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Abstract 

Aim: The paper aims to propose a new estimation method for the Cholesky Multivariate Stochastic 
Volatility Model based on the iterated filtering algorithm (Ionides et al., 2006, 2015). 

Methodology: The iterated filtering method is a frequentist-based technique that through multiple 
repetitions of the filtering process, provides a sequence of iteratively updated parameter estimates 
that converge towards the maximum likelihood estimate. 

Results: The effectiveness of the proposed estimation method was shown in an empirical example in 
which the Cholesky Multivariate Stochastic Volatility Model was used in a study on safe-haven assets of 
one market index: Standard and Poor’s 500 and three safe-haven candidates: gold, Bitcoin and Ethereum. 

Implications and recommendations: In further research, the iterating filtering method may be used for 
more advanced multivariate stochastic volatility models that take into account, for example, the 
leverage effect (as in Ishihara et al., 2016) and heavy-tailed errors (as in Ishihara and Omori, 2012).  

Originality/Value: The main contribution of the paper is the proposition of a new estimation method for 
the Cholesky Multivariate Stochastic Volatility Model based on iterated filtering algorithm This is one of 
the few frequentist-based statistical inference methods for multivariate stochastic volatility models. 

Keywords: multivariate stochastic volatility, iterated filtering, particle filters, the Cholesky Multivariate 
Stochastic Volatility (ChMSV) Model 
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1. Introduction  

Understanding the correlation structure in asset allocations is crucial for effective portfolio 
construction and risk management as it allows investors to make decisions that align with their 
financial goals and risk tolerance. Firstly, by combining assets with low or negative correlations, 
investors may smooth out the portfolio's performance and reduce the impact of individual asset price 
fluctuations on the overall portfolio. Secondly, correlation affects also the volatility of a portfolio: 
assets with high positive correlations lead to higher portfolio volatility, and conversely, assets with low 
or negative correlations reduce overall portfolio volatility. Thirdly, knowing the correlation structure 
allows investors to perform better stress testing and scenario analysis to assess portfolio performance 
under different market conditions. Finally, certain asset allocation strategies and complex financial 
products, such as derivatives, rely heavily on understanding the correlation structure. 

The volatility of asset prices can be highly correlated, and individual asset volatilities can exhibit 
complex and time-varying patterns. Over the last several decades, significant progress has been made 
in modelling the volatilities of multivariate stock market returns. Nowadays, there are four main 
approaches: multivariate generalised autoregressive conditional heteroskedasticity (MGARCH) models 
(Engle, 2002; Engle and Kroner, 1995), multivariate stochastic volatility (MSV) models (Chib et al., 2009) 
realised covariance models (Bollerslev et al., 2018; Jin and Maheu, 2013), and machine learning (ML) 
algorithms (Bejger and Fiszeder, 2021; Fiszeder and Orzeszko, 2021). All of these approaches have 
some strengths and weaknesses, and the choice between them depends on the specific characteristics 
of the data, the objectives of the analysis, and the trade-offs between modelling flexibility and 
computational complexity. 

Multivariate stochastic volatility models are a class of models developed to describe the joint dynamics 
of volatility for multiple assets or financial instruments. The crucial feature of MSV models is the 
assumption that for each asset, the volatility is assumed to follow a stochastic process. Consequently, 
the conditional covariance matrix is always time-varying. However, the corresponding correlation 
matrix may be constant or dynamic. Both approaches are used in finance to capture the relations 
between asset returns, but differ in their assumptions and flexibility. In a constant correlation model, 
it is assumed that the correlation between the asset returns remains constant over time: the 
correlation matrix of asset returns is fixed and does not change with market conditions. This simplifies 
the modelling process and reduces computational complexity since the correlation matrix is estimated 
once and applied uniformly across all time periods. In contrast, dynamic correlation models allow for 
the correlation between asset returns to vary over time. These models try to capture changing 
relations and fluctuations during different market conditions. Dynamic correlation models are more 
complex to estimate and require more parameters to capture the time-varying correlations accurately 
and are more computationally demanding.  

