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1. Introduction

Analysis of multivariate data is one of the most important practical tasks, 
where statistical methods are used. When one assumes stochastic approach, then 
the most common theoretical framework of analysis is multivariate distribution. 
The most often studied multivariate distribution is, of course, multivariate normal 
distribution.

From the point of view of practitioners, important part of data analysis is the 
determination of different statistical parameters characterizing data set. In the uni- 
variate case, the analyzed parameters are: location parameter (mean, median, etc), 
scalę parameter (standard deviation, interąuartile rangę, etc.), skewness parameter 
and kurtosis parameter.

If we move to multivariate data set, then the main parameters are: location vec- 
tor (for multivariate normal distribution: mean vector) and scatter matrix (for mul- 
tivariate normal distribution: covariance matrix). This approach is a classical one in 
the analysis of multivariate distribution, where off-diagonal parameters of scatter 
matrix contain “joint” information about scalę and dependence. For example, co- 
variance between two variables is a product of standard deviation of the first vari- 
able, standard deviation of the second variable and correlation coefficient between 
two variables.

In this paper we present another approach, based on the so called copula func- 
tions. The key point of this approach lies in the fact that dependence parameter is 
treated separately, rather than being linked with scalę parameters, as it is in scatter 
matrix. This approach has been used rather rarely in practice. After giving some 
basie results, we will review several groups of parameters, derived from copula 
approach.
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2. Copula analysis -  main theoretical results

The main idea behind the application of copula functions in the analysis of 
multivariate data lies in the separation of the analysis of the marginal univariate 
distributions from the analysis of the dependence between univariate components 
of random vector. This idea is reflected in the so called Sklar theorem, given in the 
following representation of the multivariate distribution function [Sklar 1959]:

xm) = C(Fx(xi), ..., Fm(xm)), (1)

where: F  -  distribution function of a random vector;
Fi -  distribution function of the ith component of a random vector;
C -  copula function.

As one can see from (1), copula function is a distribution function of multivari- 
ate uniform distribution. On the other hand, it is also multivariate distribution func
tion defined for ąuantiles of univariate marginals, as in the following form:

C(Ml, ..., un) = F(F~'(«,), ..., F~'(uh)). (2)

One can also notice that in (1) marginal univariate distributions are “separated” 
from dependence function, given as copula function.

A closely related notion is copula density function being the mth derivative of 
copula function:

c(«i, ..., um) = dmC(ul, ..., um). (3)

This allows representing multivariate density function in the following form:

/(* .- •••> = •••» ^«(* .))■ /(* i)' -  •/„(*„) (4)
where: /  -  density function of a random vector;

f  -  density function of the ith component of a random vector; 
c -  copula density function.

Copula function can be interpreted through the notions of probability. Similar 
interpretation can be given to the related notion, copula survival function. We pre- 
sent this for bivariate case:

P(X, <xx,X 2 <x2) = C(F[(xl),F2(x2)), (5)

P(X, >xl,X 2>x2) = C(Ffx,),F2(x2)), (6)

C(n,,M2) = l-M ,- u 2 +C(m1,m2), (7)

where: C -  copula survival function.
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There is infinite number of possible copula functions. One of the most often 
studied is normal (Gaussian) copula, given by the following formula:

(8)
where: O'" -  distribution function of multivariate normal distribution;

O -distribution function of univariate normal distribution.
So we can see that multivariate normal distribution can be obtained by “link- 

ing” univariate normal distributions through normal copula. This leads to two im
portant statements, the first one being sometimes explored while teaching multi- 
variate statistics:
-  If one applies copula function -  different than normal copula -  to univariate 

normal distributions, then resulting multivariate distribution is not multivariate 
normal.

-  If one applies normal copula to univariate distributions -  different from normal 
distribution -  then resulting multivariate distribution is not multivariate normal. 
In the case of bivariate normal distribution, formula (8) can be expressed in the

following form:

where: p  -  correlation coefficient between components of bivariate random vector.
The very well studied family of copula functions is the family of so called 

Archimedean copulas. We restrict here the presentation to bivariate case. There, 
Archimedean copulas are defined for strictly decreasing and convex function, 
called generator (e.g. [Nelsen 1999]):

where: \ff -  generator.
Among the members of this family of copulas, the most often studied are: 

-  Gumbel copula, where:

4>_1 («,)0-‘(u2)

C(m, , u 2 )  = y/-' (y/(u,) + y/(u2)), 
yr:[0;l]-»[0;oo),
łKD = o,

(10)

ys(t) = -(\og(t))e, 0e  [1;«). (U)
Clayton copula, where:

l-lo g (0 , 0 = 0
( 12)
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Frank copula, where:

(13)

Ali -  Mikhail -  Haq copula, where:

y (0  = iogf1 9(1 # G [-i;i]-
v t y

(14)

What is important for Archimedean copulas, is the fact that (even in multivari- 
ate case) they are one parameter functions. This parameter, denoted by 6, can be 
interpreted as dependence parameter.

