
 

 

 

Metabolomics analysis of time and oxygen effect of 

Fibrosarcoma cell line (HT1080) 

 

 
 

 

 

Submitted by 

Badr Saif Mohsen Qasem 
 

 

 

at  

The  Department of Biochemistry, Molecular Biology  

and Biotechnology 

 
 

 

 

 

 

 

 

 

 

 

 

 

Wrocław, 2023 

 Faculty of Chemistry 

Supervisor: 

Prof. dr hab. Piotr Młynarz,  

Faculty of Chemistry,  

Wroclaw University of Science and Technology. 



2 
 

Foreword 

This thesis dissertation is the result of more than four years of research  

at the Department of Biochemistry, Molecular Biology and Biotechnology, Faculty  

of Chemistry, Wroclaw University of Science and Technology under the supervision  

of prof. Piotr Młynarz.  

 

This thesis aims at contributing new metabolic phenotype analysis-based approaches  

to improve the investigation of fibrosarcoma cell line metabolism in vitro, with particular 

emphasis on metabolic responses to pathological results of various oxygen concentrations. 

Moreover, this thesis also contributes to a novel in vitro model, to investigate intracellular  

and extracellular reoxygenation and deoxygenation metabolome by 1D 1H NMR. 
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Abstract 

Oxygen molecular effect on cancer cells metabolism has been a concern for decades,  

at the beginning with Louis Pasteur’s and his understanding of glucose fermentation.  

In the 1930s, Otto Warburg came with his new understanding of cancer biology by introducing 

the alteration of cancer cells' metabolism in the presence or absence of oxygen molecules  

by increasing glucose uptake and producing lactate through aerobic glycolysis (Warburg 

Effect). For more than 100 years scientists published different studies trying to fully 

understand of Warburg effect and hypoxia-metabolic reprogramming effect on cancer cell 

progression. However, still is a lot of questions unanswered so far. For instance, why do cells 

choose the less sufficient way to produce ATP and lose carbon in form of lactate which  

is required for the biosynthetic process. What are the exact proportions of activity of cancer 

cells between glycolytic and the TCA cycle? And the most curious question, what is the role 

of stromal components in the microenvironment ?. Is there any most advanced technology  

to answer all these questions?. By using a metabolomics platform including mass spectrometry 

(MS), nuclear magnetic resonance (NMR) spectroscopy, and chemometric methods to analyse 

a large number of metabolites present in cancer cell line samples the brighter light can be shed 

on identifying pathological biochemical pathways.  

Chapter 1  

Starts by introducing the state of the art in cancer biology, cancer metabolism,  

and the progression process and explores “Warburg effect” last consideration on metabolism 

reprogramming and cancer progression. Moreover, highlights the role of some essential  

and nonessential amino acids in cancer cell metabolism during different stress exposure  

to understand the metabolism alterations. In addition, the importance of oxygen molecules  

to cancer cell metabolism and its concentrations in vitro and in vivo terminology  

were described. A brief introduction also includes the contributions of NMR-based in vitro 

metabolomics and chemometric analysis as powerful and advantageous technology  

to investigate cultured cell line metabolome. 
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 Chapter 2 

In this chapter, focused on the NMR-based in vitro metabolomics studies on HT1080 

cell line at selected oxygen concentrations as hypoxia 1%, normoxia 6%, and hyperoxia 21% 

by using 1D 1H NMR spectroscopy based on cells extracts (intracellular) and post cultured 

medium (extracellular), including sampling during incubation in the time intervals. Latest 

studies suggested that across many types of tumors after assessment of their degree of hypoxia 

using a set of genetic hypoxia markers revealed a great variation among tumours type in terms 

of potential hypoxia influence. Moreover, the normoxia term very often used 21% of oxygen 

concentration in in vitro studies, which is much higher than physiological oxygen 

concentration. Therefore, there is a need to develop a novel methodology to mimic the oxygen 

pressure on body tissues, that could distinguish the differences between oxygen environment 

saturation (hypoxia ≤ 1 and normoxia 6% and hyperoxia 21%). Hence, the metabolic profile 

information was collected by using 1D 1H NMR spectra from each interval of incubation time 

(12h, 24, and 36h with respect to the control samples) of fibrosarcoma cell line including intra 

and extracellular metabolites analysis. The chemometric analyses were applied to determine 

the potential of metabolites for discrimination purposes between interval incubation time. 

Besides, increasing the oxygen content and the possibilities of metabolite changes could  

be performed, namely at hypoxia at 1%, normoxia at 6%, and hyperoxia at 21% condition. 

 

 Chapter 3 

In this chapter of the doctoral dissertation, uses novel terms and methodology  

for inducing hypoxic-reoxygenation and normoxic-deoxygenation in vitro models to screen 

HT1080 cell line by looking at extracellular and intracellular metabolome. Behind this concept, 

tumor hypoxia arises from the rapid and uncontrolled proliferation of cancer cells, leading  

to increased acquisition of nutrients and oxygen to meet the energy demands. However,  

a quick depletion of oxygen and nutrient supply developed in parts of the tumour.  

Means, there is a transition of cells from sufficient oxygen and nutrients supply to hypoxic 

conditions with insufficient oxygen and nutrients supply normoxic-deoxygenation. In another 

hand, the hypoxic region within tumours generates different strategies to acquire an adequate 

quantity of oxygen and nutrients for cancer progression. For instance, induce the production 

of angiogenic proteins to build new vessels for blood flow and cancer cell mobility through 
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epithelial-mesenchymal transition (EMT) and metastasis. Thereby, cancer cells become 

normoxic cells with a sufficient supply of oxygen and nutrients (hypoxic-reoxygenation).  

Both these terms develop different metabolic phenotypes of cancer cells, so the combination 

of the analyses for intracellular and extracellular metabolites including normoxic  

vs. deoxygenized normoxic cells (DNCs) and hypoxic vs. reoxygenized hypoxic cells (RHCs) 

through incubation time experiments were conducted.  

 

Streszczenie 

Wpływ tlenu molekularnego na metabolizm komórek nowotworowych  

jest przedmiotem zainteresowania od kilku dziesięcioleci, począwszy od eksperymentów 

Louisaa Pasteura i jego rozumienia fermentacji glukozy. W latach 30 XX wieku Otto Warburg 

przyszedł z nowym zrozumieniem biologii nowotworów, wprowadzając zmiany 

metabolizmu komórek nowotworowych w obecności lub braku cząsteczek tlenu, poprzez 

zwiększenie przyswajania glukozy i produkcję mleczanu na drodze glikolizy aerobowej (efekt 

Warburga). Od ponad 100 lat naukowcy publikują różne badania, próbując pełniej zrozumieć 

efekt Warburga i efekt reprogramowania metabolicznego hipoksji na postępowanie komórek 

nowotworowych. Jednak do tej pory wiele pytań pozostaje bez odpowiedzi. Na przykład, 

dlaczego komórki wybierają mniej wydajny sposób produkcji ATP i tracą atomy węgiela  

w postaci mleczanu, który jest potrzebny do procesów biosyntetycznych. Jakie są dokładne 

proporcje działalności komórek nowotworowych między glikolizą a cyklem TCA?  

A najciekawsze pytania brzmią jaka jest rola składników stromalnych  

w mikrośrodowisku. Czy istnieją najnowocześniej technologie, aby odpowiedzieć  

na te wszystkie pytania? Dzięki platformie metabolomika, w tym spektrometrii masowej (MS), 

spektroskopii magnetycznego rezonansu jądrowego (NMR) i metodom chemometrii, 

analizując dużą liczbę metabolitów obecnych w próbkach linii komórek nowotworowych, 

można uzyskać więcej informacji dotyczących identyfikacji patologicznych ścieżek 

biochemicznych. 
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Rozdział 1 

Rozpoczyna się od przedstawienia aktualnego stanu wiedzy o biologii nowotworów, 

metabolizmie oraz procesie progresji nowotworów, najnowszych rozważań na temat efektu 

Warburga związanych z reprogramowaniem metabolizmu i progresją nowotworów. Ponadto 

podkreśla rolę niektórych aminokwasów niezbędnych w metabolizmie komórek 

nowotworowych. Dodatkowo opisano ważność cząsteczek tlenu dla metabolizmu komórek 

nowotworowych oraz ich stężenia w terminologii in vitro i in vivo. Krótki wstęp obejmuje 

również wkład spektroskopii NMR w analizę metabolomu in vitro wraz z analizą 

chemometryczną jako nieocenioną technologią badania metabolomu linii komórek 

hodowanych in vitro. 

 

Rozdział 2 

W tym fragmencie pracy skupiono się na badaniach z wykorzystaniem metody  

1D 1HNMR w badaniach metabolomu in vitro linii komórek HT1080, przy wybranych 

stężeniach tlenu jako hipoksja 1%, normoksja 6% i hiperoksja 21% na podstawie ekstraktów 

komórek (metabolomu wewnątrzkomórkowego) oraz płynów pohodowlanych (metabolomu 

zewnątrzkomórkowego), włącznie z próbkowaniem w czasie inkubacji w odstępach 

czasowych. Ostatnie doniesienia literaturowe sugerują, że w różnych typach nowotworów  

po ocenie ich stopnia hipoksji za pomocą zestawu genetycznych markerów hipoksji 

stwierdzono dużą różnorodność między nimi. Ponadto termin normoksja jest używany 

względem 21% stężenia tlenu w badaniach in vitro. Stężenie to jest znacznie wyższe niż 

fizjologiczne stężenie tlenu. Z tego względu istnieje potrzeba opracowania nowej metodologii 

do symulowania fizjologicznego ciśnienia tlenu w tkankach, które mogłoby wskazać różnice 

między nasyceniem środowiska tlenem (hipoksja ≤ 1 i normoksja 6% i hiperoksja 21%).  

Dlatego też, przeprowadzono badania profilu metabolicznego linii komórek fibrosarcomy  

za pomocą spektroskopii 1D 1H NMR z uwzględnieniem interwałów czasowych inkubacji 

(12h, 24, i 36h w odniesieniu do próbek kontrolnych), włącznie z analizą metabolitów 

wewnątrzkomórkowych i zewnątrzkomórkowych. Zastosowano analizy chemometryczne, 

aby określić „potencjał metabolitów” do celów dyskryminacji między interwałami inkubacji. 

Poza tym, zwiększając zawartość tlenu, a przez to możliwości zmian w szlakach 
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biochemicznych można było przeprowadzić badania metabolomiczne w warunkach hipoksji 

przy 1% O2, normoksji przy 6% O2 i hiperoksji przy 21% O2. 

 

Rozdział 3 

To zastosowanie nowego podejścia do indukcji in vitro modeli typu hipoksja-

reoksygenacja i normoksja-deoksygenacja, z zastosowaniem linii komórek HT1080 oraz 

analizą metabolomu ekstracellularnego i intracellularnego. Zgodnie z obowiązującą 

koncepcją, hipoksja nowotworu wynika z szybkiej i niekontrolowanej proliferacji komórek 

nowotworowych, prowadząc do zwiększonego pozyskiwania składników odżywczych i tlenu 

w celu wypełnienia wymagań energetycznych procesów kancerogenzy. Jednak szybka 

proliferację komórek nowotworowych powoduje utrudniony dostęp do zaopatrzenia w tlen  

i składniki odżywcze. Oznacza to, że dochodzi do przejścia komórek z dostatecznym 

dostarczaniem tlenu i składników odżywczych do warunków hipoksji z niedostatecznym 

dostarczaniem tlenu i składników odżywczych (normoksja-deoksygenacja). Z drugiej strony, 

region hipoksyczny wewnątrz guzów generuje różne strategie pozyskiwania odpowiedniej 

ilości tlenu i składników odżywczych dla progresji nowotworu. Na przykład, indukuje 

produkcję białek angiogennych, aby budować nowe naczynia dla przepływu krwi i ruchu 

komórek nowotworowych poprzez przejście epitelialno-mezenchymalne (EMT) i metastazę. 

W ten sposób komórki nowotworu stają się komórkami normoksycznymi z dostatecznym 

dostarczaniem tlenu i składników odżywczych (hipoksja-reoksygenacja). Oba te pojęcia 

rozwijają różne fenotypy metaboliczne komórek nowotworu. W związku z tym zostało 

przeprowadzone połączenie analiz metabolitów wewnątrzkomórkowych  

i zewnątrzkomórkowych, w tym komórek normoksycznych i denormoksycznych (DNC) oraz 

komórek hipoksycznych i reoksygenowanych hipoksycznych (RHC) przez przeprowadzenie 

eksperymenty w czasie. 
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 List of abbreviations 

 

Abbreviation  FULL FORM 

2D  Two-dimensional 

Ac-CoA  Acetyl Coenzyme A 

HMDB  Human Metabolome Data Base 

LDL  Low-density lipoprotein 

LDL-R  Low-density lipoprotein cholesterol receptor 

VLDL  Very low-density lipoprotein 

NMR  Nuclear magnetic resonance 

MS  Mass-spectrometry 

PCA  Principal component analysis 

PLS  Partial least square 

PLS-R Partial least square regression 

PCA  Principal component analysis 

TSP  3-Trimethylsilylpropionic acid 

NAD+  Nicotinamide adenine nucleotide (oxidized) 

DNCs Deoxygenized Normoxic Cells 

DNC Normoxia-deoxygenation Condition 

RHCs Reoxygenized Hypoxic Cells 

RHC Hypoxia- reoxygenation Condition 

NADH  Nicotinamide adenine nucleotide (reduced) 

RMSECV Root-Mean-Square Error of Cross-Validation 

ATP  Adenosine-3-phosphate 

PBS  Phosphate buffered saline 

PC  Pyruvate carboxylase 

PDH  Pyruvate dehydrogenase 

pO2  The partial pressure of oxygen 

PPP  Pentose phosphate pathway 

TCA  Tricarboxylic acid 

MCT  Monocarboxylate transporter 

BCAAs  Branched-chain amino acids 

MEM  Minimum Essential Media 

FBS  Fetal bovine serum 

HIF-1 Hypoxia inducible factor- 1 

LAT1 Large amino acid transporter 1 

ASCT2 Alanine, serine, cysteine transporter 2 

GBM Human glioblastoma 

BCAT1 Branched chain amino acid transaminase 1 

BCKD Branched-chain alpha-ketoacid dehydrogenase 

mTORC1 Mammalian target of rapamycin complex 1 



10 
 

IDH1 Dehydrogenase-1 

αKG α-ketoglutarate 

SLC1A5 
Solute carrier family 1 (neutral amino acid 

transporter_member 5) 

NAD Nicotinamide adenine dinucleotide 

Nampt Nicotinamide phosphoribosyltransferase 

Nmnat Mononucleotide adenylyltransferase 

NMN/NAMN Nicotinamide mononucleotide 

Naprt Nicotinate phosphoribosyltransferase 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

PRPP Poly ADP-ribose polymerase 

CD38/157 Cluster of Differentiation 38/157 

LDH Lactate dehydrogenase 

ALAT Alanine aminotransferase 

PDH Pyruvate dehydrogenase 

PDAC Pancreatic ductal adenocarcinoma 

OGD Oxygen-glucose deprivation 

CRC Colorectal cancer 

PUMA p53 upregulated modulator of apoptosis 

Bax/Bcl-2 Bcl-2-associated X protein/ B-cell lymphoma 2 

tCho Choline-containing compounds 

PCho Phosphocholine 

GPC Glycerophosphocholine 

CHKα Choline kinase-α 

CTL1 Choline transporter-like protein 1 

TNBC Triple-negative breast cancer 

NF-κB Nuclear factor kappa-light-chain-enhancer of 

activated B cells 

AKT-ERK Protein kinase B-Extracellular signal-regulated 

kinase 

3PG 3-phosphoglycerate 

pPYR 3-phosphohydroxypyruvate 

PHGDH Phosphoglycerate dehydrogenase 

PSAT Phosphoserine aminotransferase 

pSER Phosphoserine 

PSPH Phosphoserine phosphatase 

SHMT1/2 Serine hydroxymethyltransferases 1/2 

GCS Glycine cleavage system 

THF Tetrahydrofolate 

IMP Inosine monophosphate 

HPRT Hypoxanthine-guanine phosphoribosyltransferase 

APRT Adenine phosphoribosyltransferase 

PPP Pentose phosphate pathway 
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PFKFB 6-phospho-2-kinase/fructose-2,6-biphosphatase 

PFK-1 Phosphofructokinase-1 

METTL9 Methyltransferase 9 

FH Fumarate hydratase 

Keap1 Kelch-like ECH-associated protein 1 

Nrf2 Nuclear factor (erythroid-derived 2)-like 2 

SDH Succinate dehydrogenase 

ROS Reactive oxygen species  

ACSS1/2 Acetyl-CoA synthetase 1/2 

KRAS Kirsten rat sarcoma viral oncogene 

ATF4 Activating transcription factor 4 

ASNS Asparagine synthetase  

GOT Glutamic oxaloacetic transaminase 

OTC Ornithine transcarbomylase 

OAT Ornithine aminotransferase 

ODC Ornithine decarboxylase 

PI3K/AKT Phosphatidylinositol 3-kinase and protein kinase B 

SSAT Spermidine/spermine N(1)-acetyltransferase 

GSK3β Glycogen synthase kinase-3 beta 

PCC Propionyl-CoA carboxylase 

OCFA Odd-chain fatty acid 

UDP-GlcNAc Uridine diphosphate N-acetylglucosamine 

HBP Hexosamine biosynthetic pathway 

TGF-β Transforming growth factor-β 

OSSC Oral squamous cell carcinoma 

SAM Methyl-donor S-adenosylmethionine 

1-MNA 1-methylnicotinamide 

PAAD Pancreatic Adenocarcinoma 

SHh Sonic Hedgehog 

NNMT N-methyltransferase 

LDHA Lactate dehydrogenase A 

MCTs Monocarboxylic acid solute transporters 

AATs Amino acid transporters 

GCN2 General control of nonderepressible protein kinase 2 

FADH2 Flavin adenine dinucleotide 

CAT-1 Cationic amino acid transporter-1 

CLL Chronic lymphocytic leukemia 

GLUT 1/3/4/5 Glucose transporter type-1/3/4/5 

TME Tumor microenvironment 

ABC ATP-binding cassette 

PANX1 Cconnexin hemichannels, pannexin 1 

CALHM1 Calcium homeostasis modulator 1 
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VRACs Volume-regulated anion channels 

MACs Maxi-anion channels 

GFAT Glutamine fructose-6-phosphate amidotransferase 

HK2 Hexokinase 2  

PGI Phosphoglucose isomerase 

PGK Phosphoglycerate kinase 

PGM Phosphoglycerate mutase 

PDK1/MXI1 3-phosphoinositide-dependent protein kinase 

1/MAX interactor 1 

COX4I2 Cytochrome c oxidase subunit 4 isoform 2 

CK Choline kinase 

PC-PLC/D Phosphatidylcholine-specific phospholipase C/D 

BCKDH Branched-chain α-keto acid dehydrogenase complex 

KIC 2-keto-isocaproate/4-methyl-2-oxopentanoic acid 

KMV α-keto-β-methylvaleric acid/3-methyl-2-

oxopentanoate 

KIV 2-keto-isovalerate/3-methyl-2-oxobutanoic acid 

AA Acetoacetate  

HDACs 3-hydroxybutyrate on class I histone deacetylases 

Kbhb Histone lysine β-hydroxybutyrylation 

CPT-1 Carnitine palmitoyltransferase-1 

DEGs Differentially expressed genes 

ER Endoplasmic reticulum 

CHOP CCAAT-enhancer-binding protein homologous 

protein 

NAA N-acetylasparate 

Met Methionine  

HCY Homocysteine  

SAH Adenosylhomocysteine  

SAM S-adenosylmethionine 

tHcy Total homocysteine 

SAHH S-adenosylhomocysteine hydrolase 

CAFs Cancer-associated fibroblasts 

MDSCs Myeloid-derived suppressor cells 

ECM Extracellular matrix 

F6P Fructose-6- phosphate 

F1,6 bP Fructose-1,6-biphosphate 

GA-3P Glyceraldehyde 3-phosphate 

1,3BPG 1,3-biphosphoglycerate 

PEP Phosphoenolpyruvate 

FASN Fatty acid synthase 

ACLY ATP-citrate lyase 

ETC Electron transport chain 
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AMPK Adenosine monophosphate-activated protein kinase 

OXPHOS Oxidative phosphorylation 

EAAs Essential amino acids 

NEAAs Nonessential amino acids 

IDH 1/2/3 Isocitrate dehydrogenase 1/2/3 

XCT Cystine transporter 

ME 1 NADP-dependent malic enzyme 1 

GLS1 Glutaminase 1 

MFN1/2 Mitofusin 1/2 

OPA1 Optic atrophy 1 

PHGDH Phosphoglycerate dehydrogenase 

PSAT1 Phosphoserine aminotransferase 

PSPH Phosphoserine phosphatase 

GOT Glutamate-oxaloacetate transaminase 
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1. Introduction 

1.1.  The malignant properties of human tumorigenesis 

The definition of cancer has been established for centuries as a diversity  

of neoplastic diseases with various explanations about its origin. Despite many efforts, 

cancerous diseases still are the leading cause of worldwide death [1,2]. In 2018 there 

were about 18.1 million new cases and 9.5 million of them were related to deaths.  

The prediction estimate by 2040 the number per year will be 29.5 million, and 16.4 

million cases of cancer-related deaths [3]. Therefore the understanding of cancer  

and its causes should allow us to prevent and reduce this disease from happening.  

Epidemiological studies suggest that 90%–95% of cancers are correlated  

to environmental factors such as infections, lifestyle, chemical exposure, and sunlight 

overexposure, while the rest 5%–10% due to DNA mutation and modification in gene 

expression leading the normal cells to be transformed into cancer cells [4]. The concept 

of cancer in the modern term has been defined as carcinogenesis or tumorigenesis, 

which seems to be more convenient to define tumor cell transformation and describe 

the tumor development processes [5]. 

 Different risk factors lead to the disturbance of the cellular homeostasis related 

to dysplastic, hyperplastic, or regenerative changes, which can be classified into three 

main groups carcinogenic factors. The primary factors include pathological agents  

such as viruses or bacteria, chemical materials, and physical agents that interfere  

with genetic materials. The secondary factors are more explicit being related to specific 

gene effects for a single type of cancer and represent the hereditary factors  

such as gastric cancer and melanoma of the Lipizzaner horse breed. There are multiple 

stages for carcinogenesis recognized in different studies at least four stages  

are required to define the concept of carcinogenesis, initiation, promotion, malignant 

conversion, and progression [6,7]. 

 

1.2. The transformation of normal human cells into cancer cells 

Many theories have explained how the normal cells transformed to become 

cancerous and develop tumors (also called neoplasm) but it is still a debatable matter 

today. The neoplasm essentially came as a consequence of abnormal growth of tissue 
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with uncoordinated characteristics that differ from the normal tissue, which  

can include benign tumors and malignant (invasive) cancers.  

Determine the differences between benign and malignant tumors required  

to run several lab diagnosis methods such as imaging tests, endoscopic exams, genetic 

tests, and tumor biopsies by the pathologist to disclose the structure and morphology 

of the tissue borders, speed of growth, invasion properties, and recurrences.  

For instance, benign tumors can’t invade other organs in most cases  

and are characterized by slow growth and almost no medical complications. However, 

the malignant tumors spread from “'their primary location”, become  

more metastasized, uncontrollable, fast growth with irregular borders, and cause 

medical complications that require intensive and various medical treatments [8,9]. 

Cancer is defined as a genetic disease with unique characteristics acquired  

by the accumulation of various and multiple mutations within cells undergoing cancer 

cell transformation. These alterations could be genetic and epigenetic both of them 

represent an essential part of tumorigenesis. The induction of genetic aberration could 

be by mutagenic chemicals, UV light, aging, and oxygen radicals, resulting in genomic 

instability which is described in human cancers as gene amplifications, deletions, 

insertions, rearrangements, and point mutations. However, epigenetic alterations 

(epimutations) usually develop from aging and chronic inflammation, bacterial  

and viral infections, cigarette smoking, and estrogen (in vitro culture) as a consequence 

of various environmental stimuli [10]. 

 

1.3.The multistage of carcinogenesis 

The tumorigenesis initiation is an early stage of somatic mutations occurring in single 

or multiple cells within normal tissue. These mutated cells pass the changes  

to their daughter cells to develop cancer cells and then start to intensive proliferate rate 

to form selective clonal expansion of these selective mutated cells, as part of the second 

stage of tumor promotion. 

At the malignant stage, the selective mutated cells start to express another mutation  

to form another malignant phenotype with the maintenance and development  

of its malignancy (Figure 1) [7,11–14].  
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Figure 1. Schematic representation of the multistage process of carcinogenesis  

 

1.4.Tumor microenvironment and cancer progression 

Understating the multiple stages of tumorigenesis at the cellular level as consequences 

of molecular change accumulation, contribute to developing unique features  

by allowing cancer cells to manifest autonomous proliferation, apoptosis resistance, 

invasiveness, immune system evasiveness, immortality, and metastasis. In addition, 

the impact of stromal components on the tumor microenvironment (TME) including 

their interactions with tumor cells shapes the most suitable environment for cancer 

development [15]. 
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The harbors components of the tumor microenvironment (TME) mainly from various 

stromal cells such as cancer-associated fibroblasts (CAFs), myeloid-derived suppressor 

cells (MDSCs), myofibroblasts, endothelial cells, neutrophils, macrophages,  

and other innate and adaptive immune cells, and adipocytes, Beside the extracellular 

matrix (ECM).  

The interaction between intratumoral and stromal cells plays a major role  

in tumorigenesis regulations of aggressiveness. However, the normal tissues 

surrounding this complex structure the of tumor also act as an essential part  

by supporting the cancer cells with nutrients, gas exchange, and metabolites 

regulations for growth to maintain the tissue homeostasis. In another hand,  

the extracellular matrix (ECM) is mainly created by cancer-associated fibroblasts (CAFs 

) to support the structure of the tumor and facilitate other biological properties such as 

proliferation, invasion, and metastasis. But regarding the EMC composition is usually 

built from various macromolecules, mostly structural proteins working as scaffolds 

such as collagens, glycoproteins, proteoglycans, and polysaccharides. Studies 

suggested the importance of TME components to overcome the acidic environment, 

and lack of oxygen supply, and organize these complex elements to induce 

angiogenesis and increase the oxygen and nutrient supply, in addition, to metabolic 

waste removal [15–19]. 

 

1.5.The Warburg Effect past and present 

Otto Warburg in 1924 found in the contrast to the most normal tissues. There are three 

metabolic properties in the culture tumor tissues accompanied by an increase  

in the consumption of glucose rate in harmony with a high rate of lactate secretion. 

This phenomenon occurs even with oxygen present (aerobic glycolysis), which most 

cancer cells depend on this phenomenon is called “the Warburg effect”. Unlike normal 

cells essentially rely on mitochondrial oxidative phosphorylation to generate  

the demand energy for cellular processes. Knowing that hypoxia does the same 

elsewhere not just in tumors. However, Warburg’s analysis is still unclear to determine 

the exact proportion between glycolysis and oxidative phosphorylation (OXPHOS)  

in cancer cells [20,21]. Otto Warburg defined aerobic glycolysis as an inefficient way  

to produce energy or as unconventional metabolism presented by tumor cells [22].  

But this raises many questions first why cancer cells do proliferate in a less efficient 
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way for ATP production. From the 1920s until today was extensive study about 

Warburg Effect, and scientists proposed different hypotheses to understand  

the functions of the Warburg effect related to ATP, biosynthesis process, ROS (Reactive 

Oxygen Species), acidification, and recently acetylation [23,24].  

All these metabolic pathways are responsible for the activation of oncogenic signals. 

But the high glucose uptake, which is converted to lactate doesn’t provide a sufficient 

amount of carbon for these pathways because carbon is secreted as waste  

to extracellular space. Thus if aerobic glycolysis on the Warburg effect concept 

supports anabolic processes it should be done indirectly. Meaning all these 

biosynthetic pathways that branch from the glycolysis pathway builds a large pool  

of intermediates metabolites. However, the study suggested on over 80 non-small cell 

lung cancer (NSCLC) - cell lines that, the rate of nutrient consumption/secretion varied 

greatly, with glucose consumption being six to seven fold higher and lactate secretion 

being fifteen fold higher, which was concluded as a non-related Warburgian  

form of metabolism [25]. Other evidence proved the importance of mitochondrial 

activity for cancer cell proliferation in lung and brain tumors in vivo studies by using  

a 13C stable isotope, which suggested the activity of both glycolysis and TCA cycle  

in the tumor tissues to promote cell proliferation [26,27].  

In conclusion, it can’t be said that occurs of aerobic glycolysis as Otto Warburg's 

concept as symptoms of oxidative metabolism impairment [28]. Because it does  

not predict the impairment of oxidative metabolism. Hence, extrapolating this 

conclusion, even in tumors where pyruvate oxidation is suppressed and lactate is 

produced, the cells can still rewire their mitochondrial metabolism to produce other 

metabolic byproducts and intermediates that are important for biosynthesis [20].  

 

1.6. Cancer cells metabolism 

Cancer cell metabolism plays a hallmark of tumorigenesis and is a direct outcome  

of genetic mutations followed by metabolic enzyme changes to promote malignant 

transformation [29–31].  
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1.6.1. The Glycolysis/TCA cycle intermediates for biosynthesis and 

NADPH production  

Both glucose and amino acids are essential nutrients for cancer cells  

and are abundant in the extracellular fluids that supply mammalian organisms  

or in cell culture media for in vitro studies. This allows cells to obtain the necessary 

nutrients that support the survival and biosynthetic demands for cell proliferation 

[21,32]. In the past several decade's clinicians and scientists became interested  

in the connection between cellular glucose metabolism and tumor progression, 

showing that in normal cells and tissues, glucose is catabolized to generate pyruvate 

and ATP through the glycolysis pathway. However, pyruvate in oxygenated cells 

involves three relevant processes via the TCA cycle, glycolysis, and electrons transfer 

phosphorylation to generate 36 molecules of ATP from each glucose molecule 

[21,33,34]. Whereas, the Warburg effect, characterized by the preferential use of aerobic 

glycolysis in cancer cells, is capable of providing sufficient energy for cell proliferation. 

This is despite the fact that the metabolism of glucose to lactate through aerobic 

glycolysis generates only 2 ATPs per molecule of glucose [21] (Figure 1).  

Thus helping to capture the glucose and use a significant fraction  

of it to facilitate other pathways and NADPH production such as the pentose 

phosphate pathway for ribonucleotide synthesis and serine biosynthesis  

from glycolysis and glutaminolysis pathways via 3-phosphoglycerate (3-PG). Followed 

by a one-carbon metabolism cycle to engage in purine and glutathione biosynthesis 

and glycine synthesis, phospho-glycerol synthesis for glycerolipids, hexosamine 

pathway for protein glycosylation and generates glycogen as glucose storage [35–37]. 

However, most cancer cells use the majority of glucose and converted it to pyruvate, 

which most of it is converted to lactate via lactate dehydrogenase and achieves  

a maximum rate of glycolysis and releasing NAD+ from NADH [23,38] (Figure 1).  

Under nutrients deprivation a stress condition for the cells as a consequence  

of upregulation of glucose metabolism via glycolysis and induce vulnerability to ROS 

- induced cell death [39,40]. But if the cancer cells suffer hypoglycemia would increase 

energetic stress, thus resulting in selective cytotoxicity [41]. On the other side,  

the cancer cell undergoes a complex metabolic mode, which is more frequently 

changeable depending on how severe the stress conditions are, to find another strategy 
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for survival. Interestingly, under these circumstances oxidative stress, decreased ATP 

production [42]. The decline of NADPH, and induce intracellular ROS, cancer cells start 

to activate adenosine monophosphate-activated protein kinase (AMPK) which works 

as a metabolite-sensor for ATP levels, which leads to inhibit fatty acid synthesis (FAS) 

and NADPH consumption will decrease by AMPK, whilst induce fatty acid oxidation 

(FAO) will increases the flux from malate to pyruvate by AMPK and generating 

NADPH. Besides, another way to generate NADPH by activation of isocitrate 

transformation to alpha-ketoglutarate (α-KG) via isocitrate dehydrogenase 1 (IDH1). 

All these processes lead to minimizing intracellular ROS activity and cell death  

due to glucose starvation [35] (Figure 1).  

 

Figure 2. Glycolysis/TCA connection as intermediates for biosynthesis and NADH 

production from glucose on cancer cells metabolism; GLUT1, glucose transporter 1; 

SNAT2, glutamine transporter; G6P, glucose-6-phosphate; F6P, fructose-6- phosphate; F1,6 

bP, fructose-1,6-biphosphate; GA-3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-

biphosphoglycerate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PPP, pentose 

phosphate pathway; R5P, ribose 5-phosphate; GSSH, glutathione persulfide; GSH, 

glutathione; ROS, reactive oxygen species; GLS, glutaminase; HK2, Hexokinase 2; PFK1, 

Phosphofructokinase-1; G6Pase, Glucose 6-phosphatase; Aldo, aldolase; GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; Eno1, 

enolase-1; PKM2, pyruvate kinase M2; LDH-A, lactate dehydrogenase A; PDH, pyruvate 
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dehydrogenase; IDH 1, isocitrate dehydrogenase 1; ACC, acetyl-CoA carboxylases; ACSS2, 

cytoplasmic acetyl-CoA synthetase; FASN, fatty acid synthase; ACSS2, acetyl-CoA 

synthetase 2; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1; 

ACLY, ATP-citrate lyase; MCT1, monocarboxylate transporter 1; ATP, adenosine tri-

phosphate; ADP, adenosine di-phosphate; NADP/NADPH, nicotinamide adenine 

dinucleotide phosphate; NAD, nicotinamide adenine dinucleotide; FAD/FADH2, flavin 

adenine dinucleotide; ETC, electron transport chain; AMPK, adenosine monophosphate-

activated protein kinase; OXPHOS, oxidative phosphorylation; MCT2/4, monocarboxylate 

transporter 2/4; LAT1, L-type amino acid transporter 1. 

 

1.6.2. Glutamine metabolism  

Over the past six decades, researchers used culture cell lines as a robust tool  

for cancer biology studies, and the importance of supplying exogenous nutrients  

in culture media for cell lines proliferation such as glucose and other amino acids. 