There are several approaches to incorporating dynamic correlation into multivariate stochastic 
volatility models. Yu and Meyer (2006) proposed the time-varying correlation bivariate model based 
on the Fisher transformation. However, their proposition has an obvious drawback, as it cannot be 
generalised for higher dimensions. Philipov and Glickman (2006a, 2006b) obtained a time-varying 
correlation matrix assuming that the conditional covariance matrix follows an inverted Wishart 
distribution. Asai et al. (2006) proposed a dynamic correlation model based on matrix exponential 
transformation which was further developed by Ishihara et al. (2016). In this paper, the author used 
the dynamic correlation multivariate stochastic volatility model based on the Cholesky decomposition 
(Cholesky Multivariate Stochastic Volatility Model, ChMSV) introduced by Tsay (2005) and detailed by 
Asai et al. (2006). This model is a versatile tool that can be used in various areas of financial research, 
especially when the main task is to examine correlations over time. The ChMSV model has been used 
in a number of empirical studies on economic time series, including: investigation of market return 
predictability on the basis of three predictor variables: dividend yield, consumption-wealth ratio and 
bond-yield (Lopes et al., 2011), examination of time variation in US monetary policy (Hartwig, 2019), 
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two analyses of stock market co-movements: between three stock indices (Warsaw Stock Exchange 
Index WIG, the Standard and Poor's S&P500, The Financial Times Stock Exchange FTSE 100 Index) in 
Pajor (2010), and between five stock indices (US Dow Jones Industrial, the German DAX 30 
Performance, the European EuroStoxx50, the Japanese Nikkei 225, and the Chinese Shanghai Shenzen 
CSI 300) in Zaharieva et al. (2020).  

The main contribution of the paper is the proposed estimation technique of ChMSV using iterated 
filtering algorithm (Ionides et al., 2006, 2015). Iterated filtering allows the estimation of parameters 
for general non-linear or non-Gaussian State-Space models (SSM) based on the frequentist approach. 
This makes the method particularly attractive in the context of stochastic volatility models for which 
the Bayesian approach dominates. Frequentist-based statistical inference for multivariate stochastic 
volatility is still limited. Harvey et al. (1994) proposed to use the quasi-maximum likelihood method, 
but their proposal was restricted only to a simple basic stochastic model with a constant correlation 
matrix. Jungbacker and Koopman (2006) introduced importance sampling Monte Carlo techniques for 
maximum likelihood estimation in three specific multivariate extensions of the basic stochastic 
volatility (SV) model.  

The paper is organized as follows: Section 2 presents the Cholesky Multivariate Stochastic Volatility 
Model, Section 3 outlines the estimation methodology, Section 4 provides an empirical example, 
Section 5 conducts a simulation study, and finally, Section 6 concludes the paper.  

2. The Cholesky Multivariate Stochastic Volatility Model  

The main challenge in constructing multivariate stochastic volatility models with a dynamic correlation 
matrix is to ensure positive definiteness of the conditional covariance matrix. For this purpose, Tsay 
(2005) proposed to use the Cholesky decomposition. In fact, Tsay used the LDL variant of this method, 
which allows to decompose positive definite 𝔸𝔸 to the form 𝔸𝔸 = 𝕃𝕃𝕃𝕃𝕃𝕃′, where 𝕃𝕃 is lower triangular 
matrix with unit diagonal elements, and 𝕃𝕃  is diagonal matrix with positive elements. This 
transformation allows to separate elements related to variance from those related to correlation. Asai 
et al. (2006) suggested to use the autoregressive process of order 1 to specified elements of both 
matrix 𝕃𝕃 and 𝕃𝕃. This study followed Pajor (2010, p. 82) and Chib et al. (2009), and used instead the 
mean-reverted process of order 1. Mean-reversion of volatility is a commonly observed phenomenon, 
and it seems that this assumption can also be applied to correlations. The Cholesky Multivariate 
Stochastic Volatility Model employed in this work takes the form 
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Moreover, it was assumed (Pajor, 2010, p. 82) that: 

 𝕧𝕧𝑡𝑡 = �𝜐𝜐21,𝑡𝑡, … , 𝜐𝜐𝑝𝑝𝑝𝑝−1,𝑡𝑡�
′~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(𝑝𝑝−1)𝑝𝑝/2�0, 𝕀𝕀(𝑝𝑝−1)𝑝𝑝/2�, (2) 

and 𝕖𝕖𝑡𝑡 ,𝕧𝕧𝑠𝑠 are statistically independent for 𝑡𝑡, 𝑠𝑠 ϵ ℤ.  
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For p-dimensional vector of log-returns (at time t) 𝕪𝕪𝑡𝑡 = (𝑦𝑦1𝑡𝑡 ,𝑦𝑦2𝑡𝑡 , … ,𝑦𝑦𝑝𝑝𝑡𝑡) ′ there is 𝑝𝑝 log-volatilities 
ℎ1,𝑡𝑡, … ℎ𝑝𝑝,𝑡𝑡 and (𝑝𝑝 − 1)𝑝𝑝/2 lower triangular matrix elements 𝑞𝑞21,𝑡𝑡, … , 𝑞𝑞𝑝𝑝𝑝𝑝−1,𝑡𝑡 , which gives a total of 
(𝑝𝑝 + 1)𝑝𝑝/2 unobservable variables. 

