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Abstract

Insurance companies specializing in casualty insurance create their own rating systems for setting
fair premiums for every risk for different kinds of insurance portfolios. The rating system is mostly
based on the data analysis concerning the number and the value of claims for individuals or groups
(classes) of insured people within a given portfolio. Based on a given rating system, the premium for a
particular risk is calculated in two stages: a priori rating and a posteriori rating. In this paper, the process
of a priori rating is analyzed with the emphasis on minimum bias methods used for modelling the rating
variables.

1. Introduction

Insurance companies specializing in casualty insurance create their own rating
systems for setting fair premiums for every risk for different kinds of insurance
portfolios. The calculation of the pure premium for the overall portfolio of risks
should meet two basic conditions: it should ensure that the insurance company will
receive premiums at a level adequate to cover the claims and should fairly reflect the
probability of an insured event for different groups of customers (i.e. a higher
premium for the group of customers where the probability of an event or the sum of
claims is higher). Thus, the development of the rating system involves classifying
risks from the inhomogeneous overall portfolio in order to obtain homogeneous sub-
portfolios. The homogeneous sub-portfolio is defined as a subset of insurance policies
where claims are generated independently and the random variables – the number of
claims – are identically distributed within the subset and the random variables – the
value of compensation claimed – are identically distributed, too. The same pure
premium is assigned to every policy in the homogeneous sub-portfolio [7].

The rating system is mostly based on the data analysis concerning the number
and the value of claims for individuals or groups (classes) of insured people within a
given portfolio. Based on a given rating system, the premium for a particular risk is
calculated in two stages: a priori rating and a posteriori rating. A priori rating relies
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on the base rate calculation taking into consideration factors which describe the
insured person, the specification of the insured object (automobile, property, etc.) and
the general insurance experience. A posteriori rating is the calculation of an additional
rate (mostly calculated as a percentage of the base rate) where a number of claims
made by the insured person in the past is taken into consideration. Therefore the
“bonus-malus” system is mostly used, i.e. the system of discounts and increases in the
premium according to an individual’s claim experience [8].

As mentioned above, the value of claims in the portfolio depends on different
predictors. Treating these predictors as factors (i.e. qualitative random variables)
allows us to conduct a statistical data analysis in order to measure the influence of
every predictor on the level of claims. Having this done the only problem in the a
priori rating that needs to be solved is the estimation of the levels of predictors. Due
to their nature, the predictors are called “rating variables”. In the automobile
insurances, for example, the standard rating variables are: the driver’s region, gender,
age and the engine capacity. In this paper, the process of a priori rating is analyzed
with the emphasis on minimum bias methods used for modelling the rating variables.

2. Minimum bias methods used for estimating the rating variables

A basic method in a priori rate making is one-way analysis of loss data, for every
rating variable independently. A one-way analysis summarizes insurance statistics,
such as frequency or loss ratio, for each value of each rating variable, but without
taking into account the effect of other variables. This kind of an analysis can be
distorted by correlations between rating variables. For example, relativities based on
one-way analyses of two different rating variables would double-count the effect of
one of them. Traditional actuarial techniques for addressing this problem usually
attempt to standardize the data in such a way as to remove the distorting effect of
uneven business mix, for example by focusing on loss ratios on a one-way basis, or
by standardizing for the effect of one or more rating variables. One-way analyses also
do not consider interdependencies between variables in the way they affect claims
experience [1].

More developed ratemaking technique is called minimum bias procedures.
Actually this is rather a set of procedures linking the observed data, the rating
variables, and relativities. An iterative procedure solves the system of equations by
attempting to converge to the optimal solution.

There are many minimum bias procedures presented in the literature. Usually
they are modifications of one of four basic approaches to the problem of analyzing
the influence of rating variables on the value of claims. In all these procedures the
influence is measured with the use of the so called relativities. These indexes show
how to adjust the level of the premium to every sub-portfolio, i.e. how to change the
level of the base rate [2].
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Let us denote by:
1) X,Y – rating variables,
2) x1, …, xn– the relativities for variable X; y1,…yn – the relativities for variable Y,
3) rij – the average value of claims for the i-th value of X and the j-th value of Y,
4) nij – the average value of claims for the i-th value of X and the j-th value of Y,
5) B – the base average value of claims. 
The first approach applies the balance principle for every value of the rating

variable. The balance principle can be written in the following form [2]:

for the variable X: 

and for the variable Y

The estimators for the relativities derived from the balance equations have the
form: 

and

The second approach uses the least squares method, where the relativities are
estimated by minimizing the squared differences between the average values of claims
and their estimated values given by the model. Formally we search for the solution
of the optimization task: Applying necessary condition for 

the local minimum of the functions of more than one variable we obtain [4]:

for the variable X: 

and for the variable Y: .

The estimators for the relativities derived from these equations have the form: 

and

In the third approach estimation of the relativities is based on the minimization

of the χ2 statistic: Again using the theorem on local 

extrema we obtain the following estimators [4]:
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and .