There are two main groups of amino acids: essential amino acids (EAAs)  

and nonessential amino acids (NEAAs), EAAs are 9 amino acids  

and cannot be synthesized by human cells such as histidine, threonine, valine, 

methionine, lysine, leucine, tryptophan, phenylalanine and isoleucine. However, 

NEAAs are 11 amino acids that cells can synthesize by de novo biosynthesis  

such as aspartate, glycine, alanine, proline, arginine, glutamate, asparagine, cysteine, 

glutamine, tyrosine, and serine. Six of them are conditionally essential including 

glutamine, glycine, arginine, cysteine, proline and tyrosine, because of the pathological 

or physiological conditions, besides, the organismal level or cell types [43]. Several 

recent reviews and studies focus on the roles of NEAAs on cancer progression  

for potential therapy, and one of the important NEAAs is glutamine, which is defined 

as a second nutrient and fuel for cancer cells. It is abundant in extracellular fluids, 

plasma, and skeletal muscle and is classified as a conditional amino acid.  

The glutamine plays a major role in reprogramming cancer cells' metabolism to sustain 

cell biosynthetic processes, maintain energy demands, and redox homeostasis.  

The fundamental roles of glutamine are involved by serving as the source of carbon 

and nitrogen to support the TCA cycle anaplerosis, glutathione production, and lipids 

and nucleotides synthesis [44]. 



25 
 

Glutamine is connected with the TCA cycle through α-ketoglutarate  

for generating NADH and FADH2 leading to ATP production via the electron 

transport chain (ETC). In addition, building blocks of intermediates macromolecules 

support de novo biosynthesis and gluconeogenesis. However, under stress conditions 

such as hypoxia and mitochondria defectiveness, the glutamine-derived  

α-ketoglutarate is converted to isocitrate by activation of isocitrate dehydrogenase  

via reductive carboxylation and then converted to malate which generates NADPH 

and lipid biosynthesis to support cells proliferation and survival [45–47].  

Also, glutamine-derived glutamate contributes to glutathione in a secondary way, 

which starts by importing cystine from extracellular space coupled with an efflux  

of glutamate via cystine transporter (XCT ) (gene name SLC7A11) into the cell, then 

cystine is converted into cysteine, and both glycine and cysteine support to generate 

glutathione [48] (Figure 2).  

Figure 3. Glutamine metabolism as intermediates for biosynthesis and NADH production 

on cancer cells; GLUT1, glucose transporter 1; SNAT2, glutamine transporter; IDH 1/2/3, 

isocitrate dehydrogenase 1/2/3; ME 1, NADP-dependent malic enzyme 1; SDH, Succinate 

dehydrogenase; FH, fumarate hydratase; XCT, cystine transporter; GS, glutathione 

synthetase; GCL, glutamate-cysteine ligase. 
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Another aspect of glutamine metabolism in cancer cells has an effect on cell 

mitochondrial morphology and glutaminase 1 (GLS1), whereas GLS 1 is working  

as a metabolite-sensor of glutamine availability. As a result glutamine derivative  

in cancer cells, leads to a significant increase in reactive oxygen species (ROS) which 

subsequently damages the structure and function of mitochondria. To counteract this, 

mitochondria undergo fusion as a strategy to maximize efficiency by diluting damaged 

mitochondrial proteins and repair damage to preserve the integrity of mitochondrial 

DNA. Three GTPases, mitofusin 1 (MFN1), mitofusin 2 (MFN2), and optic atrophy  

1 (OPA1) have been identified as being involved in this process. However,  

the molecular mechanisms by which the signal of glutamine shortage is sensed  

and transmitted to maintain the quality of mitochondria remains to be fully understood 

[49]. 

 

1.6.3. Non-Essential Amino Acids metabolism 

Another NEAA, that takes researchers' attention in cancer cells' metabolism  

is serine, which is classified as the center hub of building blocks of cellular 

macromolecules through specific metabolic reprogramming and anabolic pathways  

to maintain redox balance, amino acids synthesis (glycine and cysteine), phospholipids 

production (phosphatidylserine), the donation to one-carbon units via folate pathway 

to accelerate cell proliferation and growth. Therefore many tumors rely on serine 

availability in extracellular space. The serine deprivation in vitro and in vivo studies 

showed inhibition of cancer cell proliferation and tumor growth [50–52]. 

De novo serine biosynthesis takes part from glycolysis, especially from  

3-phosphoglycerate and converted to 3-phosphohydroxypyruvate  

via phosphoglycerate dehydrogenase (PHGDH) [53], the phosphoserine 

aminotransferase (PSAT1) and phosphoserine phosphatase (PSPH) enzymes convert 

3-phosphohydroxypyruvate to serine than to glycine via serine 

hydroxymethyltransferase 1 and 2 (SHMT 1,2). 

 This provides a relevant relation of serine, and glycine to one-carbon 

metabolism to tumor metabolism [54,55]. In hypoxia, the de novo serine biosynthesis 

will induce all activity of enzymes mentioned above and overexpress 

phosphoglycerate dehydrogenase (PHGDH) for some cancers. For instance, a recent 
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study on breast cancers suggested that the main factor for inducing phosphoglycerate 

dehydrogenase (PHGDH) expression is hypoxia and there was a positive correlation 

of expression between HIF target genes and phosphoglycerate dehydrogenase 

(PHGDH) [56]. Interestingly, when apoptosis occurs, the PHGDH transcription  

is inhibited by p53 and minimizes the serine synthesis reactions [57].  

The intracellular aspartate is critical for biosynthetic reactions and maintains 

redox statue, despite poor uptake of aspartate from extracellular space,  

most of the aspartate is driven by glutamine catabolism through mitochondria.  

It is required to generate aspartate by glutamine entering the TCA cycle  

as α-ketoglutarate (α-KG) two critical enzymes including glutaminases (GLSs) [58]. 

Another study revealed mitochondrial glutamine transporter encodes by the SLC1A5 

gene allow glutamine enters the mitochondria for mitochondrial glutaminolysis. 

However, both ways that generate α-ketoglutarate (α-KG) generate amine groups from 

NH4+ via glutamate dehydrogenase or aspartate, aspartate biosynthesis  

from glutamine in cancer cells is known to occur through the action of the enzyme 

glutaminase (GA), which converts glutamine into α-ketoglutarate (α-KG).  

The conversion of glutamate to α-KG is then catalyzed by either glutamate 

dehydrogenase (GDH) or glutamate-oxaloacetate transaminase (GOT). This metabolic 

pathway is frequently elevated in cancer cells, which have a heightened dependence 

on glutamine as an energy source [59,60]. Mitochondrial impairment is a common 

feature in cancer cells and the inhibition of the electron transport chain (ETC)  

is correlated to aspartate level as a limiting metabolite for cancer cell proliferation 

under hypoxia [61]. Meaning, from the recent study, that under low concentration  

of oxygen leads to ETC inhibition and regulates the cellular aspartate level by inducing 

aspartate/glutamate transporter SLC1A3, therefore the limitation of aspartate  

at hypoxia leads to limit tumor growth [62].  

 

1.6.4. Branched-Chain Amino Acid (BCAA) Metabolism  

The branched-chain amino acids (BCAAs) are essential amino acids and play 

an important role in cell proliferation and survival mechanisms but the mechanism  

is still unclear. BCAAs cannot be synthesized by organisms, which are obtained  

via exogenous sources [63]. BCAAs enter the cells via sodium ion and pH-independent 
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L-type amino acid transporters SLC7. The LAT1 (SLC7A5) has a high affinity  

for importing BCAAs and other EAAs such as, phenylalanine, tryptophan, tyrosine, 

and histidine and efflux of intracellular components (e.g. tyrosine, histidine,  

and glutamine). However, LAT1 (SLC7A5) is pH-dependent, meaning the activity  

of BCAAs transporter depends on the environment pH, inducing its activity  

at neutralpH and becoming lower in an acidic environment [64,65]. Intracellular 

catabolism of branched-chain amino acids (BCAAs) involves their conversion  

to branched-chain α-keto acids (BCKAs) such as α-ketoisocaproate (KIC),  

α-keto-β-methylvalerate (KMV), and α-ketoisovalerate (KIV). This process is catalyzed 

by branched-chain amino acid transaminases (BCATs), which facilitate the transfer  

of the amino group from BCAAs to α-ketoglutarate (α-KG) and the concomitant 

production of glutamate. Then the BCKAs are metabolized by the branched-chain  

α-ketoacid dehydrogenase complex (BCKDC or BCKDH complex) into isobutyryl-

CoA, α-methylbutyryl-CoA and isovaleryl-CoA via multiple enzymatic reactions  

to achieve final products acetoacetate, acetyl-CoA and succinyl-CoA [66]. 

In humans, there are two groups of BCAA transaminases, one located  

in the cytoplasm called BCAT1 and another called BCAT2, which are located  

in mitochondria, however, both of them have the same role to generate α-ketoglutarate 

(α-KG) and synthesize glutamate [67].  

A recent study suggested that PDAC and HPDE cell lines are required  

a carbon source from BCAAs for lipid biosynthesis via branched-chain 

aminotransferases 2 (BCAT2) or branched-chain keto acid dehydrogenase E1 subunit 

alpha (BCKDHA). After the knockdown of these enzymes, the proliferation  

of the PDAC cell line was suppressed. However, the HPDE cell line was induced 

showing no effect on pancreatic cancer and making the role of BCAA more ambiguous 

[68]. In addition, a recent study revealed that under hypoxia the BCAAs transporter 

LAT1 (SLC7A5) was upregulated by both HIF-1 and HIF-2 in glioblastoma cells  

and induced BCAT1 expression and therefore induce cells proliferation [69].  

 

2. In vitro models for metabolomics research 

Metabolomics is an emerging powerful tool and analytical profiling 

technology used in biomedical research, for providing information  
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about the characterization of the biological system of different biological samples  

(e.g. serum, urine, cells, and tissues), for biomarker discovery, altered metabolic 

pathways identification, diagnosis, and toxicity assay. Metabolomics presents  

a window on metabolic regulations by both high-throughput analytical chemistry  

and multivariate data analysis combination [70,71]. In vitro cell culture metabolomics 

studies of both 2D and 3D types face many challenges to their quality, for that required 

accuracy design for experiments processes, starting from cell culture normalization  

to metabolome extraction [72,73].  

In addition, 2D monolayer cell culture is easy for data normalization  

than the 3D cell spheroid technique because of the number, size, and morphology  

of the cells. However, 3D has an advantage by mimicking the tumor complexity in vivo 

[73]. Nevertheless, both provide precise information about the changes in metabolic 

pathways. 

 

3. 1D 1H NMR as Tool to Investigate in vitro research 

NMR-based metabolomics using high-resolution NMR spectroscopy  

and chemometric methods which has been proven to be an important technology 

giving highly reproducible results through time and laboratories. In addition,  

this method is providing structural and quantitative information [74]. Its application 

to the cell culture has been confirmed as an efficient technique to understand the effect 

of different chemical and physical factors, gene function, and medical diagnosis.  

The NMR signals are directly proportional to the molecule concentration  

and each metabolite manifests several spectroscopic handles and gives us the ability  

to measure these signals for each metabolite [74], followed by data preprocessing 

applying wide range of statistical tools, and multivariate analysis. Moreover,  

for intracellular metabolome acquisition by 1H NMR, it require for cells count to obtain 

a reasonable and quantifiable signal should be several million as recommended [75]. 

 

4. The terminology of hypoxia, normoxia, and hyperoxia - in cell biology 
In the fifties, the term tumor hypoxia was hardly known, as the rareness  

of publications devoted to hypoxia. Start by an influencing article published by Gray 

et al, in 1953 and 1955 revealed the importance of oxygen tension on radiotherapy 

treatment, which more effective under well-oxygenated cancer cells. Meaning,  
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from the periphery and the center of each tumor, there is a falling oxygen tension 

gradient, which is measured by the degree of anoxia of the cells, not by the degree  

of hypoxia. Thereby this phenomenon got the attention of radiobiologist  

and radiotherapist communities to the importance of oxygen concentration [76,77]. 

In 1981 Dorland’s Medical Dictionary defined “hypoxia” as a reduction  

of oxygen levels, which is much lower than physiological levels, even with sufficient 

supply from blood circulation to the tissues [78]. Because of that, in arise the problem 

to recognize the difficulties of in vitro model and oxygen tension to mimic the exact 

oxygen tensions that occur in vivo [79–82].  

Furthermore, Peter Ebbesen and colleagues proposed a method to address 

technical challenges in measuring oxygen flow to cells. They recommended using 

metabolic state measurements, particularly glycolysis, which is directly influenced  

by oxygen concentration [83]. 

Moreover, the anaerobic metabolism in pathological and healthy situations 

isn’t identical. Hence to that evidence, from the medical point of view, by making  

in vivo a standard for oxygen concentration should be measured and found in normal 

body tissue during the pathological and non-pathological state as normoxia term.  

The hyperoxia term usually doesn’t exist in vivo studies because of the lack  

of atmospheric oxygen concentration of 21% within human tissues, except for some 

areas of the human body exposed to this concentration such as the middle ear site  

and skin upper layer (dermis). 

However, in vitro studies always carry out the experiments in hyperoxia. 

Therefore, using hypoxia, normoxia, and hyperoxia terminology for in vitro research 

should be classified as discriminatory factors in the medium. Besides all, in vitro cell, 

and cultivation studies should take attention to the most relevant tension oxygen  

in the culture medium since the culture medium has no perfusion of blood, which 

imitated the in vivo condition [84].  

In, the 1990s, the beginning identification of tumor hypoxia markers for cancer 

therapy on excised rodent tissue [85], and showed a positive correlation between  

the severity of human tumors and tumor cells' malignancy to hypoxia [86,87]. Many 

studies have been published since then on tumor hypoxia, but arguments still arise  

on using the term normoxia as the normal oxygen level in laboratories, it’s about  

20–21% oxygen (160 mmHg). In addition, the 20-21% oxygen concentration is a normal 



31 
 

atmospheric pressure, which is much higher in comparison to peripheral tissue 

oxygenation. For instance, the oxygen concentration at lung alveoli is about 14.5%, 

when it reaches the arterial blood is approximately 9.5%, and on arrival to the venous 

end of circulation is approx. 6.5%. Thus, the median of peripheral tissues oxygen levels 

is between (3.4% - 6.1%) [88,89].  

In addition, the term hypoxia should be observed, because there  

are differences between physiological and pathological hypoxia. For instance, a study 

of the expression of HIF1α and HIF1β from 0% to 20% oxygen revealed that 0.5% 

oxygen was the highest level of expression and 1.5–2% oxygen was the lowest,  

and significantly low above 4% oxygen (91). Thereby, the effective response to maintain 

homeostatic mechanisms by reversing to the preferred oxygen level is called 

physiological hypoxia, and its oxygen concentration range is varied depending  

on tissue type [89].  

However, pathological hypoxia is the opposite of physiological hypoxia, 

because the homeostatic mechanisms required for oxygen deprivation aren’t effective 

and can’t be reversed, that’s why pathological hypoxia positively correlated  

with tumor progression by inducing the angiogenesis mechanisms to increase  

the oxygen supply to the tumor.  

There is no absolute level of oxygen for defining pathological hypoxia 

depending on the tissue of origin. This argument allowed multiple studies for almost 

12 human tumor types carried out on 2257 patients, in comparison to their normal 

tissue measurement suggesting that the median range of oxygen concentration  

in human tumors was from 0.3% to 4.2% (2–32 mmHg), and mostly below 2%.  

Whereas were almost certain that, pathological hypoxia occurs at lower than 1% 

(7.5 mmHg). Besides, the median range of oxygen concentration in normal tissues  

was from 3.4% to 6.8% and the average was 6% [87,90,91]. 

Regarding the term hyperoxia, several studies refer to hyperoxia in vitro 

models as an anti-cancer effect and as a reversible effect of hypoxia‑induced 

radioresistance (RR) and therefore inhibit tumor growth and recover homeostasis in 

the tumor microenvironment to normoxia [92] at 85% O2 [93], some used 90% O2 [92] 

and others 60% O2 [92,94–96] on various cell lines. Other studies determined the term 

hyperoxia at 95% O2 [97,98]. Despite the anti-cancer effect of hyperoxia and different 

oxygen concentrations for this term showing, no particular laboratory standards. 
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However, since already defined terms hypoxia and normoxia by scientists  

and physiopathologist (also clinicians). Based on this, the 21% O2 for in vitro studies is 

much higher than human peripheral tissue oxygenation. Due to this fact, using 21% O2 

as normoxia as standard in vitro research models is misrepresented, and should  

be referred to as hyperoxia [99].  

 

5. References 

1. Cao, Y. Tumorigenesis as a Process of Gradual Loss of Original Cell Identity and Gain of 

Properties of Neural Precursor/Progenitor Cells. Cell & Bioscience 2017, 7, 61, 

doi:10.1186/s13578-017-0188-9. 

2. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–

674, doi:10.1016/j.cell.2011.02.013. 

3. Cancer Statistics - NCI Available online: https://www.cancer.gov/about-

cancer/understanding/statistics (accessed on 13 December 2022). 

4. Chang-Lin, J.-E.; Burke, J.A.; Peng, Q.; Lin, T.; Orilla, W.C.; Ghosn, C.R.; Zhang, K.-M.; 

Kuppermann, B.D.; Robinson, M.R.; Whitcup, S.M.; et al. Pharmacokinetics of a Sustained-

Release Dexamethasone Intravitreal Implant in Vitrectomized and Nonvitrectomized 

Eyes. Investigative Ophthalmology & Visual Science 2011, 52, 4605–4609, doi:10.1167/iovs.10-

6387. 

5. Baba, A.I.; Câtoi, C. Chapter 2 - Carcinogenesis. In CARCINOGENESIS; The Publishing 

House of the Romanian Academy, 2007. 

6. Das, S.; Kundu, M.; Jena, B.C.; Mandal, M. Chapter 25 - Causes of Cancer: Physical, 

Chemical, Biological Carcinogens, and Viruses. In Biomaterials for 3D Tumor Modeling; 

Kundu, S.C., Reis, R.L., Eds.; Materials Today; Elsevier, 2020; pp. 607–641 ISBN 978-0-12-

818128-7. 

7. Weston, A.; Harris, C.C. Multistage Carcinogenesis. Holland-Frei Cancer Medicine. 6th edition 

2003. 

8. Patel, A. Benign vs Malignant Tumors. JAMA Oncology 2020, 6, 1488, 

doi:10.1001/jamaoncol.2020.2592. 

9. Hahn, W.C.; Counter, C.M.; Lundberg, A.S.; Beijersbergen, R.L.; Brooks, M.W.; Weinberg, 

R.A. Creation of Human Tumour Cells with Defined Genetic Elements. Nature 1999, 400, 

464–468, doi:10.1038/22780. 

10. Takeshima, H.; Ushijima, T. Accumulation of Genetic and Epigenetic Alterations in Normal 

Cells and Cancer Risk. npj Precis. Onc. 2019, 3, 1–8, doi:10.1038/s41698-019-0079-0. 

11. Watson, A.Y.; Bates, R.R.; Kennedy, D. Assessment of Carcinogenicity: Generic Issues and Their 

Application to Diesel Exhaust; National Academies Press (US), 1988; 

12. Weiss, R.A. Multistage Carcinogenesis. Br J Cancer 2004, 91, 1981–1982, 

doi:10.1038/sj.bjc.6602318. 



33 
 

13. Thompson, T.C.; Southgate, J.; Kitchener, G.; Land, H. Multistage Carcinogenesis Induced 

by Ras and Myc Oncogenes in a Reconstituted Organ. Cell 1989, 56, 917–930, 

doi:10.1016/0092-8674(89)90625-9. 

14. Kulesz-Martin, M.; Ouyang, X.; Barling, A.; Gallegos, J.R.; Liu, Y.; Medler, T. Multistage 

Carcinogenesis: Cell and Animal Models. In Carcinogenesis; Elsevier Inc., 2018; Vol. 7–15, 

pp. 11–35 ISBN 978-0-08-100601-6. 

15. Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor 

Microenvironment Components: Allies of Cancer Progression. Pathol Res Pract 2020, 216, 

152729, doi:10.1016/j.prp.2019.152729. 

16. Kwon, Y.; Kim, M.; Kim, Y.; Jung, H.S.; Jeoung, D. Exosomal MicroRNAs as Mediators of 

Cellular Interactions Between Cancer Cells and Macrophages. Frontiers in Immunology 

2020, 11. 

17. Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor 

Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic 

Opportunities. Cancers 2021, 13, 2053, doi:10.3390/cancers13092053. 

18. Tsai, M.-J.; Chang, W.-A.; Huang, M.-S.; Kuo, P.-L. Tumor Microenvironment: A New 

Treatment Target for Cancer. ISRN Biochem 2014, 2014, 351959, doi:10.1155/2014/351959. 

19. Brassart-Pasco, S.; Brézillon, S.; Brassart, B.; Ramont, L.; Oudart, J.-B.; Monboisse, J.C. 

Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. 

Frontiers in Oncology 2020, 10. 

20. DeBerardinis, R.J.; Chandel, N.S. We Need to Talk about the Warburg Effect. Nat Metab 

2020, 2, 127–129, doi:10.1038/s42255-020-0172-2. 

21. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: 

The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033, 

doi:10.1126/science.1160809. 

22. Jones, W.; Bianchi, K. Aerobic Glycolysis: Beyond Proliferation. Frontiers in Immunology 

2015, 6. 

23. Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends 

Biochem Sci 2016, 41, 211–218, doi:10.1016/j.tibs.2015.12.001. 

24. Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; 

Laakso, M.; Muller, W.J.; Allen, E.L.; et al. Hexokinase 2 Is Required for Tumor Initiation 

and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer. 

Cancer Cell 2013, 24, 213–228, doi:10.1016/j.ccr.2013.06.014. 

25. Chen, P.-H.; Cai, L.; Huffman, K.; Yang, C.; Kim, J.; Faubert, B.; Boroughs, L.; Ko, B.; 

Sudderth, J.; McMillan, E.A.; et al. Metabolic Diversity in Human Non-Small Cell Lung 

Cancer Cells. Mol Cell 2019, 76, 838-851.e5, doi:10.1016/j.molcel.2019.08.028. 

26. Fan, T.W.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. 

Altered Regulation of Metabolic Pathways in Human Lung Cancer Discerned by 13C 

Stable Isotope-Resolved Metabolomics (SIRM). Molecular Cancer 2009, 8, 41, 

doi:10.1186/1476-4598-8-41. 

27. Maher, E.A.; Marin-Valencia, I.; Bachoo, R.M.; Mashimo, T.; Raisanen, J.; Hatanpaa, K.J.; 

Jindal, A.; Jeffrey, F.M.; Choi, C.; Madden, C.; et al. Metabolism of [U-13C]Glucose in 



34 
 

Human Brain Tumors in Vivo. NMR in Biomedicine 2012, 25, 1234–1244, 

doi:10.1002/nbm.2794. 

28. Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314, 

doi:10.1126/science.123.3191.309. 

29. Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 

2016, 23, 27–47, doi:10.1016/j.cmet.2015.12.006. 

30. Oliveira, G.L.; Coelho, A.R.; Marques, R.; Oliveira, P.J. Cancer Cell Metabolism: Rewiring 

the Mitochondrial Hub. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2021, 

1867, 166016, doi:10.1016/j.bbadis.2020.166016. 

31. Jang, M.; Kim, S.S.; Lee, J. Cancer Cell Metabolism: Implications for Therapeutic Targets. 

Exp Mol Med 2013, 45, e45–e45, doi:10.1038/emm.2013.85. 

32. Ackermann, T.; Tardito, S. Cell Culture Medium Formulation and Its Implications in 

Cancer Metabolism. Trends Cancer 2019, 5, 329–332, doi:10.1016/j.trecan.2019.05.004. 

33. Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The 

Cancer Metabolic Reprogramming and Immune Response. Molecular Cancer 2021, 20, 28, 

doi:10.1186/s12943-021-01316-8. 

34. Navale, A.M.; Paranjape, A.N. Glucose Transporters: Physiological and Pathological Roles. 

Biophys Rev 2016, 8, 5–9, doi:10.1007/s12551-015-0186-2. 

35. Hay, N. Reprogramming Glucose Metabolism in Cancer: Can It Be Exploited for Cancer 

Therapy? Nat Rev Cancer 2016, 16, 635–649, doi:10.1038/nrc.2016.77. 

36. Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, Glycine and One‑carbon Metabolism in 

Cancer (Review). International Journal of Oncology 2021, 58, 158–170, 

doi:10.3892/ijo.2020.5158. 

37. Possik, E.; Al-Mass, A.; Peyot, M.-L.; Ahmad, R.; Al-Mulla, F.; Madiraju, S.R.M.; Prentki, 

M. New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and 

Adipocyte Metabolism. Front Endocrinol (Lausanne) 2021, 12, 706607, 

doi:10.3389/fendo.2021.706607. 

38. DeNicola, G.M.; Cantley, L.C. Cancer’s Fuel Choice: New Flavors for a Picky Eater. Mol 

Cell 2015, 60, 514–523, doi:10.1016/j.molcel.2015.10.018. 

39. Spitz, D.R.; Sim, J.E.; Ridnour, L.A.; Galoforo, S.S.; Lee, Y.J. Glucose Deprivation-Induced 

Oxidative Stress in Human Tumor Cells. A Fundamental Defect in Metabolism? Ann N Y 

Acad Sci 2000, 899, 349–362, doi:10.1111/j.1749-6632.2000.tb06199.x. 

40. Aykin-Burns, N.; Ahmad, I.M.; Zhu, Y.; Oberley, L.W.; Spitz, D.R. INCREASED LEVELS 

OF SUPEROXIDE AND HYDROGEN PEROXIDE MEDIATE THE DIFFERENTIAL 

SUSCEPTIBILITY OF CANCER CELLS VS. NORMAL CELLS TO GLUCOSE 

DEPRIVATION. Biochem J 2009, 418, 29–37, doi:10.1042/BJ20081258. 

41. Simons, A.L.; Mattson, D.M.; Dornfeld, K.; Spitz, D.R. Glucose Deprivation-Induced 

Metabolic Oxidative Stress and Cancer Therapy. J Cancer Res Ther 2009, 5 Suppl 1, S2-6, 

doi:10.4103/0973-1482.55133. 

42. Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; 

Puigserver, P.; Brugge, J.S. Antioxidant and Oncogene Rescue of Metabolic Defects Caused 

by Loss of Matrix Attachment. Nature 2009, 461, 109–113, doi:10.1038/nature08268. 



35 
 

43. Choi, B.-H.; Coloff, J.L. The Diverse Functions of Non-Essential Amino Acids in Cancer. 

Cancers 2019, 11, 675, doi:10.3390/cancers11050675. 

44. Alam, M.M.; Lal, S.; FitzGerald, K.E.; Zhang, L. A Holistic View of Cancer Bioenergetics: 

Mitochondrial Function and Respiration Play Fundamental Roles in the Development and 

Progression of Diverse Tumors. Clinical and Translational Medicine 2016, 5, e3, 

doi:10.1186/s40169-016-0082-9. 

45. Wise, D.R.; Ward, P.S.; Shay, J.E.S.; Cross, J.R.; Gruber, J.J.; Sachdeva, U.M.; Platt, J.M.; 

DeMatteo, R.G.; Simon, M.C.; Thompson, C.B. Hypoxia Promotes Isocitrate 

Dehydrogenase-Dependent Carboxylation of α-Ketoglutarate to Citrate to Support Cell 

Growth and Viability. Proceedings of the National Academy of Sciences 2011, 108, 19611–19616, 

doi:10.1073/pnas.1117773108. 

46. Mullen, A.R.; Wheaton, W.W.; Jin, E.S.; Chen, P.-H.; Sullivan, L.B.; Cheng, T.; Yang, Y.; 

Linehan, W.M.; Chandel, N.S.; DeBerardinis, R.J. Reductive Carboxylation Supports 

Growth in Tumour Cells with Defective Mitochondria. Nature 2012, 481, 385–388, 

doi:10.1038/nature10642. 

47. Metallo, C.M.; Gameiro, P.A.; Bell, E.L.; Mattaini, K.R.; Yang, J.; Hiller, K.; Jewell, C.M.; 

Johnson, Z.R.; Irvine, D.J.; Guarente, L.; et al. Reductive Glutamine Metabolism by IDH1 

Mediates Lipogenesis under Hypoxia. Nature 2012, 481, 380–384, doi:10.1038/nature10602. 

48. Jiang, J.; Srivastava, S.; Zhang, J. Starve Cancer Cells of Glutamine: Break the Spell or Make 

a Hungry Monster? Cancers 2019, 11, 804, doi:10.3390/cancers11060804. 

49. Cai, W.-F.; Zhang, C.; Wu, Y.-Q.; Zhuang, G.; Ye, Z.; Zhang, C.-S.; Lin, S.-C. Glutaminase 

GLS1 Senses Glutamine Availability in a Non-Enzymatic Manner Triggering 

Mitochondrial Fusion. Cell Res 2018, 28, 865–867, doi:10.1038/s41422-018-0057-z. 

50. Labuschagne, C.F.; van den Broek, N.J.F.; Mackay, G.M.; Vousden, K.H.; Maddocks, O.D.K. 

Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer 

Cells. Cell Rep 2014, 7, 1248–1258, doi:10.1016/j.celrep.2014.04.045. 

51. Maddocks, O.D.K.; Labuschagne, C.F.; Adams, P.D.; Vousden, K.H. Serine Metabolism 

Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP 

Synthesis in Cancer Cells. Mol Cell 2016, 61, 210–221, doi:10.1016/j.molcel.2015.12.014. 

52. Maddocks, O.D.K.; Berkers, C.R.; Mason, S.M.; Zheng, L.; Blyth, K.; Gottlieb, E.; Vousden, 

K.H. Serine Starvation Induces Stress and P53-Dependent Metabolic Remodelling in 

Cancer Cells. Nature 2013, 493, 542–546, doi:10.1038/nature11743. 

53. DeBerardinis, R.J. Serine Metabolism: Some Tumors Take the Road Less Traveled. Cell 

Metabolism 2011, 14, 285–286, doi:10.1016/j.cmet.2011.08.004. 

54. Possemato, R.; Marks, K.M.; Shaul, Y.D.; Pacold, M.E.; Kim, D.; Birsoy, K.; Sethumadhavan, 

S.; Woo, H.-K.; Jang, H.G.; Jha, A.K.; et al. Functional Genomics Reveal That the Serine 

Synthesis Pathway Is Essential in Breast Cancer. Nature 2011, 476, 346–350, 

doi:10.1038/nature10350. 

55. Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and Glycine 

Metabolism in Cancer. Trends Biochem Sci 2014, 39, 191–198, doi:10.1016/j.tibs.2014.02.004. 

56. Samanta, D.; Park, Y.; Andrabi, S.A.; Shelton, L.M.; Gilkes, D.M.; Semenza, G.L. PHGDH 

Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell 



36 
 

Maintenance, and Lung Metastasis. Cancer Research 2016, 76, 4430–4442, doi:10.1158/0008-

5472.CAN-16-0530. 

57. Ou, Y.; Wang, S.-J.; Jiang, L.; Zheng, B.; Gu, W. P53 Protein-Mediated Regulation of 

Phosphoglycerate Dehydrogenase (PHGDH) Is Crucial for the Apoptotic Response upon 

Serine Starvation. J Biol Chem 2015, 290, 457–466, doi:10.1074/jbc.M114.616359. 

58. Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp Mol 

Med 2020, 52, 1496–1516, doi:10.1038/s12276-020-00504-8. 

59. Yoo, H.C.; Park, S.J.; Nam, M.; Kang, J.; Kim, K.; Yeo, J.H.; Kim, J.-K.; Heo, Y.; Lee, H.S.; 

Lee, M.Y.; et al. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for 

Metabolic Reprogramming in Cancer Cells. Cell Metab 2020, 31, 267-283.e12, 

doi:10.1016/j.cmet.2019.11.020. 

60. Gorgoglione, R.; Impedovo, V.; Riley, C.L.; Fratantonio, D.; Tiziani, S.; Palmieri, L.; Dolce, 

V.; Fiermonte, G. Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of 

Mitochondrial Transporters and New Therapeutic Perspectives. Cancers 2022, 14, 245, 

doi:10.3390/cancers14010245. 

61. Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; 

Papagiannakopoulos, T.; Molina, H.; Snuderl, M.; Lewis, C.A.; et al. Aspartate Is a Limiting 

Metabolite for Cancer Cell Proliferation under Hypoxia and in Tumours. Nat Cell Biol 2018, 

20, 775–781, doi:10.1038/s41556-018-0118-z. 

62. Sullivan, L.B.; Luengo, A.; Danai, L.V.; Bush, L.N.; Diehl, F.F.; Hosios, A.M.; Lau, A.N.; 

Elmiligy, S.; Malstrom, S.; Lewis, C.A.; et al. Aspartate Is an Endogenous Metabolic 

Limitation for Tumour Growth. Nat Cell Biol 2018, 20, 782–788, doi:10.1038/s41556-018-

0125-0. 

63. Neinast, M.D.; Jang, C.; Hui, S.; Murashige, D.S.; Chu, Q.; Morscher, R.J.; Li, X.; Zhan, L.; 

White, E.; Anthony, T.G.; et al. Quantitative Analysis of the Whole-Body Metabolic Fate of 

Branched-Chain Amino Acids. Cell Metab 2019, 29, 417-429.e4, 

doi:10.1016/j.cmet.2018.10.013. 

64. Puris, E.; Gynther, M.; Auriola, S.; Huttunen, K.M. L-Type Amino Acid Transporter 1 as a 

Target for Drug Delivery. Pharm Res 2020, 37, 88, doi:10.1007/s11095-020-02826-8. 

65. Cosco, J.; Scalise, M.; Colas, C.; Galluccio, M.; Martini, R.; Rovella, F.; Mazza, T.; Ecker, G.F.; 

Indiveri, C. ATP Modulates SLC7A5 (LAT1) Synergistically with Cholesterol. Sci Rep 2020, 

10, 16738, doi:10.1038/s41598-020-73757-y. 

66. Yudkoff, M. Brain Metabolism of Branched-Chain Amino Acids. Glia 1997, 21, 92–98, 

doi:10.1002/(SICI)1098-1136(199709)21:1<92::AID-GLIA10>3.0.CO;2-W. 

67. Raffel, S.; Falcone, M.; Kneisel, N.; Hansson, J.; Wang, W.; Lutz, C.; Bullinger, L.; Poschet, 

G.; Nonnenmacher, Y.; Barnert, A.; et al. BCAT1 Restricts ΑKG Levels in AML Stem Cells 

Leading to IDHmut-like DNA Hypermethylation. Nature 2017, 551, 384–388, 

doi:10.1038/nature24294. 

