_{r+1,1} - \mathbf{T}_{pf}) \beta_{1} + \overline{c}_{2,1} (\mathbf{T}_{pf} - \mathbf{T}_{r,1}) \beta_{2}}$$

$$(4.50)$$

W przypadku, gdy y = 0 i $T_{n,l} = T_{pf}$ w pierwszym przybliżeniu wartość y_l można wyznaczyć z zależności (4.47) pomijając człon q₂, wówczas

$$\mathbf{y}_{1} = \frac{(\bar{\lambda}_{1}) (T_{n-1,1} - T_{n,1})}{q_{3} - q_{8} c_{8} s_{8} - \frac{T_{n,1} - T_{n,1-1}}{k}}$$
(4.51)

Dokładną wartość y₁ wyznacza się w procesie iteracyjnym z zależności (4.50). W obliczeniach y₁ dla przypadku gdy y₁₋₁ > 0 w pierwszym przybliżeniu można skorzystać ze wzoru ekstrapolacyjnego.

 $y_1 = y_{1-1} + (y_{1-1} + y_{1-2})$ (4.52)

4.3.5. Algorytm obliczeń numerycznych zamarzania i rozmrażania

Przedstawiony na rys.26 algorytm obliczeń odnosi się zarówno do obliczeń zamarzania jak również rozmrażania. Wyszczególniono w nim trzy dodatkowe elementy: a-a, b-b, c-c, dla których sieć działań przedstawiono oddzielnie. Procedúry obliczeniowe zamarzania i rozmrażania w języku FORTRAN przedstawiono wraz z opisami w załączniku (Załącznik 4). Występujące w programach metody numeryczne: metodę iteracyjną i metodą bisekcji opracowano na podstawie [34].

4.3.6. <u>Stabilność i zbieżność rozwiązań opartych na metodzie</u> różnie skończonych

Rozwiązanie numeryczne zagadnienia nieustalonego przewodzenia ciepła powinno spełniać dwa warunki [56]:

- przy zmniejszaniu wielkości elementu różnicowego i równoczesnym zmniejszaniu długości kroku czasu, rozwiązanie numeryczne powinno zmierzać do wyniku dokładnego,
- róźnica pomiędzy rozwiązaniem numerycznym i rozwiązaniem dokładnym nie powinna zwiększać się w miarę rozpatrywania kolejnych kroków czasu.

Warunek pierwszy dotyczy zbieżności rozwiązania, a warunek drugi określa jego stabilność. Oba te warunki są ze sobą powiązane. Niestabilność rozwiązania wynika ze zbyt dużych kroków czasu. Zale ona również od struktury użytych w równaniach ilorazów róż-

69

Rys.26. c.d.

nicowych. Na stabilność nie ma wpływu kumulowanie się błędów wynikających z zaokrąglania wyników działań arytmetycznych. Struktura ilorazu różnicowego - a tym samym dokładność obliczeń wartości pochodnych - zależy od ilości wyrazów szeregu Taylora (4.33), (4.34). Schematami niestabilnymi są schematy jawne. Schematy niejawne są absolutnie stabilne [45]. Z analizy warunków stabilności równań różnicowych [7, 45] przewodnictwa cieplnego o stałych współczynnikach

$$\frac{T_{i,1} - T_{i,1-1}}{h^2} = e^{\frac{T_{i-1,1-1} - 2T_{i,1-1} + T_{i+1,1-1}}{h^2}}$$

wynika, że powinien być spełniony warunek

$$k \leq \frac{6 h^2}{2}$$

gdzie: 6 - jest stałą liczbą z przedziału <0, 3>.

Zbyt duże kroki h i k są przyczyną niestabilności, a zbyt małe kroki h i k wydłużają czas obliczeń. W tej sytuacji dąży się do określenia kroków optymalnych, gwarantujących wymaganą dokładność.

W celu sprawdzenia metody przeprowadza się obliczenia układów równań liniowych dejących się rozwiązać analitycznie, co umożliwia porównanie wyników uzyskanych jedną i drugą metodą. Wynikające stąd wnioski można wykorzystać do zgrubnego oszacowania warunków stabilności rozwiązań numerycznych dotyczących bardziej złożonych przypadków wymiany ciepła (równania o nieliniowych współczynnikach).

W przypadku równań o nieliniowych współczynnikach, problem stabilności rozwiązań jest bardzo skomplikowany. Najczęściej stabilność rozwiązań określa się metodą Rungego, polegającą na porównywaniu rezultatów obliczeń przy różnych wartościach h i k. Jeśli wyniki obliczeń przy kroku h są zbieżne z obliczeniami dla kroku 2h, to można powiedzieć, że krok 2h nie jest większy od optymalnego. W przeciwnym razie należy przeprowadzić obliczenia przy kroku h/2. W przypadku małych różnic w wynikach można wnioskować o tym czy krok h jest mniej czy bardziej optymalny. W niniejszej pracy użyto schematów jawno-niejawnych do obliczeń temperatur w węzłach graniczących z frontem przemiany fazowej: r i r+1. Podyktowane to było tym, że w tej strefie pola temperatur występują silne zmiany własności cieplnych w funkcji temperatury, co mogłoby być przyczyną błędów i wynikach. W pozostałych obszarach badanego ośrodka posłużono al schematami jawnymi.

W celu zbadania stabilności obliczeń numerycznych przeprowadzono obliczenia przy trzech różnych wariantach kroków h i k, porównując wyniki obliczeń temperatury na brzegu badanego obszaru. Obliczenia przeprowadzono dla przypadku zamarzania (program #KWØ4) węgla o wilgotności $\omega_0 = 0,1$. Badany obszar byż podzielony na n = 50 warstw o grubości h = 0.03 m. Symulowano proces zamarzania trwający 7 h przy następujących wartościach kroków czasowych k = 0.1, 0.25, 0.5 h co odpowiadało 70, 28, 14 chwilom obliczeniowym. W wyniku przeprowadzonych obliczeń stwierdzono, że temperatura na powierzchni badanego obszaru T_n obliczona przy k = 0.25 h różni sig o $\Delta T = 0.009$ K od temperatury wyznaczonej przy k = 0.1 h. Przeprowadzone obliczenia dla k = 0.5 h wykazaky róźnicę $\Delta T = 0.011 K$ w porównaniu z obliczeniami przy k = 0.1 h. Wyniki obliczeń wskazują na stabilność rozwiązań w zakresie kroków k = 0.1-0.5 h. Podobne obliczenia przeprowadzono dla przypadku rozmrażania (program #KWØ1) przy tych samych wartościach kroków h i k co

w przypadku zamarzania. Obliczone wartości temperatur T_n dla k = 0.25 h i 0.5 h różniky się o $\Delta T = 0.201$ K i $\Delta T = 0.353$ K od wyniku T_n uzyskanego przy kroku k = 0.1 h. Biorąc pod uwagę zmiany temperatury T_n , które w przypadku rozmrażania wynoszą ~130 K, uzyskane odchyżki wyników ΔT przy różnych krokach k można uznać za nielstotne, a otrzymane rozwiązania za stabilne.

4.4. Porównanie wyników obliczeń z danymi doświadczeń obcych

Wyniki obliczeń porównywano z danymi doświadczalnymi zaczerpniętymi z pracy [42] wykonanej w Centralnym Ośrodku Badań i Rozwoju Techniki Kolejnictwa w Warszawie. W cytowanej pracy przedstawiono wyniki badań doświadczalnych zamarzania i rozmrażania miału węglowego oraz żwiru w formach metalowych o wymiarach 1800x800x410 mm. Formy ze wsadem umieszczano w komorze klimatycznej firmy Vetsch o pojemności 7,6 m³ z możliwością regulacji temperatury w zakresie 233,16-368,16 K. Proces zamarzania wsadu przebiegał w temperaturach 243,16 K i 255,16 K. Proces rozmrażania był prowadzony przy użyciu promienników podczerwieni. Podczas badań mierzono temperaturę wewnątrz komory klimatycznej i temperatury wsadu w 12-tu punktach. Rozmieszczenie punktów pomierowych oraz usytuowanie promienników podczas rozmrażania przedstawiono na rys.27 [42].

Przedstawione w niniejszej pracy opisy matematyczne procesu zamarzania i rozmrażania (opis uproszczony p.4.2 i opis dokładny p.4.3) por Wnano z przebiegami eksperymentalnymi zamarzania i rozmrażania

Rys.27. Rozmieszczenie punktów pomiarowych i promienników a - rozmieszczenie czujników we wsadzie

> b, c - usytuowanie promienników przy rozmrażaniu miału węglowego

miału węglowego. Ze względu na jednorodne warunki początkowe wsadu podczas badań doświadczalnych wybrano 2 przebiegi zamarzania i 2 przebiegi rozmrażania. Ze względu na to, że podczas badań doświadczalnych nie wyznaczano współczynnika przejmowania ciepła na powierzchni formy do obliczeń porównawczych przyjęto arbitralnie jego wartość $\alpha = 10 \text{ W/m}^2\text{K}$ znamienną dla konwekcji wymuszonej przy prędkości powietrza $\Im \leq 0,4 \text{ m/s}$ [58].

W obliczeniach procesów rozmrażania, uwzględniono moc znamionową promienników, ich sprawność oraz współczynniki konfiguracji z napromieniowanymi powierzchniami. Na podstawie wymiarów formy oraz usytuowania promienników wyznaczono średnie wartości strumieni ciepła na powierzchni formy i miału węglowego. Wyniki pomiarów i obliczeń przedstawiono na wykresach: rys.28, 29, 30.

75

a

 Δ - wartości zmierzone g = $1 \frac{kW}{m^2}$

x - wartości zmierzone g = 1,82 kW

0.05

ρ.8

W obliczeniach zamarzania i rozmrażania wg opiśu dokładnego uwzględniono zmiany ciepła właściwego, przewodności cieplnej miału węglowego w funkcji temperatury oraz nieizotermiczny proces wymrażania wilgoci wykorzystując opracowane w p.3.3. zależności.

Z przedstawionych przebiegów wynika, że opis dokładny daje wyniki bliższe pomiarom doświadczalnym. Występujące róźnice są spowodowane niedokładnościami w określeniu warunków pomiarów oraz przyjętych uproszczeń w modelach obliczeniowych. Punkty pomiarowe p.8 i p.9 w przypadku rozmrażania znajdowały się w osi symetrii promienników z tego względu przyjęte w obliczeniach wartości średnie strumieni ciepła na powierzchni również są przyczyną zaniżonych wyników obliczeń w porównaniu z wartościami zmierzonymi. Obliczenia porównawcze opisu przybliżonego oraz dokładnego (rys.31) wykazują, że uzyskiwane wyniki wg opisu uproszczonego są zaniżone ze względu na grubość warstwy która uległa przemianie fazowej, w porównaniu z wynikami wg opisu dokładnego. Przyczyną rozbieżności róźnice w uwzględnianiu zmian własności cieplnych badanego ładunku w funkcji temperatury.

Rys.31. Obliczenia procesu zamarzania węgla w wagonie $\omega_o = 0,1, T_g = 263,16 \text{ K}, T_{pocz} = 278,16 \text{ K}$ $T_{pf} = 272,7 \text{ K}, R = 1,5 \text{ m}$

W celu określenia oddziaływania ścian wagonu na przebieg procesu przeprowadzono obliczenia na modelu dokładnym. Z charakteru uzyskanych krzywych (rys.32) wynika, że ściany wagonu opóźniają proces zamarzania o stałą w przybliżeniu wartość. Wytłumaczyć to można stosunkowo dużymi zmianami entalpii ścian wagonu w pierwszej fazie procesu zamarzania (duże spadki temperatury na powierzchni) w porównaniu

Rys. 32.

Badanie wpływu ścian na przebieg procesu zamarzania wegla w wagonie

 $\omega_{o} = 0,1, T_{pocz} = 283,16 \text{ K},$ $T_{g} = 263,16 \text{ K}, T_{pf} = 272,7 \text{ K},$ $\alpha = 5,82 \text{ w/m}^2\text{K}, q = 800 \text{ kg/m}^3,$ R = 1,5 m

I - obliczenia numeryczne bez uwzględniania ścian

II - obliczenia numeryczne z uwzględnieniem ścian

z dalazą fazą procesu zamarzania. Uzyskane wyniki sugerują, że uwzględnienie w opisie uproszczonym wpływu ścian jedynie poprzez zredukowany współczynnik przejmowania ciepła α_z nie powinno być przyczyną dużych rozbieżności w uzyskiwanych wynikach. Wpływ ścian należałoby dokładniej uwzględniać w pierwszej fazie procesu tj. podczas ochładzania lub ogrzewania (p.4.2).

5. SYMULACJA CYFROWA PROCESÓW ZAMARZANIA I ROZMRAŻANIA

W oparciu o opis uproszczony i dokładny przeprowadzono obliczenia procesów zamarzania i rozmrażania, których celem było określenie wpływu parametrów charakteryzujących te procesy na ich przebieg. Obliczenia przeprowadzono na przykładzie wegla kamiennego o wilgotności $\omega_0 = 0,1$ i gęstości $\beta = 800 \text{ kg/m}^3$. W obliczeniach opartych na opisie uproszczonym uwzględniono średnie wartości przewodności cieplnej i ciepła właściwego w rozpatrywanych przedziałach temperatur. W obliczeniach wpływu zawilgocenia ładunku na czas zamarzania i rozmrażania uwzględniono zależność przewnodności cieplnej λ i ciepła właściwego c_{ef} od wilgotności. Wartości λ i c_{ef} przyjęto za pracą [40] (tabela 7). W obliczeniach opartych na opisie dokładnym (program #KWØ4) uwzględniono zmiany przewodności cieplnej i ciepła właściwego w funkcji temperatury oraz nieizotermiczny proces wymrażania wilgoci. Zmiany przewodności cieplnej od temperatury w zakresle temperatur poniżej temperatury przemiany fazowej wyrażono za-

Tabele 7

Wartości średnie przewodności cieplnej i ciepła właściwego

an ny mangana ana ang kanang kanan	nostki	Węgiel o gęstości ? = 800 [kg/m ³]					
Własności		Wilgotność węgla w [%]					
	Jed	2	4	6	8	10	
Przewodność cieplna ^A 1 w temperaturze 273-293 K	w mK	0,157	0,1835	0,210	0,236	0,264	
Przewodność cieplną ² 2 w temperaturze 263 K	W mK	0,3857	0,4057	0,4253	0,4448	0,4644	
Ciepło właściwe węgla c ₁ w temp. 273-293 K	kJ kgK	1,004	1,068	1,13	1,196	1,264	
Ciepło właściwe węgla c ₂ w temp. 263 K	kJ KgK	0,975	1,008	1,05	1,089	1,13	

leźnością [40]:

$$\lambda = \lambda_{pf} + \frac{0,814}{1 + \frac{2}{\lg [T - T_{pf} + 1]}}$$
 W/m²K (5.1)

dla zakresu temperatur powyżej temperatury fazowej

$$\lambda = 0.27 + 0.000058 \text{ T} \quad W/m^2 \text{K}$$
 (5.2)

Ciepło właściwe w temperaturach poniżej temperatury przemiany fazowej określono z zależności (3.25), w której stopień zlodowacenia wilgoci określano z zależności [40]:

$$\omega = \frac{1}{0,5}$$
(5.3)
$$1 + \frac{0,5}{\lg [T - T_{pf} + 1]}$$

Ze względu na masową powtarzalność operacji obliczeniowych złożoną postać zależności (3.25) opisującej zmiany ciepła właściwego w funkcji temperatury zastąpiono funkcją o postaci:

którą wybrano z kilunastu wariantów funkcji. Za pomocą programu #OPTY wyznaczono wartości współczynników a, b, c. Wynoszą one 0,245; 3; 0,17. W obliczeniach numerycznych (opis dokładny) przyjęto temperaturę przemiany fazowej równą $T_{pf} = 272,7 \text{ K [40]}$. Ściany wagonu przyjęto jako płytę o grubości s = 0,005 m, której ciepło właściwe wynosi c_s = 0,482 kJ/kgK a gęstość g_s = 7800 kg/m³. Obliczenia przeprowadzono dla typowych warunków, w których ładunki zamarzają oraz w jakich przebiega ich rozmrażanie.

5.1. Badanie procesu zamarzania

Wapółczynnik przejmowania ciepła a

Wpływ współczynnika przejmowania ciepła na czas zamarzania wyznaczono w oparciu o opis uproszczony (rys.33) oraz na drodze obli-

czeń numerycznych wg opisu dokładnego (rys.34 i 35). Z przedstawionych wykresów wynika, że wzrost współczynnika α przyspiesza proces zamarzania jedynie w zakresie małych jego wartości (3-20 W/m²K). Przy wyższych wartościach α, charakterystycznych przy wymianie ciepła podczas ruchu pociągu obserwuje się nieznaczny spadek czasu zamarzania T. Praktycznie zmiany prędkości jazdy powyżej V = 20 km/h, a tym samym zmiany współczynnika α powyżej 35 W/m²K (rys.7), mogą

być w obliczeniach nieuwzględniane, ze względu na ich mały wpływ na czas zamarzania.

Rys.34. Wyniki obliczeń numerycznych wpływu współczynnika przejmowania ciepła na czas zamarzania, z uwzględnieniem okresu ochładzania, T_{pocz} = 278,16 K

Rys. 35.