In the ChMSV the conditional distribution of vector of returns given the past information ℱ𝑡𝑡−1  is  
p-dimensional normal distribution 

 𝕪𝕪𝑡𝑡|ℱ𝑡𝑡−1~𝑁𝑁𝑝𝑝(0,Σ𝑡𝑡), (3) 

where Σ𝑡𝑡 = 𝕃𝕃𝑡𝑡𝕃𝕃𝑡𝑡𝕃𝕃𝑡𝑡𝑇𝑇  is a time-variant covariance matrix. The elements of this matrix can be 
determined according to the following formulas (Asai et al., 2006): 

a) diagonal elements: 
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Consequently, both conditional variances and covariances are time-varying, but their dynamics are not 
determined separately, because both are dependent on ℎ𝑖𝑖,𝑡𝑡  and 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡  processes. The standard 
deviation of i-th asset return and correlation between i-th and j-th assets return may be calculated 
correspondingly as  

 Stdev(𝑦𝑦𝑖𝑖𝑡𝑡|ℱ𝑡𝑡−1 ) =�Σ𝑖𝑖𝑖𝑖    (6) 

and 

 Cor�𝑦𝑦𝑖𝑖𝑡𝑡 ,𝑦𝑦𝑖𝑖𝑡𝑡|ℱ𝑡𝑡−1 � =
Σ𝑡𝑡,𝑖𝑖𝑖𝑖

�Σ𝑡𝑡,𝑖𝑖𝑖𝑖Σ𝑡𝑡,𝑖𝑖𝑖𝑖
 .  (7) 

The number of parameters in the ChMSV model equals 3(𝑝𝑝2 + 𝑝𝑝)/2. For a 2, 3 and 4-dimensional 
model, respectively, the study obtained 9, 18, and 30 parameters. A limitation of this specification is 
that it is not straightforward to interpret the parameters of ℎ𝑖𝑖,𝑡𝑡  and 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡  processes, because they 
affect both variances and covariances. 

3. Estimation Method 

3.1. State Space Model Representation of the ChMSV Model 

The research goal was to estimate vector of parameters of the ChMSV model using iterated filtering. 
Firstly, it had to be shown that the ChMSV model is in fact element of a broader class of statistical 
models called State Space Models (SSM). This class is a statistical framework used to describe and 
analyse complex systems that evolve over time, and allow to estimate the hidden states based on the 
observed data (filtering), predict future states of latent process and perform parameter estimation. 
They consist of two components: a hidden or unobserved state process 𝕏𝕏𝑡𝑡 = (𝑋𝑋𝑡𝑡)𝑡𝑡≥0 and an observed 
process 𝕐𝕐𝑡𝑡 = (𝑌𝑌𝑡𝑡)𝑡𝑡≥0 . The latent and observed processes are specified respectively by the set of 
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densities �𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1;𝜃𝜃)�𝑡𝑡≥1 (with the initial density 𝑓𝑓0(𝑥𝑥0;𝜃𝜃)) and �𝑑𝑑𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃)�𝑡𝑡≥0. Latent process 
𝕏𝕏𝑡𝑡  is Markovian and measurement process 𝕐𝕐𝑡𝑡  is assumed to be conditionally independent given 
𝕏𝕏𝑡𝑡 (for details of this and two alternative definitions see Chapter 2 in Chopin and Papaspiliopoulos 
(2020)). 

In the ChMSV model, measurement process (at time t) 𝑌𝑌𝑡𝑡 = (𝑦𝑦1𝑡𝑡 ,𝑦𝑦2𝑡𝑡 , … ,𝑦𝑦𝑝𝑝𝑡𝑡) ′  is p-dimensional 
vector of log-returns and latent state process is (𝑝𝑝 + 1)𝑝𝑝/2 -dimensional vector of 
𝑋𝑋𝑡𝑡 = (ℎ1,𝑡𝑡, … ,ℎ𝑝𝑝,𝑡𝑡 ,𝑞𝑞21,𝑡𝑡, … , 𝑞𝑞𝑝𝑝𝑝𝑝−1,𝑡𝑡)′ of log-volatilities and lower triangular matrix elements. One can 
use the normality of random components 𝜂𝜂1,𝑡𝑡, … , 𝜂𝜂𝑝𝑝,𝑡𝑡 , 𝜐𝜐21,𝑡𝑡, … , 𝜐𝜐𝑝𝑝𝑝𝑝−1,𝑡𝑡 and their independence 
to show that the transition density (at time t) 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1;𝜃𝜃) is (𝑝𝑝 + 1)𝑝𝑝/2 -dimensional normal 
distribution with mean vector 
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and covariance matrix  

 𝕊𝕊 = 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 �𝜎𝜎𝜂𝜂1
2 , … ,𝜎𝜎𝜂𝜂𝑝𝑝

2 ,𝜎𝜎𝜓𝜓21
2 , … ,𝜎𝜎𝜓𝜓𝑝𝑝𝑝𝑝−1

2 �. (9) 