68. Lee, J.H.; Cho, Y.; Kim, J.H.; Kim, J.; Nam, H.Y.; Kim, S.W.; Son, J. Branched-Chain Amino 

Acids Sustain Pancreatic Cancer Growth by Regulating Lipid Metabolism. Exp Mol Med 

2019, 51, 1–11, doi:10.1038/s12276-019-0350-z. 



37 
 

69. Zhang, B.; Chen, Y.; Shi, X.; Zhou, M.; Bao, L.; Hatanpaa, K.J.; Patel, T.; DeBerardinis, R.J.; 

Wang, Y.; Luo, W. Regulation of Branched-Chain Amino Acid Metabolism by Hypoxia-

Inducible Factor in Glioblastoma. Cell. Mol. Life Sci. 2021, 78, 195–206, doi:10.1007/s00018-

020-03483-1. 

70. Manchester, M.; Anand, A. Chapter Two - Metabolomics: Strategies to Define the Role of 

Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research; Kielian, M., 

Mettenleiter, T.C., Roossinck, M.J., Eds.; Academic Press, 2017; Vol. 98, pp. 57–81. 

71. Moreno-Torres, M.; García-Llorens, G.; Moro, E.; Méndez, R.; Quintás, G.; Castell, J.V. 

Factors That Influence the Quality of Metabolomics Data in in Vitro Cell Toxicity Studies: 

A Systematic Survey. Sci Rep 2021, 11, 22119, doi:10.1038/s41598-021-01652-1. 

72. Cuperlović-Culf, M.; Barnett, D.A.; Culf, A.S.; Chute, I. Cell Culture Metabolomics: 

Applications and Future Directions. Drug Discov Today 2010, 15, 610–621, 

doi:10.1016/j.drudis.2010.06.012. 

73. Jaroch, K.; Modrakowska, P.; Bojko, B. Glioblastoma Metabolomics—In Vitro Studies. 

Metabolites 2021, 11, 315, doi:10.3390/metabo11050315. 

74. Keun, H.C.; Ebbels, T.M.D.; Antti, H.; Bollard, M.E.; Beckonert, O.; Schlotterbeck, G.; Senn, 

H.; Niederhauser, U.; Holmes, E.; Lindon, J.C.; et al. Analytical Reproducibility in 1H 

NMR-Based Metabonomic Urinalysis. Chem. Res. Toxicol. 2002, 15, 1380–1386, 

doi:10.1021/tx0255774. 

75. Aranibar, N.; Reily, M.D. NMR Methods for Metabolomics of Mammalian Cell Culture 

Bioreactors. In Animal Cell Biotechnology: Methods and Protocols; Pörtner, R., Ed.; Methods 

in Molecular Biology; Humana Press: Totowa, NJ, 2014; pp. 223–236 ISBN 978-1-62703-

733-4. 

76. Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C. The Concentration of Oxygen 

Dissolved in Tissues at the Time of Irradiation as a Factor in Radiotherapy. Br J Radiol 1953, 

26, 638–648, doi:10.1259/0007-1285-26-312-638. 

77. Thomlinson, R.H.; Gray, L.H. The Histological Structure of Some Human Lung Cancers 

and the Possible Implications for Radiotherapy. Br J Cancer 1955, 9, 539–549, 

doi:10.1038/bjc.1955.55. 

78. Friel, J.P. Dorland’s Illustrated Medical Dictionary (26th Edition); 26th edition.; Saunders, W B 

Co, 1974; 

79. Amellem, O.; Sandvik, J.A.; Stokke, T.; Pettersen, E.O. The Retinoblastoma Protein-

Associated Cell Cycle Arrest in S-Phase under Moderate Hypoxia Is Disrupted in Cells 

Expressing HPV18 E7 Oncoprotein. Br J Cancer 1998, 77, 862–872, doi:10.1038/bjc.1998.143. 

80. Froese, G. The Respiration of Ascites Tumour Cells at Low Oxygen Concentrations. Biochim 

Biophys Acta 1962, 57, 509–519, doi:10.1016/0006-3002(62)91158-7. 

81. Enholm, B.; Paavonen, K.; Ristimäki, A.; Kumar, V.; Gunji, Y.; Klefstrom, J.; Kivinen, L.; 

Laiho, M.; Olofsson, B.; Joukov, V.; et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-

1 MRNA Regulation by Serum, Growth Factors, Oncoproteins and Hypoxia. Oncogene 

1997, 14, 2475–2483, doi:10.1038/sj.onc.1201090. 



38 
 

82. Sonnewald, U.; Wang, A.Y.; Schousboe, A.; Erikson, R.; Skottner, A. New Aspects of Lactate 

Metabolism: IGF-I and Insulin Regulate Mitochondrial Function in Cultured Brain Cells 

during Normoxia and Hypoxia. Dev Neurosci 1996, 18, 443–448, doi:10.1159/000111439. 

83. Ebbesen, P.; Toth, F.D.; Villadsen, J.A.; Nørskov-Lauritsen, N. In Vitro Interferon and Virus 

Production at in Vivo Physiologic Oxygen Tensions. In Vivo 1991, 5, 355–358. 

84. Ebbesen, E.O.P., Juliana Denekamp, Bo Littbrand, Jorma Keski-Oja, Arne Schousboe, 

Ursula Sonnewald, Øystein Åmellem, Vladimir Zachar, Peter Hypoxia, Normoxia and 

Hyperoxia: Terminology for Medical In Vitro Cell Biology. Acta Oncologica 2000, 39, 247–

248, doi:10.1080/028418600430888. 

85. Tatum, J.L. Hypoxia: Importance in Tumor Biology, Noninvasive Measurement by 

Imaging, and Value of Its Measurement in the Management of Cancer Therapy. 

International Journal of Radiation Biology 2006, 82, 699–757, doi:10.1080/09553000601002324. 

86. Jiang, J.; Tang, Y.; Liang, X. EMT: A New Vision of Hypoxia Promoting Cancer Progression. 

Cancer Biology & Therapy 2011, 11, 714–723, doi:10.4161/cbt.11.8.15274. 

87. Vaupel, P.; Höckel, M.; Mayer, A. Detection and Characterization of Tumor Hypoxia Using 

PO2 Histography. Antioxidants & Redox Signaling 2007, 9, 1221–1236, 

doi:10.1089/ars.2007.1628. 

88. Carreau, A.; El Hafny-Rahbi, B.; Matejuk, A.; Grillon, C.; Kieda, C. Why Is the Partial 

Oxygen Pressure of Human Tissues a Crucial Parameter? Small Molecules and Hypoxia. J 

Cell Mol Med 2011, 15, 1239–1253, doi:10.1111/j.1582-4934.2011.01258.x. 

89. Höckel, M.; Vaupel, P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and 

Molecular Aspects. J Natl Cancer Inst 2001, 93, 266–276, doi:10.1093/jnci/93.4.266. 

90. Jiang, B.H.; Semenza, G.L.; Bauer, C.; Marti, H.H. Hypoxia-Inducible Factor 1 Levels Vary 

Exponentially over a Physiologically Relevant Range of O2 Tension. American Journal of 

Physiology-Cell Physiology 1996, 271, C1172–C1180, doi:10.1152/ajpcell.1996.271.4.C1172. 

91. McKeown, S.R. Defining Normoxia, Physoxia and Hypoxia in Tumours—Implications for 

Treatment Response. BJR 2014, 87, 20130676, doi:10.1259/bjr.20130676. 

92. Joo, H.; Mo, J.Y.; Kim, I.K.; Kang, H.H.; Lee, S.H. P3.01-041 Anti-Cancer Effect of Hyperoxia 

on Human Lung Cancer Cells through Oxidative Stress Mediated ERK Signaling: Topic: 

Functional Biology in Lung Cancer. Journal of Thoracic Oncology 2017, 12, S1144–S1145, 

doi:10.1016/j.jtho.2016.11.1607. 

93. Kim, S.W.; Kim, I.K.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Kim, J.W.; Lee, S.H. Normobaric 

Hyperoxia Inhibits the Progression of Lung Cancer by Inducing Apoptosis. Exp Biol Med 

(Maywood) 2018, 243, 739–748, doi:10.1177/1535370218774737. 

94. Sun, S.; Lee, D.; Lee, N.P.; Pu, J.K.S.; Wong, S.T.S.; Lui, W.M.; Fung, C.F.; Leung, G.K.K. 

Hyperoxia Resensitizes Chemoresistant Human Glioblastoma Cells to Temozolomide. J 

Neurooncol 2012, 109, 467–475, doi:10.1007/s11060-012-0923-3. 

95. Kim, S.W.; Kim, I.K.; Lee, S.H. Role of Hyperoxic Treatment in Cancer. Exp Biol Med 

(Maywood) 2020, 245, 851–860, doi:10.1177/1535370220921547. 

96. Hatfield, S.M.; Kjaergaard, J.; Lukashev, D.; Belikoff, B.; Schreiber, T.H.; Sethumadhavan, 

S.; Abbott, R.; Philbrook, P.; Thayer, M.; Shujia, D.; et al. Systemic Oxygenation Weakens 

the Hypoxia and Hypoxia Inducible Factor 1α-Dependent and Extracellular Adenosine-



39 
 

Mediated Tumor Protection. J Mol Med (Berl) 2014, 92, 1283–1292, doi:10.1007/s00109-014-

1189-3. 

97. Dong, D.; Fu, Y.; Chen, F.; Zhang, J.; Jia, H.; Li, J.; Wang, H.; Wen, J. Hyperoxia Sensitizes 

Hypoxic HeLa Cells to Ionizing Radiation by Downregulating HIF‑1&alpha; and VEGF 

Expression. Molecular Medicine Reports 2021, 23, 1–1, doi:10.3892/mmr.2020.11700. 

98. Wang, Y.; Yin, K.; Tian, J.; Xia, X.; Ma, J.; Tang, X.; Xu, H.; Wang, S. Granulocytic Myeloid-

Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through 

Exosomal S100A9. Adv Sci (Weinh) 2019, 6, 1901278, doi:10.1002/advs.201901278. 

99. Osrodek, M.; Hartman, M.L.; Czyz, M. Physiologically Relevant Oxygen Concentration (6% 

O2) as an Important Component of the Microenvironment Impacting Melanoma 

Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. International 

Journal of Molecular Sciences 2019, 20, 4203, doi:10.3390/ijms20174203. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

  

 

 

CHAPTER 2 
 

 

 

 

 

 

 

 

Quantitative 1H NMR analysis of intracellular and 

extracellular metabolome of HT1080 cell line under 

hypoxia, normoxia and hyperoxia 

 



41 
 

Contents 

 

 

 

1 Introduction 42 

2 Materials and Methods 43 

 2.1. Evaluation cell culturing process and experimental design 43 

 2.2. Cell Culturing medium (MEM) preparation 43 

 2.3. Culture media extraction 44 

 2.4. Cells extraction 44 

 2.5. Cell growth measurement   45 

 2.6. NMR data acquisition 46 

 2.7. Metabolites identification  46 

 2.8. Processing for data analysis 46 

 2.9. Statistical Analysis  47 

 2.9.1. Univariate Analysis 47 

 2.9.2. Multivariate Data Analysis (MVA) 47 

3 Results   48 

 3.1. The experimental methodology evaluation 48 

 3.2.  Effect of oxygen concentration on cells growth 48 

 3.3.  Time-dependent effect on HT1080 cell line metabolome at various oxygen concentrations  49 

  3.3.1. Intracellular results 49 

   3.3.1.1. 
The intracellular metabolic profile changes at hypoxia, normoxia and 

hyperoxia in function of oxygen concentrations 
49 

   3.3.1.2. 
The sensitivity of intracellular metabolome to hypoxia, normoxia and 

hyperoxia in function of time intervals 
63 

  3.3.2. Extracellular results 74 

   3.3.2.1. 
The extracellular metabolic profile changes at hypoxia 1%, normoxia 6% and 

hyperoxia 21% in function of oxygen concentrations 

 

76 

   3.3.2.2. 
The metabolic sensitivity of the extracellular metabolome to various oxygen 

concentrations in the time intervals function  
87 

4 Discussion 99 

 4.1. The metabolic changes of intracellular and extracellular metabolome at hypoxia, normoxia 

and hyperoxia through cultivation time 
99 

 4.2 The sensitivity of the HT1080 cell’s metabolome to hypoxia, normoxia and hyperoxia at 

each interval time point 
106 

5 Conclusion 110 

5 References 111 



42 
 

1. Introduction 

The role of oxygen molecule (O2) is critical for all living organisms and plays 

a key in maintaining the bioenergetics system of the cells. Besides,  and integrates  

with different inorganic and organic reactions for aerobic metabolism in cancer cells 

and has been massively explained by many studies. An extreme level of oxygen well 

known as hyperoxia (higher than normoxia) and hypoxia (lower than normoxia) both 

are stress promoters within the biological system. Thereby, the tumor  

has heterogeneous tissues and is divided into three types of tissue regions  

due to oxygen concentration exposure: normoxic, hypoxic, and necrotic regions.  

In the hypoxic region, cells reprogram their metabolism to preserve cell sustainability 

and diverge other regions within tumor tissue and, off course significantly from normal 

tissues [1]. 

Concluding that the hypoxic cells are randomly distributed even within  

the hypoxic region due to tumor vasculature [2–4]. It had been considered by many 

studies that oxygen concentration is essential and correlates to the final phenotype  

of cultivated cancer cells. In in vitro culture there is a range of settings that attempt  

to mimic tumor microenvironments such as 3D-culture and co-cultures. However, 

without considering the importance of overall incubator oxygen concentration  

and its impact on oxygen distribution within the tumor. Most recent study showed  

the variation of studies results depends on oxygen concentration.  

Highlighting that 20.9% O2 is atmospheric oxygen concentration which  

was for decades usually used for in vitro studies, is much higher than in human tissue 

and should be referred to as hyperoxia [5]. Shows that the physiological oxygen 

concentration corresponding to human peripheral tissue 6% O2 should be defined  

as normoxia and the level of oxygen in normal tissue and tumor at pathological 

hypoxia (partial pressure of less than 8 mmHg 1% O2) [6]. Thereby the metabolic 

perturbations of hypoxic cells have been studied and suggested the ability to identify 

hypoxia-related metabolites and their specific pathways by using 1H NMR –based 

metabolomics method [7] as a precious tool due to its robustness, reproducibility,  

non-destructive sample measurements, and the possibility to quantify concentration 

[8].  
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In this study, we conducted an in vitro culture of HT1080 (Fibrosarcoma) cell 

line at different oxygen concentrations at 1% (hypoxia), 6% (normoxia), and 20.9% 

(hyperoxia) [6,9] to monitor metabolic profiles of intracellular and extracellular  

and compare the different oxygen concentrations during time intervals (12h, 24h,  

and 36h) by 1H NMR spectroscopy to verify metabolome alterations according  

to conditions. 

 

2. Materials and Methods 

2.1.Evaluation cell culturing process and experimental design  

To evaluate the number of cells number, media volume and incubation time. 

We have cultivated HT1080 cells line in T 75 cm2 tissue culture flasks with at a density 

of 1 x107 cells per flask with 10-12 mL of MEM media for 48h and change media each 

24h. We evaluate the cells confluence by inverted microscope (Leica DMi1, Wetzlar, 

Germany) and for cell growth, we counted the cells by a hemocytometer (Brand, 

Wertheim, Germany). The next step was to evaluate the optimal cells density  

for 1H NMR reasonable detection, therefore, we used range of cells number with 4 x 

106, 5 x 106, 7 x 106 and 1 x 107 respectively.  

 

2.2.Cell Culturing medium (MEM) preparation  

The HT1080 (human fibrosarcoma cell line) was purchased from American 

Type Culture ((ATCC® CCL-121™). Cells were kept for 72 h in T 75 cm2 tissue culture 

flasks, in particular MEM culture medium. All the cells were used within the first 10 

passages from unfreezing. The experiments start first by harvesting the number of cells 

required for all experiments. The cells were cultivated in Minimum Essential Medium 

Eagle (MEM) culture medium (Sigma Life Science, Sigma-Aldrich, Gillingham, UK) 

with 10% fetal bovine serum (FBS) (Biowest, origin South America, Riverside, MO, 

USA), 1% penicillin/streptomycin solution (HyClone, GE Healthcare Life Sciences, 

Wien, Austria), 1% L-glutamine solution (Trypsin-EDTA solution, Sigma-Aldrich, SL, 

USA), 1% MEM Non-essential Amino Acid Solution (100x) (Sigma-Aldrich, SL, USA). 

The cells were seeded in 75 cm2 flasks at a density of 1 x107 cells per plate. For each 

plate, 10 mL of media was used. The cell culture was incubated in different O2 

concentrations, For hypoxia 1% and normoxia 6% O2 in CO2 –incubator with O2 control 
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(Binder, Tuttlingen, Germany) 5% CO2 conditions at 37 °C, and the time interval  

was 12h, 24h and 36h in triplicate and in separate plates. For hyperoxia 20.9%  

was with CO2 –incubator (Binder, Tuttlingen, Germany) under 5% CO2 conditions  

at 37 °C and 80% humidity. All experiment was conducted without any change  

of medium during 36h of incubation.  

 

2.3.Culture medium extraction  

Each time interval point was collected as 1 mL from each culturing flask  

and immediately stored at −80 °C. At the beginning of the analysis the medium  

was thawed out at room temperature and vortexed. Transfer 400 μL medium  

from each sample to a new Eppendorf tube with methanol 1.2 mL (LC-MS grade, 

Merck, Darmstadt, Germany). The mixture of medium-methanol was shaken for 10 

min at 30 Hz (Tissiulyzer LT, Qiagen, Germantown, MD, USA), then incubated at −20 

°C for 20 min and centrifuged for 30 min at 4 °C, 12000 rpm. Supernatant in 1 mL  

was transferred to a new Eppendorf tube and evaporated to dryness under a vacuum 

centrifuge (JWElectronic WP-03, Warsaw, Poland) at 40 °C, 1405 rpm.  

After evaporation, the samples were resuspended in 600 μL PBS buffer (pH, 7.3, 20% 

D2O, 3mM TSP). Finally, 550 μL was transferred to an NMR cuvette (5 mm, SP type, 

ARMAR Chemicals, Döttingen, Switzerland). Prepared samples were stored at 4 °C 

until NMR spectra acquisition. 

 

2.4.Cells extraction 

After we reached 85-90% confluence, the medium was removed and the cells 

were washed with PBS (Phosphate Buffered Saline, Sigma-Aldrich, SL, USA).  

After that, the cells were deattached by adding 5 mL of trypsin-EDTA (Trypsin-EDTA 

solution, Sigma-Aldrich, SL, USA), and incubated for 5 min at 5% CO2 conditions at 37 

°C. Cells suspension was centrifuged for 5 min at 21 °C, 1940 rpm. The supernatant 

was discarded and the cell pellet was washed with PB (Phosphate buffered saline, 

Sigma-Aldrich, SL, USA), and centrifuged once again. Finally, the supernatant  

was removed and the cells were kept at −80 °C before extraction. The cell pellet  

was thawed at room temperature 25 °C and, the pallet was mixed with 1.5 mL of cold 

methanol (LC-MS grade, Merck, Darmstadt, Germany) together with 7mm stainless 
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steel beads (Qiagen GmbH, Hilden, Germany), and was homogenized for 10 min at 30 

Hz (Tissiulyzer LT, Qiagen, Germantown, MD, USA) than incubated at −20 °C for 20 

min, then the samples were centrifuged for 30 min at 4 °C, 12000 rpm. 1mL of 

Supernatant was transferred to a new Eppendorf tube and evaporated the samples to 

dryness under vacuum centrifuge (JWElectronic WP-03, Warsaw, Poland) at 40 °C, 

1500 rpm. After evaporation the samples were kept at -80 °C until NMR analysis. 

Evaporated samples were thawed at room temperature 25 °C, and re-suspended in 600 

μL PBS buffer (pH, 7.4, 20% D2O, 0.33 mM of TSP). Finally, 550 μL was transferred  

to an NMR tube (5 mm, SP type, ARMAR Chemicals, Döttingen, Switzerland).  

The prepared samples were stored at 4 °C until NMR spectra acquisition. 

 

2.5.Cells growth measurement 

The proliferation was conducted separately, HT1080 cell line were plated  

into a 6-wells plate at a cell density of 1 x 106 cells per well. The plates were cultivated 

in 1% hypoxia, 6% normoxia and 20.9% hyperoxia, for 12h, 24h, and 36h in CO2 –

incubator (Binder, Tuttlingen, Germany) under 5% CO2 conditions at 37 °C and 80% 

humidity., For cell viability, the cells were first trypsinized and then stained with 0.4% 

Trypan Blue (Sigma, USA) in PBS for ~ 3 min at room temperature then counted  

by a hemocytometer (Brand, Wertheim, Germany). The growth curve was plotted.  

The population doubling time and growth rate were calculated during the exponential 

growth phase of the cells using the equations:  

1. Cell doubling time (h): 

                    Td= (𝑇2 − 𝑇1) .
ln(2)

ln (
𝑞2

𝑞1
)
 

2. Growth rate cells (h): 

                    gr = 
ln(

𝑞2

𝑞1
)

𝛥𝑡
  

Td = Doubling period (time it takes for object to double in number) 

gr = Growth rate 

(T2-T1) or Δt = Duration time at the exponential growth. 

q2 = the number of cells at time T2. 

q1 = the number of cells at time T1. 
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2.6. NMR data acquisition  

The 1H NMR spectra of cells and post-cultured media samples were recorded 

at 300 K using the Avance II spectrometer (Bruker, GmBH, Bremen, Germany).  

The proton operation frequency was set at 600.58 MHz. The 1D 1H NMR spectra  

were recorded using a CPMG pulse sequence with water presaturation (cpmgpr1d  

in Bruker notation). For each sample, the spectra parameters were set respectively, 

width,20.01 ppm; 128 scans; spin-echo delay of 400 μs; 80 loops; time domain of 64k, 

the acquisition time of 2.73 s, and a relaxation delay of 3.5s. 

 

2.7. Metabolites Identification NMR  

The identification of resonance signals was obtained by assignments 

published in the literature, Chenomx software (v 8.5 Chenomx Inc., Edmonton, 

Canada), and online database Biological Magnetic Resonance Data Bank [10],  

and Human Metabolome Database [11]. For the intracellular metabolome  

36 metabolites were identified. Fig. S1 and for extracellular metabolome 40 metabolites. 

 

2.8. Processing for Data Analysis  

The spectra were manually phased, then baseline-corrected with MestReNova 

software (Mestrelab Research v 14.1.1), and referenced to the TSP signal group  

(δ = 0.000 ppm) for both types of samples. The spectra prior were normalized  

to the constant sum of the TSP resonance signal. The signals of water were removed 

from the analysis. The icoshift algorithm and correlation optimized warping algorithm 

(COW) (if needed) were used for the alignment of resonance signals both implemented 

in MATLAB (v R2014a, MathWorks Inc., Natick, MA, USA) [12,13]. The sum of data 

points of the overlapping and non-overlapping resonances was obtained  

for calculation of the relative intensity of identified metabolites resonance signals  

for intracellular, however, for extracellular, the data matrix was calculated individually 

for each spectra to obtain the relative intensity of NMR measured metabolites.  

Before statistical analysis the relative intensity values of identified metabolites  

were normalized to the respective cells number that was determined  

by each incubation time point after 12h, 24h, and 36h at each oxygen concentration 

hypoxia 1%, normoxia 6% and hyperoxia 20.9%. Finally, quantified relative intensity 
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of post-culture media extracts and cells extracts for further analysis were prepared  

as separate data matrices.  

 

2.9. Statistical Analysis  

2.9.1 Univariate Analysis 

The univariate analysis was calculated by using Statistica Software v.13  

on relative intensity values of assigned intracellular and extracellular metabolites 

datasets with respect to the interval time points (12h, 24h and 36h) at (hypoxia 1%, 

normoxia 6%, and hyperoxia 21%). Multiple comparisons based on incubation time 

and conditions were tested by one-way ANOVA, Tukey’s multiple-comparison 

posttest and multiplicity adjusted p-value was calculated to account for multiple 

comparisons with family-wise significance and confidence level at α = 0.05 (95% 

confidence interval). The boxplots were obtained by Rstudio (Rstudio Ver.R 3.0.1,Inc., 

Boston, NA, USA) based on triplicates for each condition (1% hypoxia, 6% normoxia, 

and 21% hyperoxia) during interval incubation time (12h, 24h, and 36h)  

with and without control samples. 

 

2.9.2 Multivariate Data Analysis (MVA)  

The multivariate data analysis was performed using SIMCA software (Ver. 

17.0, Sartorius, Göttingen, Germany). The relative intensity values of assigned 

intracellular and extracellular metabolites were prepared as separate data matrices.  

A priori multivariate analysis variables were UV scaled and sample order  

was randomized. The MVA was divided into two parts unsupervised exploratory 

analysis and supervised regression analysis. The Principal Component Analysis (PCA) 

was used to show the overall clustering of data and determine potential outliers.  

The partial least squares regression model (PLS-R) with X block containing metabolites 

relative intensity and Y -block as incubation time (12h, 24h and 36h) at hypoxia 1%, 

normoxia 6% and hyperoxia 21% to construct a linear model and predict the model's 

parameters, such as the goodness-of-fit parameter R2 which, used to evaluate  

the quality of the model together with the predictive validation parameter Q2.  

The most important metabolites identified by the PLS-R model were selected 

based on variable importance in projection (VIP) score above 1.00. The analysis  

of variance of cross-validated residuals (CV-ANOVA) for the partial least squares 
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regression model (PLS-R) used a significance level at alpha= 0.05 to assess model fit 

quality. 

 

3. Results 

3.1. The experimental methodology evaluation 

The results showed that, the cells were growing healthy with maximum 

confluence up to 95% and viability higher than 97% with all conditions after 48h  

with change the media each 24h. We obtained between 1.6 x 107 - 1.8 x 107 cells/flask  

and allowed use to harvest all cells number required for whole experiments. Thereafter, 

we established the cultivation cells number start from 1 x 107 and volume  

of the medium up to 10 mL. Moreover, the cultivation time points was evaluated  

after 48h with changing the media every 24h. However, we have decided to cultivate 

the cells for period of time until 36h since will not change the medium during 

experiments to describe the starvation process and the mechanisms of metabolic 

reprogramming in HT1080 cells under conditions (hypoxia 1%, normoxia 6%  

and hyperoxia 21%) and incubation time points (12h, 24h and 36h) and minimizing  

the variations this analysis.  

Furthermore, after we used range of cells number to determine NMR 

sensitivity, the results showed that, the most optimal cells number that deliver 

reasonable spectrum for quantification was 1 x 107 cells. This evaluation  

was established for all my thesis experiments. 

 

3.2. Effect of Oxygen Concentration on Cells growth 

Our direct counting assay revealed variations in the growth of HT1080 cells 

under different oxygen conditions: hypoxia, normoxia, and hyperoxia. These growth 

differences are illustrated in Figure 1. We observed that under hypoxia (1% O2) during 

a 12h incubation, the cells entered an exponential growth phase, with a population-

doubling time (PDT) of 36.37h and a growth rate of 0.019 cell per hour. In contrast, 

under normoxia (6% O2) for 24h, the PDT was 38 hours and the growth rate was 0.018 

cell per hour. Lastly, under hyperoxia (21% O2) for 24 hours, the PDT was 27.39 hours 

and the growth rate was 0.025 cell per hour. 
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Figure 1. The HT1080 cells proliferation results for studied time intervals (12h, 24h and 36h)  

for different oxygen concentration (hypoxia 1%, normoxia 6% and hyperoxia 20.9%) The line 

points error bars was obtained from standard error of the mean (SEM). Red line— hypoxia 1%; 

Green line — normoxia 6%; Blue line—hyperoxia 21%.  

 

3.3.Time-dependent effect on HT1080 cell line metabolome at various 

oxygen concentrations  

3.3.1. Intracellular results 

3.3.1.1.The intracellular metabolic profile changes at hypoxia, normoxia 

and hyperoxia in function of oxygen concentrations  

For a sample set of a total 9 samples from cells extraction, for each condition 

(1%, 6% and 21%), we conducted 1H NMR-based metabolome analysis and 35 

metabolites were successfully assigned in cells extraction respectively (Figure 2, Table 

1).  

 

 

 

 

 

 

 

 

 



50 
 

 

 

 

Figure 2. The representative 1H NMR spectrum obtained from cells extracts of HT1080. (a) Full 
1H-NMR spectrum from δ 5.0 to δ 9.5; (b) Enlarged spectrum from δ 9.5 to δ 6.5; (c) Enlarged 

spectrum from δ 5.0 to δ 2.7; (d) Enlarged spectrum from δ 2.7 to δ 0.5. The metabolites  

were identified from 1- 35 as mentioned from Table 1 respectively.  

 

Table 1. The chemical shifts and signal multiplicity of HT1080 cells extract metabolome 

identified by 1H NMR spectroscopy. 

No Metabolites 
 Peak 

Assignments 
Peak Centers (ppm) HMDB ID 

1 AMP s 8.581, s (8.258) HMDB0000045 

2 NAD+ 
s 8.49, d(9.127), d(8.827), s 

(9.321), m(8.167) 
HMDB0000902 

3 IMP s 8.555, s (8.222) HMDB0000175 

4 Formate s 8.44 HMDB0000142 

5 Hypoxanthine s 8.201, s (8.182) HMDB0000157 

6 Phenylalanine m m (7.419), m(7.367), 7.320 HMDB0000159 

7 Tyrosine m 7.182, m (6.890) HMDB0000158 

(a) (b) 

(c) (d) 
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8 Histidine s 7.102 HMDB0000177 

9 Fumarate s 6.505 HMDB0000134 

10 UDP-N-Acetylglucosamine d 
d(7.932), 5.967, dd(5.502), 

dd(4.350), m(4.274),s (2.066) 
HMDB0000290 

11 Creatine s 3.919, s (3.024) HMDB0000064 

12 myo-Inositol t dd (4.055), 3.612, dd(3,525) HMDB0000211 

13 Threonine d 3.580, m (4.237), d(1.317) HMDB0000167 

14 Glycine s 3.55 HMDB0000123 

15 Taurine t 3.413, t (4.252) HMDB0000251 

16 
Methanol (residual of 

extraction) 

s 
3.348 HMDB0001875 

17 O-Phosphocholine s 3.207 HMDB0001565 

18 Choline s 3.192 HMDB0000097 

19 β-alanine t 3.170, t(2.543) HMDB0000056 

20 Creatinine s 3.029, s (4.050) HMDB0000562 

21 Glutathione d 2.972 HMDB0000125 

22 Asparagine t 2.851 HMDB0000168 

23 Aspartate dd 2.798, t(3.888), dd(2.668) HMDB0000191 

24 Glutamine m 2.436 HMDB0000641 

25 Succinate s 2.39 HMDB0000254 

26 Glutamate m 
t (3.748), 2.322, m (2.117), m 

(2.040) 
HMDB0060475 

27 2-Hydroxyglutarate m 
2.274, t(2.218), m(1.980), m 

(1.821), t(4.010) 
HMDB0059655 

28 N-Acetylaspartate s 2.008, dd (2.484), dd (2.678) HMDB0000812 

29 Acetate s 1.906 HMDB0000042 

30 Alanine d 1.467 HMDB0000161 

31 Lactate t q (4.102), 1.315 HMDB0000190 

32 Ethanol t 1.172 HMDB0000108 

33 Valine d 1.030, d (0.977) HMDB0000883 

34 Isoleucine d 0.998 HMDB0000172 

35 Leucine t 0.955 HMDB0000687 
s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; ppm value underline, the quantitative peak. 

 

For exploring the changes in intracellular metabolome, we built PCA score 

loading plots of the 1H NMR dataset and PLS regression model to predict the total 

scores either in each incubation time point (12h, 24h and 36h) or in each oxygen 

concentration (hypoxia 1%, normoxia 6% and hyperoxia 21%). Furthermore,  

the models were correctly evaluated and obtained the R2X (cum), the total sum  

of variation in Y explained by the model R2Y (cum) and goodness of prediction 

calculated by full cross validation Q2(cum) scores and CV-ANOVA p-values  

for intracellular cell extracts in comparisons between oxygen concentrations groups  

or between incubation time groups. 
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 Table 2. The multivariate analysis model summary of cell extract (intracellular) NMR- 

based metabolome in comparisons between 12h, 24h and 36h at 1%, 6% and 21% oxygen 

concentrations. 

 

 

 

 

 

 

 

 

 

 

 

O2 % 
Incubation Time 

Comparison 

Model 

Type 

PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

1% 12h vs. 24h vs. 36h PCA 2 9 0.797 − − − 
12h vs. 24h vs. 36h PLS 3 9 0.85 0.989 0.916 5.33 × 10-2 

6% 12h vs. 24h vs. 36h PCA 3 9 0.858 − − − 
12h vs. 24h vs. 36h PLS 1 9 0.495 0.891 0.816 6.25 × 10-3 

21% 12h vs. 24h vs. 36h PCA 2 9 0.861 − − − 

12h vs. 24h vs. 36h PLS 2 9 0.86 0.982 0.971 2.4 × 10-3 
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 Figure 3. The Principal Component Analysis (PCA) scores plot and loadings plots for PCA 

model for 1H-NMR relative intensity data driven models for HT1080 cells extracts 

(intercellular) during incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% 

conditions. (a,b) at hypoxia 1%; (c, d) at normoxia 6%; (e, f) at hyperoxia 21%. Light red, hypoxia 

1% after 12h; red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light green, normoxia 

6% after 12h; green, normoxia 6% after 24h; dark green, normoxia 6% after 36h; Light blue, 

hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21% after 36h. 
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Figure 4. Graphical representation for 1H-NMR relative intensity data driven models  

for HT1080 cells extracts (intercellular) at hypoxia 1%, normoxia 6% and hyperoxia 21% 

conditions after 12h, 24h and 36h incubation. (a, c, e) prediction plot from the partial least 

squares-regression model (PLS-R) built on relative intensity of 1H-nuclear magnetic resonance 

spectra dataset at hypoxia 1%, normoxia 6% and hyperoxia 21%, respectively. (b, d, f)  

the Variable importance in projection (VIP) score plot for PLS-R model (VIP >1.00) at hypoxia 

1%, normoxia 6% and hyperoxia 21%, respectively. Light green, normoxia 6% after 12h; green, 

normoxia 6% after 24h; dark green, normoxia 6% after 36h; Light blue, hyperoxia 21% after 12h; 

blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21% after 36h. 