Wyniki obliczeń numerycznych wpływu współczynnika przejmowania ciepła α na czas zamarzania warstwy o określonej grubości y T_{pocz} = 278,16 K

Temperatura powietrza T

Wpływ temperatury powietrza w czasie przewozów uwidacznia się w zakresie temperatur 253,16-273,16 K. Obniżeniu temperatury T towarzyszy zmniejszenie czasu zamarzania warstwy ładunku o określonej grubości. W przypadku węgla, na przykładzie którego wykonano obliczenia (rys.36), przy wartości $\measuredangle = 23,3$ W/m²K można przyjąć, że zmiany temperatury powietrza poniżej 253,16 K nie przyspieszają

Rys.36. Wpływ temperatury powietrza na czas zamarzania $T_{pocz} = 277,16$ K I - y = 0,05 m II - y = 0,1 m

proceau zamarzania. Przeprowadzone obliczenia numeryczne (rys.37 1 38) potwierdziły charakter krzywych wyznaczonych z modelu uproazczonego. Ograniczony wpływ współczynnika przejmowania ciepła α oraz

Rys.37. Wyniki obliczeń numerycznych wpływu temperatury powietrza na czas zamarzania T_{pocz} = 278,16 K

Rys. 38.

Wyniki obliczeń numerycznych czasu zamarzania warstwy węgla o określonej grubości w funkcji temperatury powietrza T_{pocz} = 278,16 K

temperatury powietrza T_g na przebieg procesu zamarzania Ładunku, spowodowany jest przewodnością cieplną Ładunku, która decyduje o wartości strumienia ciepła wymienianego na powierzchni z otoczeniem, gdy współczynnik α przyjmuje duże wartości. W przypadku ciał jednorodnych wymianę ciepła na powierzchni charakteryzuje liczba Biota. Zwykle przyjmuje się, że przy Bi > 25 [9, 14] wzrost współczynnika przejmowania ciepła α nie ma wpływu na zmiany temperatur w obszarze wymieniającym ciepło z otoczeniem. W przypadku złożonego układu, jakim jest Ładunek z zachodzącymi w nim przemianami, oddzielony od otoczenia ścianą liczba Biota nie ma zastosowania.

Temperatura początkowa kadunku Tpocz

Wyniki obliczeń wg opisu uproszczonego wskazują, że wpływ temperatury początkowej ładunku (w chwili załadunku) na czas zamarzania jest nieznaczny (rys.39), szczególnie przy niskich temperaturach powietrza $T_{\rm g}$. Obliczenia numeryczne (rys.40, 41) uwidoczniły nieznaczne różnice w przebiegu tych procesów. Wynika z nich, że wpływ temperatury początkowej $T_{\rm pocz}$ na czas zamarzania warstwy o określonej grubości jest nieco większy niż wykazały obliczenia uproszczone i tym bardziej widoczny, im proces zamarzania trwa dłużej, a tamperatura $T_{\rm pocz}$ jest wyższa. Wynika to stąd, że obliczenia numeryczne przeprowadzono do momentu zamarznięcia werstwy o grubości y = 0,03 m. W tych warunkach zmiany entalpii badanego obszaru niezamarzniętego w porównaniu z entalpią warstwy nowopowstałej (zamarzniętej) są wieksze niż

83

Rys. 39.

Wpływ temperatury początkowej węgla na czas zamarzania warstwy o grubości y = 0,05 m przy α = 30 W/m²K-

Rys. 40.

Wyniki obliczeń numerycznych czasu zamarzania węgla przy różnych temperaturach początkowych $\alpha = 34,9 \text{ W/m}^2\text{K}$ i T_s = 263.16 K

Ry8.41.

Wyniki obliczeń numerycznych czasu zamarzania warstwy węgla o określonej grubości w funkcji temperatury początkowej przy $T_s = 263,16$ K i $\alpha = 34,9$ W/m²K przy rozpatrywaniu zamarzania warstwy o większej grubości. Przyczyną rozbieżności wyników są również przyjęte w opisie założenia o rozkładzie temperatur w obszarze niezamarzniętym. Mimo tych rozbieżności można przyjąć, że opis uproszczony jakościowo poprawnie opisuje proces zamarzania. W szczegółowej analizie należy jednak oprzeć się na obliczeniach wg opisu dokładnego.

Wilgotność ładunku (w

Wynik obliczeń na modelu uproszczonym wykazuje, że czas zamarzania ładunku jest tym krótszy, im wilgotność ładunku jest większa (rys.42). Wynika to ze znacznego wzrostu przewodności cieplnej wraz ze wzrostem wilgotności. Wzrost przewodności cieplnej jest na tyle duży, że z nadwyżką kompensuje większe zapotrzebowanie na ciepło przemiany fazowej, które zależy od wilgotności, szczególnie jest to zauważalne przy większych grubościach warstwy zamarzającej.

Rys.42. Wpływ wilgotności węgla na czas jego zamarzania przy $T_g = 253.16$ K, $T_{pocz} = 278.16$ K, $\alpha = 30$ W/m²K

5.2. Badanie procesu rozmrażania przy warunkach brzegowych III rodzaju

Ze względu na to, że wyniki obliczeń opartych na modelu uproszczonym jakościowo poprawnie opisują charakter zjawisk zachodzących w procesie zamarzania, analizę wpływu parametrów charakteryzujących proces rozmrażania przeprowadzono na modelu uproszczonym.

Współczynnik przejmowania ciepła «

W procesie rozmrażania wartości współczynnika a zależnie od typu rozmrażalni są w granicach 5 W/m²K do kilkudziesięciu W/m²K przy intensywnym nadmuchu czynnika grzejnego (powietrze, spaliny) na ściany wagonu.

Obliczenia wykazują (rys.43), że wzrostowi współczynnika towarzyszy skrócenie czasu rozmrażania ładunku, jednakże w miarę wzrostu \varkappa zauważa się coraz wolniejszy spadek czasu rozmrażania 7. Praktycznie zwiększanie wartości α poprzez bardziej intensywny nawiew czynnika grzejnego (przy którym $\varkappa > 20$ W/m²K) nie przyspiesza procesu rozmrażania.

Ry 8. 43.

Wpływ współczynnika przejmowania ciepła α_z na czas rozmrażania $T_{nocz} = 253,16$ K

Temperatura w rozmrażalni T

Wpływ temperatury w rozmrażalni na czas procesu rozmrażania przedstawiono na rys.44. Z przeprowadzonych obliczeń wynika, że w całym zakresie rozpatrywanych temperatur wzrostowi temperatury towarzyszy skrócenie czasu rozmrażania, szczególnie przy rozmrażaniu ładunku na większą głębokość (y > 0,1 m), i przy mniejszych wartościach współczynnika przejmowania ciepła $\propto (\alpha = 5,82 \text{ W/m}^2\text{K})$. W przypadku wyższych temperatur T_B (T_B > 403,16 K) należy zwracać uwagę na dopuszczalne temperatury oddziaływania na konstrukcję wagonu (p.2.5).

Z wykresów (rys.43 i 44) wynika, że wzrost współczynnika przejmowania ciepła z 5,82 W/m²K do 23,3 W/m²K wywołuje taki sam skutek, jak zwiększenie temperatury w rozmrażalni z 343,16 K do 403,16 K. O właściwym wyborze parametrów rozmrażania zadecydować mogą koszty realizacji.

Temperatura początkowa Tpocz

Wpływ temperatury początkowej T_{pocz} (rys.45) na czas rozmrażania warstwy o określonej grubości, podobnie jak w przypadku wyników

Rys. 45.

Wpływ temperatury początkowej T_{pocz} w środku ładunku na czas rozmrażania

I - przy α = 5,82 W/m²K, II - przy α = 23.3 W/m²K

87

obliczeń przy rozpatrywaniu procesu zamarzania (p.5.1), jest nieznaczny, szczególnie przy większych grubościach warstwy rozmrażanej. Wynika to z niewielkich zmian wartości entalpii obszaru nierozmrożonego w porównaniu z entalpią warstwy rozmrożonej i ciepżem zużytym na przemianę fazową.

Wilgotność ładunku ω

Wilgotność Ładunku ω_0 , podobnie jak w przypadku zamarzania (p.5.1), przyspiesza proces rozmrażania (rys.46). Wzrost przewodności cieplnej wraz ze wzrostem wilgotności zmniejsza opory przepływu

Rys. 46.

Wpływ wilgotności węgla na czas rozmrażania przy różnych grubościach warstwy rozmrażanej

ciepła w głąb rozmrażanego obszaru w takim stopniu, że kompensuje z nadwyżką większe zapotrzebowanie ciepła na przemianę fazową. Uzyskane wyniki obliczeń czasu rozmrażania (rys.46) są zgodne jakościowo z wynikami eksperymentalnymi zawartymi w pracy [39]. W pracy tej podano wzór empiryczny zbudowany w oparciu o długotrwałe obserwacje i pomiary określające czas rozmrażania koncentratu rudy żelaza w funkcji wilgotności ω_{0} i temperatury początkowej T_{pocz}ładunku.

$$T = (1,01 - 0,0267 \omega_0)(0,668 - 0,0232 \cdot (T_{\text{pocz}} - T_{\text{pf}})) \cdot y^2 \quad [h]$$
(5.4)

Z podanej zależności wynika, że czas rozmrażania jest krótszy przy większych wartościach ω_0 .

5.3. Badanie procesu rozmražania przy warunkach brzegowych II rodzaju

Tego rodzaju warunki brzegowe można przyjąć do obliczeń procesów rozmrażania oporowego lub indukcyjnego (rys.2).

Moc strumienia ciepła q na powierzchni ścian wagonu przy rozmrażaniu

Wpływ strumienia ciepła na powierzchni wagonu na czas rozmrażania ilustruje rys.47. Wraz ze wzrostem mocy q czas rozmrażania

Rys. 47.

Wpływ mocy strumienia ciepła ą na powierzchni na czas rozmrażania (warunki brzegowe II rodzaju) T_{pocz} = 253,16 K

maleje, jednakże pnzy większych wartościach strumienia ciepła q > 1000 W/m²K wpływ ten maleje. Wynika stąd wniosek, że stosowanie urządzeń grzejnych gwarantujących większe wartości strumienia ciepła q nie przyspiesza rozmrażania, a z pewnością będzie przyczyną niepożądanego przegrzewania się ścian wagonów.

Przeprowadzone obliczenia wpływu wilgotności ładunku ω_{0} (rys.48) i temperatury początkowej T_{pocz} (rys.49) na czas rozmrażania przy warunkach brzegowych II rodzaju wykazują podobny charakter zależności, jak w przypadku warunków brzegowych III rodzaju; wynika to stąd, że ω_{0} i T_{pocz} decydują o własnościach cieplnych i ich zmianach w obszarze rozmrażanym i nie zależą od warunków zewnętrznych, jeśli te ostatnie nie ograniczają wymiany ciepła badanego obszaru z otoczeniem.

Rys. 48.

Wpływ temperatury początkowej T_{pocz} w środku ładunku na czas rozmrażania (warunki brzegowe II rodzaju) q = 932 W/m²

Rys.49. Wpływ zawilgocenia węgla na czas jego rozmraźania T_{pocz} = 253,16 K, q = 2000 W/m²

5.4. Podsumowanie

Przeprowadzone obliczenia procesu zamarzania wykazały, że przebieg procesu zamarzania istotnie zależy od współczynnika przejmowania ciepła α na powierzchni ścian wagonu, o którego wartości decyduje prędkość jazdy pociągu (rys.7) i temperatura powietrza T_s. W mniejszym stopniu wpływ na proces zamarzania ma temperatura początkowa ładunku T_{pocz} i wilgotność ω_0 .

90

Wyniki obliczeń numerycznych i na modelu uproszczonym wykazały, że zaproponowany w pracy opis uproszczony (p.4.2) przebiegów zamarzania i rozmrażania jakościowo poprawnie opisuje badane procesy.

Ne podstawie wyników obliczeń procesu rozmrażania stwierdzono, że wpływ parametrów rozmrażania, tj. współczynnika przejmowania ciepła na powierzchni α , temperatury w rozmrażalni T_s oraz mocy strumienia ciepła q (w przypadku rozmrażania oporowego lub indukcyjnego (warunki brzegowe II rodzaju) jest istotny w zakresie małych wartości tych parametrów. Przy wyższych wartościach α , T_s i q nie obserwuje się skrócenia czasu rozmrażania. Na tej podstawie można stwierdzić, że dla każdego zamarzającego ładunku sypkiego o znanych własnościach cieplnych istnieją ściśle określone warunki rozmrażania (niezależnie od metody rozmrażania), przy których zwiększanie wymiany ciepła na powierzchni celem przyspieszenia rozmrażania nie jest uzasadnione.

Wybór najwłaściwszych parametrów rozmrażania: α , T_s, q, oprócz wielkości charakteryzujących proces rozchodzenia się ciepła w materiale sypkim, jest uzależniony od czynników eksploatacyjnych: koszty rozmrażania, przepustowość rozmrażalni, rzeczywiste straty wynikające z niepełnego wykorzystania taboru.

6. WNIOSKI

- 1. Między procesem zamarzania i rozmrażania zachodzą różnice ilościowe, jakościowo procesy te są analogiczne.
- 2. Na podstawie przeprowadzonych pomiarów własności cieplnych miału węglowego stwierdzono, że jego temperatura przemiany fazowej wynosi 270.96 K (-2,2°C) i jest niższa od dotychczas przyjmowanej $T_{pf} = 272,16-272,76$ K [39, 40].
- 3. Przeprowadzone pomiary własności cieplnych na przykładzie miału węglowego potwierdziły dotychczasowe opinie o przebiegu zjawisk zachodzących podczas zamarzania (p.3.3).
- 4. Temperatura otoczenia T_g podczas przewozu ma wpływ na szybkość zamarzania ładunków, niemniej jednak, poczynając od około 258,16 K (-15°C), obniżanie się temperatury T_g coraz mniej wpływa na przebieg procesu. Podobnie zwiększanie temperatury w rozmrażalni podczas rozmrażania przyspiesza przebieg rozmrażania, przy czym zmiany czasu rozmrażania są tym mniejsze, im temperatura T_g większa, zwłaszcza przy małej grubości warstwy roz-Grażanej, co nie potwiśrdza hipotezy wysuniętej w pracy [40].

91

- 5. Wzrost współczynnika przejmowania ciepła na powierzchni wsgonu przyspiesza proces zamarzania ładunków, jednakże przy większych jego wartościach $\alpha > 30 \text{ W/m}^2\text{K}$ co odpowiada prędkości jazdy pociągu $\mathscr{V} > 20 \text{ km/h}$. Obserwuje się nieznaczne zmniejszenie czasu zamarzania. Podczas rozmrażania wsgonów w rozmrażalni zauważa się podobne skutki. Bardziej intensywny nawiew przyspiesza rozmrażanie. Wartością, od której zwiększanie α_z jedynie w niewielkim stopniu skraca czas rozmrażania w przypadku węgla, dla którego przeprowadzono obliczenia, jest $\alpha_z > 20 \text{ W/m}^2\text{K}$.
- 6. Przeprowadzone obliczenia rozmrażania przy stałym strumieniu mocy cieplnej na powierzchni rozmrażanego obszaru wykazały ograniczony wpływ mocy strumienia ciepła na czas rozmrażania. Stosowanie większych mocy w tej sytuacji jest nieuzasadnione, ponieważ nie przyspiesza rozmrażania, lecz jest powodem niepożądanego wzrostu temperatury powierzchni ścian ładunku. W przypadku węgla, dla którego przeprowadzono obliczenia można zalecać wartości $q = 1000 \text{ W/m}^2$.
- 7. Wpływ temperatury początkowej kadunku T $_{pocz}$ zarówno na proces zamarzania, jak i rozmrażania, jest nieznaczny, szczególnie w przypadku rozmrażania warstw o znacznej grubości (y > 0,1 m).
- 8. Wzrost zawilgocenia ładunku jest przyczyną wzrostu przewodności cieplnej, dlatego też w ładunkach o większym zawilgoceniu procesy zamarzania i rozmraźania zachodzą szybciej niż przy małym zawilgoceniu.
- 9. Straty ciepła podczas przewozu, można obniżyć poprzez zastosowanie izolacji ścian wagonu. Tego typu zabezpieczenie przed zamarznięciem może być skuteczne przy krótkotrwałych przewozach.
- 10. Ściany wagonu wskutek swojej bezwładności cieplnej opóźniają proces zamarzania, lecz nie mają wpływu na dalszy jego przebieg.
- 11. Podsumowując przeprowadzoną analizę zamarzania i rozmrażania ładunków należy stwierdzić, że istnieją pewne przedziały graniczne wartości parametrów charakteryzujących te procesy, poza którymi zmiany wartości parametrów mają coraz mniejszy wpływ na przebieg procesów zamarzania i rozmrażania. Orientacyjne wartości tych przedziałów podano w rozdziałe 5.

LITERATURA .