It was additionally assumed that, the initial distribution of vector 𝑋𝑋0 is one point-distribution with all 
probability on a single value �𝜇𝜇1, … , 𝜇𝜇𝑝𝑝, 𝜇𝜇21, … , 𝜇𝜇𝑝𝑝𝑝𝑝−1�

′
. Consequently, 𝕏𝕏𝑡𝑡 is Markovian. On the basis 

of equations (1) and (3), the measurement density (at time t) 𝑑𝑑𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃) is simply 𝑝𝑝-dimensional 
normal distribution with zero mean vector and Σ𝑡𝑡  covariance matrix with elements defined by 
equations (4) and (5). Furthermore, due to statistical independency of 𝕖𝕖𝑡𝑡 and 𝕧𝕧𝑠𝑠, 𝕐𝕐𝑡𝑡 is conditionally 
independent given 𝕏𝕏𝑡𝑡.  

As a result, the ChMSV model may be considered as a example of a State Space Model. This makes it 
possible to use the filtration, prediction and estimation of parameters as in other SSM models. 
However, the ChMSV model is nonlinear, precluding the use of the Kalman filter. Nowadays, particle 
filters are a well-established technique for estimating the latent state in nonlinear or non-Gaussian 
State Space Models with fixed parameters. However, a direct application of particle filters for 
likelihood estimation was not possible due to a limitation: the likelihood estimator was non-continuous 
as a function of the parameters (Malik and Pitt, 2011). A number of estimation methods indirectly 
using particle filters have been proposed: approximation of gradient ascent (Liu and West, 2001), 
expectation–maximisation algorithms, Particle Markov Chain Monte Carlo methods (Andrieu et al., 
2010), SMC2 (Chopin et al., 2013). A detailed discussion of this issue can be found in Kantas et al. (2015) 
and in Chapter 14 in Chopin and Papaspiliopoulos (2020). In this study the author used the iterated 
filtering algorithm proposed by Ionides et al. (2015).  

3.2.  Iterated Filtering 

Iterated filtering, initially proposed by Ionides et al. (2006) was later supported by theoretical details 
in Ionides et al. (2011), and underwent further development with the introduction of the second 
generation, IF2, initiated by Ionides et al. (2015). Although both generations of iterated filtering utilise 
a recursive filtering approach with the augmented model, their theoretical foundations differ. The first 
generation, IF1, relies on approximating the Fisher score function, whereas the second generation, IF2, 
integrates the idea of data cloning (proposed by Lele et al., 2007) with the convergence of an iterated 
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Bayes map, as presented by Nguyen (2016). Empirical investigations demonstrated that IF2 surpasses 
IF1 in performance (Ionides et al., 2015). Consequently, the calculations presented in this article used 
the second generation of the algorithm.  

Iterated filtering uses a basic bootstrap particle filter (Gordon et al., 1993) and, therefore, avoids the 
need to directly evaluate the transition density 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1;𝜃𝜃). Instead, it only requires the capability 
to simulate from this density (simulation-based approach). However, iterated filtering employs particle 
filters not directly in a target model, but in a similar model with parameters that take a random walk 
in time. This added variability smooths the likelihood surface, which addresses the main challenge 
faced by particle filters in parameter estimation and mitigates the issue of particle depletion. Through 
multiple repetitions of the filtering process, each using a particle filter, the variance of the random 
walk tends to zero, and the augmented model progressively converges to the original one. 
Consequently, iterated filtering provides a sequence of iteratively updated parameter estimates that 
converge towards the maximum likelihood estimate (likelihood approach), as detailed in Ionides et al. 
(2015). Unlike other simulation-based methods such as Approximate Bayesian Computation (Toni et al., 
2009), Particle Markov Chain Monte Carlo (Andrieu et al., 2010), and SMC2 (Chopin et al., 2013) based 
on the Bayesian approach, iterated filtering relies on the frequency interpretation of probability 
(frequentist-based approach). As indicated by King et al. (2016), iterated filtering is one of the few (and 
possibly the only) method that combines these three approaches and applies to most SSM models. 
Iterated filtering has demonstrated successful applications to various State Space Models, 
predominantly within the context of epidemiology (Bhadra et al., 2011; He et al., 2009; King et al., 
2008; Stocks et al., 2020; You et al., 2020). Additionally, it has been employed in economic modelling, 
particularly for univariate (Bretó, 2014; Szczepocki, 2020) and bivariate (Szczepocki, 2022) stochastic 
volatility models. 

3.3. Iterated Filtering Setup of the ChMSV Model 

The main advantage of iterated filtering is that the iteration algorithm, to apply to specific SSMs, 
requires only three conditions:  

1) ability to simulate from initial density 𝑓𝑓0(𝑥𝑥0;𝜃𝜃), 
2) ability to simulate from transition density 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1;𝜃𝜃), 
3) evaluate measurement density 𝑑𝑑𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃). 