 

The results from intracellular metabolome at hypoxia 1% showed that PCA 

overlapping between groups of 24h and 36h incubation time, and presence of outliers 

(Figure 3a). Therefore, we removed the one outlier for our further analysis. The loading 

plot in was created, displaying the explanatory pattern present in the dataset (Figure 

3b). 

The PLS regression model was created and validated at hypoxia 1% during 

12h, 24h and 36h incubation time with R2 = 0.9887, by using just three PLS components 

the root-mean-square-error-of-cross-validation (RMSECV) was 2.64h and the cross-

validated residuals (CV-ANOVA) of PLS-R model wasn’t significant (Table 2). The 17 

metabolites with VIP (variable importance in projection) value above 1.00  

were selected such as (creatinine, glycine, lactate, leucine, UDP-N-acetylglucosamine, 

valine, phenylalanine, glutamine, O-phosphocholine, choline, threonine, IMP, 
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tyrosine, creatine, hypoxanthine, alanine, aspartate) (Figure 4a, 4b), The selective 

metabolites with VIP value above 1 were tested by ANOVA, and showed just  

one regulation as follows: 

1. Downregulation of creatinine, glycine, lactate, leucine, UDP-N-

Acetylglucosamine, valine, phenylalanine, glutamine, O-phosphocholine, 

choline, threonine, IMP, tyrosine, creatine, hypoxanthine, alanine, aspartate  

by increasing of incubation time at hypoxia 1% (Figure 5).  

  

Figure 5. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and pass 

the significant test after remove outliers, than the average recalculated and re-tested by one-way 

ANOVA analysis, for cells extraction (intercellular) samples at hypoxia 1% condition after 12h, 

24h and 36h incubation time and after p value adjustment (p < 0.05). Whiskers—1.5 × interquartile 

range (IQR); bar—median; box—range between first quartile (Q1) and third quartile (Q3). Black 

points—data points. *Adjusted p value < 0.05.  

 

By increasing the oxygen concentration to 6% (normoxia) the metabolomics 

profile of detected metabolites showed a separation between incubation times 12h, 24h 

and 36h among PCs, interestingly, the loading plot of PCA showed clear contributions 

of the metabolites and their regulation to incubation times (Figure 4c, 4d). In order  

to explore the metabolites regulations to incubation time, we built a PLS regression 
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model and we validated with R2 = 0.8913, by using just one PLS component  

and the RMSECV was 4.20h and the CV-ANOVA of PLS-R model was significant  

with p < 0.05 (Table 3), the 13 most important metabolites were obtained with VIP 

(variable importance in projection) value greater than 1.00 such as (aspartate, UDP-N-

Acetylglucosamine, succinate, O-phosphocholine, glutamine, N-Acetylaspartate, 

glutamate, acetate, threonine, tyrosine, lactate, creatinine, creatine) (Figure 5c,5d),  

and their significance was tested by ANOVA, hence, we excluded non-significant 

ANOVA such as (tyrosine, creatinine, creatine, and IMP) from further analysis,  

and the results revealed the following trend:  

1. All influential metabolites down-regulated with increased incubation time 

(Figure 6).  

Figure 6. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and 

statistically significant in one-way ANOVA test for HT1080 cells extracts (intercellular) samples 

at normoxia 6% condition after 12h, 24h and 36h incubation time and after p value adjustment 

(p < 0.05). Whiskers—1.5 × interquartile range (IQR); bar—median; box—range between first 

quartile (Q1) and third quartile (Q3). Black points—data points. *Adjusted p value < 0.05.  

 

At hyperoxia 21% intracellular extracts revealed different trends from hypoxia 

1% and normoxia 6% during the time of incubation, the natural separation between 

incubation time groups, we illustrate PCA by showing PC1 and PC2 coefficients  

of each interval time of incubation, we noticed a separation, we performed the loading 

plot in to displaying the explanatory pattern present in the dataset (Figure 4e, 4f).  

The correlation validation between incubation time at hyperoxia 21% was by the PLS 
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regression model, and we found a high correlation with R2 = 0.9816, by using  

just 2 PLS components and the RMSECV was 1.65h and the CV-ANOVA of PLS-R 

model was significant (Table 2), the 17 most important metabolites from PLS 

regression model were obtained with VIP (variable importance in projection) value 

above 1.00 such as (O-phosphocholine, aspartate, UDP-N-Acetylglucosamine, 

fumarate, glutamine, tyrosine, histidine, isoleucine, valine, leucine, phenylalanine, 

formate, glutamate, glycine, asparagine, alanine and IMP (Figure 5e,5f). We applied  

the ANOVA test to check their significance, hence, revealing different metabolic 

regulations as follows (Figure 7):  

1. O-phosphocholine, aspartate, UDP-N-Acetylglucosamine, fumarate, 

glutamine and glutamate are downregulated with increased incubation 

time.  

2. There weren’t any significant differences between 24h and 36h,  

unlike, tyrosine, histidine, isoleucine, valine, leucine, phenylalanine, 

formate, glycine, asparagine and alanine showed up-regulation  

with time, especially after 36h, but was no significant difference between 

12h and 24h.  
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Figure 7. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test for HT1080 cells extracts (intercellular) 

samples at hyperoxia 21% condition after 12h, 24h and 36h incubation time and after p value 

adjustment (p < 0.05). Light blue— hyperoxia 21% after 12h; blue— hyperoxia 21% after 24h; 

dark blue— hyperoxia 21% after 36h. Whiskers—1.5 × interquartile range (IQR); bar—median; 

box—range between first quartile (Q1) and third quartile (Q3). Black points—data points. 

*Adjusted p value < 0.05.  

 

Table 3. The direction of change summary of all significant metabolites in multivariate 

analysis with VIP > 1 and univariate analysis by ANOVA with p value < 0.05 from cell 

extract (intracellular) dataset at hypoxia 1%, normoxia 6% and hyperoxia 21%. 

Nr Hypoxia 1% Normoxia 6% Hyperoxia 21% 

1 UDP-GlcNAc UDP-GlcNAc UDP-GlcNAc 

2 Glutamine Glutamine Glutamine 

3 O-phosphocholine O-phosphocholine O-phosphocholine 

4 Lactate Lactate Histidine 

5 Threonine Threonine Formate 

6 Creatinine Aspartate Aspartate 

7 Creatine Glutamate Glutamate 

8 Choline Succinate Fumarate 

9 IMP N-Acetylaspartate Isoleucine 

10 Hypoxanthine Acetate Asparagine 

11 Valine  Valine 

12 Glycine  Glycine 

13 Phenylalanine  Phenylalanine 

14 Leucine  Leucine 

15 Tyrosine  Tyrosine 

Notes; Bold metabolites, cross common metabolites; red metabolites, up regulation; blue 

metabolites, down-regulation 

 

3.2.1.2 The sensitivity of intracellular metabolome to hypoxia, normoxia  

and hyperoxia in function of time intervals 

To understand the sensitivity of intracellular metabolome at each cultivation 

time, we built a PCA score loading plots of the 1H NMR dataset and PLS regression 

model to predict the total scores of either in each incubation time points (12h, 24h  

and 36h) for hypoxic, normoxic and hyperoxic cells). Furthermore, the models  

were correctly validated, and obtained the R2X (cum), the total sum of variation  

in Y explained by the model R2Y (cum) and goodness of prediction Q2(cum) scores 
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and CV-ANOVA p-values for intracellular cell extracts in comparisons between oxygen 

concentrations groups. 

Table 4. The multivariate analysis models summary of cells extract (intracellular) 

dataset for comparisons between 1%, 6% and 21% oxygen concentrations at each 

incubation time. 

Time O2% Comparisons 
Model 

Type 

PC/

LV 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

12h 
1% vs. 6% vs. 21% PCA 2 9 0.821 − − − 

1% vs. 6% vs. 21% PLS 3 9 0.898 0.989 0.939 7.41 × 10-2 

24h 
1% vs. 6% vs. 21% PCA 2 9 0.788 − − − 

1% vs. 6% vs. 21% PLS 2 9 0.723 0.951 0.808 9.73 × 10-2 

36h 
1% vs. 6% vs. 21% PCA 3 9 0.962 − − − 

1% vs. 6% vs. 21% PLS 2 9 0.927 0.985 0.975 2.86× 10-3 
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Figure 8. The Principal Component Analysis (PCA) scores plot and loadings plots for PCA 

model for 1H-NMR relative intensity data driven models for HT1080 cells extracts (intracellular) 

during incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% conditions. (a, b) After 

12h incubation; (c, d) After 24h incubation; (e, f) After 36h incubation. Light red, hypoxia 1% 

after 12h; red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light green, normoxia 6% 

after 12h; green, normoxia 6% after 24h; dark green, normoxia 6% after 36h; Light blue, 

hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21% after 36h. 
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Figure 9. Graphical representation for 1H-NMR relative intensity data driven models  

for HT1080 cells extracts (intercellular) after cultivation time at hypoxia 1%, normoxia 6%  

and hyperoxia 21% conditions. (a, c, e) Prediction plot from the partial least squares-regression 

model (PLS-R) built on relative intensity of 1H-nuclear magnetic resonance spectra dataset  

after 12h, 24h and 36h, respectively. (b, d, f) The Variable importance in the projection (VIP) 

score plot for the PLSR model (VIP >1.00) after ,12h, 24h and 36h, respectively. Light red, 

hypoxia 1% after 12h; red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light green, 

normoxia 6% after 12h; green, normoxia 6% after 24h; dark green, normoxia 6% after 36h; Light 

blue, hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21%  

after 36h. 

 

After 12h incubation, the PCA score of intracellular metabolome revealed  

a separation tendency among PC1 and PC2 between hypoxia 1%, normoxia 6%  

and hyperoxia 21% groups, and the loading plot was plotted which provided  

the explanatory pattern in the data set ( Figure 8b). In order to explore the metabolites 

regulations to different oxygen concentrations, we have built a PLS regression model, 

and we found a high correlation between oxygen concentrations after 12h incubation 

with R2 = 0.9887 and by using just 3 PLS components, the RMSECV was 2.43%,  

but didn’t reach statistically significant difference between groups by CV-ANOVA 

(Table 4), possibly due to the small nature of the differences after 12h of incubation 

between groups. The most influential intracellular metabolites with VIP (variable 

importance in projection) greater than 1.00 revealed 21 metabolites (glutamate, 

aspartate, glutamine, alanine, beta-Alanine, myo-Inositol, AMP, threonine, isoleucine, 
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glycine, taurine, hypoxanthine, phenylalanine, asparagine, UDP-N-

Acetylglucosamine, valine, tyrosine, N-Acetylaspartate, fumarate, succinate, 

histidine), In addition, were tested by ANOVA, their tendency at different oxygen 

concentrations revealed overall commonly increased and upregulated to high oxygen 

concentration (hyperoxia 21%). However we noticed different metabolic regulation 

depend on their degree of sensitivity to oxygen concentration, for instance, 11 common 

cross significant metabolites with VIP value above 1.00 including glutamine, alanine, 

beta-alanine, myo-Inositol, isoleucine, glycine, hypoxanthine, phenylalanine, valine, 

tyrosine and histidine share the same trend of sensitivity with no significant differences 

between hypoxia 1% and normoxia 6% at each interval time point 12h, 24h and 36h. 

However, there were also another specific trends after 12h of incubation as follows 

(Figure 10): 

1. The UDP-N-Acetylglucosamine, N-Acetylaspartate and succinate showed  

no significant differences between normoxia 6% and hyperoxia 21%. 

2. Highly sensitive in concentration-dependent manner showed by glutamate, 

aspartate, myo-Inositol and AMP. 

Figure 10. Boxplots for most important metabolites with VIP value above 1.00 identified  

by PLSR model and their significant was calculated by one-way ANOVA analysis for cells 

extraction (intracellular) samples after 12h incubation time at Hypoxia 1%, Normoxia 6%  

and Hyperoxia 21% conditions and after p value adjustment (p < 0.05). Whiskers—1.5 × 

interquartile range (IQR); bar—median; box—range between first quartile (Q1) and third 

quartile (Q3). Black points—data points. * Adjust p value < 0.05. 
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While the PCA model of the intracellular metabolome after 24h revealed 

clustering of three groups among both PC1 And PC2 (Figure 8c), the loading plot  

was plotted which provided the explanatory pattern in the data set (Figure 8d).  

While the PLS regression model revealed as well, a correlation fit between groups  

of oxygen concentrations with R2 = 0.9511 and by using just two PLS components  

the RMSECV value was 3.73% (Figure 9c) and the CV-ANOVA of PLS-R model  

wasn’t significant (Table 4). The most influential intracellular metabolites with VIP 

(variable importance in projection) greater than 1.00 revealed 17 metabolites (alanine, 

glutamine, choline, valine, O-phosphocholine, beta-alanine, histidine, creatine, 

hypoxanthine, leucine, aspartate, phenylalanine, isoleucine, glycine, myo-inositol  

and creatinine), and were tested by ANOVA, their tendency at different oxygen 

concentrations which revealed all pass the ANOVA test, except, myo-inositol  

and creatinine didn’t pass and we removed them from our calculations  

and were follow one specific trend:  

1. All the remaining 15 metabolites commonly increased and upregulated to high 

oxygen concentration (hyperoxia 21%).  

2. After 24h of incubation there wasn’t any specific all of these metabolites act  

the same with no differences between hypoxia and normoxia. Except,   

O-phosphocholine was downregulated and showed no difference between 

normoxia 6% and hyperoxia 21% (Figure 11). 
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Figure 11. Boxplots for most important metabolites with VIP value above 1.00 identified  

by PLSR model and their significant was calculated by one-way ANOVA analysis for cells 

extraction (intracellular) samples after 24h incubation time at Hypoxia 1%, Normoxia 6%  

and Hyperoxia 21% conditions and after p value adjustment (p < 0.05). Whiskers—1.5 × 

interquartile range (IQR); bar—median; box—range between first quartile (Q1) and third 

quartile (Q3). Black points—data points. * Adjust p value < 0.05. 

 

In addition, after 36h the PCA showed a trend of grouping toward oxygen 

concentrations differences, and the loading plot was plotted which provided  

the explanatory pattern in the data set (Figure 8e, 8f).  

The regression model of PLS after 36h was validated between groups  

of oxygen concentrations with R2 = 0.9848 and by using just two PLS components,  

the root-mean-square-error-of-cross-validation (RMSECV) was 1.67%, (Figure 9e)  

and the CV-ANOVA of PLS-R model was significant (Table 4). while,  

the most important metabolites with VIP above 1.00 was obtained with 18 metabolites 

(tyrosine, beta-alanine, choline, histidine, phenylalanine, hypoxanthine, asparagine, 

valine, O-phosphocholine, leucine, glycine, alanine, isoleucine, UDP-N-

acetylglucosamine, AMP, myo-Inositol, lactate, glutamine) (Figure 9f) and were tested 
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by ANOVA and their tendency at different oxygen concentrations after 36h incubation 

as follows (Figure 12):  

1. Showed no significant differences between hypoxia 1% and normoxia 6% 

 for all influential metabolites, except, O-phosphocholine highly upregulated  

at hypoxia 1%, but no significant differences between normoxia 6%  

and hyperoxia 21%.  

2. Both UDP-N-Acetylglucosamine and choline were high sensitive to oxygen 

concentration in concentration-depend manner. 

3. Surprisingly, the significant inosine monophosphate (IMP) with VIP value equal 

to 0.578, showed a fluctuation behavior toward oxygen concentrations,  

with upregulation at normoxia 6%, nevertheless, at hypoxia 1% was down-

regulated than hyperoxia 21%. 

Figure 12. Boxplots for most important metabolites with VIP value above 1.00 identified by PLS-

R model and their significant was calculated by one-way ANOVA analysis for cells extraction 

(intracellular) samples after 36h incubation time at Hypoxia 1%, Normoxia 6% and Hyperoxia 

21% conditions and after p value adjustment (p < 0.05). Whiskers—1.5 × interquartile range 
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(IQR); bar—median; box—range between first quartile (Q1) and third quartile (Q3). Black 

points—data points. * Adjust p value < 0.05. 

 

3.3.2. Extracellular results 

The total sample set is 9 samples from post-cultured media, for each condition 

(1%, 6% and 21%), we conducted 1H NMR-based metabolome analysis and 39 

metabolites were successfully assigned in media respectively, (Figure 13, Table 5). 

Figure 13. The representative 1H NMR spectrum obtained from cells extracts of HT1080. (a) Full 

1H-NMR spectrum from δ 5.0 to δ 9.0; (b) Enlarged spectrum from δ 9.0 to δ 6.5; (c) Enlarged 

spectrum from δ 5.0 to δ 2.7; (d) Enlarged spectrum from δ 2.7 to δ 0.5. The metabolites were 

identified from 1- 39 as mentioned from Table 5 respectively. 

 

Table 5. List of chemical shift values and proton assignments for HT1080 post-cultured 

medium extract metabolome identified by 1H NMR spectroscopy with human 

metabolome database identification number (HMDB). 

No Metabolites  Peak Assignments 
Peak Centers 

(ppm) 
HMDB ID 

1 Formate s 8.44 HMDB0000142 

(a) 

(b) 

(c) (d) 
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2 Hypoxanthine s 8.188, s (8.20) HMDB0000157 

3 S-Adenosylhomocysteine s 8.38 HMDB0000939 

4 Histidine s 7.78 HMDB0000177 

5 Tryptophan m 7.543, m (7.722) HMDB0000929 

6 Phenylalanine m 
7.323, m (7.423), 

m (7.371) 
HMDB0000159 

7 2-Phenylpropionate m 
7.277, m (7.348), 

m (7.370),d (1.422) 
HMDB0011743 

8 Tyrosine m 7.185, m (6.893) HMDB0000158 

9 Fumarate s 6.506 HMDB0000134 

10 Threonine m 
4.24, d (3.58), d 

(1.317) 
HMDB0000167 

11 Pyroglutamate dd 4.171, m (2.407) HMDB0000267 

12 myo-Inositol t 

dd (4.065), 3.615, 

dd (3.544), t 

(3.287) 

HMDB0000211 

13 Fructose d 

m (4.016), m 

(4.00), m(3.895), m 

(3.818), 3.790, d 

(3.709), d (3.703) 

HMDB0000660 

14 Glycine s 3.558 HMDB0000123 

15 Proline m 3.414 HMDB0000162 

16 Methanol (residual solvent) s 3.349 HMDB0001875 

17 Arginine m 3.241 HMDB0003416 

18 Choline s 3.198 HMDB0000097 

19 Creatinine s 3.039 HMDB0000562 

20 Creatine s 3.027 HMDB0000064 

21 Lysine t 3.027, tt (1.723) HMDB0000182 

22 Asparagine t 2.928, t (2.849) HMDB0000168 

23 Aspartate dd 2.689 HMDB0000191 

24 Methionine t 2.636 HMDB0000696 

25 2-Oxoisocaproate d 2.607 HMDB0000695 

26 Methylamine s 2.601 HMDB0000164 

27 Glutamine m 2.424, m (2.141) HMDB0000641 

28 Succinate s 2.387 HMDB0000254 

29 Pyruvate s 2.37 HMDB0000243 

30 Glutamate m 2.35, m (2.039) HMDB0060475 

31 Acetate s 1.9 HMDB0000042 

32 Alanine d 1.47 HMDB0000161 

33 Lactate d 1.318, q (4.112) HMDB0000190 

34 Methylmalonate d 1.211 HMDB0000202 

35 3-Hydroxybutyrate d 1.109 HMDB0000011 

36 3-Methyl-2-oxovalerate d 1.084, t (0.879) HMDB0000491 

37 Valine d 

0.977, d (3.610), 

m (2.260), d 

(1.030) 

HMDB0000883 



76 
 

38 Isoleucine d 0.997, t (0.926) HMDB0000172 

39 Leucine t 0.944 HMDB0000687 
s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; ppm value underline, the quantitative 

peak. 

 

We performed PCA score loading plots of the 1H NMR dataset and PLS 

regression model to predict the total scores of either in each incubation time point, 

besides, in each oxygen concentration (hypoxia 1%, normoxia 6% and hyperoxia 21%). 

Furthermore, the PLS-R models were correctly validated, and obtained the R2X (cum), 

good correlation R2Y (cum) and goodness of prediction Q2(cum) scores and significant 

CV-ANOVA p-values for extracellular media extracts in comparisons between oxygen 

concentrations groups and between incubation time groups without control samples. 

 

3.3.2.1. The extracellular metabolic profile changes at hypoxia 1%, normoxia 6% 

and hyperoxia 21% in function of oxygen concentrations 

Table 6. The multivariate analysis model summary of extracellular NMR- based 

metabolome in comparisons between 12h, 24h and 36h at 1%, 6% and 21% oxygen 

concentrations. 

O2 % 
Incubation Time 

Comparisons 

Model 

Type 

PC/

LV 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

1% 12h vs. 24h vs. 36h PCA 2 9 0.868 − − − 

12h vs. 24h vs. 36h PLS 2 9 0.863 0.915 0.394 8.95 × 10-1 

6% 12h vs. 24h vs. 36h PCA 2 9 0.804 − − − 

12h vs. 24h vs. 36h PLS 2 9 0.804 0.98 0.971 9.51 × 10-3 

21% 12h vs. 24h vs. 36h PCA 3 9 0.915 − − − 

12h vs. 24h vs. 36h PLS 1 9 0.45 0.951 0.894 1.19 × 10-3 
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Figure 14. The Principal Component Analysis (PCA) scores plot and loadings plots for PCA 

model for 1H-NMR relative intensity data driven models for HT1080 post culture medium 

extracts (extracellular) during incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% 

conditions. (a, b) a hypoxia 1%; (c, d) a normoxia 6%; (e, f) a hyperoxia 21%. Light red, hypoxia 

1% after 12h; red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light green, normoxia 

6% after 12h; green, normoxia 6% after 24h; dark green, normoxia 6% after 36h; Light blue, 

hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21%  

after 36h. 
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Figure 15. Graphical representation for 1H-NMR relative intensity data driven models  

for HT1080 post culture media extracts (extracellular) at hypoxia 1% condition  

after 12h, 24h and 36h incubation. (a, c, e) Prediction plot from the partial least squares-

regression model (PLS-R) built on relative intensity of 1H-nuclear magnetic resonance spectra 

at hypoxia 1%, normoxia 6% and hyperoxia 21%, respectively. (b, d, f)  

The Variable importance in projection (VIP) score plot for PLSR model (VIP >1.00)  

at hypoxia 1%, normoxia 6% and hyperoxia 21%, respectively. Light red, hypoxia 1% after 12h; 

red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light green, normoxia 6% after 12h; 
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green, normoxia 6% after 24h; dark green, normoxia 6%  

after 36h; Light blue, hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, 

hyperoxia 21% after 36h. 

 

The metabolomics profiles of medium extracts (extracellular) through 

different incubation times (12h, 24h and 36h) at hypoxia 1%, normoxia 6%  

and hyperoxia 21% were analyzed. We obtained the unsupervised multivariate 

analysis by PCA and showed slightly grouping and differences between incubation 

time point 12h vs. 24h vs. 36h among PCs at hypoxia 1%, normoxia 6% and hyperoxia 

21% (Figure 12), Partial least squares regression (PLS-R) was applied to each 

comparison at hypoxia 1%, normoxia 6% and hyperoxia 21%, respectively,  

and were evaluated with R2 = 0.9153 for hypoxia 1%, R2= 0.9799 for normoxia 6%  

and R2= 0.9511 for hyperoxia 21% (Figure 13b, 13d, 13f), by using just 2, 2 and 1 PLS 

components, respectively, and RMSECV was 8.76h, 2.35h and 3.19h, respectively,  

the cross-validated residuals (CV-ANOVA) of PLS-R model wasn’t significant with p > 

0.05 at hypoxia 1% but was significant with normoxia 6% and hyperoxia 21% with p < 

0.05 (Table 6). 

At hypoxia, the combination between the most important metabolites  

from VIP (variable importance in projection) score with VIP value higher than 1.00 of 

PLS-R model as well as the univariate analysis significant by ANOVA revealed 9 

common metabolites with four main regulations at hypoxia 1% (Figure 15b, 16): 

1.  Down-regulation with increasing cultivation time with significant differences 

between each incubation time point such as S-adenosylhomocysteine. 

2. Down-regulation of glutamine, pyruvate, methylamine, 3-methyl-2-

oxovalerate, 2-oxoisocaproate and 3-hydroxybutyrate after 12h  

but weren’t showing any differences between 24h and 36h. 

3. Up-regulations by increasing the cultivation time such as hypoxanthine. 

4. Fumarate was up-regulation at 36h but did not show any significant difference 

between 12h and 24h.  
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Figure 16. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test for HT1080 post culture media extracts 

(extracellular) samples at hypoxia 1% condition after 12h, 24h and 36h incubation time  

and after p value adjustment (p < 0.05). Whiskers—1.5 × interquartile range (IQR); bar—median; 

box—range between first quartile (Q1) and third quartile (Q3). Black points—data points. 

*Adjusted p value < 0.05.  

 

On the other hand, at normoxia 6%, the VIP (variable importance  

in projection) revealed 17 most influential metabolites with VIP value above 1.00 such 

as (fumarate, threonine, succinate, glutamine, arginine, methionine, alanine, 

tryptophan, leucine, pyruvate, glutamate, asparagine, valine, acetate, isoleucine, 

lactate, methylmalonate and 2-phenylpropionate) (Figure 15d), and their significance 

was tested by ANOVA, hence, revealed 11 influential metabolites VIP > 1.00  

with two main regulations (Figure 15d, 17): 

1. Almost all downregulated with increased cultivation time (threonine, 

glutamine, arginine, methionine, tryptophan, leucine, pyruvate, asparagine, 

valine and 2-phenylpropionate). 

2. Fumarate was up-regulated with increased time of incubation. 



85 
 

 

 

Figure 17. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and 

statistically significant in one-way ANOVA test for HT1080 post culture media extracts 

(extracellular) samples at normoxia 6% condition after 12h, 24h and 36h incubation time and 

after p value adjustment (p < 0.05). Whiskers—1.5 × interquartile range (IQR); bar—median; 

box—range between first quartile (Q1) and third quartile (Q3). Black points—data points. 

*Adjusted p value < 0.05. 

 

While, at hyperoxia 21%, 20 most important metabolites were obtained  

from the VIP (variable importance in projection) score with VIP value above 1.00 such 

as (pyruvate, glutamine, isoleucine, choline, leucine, alanine, methionine,  

3-hydroxybutyrate, valine, acetate, methylamine, 3-methyl-2-oxovalerate, 

hypoxanthine, lactate, methylmalonate, 2-oxoisocaproate, formate, threonine, arginine 

and tryptophan) (Figure 15d), and their significance were tested by ANOVA,  

in which, revealed 19 influential metabolites with two main regulations  

(Figure 15f, 18): 

1. Down-regulation of pyruvate, glutamine, isoleucine, choline, leucine, alanine, 

methionine, valine, lactate, methylmalonate, threonine, arginine and tryptophan 

with increased cultivation time. 
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2. Up-regulations with increased time of incubation especially at hyperoxia 21% 

and with no significant difference between 12h and 24h incubation time such  

as (3-hydroxybutyrate, acetate, methylamine, 3-methyl-2-oxovalerate, 

hypoxanthine, 2-oxoisocaproate, formate and threonine). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and 

statistically significant in one-way ANOVA test for HT1080 post culture media extracts 

(extracellular) samples at hyperoxia 21% condition after 12h, 24h and 36h incubation time  

and after p value adjustment (p < 0.05). Light blue— hyperoxia 21% after 12h; blue— hyperoxia 

21% after 24h; dark blue— hyperoxia 21% after 36h. Whiskers—1.5 × interquartile range (IQR); 

bar—median; box—range between first quartile (Q1) and third quartile (Q3). Black points—

data points. *Adjusted p value < 0.05.  
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Table 7. The summary of all significant metabolites in multivariate analysis with VIP 

> 1 and univariate analysis by ANOVA with p value < 0.05 from medium extract 

(Extracellular) dataset at hypoxia 1%, normoxia 6% and hyperoxia 21%. 

Nr Hypoxia 1% Normoxia 6% Hyperoxia 21% 

1 Pyruvate Pyruvate Pyruvate 

2 Glutamine Glutamine Glutamine 

3 Fumarate Fumarate Isoleucine 

4 S-Adenosylhomocysteine Tryptophan Tryptophan 

5 Methylamine Asparagine Methylamine 

6 3-methyl-2-oxovalerate 2-Phenylpropionate 3-methyl-2-oxovalerate 

7 3-hydroxybutyrate Threonine 3-hydroxybutyrate 

8 2-oxoisocaproate Leucine 2-oxoisocaproate 

9 Hypoxanthine Methionine Hypoxanthine 

10  Arginine Leucine 

11  Valine Methionine 

12   Arginine 

13   Valine 

14   Acetate 

15   Alanine 

16   Choline 

17   Lactate 

18   Methylmalonate 

19   Formate 

Notes; Bold metabolites, cross common metabolites; red metabolites, up-regulation; blue 

metabolites, down-regulation. 

 

3.3.2.2.The metabolic sensitivity of the extracellular metabolome to various 

oxygen concentrations in the time interval function 

The total sample set is 9 samples from post-cultured media, for each condition 

(1%, 6% and 21%), we conducted 1H NMR-based metabolome analysis and 36 

metabolites were successfully assigned in media respectively.  

 

Table 8. The multivariate analysis models summary of medium extract (extracellular) 

dataset for comparisons between 1%, 6% and 21% oxygen concentrations  

at each incubation time. 

 

Time O2% Comparisons Model Type 
PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 
Q2 (cum) 

CV-ANOVA 

p value 

12h 1% vs. 6% vs. 21% PCA 2 9 0.835 − − − 
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1% vs. 6% vs. 21% PLS 3 9 0.884 0.993 0.933 6.01 × 10-2 

24h 
1% vs. 6% vs. 21% PCA 3 9 0.95 − − − 

1% vs. 6% vs. 21% PLS 3 9 0.926 0.98 0.905 1.00 × 10-1 

36h 
1% vs. 6% vs. 21% PCA 2 9 0.925 − − − 

1% vs. 6% vs. 21% PLS 3 9 0.95 0.997 0.989 1.36× 10-2 
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Figure 19. The Principal Component Analysis (PCA) scores plot and loadings plots for PCA 

model for 1H-NMR relative intensity data driven models for HT1080 post culture medium 

extracts (extracellular) during incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% 

conditions. (a, b) After 12h incubation; (c, d) After 24h incubation; (e, f) After 36h incubation. 

Light red, hypoxia 1% after 12h; red, hypoxia 1% after 24h; dark red, hypoxia 1% after 36h; Light 

green, normoxia 6% after 12h; green, normoxia 6% after 24h; dark green, normoxia 6% after 36h; 

Light blue, hyperoxia 21% after 12h; blue, hyperoxia 21% after 24h; dark blue, hyperoxia 21% 

after 36h. 
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Figure 20. Graphical representation for 1H-NMR relative intensity data driven models  

for HT1080 post cultured medium (extracellular) after cultivation time at hypoxia 1%, normoxia 

6% and hyperoxia 21%. (a, c, e) Prediction plot from the partial least squares-regression model 

(PLS-R) built on relative intensity of 1H-nuclear magnetic resonance spectra dataset after 12h, 

24h and 36h, respectively. (b, d, f) The Variable importance in projection (VIP) score plot  

for PLSR model (VIP >1.00) after 12h, 24h and 36h, respectively.  
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We performed PCA score loading plots of the 1H NMR dataset and PLS 

regression model to predict the total scores of each incubation time point to oxygen 

concentrations (hypoxia 1%, normoxia 6% and hyperoxia 21%). Furthermore, the PLS-

R models were correctly validated and obtained the R2X (cum), good correlation R2Y 

(cum), goodness of prediction Q2(cum) scores and significant CV-ANOVA p-values  

for extracellular media extracts in comparisons between oxygen concentrations groups. 

To calculate the variations overview between hypoxia 1%, normoxia 6%  

and hyperoxia 21% after 12h incubation time, the PCA was created based  

on normalized an interval intensity data set obtained from 1H NMR medium extracts 

(extracellular). The model showed a separation between groups of oxygen 

concentrations after 12h of incubation, among both PCs (Figure 19a). The loading plot 

was performed and showed the effect of oxygen concentrations on metabolites 

expression through PC1 and PC2 (Figure 19b). In addition, the Partial Least Squares - 

Regression (PLS-R) was generated and validated with R2 = 0.9925, by using just three 

PLS components. The RMSECV was 2.264% and the CV-ANOVA of PLS-R model 

wasn’t significant with p > 0.05 (Table 8). The 13 most influential metabolites  

were selected from VIP (variable importance in projection) value above 1.00 such  

as (pyruvate, 3- methyl-2-oxovalerate, glutamate, threonine, s-adenosylhomocysteine, 

3-hydroxybutyrate, fumarate, pyroglutamate, 2-phenylpropionate, glutamine, 

tryptophan, leucine and 2-oxoisocaproate) (Figure 19b), and were tested by one- way 

ANOVA. Afterward, 2-oxoisocaproate didn’t pass ANOVA test and removed  

from further analysis. The remaining significant metabolites showed two significant 

trends: (Figure 21): 

1. Up-regulation with increasing the oxygen concentrations for pyruvate, 3-Methyl-2-

Oxovalerate, glutamate, S-adenosylhomocysteine and fumarate.  

2. Down-regulation with increasing the oxygen concentrations for threonine, 

pyroglutamate, 2-phenylpropionate, glutamine, tryptophan and leucine.  
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Figure 21. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test for HT1080 media extracts (extracellular) 

samples after 12h incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% conditions, 

and after p value adjustment. Whiskers—1.5 × interquartile range (IQR); bar—median; box—

range between first quartile (Q1) and third quartile (Q3). Black points—data points. *Adjusted 

p value < 0.05. 