- Balman W. Massnahmen zur Vermeidung bzw. Beseitigung von Gutanhaftungen und - aufrierungen in Kohle und Araumwagen.
 "Bergbautechnik", 1962 r. nr 2.
- [2] Bennett C.O., Myers J.E. Przenoszenie pędu, ciepła i masy. WNT, W-wa, 1966 r.
- [3] Berkowskij B.M., Nogotov E.F. Raznostnyje metody issledovanija zadač teploobmena. Izd. "Nauka i technika". Minsk, 1976 r.
- [4] Boost H., Erkelenz H. Winterfestmachen von Kohlenwagen. "Braunkohe", heft 11, 1964 r.
- [5] Czirkin W.S. Teploprovodnost promyšlennych materjažov.
 Mašgiz. Moskva, 1962.
- [6] Czudnowskij A.F. Teplofizičeskije charakteristiki dispersnych materjakov "Fizmatgiz", Moskva, 1972.
- [7] Demidowicz B.P., Maron J.A., Szuwałowa E.J. Metody numeryczne
 Cz. II. PWN, W-wa, 1965.
- [8] Dulniev G.N. i in. Analiz procesa perenosa tepla w zernistych sistemach "I.F.Ż". tom XXVI, 1974 nr 5.
- [9] Filipov P.I. Priloženije teorii teploprowodnosti k teplofiziečeskim izmereniom. Izd. "Nauka" Nowoszbirsk 1973.
- [10] Gaj L. Analiza celowości budowy rozmrażalni w elektrowniach z uwzględnieniem kosztów ponoszonych przez energetykę. Opracowanie studialne SW-108/73 Biura Studiów i Projektów Energetycznych W-wa, 1973.
- [11] Gelfand I.M., Fomin S.W. Rachunek wariacyjny. PWN, W-wa, 1975 r.
- [12] Gelperin N.I., Fiłatov L.N. Issledovanije procesa kristalizacji rasplavov na povierchnosti ochlaždajemogo barabana. "Chimičeskoje i neftjance mažinostrojenije" 1974 nr 10.
- [13] Głażewski Z. Mechanizacja rozładunku zmarzniętych materiałów sypkich z wagonów kolejowych. Wyd. "Ślask". Katowice. 1967 r.
- [14] Gogół W. Teoria stanu uporządkowanego i możliwości jej zastosowania. "Mechanika Teoretyczna i Stosowana". 1966 nr 4.
- [15] Gogół W. Uogólniona metoda wyznaczania własności cieplnych ciał stałych na podstawie teorii stanu uporządkowanego. "Arch. Budowy Maszyn". 1961 nr 2.
- [16] Gogół W., Gogół E., Artecka E. Badania przewodności cieplnej gruntów wilgotnych. Biuletyn Inst. Techniki Cieplnej Politech. Warszawskiej. nr 40, 1973 r.

- [17] Głębowicz M. Metody pomiaru współczynnika przewodności cieplnej wilgotnych materiałów budowlanych o strukturze zwartej. Praca doktorska W-w 1965.
- [18] Greń J. Statystyka matematyczna, modele i zadania PWN, W-wa, 1975 r.
- [19] Henatsch A. i in. Zum Aufteuen von in Eisenbahnwagen festgefrorenen Schüttgütern. "Wissenschaftliche Zeitschrift Hochschule für Verkerswessen "Fridrich List" Drezden heft 71, 1975.
- [20] Hobler T. Ruch ciepła i wymienniki. WNT, W-wa, 1976.
- [21] Induktionwärme zum auftauen. "Eisenbahnpraxis", 1972 nr 2.
- [22] Iwanov N.S. Teploobem w kriolitozone. Izd. AN-SSSR, 1962.
- [23] Iwanov N.S., Stepanov A.W., Filipov P.I. Teplofiziceskije swojatwa nasypocnych gruzov. Izd. "Nauka" Novosibirsk, 1964.
- [24] Jażocha Koch H. Badania i przygotowanie wdrożenia wybranych metod usprawniania przewozów w zimie sypkich żadunków zamarzających. Prace COBiRTK W-wa. 1977 nr 66.
- [25] Jakocha Koch H. Istniejące warunki przewozów i sposoby wyładowywania materiałów zamarzających. Prace COBiRTK EHu-2/69, W-wa, 1969 r.
- [26] Jałocha Koch H. Transport i wyładunek ładunków sypkich w warunkach zimowych. Prace Badawcze i Rozwojowe COBIRTK EHu-2/69. W-wa. 1969 r.
- [27] Juszkov P.P., Gejnc R.G. O prodolžitelnosti promerzanija płastiny. I.F.Ż., 1967 nr 4, tom XII.
- [28] Kondratev G.M. Regularnyje tepiovyj režim. Izd. GITTŁ, Moskva, 1954 r.
- [29] Kondratev G.M. Teplovyje izmerenija. Izd Masgiz. Moskva, 1957.
- [30] Konczakov G. Analitičeskoje iseledovanija rozmorožiwanija mjasa w vozduche. "Chožodilnaja technika". 1962 nr 2.
- [31] Krupiczka R. Analiza przewodzenia ciepła w materiałach usypanych. "Chemia Stosowana". 1966 nr 2.
- [32] Kuzdoba L.A. Metody rešenija nelinejnych zadač teploprovodnosti Izd "Nauka" Moskva, 1965.
- [33] Kwaśniowski S. Analiza wpływu parametrów charakteryzujących rozmrażanie żadunków sypkich na czas rozmrażanie. "Gospodarka Energią i Paliwami", 1978 (w druku).
- [34] Legras J. Praktyczne metody analizy numerycznej WNT, W-wa, 1974.

- [35] Longa W. Krzepnięcie odlewów w formach piaskowych. Wyd. "Sląsk". 1973 r.
- [36] Łykov A.W. Metody opredelenija teploprovodnosti i temperaturoprovodnosti. Moskva, 1973.
- [37] Łykov A.W. Teorija teploprovodnosti. Izd. Vyžszaja szkoła Moskva, 1967.
- [38] Madejski J. Teoria wymiany ciepka. Wyd. PWN, W-wa, 1963.
- [39] Matażosov S.F., Noskov T.S. Perevozki smeržajuščichsja gruzov. Trudy BNIIZT. Vypusk 273 "Transport". Moskva, 1964.
- [40] Matakosov i inni. Borba so smaržajemostju metalurgičeskogo syrja pri perevozke po železnym dorogam. "Metalurgija" Moskva, 1974.
- [41] Mańczak K. Technika planowania eksperymentu. WNT, W-wa, 1976.
- [42] Marciniak J., Jachnik A. Próby modelowe rozmrażania żadunków sypkich przy użyciu promienników podczerwnieni. Prace Naukowe Badawcze i Rozwojowe COBiRTK W-wa. 1976.
- [43] Marcinkowski J. Klimatyzacja pojazdów samochodowych i szynowych. Skrypt Polit. Wrocławskiej W-w, 1974.
- [44] Mazurov G.P. Fizyko-mechaničeskije swojstva merzłych gruntov Izd. "Strojizdat" Leningrad, 1975 r.
- [45] Michlin S.G., Smolnicki C.L. Metody przybliżone rozwiązywania równań różniczkowych i całkowych. PWN, W-wa, 1972 r.
- [46] Nersesova Z.A. Materiaky po laboratornym issledovaniam merzkych gruntov. Sb nr I Izd AN-SSR 1953.
- [47] Nikitienko N.J. Issledovanije nestacjonarnych procesov teplomasoperenosa metodom setok. Izd "Naukovaja Dumka". Kijev, 1974.
- [48] Parynakjan W.E., Sinianskaja R.I Borba c prilepaniem i primerzanijem gornoj masy k robočim poverchnostjam transportnogo oborudovanija na karjerach "Nedra", Moskva, 1975.
- [49] Praca zbiorowa Eksperimentalnyje issledovanija procesov teploobmena w merzkych gornych porodach. Izd. "Nauka". Moskva 1972
- [50] Praca zbiorowa Metody opredelenija swojstv gornych porod. Izd. "Nauka", Moskva, 1970.
- [51] Prace badawcze z zakresu metody indukcyjnego płaszczowego odmrażania ładunków w wagonach - Sprawozdanie z pracy naukowo--badawczej A.G.H. Kraków, 1976.
- [52] Rubienštein L.I. Problema Stefana. Izd. "Energia", Piga 1967.

- [53] Schrapel K. Ergebnisse und Wirtschaftlich keit Heizung von Kohlenwagen unit 1200 V Fahrdrahtspanung Freiberger Forschungshefte A-142/1959.
- [54] Sokulski M. Obliczanie czasu zamarzanie produktów spożywczych "Chłodnictwo". 1971, nr 4 i 5.
- [55] Staniszewski B. Wymiana ciepła. Wyd. PWN, W-wa, 1963.
- [56] Szargut J. Metody numeryczne w obliczeniach cieplnych pieców przemyskowych. Wyd. "Sląsk", 1977.
- [57] Szewczyk A. Rozmrażanie węgla w transporcie kolejowym "Problemy kolejnictwa", 1969 nr 61.
- [58] Szleszyński Z., Kubicki E. Klimatyzacja pojazdów mechanicznych WKiŁ, Warszawa, 1964.
- [59] Szorin S.N. Teploperedača. Izd. "Vyžezaja Škoža", Moskva, 1964.
- [60] Tamarin W.M. Issledovanije teploobmena pri kristalizacji iz rosplava "Chimiceskoje i neftjanoje mašinostrojenije" 1965 nr 2.
- [61] Tarnawski W. Matematyczne modelowanie procesów zamarzania produktów spożywczych. Praca doktorska. Łódź. 1971.
- [62] Tichonow A.N., Samaraki A.A. Równania fizyki matematycznej PWN, W-wa, 1963.
- [63] Urządzenie zabezpieczające urobek przed przymarzaniem do ścian wagonu. Poltegor P-119. Wrocław.
- [64] Vasiljev F.P. Raznostnyj metod rešenija zadač tipa Stefana dla kvalilinejnogo paraboličeskogo uravnienia s rozryvnymi koeficjentami. "Dokkady AN-SSSR" - Matematika 1964 tom 157 nr 6.
- [65] Viejnik A.J. Približonyj rasčiot procesov teploprovodnosti Izd. "Gosenergoizdat". 1959.

1

TOK OPRACOWYWANIA WYNIKÓW POMIARÓW

1.1. Tok obliczania własności cieplnych

W celu wyznaczania funkcji opisujących własności cieplne miału węglowego w zależności od temperatury, wilgotności i gęstości, przeprowadzono 13 serii pomiarów: α - kalorymetrem i w korelacji z nimi pomiarów w λ - kalorymetrze oraz a - kalorymetrze. Wyniki końcowe tych pomiarów zestawiono w tabelach 4 i 5 (p.3.3).

Tok obliczeń przewodności cieplnej, ciepła właściwego i dyfuzyjności cieplnej zostanie przedstawiony na przykładzie wyników pomiarów w temperaturze T = 279,76 K przy wilgotności próbki $\omega = 0,17$ i gęstości $\gamma = 964,95$ kg/m³.

W tabeli 1z przedstawiono przykładowe pomiary tempa chłodzenia próbki w λ - kalorymetrze oraz pomiar tempa chłodzenia α - kalorymetru. W tabeli 2z przedstawiono wyniki pomiarów w a - kalorymetrze. Każdy pomiar jest wartością średnią z przeciętnie 15 odczytów. Podczas każdej serii pomiarów starano się zachować identyczne warunki zewnętrzne. Pomiary w λ - kalorymetrze tempa chłodzenia próbki oraz α - kalorymetru były wykonywane równocześnie. W każdej z 13 serii dokonywano 5-ciu pomiarów. Na podstawie wyników tempa chłodzenia sporządzono wykresy (rys.1z, 2z, 3z), które umożliwiały wybór prostoliniowego odcinka, stanowiącego podstawę do obliczeń tempa chłodzenia m. W pierwszej kolejności obliczano tempo chłodzenia próbki w a - kalorymetrze - m_{∞} , w λ - kalorymetrze m $_{\lambda}$ oraz m_{α} . Na tej podstawie określano liczbę podobieństwa

$$M = \frac{m}{m} \qquad (1z)$$

Znajomość liczby M umożliwia wyznaczenie zmodyfikowanej liczby Biota H, z zależności (3.3)

$$H = \frac{-1,437 \text{ M}^2 - \sqrt{(1,437 \text{ M}^2)^2 - 4 (\text{M}^2 - 1) \text{M}^2}}{2(\text{M}^2 - 1)}$$
(22)

Na podstawie M i H obliczano liczbę podobieństwa

$$y = \frac{M}{H}$$
(3z)

Pomiary tempa chłodzenia

Materiał: miał węglowy

Parametry: T = 279.76 K $\omega_0 = 0,17$ g = 964.05 kg/m³ Warunki zewnętrzne: T_{ot} = 299,16 K wilgotność 42%

Przyrząd: 🖉 – kalorymetr								
2~	Wskazania			Сzая [в]				
TD.	galwanometru N	TU N	τ1	τ2	γ ₃	r_4	τ ₅	
1	70	4,2484	116	45	0	175	58	
2	67	4,2046	290	235	171	343	236	
3	65	4,1743	413	337	278	450	350	
4	62	4,1271	582	-	452	618	526	
5	60	4,0943	705	640	570	727	639	
6	57	4,0430	847	-	753	923	823	
7	55	4,0073	947	958	902	1088	994	
8	52	3,9512	1128	1155	1084	1270	1170	
9	50	3,9120	1247	-	1248	1396	.1329	
10	47	3,8501	1405	1512	1405	1618	1567	
11	45	3,8066	1512	1652	1649	1797	1732	
12	42	3,7376	1715	1900	-	-	1964	
13	41 .	3,7135	-	2012	-	2109	2067	
Tempo chłodz. $m \cdot 10^{-4} [s^{-1}]$			2,9744	2,9744 2,7194 2,6787 2,7658 2,6631				
Przyrząd: λ-kalorymetr								
	Wskazania			(zas [s]		
1p.	galwanometru N	ln N	τ,	τ2	τ3	τ_4	τ ₅	
1	70	4,2484	37	-	87	0		
2	67	4,2046	127	-	200	108		
3	65	4,1743	188		238	`-	20	
4	62	4,1271	287	60	319	250	129	
5	60	4,0943	352	125	397	312	200	
6	57	4,0430		235	487	409	304 .	
7	55	4,0073	-	315	572		380	
8	52	3,9512	642	428	668	594	490	
9	50	3,9120	723	507	751	688	581	
10	47	3,8501	845	633	875	816	610	
11	45	3,8066	928	728	947	890	807	
12	42	3,7376	1066	875	1105	1021	949	
13	40	3,6888	1160	972	1190	1115	1042	
14	35	3,5554	1405	1252	1438	1381	1326	
15	30	3,4014	1720	1688	1764	1700	1655	
16	25	3,2188	-	1945	2112	2056	2029	
Temp	o chłodz. m.	10-4 [8-1]	5,0339	4,8186	5,1569	5,0069	4,6081	

. '

Pomiary tempa chłodzenia

Material: miał węglowy

Parametry: T = 279,76 K $\omega_0 = 0,17 \quad g = 964,05 \text{ kg/m}^3$

	anne an tha a	rząd:	a - kal	orymetr		g- 946.00, 249.94, 24 (444.40) (244.40)	
juraur glausegen an die Konsta	Wskazania		Czas [s]				
lp.	galwanometru N	ln N	1	2	3	4	5
1	70	4,2484	32	12	9	20	17
2	65	4,1743	49	36	31	40	36
3	62	4,1271	60	49	40	-	47
4	60	4,0943	68	59	49	60	57
5	57	4,0430	80	70	61	73	69
6	55	4,0073	89	82	70	80	-
7	52	3,9512	100	96	84	94	90
8	50	3,9120	109	105	91	102	99
9.	47	3,8501	124	121	106	118	113
10	45	3,8066	134	131	115	128	124
11	42	3,7376	150	149	131	144	140
12	40	3,6888	161	158	144	154	150
13	37	3,6109	179	179	159	173	168
14	35	3,5554	193	190	171	-	180
15	32	3,4658	214	213	193	204	200
16	30	3,4014	223	226	205	218	213
17	25	3,2188	270	270	244	-	252
18	20	2,9957	318	313	282	301	298
Tempo chłodzenia m·10 ⁻³ [s ⁻¹]		4,4032	4,3801	4,3214	4,3813	4,2778	

Uwaga!

Podane wartości m - zarówno w tabeli 6 jak i 7 wyznaczono dla arbitralnie przyjętych prostoliniowych części krzywej chłodzenia (rys.1z, 2z, 3z).

Rys.1z. Wykres tempa chłodzenia $\, \, \alpha \,$ - kalorymetru

100

Rys.2z. Wykres tempa chłodzenia próbki w termostacie powietrznym

Aby wyznaczyć przewodność cieplną wyznaczano współczynnik przejmowania ciepła na powierzchni kalorymetru

$$\alpha = m_{\alpha} \cdot \frac{C}{S}$$
 (4z)

Następnie obliczono λ ze wzoru (3z)

$$\lambda = \frac{K \cdot S}{V} \psi \cdot m_{\infty} \left(\frac{\alpha}{m} - \frac{C_{os}}{S}\right)$$
 (52)

Przykład dla pomiaru nr 11

$$M = \frac{5,0339 \cdot 10^{-4}}{4,35 \cdot 10^{-3}} = 0,1156$$

$$H = 0,12565$$

$$\Psi = \frac{0,1156}{0,12565} = 0,92$$

$$201,802$$

$$\alpha = 2,7944 \cdot 10^{-4} \frac{201,893}{8,9603 \cdot 10^{-3}} = 6,7 \frac{W}{m^2 K}$$

$$\lambda = \frac{4,2413 \cdot 10^{-5} \cdot 8,7448 \cdot 10^{-3}}{5,7663 \cdot 10^{-5}} \quad 0,92 \quad 4,35 \cdot 10^{-3} \left(\frac{6,7}{5,0339 \cdot 10^{-4}} - \frac{14,87}{8,7448 \cdot 10^{-3}}\right) = 0,1969 \quad \frac{W}{m \text{ K}}$$

dyfuzyjność cieplna wynosi

$$a = K \cdot m_{\infty} = 4,2413 \cdot 10^{-5} \cdot 4,35 \cdot 10^{-3} = 1,8461 \cdot 10^{-7} \frac{m^2}{s}$$

efektywne ciepło właściwe c_{ef}

$$c_{ef} = \frac{\lambda}{a \cdot \rho} = \frac{0,1969}{1,8461 \cdot 10^{-7} \cdot 1157,935} = 1,453 \cdot 10^3 \frac{J}{kgK}$$

Dla podanego przykładu obliczeń wielkości cieplnych przeprowadzono ocenę dokładności metody pomiaru, traktując otrzymane wyniki jako reprezentatywne dla pozostałych pomiarów.