Now we review the most important theoretical properties of copula functions, 
which are useful for analysis of multivariate data.

3. Copula functions and the measures of dependence

As we pointed out in the previous chapter, the parameters of copula functions 
can be treated as measures of dependence. Moreover, the values of copula function 
itself can serve as a guideline for the measurement of dependence. This comes 
from the following three properties:

1. If the variables are independent, then the copula function is given as:

Therefore, the copula functions allow comparing the strength and direction of 
dependence between variables, not being restricted to linear dependence.

It is worth to mention, that for normal copula, the mentioned three situations 
corresponds to three particular values of correlation coefficient:
-  independent case -  correlation coefficient equal to 0;
-  lower limit -  correlation coefficient eąual to -1;
-  upper limit -  correlation coefficient eąual to 1.

The next important property is related to the fact that three well known coeffi- 
cients used to measure the dependence between two variables, can be presented 
through copula functions. These are:

C(ux, ..., kJ  = c "(«„ •••> Um) = Ui

2. The lower limit for copula function is given as:

C"(«,, ..., um) = max(u, + ... +um- m  +1;0).

3. The upper limit for copula function is given as:

C+(m,, ..., Mm) = min(M1, ..., um).

(15)

(16)

(17)



39

-  Spearman coefficient, known as correlation coefficients between the values of 
distribution functions, presented as:

i i
ps = 1 2 ||C (mi,m2)(/mi(/m2-3 . (18)

o o
-  Kendall coefficient, presented as:

i i
Pt = 4jjC(«„w2)rfC(K1,w2) - l .  (19)

0 o
-  Gini coefficient, presented as:

i i
= 2 J J(|u, + «2 - 1| - 1«, -  m2 ̂ ( w , , u2). (20)

o o
This confirms the role of copula functions in the analysis of dependence.

4. Copula functions and taił dependence

In the previous chapter we discussed measures of dependence. In some applica- 
tions, the important notion is taił dependence. This is the dependence between vari- 
ables where the values from the tails of the distributions of these variables are 
taken into account. The most common tool used here is taił dependence coefficient 
(coefficients).

Taił dependence coefficients are deftned for the bivariate case. There are two 
such coefficients:
-  Lower taił dependence coefficient, defined as:

XL=\imP{X2 <F2» U ,  ŚF,-'(u)). (21)u —>0 I

-  Upper taił dependence coefficient, defined as:

K  = hmP(X2 > F { \u ) \x y > (22)

Lower taił dependence coefficient is defined as limiting probability that one va- 
riable takes value from the lower taił, given that the other variable takes value from 
the lower taił. Upper taił dependence coefficient is defined as limiting probability 
that one variable takes value from the upper taił, given that the other variable takes 
value from the upper taił. As one can see, these notions are defined through limit
ing case, where limit is taken with respect to lower or upper taił.

Both coefficients can take value from the interwal [0; 1]. There are two possibi- 
lities:
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-  If taił dependence coefficient is eąual to 0, then two considered variables are 
asymptotically independent;

-  If taił dependence coefficient is higher than 0, then two considered variables 
are asymptotically dependent.
These coefficients can be represented through copula functions. It is given in 

the following formulas:

X, = lim[C(u,w)/w],ti—>0 (23)

Xu =hm[(l-2M + C(u,«))/(l-i<)].U —>1 (24)

It is worth to mention that normal copula is asymptotically independent, if the 
correlation coefficient is different from +1. Therefore normal copula is not appro- 
priate for modeling variables which exhibit dependence in tails.

On the other hand, we have for Gumbel copula:
ll p (25)

Xu = 2 - 2 ve, e>  1. (26)

So Gumbel copula is appropriate when variables are upper taił dependent and 
lower taił independent.

The presented taił dependence coefficients are defined for the bivariate case. It 
might be interesting task, however, to consider morę generał case. Now we give 
simple proposals to extend taił dependence coefficients to multivariate case.

In the definitions given above, taił dependence coefficient is understood as the 
conditional probability that one variable takes value from the taił given the other 
variable takes value from the taił. It is then natural approach to consider the prob
ability that each of many, say, n -  1, variables take values from the tails, given that 
the remaining, say, n-th variable, takes value from the taił. Therefore we propose 
the following defmition in trivariate case:
-  Lower taił dependence coefficient:

Al =lim P(X2 <F2» , X 3 <F3- » | x , < F-'(u)). (27)u->0 I
-  Upper taił dependence coefficient:

4 , = limF(X2 > F2» , X 3 > F3» | * ,  > ^ " ‘(n)). (28)li—>1 I

It can be proved that these taił dependence coefficients can be represented 
through copula functions and copula survival functions, using the following formu
las:

X, =lim [C(«,m,w) / m],u—>0 (29)
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/L=lim[C(K,H,ii)/(l-u)]. (30)U —>1

The generalization of this approach to higher number of dimensions is straight- 
forward.