 

The MVA after 24h of incubation, showed the variations between groups  

by principal component analysis (PCA) among PCs, and the influence of oxygen 

concentrations on metabolites distribution on the loading plot through PC1 and PC2 

(Figure 19c, 19d), to estimate the relationship between metabolites and oxygen 

concentration. The Partial least squares-regression (PLS-R) was generated  

and validated by R2 = 0.98, and R2X, R2Y and O2 parameters. The RMSECV was 2.71% 

and the CV-ANOVA of PLS-R model wasn’t significant with p > 0.05 (Table 8)  

(Figure 20c). By VIP score, 12 most important metabolites were selected with VIP 

values greater than 1.00 (Figure 20d), and were tested by one way ANOVA. Afterward, 

glutamate, fumarate and acetate didn’t pass ANOVA test and removed from further 

analysis The remaining significant metabolites showed two significant trends (Figure 

22): 

1. Up-regulation with increasing the oxygen concentrations for aspartate, 

pyruvate, S-adenosylhomocysteine, 2-oxoisocaproate,  

S-adenosylhomocysteine, 3-methyl-2-oxovalerate, methylamine and  

3-hydroxybutyrate.  
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2. Down-regulation with increasing the oxygen concentrations for arginine  

and pyroglutamate. 

Figure 22. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and 

statistically significant in one-way ANOVA test for HT1080 media extracts (extracellular) 

samples after 24h incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% conditions, 

and after p value adjustment. Whiskers—1.5 × interquartile range (IQR); bar—median; box—

range between first quartile (Q1) and third quartile (Q3). Black points—data points. *Adjusted 

p value < 0.05. 

 

Finally, the unsupervised multivariate method was obtained by PCA after 36h 

of incubation, showing the variations between groups among PCs (Figure 19e),  

and the loading plot was obtained which provided the explanatory pattern in the data 

set (Figure 19f). The Partial least squares - regression (PLS-R) was built and evaluated 

by R2 = 0.9974, and R2X(cum), R2Y(cum) and O2(cum) parameters (Table 8),  

the RMSECV was 1.36% and the CV-ANOVA of PLS-R model was significant with p < 

0.05 (Table 8). The 11 most important metabolites were selected from VIP (variable 

importance in projection) score, with VIP value greater than 1.00 (Figure 20f)  

and were tested by ANOVA, and these important metabolites showed three significant 

trends (Figure 23): 

1. Up-regulation with increasing the oxygen concentrations for 2-oxoisocaproate, 

methylamine, 3-hydroxybutyrate, 3-methyl-2-oxovalerate and pyruvate.  

2. Up-regulation at hyperoxia 21% but no differences between hypoxia 1%  

and normoxia 6% with acetate, S-adenosylhomocysteine and glutamate.  
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3. Alanine, isoleucine and leucine were down-regulation with increasing oxygen 

concentration. 

 

Figure 23. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model and 

statistically significant in one-way ANOVA test for HT1080 media extracts (extracellular) 

samples after 36h incubation time at hypoxia 1%, normoxia 6% and hyperoxia 21% conditions, 

and after p value adjustment. Whiskers—1.5 × interquartile range (IQR); bar—median; box—

range between first quartile (Q1) and third quartile (Q3). Black points—data points. *Adjusted 

p value < 0.05. 

 

Additionally, In this study, we assessed the metabolites sensitive (significant) 

regulation of the HT1080 cells intracellular and extracellular metabolome at hypoxia 

1%, normoxia 6%, and hyperoxia 21%, during each interval time points. Here, we have 

noticed, by 72%, 93% and 83% of all intracellular significant metabolites after 12h, 24h 

and 36h of incubation, respectively, showed no sensitivity between hypoxia 1%  

and normoxia 6%, Moreover, by 14%, 7% and 6% of all significant metabolites after 

12h, 24h and 36h of incubation, respectively, showed no sensitivity between normoxia 

6% and hyperoxia 21% (Table 7). 

 

Table 7. The degree of intracellular metabolites-sensitivity to O2 concentration 

summary from total significant metabolites with VIP>1 and ANOVA p>0.05, after 12h 

(21 metabolites), after 24h (15 metabolites) and after 36h (18 metabolites). 

Incubation time 

Degree of Sensitivity to O2 Concentration [%] * 

High-sensitive Δ 

(1%≠ 6% ≠ 21%) 

Partial-sensitive 

(1% = 6% ≠ 21%) 

Partial-sensitive 

(6% = 21% ≠ 1%) 

12h 14 72 14 

24h 0 93 7 
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36h 11 83 6 

≠ significantly different; = not significantly different; bold, highest value; Δ the highly sensitive refer to the 

significant between hypoxia and normoxia and hyperoxia as well as normoxia to hyperoxia; * the 

calculation was the number highly/partial-sensitive metabolites divide to total number of significant 

metabolites and multiple by 100. 

 

Moreover, we also assessed the extracellular oxygen-sensitive metabolites 

regulation of the HT1080 cells metabolome at hypoxia 1%, normoxia 6%, and hyperoxia 

21%, during each interval time points showing that, after 12h 8% from all metabolites 

has highly sensitivity a cross all conditions, 50% of these metabolites were sensitive 

between normoxia and hyperoxia by their significant differences. Moreover, by 42%  

of all metabolites were significant between hypoxia and hyperoxia. However, after 24h 

of incubation we noticed that, the same number of metabolites by 11% were highly 

sensitive and partial sensitive, especially between normoxia and hyperoxia. However, 

was not significant between normoxia and hyperoxia by 78%. Surprisingly, after 36h 

incubation increased the sensitivity of the detected significant metabolites by 46%  

with no different between hypoxia and normoxia by 36%. Moreover, by 18% showed 

no significant between normoxia and hyperoxia (Table 8). 

 

Table 8. The degree of extracellular metabolites-sensitivity to O2 concentration 

summary from total significant metabolites with VIP>1 and ANOVA p>0.05, after 12h 

(21 metabolites), after 24h (9 metabolites) and after 36h (11 metabolites). 

Incubation time 

Degree of Sensitivity to O2 Concentration [%] * 

High-sensitive Δ 

(1%≠ 6% ≠ 21%) 

Partial-sensitive 

(1% = 6% ≠ 21%) 

Partial-sensitive 

(6% = 21% ≠ 1%) 

12h 8 50 42 

24h 11 11 78 

36h 46 36 18 

≠ significantly different; = not significantly different; bold, highest value; Δ the highly sensitive refer to the 

significant between hypoxia and normoxia and hyperoxia as well as normoxia to hyperoxia; * the 

calculation was the number highly/partial-sensitive metabolites divide to total number of significant 

metabolites and multiple by 100. 

 

4. Discussion 

An in vitro metabolomics is typically performed at standard oxygen 

concentration of 160 mmHg (21%), which is extremely high when compared to normal 

peripheral tissues. For this experiment, we proposed 21% as hyperoxia and 6%  

as the normoxia and compared to hypoxia 1%. We have found that, there  
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was a metabolic profile differences at 1%, 6%, and 21% O2 and nutritional stress 

through cultivation time and showed a metabolite-sensitivity variations  

for extracellular and intracellular metabolome leading to produce metabolic phenotype 

of fibrosarcoma (HT1080) cell line, deliver more sufficient model of using a proper 

oxygen concentration as normoxia and a potential therapeutic approach by hyperoxia 

and starvation against cancer. 

 

4.1.The metabolic changes of intracellular and extracellular metabolome  

at hypoxia, normoxia and hyperoxia through cultivation time.  

The multivariate and univariate analysis of 1H NMR spectra revealed  

the significant changes and correlations between cultivation time points on intra-

extracellular metabolome that have been investigated.  

The metabolic perturbation related to oxygen availability has been shown  

at hypoxia and causes an increasing glycolysis rate as a source of ATP production,  

even if it is insufficient to enhance intermediates metabolic building blocks for cells 

proliferation [14]. Moreover, the glucose deprivation which is much closer scenario  

to what’s happens in the natural tumor environment including cellular stress and leads 

to switching to glutamine as an alternative source for nitrogen biosynthesis in cultured 

cancer cells [15,16], and as critical factor for de novo uridine-diphosphate-N-

acetylglucosamine (UDP-GlcNAc) via hexosamine biosynthetic pathway. Herein,  

we showed that, a positive correlation between intra-UDP-GlcNAc and intra-extra 

glutamine in dependent manner to oxygen availability and cultivation time. Moreover, 

our data obtained revealed that, the UDP-GlcNAc act as metabolite-sensor of energy 

bioavailability. Recent studies suggested that, glutamine acquisition is related  

to increasing glutamine transporters (SLC38A1, SLC1A5, SLC38A2) expression to enter 

to the intracellular space, however, the linkage between glutamine and uridine 

diphosphate N-acetylglucosamine (UDP-GlcNAc) is associated with glutamine 

fructose-6-phosphate amidotransferase (GFAT), which converts glutamine  

and fructose-6-phosphate (F6P) to glucosamine-6-phosphate and glutamate followed 

up by multiple enzymatic reactions to uridine diphosphate N-acetylglucosamine 

(UDP-GlcNAc) [17] (Figure 22). As a consequence both intra-extracellular glutamine 

depletion showed a reduction in cellular uridine diphosphate N-acetylglucosamine 
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(UDP-GlcNAc) which is a cell-dependent nutrient state (glucose/glutamine)  

and cellular stress via hexosamine biosynthetic pathway (Figure 24) [18,19].  

It is important to highlight the central role played by the hypoxia-inducible factor-1α 

(HIF-1α) in the metabolic adaptation process at pathological hypoxic 

microenvironments. Activation of HIF-1α serves to stabilize cellular demands  

in response to the restricted availability of oxygen and nutrients. The net outcome  

of HIF1 activation in hypoxic conditions is a shift in energy production, characterized 

by a heightened glycolytic rate and a decrease in mitochondrial function [20],  

through multiple enzymes and molecular targets such glucose transporters 

GLUT1/GLUT3 [21], hexokinase 2 (HK2) [22], PGI, PFK1, aldolase, TPI, GAPDH, PGK, 

PGM, enolase, PK, PFKFB1–4 [23], lactate dehydrogenase A [24], monocarboxylate 

transporter 4 (MCT4) [25], 3-phosphoinositide-dependent protein kinase 1/MAX 

interactor 1 (PDK1/MXI1) [26] and COX4I2, LON protease [27]. However, the stability 

of HIF1α in tumors effected by increasing the level of O2 by-products (free radicals)  

or succinate and fumarate metabolites [20]. This is consistent with our findings that, 

both succinate and fumarate have been decreased at normoxia and hyperoxia.  
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Figure 24. Metabolic pathways of HT1080 metabolome detected by 1H NMR analysis, 

summarize the interactions of TCA cycle, glycolysis, hexosamine biosynthesis pathway; GLS, 

Glutaminase; GOT2, Glutamic-oxaloacetic transaminase 2; GFAT, glutamine:fructose-6-

phosphate amidotransferase; GNA1/GNPNAT1, glucosamine-6-phosphate N-

acetyltransferase; GlcNAc-6P, N-acetylglucosamine-6-Phosphate; GlcNAc-1P, N-

acetylglucosamine 1-phosphate; UAP/AGX1, UDP-Nacetylhexosamine pyrophosphorylase; 

UDP-GlcNAc, uridine diphosphate N-acetylglucosamine. Purple color, significant metabolites 

detected by 1H NMR; red color, metabolic pathways; yellow color, enzymes interactions. 

 

Furthermore, It has been showed that, the o-phosphocholine plays  

an important role in choline phospholipid metabolism, which constitutes 

phosphatidylcholine membrane biosynthesis and characterized by total-choline 

compounds (choline, phosphocholine and glycerophosphocholine). Therefore,  

the total-choline compounds were classified as oncometabolite in several studies, 

which suggested that the correlation between malignant transformation and metabolic 

adaptation processes to tumor microenvironment causing choline metabolism 

perturbations and became a hallmark of cancer progression [28]. Moreover, at the most 

aggressive cancer phenotype was observed an accumulation of O-phosphocholine [29–

32], which attributed mainly to induce choline phosphorylation through biosynthetic 

Kennedy pathway (Figure 23) via choline kinase (CK) activity in cancer cells including 

breast [33], colon [32], bladder [34] and epithelial ovarian [35], as well as partially  

from the degradation of phosphatidylcholine (PtdCho) via phosphatidylcholine-

specific phospholipase C (PC-PLC) by 20%–50% in breast and ovarian cancer cells 

[36,37], and phosphatidylcholine-specific phospholipase D (PC-PLD) activity [38]. 

Most importantly, all these enzymes activity is controlled by oncogenic Ras-driven 

activation [39–44]. Herein, we have found that, at hypoxia and normoxia the level  

of intracellular choline showed a reduction through cultivation time with the same 

effect happened with O-phosphocholine at hypoxia, normoxia as well as hyperoxia. 

Obtained data stands in good agreement with other research in rat pheochromocytoma 

PC-12 cells by Bansal A et al. [45]. Moreover, other studies showed that, an inhibition 

of choline phosphorylation demonstrated under hypoxia mediated by HIF-1α  

in prostate cancer cell lines [46] and glioma cells [47]. That’s might be associated  

to tumor-type of total-choline compounds regulation under hypoxia 1%  

and nutritional stress (starvation). 
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Figure 23. Choline metabolic pathway regulation on time-dependent manner, and the major 

enzymes involved in the cells, are shown, blue arrows represent the choline metabolism 

pathway and indicate the interconnection between compounds of choline network; 

phosphocholine (PC); cytidine 5′-diphosphocholine (CDP-Choline); phosphatidylcholine (Ptd-

Choline); 1-acyl-glycerophosphocholine (1-acytl-GPC); glycerophosphocholine (GPC); choline 

transporter-like proteins (CTLs); Sphingomyelin (SM), and brown boxes indicate the regulation 

of enzymes activity in choline metabolism pathway, Choline kinase (CK); phosphocholine 

cytidylyltransferase (CCT); diacylglycerol choline phosphotransferase (CPT); phospholipase A2 

(PLA2); lysophospholipase (Lyso-PL); glycerophosphodiester phosphodiesterase domain 

containing 6 (GDPD6); phospholipase C (PLC); phospholipase D (PLD). Red arrow, hypoxia 

1%; green arrow, normoxia 6%; blue arrow, hyperoxia 21%. An arrow up; upregulation; arrow 

down, downregulation.  

 

The amino acids transporter's activity and their metabolic enzymatic reactions 

are critical for metabolic reprogramming and adaptation processes [48]. For instance, 

the L-type amino acid transporters such as LAT1 (SLC7A5) ) is among Na+ - and pH-

independent that facilitate the influx of leucine, valine, phenylalanine and tyrosine  

into cells in exchange for efflux of other intracellular amino acids such as glutamine  

or other essential amino acids. Furthermore, the intracellular leucine and valine  

are catabolized by branched-chain aminotransferases (BCATs) to transfer nitrogen  

and carbon groups to α-KG to synthesize glutamate, besides other branched-chain  

α-ketoacids (BCKAs) which are highly expressed in many types of cancer to maintain 

cell proliferation and inhibit apoptosis [49,50]. Our results showed a reduction  

of the intracellular and extracellular of leucine, isoleucine and valine (BCAAs)  
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under hypoxia 1%. However, at hyperoxia 21%, especially after 36h showed  

an accumulation of BCAAs in intracellular space, considering the fact that,  

the extracellular of BCAAs at hyperoxia 21% were decreased through cultivation time. 

It was observed that, the BCAAs (leucine, isoleucine and valine) transporter (SLC7A5) 

activity and BCAT1 expression upregulated in glioblastoma by the effect of hypoxia-

inducible factors (HIFs), in which has been proven that, the knockout of HIF-1α  

and HIF-2α or inhibition of BCAT, subsequently, inhibits GBM cells proliferation 

under hypoxia stress [51], which showed in our results an increase the BCAAs 

transporter (SLC7A5) activity and BCAT1 expression at hypoxia 1%. However,  

at hyperoxia 21% these amino acids accumulated in intracellular space after 36h 

incubation. This indication of this phenomena might be related at first for leucine, 

isoleucine and valine to BCAT1 inhibition or reducing BCAT1 activity. It was showed 

in other study that, BCAT1 knockdown will inhibit of PI3K/AKT/mTOR signaling  

as a key of cells viability and angiogenesis in gastric cancer [52], as well as inducing 

autophagy under various stress conditions such as starvation, hypoxia and oxidative 

stress [53]. However, still unclear the role of HIFs on BCAAs metabolism [54]. Meaning, 

under glucose starvation (fasting) and high oxygen concentration 21% lead of BCAAs 

accumulation in intracellular space and subsequently, could be triggered the apoptosis 

and cell-mediated cytotoxicity as a consequence of BCAT1 inhibition despite  

the BCAAs transporter (SLC7A5) activity. The same effect we noticed  

with accumulation of some essential amino acids such as phenylalanine and histidine 

and other non- essential amino acids such as glycine, asparagine and tyrosine  

in intracellular space could provide an evidence of toxic microenvironment of glucose 

deprivation-induced cytotoxicity [55–58], along with high oxygen concentration 

(hyperoxia) [59–61], as well as potential therapeutic combination strategy.  

What’s more, it was showed that, the process of BCAAs catabolism required 

two main steps as aforementioned above, first by BCATs transamination  

via a reversible reaction and the second is by branched-chain α-keto acid 

dehydrogenase complex (BCKDH) to yield branched-chain α-keto acids such as 2-keto-

isocaproate/4-methyl-2-oxopentanoic acid (KIC), α-keto-β-methylvaleric acid/3-

methyl-2-oxopentanoate (KMV), and 2-keto-isovalerate/3-methyl-2-oxobutanoic acid 

(KIV). Therefore, this oxidative decarboxylation is irreversibly reaction of BCKAs 

which allowed the cells to produce branched-chain acyl-CoA derivates such  
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as acetoacetate, propionyl-CoA and acetyl-CoA from leucine and isoleucine  

as well as propionyl-CoA from valine which metabolized through valine, leucine  

and isoleucine degradation pathway to generate 3-hydroxybutyrate, 3-methyl-2-

oxovalerate and 2-oxoisocaproate [62,63]. Herein, we have found and for the first time, 

an increased levels of accumulation of 3-hydroxybutyrate, 3-methyl-2-oxovalerate  

and 2-oxoisocaproate a at the cellular space along with induced the efflux of these 

metabolites to extracellular milieu at hyperoxia 21% after 36h of incubation.  

It has been demonstrated that, an increasing level of 2-oxoisocaproate  

to the culture media determines the intracellular catabolism capability of leucine  

in the glioma, glioblastoma, neuroblastoma cells, and suggested that, the part  

of 2-oxoisocaproate might enter the cellular energy metabolism via branched-chain 

alpha-keto acid dehydrogenase complex (BCKDH). Moreover, culture media 

supplement with high concentration of leucine will induce the cellular ketogenic 

reaction and release 3-hydroxybutyrate to extracellular space [64]. Additionally,  

3-hydroxybutyrate is ketone body which produced as result of dehydrogenization  

of acetoacetate (AA) and degrades fatty acids via β-oxidation, which will be used  

as source of energy by the cells during starvation [65]. Also observed by others that, 

the 3-hydroxybutyrate (ketone body) significantly increased tumor growth by 2.5-fold, 

without any increases in tumor angiogenesis. In contrast, lactate increased 

experimental lung metastasis by 10-fold, but did not affect primary tumor growth. 

Furthermore, their findings revealed that both ketones and lactate stimulated  

the migration of MDA-MB-231 cells, acting as chemo-attractants. These results provide 

evidence for the "reverse Warburg effect," a phenomenon in which cancer cells utilize 

the metabolism of lactate and ketones for energy production rather than glucose [66]. 

Conversely, other in vitro studies showed that, 3-hydroxybutyrate during glucose 

starvation can significantly attenuated the tumor growth [67–69]. Interestingly,  

another evidence provided, the role of 3-hydroxybutyrate on class I histone 

deacetylases (HDACs) inhibition in cancer cells and increases histone acetylation  

as well as generation of lysine β-hydroxybutyrylation (Kbhb), which connected  

to the reduction of tumor suppressor gene p53 after Kbhb modification, therefore, 

reduces the cell growth arrest and apoptosis in cellular level [69]. With all these 

contradictions, we have found that, under hyperoxia 21% through glucose starvation, 

HT1080 cells increase of 3-hydroxybutyrate release to the media (extracellular).  
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This could be explained as under the glucose depletion and high oxygen concentration 

21%, lead cells to reduce their proliferation potential and induce cell death  

as well as releasing intracellular components to the media as debris, which showed  

in our growth curve results after 36h at hyperoxia 21%. Additionally, It’s well 

established that, the tumor microenvironment (TME) faces one critical stress  

with nutrient deficiency besides hypoxia, and acidosis [70]. This is due to the elevated 

demand for nutrients by rapidly proliferating tumors, which is not met by an adequate 

supply [70,71]. TME lacks multiple nutrients, with glucose deprivation being  

the most prevalent, caused by the high consumption of glucose by tumor cells through 

aerobic glycolysis [72]. Tumor cells adapt to glucose deprivation by using alternative 

fuel sources such as lactate, glutamine, and fatty acids, breaking down macromolecules 

via autophagy, or synthesizing glucose from lactate and amino acids [73–75]. 

Therefore, another scenario could be happened to fibrosarcoma cells through beta-

oxidation which represents the breakdown of fatty acids to generate energy  

by involvement of acyl-CoA. To generate acetyl-CoA and serve as the substrate  

for the tricarboxylic acid (TCA) cycle, resulting in the generation of ATP highlights  

the interconnectivity between various metabolic pathways in regulating energy 

metabolism [76].  

Intermediates in the beta-oxidation process, including 2-oxoisocaproate  

and 3-hydroxybutyrate, are formed from distinct precursors. 2-oxoisocaproate  

is produced during the oxidation of leucine via the branched-chain alpha-keto acid 

dehydrogenase complex, while 3-hydroxybutyrate arises from the oxidation of fatty 

acids catalyzed by 3-hydroxybutyrate dehydrogenase. Under conditions of glucose 

deprivation, cells may resort to beta-oxidation of fatty acids as an energy source, 

inducing metabolic pathways to enhance fatty acid availability and utilization through 

glycogen breakdown and de novo lipogenesis. In in vitro studies have demonstrated that 

low glucose levels trigger increased expression of genes involved in fatty acid uptake 

and beta-oxidation, as well as elevated activity of beta-oxidation enzymes such  

as carnitine palmitoyltransferase-1 (CPT-1) and acyl-CoA oxidase, which are crucial  

for fatty acid transport into the mitochondria and the initiation of beta-oxidation. 
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4.2.The sensitivity of the HT1080 cell’s metabolome to hypoxia, normoxia  

and hyperoxia at each interval time point. 

Since there isn’t a particular study described the metabolic-sensitivity 

regulations term to various oxygen concentrations. However, It has been demonstrated 

that, culture cancer cells at high oxygen concentration (~18%) can effect reactive oxygen 

species (ROS) production [77], redox homeostasis [78], metabolism, mitochondrial 

networks [79], and therapy response [80], and showed differentially expressed genes 

(DEGs) on cell-type specific manner to 5% or 18% O2 for 14 days incubation on LNCaP, 

SH-SY5Y, Huh-7, and PC-3 cell lines [81]. Moreover, Alva, R et al. also suggested that, 

the hyper-physiological/non-physiological O2 levels at standard cell culture hyperoxia, 

may affect experiments results and their interpretation compered to in vivo [81,82].  

 

We already explained in details about uridine-diphosphate-N-

Acetylglucosamine (UDP-GlcNAc) cellular mechanism and regulation during 

cultivation time in each oxygen concentration as nutrient-sensor metabolite in section 

4.1. 

 Here, we have been found compered its regulation to the oxygen 

concentrations in each incubation time showed no sensitivity to oxygen concentration 

between 6% and 21% after 12h and highly sensitive after 36h of incubation. The uridine-

diphosphate-N-Acetylglucosamine (UDP-GlcNAc) is a substrate for O-linked β-N-

Acetylglucosamine (O-GlcNAc) transferase (OGT) [83]. Observed by others, elevating 

O-GlcNAcylation is directly affected by increasing the level of its substrate UDP-

GlcNAc. Moreover, reducing O-GlcNAcylation in cancer cells will induced 

endoplasmic reticulum (ER) stress and cells apoptosis [83,84]. Our obtained results 

under normoxia and hyperoxia are cells well oxygenated showed an increase level  

of UDP-GlcNAc, therefore induce O- GlcNAcylation especially after 12h of incubation. 

However, the high sensitivity mechanism of the cells to oxygen concentration after 36h 

still unclear, which could be explained that after 12h under normoxia 6% with glucose 

availability and presence of oxygen, cells try to maximize the accumulation of UDP-

GlcNAc and accelerate O- GlcNAcylation for installing N-Acetylglucosamine  

to proteins, lipids and proteoglycans as in hyperoxia 21%. Furthermore, after 36h  

with glucose starvation which reduced the HBP flux and UDP-GlcNAc accumulation, 
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thus, reduce O- GlcNAcylation may impair unfolded protein response (UPR)  

and trigger apoptosis through BCL2-family (CHOP) [84].  

Furthermore, N-acetylasparate (NAA) play important role to maintain cells 

growth, suppressing ER stress and cell death through increasing the intracellular UDP-

GlcNAc biosynthesis under low glucose concentration [85]. From our results we found, 

the intracellular N-acetylasparate (NAA) share the same trend as UDP-GlcNAc  

with no distinguish between 6% and 21% O2 after 12h of incubation. It has been found 

that, the intracellular N-acetylaspartate (NAA) breakdown will limit the cells growth 

and leads to ER stress in vivo. Moreover, the main role of N-acetylasparate (NAA)  

to increase cells survival to glucose starvation [78]. Our indication showed  

the synergetic sensitivity of both UDP-GlcNAc and N-acetylasparate (NAA) under 6% 

or 21% after 12h of incubation [86].  

In addition to choline and O-phosphocholine sensitivity under hypoxia, 

normoxia and hyperoxia. Here, we have found that, O-phosphocholine  

was significantly accumulated and sensitive at hypoxia than both normoxia  

and hyperoxia.. However, we have found no sensitivity to normoxia 6% and hyperoxia 

21% after 24h and 36h of incubation. Moreover, From pervious section 4.1.  

which explored in more details the time-course effect in total choline compounds 

regulation at each oxygen concentrations (hypoxia, normoxia and hyperoxia) and their 

mechanism environmental stress. Our indication showed that the normoxia 6%  

and hyperoxia 21% didn’t affect the enzymatic activity of via choline kinase (CK), 

phosphatidylcholine-specific phospholipase C (PC-PLC) and phosphatidylcholine-

specific phospholipase D (PC-PLD) leading to produce at same level of intracellular  

O-phosphocholine. In contrast, were highly sensitive to hypoxia 1% by upregulation  

of intracellular O-phosphocholine. 

Moreover, from MVA analysis revealed 4 common extracellular metabolites 

across incubation time points (12h, 24h and 36h) (Figure 19, 20, 21) and showed  

the extent of sensitivity of these metabolites to hypoxia 1%, normoxia 6%  

and hyperoxia 21% including pyruvate, 3-methyl-2-oxovalerate,  

S-Adenosylhomocysteine and 3-hydroxybutyrate by showing high sensitivity  

to the gradient of oxygen concentrations and define significant differences between 

hypoxia 1%, normoxia 6% and hyperoxia 21% through all incubation time point.  

It has been observed that, under hypoxia the pyruvate play a vital role to generate 



108 
 

lactate, suppresses AMPK activation and induce NAD+/NADH ratio, moreover, 

mitigate ATP insufficiency for cells proliferation under hypoxia condition.  

Another piece of evidence provided that, even well oxygenated cells can release 

pyruvate in favor of hypoxic cells and use it as an oxygen surrogate [87]. Herein,  

we have found that, the level of extracellular pyruvate under hypoxia 1% was lowest 

compered to normoxia 6% and hyperoxia 21% and showing by high sensitivity 

presented an oxygen concentration and the time-dependent manners in HT1080 cells 

line. Additionally, we identified that the monocarboxylate transporter (MCT) plays  

a crucial role in regulating extracellular pyruvate levels under different oxygen 

conditions, acting as both a transporter and sensor for oxygen concentration.  

These findings provide new insights into the dynamic response of cells to changes  

in oxygen levels and the impact of oxygen levels on cellular metabolism. Further 

studies are needed to fully understand the underlying mechanisms and potential 

implications for cellular function and survival under different oxygen conditions. 

Similar affect showed the complexity of the pyruvate functions not just as a bridge 

between glycolysis and oxidative phosphorylation reactions but also as a key element 

between hypoxic and normoxic cells communication. Moreover, the crosstalk between 

hypoxic cells and cancer-associated fibroblasts “reverse Warburg effect “in vitro  

and in vivo by uptake of lactate which is produced from hypoxic cells and generates 

pyruvate to deliver it to hypoxic cells through tumor stroma [88].  

In the microenvironment of cancer, cancer-associated fibroblasts (CAFs) exert  

a significant influence, playing a dominant role in shaping the homeostasis  

of the tumor microenvironment (TME). The complex interactions between cancer cells 

and surrounding CAFs have been shown to significantly impact cancer growth, 

metabolism, metastasis, and progression. This understanding has led  

to the development of the "dual-chamber" or "Reverse Warburg effect" model, 

highlighting the critical role of CAFs in the cancer microenvironment [89]. 

Additionally, methionine (Met), homocysteine (HCY),  

S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM) are the main 

components of methionine metabolism in cancer cells [89]. It has been reported that, 

the total homocysteine (tHcy) elevation in the human plasma is associated with 

multiple diseases and cancer and correlated with elevation of cellular  

S-Adenosylhomocysteine (SAH) [90–95]. Moreover, the methionine is necessary  
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for S-adenosylmethionine (SAM) generation, thereafter, the SAM is predominant  

of methyl donor for methylation of DNA through catalysis reversible reaction  

to S-adenosylhomocysteine (SAH) via the methyltransferase nicotinamide  

N-methyltransferase (NNMT) [96]. However, a study showed that, under hypoxia 

condition (1% oxygen) compared to normoxia condition (20% oxygen) the methionine 

metabolism was induced in RCC Cells as a result of LAT1 upregulation and increase 

uptake of methionine [97]. Oppositely, we have found that, methionine was highly 

uptake under normoxia 6% and hyperoxia 21% compared to hypoxia 1%, in another 

hand, releasing S-Adenosylhomocysteine (SAH) to extracellular milieu in oxygen 

concentration-dependent manner. This indication could be related to the variation  

of hypoxia action to tumor types [97] at first, and more to the correlation to the GNMT 

that regulate the SAM/SAH ratio in cytosolic space [98] and/or the activity  

of S-adenosylhomocysteine hydrolase (SAHH) that contribute to tumorigenesis [99]. 

Therefore, the mechanism behind this phenomena might be connect to two scenarios, 

first, an increase the LAT1 activity to induce methionine uptake and releasing  

S-Adenosylhomocysteine to the media to restore the balance of cellular SAM/SAH 

ratio. While, the second scenario is S-adenosylhomocysteine hydrolase (SAHH)  

and downregulation or inactivation which leads to accumulate cellular  

S-Adenosylhomocysteine and effect DNA methylation and an excess of it released  

to extracellular space. It’s worth to mention that, S-adenosylhomocysteine hydrolase 

(SAHH) inactivation might serve cancer cell proliferation showed by Leal J.F. et al. 

results which revealed an inactivation of SAHH will inhibit p53 transcriptional activity 

and impairs DNA damage-induced transcription of p21 [99]. 

 

5. Conclusion 

In this chapter, we investigated the effect of oxygen concentrations  

on the extracellular and intracellular metabolome of HT1080 cells over time, using  

1H NMR. We found that hyperoxia had a distinct metabolic phenotype compared  

to hypoxia and normoxia, which could have implications for standardizing in vitro 

studies. Specifically: 

1. Intracellular metabolites were downregulated at hypoxia and normoxia, while 

60% of significant metabolites at hyperoxia were upregulated over time. 
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Comparison between different oxygen concentrations showed little sensitivity 

between hypoxia and normoxia after 12h, 24h, and 36h of incubation (72%, 93%, 

and 83% sensitivity, respectively). 

2. Extracellular metabolites were mostly downregulated at hypoxia  

and upregulated at normoxia, except for fumarate which was upregulated  

at both. At hyperoxia, 30% of significant metabolites were upregulated over time. 

Sensitivity to oxygen concentration fluctuated among significant extracellular 

metabolites, with 50% showing no sensitivity between hypoxia and normoxia 

after 12h of incubation, 78% showing no difference between normoxia  

and hyperoxia after 24h, and almost 46% showing high sensitivity to all oxygen 

concentrations after 36h. 

Our results suggest that oxygen concentration is a crucial factor to consider 

when studying the intracellular and extracellular metabolome, as it can result  

in significant metabolic variability. Therefore, researchers should pay attention  

to the oxygen concentration used in their experiments to avoid undesirable results that 

no connected to in vivo studies. 
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1. Introduction  

The common form of cancer is solid tumors, and tumor hypoxia occurs  

in all human malignant tumors [1–3]. Hypoxia develops within tumors  

as a consequence of rapid and uncontrolled tumor cell proliferation with abnormal 

mass and dysfunction of the tumor vasculature [4], leading to quick depletion  

of oxygen and nutrient supply. Hence, tumors develop different approaches  

to facilitate oxygen delivery, for instance, by inducing angiogenesis proteins  

and forming new vessels by releasing hypoxia-inducible angiogenic factors like 

endothelial growth factor (VEGF) and increasing diffusion exchange of nutrients  

and oxygen reperfusion [4,5]. Moreover, the tumors acquisition of cell migration 

characteristics and metastasis via the epithelial-to-mesenchymal transition (EMT) 

phenotype allows the cell to relocate to more sufficient sources of nutrients and oxygen 

[6]. We believe that during cancer cells uncontrolled proliferation the normoxic cells 

become hypoxic, the same situation happened, when the hypoxic cells induce hypoxic-

angiogenic factors for nutrients and oxygen supply will become normoxic, and both 

transitions develop different phenotypes of cancer cells (hypoxic-normoxic 

transitions).  

In this study, we aimed to establish an in vitro model of hypoxia and normoxia 

transitions by inducing hypoxia-reoxygenation (RHC) and normoxia-deoxygenation 

(DNC) to investigate the intracellular and extracellular metabolic profiling  

on the HT1080 cell line. 

 

2. Materials and Methods 

2.1. Cell Culturing in MEM 

The HT1080 (human fibrosarcoma cell line) were purchased from American 

Type Culture ((ATCC® CCL-121™). Cells were kept for 72 h in T 75 cm2 tissue culture 

flasks, in particular MEM culture medium. All the cells were used within the first 10 

passages from unfreezing. The experiments start first by harvest the amount of cells 

required for all experiments. The cells were cultivated in Minimum Essential Medium 

Eagle (MEM) culture medium (Sigma Life Science, Sigma-Aldrich, Gillingham, UK) 

with 10% fetal bovine serum (FBS) (Biowest, origin South America, Riverside, MO, 

USA), 1% penicillin/streptomycin solution (HyClone, GE Healthcare Life Sciences, 
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Wien, Austria), 1% L-glutamine solution (Trypsin-EDTA solution, Sigma-Aldrich, SL, 

USA), 1% MEM Non-essential Amino Acid Solution (100x) (Sigma-Aldrich, SL, USA).  