Dokładność wielkości bezpośrednio wyznaczonych w pomiarach tj. m $_{\infty}$ m $_{\alpha}$ m $_{\lambda}$ określono metodą różniczki zupełnej. Wartości wszystkich parametrów, na podstawie których była określona przewodność cieplna, zestawiono w tabeli Jz.

Tabela 3z

Wykaz parametrów charakteryzujących pomiary w stanie ustalonym

	Photos	-			galanial and a subsection of the subsection of t
Parametr	Ozna- czenie	Jedno- stka	Wartość	Odchyłka	Uwa- gi
Stała kalorymetru	K	m ²	4,2413.10-5	6,36·10 ⁻⁸	
Powierzchnia próbki	S	m ²	8,7448.10-3	1,749,10 ⁻⁵	
Objętość próbki	V	m ³	5,7663.10 ⁻⁵	3,69.10-7	
Pojemn.cieplna osłony	Cos	J·K ⁻¹	14,87	0,372	
Tempo chłodzenia	^m λ	s=1	4,9248.10-4	7,39.10-6	
Tempo chłodzenia	m 🔊	s ⁻¹	4,3527.10-3	5,22.10-5	
Tempo chłodzenia	m _d	87	2,7603.10-4	4,48.10-6	Contraction Descention
Pojemn.clepl.a-kalorym.	C _{Cu}	J-K-1	201,893	2,0189	
Pow. a - kalorymetru	Scu	m ²	8,9603.10-3	1,79,10-5	
Współ. przejm. ciepła	æ	Wm ⁻² K ⁻¹	4,0676	0,1149	
Liczba podobieństwa	M	sind	0,1156	3,12.10-3	
Zmodyf.liczba Biota	Н		0,1256	3,39.10-3	wyzn. anal.
Liczba podobieństwa	Ψ	813	0,92	2,48.10-2	

Ocena dokładności metodą różniczki zupełnej dla równania (3.2) wykazała, że maksymalny błąd pomiaru może wynosić $\varepsilon_{\lambda} = 9,27\%$. Jak zaznaczono w p.3.2 dokładność wyników zależy od ścisłego zachowania warunków biegowych podczas pomiarów. Na dokładność wyników mają również wpływ zakłócenia zewnętrzne, które nie są ujęte w zależnościach analitycznych opisujących badane wielkości cieplne. Z tych względów pomiary powinny być wielokrotnie powtarzane i na ich podstawie należy określić przedziały ufności dla badanych wielkości. Tego typu oszacowanie własności cieplnych przeprowadzono dla badanej próbki o gęstości $q = 1157,935 \text{ kg/m}^3$ i wiegotności $\omega_0 = 0,17$ (p.3.3.2 - rys.13).

Dla badanych wartości; λ_{ef} , c_{ef} , a wyznaczono przedział ufności [18] na poziomie ufności $1 - \alpha = 0,9$ z zależności

$$\mathbb{P}\left\{\overline{x} - t(n-1,\alpha) - \frac{S}{\sqrt{n-1}} \leqslant m \leqslant \overline{x} + t(n-1,\alpha) - \frac{S}{\sqrt{n-1}}\right\} = 1 - \alpha$$
(6a)

gdzie:

t - statystyka Studenta

- x wartość średnia badanej wielkości
- m wartość oczekiwana
- n ilość punktów pomiarowych

Wyniki obliczeń naniesiono na wykres (rys.14).

OPIS METODY POMIARU WŁASNOŚCI CIEPLNYCH ŁADUNKÓW SYPKICH O GRANULACJI DO 25 mm

Przy badaniach własności cieplnych materiałów o granulacji efektywnej do 25-30 mm, metodami stanu uporządkowanego, zachodzi konieczność przyjęcia próbki o masie kilkudziesięciu kg. W tym celu opracowano konstrukcję przyrządu, umożliwiającego pomiary metodą stanu uporządkowanego, tego typu materiałów. Opis konstrukcji tego urządzenia przedstawiono w załączniku 3.

Pomiar przewodności cieplnej

Pomiary przewodności cieplnej w tym urządzeniu proponuje się przeprowadzić w stanie ustalonym. Przy znanych wymiarach geometrycznych urządzenia po zrealizowaniu zadanej różnicy temperatur pomiędzy powierzchnią grzejnika i powierzchnią wewnętrzną chłodnicy głównej (poprzez sterowanie mocy grzejnika) mierzy się ilość energii elektrycznej Q_{el} doprowadzonej do grzejnika. Na tej podstawie określa się przewodność cieplną z zależności

$$\lambda = \frac{Q_{el}}{2\pi L (T_g - T_{ch})} \cdot \ln \frac{r_g}{r_{ch}}$$
(7z)

Pomiar dyfuzyjności cieplnej

W pomiarach dyfuzyjności cieplnej metodą a - kalorymetru należy spełnić na powierzchni chłodnicy głównej warunek Bi = $\frac{\alpha}{\lambda} R \rightarrow \infty$. Osiąga się to poprzez zapewnienie odpowiedniego przepływu cieczy chłodzącej. Konstrukcja urządzenia pozwala na symulację warunków występujących w nieskończenie długim walcu. Dla przypadków, gdzie pojemność cieplna ścianek i innych elementów (grzejnik) jest pomijalna, dyfuzyjność cieplną próbki określa się z zależności:

$$a = m_{oo} \cdot K$$

gdzie: K - współczynnik kształtu urządzenia dla walca o nieskończenie dużej długości [9], [14] R²

 $K = \frac{R^2}{5.783}; \quad R - \text{promień próbki [m]} \quad (8z)$

W przypadku omawianego urządzenia pojemność cieplna ścian chłodnicy oraz grzejnika umieszczonego w podłużnej osi symetrii próbki jest znaczna i należałoby ją uwzględnić. W tej postaci omawiane urządzeniepod względem budowy zbliżone jest do bi - kalorymetrów [6] [14]. Idea metody bikalorymetru polega na tym, że rozpatruje się stan uporządkowany próbki złożonej z jądra i otaczającej go warstwy materiału izolacyjnego (próbka). W pracy [6] podano zależność dla próbki walcowej

$$\lambda_{1} = \frac{c_{1} \beta_{1}^{m} R}{\mu_{1}} \frac{\left[N_{0}(\mu_{2}R_{1})I_{0}(\mu_{2}R_{1}) - I_{0}(\mu_{2}R_{1})N_{0}(\mu_{2}R_{2})\right]}{\left[N_{0}(\mu_{2}R_{2})I_{1}(\mu_{2}R_{2}) - I_{0}(\mu_{2}R_{1})N_{1}(\mu_{2}R_{2})\right]}$$
(9z)

gdzie:
R₁, R₂ - promienie wewnętrzny i zewnętrzny próbki
w kształcie rury,
m - tempo chłodzenia próbki

$$M_1 = \sqrt{\frac{m}{a_1}}$$
 - moduł bezwymiarowy
a - dyfuzyjność cieplna
 λ_1 - przewodność cieplna próbki
I₀, N₀, I₁, N₁ - funkcje Bessela i Nejmana.

Podana zależność po uwzględnieniu wartości stałych przyjmuje postać

$$\mathbf{a}_{+} = \mathbf{m} \cdot \mathbf{K} \tag{102}$$

Wartość współczynnika kształtu urządzenia dla niejednorodnego rdzenia bi – kalorymetru może być obliczona jedynie w przybliżeniu z tego względu wygodniej jest wyznaczyć ten współczynnik eksperymentalnie przeprowadzając pomiar dla materiału wzorcowego o znanych własnościach, wówczas

$$K = \frac{a_{WZ}}{m_{\infty}}$$
(11z)

Pomiary dyfuzyjności cieplnej omawianym urządzeniem przeprowadza się identycznie jak przy pomiarach a - kalorymetrem. W oparciu o znajomość λ i a można wyznaczyć c z zależności (3.4). Zaletą proponowanego urządzenia jest to, że wykorzystuje stany temperaturowe wymagane przy określaniu przewodności cieplnej. Po dokonaniu pomiaru λ zmienia się temperaturę czynnika chłodzącego, wyłącza zasilanie grzejników i po wejściu próbki w stan uporządkowany określa jej tempo zmian temperatury - m_{co}. Na tej podstawie można wyznaczyć dyfuzyjność cieplną badanego materiału.
OPIS URZĄDZENIA DO POMIARU PRZEWODNOŚCI CIEPŁNEJ I CIEPŁA WŁAŚCIWEGO MATERIAŁÓW SYPKICH **)

Urządzenie do pomiaru własności cieplnych (rys.4z) składa się z segmentu głównego I i dwóch segmentów kompensacyjnych II. Segmenty I i II składają się z cylindrycznej chłodnicy oraz grzejnika elektrycznego połączonego z układem zasilania. Od spodu i od góry chłodnice są przykryte płytkami termoizolacyjnymi. Chłodnice 1, 2 posiadają podwójne ścianki pomiędzy którymi krąży ciecz chłodząca, doprowadzona przewodami 10 z ultratermostatu 12 współpracującego z agregatem chłodniczym 13. Segment główny jest segmentem pomiarowym. Na powierzchniach chłodnicy i grzejnika umieszczone są termopary, połączone z układem pomiarowo-rejestrującym.

Rys.4z. Urządzenie do pomiaru własności cieplnych materiałów sypkich

*) Stanisław Kwaśniowski - Urządzenie do pomiaru przewodności cieplnej i ciepła właściwego materiałów sypkich ~ zgłoszenie patentowe P-204413/78 Tabulogramy programów

4.1 .PROGRAM #KWO1

Program KWO1 jest oparty na schemacie blokowym (rys.26). Realizuje on obliczenia procesu rozmrażania metodą różnic skończonych. Wprogramie uwzględniono nieliniowe i nieciągłe zmiany efektywnego ciepła właściwego i przewodności cieplnej.

	PROGRAM (KWO1)	
	INPUT 1=CRO	
	OUTPUT 2=LP7	
	TRACE 2	
	END	
	MASTER ROZMRAZANIE	
	DIMENSION V(500+2)	
	INTEGER ALEA.RO.R. 7K.RB	
	DEAL KaKR	
	REAL ATAN HAY ALEA DA	
100		
100	FURFIAL (410)	
	READ(1,101) TPUCZ, 15, VKR, TB, AP, BP, ACP, BCP, H, K, EPSILU	N
	READ(1,101)KR,A,B,AC,BC,CC,DC,RW	
	READ(1,101) PI,EP	
101	FORMAT (30F0.0)	0
	READ(1,111) ROS,CES,S	5 F
111	FORMAT(10F0.0)	
	RKZ=K	
	LS=0	
	DO 1 I=1,N	
1	V(I,1)=TPOCZ	
	TAKR=AP+BP*VKR	
	DO 4 L=1.LMAX-1	
	no 3 I=2+N-1	
	$TA1 = TAKR + A/(1 + R/A) OG10 (ARS(V(T \cdot 1) - VKR) + 1))$	
	TA2=TAKR+A/(1+R/ALOG10(ARS(U(T+1,1)-UKR)+1))	
	TA3=TAKP+A/(1+P/A)OC1A/APC(U(T-1+1)-UKP)+1))	
	$PE=\Delta P + BP / (P + 4) = 73 + 4 - 0 + 1 + 1 + 4 + 2 + 0 P$	
	$U(T_0) = (K_{2}T_{0}) + (U(T_{1}, 1) - 0) + (U(T_{1}, 1) + 0) + $	
	$= \sqrt{1} \frac{1}{2} \frac{1}{$	+11/7 . 11
	$\frac{1}{20} \frac{1}{20} \frac{1}{10} \frac$	•••(1)1/
	$\frac{1}{10} \frac{1}{10} \frac{1}{2} \frac{1}{10} $	
100	WALLE (29102) L919V(192)9V(1-192)9V(1-292) Foomat (40V, 70000 totainta determinante (1.0001) to ta EM	
102	FUNDER THO ON	, 201-1
-7		
3	CURTINUE	
	X5=(V(N-1,1)+V(N,1))/2	
	TAXS=TAKR+A/(1+B/ALOG10(ABS(XS-VKR)+1))	
	X4=(CES*ROS*S*V(N,1)/K+TAXS*V(N-1,2)/H+ALFA*TS)/(CE	S*ROS*S/K+
	⊕TAXS/H+ALFA)	
	XG≕O.	
	XII=O.	
	SU=0.	
	SD=0.	
	DO 47 $J=1,30$	
	VS = (V(N, 1) + V(N-1, 1))/2	
	XS = (X4 + U(N - 1, 2))/2	
	CYNE Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	

	CF1=ATAN (ABS (VS-TB) *SQRT (CC/DC))
	DP1=ATAN (ABS (VKR-TB) *SORT (CC/DC))
	EP1=AC*(VKR-VS)+BC/SQRT(CC/DC)*(CP1-DP1)
	CPWA=EP1/(VKR-VS)
	CP2=ATAN (ABS (XS-TB) *SORT (CC/DC))
	EP2=AC*(VKR-XS)+BC/SQRT(CC/DC)*(CP2-DP1)
	CFWB=EP2/(VKR-XS)
	TAYS=TAKR+A/(1+R/ALOG10(ARS(XS-VKR)+1))
	HETTE (2. 159) CELLA. CELLA. YAYS. FPS
	$n_{1} = T (N_{1} + 2) = Y (1) / (N_{1} + 2) / (N_{1} + 2) = Y (1) / (N_{1} + 2) = Y (1) / (N_{1} + 2) = Y (1$
	(1 - 1) + (1 -
	OT TELY AND AN ON CONTRACT AND A CONTRACT AND A CONTRACT AND A CONTRACT AND A
	$U_{3} = ALF A + (15 - X4)$
	EX=01+02+04-03
	IF (EX) 0,123,124
	SU=SIGN(1.,EX)
	XG==X4
	60 TO 125
124	SD=SIGN(1.,EX)
	XII=X4
125	IF (SD+SU.EQ.0) GO TO 126
	X4=X4-2*J*SIGN(KR+EX)
	60 TO 47
126	EPS=ABS (XG-XD)
ally dans ford	$TE(EPS_{1} E_{1} E)$ GO TO 123
17	C(1)17 TAU (C)
47	
	$WR(1) \in (27200)$
4 ****	
123	
	V(1,2) = V(3,2)
	IF (LS.NE.0) GU 10 64
	IF (V(N,2).GE.VKR) GO TO 64
	WRITE(2,103)L,(V(I,2),I=N-9,N)
103	FORMAT (//20X,13HCHWILA CZASU=,14//(100F12.2))
64	IF (V(N,2)-(VKR+PI))0,61,60
	IF(LS.NE.0) GO TO 60
	DO 5 I=1,N
	V(I,1) = V(I,2)
5	V(1,2)=0.
4	CONTINUE
	60 TO 50
60	IF (ABS (V (N, 2) - VKR) . LE.PI) GO TO 61
62	LS=LS+1
	IF(LS.GT.20) GO TO 63
	K=K*(V(N,1)-VKR)/(V(N,1)-V(N,2))
	WRITE(2,155) V(N,1),V(N,2),K,L,LS
155	FORMAT (2X, 3F10, 5, 2X, 215)
	_ === 1
	GO TO 4
63	URITE (2.160)
160	FORMAT (//10Y ASHORI TOTENTA PRZERIANE PRZERPOCZONY DARAMETR I C.SV.
al. 6.9 5.9	
	co = r = c
41	
01	WILLEVENION THREETERS ON
101	FUNTAL (ZX) / HEAKIEKA, ZX)
	<pre>#3HKZ=+F8.4+2X+13HCHWILA CZASU=+14//(100F12.2))</pre>
	DO 80 1=2,N
	V(1,1) = V(1,2)
65	$\nabla(1,2) = 0$
	K=0.1
	X2=0.
	R=N-1

```
111
    DO 7 LL=L+1, LMAX-1
    TAKR=AP+BP*VKR
    DO 8 I=2,R-1
    TA1=TAKR+A/(1+B/ALOG10(ABS(V(I,1)-VKR)+1))
    TA2=TAKR+A/(1+B/AL0G10(ABS(V(I+1,1)-VKR)+1))
   TA3=TAKR+A/(1+B/AL0G10(ABS(V(I-1,1)-VKR)+1))
   CE=AC+BC/(CC*(273.16-V(I,1))**2+DC)
    V(I,2)=V(I,1)+(K*TA1*(V(I+1,1)-2*V(I,1)+V(I-1,1))+0.25*K*(TA2-TA3)
#*(V(I+1,1)-V(I-1,1)))/(H*H*RO*CE)
   CONTINUE
    V(1,2) = V(3,2)
    IF (X2.EQ.0) 60 TO 24
    I = R
    TA1=TAKR+A/(1+B/ALOG10(ABS(V(I,1)-VKR)+1))
    TA2=TAKR
    TA3=TAKR+A/(1+B/ALOG10(ABS(V(I-1,1)-VKR)+1))
    CE=AC+BC/(CC*(273.16-V(I,1))**2+DC)
    U(I_{2}) = U(I_{1}) + (K_{2} + I_{1}) / (H - HZ) - (U(I_{1}) - U(I_{1})) / (H - HZ) - (U(I_{1}) - U(I_{1}) - U(I_{1})) / (H - HZ) - (U(I_{1}) - U(I_{1}) - U(I_{1})) / (H - HZ) - (U(I_{1}) - U(I_{1}) - U(I_{1})) / (H - HZ) - (U(I_{1}) - U(I_{1}) - U(I_{1}) - U(I_{1}) - U(I_{1}) - U(I_{1}) / (H - HZ) - (U(I_{1}) - U(I_{1}) - U(I_
   +K*(TA2-TA3)*(VKR-V(I-1,1))/(2*H-HZ))/(R0*CE*(2*H-HZ))
    IF(R.EQ.N-1) GO TO 51
```

CPWA=E37 (VKR-X3) DO 14 J=1,50 TXG=0. TXD=0. TSU=0. TSD=0.