5. Copula functions and extreme values

Copula functions can also be applied in multivariate extreme value analysis. 
This analysis can be performed by studying the distribution function for a vector of 
maxima taken componentwise:

F„Jx) = P(Xln:n <*„ .... X m,n:n<xm). (31)

If one analyzes the limiting distribution, by allowing n to go to infinity, then we 
get the multivariate generalization of the Fisher-Tippett theorem, derived for uni- 
variate case. Here the main result is given for the limiting distribution of normal- 
ized maxima, given as:

limP
n—

,n:n ^ltn ^  -------------<Xi,
a. m

X  — bm,n:n tn.n ^  
— 1 = G(xi, ..., xm) = G(x). (32)

Here, limiting distribution is a so called, Multivariate Extreme Value Distribu
tion, being the generalization of univariate extreme value distribution. As it is well 
known, that the family of univariate extreme value distributions contains just three 
distributions: Gumbel, Frechet and Weibull distribution.

Unfortunately, in multivariate case there is no parametric representation of this 
family. However, there are two properties of Multivariate Extreme Value Distribu
tion, which are useful in practice:

1. Marginal distributions of Multivariate Extreme Value Distribution are uni- 
variate extreme value distributions (Gumbel, Frćchet or Weibull distribution).

2. In the copula representation of Multivariate Extreme Value Distribution, copula 
function is a so called Extreme Value Copula. It satisfies the following relationship:

C(«;, ..., Mm') = C((«„ ..., um). (33)

Therefore, to construct Multivariate Extreme Value Distribution one has to ap- 
ply Extreme Value Copula to marginal distributions being univariate extreme value 
distributions.

The most often studies copula functions belonging to Extreme Value Copula 
family are (for simplicity we restrict ourselves to bivariate case):
-  Gumbel copula, given as:

C(w,, u2) = exp[-(log u f + log u* )ve ] 
P e[l;~ )

(34)
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Gumbel II copula, given as:

C(w,,w2) = u,«2 exp[(9(log m, log u2) /(log «, + log u2)] 
Oe [0; 1]

(35)

Galambos copula, given as:

C(m, , m2 ) = w,w2 exp[((log w, )"* + (log u2 )“* )"1/tf ]
0 g [0;oo)

(36)

These results simplify the analysis of multivariate extreme values.

6. Copula functions in time senes analysis

The main idea behind the use of copula in modeling relations in univariate time 
senes comes from the important results obtained by Darsow, Nguyen and Olsen 
[1992],

There are two important and often discussed copula functions for time series: 
Brownian copula and Omstein-Uhlenbeck copula. They correspond to the two 
continuous time stochastic processes, known under the same names.

1. Brownian copula. It is given as:

-  If the marginal distributions are normal distributions, then applying Brownian 
copula leads to the stochastic process, which is geometrie Brownian motion.
2. Omstein-Uhlenbeck copula.

It is given as:

(37)

The most important properties of Brownian copula are: 
Brownian copula is normal copula with parameter:

P = yjt — S. (38)

c s M ^  =
h(0,s,t)<& \ u 2)-h(0,s,s)<t> ‘(u) 

h(s,s,t)
du. (39)

A(t0, s, t) = y/e2a('-s)- e 2a(s-,0) (40)

The most important properties of Omstein-Uhlenbeck copula are: 
Omstein-Uhlenbeck copula is normal copula with parameter:
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p  = e-a ( t - s ) 1 -  e~2as 
1 -  e~2al

(41)

-  If the marginal distributions are normal distributions, then applying Omstein- 
Uhlenbeck copula leads to the stochastic process, which is Omstein-Uhlenbeck 
process.

-  The parameter a -  being also the mean-reverting coefficient of Omstein- 
Uhlenbeck process, known as speed of reversion -  can be interpreted as the pa
rameter of the dependence between random variables being the components of 
stochastic process -  the larger this coefficient, the less dependence between 
random variables.

References

Darsow W.F., Nguyen B., Olsen E.T. (1992), Copulas and Markov Processes, „Illinois Journal of 
Mathematics”, 36, p. 600-642.

Nelsen J. (1999), Introduction to Copulas, Springer, New York.
Sklar A. (1959), Fonctions de repartition a n dimensions et leurs marges, Publications de 1’Institut de 

Statistique de l’Universitó de Paris, 8, p. 229-231.

PARAMETRY STATYSTYCZNE MAJĄCE U PODSTAW 
FUNKCJE POŁĄCZEŃ

Streszczenie

Artykuł przedstawia zastosowanie funkcji kopuli (połączeń) w określeniu parametrów zbioru da
nych wielowymiarowych. Na wstępie przedstawiono podstawy analizy połączeń, a następnie omó
wiono takie grupy parametrów, jak: miary zależności, współczynniki zależności w ogonie, parametry 
wielowymiarowych wartości ekstremalnych, miary zależności w szeregach czasowych.
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