 

2.2.Experimental design 

The HT1080 cells line was seeded in 75 cm2 flasks at a density of 1 x107 cells 

per plate, For each plate we added 10 mL of media. The culture plates were incubated 

at hypoxia 1% and normoxia 6% O2, in CO2 –incubator with O2 control (Binder, 

Tuttlingen, Germany) 5% CO2 conditions at 37 °C. For the reverse to hypoxia 

(normoxia-deoxygenation) samples were conducted by 9 flasks and were kept  

at normoxia 6% for 12h in triplicate for cells and medium extraction as normoxia 6% 

after 12h of incubation is the baseline. The remaining 6 flasks transferred from 

normoxia 6% after 12h to hypoxia 1% for an addition time 12h and 24h,  

then we collected samples for each period of incubation time for cells and medium 

extraction. Likewise for the reverse to normoxia (hypoxia-reoxygenation). The 9 flasks 

were kept at hypoxia 1% for 12h in triplicate for cells and medium extraction as hypoxia 

1% after 12h of incubation is the baseline. The remaining 6 flasks transferred from 

hypoxia 1% after 12h to normoxia 6% for an addition time 12h and 24h.  

Then we collected samples for each period of incubation time from normoxia for cells 

and medium extraction (Figure 1).  

 

Figure 1. Experimental graphical design for all samples and methodology for NMR 

experiments. Blue, normoxia; red, hypoxia. 
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2.3. Culture medium extraction  

Each time interval point at normoxia for 12h and deoxygenized normoxic cells 

condition (DNCs) at hypoxia for 12h and 24h. Moreover, at hypoxia for 12h  

and reoxygenized hypoxic cells (RHCs) for 12h and 24h, and was collected 1 mL from 

each culturing flask, then immediately stored at −80 °C. At the beginning of the analysis 

the medium was thawed out at room temperature and vortexed. Transfer 400 μL 

medium from each sample to a new Eppendorf tube with methanol 1.2 mL (LC-MS 

grade, Merck, Darmstadt, Germany). The mixture of medium-methanol was shaken 

for 10 min at 30 Hz (Tissiulyzer LT, Qiagen, Germantown, MD, USA), then incubated 

at −20 °C for 20 min and centrifuged for 30 min at 4 °C, 12000 rpm. Supernatant  

in 1 mL was transferred to a new Eppendorf tube and evaporated to dryness under  

a vacuum centrifuge (JWElectronic WP-03, Warsaw, Poland) at 40 °C, 1405 rpm. After 

evaporation, the samples were resuspended in 600 μL PBS buffer (pH, 7.3, 20% D2O, 

3mM TSP). Finally, 550 μL was transferred to an NMR cuvette (5 mm, SP type, ARMAR 

Chemicals, Döttingen, Switzerland). Prepared samples were stored at 4 °C until NMR 

spectra acquisition. 

 

2.4.Cells extraction 

After we reached 85-90% confluence at each time interval point mentioned 

above, the medium was removed from each flask, and the cells were washed with PBS 

(Phosphate Buffered Saline, Sigma-Aldrich, SL, USA). After that, the cells  

were detached by adding 5 mL of trypsin-EDTA (Trypsin-EDTA solution, Sigma-

Aldrich, SL, USA), and incubated for 5 min at 5% CO2 conditions at 37 °C. The cells 

suspension was centrifuged for 5 min at 21 °C, 1940 rpm. The supernatant  

was discarded and the cell pellet was washed with PB (Phosphate buffered saline, 

Sigma-Aldrich, SL, USA), and centrifuged once again. Finally, the supernatant  

was removed and the cells were kept at −80 °C before extraction. The cell pellet  

was thawed at room temperature 25 °C and, the pallet was mixed with 1.5 mL of cold 

methanol (LC-MS grade, Merck, Darmstadt, Germany) together with 7mm stainless 

steel beads (Qiagen GmbH, Hilden, Germany), and was homogenized for 10 min at 30 

Hz (Tissiulyzer LT, Qiagen, Germantown, MD, USA), then incubated at −20 °C for 20 

min, then the samples were centrifuged for 30 min at 4 °C, 12000 rpm. 1mL  
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of Supernatant was transferred to a new Eppendorf tube and evaporated the samples 

to dryness under a vacuum centrifuge (JWElectronic WP-03, Warsaw, Poland) at 40 °C, 

1500 rpm. After evaporation, the samples were kept at -80 °C until NMR analysis. 

Evaporated samples were thawed at room temperature 25 °C and re-suspended in 600 

μL PBS buffer (pH, 7.4, 20% D2O, 0.33 mM of TSP). Finally, 550 μL was transferred  

to an NMR tube (5 mm, SP type, ARMAR Chemicals, Döttingen, Switzerland).  

The prepared samples were stored at 4 °C until NMR spectra acquisition. 

 

2.5.Cells counting measurement  

The cells growth was conducted separately, HT1080 cell lines were plated  

into a 6-wells plate at a cell density of 1 x 106 cells per well. The plates were cultivated 

in 12h normoxia 6% and the transferred plates from normoxia 6% after 12h to hypoxia 

1% for 3h, 6h, 12h and 24h. Also after 12h hypoxia 1% and transferred plates  

from hypoxia 1% to normoxia 6% for 3h, 6h, 12h and 24h, in CO2 –incubator with O2 

control (Binder, Tuttlingen, Germany) 5% CO2 conditions at 37 °C. For cell viability, 

the cells were first trypsinzed and then stained with 0.4% Trypan Blue (Sigma, USA)  

in PBS for 1-3 min at room temperature, then counted by a hemocytometer (Brand, 

Wertheim, Germany). The growth curve was plotted. The population doubling time 

and growth rate were calculated during the exponential growth phase of the cells using 

the equations:  

1. Cell doubling time (h): 

                   Td= (𝑇2 − 𝑇1) .
ln(2)

ln (
𝑞2

𝑞1
)
 

2. Growth rate cells (h): 

                    gr = 
ln(

𝑞2

𝑞1
)

𝛥𝑡
  

Td = Doubling period (time it takes for object to double in number) 

gr = Growth rate 

(T2-T1) or Δt = Duration time at the exponential growth. 

q2 = the number of cells at time T2. 

q1 = the number of cells at time T1. 
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2.6. NMR data acquisition  

The 1H NMR spectra of cells and post-cultured medium samples  

were recorded at 300 K using the Avance II spectrometer (Bruker, GmBH, Bremen, 

Germany). The proton operation frequency was set at 600.58 MHz. The 1D 1H NMR 

spectra were recorded using a CPMG pulse sequence with water presaturation 

(cpmgpr1d in Bruker notation). For each sample, the spectra parameters  

were set respectively, width, 20.01 ppm; 128 scans; spin-echo delay of 400 μs; 80 loops; 

time domain of 64k, acquisition time of 2.73 s, and relaxation delay of 3.5s. 

 

2.7. Metabolites Identification NMR  

The identification of resonance signals was obtained by assignments 

published in the literature, Chenomx software (v 8.5 Chenomx Inc., Edmonton, 

Canada), and online database Biological Magnetic Resonance Data Bank [7],  

and Human Metabolome Database [8]. For intracellular metabolome 39 metabolites 

were identified (Table 1).  

 

2.8. Processing for Data Analysis  

The spectra were manually phased, than baseline-corrected with MestReNova 

software (Mestrelab Research v 14.1.1), and referenced to TSP signal group (δ = 0.000 

ppm) for both types of samples. The spectra a prior were normalized to the constant 

sum of TSP resonance signal. The signals of water was removed from analysis.  

The icoshift algorithm and correlation optimized warping algorithm (COW) (if needed) 

was used for the alignment of resonance signals both implemented in MATLAB  

(v R2014a, MathWorks Inc., Natick, MA, USA) [9,10]. The sum of data points  

of the overlapping and non-overlapping resonances was obtained for calculation  

of relative intensity of identified metabolites resonance signals for Intracellular, 

however, for extracellular the data matrix was calculated individually for each spectra 

to obtain relative intensity of NMR measured metabolites. Before statistical analysis 

the relative intensity values of identified metabolites were normalized to respective cell 

number that was determined by each incubation time point after 12h in normoxia  

and reverse to hypoxia after 12h and 24h. In addition, after 12h in hypoxia and reverse 

to normoxia after 12h and 24h. Finally, quantified relative intensity of post-culture 
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media extracts and cells extracts for further analysis were prepared as a separate data 

matrices. 

 

2.9.Data analysis 

2.9.1. Univariate Analysis 

The univariate analysis was calculated by using Statistica Software v.13  

on relative intensity values of assigned intracellular and extracellular metabolites 

datasets with respect of interval time point for 12h normoxia (referred as 0h) and DNCs 

for 12h and 24h at hypoxia. In addition for 12h hypoxia (referred as 0h) and RHCs  

for 12h and 24h at normoxia. Multiple comparisons based on incubation time  

were tested by one-way ANOVA, Tukey’s multiple-comparison posttest  

and multiplicity adjusted p value was calculated to account for multiple comparisons 

with family-wise significance and confidence level at α = 0.05 (95% confidence interval). 

The boxplots were obtained by Rstudio (Rstudio Ver.R 3.0.1,Inc., Boston, NA, USA) 

based on triplicates for each cultivation time point from normoxia to hypoxia  

and from hypoxia to normoxia. 

 

2.9.2. Multivariate Analysis (MVA)  

The multivariate data analysis was performed using SIMCA software (Ver. 

17.0, Sartorius, Göttingen, Germany). The relative intensity values of assigned 

intracellular and extracellular metabolites were prepared as separate data matrices.  

A priori multivariate analysis variables were UV scaled and sample order  

was randomized. The MVA was divided into two parts unsupervised exploratory 

analysis and supervised regression analysis, by The Principal Component Analysis 

(PCA) was used to show the overall clustering of data and determine potential outliers 

and the partial least squares regression model (PLS-R) with X block containing 

metabolites relative intensity and Y -block as incubation time points for reoxygenation 

hypoxic cells (RHCs) and deoxygenation of normoxic cells (DNCs) to build a linear 

model and predict the models parameters, such as the goodness-of-fit parameter R2 

which, used to evaluate the quality of the model together with the predictive validation 

parameter Q2.  

The most important metabolites identified by PLS-R model were selected 

based on variable importance in projection (VIP) score above 1.00. The analysis  

of variance of cross-validated residuals (CV-ANOVA) for the partial least squares 
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regression model (PLS-R) used a significance level at alpha= 0.05 to assess model fit 

quality. 

 

3. Results 

3.1. Cell growth curves 

The cells growth was assessed by differences in the cells number calculated  

to determine the growth ratio, which, was done separately in 6 wells plate, without 

changing the media during all experiments.  

Our direct counting assay revealed variations in the growth of HT1080 cells 

under deoxygenation and reoxygenation conditions. These growth differences  

are illustrated in (Figure 2). We observed that under hypoxia (1% O2) and normoxia 

(6% O2) during a 12h of incubation, the cells entered an exponential growth phase,  

with a population-doubling time (PDT) of 36.6h, 35.6h and a growth rate of 0.019, 0.019 

cell per hour, respectively. However, during RHC condition the cells went through 

stationary phase for 6h instantaneously entered once again the an exponential growth 

phase, with a population-doubling time (PDT) of 73.4h and a growth rate of 0.009  

per hour. Unlike DNC condition leads to a deterioration in cell growth. 

Figure 2. The HT1080 cell growth curve for studied time intervals points to RHC and DNC conditions. 

The line points error bars were obtained from the standard error of the mean (SEM). Red line— hypoxia 

1%; red line — normoxia 6%; Blue line.  
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3.2. Time-dependent effect on HT1080 cell line metabolome during oxygen 

concentrations reverse approaches 

Our results of 9 samples in total from cells extraction and 9 samples from post-

cultured medium extraction at each incubation time point for RHC and DNC cell 

conditions were studied. We conducted a 1H NMR-based metabolomics analysis  

and 41 metabolites were successfully assigned in cells extraction respectively (Figure 

3, Table 1). 36 metabolites were successfully assigned from post-cultured medium 

extraction, besides 3 unknown metabolites (Figure 4, Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The representative 1H NMR spectrum obtained from cells extracts (intracellular)  

of HT1080 after RHC and DNC. (a) Full 1H-NMR spectrum from δ 0.5 to δ 10.00; (b) Enlarged 

spectrum from δ 10.00 to δ 6.5; (c) Enlarged spectrum from δ 5.0 to δ 2.7; (d) Enlarged spectrum 

from δ 2.7 to δ 0.5. The metabolites were identified from 1- 41 as mentioned from Table 1 
respectively. 

 

 

 

(a) (b) 

(c) (d) 
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Table 1. The chemical shifts and signal multiplicity of HT1080 cells extract metabolome 

identified by 1H NMR spectroscopy. 

No Metabolites 
 Peak 

Assignments 
Peak Centers (ppm) HMDB ID 

1 NAD+ 
s 

 

 8.409, d (9.127), d (8.827), s 

(9.321), m (8.167) 
HMDB0000902 

2 1-Methylnicotinamide s 
s (9.271), d (9.126), 8.827, s 

(8.185), s (4.470) 
HMDB0000699 

3 AMP s 8.581, s (8.258) HMDB0000058 

4 IMP s 8.555, s (8.222) HMDB0000175 

5 Formate s 8.44 HMDB0304356 

6 Oxypurinol s 8.201 HMDB0000786 

7 Hypoxanthine s s (8.187), 8.182 HMDB0000157 

8 UMP d 8.085, m (5.980) HMDB0060282 

9 
UDP-N-

Acetylglucosamine 
d 

7.932, d (5.967), dd (5.502), dd 

(4.350), m (4.274),s (2.066) 
HMDB0000290 

10 Phenylalanine m 7.419, m (7.367), d (7.320) HMDB0000159 

11 Tyrosine m 7.182, d (6.890) HMDB0000158 

12 π-Methylhistidine s 7.101, s (3.738) HMDB0000479 

13 Fumarate s 6.506 HMDB0000134 

14 myo-Inositol m 4.055, t (3.612), dd (3.525) HMDB0000211 

15 2-Hydroxyglutarate m 4.01 HMDB0059655 

16 Creatine s 3.919 HMDB0000064 

17 Aspartate dd 3.889 HMDB0000191 

18 Threonine d 3.58 HMDB0000167 

19 Glycine s 3.549 HMDB0000123 

20 Taurine t 3.413, t (3.252) HMDB0000251 

21 
Methanol (residual of 

extraction) 
s 3.348 HMDB0001875 

22 
sn-Glycero-3-

phosphocholine 
s 3.216 HMDB0000086 

23 O-Phosphocholine s 3.207 HMDB0001565 

24 Choline s 3.192 HMDB0000097 

25 β-Alanine t 3.17 HMDB0000056 

26 Creatinine s 3.029 HMDB0000562 

27 Glutathione dd 2.972, dd (2.926) HMDB0000125 

28 Asparagine t 2.851 HMDB0000168 

29 Glutamine m 2.462 HMDB0000641 

30 Succinate s 2.391 HMDB0000254 

31 Pyruvate s 2.368 HMDB0000243 

32 Glutamate m 
t (3.748), 2.354, m (2.117), m 

(2.041) 
HMDB0000148 

33 Acetate s 1.906 HMDB0000042 

34 Alanine d 1.467 HMDB0000161 

35 Lactate t 1.315, q (4.103) HMDB0000190 

36 L-1 LDL&VLDL 1.259 CH3−(CH2)n−  
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37 Ethanol t 1.172 HMDB0000108 

38 Valine d 0.977, d (1.029) HMDB0000883 

39 Isoleucine d 0.998, t (0.927) HMDB0000172 

40 Leucine t 0.955 HMDB0000687 

41 L-2  LDL&VLDL 0.867 CH3−(CH2)n−  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The representative 1H NMR spectrum obtained from post cultured medium 

(extracellular) extracts of HT1080 RHC and DNC. (a) Full 1H-NMR spectrum from δ 0.5 to δ 

10.00; (b) Enlarged spectrum from δ 8.5 to δ 6.5; (c) Enlarged spectrum from δ 5.0 to δ 2.7; (d) 

Enlarged spectrum from δ 2.7 to δ 0.5. The metabolites were identified from 1- 41 as mentioned 

from Table 2 respectively. 

 

Table 2. The chemical shifts and signal multiplicity of HT1080 post cultured medium 

extract metabolome identified by 1H NMR spectroscopy. 

No Metabolites 
 Peak 

Assignments 
Peak Centers (ppm) HMDB ID 

1 Formate s 8.44 HMDB0304356 

(a) (b) 

(c) 

(d) 
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2 S-Adenosylhomocysteine  s 8.38,  s (8.27) HMDB0000939 

3 ATP s 8.264 HMDB0000538 

4 Unknown_1 s 8.104, s (7.289) - 

5 Hypoxanthine s 8.188, s (8.20) HMDB0000157 

6 Histidine s 8.012, s (7.058) HMDB0000177 

7 Tryptophan d 7.543, d (7.722) HMDB0000929 

8 Phenylalanine m 
7.323, m (7.423), m 

(7.371) 
HMDB0000159 

9 Tyrosine m 7.185, m (6.893) HMDB0000158 

10 Unknown_2 d 6.64 - 

11 Fumarate s 6.506 HMDB0000134 

12 Pyroglutamate dd 4.171, m (2.407) HMDB0000267 

13 myo-Inositol dd 
4.065, t (3.615), dd 

(3.544), t (3.287) 
HMDB0000211 

14 Fructose d 

m (4.016), m (4.00), m 

(3.895), m (3.818), 3.790, 

d (3.709), d (3.703) 

HMDB0000660 

15 Glycine s 3.558 HMDB0000123 

16 Proline m 3.414 HMDB0000162 

17 Methanol (residual solvent) s 3.349 HMDB0001875 

18 Arginine m 3.241 HMDB0003416 

19 Choline s 3.198 HMDB0000097 

20 Ornithine t 3.054 HMDB0000214 

21 Lysine t 3.027, m (1.723) HMDB0000182 

22 Asparagine t 2.928, t (2.849) HMDB0000168 

23 Aspartate dd 2.689 HMDB0000191 

24 Methionine t 2.636 HMDB0000696 

25 2-Oxoisocaproate d 2.607 HMDB0000695 

26 Methylamine s 2.601 HMDB0000164 

27 Glutamine m 2.424, m (2.141) HMDB0000641 

28 Pyruvate s 2.37 HMDB0000243 

29 Glutamate m 2.35, m (2.039) HMDB0060475 

30 Acetate s 1.9 HMDB0000042 

31 Alanine d 1.47 HMDB0000161 

32 2-Phenylpropionate d 
m (7.277), m (7.348), m 

(7.370), 1.123 
HMDB0011743 

33 Lactate t 1.318, q (4.112) HMDB0000190 

34 Methylmalonate d 1.211 HMDB0000202 

35 3-Methyl-2-oxovalerate d 1.084, t (0.879) HMDB0000491 

36 Unknown_3 d 1.109 - 

37 Valine d 
0.977 , d (3.610), m 

(2.260), d (1.030) 
HMDB0000883 

38 Isoleucine d 0.997, t (0.926) HMDB0000172 

39 Leucine t 0.944 HMDB0000687 

 

 



131 
 

3.2.1. The metabolic profiling of the normoxia-deoxygenation (DNC) 

approach  

For exploring the changes of the intracellular and extracellular metabolome, 

we built a PCA score and loading plots based on the 1H NMR dataset, also the PLS-

regression model was constructed to predict the behavior of dependent variables at 

each incubation time points. It must be mentioned that 12h at normoxia condition is 

referred to 0h, and DNC for 12h and 24h at hypoxia. Furthermore, the models were 

correctly validated and within obtained parameters the R2X (cum), R2Y (cum) Q2(cum) 

for score plot and CV-ANOVA p-values for intracellular cells and extracellular post-

culture medium extracts for all chosen comparison and time point are collected in 

(Table 3 and 4). 

 

 Table 3. The multivariate analysis models summary of cells extract (intracellular) NMR- 

based metabolome in comparisons between 0h (after 12h in normoxia 6%), 12h and 24h 

at DNC. 

       

 

Table 4. The multivariate analysis models summary of post cultured medium 

(extracellular) NMR- based metabolome in comparisons between 0h, 12h and 24h  

at DNC. 

 

From normoxic cells deoxygenation, the PCA score of cells extract 

(intracellular) metabolome revealed a separation tendency among PC1 and PC2 

between normoxia 6% after 12h and reverse to hypoxia 1% after 12h and 24h groups 

(Figure 5a). The PCA loading plots was built and ascribed to the contributions  

of the intracellular metabolites among PC1 and PC2 (Figure 5b). On the other hand,  

the PCA score of post-cultured medium (extracellular) metabolome revealed a slightly 

separation tendency among PC1 and PC2 between normoxia 6% after 12h and reverse 

to hypoxia 1% after 12h and 24h groups (Figure 6a). The PCA loading plots was built 

O2 % 
Incubation Time 

Comparison 

Model 

Type 

PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

Reverse to 

hypoxia 

0h vs 12h vs. 24h PCA 2 9 0.0.73 − − − 

0h vs 12h vs. 24h PLS 3 9 0.929 0.991 0.969 2.38 × 10-2 

0h =12h at normoxia (Reverse to hypoxia) 

 

 O2 % 
Incubation Time 

Comparison 

Model 

Type 

PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

Reverse to 

hypoxia 

0h vs 12h vs. 24h PCA 3 9 0.876 − − − 

0h vs 12h vs. 24h PLS 4 9 0.92 0.989 0.963 3.48 × 10-2 

 0h =12h at normoxia (Reverse to hypoxia) 
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and showed the contributions of the extracellular metabolites among PC1 and PC2 

(Figure 6b). 

In order to explore the metabolites regulations to different oxygen 

concentrations through incubation time points. We build PLS regression model,  

and we found a high correlation between DNC groups through incubation time points 

for intracellular and extracellular datasets, with R2 = 0.9905 and R2 = 0.9887 by using 

just three PLS components (Figure 5c), and four PLS components (Figure 6c), 

respectively. The root-mean-square error of cross-validation (RMSECV) was 3.19h  

and 2.45h for intracellular and extracellular datasets, respectively, and did reach  

a statistically significant difference between groups by cross-validated predictive 

residuals of the PLS-R (CV-ANOVA) (Table 3, 4).  
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Figure 5. Graphical representation for 1H-NMR relative integral data driven models 

from HT1080 cells extracts (intercellular) after 12h normoxia (0h) (blue color) and DNC 

samples after 12h (red color) and 24h (dark red color). (a) The Principal Component 

Analysis (PCA) scores plot. (b) The Loadings plots for PCA model (c) Prediction plot 

from the partial least squares-regression model (PLS-R). (d) The Variable importance  

in projection (VIP) score plot for PLS-R model (VIP >1.00).  

 

The most influential intracellular metabolites in DNC with VIP (variable 

importance in projection) greater than 1.00 revealed 19 metabolites (UDP-N-

acetylglucosamine, leucine, tyrosine, valine, isoleucine, IMP, alanine, creatinine, 

taurine, creatine, phenylalanine, NAD+, π-methylhistidine, β-alanine, glycine, 

glutamine, sn-glycero-3-phosphocholine, glutamate, AMP) (Figure 5d). However,  

for extracellular revealed 15 metabolites (fumarate, ornithine, alanine, aminoimidazol, 

acetate, methylmalonate, asparagine, arginine, formate, glycine, histidine, tryptophan, 

unknown-1, glutamine and phenylalanine) (Figure 6d).  
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Figure 6. Graphical representation for 1H-NMR relative integral data-driven models  

from HT1080 post cultured medium (extracellular) after 12h normoxia (0h) (blue color)  

and DNC samples after 12h (red color) and 24h (dark red color). (a) The Principal 

Component Analysis (PCA) scores plot. (b) The Loadings plots for PCA model (c) 

Prediction plot from the partial least squares-regression model (PLS-R). (d) The variable 

importance in projection (VIP) score plot for PLS-R model (VIP >1.00). 
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In addition, from 19 significant and important intracellular metabolites  

for DNC with VIP above 1.00, we removed glutamate and O-phosphocholine  

from further calculation because didn’t pass the ANOVA test. The 17 remain significant 

intracellular metabolites revealed with three DNC states after 12h and 24h compared 

to normoxic cells after 12h (0h) as follows (Figure 7):  

1. Gradation of upregulation including tyrosine, phenylalanine, leucine 

and valine. 

2. Slow upregulation-state of glycine and alanine with no significant 

difference between normoxic cells after 12h (referred as 0h) and reversed 

normoxic cells after 12h at hypoxia, thereafter, upregulated after 24h. 

3. Fast upregulation–state of the reversed normoxic cells after 12h and 24h 

at hypoxia for the remaining metabolites.  
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Figure 7. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test from cells extract (intracellular) samples 

after 12h normoxia (0h) and DNC after 12h and 24h. Whiskers—1.5 × interquartile range (IQR); 

bar—median; box—range between first quartile (Q1) and third quartile (Q3). Black points—

data points. *Adjusted p value < 0.05.  

 

On the other hand, the combination between the multivariate and univariate 

analysis for DNC revealed 12 important extracellular metabolites with two main type 

of regulations (Figure 8): 

1. Upregulation between normoxic cells 6% after 12h and deoxygenized 

normoxic cells at hypoxia 1% after 12h and 24h such as fumarate, alanine, 

ornithine, acetate, methylmalonate, glycine, histidine, formate  

and asparagine. 

2. Surprisingly, unknown_1 showed an abnormal trend, we didn’t obtain 

any significant difference between deoxygenized normoxic cells  

at hypoxia after 12h and 24h. However, the deoxygenized normoxic cells 

at hypoxia 1% after 12h and 24h were extremely decreased. 
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Figure 8. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test from post cultured medium extract 

(extracellular) samples after 12h normoxia (0h) and DNC samples after 12h and 24h. Whiskers—

1.5 × interquartile range (IQR); bar—median; box—range between first quartile (Q1) and third 

quartile (Q3). Black points—data points. *Adjusted p value < 0.05. 

 

3.2.2 The metabolic profiling of the hypoxia-reoxygenation (RHC) 

treatment 

 This part includes our results from a total of 15 samples from cells extract  

and 15 samples from post-cultured medium extract at each cultivation time points  

for hypoxic cells after 12h referred as (0h) and RHCs after 12h and 24h at normoxia. 

We conducted a 1H NMR-based metabolomics analysis and 39 metabolites 

were successfully assigned in cells extraction respectively, and 37 metabolites  

were successfully assigned from post-cultured medium extraction within 2 unknown 

metabolites. For exploring the changes of the intracellular and extracellular 

metabolome, we built a PCA score and loading plots of the 1H NMR dataset and PLS-

regression model to predict the total scores in each incubation time points (0h, 12h  

and 24h). Furthermore, the models were correctly validated and obtained the R2X 

(cum), good correlation R2Y (cum) and goodness of prediction Q2(cum) scores  

and CV-ANOVA p-values for intracellular cells and extracellular post-culture medium 

extracts in comparisons between incubation time groups (Table 5, 6). 

 

Table 5. The multivariate analysis models summary of cells extract (intracellular) NMR- 

based metabolome in comparisons between 0h, 12h and 24h at RHC. 

       

 

 

O2 % 
Incubation Time 

Comparison 

Model 

Type 

PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

Reverse to 

normoxia 

0h vs 12h vs. 24h PCA 2 9 0.939 − − − 

0h vs 12h vs. 24h PLS 5 9 0.972 0.996 0.877 7.88 × 10-1 

 0h =12h at hypoxia (Reverse to normoxia) 
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Table 6. The multivariate analysis models summary of post-cultured medium 

(extracellular) NMR- based metabolome in comparisons between 0h, 12h and 24h  

at RHC. 

 

From RHC results, the PCA score of intracellular metabolome revealed  

a no clustering and poor separation among PC1 and PC2 between hypoxia 1% after 12h 

and reverse to normoxia 6% after 12h and 24h groups (Figure 9a). PCA loading plot 

was built and showed no contributions of the intracellular metabolites among PC1  

and PC2 (Figure 9b).  

On other hand, the PCA score of extracellular metabolome revealed a slight 

clustering among PC1 and PC2 between extracellular hypoxic cells after 12h  

and reoxygenized hypoxic cells at normoxia 6% after 12h and 24h groups (Figure 10a). 

Moreover, the PCA loading plot was built and showed contributions  

of the extracellular metabolites among PC1 and PC2 (Figure 10b).  

Furthermore, in order to explore the metabolites correlation between hypoxic 

cells after 12h and RHCs at normoxia condition after 12h and 24h. We build PLS 

regression model, and obtained correlation between hypoxic cells and RHCs  

at normoxia condition groups through incubation time points with R2 = 0.9957 (Figure 

9c) and R2 = 0.9965 (Figure 10c) by using five and three PLS components for both 

intracellular and extracellular datasets, respectively. Moreover, the RMSECV of the last 

component of intracellular dataset was equal to 4.51h which is high, thereby, didn’t 

reach statistically significant difference between groups by cross-validated predictive 

residuals of the PLS-R (CV-ANOVA) (Table 5). On the other hand, the RMSECV  

of the last component of extracellular dataset was 1.70h and pass statistically significant 

difference between groups by cross-validated predictive residuals of the PLS-R  

(CV-ANOVA) (Table 6).  

O2 % 
Incubation Time 

Comparison 

Model 

Type 

PC/L

V 
N = 

R2X 

(cum) 

R2Y 

(cum) 

Q2 

(cum) 

CV-ANOVA 

p value 

Reverse to 

normoxia 

0h vs 12h vs. 24h PCA 3 9 0.666 − − − 

0h vs 12h vs. 24h PLS 3 9 0.932 0.997 0.985 1.74 × 10-2 

 0h =12h at hypoxia (Reverse to normoxia) 
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Figure 9. Graphical representation for 1H-NMR relative intensity data driven models  

from HT1080 cells extracts (intercellular) after 12h hypoxia (0h) (red colors) and RHC samples 

after 12h (blue colors) and 24h (dark blue colors). (a) The Principal Component Analysis (PCA) 

scores plot. (b) The Loadings plots for PCA model (c) Prediction plot from the partial least 

squares-regression model (PLS-R). (d) The Variable importance in projection (VIP) score plot 

for PLSR model (VIP >1.00).  
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Figure 10. Graphical representation for 1H-NMR relative intensity data driven models from 

HT1080 post cultured medium (extracellular) after 12h hypoxia (0h) (red color) and RHC 

samples after 12h (blue colors) and 24h (dark blue colors). (a) The Principal Component 

Analysis (PCA) scores plot. (b) The Loadings plots for PCA model (c) Prediction plot from the 

partial least squares-regression model (PLS-R). (d) The Variable importance in projection (VIP) 

score plot for PLSR model (VIP >1.00).  
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From MVA analysis, we obtained 9 influential intracellular metabolites with 

VIP value above 1.00 including L-1, formate, L-2, Asparagine, 1-methylnicotinaamide, 

UDP-N-Acetylglucosamine, glutamate, aspartate and lactate (Figure 9d), thereafter, 

we tested their significant by on-way ANOVA which revealed only 6 important  

and significant metabolites (asparagine, 1-methylnicotinaamide, UDP-N-

Acetylglucosamine, glutamate, aspartate and lactate) with one major regulation  

by down-regulation between 12h at hypoxia and RHCs after 12h and 24h (Figure 11). 

Figure 11. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test from cells extract (intracellular) samples 

after 12h hypoxia (0h) and RHCs samples after 12h and 24h. Whiskers—1.5 × interquartile range 

(IQR); bar—median; box—range between first quartile (Q1) and third quartile (Q3). Black 

points—data points. *Adjusted p value < 0.05.  

 

The extracellular hypoxic cells after 12h referred as (0h) and extracellular 

RHCs after 12h and 24h, the most important extracellular metabolites form VIP 

(variable importance in projection) score with VIP value above 1.00 of PLS-R model  

we obtained 20 influential metabolites (fumarate, glutamate, ornithine, glutamine, 

unknown_2, arginine, unknown_1, ATP, 2-phenylpropionate, fructose, tyrosine, 

lactate, lysine, methionine, phenylalanine, valine, asparagine,  

S-Adenosylhomocysteine, isoleucine and leucine) (Figure 10d) and then tested their 

significant by on-way ANOVA test revealed 17 important and significant metabolites, 

however we exclude the following metabolites such as glutamate, ornithine  
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and S-Adenosylhomocysteine because their lack of significant by ANOVA.  

The remaining 17 metabolites showed with two main type of regulations (Figure 12): 

1. Downregulation of extracellular reversed hypoxic cells at normoxia 6% 

including glutamate, ornithine, glutamine, unknown_2, arginine, 

unknown_1, ATP, 2-phenylpropionate, fructose, tyrosine, lactate, lysine, 

methionine, phenylalanine, valine, S-Adenosylhomocysteine, isoleucine 

and leucine.  

2. Upregulation of the extracellular reversed hypoxic cells at normoxia 6% 

including fumarate and asparagine. 
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Figure 12. Boxplots for metabolites with VIP score above 1.00 identified by PLS-R model  

and statistically significant in one-way ANOVA test from post cultured medium extract 

(extracellular) samples after 12h hypoxia (0h) and RHCs samples after 12h and 24h. Whiskers—

1.5 × interquartile range (IQR); bar—median; box—range between first quartile (Q1) and third 

quartile (Q3). Black points—data points. *Adjusted p value < 0.05.  

 

4. Discussion 

The tumor microenvironment involves a complex interplay of oxygen 

diffusion gradients and nutrient availability that shape the metabolic reprogramming 

and adaptation of cancer cells. This results in a dynamic cell-metabolite phenotype  

in response to deoxygenation and reoxygenation processes, as well as rapid cell 

proliferation and angiogenesis, ultimately driving cancer progression. 

 

4.1.The post normoxia deoxygenation impact on of HT1080 cells metabolome 

For the first time in this study, we have investigated by 1H NMR the varieties 

of intracellular and extracellular metabolic profile of HT1080 cell line during RHC  

and DNC conditions through a period of interval time points. Our results demonstrate 

that after 12h and 24h of incubation for DNCs at hypoxia 1% O2, there was a significant 

increase of various intracellular and extracellular metabolites compared to normoxic 

cells. These findings indicate that even short-term oxygen deprivation can have  

a significant impact on cellular metabolism and the accumulation of metabolites inside 

and outside of the cells. These observations have important implications  

for understanding the metabolic changes that occur in response to oxygen deprivation 

and availability and the potential impact on cellular function and survival.  