570 XE2=X2

CPW3=ACP+BCP/2*(X3+VKR) XS=(VKR+X3)/2

TAXS=AP+BP*XS

Q1=-TAXS*(X3-VKR)/X2 Q3=ALFA*(X3-TS)

8

51

IF (V(I,2).LT.VKR.AND.X5+(X5-X7)*0.9.LT.H) GO TO 24 R=N-2

R=R-1GO TO 56

GO TO 24

57 IF(V(I+2)_LT_VKR_AND_X5+(X5-X7)*0.9_LT_2*H) GO TO 555 R=1-1 RB=R+1

IF (V(I,2).LT.VKR.AND.X5+(X5-X7)*0.9.LT.2*H) GO TO 56

GO TO 555

24 IF (HZ.GT.0) GO TO 565 X3=V(N,1)+0.1XS=(X3+VKR)/2

IF(R.EQ.N-2) 60 TO 57

- TAXS=AP+BP*XS
 - X2=-TAXS*(V(N-1,2)-X3)/(ALFA*(TS-X3)-R0S*CES*S/K*(X3-V(N,1))) GO TO 566
- 565 X2=HZ+(HZ-X7)
- 566 CE=AC+BC/(CC*(273.16-V(R,1))**2+DC)
 - TA=TAKR+A/(1+B/ALOG10(ABS(V(R,1)-VKR)+1))
 - XS=(X2-HZ)/(H-HZ)*(V(N-1,1)-VKR)
 - D3=ATAN(ABS(VKR-273.16)*SQRT(CC/DC))
 - E3=AC*(VKR-XS)+BC/SQRT(CC*DC)*(C3-D3)

- X3=V(N,1)-(X8-V(N,1))*0.75
- TA2=TAKR+A/(1+B/AL0G10(ABS(V(R-1,1)-VKR)+1))
- X1=V(R+1)+K/(R0*CE)*TA*2/(H*2-HZ)*((VKR-V(R+1))/(H-HZ)-
- # (V(R+1)-V(R-1+1))/H)+K/(R0*CE)*(VKR-V(R-1+1))/(H*2-HZ)*(TAKR-TA2)/
- ∉(H+2-HZ)

 - IF(R.EQ.N-2)X1=V(R,2)
 - C3=ATAN (ABS (XS-273.16) *SQRT (CC/DC))
 - DO 199 MX=1,50

	CPWB=ACP+DCP/2*(V(N,1)+VKR)
	IF(R.EQ.N-2) 60 TO 556
	Q2=R0/(2*K)*(CPW3*X2*(VKR-X3)-HZ*CPWB*(VKR-V(N,1))+
	#CPWA*(X2-HZ)*(X2-HZ)*(V(N-1,1)-VKR)/(H-HZ))
	GO TO 86
556	VS=V(N-1,1)-VKR
	Q2= (RD*X2*CPU3* (VKR-X3)/2-HZ*R0*CPWB*
	#(VKR-V(N+1))/2+(X2-HZ)*R0*CPWA*VS)/K
86	Q4=S*RDS*CES*(V(N,1)-X3)/K
	EX=01+02+04-03
	WRITE(2,158) Q1,Q2,Q3,Q4,EX,X4
158	FORMAT (2X, 6F10.6)
	IF (EX) 0,133,134
	TSU=SIGN(1.,EX)
	TXG=X3
	60 TO 135
134	TSD=SIGN(1.,EX)
	TXD=X3
135	IF (TSD+TSU.EQ.0) GO TO 136
	PD=(X8-V(N,1))*0.35
	X3=X3-SIGN (PD+EX)
	60 10 199
136	TEPS=ABS (TXG-TXD)
	IF (ABS (TEPS) LE.PI) GO TO 133
	X3 = (TXG+TXD)/2
199	CONTINUE
	WRITE (2,250)
250	FORMAT (26HOBLICZENIA X2/KONIEC PETLI)
	EROR=20/ZERO
133	V(R+2)=X1
	CP1=ATAN(ABS(V(2,1)-TB)*SQRT(CC/DC))
	DC1=ATAN (ABS (VKR-TB) #SQRT (CC/DC))
	EP1=AC*(VKR-V(2,1))+BC/SQRT(CC*DC)*(CP1-DP1)
	CPW1=EP1/(VKR-V(2,1))
	CF2=ATAN (ABS (V(2,2)-TB) *SQRT (CC/DC))
	EP2=AC*(VKR-V(2,2))+BC/SQRT(CC/DC)*(CP2-DP1)
	CPW2=EP2/(VKR-V(2,2))
	SR=0.
	DO 12 I=2,N-2
.h. en	SK=SR+0.5*H*(V(1,1)+V(1+1,1))
	V51=(SK+0.5*(H-HZ)*(V(N-1,1)+VKR))/(RW-HZ)
	V51=VKK-V51
	V52=(V(N+1)-VNR)/2
	C71 - UC1 + CCU1 + COU + U7)
	CZ1=VS1*CFW1*RC*(KW=BZ)
	020-000×020×0×0×0×0×0×0×0×0×0×0×0×0×0×0×
	NG-11 T-2-D-1
	A2-A2+L1x(11(T, 2)+11(T+1, 2)) /2
ماي مان	
	$T\Delta_{m}T\Delta K P + \Delta / (1 + P / \Delta) O(C(\Delta) (\Delta PC (Y1 - UKP) + 1))$
	$TAP_{TAP} = TAP_{TAP} + 2 / (1 + 2 / A) + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + $
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	TE(R, E0, N-2) 60 TO 561
	YL1=CPU24R0#(UKR4RU-Δ3-/Y1+UKR)#H/2)
	X2= (XI 1+XI 2-C71+C74-C75) /
	♦ ((CEU3# (UKR-X3) -CEU2# (X1-UKE) \ #R0/2Y
	X1=(R0*CE/K*V(R+1)+2*TA/(2*H-X2)*(UKR/(H-X2)+U/R-1-2)/H)+/UKR-
	#V(R-1,2))*(TAKR-TAR1)/((2#H-X2)**2))/(RD*CF/K+2*TA/((H-X2)**))
	60 TO 562

```
113
561 XL1=CPW2*R0*(VKR*RW-A3-(X1+VKR)*H)
     X2=(XL1+XL2-CZ1+CZ4+CZ5)
    #/ (CPW3*R0* (VKR-X3) /2+CPW2*R0* (X1-VKR) /2)
     X1=(R0*CE/K*V(R+1)+2*TA/(3*H-X2)*(VKR/(2*H-X2)+V(R-1+2)/H)+(VKR-
    #V(R-1,2))*(TAKR-TAR1)/((3*H-X2)**2))/(R0*CE/K+2*TA/((2*H-X2)*H))
562 IF (ABS((X2-XE2)/X2).LE.EP) GO TO 33
     X2=(XE2+X2)/2
 14 CONTINUE
     WRITE (2,200)
 200 FORMAT (/10X, 37HPROGRAM ZERO: OSIAGNIETO KONIEC FETLI,/)
 33 V(N+2)=X3
     X8=V(N,1)
     ¥9=XA
     X7 = HZ
     X5=X2
     IF(R.EQ.N-2) GO TO 564
     V(N-1,2) = X1
     HZ=X2
     GO TO 23
564 V(N-2,2)=X1
     V(N-1,2)=X3+H/X2*(VKR-X3)
     HZ=X2-H
     GO TO 23
555
    X2=X5+(X5-X7)
     CE=AC+BC/(CC*(273.16-V(R,1))**2+DC)
     TA=TAKR+A/(1+B/ALOG10(ABS(V(N+1)-VKR)+1))
     TA2=TAKR+A/(1+B/AL0G10(ABS(V(R-1,1)-VKR)+1))
     X1=V(R,1)+K/(R0*CE)*TA*2/(H*2-HZ)*((VKR-V(R,1))/(H-HZ)-
    ♣(V(R+1)-V(R-1+1))/H)+K/(R0*CE)*(VKR-V(R-1+1))/(H*2-HZ)*(TAKR-TA2)/
   #(H*2-HZ)
     IF(R.EQ.N-3) X1=V(R,2)
     TA2=AP+BP*V(N,1)
     IF(R.EQ.N-3) GO TO 300
     CE=ACP+BCP*V(R+1,1)
     TA=AP+BP*V(R+1,1)
     X3=V(R+1,1)+K/(R0*CE)*TA*2/(H+HZ)*((V(N,1)-V(R+1,1))/H-
    # (V (R+1;1) -VKR)/HZ)+K/ (RD+CE) * (V (N;1) -VKR)/ (H+HZ) * (TA2-TAKR)/ (H+HZ)
     GO TO 301
300 TA1=AP+BP*V(R+2,1)
     CE = ACP + BCP * V(R+2,1)
     V(R+2,2)=V(R+2,1)+K/(R0*CE)*TA1*2/(H+HZ)*((V(N,1)-V(R+2,1))/H-
    #(V(R+2,1)-VKR)/HZ)+K/(R0*CE)*(V(N,1)-VKR)/(H+HZ)*(TA2-TAKR)/
    骨(H+HZ)
     X3=VKR-(VKR-V(R+2,2))/(X2-H)*(X2-2*H)
301 X4=V(N,1)-0.75*(X9-V(N,1))
     DO 69 MX=1,50
     XG=0.
     XD=0.
     SU=0.
     SD=0.
     CPWA=ACP+BCP/2*(V(N-1,1)+V(N,1))
     DO 16 J=1,30
     XS=(X3+X4)/2
     IF (R_EQ_N-3) XS=(V(N-1,2)+X4)/2
     TA=AP+BP*XS
     CPWB=ACP+BCP/2*(X3+X4)
     Q1=-TA*(X4-X3) /H
     Q2=-H*R0/K*(CPWA*(VKR-(V(N-1,1)+V(N,1))/2)-CPWB*(VKR-XS))
     Q3=ALFA*(X4-TS)
     Q4=-S*ROS*CES*(X4-V(N+1))/K
     FX=Q1+Q2+Q4-Q3
     IF (FX) 0,37,38
```

```
SU=SIGN(1.,FX)
     XG=X4
     GO TO 39
38
     SD=SIGN(1.,FX)
     XII=X4
39
     IF (SU+SD.EQ.0) GO TO 40
     PD=(X8-V(N,1))*0.35
     IF(FX.GT.0) GO TO 492
     X4=X4-FD
     GO TO 16
492
    X4=X4+PD
     GO TO 16
40
     EPS=ABS((XG-XD)/(X9-X4))
     IF (ABS(EPS).LE.PI) GO TO 37
     X4 = (XG + XD) / 2
     URITE (2, 164) R, RB, FX, Q1, Q2, Q3, Q4, X1, X2, X3, X4, XE2
     FORMAT (2X, 6HBLOK V, 2X, 213, 2X, 10F8.5)
164
16
     CONTINUE
     WRITE (2,200)
     EROR=20/ZERO
37
     XE2=X2
     CE1=AC+BC/(CC*(273.16-X1)**2+DC)
     TAX1=TAKR+A/(1+B/AL0G10(ABS(X1-VKR)+1))
     TAR1=TAKR+A/(1+B/AL0610(ABS(V(R-1,2)-VKR)+1))
     TAN1=AP+BP*V(N-1,2)
     TAX4=AP+BP#X4
     IF(R.EQ.N-2) GO TO 306
     X1=(R0*CE1/K*V(R,1)+2*TAX1/(4*H-X2)*(VKR*H+V(R-1,2)*(3*H-X2))/
    #(3*H-X2)*H+(VKR-V(R-1,2))/(4*H-X2)*(TAKR-TAR1)/(4*H-X2))/
    #(R0*CE1/K+2*TAX1/((3*H-X2)*H))
     CE = ACP + BCP + V(N-1,2)
      V(R+2y2)=(R0*CE/K*V(R+2y1)+2*TAN1/X2*(X4/H+VKR/(X2-H))+(X4-VKR)/X2
    # (TAX4-TAKR) / X2) / (R0*CE/K+2*TAN1/(H*(X2-H)))
     X3=VKR-(VKR-V(R+2,2))/(X2-H)*(X2-2*H)
     GO TO 377
306 X1=(R0*CE1/K*V(R+1)+2*TAX1/(3*H-X2)*(VKR/(2*H-X2)+
    #V(R-1,2)/H)+(VKR-V(R-1,2))/(3#H-X2)*(TAKR-TAR1)/(3#H-X2))/
    #(R0*CE1/K+2*TAX1/((2*H-X2)*H))
     CE3=ACP+BCP*X3
     TAX3=AP+BP*X3
     X3=(R0*CE3/K*V(R+1,1)+2*TAX3/X2*(X4*(X2-H)+VKR*H)/
    #(H*(X2-H))+(X4-VKR)/X2*(TAX4-TAKR)/X2)/(R0*CE3/K+2*TAX3/
    #(H*(X2-H)))
377 VS1=0.
     DO 19 I=2,N-3
19
     VS1=VS1+0.5*H*(V(I,1)+V(I+1,1))
     VS2={0.5*HZ*{VKR+V(N-2,1)}+0.5*H*{V(N-1,1)+V(N,1)}}/(H+HZ)
     VS2=VS2-VKR
     CP1=ATAN(ABS(V(2,1)-TB)*SORT(CC/DC))
     DC1=ATAN(ABS(VKR-TB)*SQRT(CC/DC))
     EP1=AC*(VKR-V(2,1))+BC/SQRT(CC*DC)*(CP1-DP1)
     CPU1=EP1/(VKR-V(2,1))
     CP2=ATAN (ABS (V(2,2)-TB)*SQRT (CC/DC))
     EP2=AC*(VKR-V(2,2))+BC/SQRT(CC/DC)*(CP2-DP1)
     CPW2=EP2/(VKR-V(2,2))
     CPW3=ACP+BCP/2*(VKR+X4)
     CPW4=ACP+BCP/2*(V(N,1)+VKR)
     CZ1=VS1*CPW1*RO*(RW-X5)
     CZ4=VS2*CPU4*R0*X5
     CZ5=R05*CE5*S*(X4-V(N,1))
     A3=0.
     DO 21 I=2,R-2
21
     A3=A3+0.5*(V(I,2)+V(I+1,2))*H
     A3=A3+0.5*H*(V(R-1,2)+X1)
```

	115
	XL2=K*ALFA*(TS-X3)
	IF (R.LT.N-2) 60 TO 304
	XL1=CFW2#R0#(VKR#RW-A3-(X1+VKR)#H/2)
	XM1=(CEU3+(X3-UKE)+CEU2+(UKE-X1))+H/2
	Y2=(YL 1+YL 2=C71+C74=C75) /YM1
	CO TO 707
704	
304	XLICEW2*RO*(VR*RW-A3-(XI+VR)*A)
	X2=(XL1+XL2-UZ1+UZ4-UZ5)/XM1
307	IF (AB5(X2-XE2)/(X2-X5).LE.EP) GU TU 339
	X2=(XE2+X2)/2
69	CONTINUE
339	HZ = XZ - (N - I - R) * H
	X7=X5
	X5=X2
	X9=V(N,1)
	$V(N_{2}2) = X4$
	V(R,2)=X1
	V(R+1+2)=X3
	RB=R
	X8=X9
	GO TO 23
56	DO 17 I=R+2,N-1
	TA1=AP+BP*V(I,1)
	TA2=AP+BP*V(I+1,1)
	CE=ACP+BCP*V(I,1)
	IF (I.EQ.R+2.AND.R.EQ.RB) GO TO 54
	V(I,2)=V(I,1)+(2*K*TA1)/(RO*CE*(H+HZ))*((V(I+1,1)-V(I,1))/H+
	# (V(I+1)-VKR)/HZ)+K*(TA2-TAKR)*(V(I-1+1)-VKR)/(RO*CE*(H+HZ)*(H+HZ))
1	GO TO 17
54	TA3=AP+BP*V(I-1,1)
	V(I,2)=V(I,1)+(TA1*K*(V(I+1,1)-2*V(I,1)+V(I-1,1))+0.25*K*(TA2-TA3)
	#*(V(I+1,1)-V(I-1,1)))/(H*H*RO*CE)
17	CONTINUE
	X4=V(N+1)=0.75*(X9-V(N+1))
	XG=0.
	XD=O.
	SU=0.
	SII=0.
	10 41 J=1,30
	$x_{3} = (x_{4} + y_{1} + 2))/2$
	TA=AP+BP*XS
	CPWA=ACP+BCP/2*(V(N-1,1)+V(N,1))
	CPUB=ACP+BCP/2*(V(N-1+2)+X4)
	$\Omega_{1} = -TA + (X4 - V(N - 1, 2)) / H$
	$Q_{2}=-H*RO/(2*K)*(CPUA*(V(N-1,1)+V(N,1))-CPUB*(X4-V(N-1,2)))$
	Q3=ALFA* (X4-TS)
	Q4=KOS*CES*S* (V(N+1)-X4)
	FX=01+02+04-03
	IF (FX) 0,42,43
	SU=SIGN(1, FX)
	XG=X4
	GO TO 44
43	SD=STGN(1.+FX)
10	YT=X4
44	ΤΕ (SH4Sh EQ Δ) GO TO 45
-1-1	PD=:(Y8-U(N+1))+0.35
	TE(EV GT A) GO TO A03
	YAYA-DD
	20 TO 61
40-	
473	
1 ***	
40	
	IF (ABS(EPS) LE EPSILON) GU 10 42