The study showed that in the case of the ChMSV model, all the conditions were fulfilled. The initial 
assumed conditions are with probability 1, which in practical implementations are treated as fixed. 
Simulating from the transition density requires drawing from a p-dimensional normal distribution. 
However, a diagonal form of the covariance matrix allows drawing from one-dimensional normal 
distributions according to formulas: 

 ℎ𝑖𝑖,𝑡𝑡|ℎ𝑖𝑖,𝑡𝑡−1~𝑁𝑁�𝜇𝜇𝑖𝑖 + 𝜙𝜙𝑖𝑖�ℎ𝑖𝑖,𝑡𝑡−1 − 𝜇𝜇𝑖𝑖�,𝜎𝜎𝜂𝜂𝑖𝑖
2 �, 𝑖𝑖 = 1, … , 𝑝𝑝 (10) 

and 

 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡|𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡−1~𝑁𝑁�𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜙𝜙𝑖𝑖𝑖𝑖�𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡−1 − 𝜇𝜇𝑖𝑖𝑖𝑖�,𝜎𝜎𝜓𝜓𝑖𝑖𝑖𝑖
2 � , 𝑖𝑖 > 𝑗𝑗, 𝑖𝑖 = 2, …𝑝𝑝. (11) 

Moreover, evaluating the measurement density 𝑑𝑑𝑡𝑡(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡;𝜃𝜃) is straightforward, because it requires 
the determination of the density value of the 𝑝𝑝-dimensional normal distribution with zero mean vector 
and Σ𝑡𝑡 covariance matrix with elements defined by equations (4) and (5).  

The calculations for the empirical part and the simulation study in the article were carried out using 
the POMP package (Partially Observed Markov Processes, King et al., 2016) designed specifically for 
the R statistical computing environment (R Development Core Team, 2010), hence the author used the 
random-walk perturbations of the parameters incorporated in the POMP package. As a sequence of 
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the decay of perturbations, a geometric sequence was chosen. In order to increase computational 
efficiency, the code responsible for handling the initial function, transition, and measurement densities 
was implemented in the C programming language. 

4. Empirical Example 

This section applied the author’s estimation method of the Cholesky Multivariate Stochastic Volatility 
Model to the returns of four assets: Standard and Poor’s 500 index (SPX), the price of gold in US dollars, 
and the prices in US dollars of two cryptocurrencies, Bitcoin and Ethereum. The sample period from 
4  June 2018 to 4 June 2023, yielded a total of 1258 observations of daily logarithmic returns multiplied 
by 100, only keeping the days when observations were present for all time series. The data came from 
stooq.pl database. The same set of variables was part of the empirical study of safe haven assets in 
Będowska-Sójka and Kliber (2021), which, however, used the data to estimate three bivariate Yu and 
Meyer stochastic volatility models, each time pairing the SPX index with a different safe haven 
candidate: gold, Bitcoin and Ethereum. In this example, these four assets are analysed together as 
a four-dimensional model of stochastic volatility which allows to estimate not only the dynamic 
correlation between the index and the candidate for a safe haven asset, but also to determine the 
correlation between the candidates.  

The literature on safe assets is extensive. One of the key works is was Baur and Lucey (2009), in which 
a precise conceptual differentiation between two financial terms 'safe haven' and 'hedge' was 
introduced: “a safe haven is defined as an asset that is uncorrelated or negatively correlated with 
another asset or portfolio in times of market stress or turmoil, whereas a hedge is a security that is 
uncorrelated with the stock market on average”. Baur and McDermott (2010) further expanded on this 
concept by introducing the distinction between strong and weak safe haven effects: “a strong (weak) 
safe haven is defined as an asset that is negatively correlated (uncorrelated) with another asset or 
portfolio in certain periods only, e.g. in times of falling stock markets”. Therefore, to verify whether 
a given asset is a safe haven, it is not enough to calculate the sample Pearson correlation coefficient 
over a certain period. On the contrary, to determine the correlation in moments of turbulence in the 
stock markets, it is necessary to estimate the time-varying correlation. Many different methods have 
been used to estimate dynamic correlation, including regression models with a heteroscedastic 
random error (Baur and McDermott, 2010), bivariate DCC GARCH models (Aftab et al., 2019; Bouri  
et al., 2017) and bivariate stochastic volatility models (Będowska-Sójka and Kliber, 2021; Kliber et al., 
2019). This empirical example only illustrates that the ChMSV model also may be used to estimate the 
time-varying correlation in the case of safe haven asset studies, and is not an attempt to determine 
whether these assets actually play such a role. 