It has been showed that, the adaptive metabolic responses to hypoxia involved 

the hypoxia-inducible factors (HIFs) as a bridge between adaptation to low O2 tension, 

therefore, regulate metabolic enzymes and glycolysis components, oxidative 

phosphorylation and redox status [11]. Moreover, HIF-1 arrests mitochondrial 

oxidative metabolism by reducing oxygen consumption [12]. However, the mechanism 

and interaction between these metabolites and their accumulation in the intracellular 

space in relation to oxygen concentration effect are complex and involve multiple 

metabolic pathways and regulatory mechanisms. It also might be affected by other 

factors such as the type of cancer or tissue and the presence of other metabolic stresses. 
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For instance, among most important metabolites were tyrosine and phenylalanine 

which both play important roles in the function of cells system. 

The primary metabolic pathway of phenylalanine is converted to tyrosine,  

a precursor for the synthesis of a range of biologically significant compounds including 

the catecholamines (epinephrine, norepinephrine, and dopamine), thyroid hormones, 

and the pigment melanin. Tyrosine is an integral component of proteins, highlighting 

its crucial role in cellular metabolism [13] (Figure 13).  

 

 

 

 

 

 

 

 

 

 

Figure 13. Overview of phenylalanine and tyrosine metabolism 

 

The metabolic degradation of phenylalanine is primarily accomplished 

through its conversion to tyrosine via phenylalanine hydroxylation at the para 

position. This irreversible reaction is facilitated by the coenzyme biopterin, specifically 

in its active form of tetrahydrobiopterin (H4-biopterin), which undergoes oxidation  

to dihydrobiopterin (H2-biopterin) during the reaction. This reduction is then 

replenished by NADPH-dependent dihydrobiopterin reductase. Phenylalanine 

hydroxylation occurs in the liver and involves the incorporation of molecular oxygen 

(O2) into the para position of phenylalanine and its reduction to water [14]. Moreover, 

it has been demonstrated that, the metabolism of aromatic amino acids (tyrosine  

and phenylalanine) may be impaired in cases of gastroesophageal cancer [15],  

and any changes in phenylalanine hydroxylase activity have been observed  

in instances of inflammation or malignancy [16,17]. This highlights that the tyrosine 

and phenylalanine, as well as tryptophan are elevated in both gastric content  
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and tissues of individuals diagnosed with gastroesophageal cancer. Elevated levels  

of tyrosine and phenylalanine were also noted in the urine of these patients. 

Conversely, the majority of studies examining serum (or plasma) concentrations 

indicate that these amino acids are reduced in the serum (or plasma) of individuals 

with gastroesophageal cancer [16,17], however is very difficult to compare the changes 

occurring in the cell colony with complex organism machinery. Recent research  

has suggested that the increased concentrations of aromatic amino acids in gastric 

content may be due to various mechanisms. One possibility involves the increased 

production of enzymes by invasive cancer cells [18]. These enzymes are able to degrade 

the basement membrane and extracellular matrix, with certain matrix 

metalloproteinase enzymes being upregulated in aggressive cancer cells [19].  

As a result, these aromatic amino acids may be released into the gastric content, leading 

to their increased concentrations [20]. Additionally, increased protein synthesis within 

rapidly growing malignant tissues may also lead to their release into the gastric content 

[21]. Here we have found that, increased levels of intracellular tyrosine  

and phenylalanine after DNCs at hypoxia 1%. This finding is supported by previous 

studies that have shown several mechanisms including reduced their degradation  

by inhibiting the activity of phenylalanine hydroxylase and tyrosine hydroxylase 

enzymes, resulting in higher levels of these amino acids [21,22], besides, increasing 

expression and activity of amino acid transporters, such as LAT1 and ASCT2,  

can increase the uptake of these amino acids into cancer cells [23]. Our findings suggest 

that under hypoxic conditions, activation of genes associated with the inhibition  

of degradation and increased uptake of phenylalanine and tyrosine can lead to elevated 

levels of these amino acids in cancer cells under hypoxic conditions. However,  

our understanding of the role of tyrosine in cancer biology remains limited [24].  

Under hypoxic conditions, several interrelated mechanisms contribute  

to the increased levels of branched-chain amino acids (BCAAs) such as leucine, 

isoleucine, and valine in cancer cells. Here, we have found increase the level  

of intracellular BCAAs of DNCs. Observed by others that, under hypoxia,  

the expression and activity of transporters, such as the system L amino acid transporter 

1 (LAT1), are upregulated, leading to elevated levels of branched-chain amino acids 

(BCAAs) in cancer cells [25]. These transporters play a crucial role in the uptake  

of BCAAs into the cells and their increased activity in a hypoxic environment drives 
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higher BCAA levels, thereby fostering tumor growth and progression for example  

in human glioblastoma (GBM) cell lines and primary GBM cells [25]. Moreover,  

the decreased activity of enzymes involved in the degradation of branched-chain 

amino acids (BCAAs) can result in elevated levels of these amino acids in cancer cells 

under hypoxic conditions. This reduction of BCAA catabolism has been observed  

in several types of human cancers [26,27], including hepatocellular carcinoma [27], 

breast cancer [28], leukemia [29], early pancreatic ductal adenocarcinoma [30],  

and clear renal cell carcinoma [31]. Other studies suggest that BCAA accumulation  

in cancer cells is driven by the decreased activity of enzymes such as branched-chain 

alpha-ketoacid dehydrogenase and an increase in reamination of BCAAs through  

the enzyme BCAT1 [32]. The molecular mechanistic of elevated BCAA levels have been 

linked to the activation of rapamycin complex 1 (mTORC1) pathway [33], which 

regulates cellular processes such as autophagy, lipid synthesis, nucleotide synthesis, 

and protein synthesis, providing a potential target for therapeutic intervention [34]. 

Our findings suggested that the combination of these mechanisms can result  

in increased levels of BCAAs, particularly leucine, isoleucine, and valine, in cancer cells 

under hypoxic conditions compared to post-normoxic cells, which can provide 

important insights into the biology of cancer and potential therapeutic targets  

for the treatment. 

Another pathways that involved on DNCs regulations were glutamate 

metabolism as well as nitrogen metabolism. The metabolic differences between cancer 

cells and normal cells have been well-documented for nearly a century [35]. In addition 

to their reliance on elevated rates of aerobic glycolysis, thereby, cancer cells  

are characterized by a disrupted uptake and utilization of amino acids [36]. Among  

the primary metabolites required to support tumor proliferation is glutamine,  

a non-essential amino acid, which holds a prominent position [37]. Its significance lies 

not only in its ability to provide nitrogen and carbon atoms for various pathways that 

promote growth [38], but also in its crucial role in chromatin modification, cell 

signaling regulation, and anti-oxidative defense [39]. Moreover, glutamine  

can be synthesized from glutamate de novo and can become a conditionally essential 

nutrient during times of stress or excessive growth [37, 39]. However, in the core  

of solid tumors, where a heterogeneous microenvironment and deficient vasculature 

are commonly observed, excessive glutamine consumption can deplete local supplies. 
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As glutamine deprivation may coexist with other microenvironmental abnormalities, 

such as hypoxia, the adaptive mechanisms in response may be more complex [37,40–

43]. Here we have found that, the intracellular glutamine and glutamate have been 

upregulated in comparisons between DNCs and normoxic cells. Observed by others 

that, an increase in glutamine consumption when A549 cells were cultured under low 

oxygen levels (1%) [44]. This was evidenced by the unchanged secretion of glutamate, 

indicating that the net consumption of glutamine was elevated and potentially being 

utilized for biosynthesis [44]. Moreover, the incorporation of glutamine-derived carbon 

into lipids was observed in proliferating cells under both normoxic and hypoxic 

conditions, whereas glutamine can contribute carbon to the biosynthesis of Acetyl 

coenzyme A (Ac-CoA) through two mechanisms. The first involves the oxidative 

metabolism of glutamine-derived α-ketoglutarate (αKG) in the tricarboxylic acid cycle, 

leading to the generation of pyruvate from malate by glutaminolysis [43]. The second 

pathway involves the reductive carboxylation of αKG to produce citrate [45,46].  

As recent studies have indicated that the isocitrate dehydrogenase-1 (IDH1) reaction  

is highly reversible [47–49]. Therefore, literature examples indicated by using stable 

isotopic tracers that, the net flux of reductive glutamine significantly increased  

in reductive carboxylation activity under hypoxia in cell culture to palmitate synthesis 

in A549 cells growing under hypoxic conditions. Approximately 80% of the carbon 

utilized for de novo lipogenesis was derived from the reductive carboxylation  

of glutamine-derived αKG [44]. Moreover, an increase activity of glutamine 

transporters such as SLC1A5 and SLC38A2 can meet the demand of this transition  

to glutamine [50]. Hence, this phenomena might be explained that, the transition 

conditions from normoxia to hypoxia leads to increase the uptake of glutamine  

due to the elevated levels of glutamine transporters and redirects glutamine  

from the oxidative pathway towards the reductive carboxylation pathway, which  

is crucial given the reduced the entry of pyruvate into the tricarboxylic acid (TCA) cycle 

and increased lactate secretion in hypoxia, therefore, this metabolic adjustment enables 

cells to continuously produce TCA metabolites, like α-ketoglutarate (αKG) and citrate, 

which are then converted to cytosolic acetyl-CoA for lipid synthesis. 

Nicotinamide adenine dinucleotide (NAD) synthesis in mammalian cells 

occurs through three pathways, namely de novo pathway (Kynurenine pathway), 

Preiss-Handler, and salvage pathways [51]. The key enzymes that regulate the salvage 
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pathway and control intracellular NAD levels are nicotinamide 

phosphoribosyltransferase (Nampt) and nicotinamide mononucleotide 

adenylyltransferase (Nmnat) [51]. Nampt converts NAM and PRPP to nicotinamide 

mononucleotide (NMN), and Nmnat generates NAD by adenylylating NMN  

from ATP [52]. Additionally, Nampt is primarily found in the cytoplasm,  

and its suppression can impede glycolysis [53]. The Preiss-Handler pathway involves 

nicotinate phosphoribosyltransferase (Naprt) generating NAMN from nicotinic acid 

and PRPP, followed by Nmnat conjugating ATP to NAMN [54]. The de novo pathway 

uses tryptophan as the source for NAD synthesis and is mediated by tryptophan  

2,3-dioxygenase or indoleamine 2,3-dioxygenase. The degradation of NAD is coupled 

with NAM recycle through enzymes such as poly ADP-ribose polymerase (PARP), 

sirtuins, CD38, and CD157 [55,56]. Nmnat isozymes Nmnat1-3 have different 

subcellular localizations and tissue distributions, with Nmnat1 primarily  

in the nucleus, Nmnat2 in the Golgi apparatus, and Nmnat3 in mitochondria. 

Overexpression of Nmnat3 has been shown to increase mitochondrial NAD levels  

and enhance energy metabolism [57,58]. Herein, we have found that, NAD has been 

increased in the DNCs after 12h and 24h at hypoxia condition compered to normoxic 

cells.  

Our findings that NAD levels increase in DNCs under hypoxic conditions  

are consistent with previous studies indicating that, the coenzyme nicotinamide 

adenine dinucleotide (NAD) plays a key role in redox reactions across multiple 

metabolic pathways, such as glycolysis, the tricarboxylic acid (TCA) cycle, oxidative 

phosphorylation, and serine biosynthesis. The sustained replenishment of NAD  

is essential for the proliferation and survival of rapidly growth of cancer cells.  

This is due to the fact that elevated NAD levels increase glycolysis through 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase 

(LDH), which require NAD as a cofactor at hypoxia [51,53,57]. Therefore, Therefore, 

our findings support the notion that NAD plays a crucial role in cancer cell metabolism 

and survival, particularly under hypoxic conditions. Further research is needed to fully 

understand the mechanisms underlying the effects of NAD on cancer cell metabolism. 

Alanine is an amino acid primarily synthesized in the mitochondrial matrix 

via the conversion of pyruvate [59]. The competition for pyruvate between alanine 

aminotransferase (ALAT) and pyruvate dehydrogenase (PDH), which converts 
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pyruvate to acetyl-CoA, suggests that lower PDH activity in conditions  

such as hypoxia may result in increased alanine synthesis [60]. That’s revealed  

from our results that showed an increase in the level of intracellular in the DNCs 

compered to normoxic cells after 12h and 24h of incubation. Likewise,  

was with extracellular alanine. This finding is in line with recent evidence suggesting 

that amino acid synthesis, including alanine synthesis, is regulated by a complex 

interplay between demand for α-ketoglutarate and pyruvate uptake  

in the microenvironment [61]. The fate of the alanine produced under these conditions 

is not clear, but it is likely to be excreted into the extracellular space and potentially 

taken up by stromal cells [60]. However, this system demonstrates a reversal  

from the previously described process in pancreatic ductal adenocarcinoma (PDAC), 

where stromal cells secrete alanine that is taken up by cancer cells as a significant 

carbon source [62]. Therefore, this indication not only increases oxygen consumption 

in hypoxic tumors, but also spares glucose for other cell types or for the synthesis  

of macromolecular substrates, including serine and glycine [60]. This finding 

highlights the importance of alanine metabolism in cancer cells and suggests that  

it plays a critical role in maintaining the energy balance required for cancer cell 

proliferation and survival under hypoxic conditions. However, further research  

is needed to fully understand the underlying mechanisms. 

 β-Alanine is a non-proteogenic amino acid formed in the body  

from the degradation of carnosine, anserine, balenine, and dihydrouracil and work  

as intracellular buffer which has been suggested to possess multiple anti-tumor 

properties [63]. It is also the precursor of the carnosine dipeptide, which acts  

as an intracellular buffer [64]. Here we have found an upregulation of intracellular  

β-Alanine on the DNCs after 12h and 24h. It has been showed that, carnosine,  

a dipeptide composed of β-alanine and histidine, has been shown to have beneficial 

effects in inhibiting cancer cell proliferation. Numerous studies have reported that 

carnosine accumulation can significantly inhibit tumor cell growth and proliferation 

[65,66]. Additionally, it has been demonstrated that carnosine's accumulation  

can significantly inhibit glycolysis and energy production and the its anti-cancer effects 

in human cervical tumor cells [67], and its ability to decrease ATP production in glioma 

cells [68]. Hence, the observed upregulation of β-Alanine in DNCs under hypoxic 

conditions may be a favorable response to counteract cancer cell proliferation  



154 
 

and glycolysis, as indicated by the increased growth rate of DNCs. However, the exact 

mechanisms behind these effects are still unclear and appear to vary based on the type 

of tissue. Our results emphasize the importance of conducting additional research  

to better understand the mechanism.  

With regard to taurine, it’s worth to noticed about the taurine mechanism  

in cancer cells. The efficacy of taurine was rigorously evaluated using an ATP assay, 

which revealed a significant reduction in the OGD-induced upregulation  

of endoplasmic reticulum stress markers and pro-apoptotic proteins. This findings 

demonstrate the capacity of taurine to mitigate cellular damage and promote cellular 

survival in the face of hypoxia or oxygen/glucose deprivation on human 

neuroblastoma cell culture and colorectal cancer (CRC) [69]. Conversely, observed  

by others on human colon cancer cells showed a significant evidence of taurine 

antiproliferative effect, as well as its potent induction of apoptosis. Moreover,  

the molecular investigations revealed that taurine exerts its antiproliferative effect  

via two distinct pathways: (i) stimulation of increased PUMA expression  

and (ii) regulation of pro- and anti-apoptotic gene expression. Specifically, a significant 

upregulation of the pro-apoptotic gene Bax and a corresponding downregulation  

of the anti-apoptotic gene Bcl-2, resulting in elevated caspase-3/9 activity. These results 

provide a compelling argument for taurine as a potential therapeutic target in the fight 

against colon cancer [70]. Likewise, we have found the level of taurine was elevated 

after DNCs at hypoxia 1%. This controversy might be due the type of tumors  

and organism.  

What’s more, the cholinic phenotype, characterized by elevated 

phosphocholine (PCho) and total choline-containing compounds (tCho), was first 

discovered through magnetic resonance spectroscopy studies of tumors in the 1980s 

[71,72]. Initially, the elevated PCho levels in cancer cells were believed to be a result  

of rapid cell proliferation [73]. However, subsequent studies showed that even rapidly 

proliferating non-malignant breast and prostate epithelial cells still had significantly 

lower PCho and tCho levels, indicating that malignant transformation, is not just cell 

proliferation, but the cause of abnormal choline metabolism in cancers [74]. Observed 

by us that, an increase of sn-glycero-3-phosphocholine after 12h and 24h incubation  

of DNCs compered to normoxic cells. This finding is consistent with previous studies 

that, the abnormal physiological conditions including hypoxia and acidic extracellular 
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pH affect choline levels [75]. For instance, acidic extracellular pH significantly increases 

glycerophosphocholine (GPC) levels and decreases PCho levels with perfused 

mammalian cells [76]. Moreover, hypoxia was found to increase total choline-

containing compounds (tCho) and phosphocholine (PCho) in a human prostate cancer 

model, with a correlation observed between high tCho and hypoxia due to regulation 

of choline kinase-α (CHKα) expression by HIF1 [77]. Additionally, conditioned growth 

medium from cancer cells was shown to increase PCho levels in human vascular 

endothelial cells, indicating that cancer cells can impact the stromal cells in the tumour 

environment [78]. Another mechanism should be mentioned here is the choline uptake 

process and the role of choline transport system. It has been showed that abnormal 

choline metabolism in multiple cancers have been linked to changes in various 

enzymes, including choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-

specific phospholipase C and -D, glycerophosphocholine phosphodiesterases,  

and activity of choline transporters, such as choline transporter-like protein 1 (CTL1) 

[79–82]. Additionally, high expression of the choline transporter, CTL1, has been 

observed in several cancer cell lines. The detection of increased tCho levels through 1H 

magnetic resonance spectroscopy is being explored as a diagnostic marker for various 

cancers [80,83]. Taken together, the upregulation of sn-glycero-3-phosphocholine  

in DNCs under hypoxic conditions may indicate altered choline metabolism that could 

be relevant for cancer diagnosis and treatment. 

Another significant intercellular metabolite was creatine. Creatine metabolism 

has a link between creatine metabolism and the process of metastatic dissemination, 

where it is believed that creatine kinase provides the energy necessary  

for the migration of cancer cells [84]. Creatine is synthesized in the kidneys and liver 

through a two-step process involving l-arginine: glycine amidinotransferase and N-

guanidinoacetate methyltransferase. The first enzyme, l-arginine: glycine 

amidinotransferase, is predominantly expressed in the kidney and pancreas which 

catalyzes the transamidation of arginine to glycine. The second enzyme, N-

guanidinoacetate methyltransferase, is predominantly expressed in the liver which 

methylates the resulting guanidinoacetic acid to yield creatine. Creatine then enters  

the blood circulation and reaches various tissues that require it including muscle, brain, 

and heart as well as others organ [85–87]. Cancer cells have been found to utilize 

creatine to sustain their energy metabolism, enabling their survival through exploit 
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phosphocreatine to ensure their survival in the liver microenvironment on colorectal 

cancer cells [88]. Herein, we showed that, HT1080 cell line increase the level  

of intracellular creatine after 12h and 24h of DNCs at hypoxia compered to normoxic 

cells. Our observation is consistent with other studies implicating SLC6A8 activity  

and showed that, the upregulation of intracellular creatine levels in hypoxic TNBC 

cells in vitro is caused by the transcriptional activation of the SLC6A8 gene by p65/NF-

κB. Under hypoxic conditions, the activation of p65/NF-κB leads to an increase  

in the expression of SLC6A8, which results in an accumulation of creatine.  

The increased levels of creatine support cell survival and inhibit apoptosis  

by maintaining redox homeostasis and enhancing cellular antioxidant defenses. 

Intracellular creatine reduces mitochondrial activity and oxygen consumption,  

thereby decreasing the accumulation of reactive oxygen species and activating  

the AKT-ERK signaling pathway, which protects the viability of hypoxic triple 

negative breast cancer (TNBC) cells. Thereby, this activation protected the viability  

of hypoxic TNBC cells through upregulating Ki-67 and Bcl-2 and downregulating Bax 

and cleaved Caspase-3 [89]. Additionally, in vivo studies have investigated  

the presence of creatine-related metabolites in the serum and urine of cancer patients, 

with the findings suggesting that elevated levels of creatine in most cancer types  

are correlated with accelerated cancer progression [90]. In hepatocellular carcinoma 

patients, the higher levels of creatine and creatinine in urine have been found linked  

to advanced stages of the disease [91,92]. Women with higher levels of these substances 

in fasting plasma have an increased risk of breast cancer [93]. Moreover, magnetic 

resonance studies have also demonstrated that higher levels of creatine within no non-

enhancing tumors correspond with subsequent growth in glioblastoma [94]. What’s 

more, elevated levels of serum creatine and creatinine in patients with invasive vulvar 

cancer have been linked to both poor disease-specific and overall survival  

in a retrospective cohort study. Moreover, a comparison of human pancreatic ductal 

adenocarcinoma and benign adjacent tissue found that tumor tissue had higher 

phosphorylation levels of creatine [95]. However, the relationship between creatine 

levels and cancer progression is not clear cut, as in some cases, higher levels of creatine 

have been associated with suppressed cancer cell growth, while in others, the levels 

have gradually decreased with malignancy progression [96]. Therefore, our finding  

on the HT1080 cell line are consistent with both in vitro and in vivo studies  
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from our finding showing that under hypoxia increases intracellular creatine levels 

enabling their survival and inhibiting apoptosis through SLC6A8 upregulation  

and AKT-ERK signaling pathway activation. 

Likewise as creatine was noticed an increase of intracellular creatinine level 

DNCs compared to normoxic cells. Demonstrated by others that, the in vitro treatment 

of prostate cancer cells with cyclocreatine, a creatine analog, resulted in a significant 

decrease in intracellular levels of creatine, phosphocreatine, and creatinine  

and a suppression of cellular proliferation [97]. Others suggested that serum creatinine 

levels might be an important biomarker of cancer cachexia-associated muscle wasting 

[98]. Therefore, both in vitro and in vivo studies have shown that creatinine,  

a metabolite closely related to creatine, may also play a role in cancer progression.  

This further highlights the potential significance of creatine-related metabolites  

in cancer progression and the need for further investigation.  

The growth and proliferation of cancer cells necessitates depend  

on the availability of ample amounts of serine and glycine, two non-essential amino 

acids, through either intracellular synthesis or uptake from the environment as diet. 

While most non-transformed cells in the body have lower demands for these amino 

acids, certain cancer subtypes have been found to hyperactivate the anabolic serine  

and glycine synthesis and become dependent on de novo production [99].  

It well established that, glycine is synthesized from glucose through the serine 

synthesis pathway, which diverts the glycolytic intermediate 3-phosphoglycerate 

(3PG) into serine and then converts it to glycine. The initial step in this process is the 

oxidation of 3PG to 3-phosphohydroxypyruvate (pPYR) by the enzyme PHGDH [100]. 

pPYR is then transaminated by phosphoserine aminotransferase (PSAT) using 

glutamate as a nitrogen donor to generate phosphoserine (pSER) and alpha-

ketoglutarate (αKG). pSER is then dephosphorylated by phosphoserine phosphatase 

(PSPH) to produce serine, which can be directly converted to glycine via transfer of  

a carbon into the folate pool by cytoplasmic serine hydroxymethyltransferases 1 and  

2 (cytoplasmic SHMT1 and mitochondrial SHMT2) [101,102]. Here, we have found  

an increase in the level of intracellular and extracellular of glycine on the DNCs 

compered to normoxic cells.  

It has been suggested that, the glycine cleavage system (GCS), located  

in mitochondria, oxidatively catabolizes glycine to serve as a source of one-carbon 
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units by cleaving the methylene group from glycine and accepting  

it by tetrahydrofolate (THF) to form methylene-THF. This process also results  

in the regeneration of NADH from NAD+ and releases CO2 and ammonia.  

The upregulation of the core enzyme of GCS, glycine decarboxylase, in lung tumor-

initiating cells [103], and glioblastoma-derived cells [104], suggests that glycine  

and GCS may promote cancer cell growth. This hypothesis is supported  

by the dependency of the cancer cells upon this metabolic pathway [105].  

Take into account the fact some studies mentioned that, "An excessive amount  

of glycine has been shown to hinder cancer cell proliferation and limit tumor growth 

[106,107]. Herein, we have found that, increased the level of glycine on DNCs 

specifically, after 24h of incubation at hypoxia. Our results might be related to the fact 

that, the high expression activity of SHMT1 and SHMT2 occurs after 24 hours  

of incubation of DNCs in a manner that sheds light on the underlying mechanisms  

of glycine in cancer cell metabolism. However, the excess accumulation of intracellular 

glycine leads to its release into the extracellular milieu, suggesting a role in maintaining 

cell growth. Additionally, the inhibition of serine metabolism through serine 

starvation, deletion of the SHMT2 gene, or knockdown of SHMT2 expression via RNA 

interference leads to an accumulation of precursors upstream of inosine 

monophosphate (IMP). This results in a depletion of one-carbon units for purine 

biosynthesis, which in turn restricts cancer cell proliferation [104,108,109].  

The synthesis of serine and glycine involves numerous enzymatic steps  

and the utilization of various amino acids and energy sources, such as glutamine, ATP, 

and formate. Purine metabolism in rapidly growing cancer cells is reliant on these 

substrates, which are vital for the production of inosine monophosphate (IMP). While 

the complementary salvage pathway satisfies most cellular demands for purine 

nucleotides, the magnesium-dependent enzyme hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) plays a crucial role in purine biosynthesis  

by catalyzing the transfer of a phosphoribosyl group to hypoxanthine and guanine, 

leading to the production of IMP and guanine monophosphate, respectively  [110, 111]. 

In this study, we observed a higher level of inosine monophosphate (IMP)  

in DNCs compared to normoxic cells. Observed by others, given the metabolic changes 

that occur in response to hypoxia, including the upregulation of glycolysis and pentose 

phosphate pathway, and the correlation between purinosome formation and elevated 
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de novo purine biosynthesis, they hypothesized that hypoxia would drive an increase 

in purinosome assembly in cells. This increase would allow cells to synthesize the key 

molecules required for cell proliferation by utilizing increased metabolites  

from glycolysis and PPP [112,113]. From other studies have revealed that HIF-1 

activates the bifunctional glycolytic enzyme 6-phospho-2-kinase/fructose-2,6-

biphosphatase (PFKFB) [114,115]. Among the four PFKFB members, PFKFB3 is crucial 

for regulating the cellular levels of PRPP and de novo nucleic acid synthesis in tumor 

cells. This is because PFKFB3 activation controls the level of fructose 2,6-bisphosphate 

(F2,6BP), a potent activator of the glycolytic rate-limiting enzyme PFK-1. This in turn 

directs the flow of carbon from glycolysis into the non-oxidative branch of the pentose 

phosphate pathway (PPP) [116]. These findings suggest that inhibiting  

the non-oxidative PPP may selectively target nucleotide biosynthesis in tumors  

that exhibit constant HIF-1α activation. Therefore, the DNCs exhibit a higher level  

of IMP compared to normoxic cells, likely due to hypoxia-induced upregulation  

of glycolysis and pentose phosphate pathway. 

Another significant metabolites was π-methylhistidine (1-methylhistidine). 

Histidine can be methylated at either the N1 or N3 position of its imidazole ring, 

resulting in the formation of two isomers: 1-methylhistidine (also known  

as π-methylhistidine) or 3-methylhistidine (also referred to as τ-methylhistidine)  

via methyltransferase (METTL9), which is the primary enzyme responsible  

for the formation of 1-methylhistidine in mouse and human proteins [117].  

In this study, we observed a upregulation of 1-methylhistidine expression in DNCs 

compared to normoxic cell. It has been showed that, the elevated levels of creatine  

and 3-methylhistidine were observed in the gastrocnemius muscle of rats with tumors, 

indicating a strong correlation between muscle wasting and intense protein 

breakdown [118]. In another study, increased levels of tyrosine, phenylalanine,  

and methylhistidine were found in the gastrocnemius muscle of a murine model  

of gastric cancer, indicating their involvement in metabolic wasting [119]. Previous  

in vivo research has demonstrated that π-methylhistidine and τ-methylhistidine  

are directly linked to muscle protein degradation [120–122]. In another in vivo study, 

they found that despite no significant change in τ-methylhistidine, the concentration 

of π-methylhistidine in the skeletal muscle was elevated, with a trend of up to 3.3 times 

increase in all stages of tumor growth, indicating that tumor progression can directly 
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impact the human skeletal muscle [123,124]. There is a limitation of knowledge  

about 1-methylhistidine regulations in vitro studies and its mechanism in cancer 

progression. However, our observation is consistent with the aforementioned in vivo 

results. 

 The accumulation of fumarate is one of the most distinctive biochemical 

features of fumarate hydratase (FH) deficient cells, with a potential role  

in tumorigenesis [125]. It was initially believed that the stabilization of the hypoxia-

inducible factor (HIF) transcription factor due to the accumulation of fumarate played 

a critical role in the tumorigenesis of FH-deficient renal cancer [125–127]. However,  

the importance of HIF as a tumor driver has been challenged recently,  

with the observation that the genetic elimination of HIF in Fh1-deficient mice not only 

failed to abolish cyst formation but actually worsened this phenotype [128]. A new 

connection between fumarate accumulation and tumorigenesis was later proposed, 

with fumarate found to modify cysteine residues of kelch-like ECH-associated protein 

1 (Keap1), which regulates the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), 

suggesting a role for a dysregulated antioxidant response in the formation of FH-

deficient tumors [129]. Moreover, other studies mentioned both succinate 

dehydrogenase (SDH) and fumarate hydratase (FH) play a critical role in the energy 

production processes of normal cells, but also act as tumor suppressors [130,131]. 

Additionally, the exposure to fumarate showed to be profoundly more cytotoxic  

and genotoxic than succinate. Therefore, the cytotoxicity seems to be due  

to the activation of an apoptotic pathway. Although it has been reported that fumarate 

can accumulate to between 200 and 300 times the normal concentration [126,132]. 

What’s more, both succinate and fumarate result in a change in the global DNA 

methylation pattern, causing significant hypermethylation of DNA. This change  

in the epigenetic profile may play important role in the oncogenesis observed in cells 

exposed to elevated levels of these metabolites [132]. Here, we have found an increase 

of extracellular fumarate in DNCs compared to normoxic cell after 12h and 24h  

of incubation at hypoxia. From our finding the cancer cells release fumarate  

to the extracellular space during hypoxia might be as a survival mechanism.  

Under low oxygen conditions (hypoxia), cancer cells are unable to produce energy 

through oxidative phosphorylation and must switch to anaerobic metabolism.  

This leads to the accumulation of metabolic intermediates, including fumarate, which 
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can accumulate to toxic levels within the cell. To prevent cellular damage, cancer cells 

may release excess fumarate into the extracellular space, thereby reducing  

its intracellular concentration. This process may contribute to the growth  

and progression of the cancer cells, as well as the surrounding tissue. Further research 

is needed to fully understand the mechanisms and effects of fumarate release in cancer 

cells during hypoxia.  

Another important extracellular metabolite was acetate. Acetate produced  

in the colon during digestion of fermentable carbohydrates, has an impact on normal 

metabolism, including mitochondrial function and fatty acid oxidation [133].  

It has been reported that, the effects of acetate on colon cancer have not yet been fully 

established. The metabolic effects of acetate were investigated on HT29 and HCT116 

colon cancer cell lines, including its effect on mitochondrial proliferation, reactive 

oxygen species, cellular bioenergetics, gene expression, and lipid levels [134].  

Their results showed that acetate reduced proliferation and glycolysis in both cell lines 

under normal oxygen conditions, and increased oxygen consumption and ROS levels. 

The observed cell death was not dependent on acetyl-CoA synthetase 1 (ACSS1)  

and 2 (ACSS2) expression. However, under hypoxia, reduced proliferation  

was maintained in HT29 but not HCT116. Increased acetyl-CoA synthetase  

2 expression and lipid levels in both cell lines under hypoxia may protect cells  

from the anti-proliferative effects of acetate. These findings suggest that acetate's 

impact on proliferation is due to its effect on mitochondrial metabolism  

and is independent of ACCS1/2 expression under normal oxygen conditions [134].  

In this study we showed that, an increase level of extracellular acetate in DNCs 

compared to normoxic cell after 12h and 24h of incubation at hypoxia. It has been 

reported that, in normoxia, glucose and glutamine are the main sources of acetyl-CoA. 

However, in hypoxia, these sources decline the flux from glucose to citrate and cells 

utilize alternative sources for acetate production [44,135]. Therefore, the exogenous 

acetate, which is present in mammalian serum, could be incorporated into acetyl-CoA 

and used for lipid biosynthesis in some cell lines in hypoxia. They also discovered that 

acetate contributes significantly to lipid biosynthesis in hypoxic cells, suggesting that 

it is produced locally in the microenvironment [135]. Other study raises the possibility 

that cells could produce acetate used by neighboring cells, and it highlights  

the importance of understanding acetate's role in acetyl-CoA generation and its impact 
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on tumor growth [136]. The conclusion of the upregulation of extracellular acetate  

is that acetate may play a significant role in providing acetyl-CoA for lipid biosynthesis 

in hypoxic cells. This may suggests that cancer cells may rely on locally produced 

acetate as a major source to support cell-cell communication during hypoxia, 

potentially due to slower metabolism in these cells and highlight the complex interplay 

between cancer cell metabolism and communication pathways, which may contribute 

to tumor progression. 