	116
	$X_{4}=(X_{0}+X_{0})/2$
41	CONTINUE
	WRITE (2,200)
	60 TO 50
42	V(N+2)=X4
	X2=X5+(X5-X7)
	WRITE (2,165) R, RB, FX, Q1, Q2, Q3, Q4
165	FORMAT (2X, 7HBLOK IX, 2I3, 2X, 5F10.5)
	IF (R.EQ.RB) GO TO 401
	X1=V(R+2) V2-HKD_(KKD_H/D+2-2))///V2_H*(N_D_2))*(Y2-(N-R-1)*H)
	$\frac{1}{10} \frac{1}{10} \frac$
401	TA1=AP+BP*V(R+1,1)
,	CE=ACP+BCP*V(R+1,1)
	TA2=AP+BP*V(R+2,1)
	X3=V(R+1,1)+K/(R0*CE)*TA1*2/(H+HZ)*((V(R+2,1)-V(R+1,1))/H-
	#(V(R+1,1)-VKR)/HZ)+K/(R0*CE)*(V(R+2,1)-VKR)/(H+HZ)*(TA2-TAKR)/
	∉ (H+HZ)
	CE=AC+BC/(CC*(273.16-V(R,1))**2+DC)
	TA = TAKR + A/(1 + B/ALOGIO(ABS(V(R + 1) - VKR) + 1))
	TA2=IAKR+A/(1+B/ALUG10(ABS(V(R-1,1)-VKR)+1))
	X1=V(Ky1)+(V(KU+U)=1+X)/(H+Z)(H+Z)(H+Z-HZ)+(V(K+V(K+Y))/(H+Z)+(TAKP-TAZ)) $+(U/D-1)-(U/D-1-1)/(H+Z)+(TAKP-TAZ)/(H+Z-HZ)+(UKD-U/D-1-1))/(H+Z)+(TAKP-TAZ)/(H+Z$
	# (H40=H7)
	$n_{0} = 70 \text{ MN} = 1.50$
402	XE2=X2
	CE=AC+BC/(CC*(273.16-X1)**2+DC)
	TAX1=TAKR+A/(1+B/ALOG10(ABS(X1-VKR)+1))
	TAR1=TAKR+A/(1+B/ALOG10(ABS(V(R-1,2)-VKR)+1))
	X1=(R0*CE1/K*V(R,1)+2*TAX1/(H*(N-R+1)-X2)*
	\Rightarrow (VKR/(H*(N-R)-X2)+V(R-1,2)/H)+(VKR-V(R-1,2))/((N-R+1)*H-X2)*(TAKR)
	#-TAR1)/((N-R+1)#H-X2))/(RU*UE1/R+2*TAX1/((H*(N-R)-X2)*H))
	$T\Delta R^2 = \Delta P + RP * U (R + 2 \cdot 2)$
	X3=(R0*CE3/K*V(R+1,1)+2*TA3/(X2-(N-R-2)*H)*(V(R+2,2)/H-
	#VKR/(X2-(N-R-1)*H))+(V(R+1+2)-VKR)/(X2-(N-R-2)*H)*(TAR2-TAKR)/
	#(X2-(N-R-2)*H))/(R0*CE3/K+2*TA3/(H*(X2-(N-R-1)*H)))
	CP1=ATAN(ABS(V(2,1)-TB)*SQRT(CC/DC))
	DC1=ATAN (ABS (VKR-TB) *SQRT (CC/DC))
	EP1=AC*(VKR-V(2,1))+BC/SQRT(CC*DC)*(CP1-DP1)
	CPW1=EP1/(VKR-V(2,1))
	CP2=ATAN(ABS(V(2)2)-TB)*SQR((CC/DC))
	EF2-AC*(VAR-V(2)2))+BC/SER((CC/DC)*(CF2-DF1) CPU2=EP2/(UKP_U(2)2))
	CPUR=ACP+BCP*(V(N*2)+UKR)/2
	CPW4=ACP+BCP/2*(V(N,1)+VKR)
	SR1=0.
	DO 80 I=2,RB-1
80	SR1=SR1+0.5*H*(V(I,1)+V(I+1,1))
	VS1=VKR-(SR1+0.5*(H-HZ)*(V(RB,1)+VKR))/(RW-X5)
	SR2=0.
~	$\begin{array}{c} 10 & 81 & 1 = 88 \pm 1 \\ 81 & 9 & 1 \\ 81 & 9 & 1 \\ 81 & 1 \\ 8$
81	SK2=SK2+0.3+M+(V(1,1)+V(1+1,1))
	V32-3R2+0.J=RR (V(RB+1)1)+VRR/X3
	A3=0_
	DO 82 I=2,R-2
82	A3=A3+0.5*H*(V(I,2)+V(I+1,2))
	A3=A3+0.5*H*(V(R-1,2)+X1)+(X1+VKR)*(N-R)*H*0.5
	SR4=0.
	DO 83 I=R+1,N-1
	SR4=SR4+0.5*H*(V(1))+V(I+1+2))

	A4=SR4-(VKR+X3)*(N-R-1)*H/2
	CZ5=ROS*CES*S*(X4-V(N+1))
	XL1=-A4*CPU3*R0-(A3-VKR*RW)*CPU2*R0
	XL2=K*ALFA* (TS-X4)
	XM1=((X3-UKR)*CPU3+(UKR-X1)*CPU2)*R0/2
	X2= (XI 1+XI 2-C71+C74-C75) / XM1
	$IE(ABS((X2-XE2)/(X2-X5))) = I_{x}EP(B0, T0, 339)$
	¥2=(¥F2+¥2)/2
70	CONTINUE
27	00.15 T=1.N
and the	$U(T_{-1}) = U(T_{-2})$
15	V(1)=V(1)=0
	URITE (2.107) (1.22. (U(1.1).T=47.N)
107	EORMAT (//30X+13HCHUTLA_C7ASH:+T4+2X+3HX2=+E12-4//(100E12-2))
101	
7	CONTINUE
	URTTE (2.201)
201	FORMAT (//30X+20HKONTEC OBLICZEN LMAX)
50	QTOP
20	END
	ETNITSH
150	100 = 5 = 900
2.02	14 ANT 16 979 7 977 16
0 22	7 - 0 00005 0 324 - 0 00005
0 01	0 05 0 0001
0.01	
1 5	V./ Z. V.Z.J 4.J I.J V.ZO
0 00	0001 0 0001
2000	
1800	* VIII VIVU
н ж ж ж	

Autor progr.S.Kwaśniowski

4.2. PROGRAM #KWO4

Program KWO4 jest oparty na schemacie blokowym rys.26. Realizuje on obliczenia procesu zamarzania z uwzględnieniem nieliniowych i nieciągłych zmian efektywnego ciepła właściwego i przewodności cieplnej.

	PROGRAM (KWO4)		
	ENT		
	MACTER TAMARTANTE		
•	$n_{HS} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$		
	THERE ALEA, D_0 , $T_{\rm e}$, $D_{\rm e}$		
	TRIEDER HELHARDARATIVE		
+ ^ ^			
100	F(UKRA) = (410) D(TAD / 4 + 104) TDDP7 - TC - UKD - TD - AD - DD - ACD - DCD - U - K - EDCTI AN		
	READ(1)101) (PUCZ) (SYVIK) (BYHEYDE HUFYDUFYHYKYD SILUR		
	READ(1,101) NR, A, B, AL, BL, LL, DL, KW		
	READ(1,101) PIVEP		
101	FURMA1 (30F0.0)		
	REAU(1,111) RUS, CES, S		
111	FORMAT (10F0.0)		
	RKZ≕K		
	LS=0		
	DO 1 I=1,N		
1	V(I,1) = TPOCZ		
	DO 4 L=1,LMAX-1		
	DO 3 I=2,N-1		
	TA1=AP+BP*V(I,1)		
	TA2=AP+BP*V(I+1,1)		
	TA3=AP+BP*V(I-1,1)		
	CE=ACP+BCP*V(I,1)		
	V(I,2)=(K*TA1*(V(I+1,1)-2*V(I,1)+V(I-1,1))+		
	#0.25*K*(TA2-TA3)*(V(I+1,1)-V(I-1,1)))/(H*H*RO*CE)	+V(I,1)	
	IF (V(I,2).GT.VKR) GO TO 3		
	GO TO 50		1
3	CONTINUE		
	CE=ACP+BCP*TKR		
	V(N,2) = (TAKR*V(N-1,2)/H-RO*CE*H*(V(N-1,2)-V(N,1)-		
	# V(N-1,1))/(2*K)+ROS*CES*S*V(N,1)/K+ALFA*TS)/(TAKR/H	F	
	#RO*CE*H/ (2*K) +ROS*CES*S/K+ALFA)	•	
	V(1,2) = V(3,2)		
	IF (LS.NE.0) GO TO 64		
64	IF (V(N,2)-(VKR+EPSILON)) 60,61,0		
	IF(LS.NE.0) GO TO 62		
	DO 5 I=1,N		
	V(1,1) = V(1,2)		
5	V(1,2)=0.		
4	CONTINUE		
	GO TO 50		
60	IF (ABS(V(N,2)-VKR) LE EPSILON) GO TO 61		
62	LS=LS+1		
	IF(LS.GT.20) GO TO 63		
	K=K*(V(N+1)-VKR)/(V(N+1)-V(N+2))		
	L=L-1		
	GO TO 4		
63	WRITE (2,160) L, V (N,2)		
160	FORMAT (//10X, 45HOBLICZENIA PRZERWANE-PRZEKROCZONY PAM	AMETR LS	,5X,
	\$13HCHWILA CZASU=,14,F12.2//)		
	GO TO 50		

```
WRITE (2,161) K,L, (V(I,2), I=N-4,N)
61
161
     FORMAT (//20X, 39HZNALEZIONO BARIERE - PARAMETRY BARIERY:, 2X,
    #3HKZ=,F8.4,2X,13HCHWILA CZASU=,14//(100F12.2))
     DO 65 I=2,N
     V(I_{1}1) = V(I_{2})
65
     V(T_{y}2) = 0
     K=RKZ
     X2=0.
     R=N-1
     DO 7 LL=L+1,LMAX-1
     TAKR=AP+BP*VKR
     DO 8 I=2,R-1
     TA1=AP+BP+V(I,1)
     TA2=AP+BP*V(I+1,1)
     TA3=AP+BP*V(I-1,1)
     CE=ACF+BCF*V(I,1)
     V(I,2)=V(I,1)+(K*TA1*(V(I+1,1)-2*V(I,1)+V(I-1,1))+0.25*K*(TA2-TA3)
    IF (V(I,2).LE.VKR) WRITE (2,105) LL, I, V(I,2), V(I-1,2), V(I-2,2)
105 FORMAT(10X,30HOBLICZENIA PRZERWANE W CHWILI:,14,5X,2HI=,12,5X,
    #3F12.2)
     IF (V(I,2).LE.VKR) GO TO 50
 8
     CONTINUE
     V(1,2) = V(3,2)
     IF (X2.EQ.0) GO TO 24
     T = R
     TA1=AP+BP*V(I,1)
     TA2=AP+BP*VKR
     TA3=AP+BP*V(I-1,1)
     CE=ACF+BCF*V(I,1)
     V(I,2)=V(I,1)+ (K*2*TA1*((VKR-V(I,1))/(H-HZ)-( V(I,1)-V(I-1,1))/H)
    IF (R.EQ.N-1) GO TO 51
     IF(R.EQ.N-2) GO TO 57
     IF (V(R,2)_GT_VKR_AND_X5+(X5-X7)*0.9_LT_(N-R)*H) GD TO 56
     R=R-1
     GO TO 56
     IF (V(R,2).GT.VKR.AND.X5+(X5-X7)*0.9.LT.H) GO TO 24
51
     R=N-2
     GO TO 24
     IF (V(R,2).GT.VKR.AND.X5+(X5-X7)*0.9.LT.2*H) GD TO 555
57
     R=1-1
     RB=R+1
     GO TO 555
24
     IF(HZ.GT.0) GO TO 565
     X2=0.006*K
     X3=V(N,1)-0.01
     GO TO 566
565 X2=HZ+(HZ-X7)
     X3=V(N,1)-(X8-V(N,1))*0.75
566 X2=X2
     CE=ACP+BCP*V(R,1)
     TA=AP+BP*V(R,1)
     TA2=AP+BP*V(R-1,1)
     X1=V(R,1)+K/(R0*CE)*TA*2/(H*2-HZ)*((VKR-V(R,1))/(H-HZ)-
    $(V(R,1)-V(R-1,1))/H)+K/(R0*CE)*(VKR-V(R-1,1))/(H*2-HZ)*(TAKR-TA2)/
    ≑(H*2-HZ)
     IF (R.EQ.N-2) X1=V(R,2)
     CPWA=ACP+0.5*BCP*(V(R,1)**2-VKR**2)/(V(R,1)-VKR)
     DO 14 J=1,50
     TXG=0.
     TXD=0.
     TSU=0.
     TSI=0.
    IO 199 MX=1,50
```