Figure 1 presents time series of asset prices (left column) and returns (right column). Table 1 shows 
summary statistics of returns. Among the analysed assets, Ethereum was the most volatile, followed 
by Bitcoin. Standard and Poor’s 500 index, and gold were less volatile. Cryptocurrencies also had the 
lowest minimum values and the highest maximum values, however the kurtosis of Standard and Poor’s 
500 index was higher than the kurtosis of the cryptocurrencies. Such a high kurtosis value combined 
with a more moderate standard deviation may indicate that Standard and Poor's 500 index is less 
volatile than cryptocurrencies most of the time yet with exceptionally strong extreme returns 
compared to typical values. Figure 1 shows for the index that the most extreme values are related to 
the outbreak of the pandemic, while cryptocurrencies volatility is more even over time. It is also 
significant that gold is the least volatile, has the lowest kurtosis and has the least extreme values.  

The estimation results are presented in Table 2. As mentioned in Section 2, interpretation of the 
obtained estimates is not possible. Additionally, the results cannot be compared with one-dimensional 
stochastic volatility models. 
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Fig. 1. Time series of Standard and Poor’s 500 index (SPX) and the price of gold, Bitcoin, Ethereum (left column)  
and corresponding logarithmic returns multiplied by 100 (right column) in the period from 4 June 2018 to 4 June 2023 

Source: own work. 

Table 1. Summary statistics of logarithmic returns multiplied by 100 calculated for four time series of Standard and Poor’s 
500 index (SPX) and the price of gold, Bitcoin, and Ethereum  

Asset 
Descriptive statistics 

Mean St. Dev. Skewness Kurtosis Min Q1 Median Q3 Max 

SPX 0.035 1.374 –0.77 16.22 –12.765 –0.533 0.077 0.712 8.968 

Gold 0.033 0.926 –0.414 6.524 –5.868 –0.432 0.07 0.542 4.605 

Bitcoin 0.097 4.305 –0.26 8.46 –32.36 –1.758 0.001 2.059 23.23 

Ethereum 0.087 5.715 –0.442 8.594 –42.855 –2.408 0.113 2.887 31.419 

The sample period: from 4 June 2018 to 4 June 2023 

Source: own work. 
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Table 2. Parameter and log-likelihood estimates and standard errors (in brackets) of the Cholesky Stochastic Volatility 
model were obtained using iterated filtering for the analyzed data 

Log-volatility 

Asset 
Parameter 

𝝁𝝁𝒊𝒊 𝝓𝝓𝒊𝒊 𝝈𝝈𝜼𝜼𝒊𝒊  

SPX (i = 1) 0.0012 (0.0409) 0.9549 (0.004) 0.1357 (0.0042) 

Gold (i = 2) –0.1888 (0.0446) 0.8545 (0.0049) 0.4811 (0.0051) 

Bitcoin (i = 3) 2.1081 (0.0533) 0.7445 (0.005) 0.9101 (0.0053) 

Ethereum (i = 4) 1.3398 (0.0436) 0.865   (0.0044) 0.5441 (0.0047) 

Dynamic correlation 

Pair of assets 
Parameter 

𝝁𝝁𝒊𝒊𝒊𝒊 𝝓𝝓𝒊𝒊𝒊𝒊 𝝈𝝈𝝍𝝍𝒊𝒊𝒊𝒊 

SPX, Gold (i,j)  =(1,2) 0.0472 (0.0197) 0.571 (0.0049) 0.0022 (0.0006) 

SPX, Bitcoin (i,j) = (1,3) 0.1403 (0.0364) 0.3778 (0.0047) 0.0519 (0.0005) 

SPX, Ethereum (i,j) = (1,4) 0.1267 (0.045) 0.8327 (0.0051) 0.0067 (0.0005) 

Gold, Bitcoin  (i,j) = (2,3) 0.1447 (0.0407) 0.9658 (0.0049) 0.0904 (0.0006) 

Gold, Ethereum (i,j) = (2,4) 0.1755 (0.047) 0.9904 (0.004) 0.1081 (0.0005) 

Bitcoin, Ethereum (i,j) = (3,4) 1.0006 (0.0265) 0.4927 (0.0048) 0.3268 (0.0005) 

Log-likelihood 

–9972.7344 (0.6468) 

 
Algorithm settings: 200 iterations, 1,000 particles, random-walk perturbations with the initial 0.01 perturbations, and 
a geometric decay of perturbations of α = 0.5. Standard errors of the parameters were calculated via numerical approximation 
to the Hessian (see supporting text by Ionides et al. (2006) for details of the procedure). The log-likelihood estimation with 
the standard errors were obtained by averaging twelve likelihood evaluations of a bootstrap particle filter with 1,000 particles. 

Source: own work. 