Another metabolic pathway that requires functional mitochondria  

is the oxidation of the third carbon of serine to formate. The formate produced  

in the mitochondria is released into the cytosol where it is used for nucleotide 

synthesis. Additionally, the formate can be reused to resynthesize serine through  

the cytosolic one-carbon metabolism process [109,137,138]. Our results showed that,  

an increase level of extracellular formate in DNCs compared to normoxic cell after 12h 

and 24h of incubation at hypoxia. This aligns with other findings suggested that,  

the process of serine catabolism, leading to formate production, often takes place  

at a higher rate than required for nucleotide synthesis. This results in an overflow  

of formate which is released from the cells, a phenomenon referred to as "formate 

overflow". This was predicted and confirmed through in vitro and in vivo experimental 

verification [139]. Another study indicated that elevated serine catabolism leading  

to increased formate production is a common feature of intestinal adenomas  

and mammary carcinomas in vivo. This is reflected in the elevated serum formate levels 

observed in these transformed tissues. However, inhibiting formate production 

through genetic interference significantly decreases cancer cell invasion, a phenotype 

that can be rescued by adding exogenous formate. Other findings suggest that elevated 

formate overflow is a defining characteristic of oxygenated cancers and plays a role  

in promoting invasion through an undetermined mechanism [140]. Additionally,  

has been reported that, under normoxic laboratory standard (21% O2 ) and hypoxia 

(1% O2), the formate overflow was observed to be higher in aggressive cancer cells 

compared to non-aggressive. However, under hypoxia, aggressive cells showed  

a preference for being more energetically efficient, while under normoxia, they favored 

fatty acid biosynthesis when compared to non-aggressive cells [141].  

Here, we found that, the extracellular asparagine was higher with DNCs 

compared to normoxic cell after 12h and 24h of incubation at hypoxia. It’s well known 
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that, cancer cells often require certain non-essential amino acids, like glutamine  

and asparagine, to function properly. This is due to the high demand for such amino 

acids in cancer cells for various metabolic processes, including glutaminolysis [142], 

hexosamine biosynthesis, glutathione biosynthesis, proline biosynthesis,  

and nucleotide biosynthesis. In response to this high demand, cancer cells extract TCA 

cycle intermediates, particularly oxaloacetate, to generate aspartate [142]. Glutamine 

acts as a source of replenishment for the TCA cycle in cancer cells, while asparagine 

can also fulfill some of these roles but at the cost of large amounts of acetyl-CoA being 

converted into the TCA cycle. A study showed that while asparagine prevented cell 

death during glutamine depletion, it did not restore fully TCA cycle metabolites,  

this suggests that glutaminolysis is a more straightforward pathway that  

is not as affected by the loss of certain molecules as the TCA cycle [143,144]. Moreover, 

asparagine has a vital function as a mediator for the transport other amino acids, 

mainly glycine, histidine, threonine, and serine. The main function of intracellular 

asparagine is to be exported for the import of these amino acids. A decrease  

in asparagine, for example in cells with low expression of asparagine synthetase, leads 

to a reduction in amino acid import and protein synthesis. The presence of intracellular 

asparagine can also suppress the mTOR signaling pathway by directly reducing  

the phosphorylation of the protein initiation complex, which in turn can also enhance 

nucleotide synthesis [144–146]. A recent study highlights the role of asparagine  

in protecting against apoptosis during nutrient stress in response to KRAS signaling  

in non-small-cell lung cancer. This protection is achieved through the KRAS-Akt-Nrf2-

ATF4 axis, where glutamine restriction leads to an increase in ATF4 expression, which 

in turn leads to an upregulation of ASNS to support cellular proliferation. The study 

found that targeting asparagine through L-asparaginase can almost completely stop 

tumor growth in cells that lack ASNS, highlighting the vulnerability of KRAS-driven 

ASNS activity during nutrient deprivation. The combination of an AKT inhibitor  

and L-asparaginase was found to significantly reduce the growth of H460 xenografts, 

compared to control or single agent treatment [147]. Based on our observation  

of increased intracellular glutamine and aspartate under hypoxia, it appears that 

hypoxic cancer cells may rely on producing aspartate from glutamine via glutamic 

oxaloacetic transaminase (GOT) [23], as a way to replenish the TCA cycle.  

This pathway can be fulfilled through glutaminolysis, even in the absence of acetyl-
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CoA, instead of relying on asparagine. Therefore, hypoxic cancer cells prioritize using 

glutamine over asparagine to meet their metabolic needs. Additionally, increase  

the activity of exchange transporters, such as ASCT2 (SLC1A5), can facilitate  

the release of asparagine and uptake of other amino acids such as serine and glutamine. 

Hence, the accumulation is essential for the functioning of other cellular pathways 

[148]. Hence, the DNCs releases of asparagine to extrcellular space as priority 

mechanism to meet their metabolic needs of the cells for the other NEAAs, which  

is essential for the functioning of other cellular pathways. Moreover, targeting 

asparagine through L-asparaginase has been shown to be effective in stopping tumor 

growth in cells that lack ASNS, highlighting the vulnerability of KRAS-driven ASNS 

activity during nutrient deprivation. 

Ornithine is a non-essential and non-proteinoceus amino acid involved  

in various metabolic pathways. It is converted into citrulline, proline, and polyamines 

by the enzymes ornithine transcarbomylase (OTC), ornithine aminotransferase (OAT), 

and ornithine decarboxylase (ODC), respectively [149]. Citrulline plays a crucial role 

in the urea cycle and low levels can lead to hyperammonemia [150]. Herein, our results 

showed an increased level of extracellular ornithine in DNCs compared to normoxic 

cell after 12h and 24h of incubation at hypoxia. It has been reported by in vivo study 

that, the association between ornithine levels and breast cancer in females with 735 

breast cancer cases and 735 controls were included in the 1:1 age-matched case-control 

study. Fasting blood samples were used to measure ornithine levels. Each increase  

in ornithine levels was associated with a 12% decrease in breast cancer risk. Higher 

ornithine levels were found to be linked to a lower risk of breast cancer in females [151]. 

Thus, the initial step of polyamine synthesis involves the decarboxylation of ornithine 

by ODC, which produces putrescine and CO2. Polyamines, however, play a crucial 

role in regulating hypoxia-induced apoptosis of endothelial cells via the PI3K/AKT 

pathway, thereby exerting a significant influence on neovascularization under hypoxia 

[152]. Previous study have shown that the depletion of polyamines resulting  

from reduced expression of spermidine/spermine N(1)-acetyltransferase (SSAT) leads 

to significant inhibition of p-Akt, p-GSK3β, and β-catenin nuclear translocation, 

resulting in the reduced growth, migration, and invasion of human hepatocarcinoma 

and colon cancer cell models [153]. Therefore, our observations might be linked  

to the inhibition of ornithine decarboxylase (ODC), which is the substrate  
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for the synthesis of urea and polyamines. This observation aligns with our findings  

on the growth curve after DNCs and the accumulation of extracellular ornithine, which 

results from ODC inhibition. 

Aging-related increases in serum methylmalonate have been implicated  

in driving the aggressive behavior of cancer cells. Hence, elevated levels  

of the metabolite methylmalonic acid (MMA) - a by-product of propionate metabolism 

- coincides with the increased risk of cancer during normal ageing. This increase  

in MMA has been linked to the induction of the EMT phenotype and the promotion  

of cancer cell aggressiveness [154]. Here, we have noticed an increase  

of methylmalonate levels in DNCs compared to normoxic cell after 12h and 24h  

of incubation at hypoxia. It has been shown that, there is a direct correlation between 

systemic aging and an increase in methylmalonate levels, which leads to a poor 

prognosis and increased mortality in elderly cancer patients [154]. This emphasizes  

the crucial role that metabolic changes play in determining the progression of tumors 

[154]. What’s more, it has reported that, the enzyme propionyl-CoA carboxylase (PCC) 

plays a crucial role in the regulation of the propionate metabolic pathway. Propionyl-

CoA carboxylase (PCC) catalyzes the transformation of branched-chain amino acids 

(BCAA) and odd-chain fatty acids (OCFA)-derived propionyl-CoA  

into dimethylmalonyl-CoA. The overexpression of PCC resulted in a heightened 

propionyl-CoA concentration, leading to a boosted flux through the propionate 

metabolic pathway. This was evidenced by an increased presence of methylmalonate 

and succinate, as well as intensified levels of intermediates within the tricarboxylic acid 

cycle. Moreover, overexpression of PCC was observed to enhance pro-metastatic 

markers in HCC1806, MCF-10A, and A549 cell lines. The results showed that while  

the migratory capacity of cells was not significantly impacted, PCC overexpression 

significantly increased the invasiveness of MDA-MB231 cells [155].  
 

4.1.1. Conclusion  

In summary,  this is the list of our findings from all significant metabolites  

as follows: 

1. Hypoxia activates genes that inhibit degradation and increase uptake  

of phenylalanine and tyrosine, leading to elevated levels of these amino acids  

in cancer cells. 
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2. Mechanisms such as upregulation of L amino acid transporter 1 activity, 

decreasing activity of enzymes involved in the degradation of branched-chain 

amino acids, and decreasing activity of the branched-chain alpha-ketoacid 

dehydrogenase enzyme result in increased levels of BCAAs, particularly 

leucine, isoleucine, and valine, in cancer cells under hypoxic conditions. 

3. Glutamine uptake increases under hypoxia due to elevated levels of glutamine 

transporters and redirection towards the reductive carboxylation pathway, 

enabling cells to produce TCA metabolites. 

4. NAD levels increase in DNCs under hypoxic conditions, promoting cancer cell 

survival and proliferation by increasing glycolysis. 

5. Alanine levels increase in DNCs under hypoxia, highlighting the importance  

of understanding the alanine complex interplay between cancer cells and their 

microenvironment in tumor metabolism. 

6. Upregulation of β-Alanine in DNCs under hypoxia may be a favorable response 

to counteract cancer cell proliferation and glycolysis. 

7. Taurine levels show a controversy in our findings compared to some other 

literature observations, which may be due to the type of tumors and organism. 

8. Upregulation of sn-glycero-3-phosphocholine in DNCs under hypoxic 

conditions indicates altered choline metabolism that could be relevant for cancer 

diagnosis and treatment. 

9. HT1080 cell line increases intracellular creatine levels under hypoxia, enabling 

survival and inhibiting apoptosis through SLC6A8 upregulation and AKT-ERK 

signaling pathway activation. 

10. Intracellular creatinine levels increase in DNCs, suggesting a potential role in 

cancer progression. 

11. Increased glycine levels in DNCs specifically after 24h of incubation at hypoxia 

due to high expression activity of SHMT1 and SHMT2, shedding light on the 

underlying mechanisms of glycine in cancer cell metabolism. 

12. DNCs exhibit a higher level of IMP compared to normoxic cells due to 

upregulation of glycolysis and pentose phosphate pathway in response to 

hypoxia. 
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13. Upregulation of 1-methylhistidine expression in DNCs compared to normoxic 

cell, the limitation knowledge of 1-methylhistidine regulations in vitro studies. 

However, most of in vivo studies were in consistence with our finding. 

14. Extracellular fumarate levels increase in DNCs as a survival mechanism under 

hypoxic conditions, reducing cytotoxicity effect and the activation  

of an apoptotic pathway, which may contribute to the growth and progression 

of cancer cells and surrounding tissue. 

15. Extracellular acetate levels increase in DNCs, playing a crucial role in providing 

acetyl-CoA for lipid biosynthesis and supporting cell-cell communication 

during hypoxia. 

16. Induced formate overflow in DNCs highlights the important role of formate  

in cancer cell metabolism and suggests targeting formate production  

and utilization as a promising avenue for developing new cancer therapies. 

17. Extracellular asparagine levels increase in DNCs, supporting cell proliferation 

and metastasis. 

18. An increased level of extracellular ornithine in DNCs as results from ornithine 

decarboxylase (ODC) inhibition leading to reduced growth, migration,  

and invasion cancer cells. 

19. An increase of methylmalonate levels in DNCs as consequence of increased PCC 

overexpression and induce invasiveness of cancer cells 

Overall, the findings suggest that cancer cells undergo significant metabolic 

adaptations under hypoxic conditions, which allow them to survive and even thrive  

in a low oxygen environment. These adaptations include changes in amino acid 

metabolism, upregulation of glycolysis and pentose phosphate pathway, redirection  

of glutamine metabolism, and alterations in the production and utilization of various 

metabolites. Therefore, understanding these metabolic adaptations may provide 

important insights into the biology of cancer and potential therapeutic targets  

for the treatment of hypoxic tumors. However, it is important to note that some  

of the observed changes in metabolite levels may vary depending on the specific tumor 

type and microenvironment, highlighting the need for further research in this area. 

Additionally, this chapter also underscores the importance of using multiple 
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approaches, including in vitro and in vivo findings, to gain a comprehensive 

understanding of cancer cell metabolism under DNC condition. 

 

4.2.The post hypoxia reoxygenation impact on HT1080 cells metabolic 

phenotype 

The hallmark characteristics of malignant cells include the ability to invade 

surrounding tissues, uncontrolled self-sufficient growth, resistance to apoptosis 

induction, and manipulation of their microenvironment through multiple processes, 

for instance, angiogenesis [156]. The progression of tumors is contingent upon 

angiogenesis and lymphangiogenesis, which are stimulated by chemical signals 

produced by rapidly growing tumor cells [157]. Team of researchers compared  

the growth behavior of cancer cells in different regions of an organ with and without 

blood circulation. Cancer cells grew to 1-2 mm3 and stopped in the absence  

of circulation, but grew beyond 2 mm3 in an area with angiogenesis. Angiogenesis  

was found to be an important factor in the progression of cancer as tumors without 

vascular support can become necrotic or apoptotic [158–160]. Moreover, in human 

cancers, the rapid proliferation of cancer cells often leads to a limited oxygen (O2) 

diffusion within the tumor, due to outgrowing their vascular network. Abnormal 

tumor blood vessel structure and function can cause perfusion defects, resulting  

in hypoxic stress. This leads to higher levels of hypoxia-inducible factor (HIF)  

in the tumor tissues compared to normal tissue [161,162]. In addition, in experimental 

studies, experiments have shown that elevating HIF-1α expression leads to a growth 

in tumors, as well as an increase in angiogenesis and metastasis. Conversely, reducing 

HIF activity has been linked to the opposite outcomes and provides the opportunity  

to observe transitions in oxygen levels within the cells from hypoxia to normoxia [163]. 

In light of this, we aim to investigate the cell-oxygen transition deoxygenation  

and, in this case, reoxygenation approach in the HT1080 cell intracellular  

and extracellular metabolome.  

Noteworthy, from our results obtained, we showed a reductions of one 

influencer intracellular metabolites that sustained its level as normoxic cells after RHC 

treatment such as amino sugar uridine diphosphate N-acetylglucosamine (UDP-

GlcNAc). The regulation of metabolic processes and maintenance of cellular 
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homeostasis are significantly influenced by nutrient sensing. The hexosamine 

biosynthetic pathway (HBP) and its end product, uridine diphosphate N-acetyl 

glucosamine (UDP-GlcNAc), play a crucial role in cellular signaling and can promote 

tumorigenesis. Imbalances in nutrient uptake homeostasis can result in cellular stress 

and disrupt cellular energetics [164]. In cancer cells, increased glucose and glutamine 

uptake, as well as oncogenic signals such as Ras, mTORC2, and TGF-β, result  

in an upregulation of the hexosamine biosynthetic pathway (HBP) and higher levels  

of UDP-GlcNAc. This important regulatory pathway in cell signaling promotes tumor 

growth. The HBP can also regulate N-linked and O-linked glycosylation through 

nutrient sensing, which impacts downstream cellular signaling [165–169]. However, 

the correlation between depletion of the extracellular glucose and glutamine levels 

altered the UDP-GlcNAc levels has been demonstrated in various cancer cell types, 

including cervical and pancreatic cancer [170], colon cancer [171], breast cancer [172], 

large B-cell lymphoma and hepatocellular carcinoma [173]. These findings highlight 

the importance of nutrient sensing in regulating cellular processes and the role of UDP-

GlcNAc as a key regulator in tumor promotion [174]. This observation was consistent 

with our findings that showed the limitations of intracellular and extracellular  

of glucose and downregulation of glutamine on RHCs after 12h and 24h incubation  

at normoxia. Moreover, our previous results on the DNC approach have shown that 

asparagine and aspartate regulations are dependent on glutamine availability. Here, 

we have noticed that, the downregulation of glutamine has positive correlation  

on intracellular asparagine and aspartate levels. The conditionally essential amino acid 

asparagine is normally expressed at low levels in most cells [175,176], but can  

be rapidly induced when the availability of glucose, asparagine, leucine, isoleucine,  

or glutamine is limited, or when the dietary amino acid composition is imbalanced. 

This de novo synthesis of asparagine is mediated by the enzyme asparagine synthetase 

(ASNS). Other observation suggested that, in certain cancers have been associated with 

low serum levels of asparagine [177]. Moreover, cancer cells often overexpress  

the enzyme asparagine synthetase (ASNS) to cope with nutrient deprivation  

and/or hypoxia [175], this enzyme responsible for the conversion of aspartate  

and glutamine to asparagine and glutamate in an ATP-dependent manner [175]. 

Observed by others, the vital role of asparagine in cancer cell proliferation  

and adaptation to glutamine depletion. It has been observed that a defective asparagine 
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synthetase (ASNS) gene inhibited cells at the G1 step of the cell cycle, and can induce 

apoptosis [178]. However, we noticed also an upregulation of extracellular asparagine 

after RHCs after 12h and 24h of incubation at normoxia. This may related  

to the selective advantage of using extracellular asparagine and asparagine transporter 

SLC1A5 activity under normoxia over using glutamine via glutaminolysis for aspartate 

synthesis and act as primary amino acid over extracellular asparagine to provide 

carbon and nitrogen to other pathways. Therefore, could be explain the intracellular 

aspartate downregulation as well. 

Finally, among the most important metabolites that was identified by MVA 

was 1-methylnicotinamide. According to research, nicotine and its metabolites play  

a significant influence in the development of oral squamous cell carcinoma (OSSC) 

[179]. Cancer cells' metabolic adaptability is thought to allow them to use methyl-donor 

S-adenosylmethionine (SAM) for non-epigenetic functions such as nicotinamide and 

nicotine methylation. This SAM channeling to make 1-methylnicotinamide (1-MNA) 

and methylated nicotine products is regarded to be a critical step in cancer formation 

because it induces DNA hypomethylation, which helps to create favorable epigenetic 

states [179]. herein, we have found that, a reduction on 1-methylnicotinamide levels 

with RHCs after 12h and 24h of incubation at normoxia. It has been reported that, 

pancreatic adenocarcinoma (PAAD) is characterized by desmoplasia, which results  

in a harsh hypoxic microenvironment that forces PAAD cells to adapt. This adaptation 

is driven by the HIF-1 pathway and the Sonic Hedgehog (SHh) signaling pathway 

[180]. To thrive under these conditions, PAAD cells activate specific metabolic 

pathways, such as increased glucose and glutamine metabolism, that are driven  

by the KRAS oncogene [181]. The levels of N-methyltransferase (NNMT) in PAAD  

are significantly higher than those in normal pancreatic tissue, which is correlated  

with poor clinical outcomes and is proposed as an independent predictor of patient 

survival [182]. This aligns with our findings in the previous section (Section 4.1.)  

and also her which showed at hypoxia cells expressed high concentration  

of 1-methylnicotinamide and downregulated with increase oxygen concentration. 

Additionally, in cancer cells, pyruvate generated from glycolysis  

is transformed into lactate by lactate dehydrogenase A (LDHA) instead of being 

converted to acetyl-CoA [183]. This is referred to as the "Warburg effect" [184]. 

Abnormal regulation of glycolysis leads to high lactate levels, which are transported 



171 
 

out of the cell via the plasma membrane transporters, MCTs (monocarboxylic acid 

solute transporters) [185]. Lactate is a prevalent metabolite in the human circulatory 

system [186]. It is produced from the final product of glycolysis, pyruvate, by lactate 

dehydrogenase (LDH). In aerobic conditions, pyruvate can be transported  

into mitochondria to support biosynthetic pathways and the production of ATP.  

Under hypoxia, pyruvate is transformed into lactate, a reaction that replenishes NAD+, 

which is crucial for the maintenance of glycolysis [187]. Even in the presence  

of adequate oxygen, cells may still convert pyruvate into lactic acid [184]. Moreover, 

lactate can be transported through monocarboxylate transporters (MCT 1-4), which 

also have bidirectional capabilities [188]. The conversion of lactate to lactic acid occurs 

due to the acquisition of a proton from NADH. Lactic acid dissociates in aqueous 

solution at physiological pH, resulting in lactate and hydrogen ions (H+), leading  

to acidification of the extracellular microenvironment. Alternatively, lactate can also  

be used to produce lactyl-CoA and regulate gene transcription through histone 

lactylation [189]. The expression of the lactate dehydrogenase (LDH) enzyme  

is regulated by two subunits, LDHA and LDHB, encoded by the ldha and ldhb genes, 

respectively. The five isoforms of LDH (LDH 1-5) are differentially overexpressed  

in various tissues. The LDHA isoform is known to be overexpressed in several cancer 

types, including pancreatic, osteosarcoma, lung adenocarcinoma, non-small-cell lung 

cancer, oral squamous cell carcinoma, and head and neck cancers. The LDHA catalyzes 

the conversion of pyruvate to lactate, whereas the backward reaction is catalyzed  

by LDHB [190]. Others showed, lactate dehydrogenase B (LDHB) plays a crucial role 

in controlling key cellular processes, including lysosomal acidification, vesicle 

maturation, and intracellular proteolysis. By catalyzing the conversion of lactate  

to pyruvate, LDHB is essential for basal autophagy and cancer cell proliferation, in both 

oxidative and glycolytic cancer cells [191]. This mechanism aligned  

with our observation under normoxia with a reduction on the intracellular  

and extracellular lactate related to the overexpression of lactate dehydrogenase  

B (LDHB) enzyme. 

Additionally, in cancer cells, the availability of amino acids can play a crucial 

role in their survival and proliferation, especially in adverse conditions such  

as genotoxic, oxidative, and nutritional stress [192]. Amino acids can be divided  

into two categories essential amino acids and nonessential amino acids as well as some 
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amino acids are conditional and their classification is based on the requirement  

for growth and survival in organisms, including cancer cells. An amino acid  

is considered to be metabolically essential if its carbon structure cannot be synthesized 

in the body and must be obtained from the diet. The growth of cancer cells can  

be arrested by removing a specific amino acid from their growth medium.  

It is important to determine the net requirement of amino acids by the growing cancer 

cells and compare it to the capacity of their transport system. The transport of amino 

acids is facilitated by a group of transporters, including uniporters, symporters,  

and antiporters [193]. Here, we have showed that, nearly all extracellular metabolites 

showed a reduction in RHCs compered to hypoxic cells. including choline, lysine, 

alanine, leucine, isoleucine, methionine, valine, methylamine, and lactate.  

Cells' demand for amino acids requires the coordinated and finely regulated 

activity of plasma membrane transporters to ensure proper uptake, distribution  

to tissues or cells, as well as reabsorption from kidney ultrafiltration. This network 

maintains homeostasis in physiological conditions [194]. Cancer cells utilize glutamine 

through the glutaminolysis pathway to obtain building blocks and energy for anabolic 

purposes. This highlights the critical role of glutamine transporters in cancer growth 

and the potential for these transporters to be targeted in chemotherapy [195]. To date, 

14 plasma membrane transporters in mammalian cells have been identified  

at the molecular level to transport glutamine. It is crucial to note that none of these 

transporters have specific selectivity for glutamine and not all of them facilitate 

glutamine influx into cells. The transporters exhibit varying substrate selectivity,  

with some accepting only neutral amino acids, others accepting neutral and cationic 

amino acids, and still others accepting neutral, cationic, and anionic amino acids [196]. 

In addition, some of these transporters facilitate the release of intracellular glutamine 

into the extracellular environment under normal physiological conditions, while most 

of them mediate the entry of extracellular glutamine into cells [196]. Moreover, It has 

been reported that, the presence of a suite of glutamine transporters (influx/efflux), 

including SNAT1 (SLC38A1), mediating the net uptake of specific amino acid 

transporters (AATs) [197], ASCT2 (SLC1A5) and LAT1 (SLC7A5) and they are amino 

acid transporter harmonisers, which rapidly exchange various amino acids to ensure 

their presence in the cytosol, and rescue amino acid transporters including SNAT4 
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(SLC38A4), as well as SNAT2 (SLC38A2) which provide redundant capacity  

and are upregulated in response to stress [193,195]. 

In human cervical adenocarcinoma epithelial cells (HeLa) and human 

thymidine kinase-negative osteosarcoma cells 143B and the net glutamine uptake  

was dependent on SNAT1 and SNAT2. However, the absence of ASCT2 resulted  

in an amino acid starvation response and increased expression of SNAT1. Suppressing 

GCN2 in this scenario led to further reduction in cell growth, implying that a multiple 

glutamine transporter that induce glutamine-dependent cancer cell growth 

“addicted cells“ [195]. In this study, we have found that, a significant decrease  

of extracellular glutamine (increase glutamine consumption) in RHCs after 12h and 24h 

of incubation at normoxia compered to hypoxic cells. moreover, the same effect  

was observed in DNC condition. Observed by others that, in K-Ras mutant cells,  

the presence of glutamine increases both oxygen consumption rate and ATP 

generation, contributing to the development of tumorigenesis [198]. It has been 

reported that the activation of K-Ras and Akt in transformed cells results in 60%  

of the total FADH2 and NADH2 being synthesized from glutamine, with only 30% 

derived from glucose [199]. This highlights the significant contribution of glutamine  

to ATP generation and oxygen consumption in these cells, further supporting its role 

in tumorigenesis, and heightened the expression of glutamine transporters.  

Moreover, the large amino acid transporter 1 (LAT1) mediates the uptake  

of several essential amino acids (EAAs), including leucine, isoleucine, valine, 

phenylalanine, tyrosine, tryptophan, methionine, and histidine into the cell [200],  

and the expression of LAT1 increases in various cancers during their progression [201]. 

Herein, we have found that, a reduction in the levels of extracellular leucine, isoleucine, 

valine, tyrosine, phenylalanine and methionine (increase essential amino acids 

consumption) with RHCs after 12h and 24h of incubation at normoxia compered  

to hypoxic cells. It has been demonstrated from in vitro study that, LAT1 (SLC7A5)  

has high affinity for bulky branched-chain and aromatic amino acids, thus providing  

a source of energy through their contribution to the TCA cycle [202]. The LAT1 

(SLC7A5) have been implicated in various cancer-associated traits such as protection 

against cell death, promotion of cell proliferation, activation of invasion and metastasis, 

induction of angiogenesis, evasion of immune response, and disruption of cellular 

energy homeostasis [203]. Therefore, the increase in demand for leucine, isoleucine, 
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valine, tyrosine, phenylalanine and methionine may contributes to the expression  

of LAT1 (SLC7A5), promoting the development of tumorigenesis. 

Moreover, the cationic amino acid transporter-1 (CAT-1) is mainly located  

in the basolateral membrane, However, it can also be exist in intracellular membranes. 

There are two variants of CAT2, known as CAT2-A and CAT2-B. CAT2-A is mostly 

found in the liver, skeletal muscle, and pancreas, while CAT2-B expression is inducible 

in multiple cell types [204]. Others suggest a high demand for arginine by tumor cells 

and indicates that either inhibiting transport or reducing extracellular arginine could 

be a promising therapeutic approach. The strong impact of reducing CAT-1 on chronic 

lymphocytic leukemia (CLL) cell viability and tumor growth may also be partially 

caused by decreased uptake of the essential amino acid including lysine, which  

is also a substrate for CAT-1 [205]. Here, we have found a reduction of the extracellular 

arginine and lysine levels with RHCs after 12h and 24h of incubation at normoxia 

compered to hypoxic cells. It has been demonstrated that, the potential roles of CATs 

in metabolic reprogramming are multiple and may involve: (i) facilitating the buildup 

of arginine and lysine to drive the TCA cycle; (ii) providing arginine for nitric oxide 

biosynthesis; and (iii) supporting ornithine utilization for polyamine synthesis [206]. 

Therefore, the elevated arginine and lysine consumption within the tumors highlights 

its central importance for tumor cell survival [207], and importance of inducing  

the expression of cationic amino acid transporter-1 (CAT-1).  

The metabolic fate of fructose is diverse and complex. However, certain 

metabolic pathways overlap with those of glucose metabolism and are integral to cell 

growth and survival. Thus, it is expected that, analogous to glucose, fructose  

can impact the growth, proliferation, and survival of cancer cells [208,209]. Recent 

studies have established a link between the fructose transporter GLUT5 (encoded  

by SLC2A5) and cancer development and progression [210]. Upregulation of GLUT5 

has been found to be associated with poor prognosis in patients with lung 

adenocarcinoma. Therefore, demonstrate that depletion of GLUT5 diminished cell 

proliferation and invasion and increased apoptosis, while increased GLUT5 expression 

enhanced cell proliferation, migration, invasion, and tumorigenic potential [210]. Here, 

we have observed that, a downregulation of extracellular fructose with RHCs after 12h 

and 24h of incubation at normoxia compered to hypoxic cells. Several studies has been 

shown that, the enhanced uptake of fructose led to increased cell proliferation, colony 
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growth, and boosted migration and invasion. Consequently, high GLUT5 expression 

and increased fructose utilization are linked to unfavorable outcomes and exacerbate 

cancerous phenotypes. What’s more, GLUT5 overexpression has been observed  

in various types of cancer, including glioblastoma, colon, liver, lung, breast,  

and prostate [211–213]. This aligned with our observation on the level of extracellular 

fructose downregulation as reflection of high expression of fructose transporter 

GLUT5.  

Adenosine triphosphate (ATP) is an essential biochemical component  

of the tumor microenvironment (TME), which can have either tumor-promoting  

or tumor-suppressing effects depending on its concentration and the specific  

ecto-nucleotidases and receptors expressed by immune and cancer cells [1]. ATP  

can be released from cells via both regulated and non-regulated pathways, such  

as exocytotic granules and plasma membrane-derived microvesicles, as well as various 

membrane channels and transporters, such as ATP-binding cassette (ABC) 

transporters, connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis 

modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion 

channels (MACs). Unregulated ATP release, on the other hand, occurs from dying  

and damaged cells [214,215]. Observed by us a reduction on the extracellular ATP  

with RHCs after 12h and 24h of incubation at normoxia compered to hypoxic cells.  

In recent years, study has provided a growing body of evidence that cancer 

cells utilize extracellular nutritional/energy molecules [36], including ATP, to meet 

their nutritional and energetic requirements. Moreover, the finding of extracellular 

ATP's roles in cancer metabolism expands the list of functionally significant 

extracellular molecules and provides a new target for prospective anticancer 

therapeutics [216]. Our finding is also consistent with these observations shown  

the importance of extracellular ATP for cancer cells energy demand requirements  

by inducing the expression of it transporters under normoxia conditions. Additionally,  

we have noticed that, fumarate was accumulated in extracellular space in which 

already explained in details in the previous section about the mechanism of fumarate 

overflow in normoxia and hypoxia (Section 4.1). 
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4.2.1. Conclusion  

In summary , we found that, the intracellular and extracellular metabolome  

of hypoxic cells and reoxygenized hypoxic cells at normoxia after 12h and 24h showed 

an increase of the catabolic capacity and induced amino acids influx into cells to sustain 

energy production and building blocks of intermediaries amino acids for biosynthesis 

process through various mechanisms including the following: 

- The downregulation of all significant intracellular metabolites including 

asparagine, aspartate,  glutamate, 1-methylnicotinamide, UDP-GlcNAc and lactate 

deliver different metabolic mechanisms as follows: 

1. The depletion of the extracellular glucose and glutamine levels downregulate 

the UDP-GlcNAc level via oncogenic signals such as Ras, mTORC2, and TGF-

β as well as downregulated the hexosamine biosynthetic pathway (HBP).   

2. The reduction of glutamine has positive correlation on intracellular asparagine 

and aspartate. Moreover, upregulation of extracellular asparagine after RHCs 

after 12h and 24h of incubation at normoxia via selective advantage 

mechanism of using extracellular asparagine and asparagine transporter 

SLC1A5 activity under normoxia over using glutamine via glutaminolysis  

for aspartate synthesis and act as primary amino acid over extracellular 

asparagine to provide carbon and nitrogen to other pathways. 

3. The reduction on 1-methylnicotinamide levels with RHCs after 12h and 24h  

of incubation at normoxia was driven via reducing of HIF-1 pathway  

and the sonic hedgehog (SHh) signaling pathway as well as a reduction  

on N-methyltransferase (NNMT) enzyme activity to adept the transition 

condition from hypoxia to normoxia. 

4. This mechanism of our observation under normoxia with a reduction  

on the intracellular and extracellular lactate related to the overexpression  

of lactate dehydrogenase B (LDHB) enzyme. 

 

- Under normoxia conditions, most significant extracellular metabolites  

are downregulated compared to hypoxia, except for fumarate which is explained 

in chapter 2, and asparagine which is discussed in section 4.1. This reduction  

is attributed to the upregulation of amino acid transporters under normoxia 
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compared to hypoxia, which play a crucial role in various cellular mechanisms  

for cancer development and progression, including the following:  

1. SNAT1 (SLC38A1), ASCT2 (SLC1A5) and LAT1 (SLC7A5) for extracellular 

glutamine. 

2. LAT1 (SLC7A5) for extracellular  leucine, isoleucine, valine, tyrosine, 

phenylalanine and methionine. 

3. The cationic amino acid transporter-1 (CAT-1) for extracellular arginine  

and lysine. 

4. The fructose transporter GLUT5 (encoded by SLC2A5) for extracellular 

fructose. 

5. Through membrane channels and transporters, such as ATP-binding cassette 

(ABC) transporters, connexin hemichannels, pannexin 1 (PANX1), calcium 

homeostasis modulator 1 (CALHM1), volume-regulated anion channels 

(VRACs) and maxi-anion channels (MACs) for ATP.  

The presented results provide novel insights into the impact of oxygen 

concentration and oxygen transition on HT1080 cells by NMR, shedding light on their 

responses to deoxygenation and reoxygenation. Specifically, under deoxygenation, 

normoxic cells experience stress and cease their degradation process, leading  

to the accumulation of intracellular amino acids. Therefore, this triggers the induction 

of amino acid transporters, which release amino acids into the extracellular space  

to maintain homeostasis and energy reserves for relevant pathways under hypoxia. 

Conversely, under reoxygenation, hypoxic cells experience an increase  

in the degradation and transformation process, coupled with the induction  

of transporter expression to increase uptake of significant amino acids aided  

by the oxygen supplied under normoxia. Overall, the findings provide crucial insights 

into understanding the both terms physiological and pathological implications  

of hypoxia in HT1080 cells, highlighting the importance of oxygen transition  

in restoring cellular processes. These findings represent a significant contribution  

to the literature and hold great potential for advancing our understanding of hypoxic 

responses in various cell types. 
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