120 570 XE2=X2 C3=ATAN (ABS (X3-273.16) *SQRT (CC/DC)) D3=ATAN(ABS(VKR-273.16)*SQRT(CC/DC)) E3=AC*(VKR-X3)+BC/SQRT(CC*DC)*(C3-D3) CPW3=E3/(VKR-X3) XS=(VKR+X3)/2TAXS=TAKR+A/(1+B/ALOG10(ABS(XS-VKR)+1)) Q1 = -TAXS * (X3 - VKR) / X2Q3=ALFA*(X3-TS) IF (HZ.EQ.0) GO TO 85 C5=ATAN(ABS(V(N,1)-273.16)*SQRT(CC/DC)) E5=AC*(VKR-V(N,1))+BC/SQRT(CC*DC)*(C5-D3) CPWB=E5/(VKR-V(N,1))IF (R.EQ.N-2) GO TO 556 Q2=(RO*CPW3*X2*(VKR-X3)-HZ*CPWB*(VKR-V(N,1))*RO+ #R0*CPWA*(X2-HZ)*(X2-HZ)*(V(N-1,1)-VKR)/(H-HZ))/(2*K) GO TO 85 85 X3=X3 Q2=(R0*CPWA*X2*X2*(V(N-1,1)+VKR)/H+ #R0*CPW3*X2*(VKR-X3))/(K*2) GO TO 86 556 VS=V(N-1,1)-VKR Q2=(R0*X2*CPW3*(VKR-X3)/2-HZ*R0*CPWB* #(VKR+V(N,1))/2+(X2-HZ)*R0*CPWA*VS)/K 86 X3=X3 Q4=S*ROS*CES*(V(N,1)-X3)/K EX=Q1+Q2+Q4-Q3 IF (EX) 0,133,134 TSU=SIGN(1.,EX) TXG=X3 GO TO 135 134 TSD=SIGN(1.,EX) TXD=X3 135 IF (TSD+TSU.EQ.0) GO TO 136 PD=(X8-V(N,1))*0.35 IF (HZ.GT.0) GO TO 222 IF (EX.GT.0) GO TO 490 X3=X3-0.05 GO TO 199 490 X3=X3+KR GO TO 199 222 IF (EX.GT.0) GO TO 491 X3=X3-PD GO TO 199 491 X3=X3+FD GO TO 199 TEPS=ABS (TXG-TXD) 136 IF (ABS (TEPS) LE.PI) GO TO 133 X3 = (TXG + TXD)/2199 CONTINUE WRITE (2,250) 250 FORMAT (26HOBLICZENIA X2/KONIEC PETLI) EROR=20/ZERO 133 X2=X2 V(R,2) = X1CPW1=(ACP*V(2,1)-ACP*VKR+0.5*BCP*V(2,1)*V(2,1)-0.5*BCP*VKR*VKR)/ $\neq (V(2,1) - VKR)$ CPW2=(ACP*V(2,2)-ACP*VKR+0.5*BCP*V(2,2)*V(2,2)-0.5*BCP*VKR*VKR)/ ∉(V(2,2)-VKR) SR=0. DO 12 I=2,N-2 SR=SR+0.5*H*(V(I,1)+V(I+1,1)) 12 VS1=(SR+0.5*(H-HZ)*(V(N-1,1)+VKR))/(RU-HZ) VS1=VS1-VKR VS2=VKR-0.5*(VKR+V(N,1)) C4=ATAN(ABS(V(N,1)-273.16)*SORT(CC/DC))

```
E4=AC*(VKR-V(N,1))+BC/SQRT(CC*DC)*(C4-D3)
     CPU4=E4/(VKR-V(N,1))
     CZ1=VS1*CPW1*RO*(RW-HZ)
     CZ4=VS2*CPW4*R0*HZ

    CZ5=ROS*CES*S*(X3-V(N,1))

     A3=0.
     10 11 I=2,R-1
 11 A3=A3+H*(V(I,2)+V(I+1,2))/2
     CE=ACP+BCP*X1
     TA=AP+BP*X1
     TAR1=AP+BP*V(R-1,2)
     C3=ATAN (ABS (X3-273.16) *SQRT (CC/DC))
     D3=ATAN (ABS (VKR-273.16) *SQRT (CC/DC))
     E3=AC*(VKR-X3)+BC/SQRT(CC*DC)*(C3-D3)
     CPW3=E3/(VKR-X3)
     IF(R.EQ.N-2) GO TO 561
     XL1=CPU2*RO*(A3+(X1+VKR)*H/2-VKR*RW)
     XL2=K*ALFA*(X3-TS)
     X2=(XL1+XL2-CZ1+CZ4+CZ5)
    #/(CPU3*R0*(VKR-X3)/2+CPU2*R0*(X1-VKR)/2)
     X1=(R0+CE/K+V(R,1)+2+TA/(2+H-X2)+(VKR/(H-X2)+V(R-1,2)/H)+(VKR-
    #V(R-1,2))*(TAKR-TAR1)/((2*H-X2)**2))/(R0*CE/K+2*TA/((H-X2)*H))
     GO TO 562
561 X2=(CPW2*R0*(A3+(X1+VKR)*H-VKR*RW)+K*ALFA*(X3-TS)-CZ1+CZ4+CZ5)
    #/(CPW3*R0*(VKR-X3)/2+CPW2*R0*(X1-VKR)/2)
     X1=(R0#CE/K*U(R,1)+2*TA/(3*H-X2)*(VKR/(2*H-X2)+U(R-1,2)/H)+(VKR-
    #V(R-1,2))*(TAKR-TAR1)/((3*H-X2)**2))/(R0*CE/K+2*TA/((2*H-X2)*H))
     WRITE (2,800) Q1,Q2,Q4,Q3,X2,X3
800 FORMAT (10F12.6)
562 IF (ABS((X2-XE2)/X2).LE.EP) 60 TO 33
     X2=(XE2+X2)/2
 14 CONTINUE
     URITE (2,200)
 200 FORMAT (/10X,37HPROGRAM ZERO: OSIAGNIETO KONIEC FETLI,/)
 33 V(N,2) = X3
     X8=V(N,1)
     X9=X8
     X7=HZ
     X5=X2
     IF (R.EQ.N-2) GO TO 564
     V(N-1,2) = X1
     HZ=X2
     GO TO 23
564
    V(N-2,2)=X1
     V(N-1,2)=V(N,2)+H/X2*(VKR-V(N,2))
     HZ=X2-H
     GO TO 23
555 X2=X5+(X5-X7)
     CE=ACP+BCP*V(R,1)
     TA=AP+BP*V(R,1)
    (TA2=AP+BP*V(R-1,1)
    X1=V(R,1)+K/(R0*CE)*TA*2/(H*2-HZ)*((VKR-V(R,1))/(H-HZ)-
    #(V(R,1)-V(R-1,1))/H)+K/(R0*CE)*(VKR-V(R-1,1))/(H*2-HZ)*(TAKR-TA2)/
    # (H#2-HZ)
     IF (R.EQ.N-3) X1=V(R,2)
     TA2=TAKR+A/(1+B/ALOG10(ABS(V(N+1)-VKR)+1))
     IF (R.EQ.N-3) GO TO 300
     CE=AC+BC/(CC*(273.16-V(R+1,1))**2+DC)
     TA=TAKR+A/(1+B/AL0610( ABS(V(R+1,1)-VKR)+1))
     X3=V(R+1,1)+K/(R0*CE)*TA*2/(H+HZ)*((V(N,1)-V(R+1,1))/H-
    #(V(R+1,1)-VKR)/HZ)+K/(R0*CE)*(V(N,1)-VKR)/(H+HZ)*(TA2-TAKR)/(H+HZ)
     GO TO 301
```

```
TA1=TAKR+A/(1+B/ALOG10(ABS(V(R+2,1)-VKR)+1))
300
     CE=AC+BC/(CC*(273.16-V(R+2,1))**2+DC)
     V(R+2,2)=V(R+2,1)+K/(R0*CE)*TA1*2/(H+HZ)*((V(N,1)-V(R+2,1))/H-
    # (V(R+2,1) - VKR) / HZ) + K/(R0*CE) * (V(N,1) - VKR) / (H+HZ) * (TA2-TAKR) /
    # (H+HZ)
     X3=VKR-(VKR-V(R+2,2))/(X2-H)*(X2-2*H)
301 X4=V(N,1)-0.25*(X9-V(N,1))
     DO 69 MX=1,60
     XG=0.
     XD=0.
     SU=0.
     SII=0.
     C3=ATAN (ABS (V(N,1)-273.16) *SQRT (CC/DC))
     D3=ATAN (ABS (V (N-1,1)-273.16) *SQRT (CC/DC))
     E3=AC*(V(N-1,1)-V(N,1))+BC/SQRT(CC*DC)*(C3-D3)
     CPWA = E3/(V(N-1,1)-V(N,1))
     DO 16 J=1,30
338 XS=(X3+X4)/2
     IF(R_EQ_N-3) = XS=(V(N-1,2)+X4)/2
     TA=TAKR+A/(1+B/AL0610(ABS(XS-VKR)+1))
     C4=ATAN (ABS (X4-273.16) *SQRT (CC/DC))
     D4=ATAN(ABS(X3-273.16)*SQRT(CC/DC))
   . E4=AC*(X3-X4)+BC/SQRT(CC*DC)*(C4-D4)
     CFUB=E4/(X3-X4)
     Q1 = -TA + (X4 - X3) /H
     Q2=-H*RO/K*(CPWA*(VKR-(V(N-1,1)+V(N,1))/2)-CPWB*(VKR-XS))
     Q3=ALFA*(X4-TS)
     Q4=-S*ROS*CES*(X4-V(N,1))/K
     FX=Q1+Q2+Q4-Q3
     IF(FX)0,37,38
     SU=SIGN(1.,FX)
     XG=X4
     GO TO 39
38
     SD=SIGN(1.,FX)
     XII=X4
     IF (SU+SD.EQ.O) GO TO 40
39
     PD=(X8-V(N,1))*0.35
     IF(FX.GT.0) GO TO 492
     X4=X4-FD
     GO TO 16
492 X4=X4+PD
     GO TO 16
     EPS=ABS((XG-XD)/(X9-X4))
40
     IF (ABS(EPS).LE.PI) GO TO 37
     X4=(XG+XD)/2
16
     CONTINUE
     URITE (2,200)
     EROR=20/ZERO
37
     XE2=X2
     CE1=ACP+BCP*X1
    (TAX1=AP+BP*X1
     TAR1=AP+BP*V(R-1,2)
     TAN1=TAKR+A/(1+B/AL0610(ABS(V(N-1,2)-VKR)+1))
     TAX4=TAKR+A/(1+B/AL0G10(ABS(X4-VKR)+1))
     IF(R.EQ.N-2) GO TO 306
     X1=(R0*CE1/K*V(R,1)+2*TAX1/(4*H-X2)*(VKR*H+V(R-1,2)*(3*H-X2))/
    #(R0*CE1/K+2*TAX1/((3*H-X2)*H))
     CE=AC+BC/(CC*(273.16-V(N-1,2))**2+DC)
      V(R+2_{2}) = (R0*CE/K*V(R+2_{1})+2*TAN1/X2*(X4/H+VKR/(X2-H))+(X4-VKR)/X2)
    # (TAX4-TAKR) / X2) / (RO#CE/K+2#TAN1/(H*(X2-H)))
     X3=VKR-(VKR-V(R+2,2))/(X2-H)*(X2-2*H)
```

	GO TO 377
306	X2=X2
	X1=(R0*CE1/K*V(R,1)+2*TAX1/(3*H-X2)*(VKR/(2*H-X2)+
	#U(R-1,2)/H)+(UKR-U(R-1,2))/(3*H-X2)*(TAKR-TAR1)/(3*H-X2))/
	<pre>#(R0*CE1/K+2*TAX1/((2*H-X2)*H))</pre>
	CE3=AC+BC/(CC*(273-16-X3)**2+DC)
	TAX3=TAKE+A/(1+E/A)(0G10(AES(X3-UKE)+1))
	YZ- (DDECEX/KEU (D+1-1)+28TAXX/Y28 (YA# (Y2-H)+UKR#H) /
	/Ux/(Y2_U))+/(Y4_UK5)/Y2/TAY4_TAK6)/Y2)//R0#CE3/K+2*TAX3/
777	1911年(A本1977) 1911年(A本1977)
3//	A2=A2
	V31-V.
10	10 17 1-270-5
17	
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
	ADS=16D=16D ADS=16D=16D
	V32=VNR=V32 CDHH=(ACDxHK0_1)_ACDxHKD1A_5x0CDxH(0.1)xU(0.1)_A_5x0CDxHKDXUKD)/
	PL01-4/PDLxA/5/1/-HDLxA/ULL0-9xDDLxA/5/1/xA/5/1/-A-9xDDLxA/UL//
	■ (V (2)1) = VIN() ■ (ACDATINETA SADCEAT(2,2)AT(2,2)() SADCEATINE(2)
	UFW2=(HUF*V(2)2)=HUF*V(RTV.J*DUF*V(2)2)*V(2)2)=0.J*DUF*V(R*V(R)) #(1(2-2)_UKD)
	TO 1 - ATAN (ADC (VA - 777 14) MCODT (CC / DC))
	UF3~AUXTUTATA PDUZ~/PDZ+DC/CODT/PC+TC++/CD1+CD3\\//UKD-YA\
	UF 0.5~~ (UF 5 TDUZ D0R) (UU XUUZ XUUZ X (UF 1 "UF 2777 (VIR"A47 CD 4~ ATAM (ADC (U / XU 4)
	CPS-ACWAIRD-IAN, 1// CDS-ACWAIRD-IAN, 1//
	- CF J-HC% (VNR V R91) / CDUA (CDE+DC /CCDET (CCADC) & (CEEA_CEO) \ / (UEEU(AL-1) \
	CT1-UC1+CDU1+2D0+7DU-Y5\
	CZ7~UCO2*CFU42*NO*NNW~NO7
	023-R03*6E3*3*(X***V(R)1/)
	ng gi ing bug
-01	
21	$A_2 - A_2 T V = 2 R P R (A (T T T T T T T T T T T T T T T T T T$
	$H_{2} = H_{2} = 0$
	# (YX=TC) = 071+074+075) / (DDUX#00# (UKD=YX) #0 5+0009401/0# (Y1=UKD))
704	¥2=¥2
001	X2=/~CPU3+R0+/UKR+H+0_5+H+X3-0_5+H+X4)+CPU2+R0+/43+(X1+UKR)+1_5+H-
	#UKR*RU) +K*ALEA* (X3-TS) -C71+C74+C75) / (CPU3*R0*(UKR-X3)*0 5+CPU2*R0*
	●(X1-UKR) ※0.5)
307	$IF(\Delta BS((X2-XE2))/(X2-XS)) = FP(G0, T0, X39)$
007	¥2=(XE2+X2)/2
69	CONTINUE
339	$HZ=X2-(N-1-R) \times H$
	X7=X5
	X5=X2
	X9=V(N+1)
	V(Ny2) = X4
	V(R,2) = X1
	V(R+1,2) = X3
	ZK=1.
	RB=R
	X8=X9
	WRITE(2,164)R,RB,FX,Q1,Q2,Q3,Q4,X1,X2,X3,X4,XE2
164	FORMAT (2X, 6HBLOK V, 2X, 2I3, 2X, 10F8.5)
	60 TO 23
56	DO 17 I=R+2,N-1
	TAKR = AP + BP * VKR
	TA1 = TAKR + A/(1 + B/ALOG10(ABS(V(1,1) - VKR) + 1))

```
TA2=TAKR+A/(1+B/ALOG10(ABS(V(I+1,1)-VKR)+1))
     CE=AC+BC/(CC*(V(I,1)-273.16)*(V(I,1)-273.16)+DC)
     IF (I.EQ.R+2.AND.R.EQ.RB) GO TO 54
     V(I,2)=V(I,1)+(2*K*TA1)/(RO*CE*(H+HZ))*((V(I+1,1)-V(I,1))/H+
    # (V(I,1)-VKR)/HZ)+K*(TA2-TAKR)*(V(I-1,1)-VKR)/(R0*CE*(H+HZ)*(H+HZ))
     GO TO 17
     TA3=TAKR+A/(1+B/ALOG10(ABS(V(I-1,1)-VKR)+1))
54
     U(I,2)=U(I,1)+(TA1*K*(U(I+1,1)-2*U(I,1)+U(I-1,1))+0.25*K*(TA2-TA3)
    ##(V(I+1,1)-V(I-1,1)))/(H*H*RO*CE)
17
     CONTINUE
     X4=V(N,1)-0.75*(X9-V(N,1))
     XG=0.
     XD=0.
     SU=0.
     SD=0.
     DO 41 J=1,30
     XS = (X4+V(N-1+2))/2
     TA=TAKR+A/(1+B/ALOG10(ABS(XS-VKR)+1))
     C3=ATAN (ABS (V(N+1)-273.16) *SQRT (CC/DC))
     D3=ATAN (ABS (V (N-1,1)-273.16) *SORT (CC/DC))
     E3=AC*(V(N-1,1)-V(N,1))+BC/SQRT(CC*DC)*(C3-D3)
     CPWA=E3/(V(N-1,1)-V(N,1))
     C4=ATAN (ABS (X4-273.16) *SQRT (CC/DC))
     D4=ATAN (ABS (V (N-1,2)-273.16) *SQRT (CC/DC))
     E4=AC*(V(N-1,2)-X4)+BC/SQRT(CC*DC)*(C4-D4)
     CPWB = E4/(V(N-1,2)-X4)
     Q1 = -TA * (X4 - V(N - 1, 2))/H
     02=-H*R0/(2*K)*(CPWA*(V(N-1,1)+V(N,1))-CPWB*(X4-V(N-1,2)))
     03=ALFA*(X4-TS)
     Q4 = ROS + CES + S + (V(N+1) - X4)
     FX=01+02+04-03
     IF (FX) 0,42,43
     SU=SIGN(1.,FX)
     XG=X4
     GO TO 44
43
     SD=SIGN(1.,FX)
     XD=X4
     IF (SU+SD_EQ.O) GO TO 45
44
     PD=(X8-V(N,1))*0.35
     IF(FX.GT.0) 60 TO 493
     X4=X4-PD
     GO TO 41
493 X4=X4+PD
     GO TO 41
     EPS=ABS((XG-XD)/(X9-X4))
45
     IF (ABS(EPS) .LE.EPSILON) GO TO 42
      X4=(XG+XD)/2
41
     CONTINUE
     WRITE (2,200)
     GO TO 50
42
   (V(N,2) = X4
     X2=X5+(X5-X7)
     WRITE (2,165) R, RB, FX, Q1, Q2, Q3, Q4
165 FORMAT(2X, 7HBLOK IX, 213, 2X, 5F10.5)
     WRITE (2,514) X2
     IF (R.EQ.RB) GO TO 401
     X1 = V(R, 2)
     X3=VKR-(VKR-V(R+2,2))/(X2-H*(N-R-2))*(X2-(N-R-1)*H)
     GO TO 402
401
    TA1=TAKR+A/(1+B/ALOG10(ABS(V(R+1,1)-VKR)+1))
     .CE=AC+BC/(CC*(273.16-V(R+1,1))**2+DC)
     TA2=TAKR+A/(1+B/AL0G10(ABS(V(R+2,1)-VKR)+1))
```

```
X3=V(R+1,1)+K/(R0*CE)*TA1*2/(H+HZ)*((V(R+2,1)-V(R+1,1))/H-
   # (H+HZ)
    CE=ACP+BCP*V(R,1)
    TA=AP+BP*V(R,1)
     TA2=AP+BP*V(R-1,1)
    X1=V(R,1)+K/(R0*CE)*TA*2/(H*2-HZ)*((VKR-V(R,1))/(H-HZ)-
    #(V(R,1)-V(R-1,1))/H)+K/(R0*CE)*(VKR-V(R-1,1))/(H*2-HZ)*(TAKR-TA2)/
    #(H*2-HZ)
    DO 70 MN=1,50
402 XE2=X2
    CE1=ACP+BCP*X1
     TAX1=AP+BP*X1
     TAR1=AP+BP*V(R-1,2)
    X1=(R0*CE1/K*V(R,1)+2*TAX1/(H*(N-R+1)-X2)*
    # (VKR/(H*(N-R)-X2)+V(R-1)2)/H)+(VKR-V(R-1,2))/((N-R+1)*H-X2)*(TAKR
    ♣-TAR1)/((N-R+1)*H-X2))/(R0*CE1/K+2*TAX1/((H*(N-R)-X2)*H))
     CE3=AC+BC/(CC*(273.16-X3)**2+DC)
     TA3=TAKR+A/(1+B/ALOG10(ABS(273.16-X3)+1))
     TAR2=TAKR+A/(1+B/AL0G10(ABS(V(R+2,2)-VKR)+1))
    X3=(R0*CE3/K*V(R+1,1)+2*TA3/(X2-(N-R-2)*H)*(V(R+2,2)/H-
    #VKRZ(X2-(N-R-1)*H))+(V(R+1+2)-VKR)Z(X2-(N-R-2)*H)*(TAR2-TAKR)Z
    #(X2-(N-R-2)*H))/(R0*CE3/K+2*TA3/(H*(X2-(N-R-1)*H)))
     CPU1=(ACP+V(2,1)-ACP+VKR+0.5+BCP+V(2,1)+V(2,1)-0.5+BCP+VKR+VKR)/
    ♣(V(2,1)-VKR)
     CPW2=(ACP*V(2,2)-ACP*VKR+0.5*BCP*V(2,2)*V(2,2)-0.5*BCP*VKR*VKR)/
    #(V(2,2)-VKR)
     C3=ATAN (ABS (V(N+2)-TB) *SQRT (CC/DC))
     D3=ATAN (ABS (VKR-TB) *SQRT (CC/DC))
    E3=AC*(VKR-V(N,2))+BC/SQRT(CC*DC)*(C3-D3)
     CPW3=E37(VKR-V(N,2))
     C4=ATAN(ABS(V(N,1)-TB)*SQRT(CC/DC))
     E4=AC*(VKR-V(N,1))+BC/SQRT(CC*DC)*(C4-D3)
     CPU4=E4/(VKR-V(N,1))
     SR1=0.
     DO 80 I=2,RB-1
80
     SR1=SR1+0.5*H*(V(I,1)+V(I+1,1))
     VS1=(SR1+0.5*(H-HZ)*(V(RB,1)+VKR))/(RW-X5)-VKR
     SR2=0.
     DO 81 I=RB+1,N-1
     SR2=SR2+0.5*H*(V(I,1)+V(I+1,1))
81
     VS2=SR2+0.5*HZ*(V(RB+1,1)+VKR)/X5
     VS2=VKR-VS2
     A3=0.
    DO 82 I=2,R-2
82
     A3=A3+0.5%H*(V(1,2)+V(1+1,2))
     A3=A3+0.5*H*(V(R-1,2)+X1)+(X1+VKR)*(N-R)*H*0.5
     SR4=0.
     DO 83 I=R+1,N-1
83
     SR4=SR4+0.5*H*(V(I,2)+V(I+1,2))
    / A4=SR4-(VKR+X3)*(N-R-1)*H/2
     CZ5=R0S*CES*S*(X4-V(N+1))
    X2=(A4*CPW3*R0+(A3-VKR*RW)*CPW2*R0-CZ1+CZ4+CZ5+K*ALFA*(X4-T5)
    #/((VKR-X3)*CPW3+(X1-VKR)*CPW2)*R0/2)
     URITE (2,514) X2
514 FORMAT(20X, 3HX2=, F12.6)
     WRITE(2,820) X1
820 FORMAT (5X, 3HX1=, F10.3)
     IF (ABS((X2-XE2)/(X2-X5)).LT.EP) GO TO 339
     X2=(XE2+X2)/2
70
     CONTINUE
23
    DO 15 I=1,N
```