Having the model parameter estimates, one can apply a bootstrap particle filter to estimate the 
standard deviation of the returns and the dynamic correlation. This is possible by presenting the model 
in the form of a state space model and using formulas (6) and (7). Figure 2 presents estimates of the 
standard deviation of returns for the analysed time series, which shows that the estimates reflect well 
the volatility of returns observed in the right column of Figure 1. Figure 2 also shows a huge rise in 
volatility at the beginning of the pandemic for Standard and Poor’s 500 index and for gold, increased 
volatility of gold in 2016, Bitcoin at the turn of 2017-2018 and Ethereum at the beginning of 2016. 

One of the most important advantages of the ChMSV model is the ability to estimate time-varying 
(dynamic) correlations. Figure 3 presents the correlation between Standard and Poor’s 500 index and 
three candidates for a safe haven asset. One can see that all assets are slightly positively correlated 
with the index for most of the sample. The correlations are stable and during the index's greatest 
decline at the beginning of the pandemic, the correlations became reached their peak. It is clear from 
Figure 3 that none of the three assets can be treated as a strong safe haven asset because they are 
non-negatively correlated throughout the period. A subject of further analysis is the examination of 
whether they can be treated as a weak safe haven asset. 

Furthermore, the four-dimensional model allowed to study the correlations between safe haven 
candidates. This can be useful in finding more safe haven assets so that they would be negatively 
correlated or at least uncorrelated with each other. Figure 4 shows that gold is moderately correlated 
with both cryptocurrencies for most of the sample, but at selected moments the direction of the 
correlation turned negative for a short time. Bitcoin's correlation with Ethereum is very strong, but 
also very volatile. 
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Fig. 2. Estimates of the standard deviation of returns for four time series: Standard and Poor’s 500 index (SPX) and the price 
of gold, Bitcoin, and Ethereum. The sample period: from 4 June 2018 to 4 June 2023. The results were obtained by using  
a particle filter with 1000 particles 

Source: own work. 

 
Fig. 3. Estimates of dynamic correlation calculated for returns of Standard and Poor’s 500 index (SPX) and returns of gold, 
Bitcoin, and Ethereum in the period from 4 June 2018 to 4 June 2023. The results were obtained by using a particle filter 
with 1000 particles 

Source: own work. 
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Fig. 4. Estimates of dynamic correlation calculated for three pairs of returns: gold and Bitcoin (top), gold  
and Ethereum (middle), and Ethereum and Bitcoin (bottom), in the period from 4 June 2018 to 4 June 2023.  
The results were obtained by using a particle filter with 1000 particles 

Source: own work. 

5. Simulation Study 

Due to the inability to analytically demonstrate the convergence of the iterated filtering algorithm to 
the maximum likelihood estimates, the author evaluated its performance using a simple simulation 
study. The objective was to assess the precision of parameter estimation, conducting 100 simulations 
of the ChMSV model. To ensure consistency, each simulation had the same dimensions as the empirical 
example (four time series x 1258 observations) and the same parameter values obtained from the 
empirical study outlined in Section 4 (see Table 2). The same estimation procedure was applied as in 
the empirical study for each simulation. The findings, summarised in Table 3, present the mean errors 
(ME) and the root mean square errors (RMSE) of the parameter estimates. It can be seen from the ME 
that for any parameter there is no evidence that the errors tend to be overestimated in one direction. 
The biggest errors are related to the long-term mean parameter, perhaps because this one parameter 
has unlimited support. The RMSE values are comparable to the estimates of standard errors obtained 
in an empirical study. The results indicate that the proposed method is sufficiently reliable. 

Table 3. The results of the simulation study based on 100 time series simulation of the ChMSV model  
with the same parameter values as those obtained in the empirical study and the same length of time series  
as the analysed of S&P500 index and gold  

Log-volatility 

Asset 
Parameter 

𝝁𝝁𝒊𝒊 𝝓𝝓𝒊𝒊 𝝈𝝈𝜼𝜼𝒊𝒊  
(i = 1) 0.0542 (0.1735) 0.0846 (0.1389) –0.0534 (0.0095) 
(i = 2) 0.1695 (0.6916) –0.0212 (0.0162) 0.0275 (0.0452) 
(i = 3) –0.0605 (0.0829) –0.0074 (0.0083) 0.0959 (0.0274) 
(i = 4) –0.2259 (0.1711) 0.0188 (0.014) 0.0639 (0.0416) 
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Dynamic correlation 

Pair of assets 
Parameter 

𝝁𝝁𝒊𝒊𝒊𝒊 𝝓𝝓𝒊𝒊𝒊𝒊 𝝈𝝈𝝍𝝍𝒊𝒊𝒊𝒊 

(i,j) = (1,2) 0.0298 (0.007) 0.0078 (0.1179) 0.0336 (0.0034) 

(i,j) = (1,3) –0.0306 (0.0661) –0.0912 (0.2042) –0.0529 (0.011) 

(i,j) = (1,4) –0.0216 (0.0557) 0.0286 (0.1184) –0.0546 (0.042) 

(i,j) = (2,3) –0.0259 (0.0477) 0.1621 (0.1036) 0.0598 (0.0067) 

(i,j) = (2,4) –0.1893 (0.5777) 0.0877 (0.0539) –0.0034 (0.0062) 

(i,j) = (3,4) 0.0065 (0.0064) –0.0211 (0.082) 0.1106 (0.0237) 

 
Algorithms settings: 200 iterations, 1000 particles, the random-walk perturbations with initial 0.01 perturbations, and 
geometric decay of perturbations of α = 0.5 for all parameters. 

Source: own work. 

6. Conclusion 

The main novelty of this paper is the proposition of iterated filtering algorithm for estimating the 
Cholesky Multivariate Stochastic Volatility Model. The author proved that this model is an element of 
a broader class of statistical models called State Space Models and therefore the techniques used for 
this class (among others, iterated filtering) can also be applied in this case. Iterated filtering provides 
a sequence of iteratively updated parameter estimates that converge towards the maximum likelihood 
estimate. This is one of the few frequentist-based statistical inference methods for multivariate 
stochastic volatility models. Additionally, a bootstrap particle filter may be used for estimating the 
filtering distribution of log-volatilities and dynamic correlation in the frequentist-based approach. The 
effectiveness of the proposed estimation method was shown in an empirical example in which the 
ChMSV model was used in a study on safe-haven assets of one market index: Standard and Poor’s 500 
and three safe-haven candidates: gold, Bitcoin and Ethereum. The author presented parameter 
estimates and estimates of standard deviation and dynamic correlations, and the parameter estimates 
obtained from the empirical study were further used for the simulation experiment. It was confirmed 
that if the form of the model is correct, the proposed estimation method reproduces well the 
parameter values. 

In further research, it would be interesting to try to apply the iterating filtering to more advanced 
multivariate stochastic volatility models that take into account, for example, the leverage effect (as in 
Ishihara et al. 2016) and heavy-tailed errors (as in Ishihara and Omori, 2012). The leverage effect in 
stochastic volatility modelling refers to the phenomenon where the volatility of an asset is negatively 
correlated with its return. This results in the tendency for the volatility of an asset to increase when 
the asset's returns are negative, and decrease when the returns are positive. In contrast, the use of 
heavy-tailed errors in multivariate stochastic volatility models is motivated by the desire to capture 
the presence of extreme events in financial time series. The heavy-tailed distribution allows for a more 
realistic representation of the fat tails observed in financial returns, meaning that extreme events are 
more probable than would be implied by a normal distribution.  
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Estymacja wielowymiarowego modelu stochastycznej zmienności  
z dekompozycją Choleskiego przy użyciu iterowanej filtracji 

Streszczenie  

Cel: Celem artykułu jest zaproponowanie nowej metody estymacji dla wielowymiarowego modelu 
stochastycznej zmienności z dekompozycją Choleskiego w oparciu o algorytm iterowanej filtracji 
(Ionides et al., 2006, 2015). 

Metodyka: Iterowana filtracja jest metodą należącą do klasycznego częstościowego wnioskowania, 
która poprzez wielokrotne powtórzenia procesu filtrowania zapewnia sekwencję aktualizowanych 
oszacowań parametrów zbieżnych do estymatora największej wiarygodności. 

Wyniki: Efektywność zaproponowanej metody estymacji została pokazana na przykładzie empi-
rycznym, w którym wykorzystano wielowymiarowy model stochastyczny zmienności z dekompozycją 
Choleskiego w badaniu aktywów bezpiecznej przystani dla jednego indeksu rynkowego: Standard and 
Poor's 500 oraz trzech kandydatów na aktywa bezpiecznej przystani: złota, Bitcoina i Ethereum. 

Implikacje i rekomendacje: W dalszych badaniach metodę iterowanej filtracji można zastosować do 
bardziej zaawansowanych wielowymiarowych modeli zmienności stochastycznej, które uwzględniają 
np. efekt dźwigni (Ishihara et al., 2016) oraz rozkłady gruboogonowe (Ishihara i Omori, 2012). 

Oryginalność/Wartość: Głównym osiągnięciem artykułu jest propozycja nowej metody estymacji 
wielowymiarowego modelu stochastycznej zmienności z dekompozycją Choleskiego w oparciu 
o iterowany algorytm filtrowania. Jest to jedna z niewielu metod klasycznego częstościowego 
wnioskowania dla wielowymiarowych modeli stochastycznej zmienności. 

Słowa kluczowe: wielowymiarowe modele stochastycznej zmienności, iterowana filtracja, filtry 
cząsteczkowe 
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