	V(I,1) = V(I,2)
15	V(1,2) = 0.
	WRITE(2,107)LL,X2,(V(I,1),I=N-4,N)
107	FORMAT (//30X, 13HCHWILA CZASU:, 14, 2X, 3HX2=, F12.4//(100F12.2))
	EPS=0.
7	CONTINUE
	WRITE (2,201)
201	FORMAT (//30X, 20HKONIEC OBLICZEN LMAX)
50	STOP
	ENI
	FINISH
52	100 30 800
283	16 263.16 272.7 273.16
0.23	2 -0.00005 0.324 -0.00005
0.03	0.1 0.0001
0.05	
0.00	2 0 245 4 5 1 5 0 24
v.,	15
0 000	
7900	0 115 0 005
MAG	· Villo VivVo
AAA	

Autor progr.S.Kwaśniowski

*

4.3. PROGRAM # OPTY

Program poszukuje ekstremum funkcji - metodą Gaussa -Seidela. W pracy był wykorzystywany do poszukiwania współczynników regresji funkcji o zadanej postaci ,ze względu na mini malne średnie odchylenie kwadratowe. Program automatycznie zawęża przestrzeń poszukiwań. Postać zadanej funkcji wprowadza się jako podprogram SUBROUTINE BETA. Na końcu wydruku przedstawiono wiono przykład przygotowania danych.

	PROGRAM (OPTY)
	INPUT 1=CRO
	OUTPUT 2=LP7
	TRACE 2
	END
	MASTER METUDA GAUSSA SETDELA
	DIMENSION X (20) . XN (20) . 4 (20) . 9 (20) . C (20) . D (20) . Y (20) . U (20)
	#7 (20) _DEL (20) _H(20)
100	
100	
	$\operatorname{READ}(I \downarrow I \cup I) (A(I) \downarrow I = I \downarrow N) \downarrow (B(I) \downarrow I = I \downarrow N)$
101	FURMAT (50F0.0)
	REAU(1,105)(Y(IP),IP=1,NP),(V(IP),IP=1,NP)
105	FORMAT (SOFO.0)
	REAL(1,104) (X(I),I=1,N)
104	FORMAT (20FO.0)
15	K=K
	DO I I=1.N
1	H(I) = ABS(B(I) - A(I))/L
	1=1
2	CALL FPOD (X,Y,V,FX)
	X(I) = X(I) + H(I)
	CALL FPOU (X,Y,V,FX1)
	$X(I) = X(I) - 2 \times H(I)$
	CALL FPOD (X,Y,V,FX2)
	DF1=FX1-FX
	DF2≕FX2-FX
	Y1=SIGN(1.+DF1)
	Y2=SIGN(1., I)F2)
	X(T) = X(T) + H(T)
	$TE(Y1+Y2,NE_0)$ GO TO 8
	HETTE (2-900)
200	WILLENENE \mathcal{L}
	PORTHINZAYZOHNIEZOUDNUGU W PRUGNAMIE)
0	
/ 1	40 + 10 + 62
01	
02	X ((1) = X (1) + M(* H (1))
	IF (XN(I)_G(_A(I)_ANU_XN(I)_LT_B(I)) GO TO 7
_	GO 10 8
/	X(I) = XN(I)
	CALL FFUD (X,Y,V,FXN)
	DF = F XN - F X
	IF (SIGN(1., UF) .EQ. M) GO TO 9
	X(I)=X(I)-MK*H(I)
	G0 T0 8
7	FX=FXN

GG TO 62 8 IF (FXC.EQ.FX) GO TO 10 FXC=FX J=1 18 I = I + 1IF (I.EQ.N+1) I=1 GU TO 2 10 J=J+1 IF (J.EQ.2*N+1) GO TO 11 GO TO 18 11 FX=FX DO 12 I=1,N C(I) = A(I)D(I) = B(1)A(I) = X(1) - 2 + H(1)B(I) = X(I) + 2 H(I)12 CONTINUE WRITE(2,202) FX,X(1),X(2),X(3) 202 .* FORMAT (2X, 3HFX=, F10.6, 5X, 3HAC=, F10.6, 5X, 3HBC=, F10.6, 5X, #3HUC=,F10.6) K=K+1 IF (K.EQ.3) GO TO 14 GO TO 15 14 K=K DO 16 I=1,N A(I) = C(I)B(I) = D(I)CONTINUE 16 50 DO 21 IP=1,NP CALL BETA (X,V,Z) DEL(IP)=Y(IP)-Z(IP)21CONTINUE WRITE (2,205) (V(IP),Y(IP),Z(IP),DEL(IP),IP=1,NP) 205 FURMAT(20(10X,4F10.6/)) 501 WRITE (2,203) 203 FORMAT (5X, 15HKONIEC OBLICZEN) 51 STOP END SUBROUTINE FFOD (X,Y,V,F) DIMENSION Z (20), V (20), Y (20), X (20) COMMON/ALFA/NP CALL BETA (X,V,Z) SUM=0. DO 20 IP=1,NP SUM=SUM+((Z(IP)-Y(IP))/(Y(IP)))**2 20 CONTINUE F=SQRT (SUM/NP) RETURN ENU SUBROUTINE BETA (X,V,Z) DIMENSION Z (20) , V (20) , X (20) COMMON /ALFA/ NP DO 40 IP=1,NP Z(IP) = X(1) + X(2) / (V(IP) + V(IP) + X(3))40 CONTINUE RETURN END FINISH 3 -1 10 15 0.23 2. 0.1 0.3 4. 0.3 8.3016 2.6751 1.1323 0.5602 0.4737 .3723 .341 .3231 .3055 .2962 .2912 .288 .2849 .2835 .2777 .46 1. 2. 4. 5. 8. 10. 12. 15. 18. 20. 22. 24. 25. 30. 0.245 3. 0.17 Autor progr.S.Kwaśniowski

4.4. PROGRAM #KWO8

Program oblicza czas ogrzewania lub ochładzania płyty nieograniczonej o grubości 2R (na podstswie zależności 4.1) przy warunkach brzegowych III rodzaju. Czas ochładzania lub ogrzewania płyty od temperatury początkowej T_{pocz} do temperatury końcowej T_{kr}, jest wyznaczany metodą iteracyjną, przy uwzględnieniu N wyrazów szeregu Fouriera. Przed wykorzystaniem programu należy sprawdzić zbieżność szeregu poprzez wydruk wyrazów S3.

PROGRAM (KW08) INPUT 1=CRO OUTPUT 2=LP7 TRACE 2 END MASTER OCHLADZANIE OR OGRZEWANIE REAL LIW, LAM, MI INTEGER WSK DIMENSION MI(100), DP(100), A(100), DMI(100) READ(1,100) LAM, CE, RO, TKR, R, EPSILON, TPOCZ 100 FORMAT(10F0.0) READ(1,101)M,LMAX,WSK 101 FORMAT (510) READ (1, 102) TSP, ALFP 102 FURMAT (2F0.0) READ(1,106)SIW,LIW 106 FORMAT (5F0.0) OPR=SIW/LIW AD=LAM/(CE*RO) DO 10 KTP=1,5 TS=TSP DO 7 KT=1,4 ALF=ALFP 10 8 KAL=1,5 ALFZ=1./(1/ALF+0PR) YO=(TKR-TS)/(TPOCZ-TS) IF (WSK.GE.O) YO=1-YO BI=ALFZ/LAM*R DO 3 N=1,M P1=3.141593 M1(1)=P1*(2*N-1)/2 DO 2 L=1,LMAX Y1=1./BI*MI(L) MI(L+1)=ACOT(Y1)+PI*(N-1) EPS=ABS(MI(L)-MI(L+1)) DHI (N) =HI (L+1) IF (EPS.LE.EPSILON) GO TO 4 2 CONTINUE DP(N) = 2*SIN(DMI(N)) / (DMI(N) + SIN(DMI(N)) * COS(DMI(N)))4 (A(N) = DP(N) * COS(DMI(N))3 CONTINUE TAU=0.01 DO 5 IT=1,30 FU=AU*TAU/(R*R) SUA=0. SUM=0. DO 6 N=1,M S4=A(N) *EXP(-DMI(N)*DMI(N)*FO) SUM=SUM+S4 SUA=SUA+S4*(-DM1(N)*DM1(N)*AD/(R*R)) CONTINUE A

EX=SUM-YU TAW=TAU-EX/SUA EF5=ABS (TAW-TAU) TAU=TAU FO=AD*TAU/ (R*R) IF (TAU.LE.O) GO TO 50 IF (EP5.LE.EPSILON) GO TO 9 CONTINUE WRITE (2,202) 202 FORMAT (5X, 20HKONIEC PETLI NEWTONA)

GO TO 50

WRITE (2,200) TPOCZ, TS, ALF, YO, TAU, BI, FO 9

200 FORMAT (5X+6HTPOCZ=+F7.2+5X+3HTS=+F7.2+5X+ #4HALF=,F6.2,5X,3HY0=,F7.2,5X,4HTAU=, &F5.3,5X,3HBI=,F6.3,5X,3HF0=,F10.5) IF (KAL.GT.2) GO TO 66 ALF=ALF+2. GO TO 8 66 ALF=10*(KAL-2)

- CONTINUE 8 TS=TS-5
 - IF (WSK.GE.O) TS=TS-25
- .7 CONTINUE TPOCZ=TPOCZ-2 IF (WSK.GE.O) TPOCZ=TPOCZ-3
 - 10 CONTINUE

5

- 50 WRITE (2,203)
- 203 FORMAT (2X, 15HKONIEC OBLICZEN) STOP END
 - FINISH

Autor progr.S.Kwaśniowski

4.5. PROGRAM #KWO9

Oblicza czas ogrzewania płyty o grubości 2R (na podstawie zależności 4.2) od temperatury początkowej T_{pocz} do temperatury końcowej T_{kr}, przy warunkach brzegowych II rodzaju stały sru mień ciepła na powierzchni Q. Czas ogrzewania jest wyznaczany metodą bisekcji przy uwzględnieniu N wyrazów szeregu Fouriera. Przed wykorzystaniem programu należy sprawdzić zbieżność szeregu.

PROGRAM (KW09) INPUT 1=CRO OUTPUT 2=LP7 TRACE 2 END MASTER ROZMRAZANIE WAR II RODZ REAL L DIMENSION MI (100), 5(100) READ (1,100) TKR, TPOCZ, Q, L, R, CE, RO, EPSILON 100 FORMAT (10F0.0) READ (1, 101) NW 101 FORMAT (510) PI=3.141593 DO 1 1=1,6 Q=200 DO 7 KQ=1,10 X3=0.0001 XG=0. XII=0. SU=0. SI=0. DO 14 M=1,30 ALI=L/(CE*RO) FO=AD*X3/(R*R) S3=0. DO 4 N=1, NW MI(N) = N*PIS3=(-1) ** (N-1) *2/(MI(N) *MI(N)) *COS(MI(N)) *EXP(-MI(N) **2*FD) 4 CONTINUE FX=(TFOCZ-TKR)+Q/L*R*(F0+1/3+S3) IF (FX) 0,33,58 SU=SIGN(1.,FX) XG=X3 GO TO 59 58 SD=SIGN(1.,FX) XII=X3 IF (SU+SD.EQ.0) GO TO 91 59 X3=X3*2. GO TO 14 91 X3=(XG+XD)/2 EPS=ABS (XG-XD) IF (EPS.LE.EPSILON) GO TO 33 14 CONTINUE F0=AD*X3/(R*R) 33 WRITE (2,200) TPOCZ, Q, X3, FO 200 FORMAT (2X, 6HTPOCZ=, F9.2, 2HQ=, F8.1, 3HX3=, F6.3, 3HFO=, F10.7) Q=Q+200. CONTINUE 7 TPOCZ=TPOCZ-5 CONTINUE 1 50 WRITE (2,203) 203 FORMAT (2X, 15HKONIEC OBLICZEN) STOP END FINISH

Mgr inż. Stanisław Kwaśniowski

Instytut Konstrukcji i Eksploatacji Maszyn Politechniki Wrocławskiej Wrocław, Wybrzeże Wyspiańskiego 27

Pracę złożono w Redakcji Instytutu 26.06.78.

ODBIORCY:

1.	Komisja Rady Naukowo Dydaktycznej Instytutu Konstr	ukcji
	i Eksploatacji Maszyn d/s Przewodów Doktorskich	2
2.	Doc. dr inż. Jerzy Marcinkowski	1
3.	Biblioteka Główna Politechniki Wrocławskiej	1
4.	Biblioteka i Ośrodek Informacji Inst.KEM	2
5.	Autor	2

	12345678 9
* N * Rozpocz. pr.	D. N. S. R. T. T. A. N Ø. 6, Ø. 5 1.2, Ø. 9
1 0 7 4	Ø7 78 I16 16113 114
Nr ziscenja	Nr grehlwalny
	I16/K-398/78*
symbol UKD 662.98	Rozmrażanie kadunków MNSzWT
Opis bi	bliograficzny
Kwaśn	iowski Stanisław
komunikaty Inst. Konstr. Ekspl. Masz. PWr. 1978 nr 398 132 s. 53 rysl.10 tabl. bibliogr. 65 poz. (maszyn. powiel.)	
Charakter pracy: stos Materiały odpłatne A	owana Rozpowszechnienie na praw. ręk.

Analiza dokumentacyjna KD

Przedstawiono opis matematyczny procesu zamarzania i rozmrażania kadunków sypkich w wagonach towarowych. Na podstawie pomiąrów metodą stanu uporządkowanego określono zmiany przewodności cieplnej i ciepła właściwego miaku węglowego w funkcji temperatury. W ujęciu przybliżonym przyjęto stałe wartości tych parametrów oraz izotermiczność przemiany fazowej. W ujęciu dokładniejszym uwzględniono nieliniowy i nieciągły charakter zmian przewodności cieplnej i ciepła właściwego oraz nielzotermiczny proces wymrażania wilgoci. Otrzymany układ równań różniczkowych opisujących zjawisko rozwiązano numerycznie metodą różnic skończonych. Otrzymane rozwiązania porównano z wynikami doświądczeń. Określono czas trwania zamarzania i rozmrażanią w funkcji parametrów charakteryzujących te procesy.

lmię i Nazwisko autora analizy

Stanisław Kwaśniowski	1115	THULWISKU	autora ananzy	
alfa, in dies sage and that hat man a die to bit the same and the		Stanisław	Kwaśniowski	

Słowa	kluczowe
45	

rozmrażanie łądunków, ładunki sypkie, wagony towarowe

**@480 * @O*	Ø	J.	2	Ø	3	2
--------------	---	----	---	---	---	---

<A._____* B.____* C.____,*D.____

*E			man have been had	. *	G*H	An at
Tylko PRL	CINTE	APW	Podpis red,	Podpis asyst. d/s badań	Potwierdz enie przyjęcia poprawki,	Potwierdzenie przyjęcia karty w Oddziałe Doku- mentacji.
nie	tak	tak				
Woisad T	A'K LUD N	IE				