The fourth approach uses the maximum likelihood method. It implies the need of
making assumption about the claims’ distribution. For insurance data the most often
used distribution is Gamma distribution. In this case the maximum likelihood
estimators for variables X and Y have the form [4]:

and

In order to calculate the values of the relativities we have to repeat the iterative
algorithm computing xi

k and yj
k in every iteration k → ∞. The starting point is set to

x0=1, y0=1. In every iteration we use constant base B which is the weighted mean 

The convergence conditions for the iterative algorithm in all above models are:
, [6].

The weighted absolute percentage bias, which is the weighted average of absolute
difference between the observations and fitted values [2]

is suggested as the criterion for the rational choice of the model for the relativities
estimation.
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3. Example for the minimum bias procedures

In this section we present numerical example illustrating how the minimum bias
procedures work. The following assumptions were made for the example: claims are
described by two variables – the value of the individual claim and the number of
claims in the sub-portfolio. Moreover, two rating variables are considered in the
multiplicative model.

Table 1. Average value of claim (rij) and the number of claims (nij) in the sub-portfolio 

Source: [6].

Using the data from Table 1, four iterative algorithms were performed on the basis
of four minimum biased models implemented in R – the language for statistical
computing. The stopping criterion for the convergence of the algorithm was set to
<0.0000001, which caused the algorithm to terminate after k = 4 iterations. The base
was calculated to be B = 241.46.

Table 2. Relativities for the variable X

Source: own calculations.

x1 x2 x3 x4 x5 x6 x7 x8

Model 1 1.203546 1.207631 1.15438 1.123666 0.89052 0.970975 0.953408 0.921826
1.259185 1.222628 1.136752 1.09986 0.878172 0.959818 0.97269 0.954536
1.260293 1.222945 1.136482 1.099436 0.877956 0.959584 0.972997 0.955178
1.260314 1.222951 1.136477 1.099428 0.877952 0.959579 0.973003 0.95519

Model 2 1.203546 1.207631 1.154380 1.123666 0.890520 0.970975 0.953408 0.921826
1.289876 1.209254 1.127879 1.102567 0.871397 0.965814 0.976279 0.961449
1.292142 1.209284 1.127265 1.102012 0.870950 0.965623 0.976815 0.962458
1.292200 1.209285 1.127250 1.101997 0.870939 0.965618 0.976829 0.962484

Model 3 1.309298 1.219359 1.162829 1.142823 0.899809 0.991953 0.96854 0.939983
1.329106 1.249564 1.154683 1.115882 0.894589 0.974865 0.987277 0.969541
1.329725 1.249977 1.154582 1.115483 0.89444 0.974629 0.987536 0.970037
1.329735 1.249983 1.154581 1.115477 0.894438 0.974626 0.98754 0.970045

Model 4 1.203546 1.207631 1.15438 1.123666 0.89052 0.970975 0.953408 0.921826
1.239827 1.234401 1.144724 1.097248 0.88339 0.955742 0.969952 0.948634
1.240569 1.234749 1.144644 1.096886 0.883228 0.955536 0.970163 0.949075
1.24058 1.234754 1.144643 1.09688 0.883225 0.955533 0.970166 0.949082

rij 17-20 21-24 25-29 30-34 35-39 40-49 50-59 60+
Not driving to work 250.48 213.71 250.57 229.09 153.62 208.59 207.57 192.00
Driving to work < 10 miles 274.78 298.6 248.56 228.48 201.67 202.8 202.67 196.33
Driving to work > 10 miles 244.52 298.13 297.90 293.87 238.21 236.06 253.63 259.79
Driving mostly on business 797.8 362.23 342.31 367.46 256.21 352.49 340.56 342.58

nij 17-20 21-24 25-29 30-34 35-39 40-49 50-59 60+
Not driving to work 21 63 140 123 151 245 266 260
Driving to work < 10 miles 40 171 343 448 479 970 859 578
Driving to work > 10 miles 23 92 318 361 381 719 504 312
Driving mostly on business 5 44 129 169 166 304 162 96
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Table 3. Relativities for the variable Y

Source: own calculations.
In every model that was built we observe that young drivers and drivers in their

middle age are associated with the higher average value of claim compared to the
base. It means that the premium has to be adjusted (increased) adequately. We have
the similar situation for the car use variable, where the increase should be applied to
the clients using the car on business and driving to work over 10 miles. For all the
other cases there should be a discount in the base rate.

In order to choose the best model, taking as the criterion the minimization of d,
we need to estimate the rij values and then compare the estimated values with the real
values. The estimator has the general form:

Table 4. Estimators of values of the individual claims r̂ ij

Model 1 17-20 21-24 25-29 30-34 35-39 40-49 50-59 60+
1 2 3 4 5 6 7 8 9

Not driving to work 258.88 251.20 233.44 225.83 180.34 197.10 199.86 196.20
Driving to work < 10 miles 269.70 261.71 243.20 235.28 187.88 205.35 208.22 204.41
Driving to work > 10 miles 326.73 317.04 294.63 285.02 227.61 248.77 252.25 247.63
Driving mostly on business 424.97 412.37 383.21 370.72 296.04 323.56 328.09 322.08

Model 2
Not driving to work 265.22 248.21 231.37 226.18 178.76 198.19 200.49 197.55
Driving to work < 10 miles 276.34 258.61 241.06 235.66 186.25 206.50 208.90 205.83
Driving to work > 10 miles 334.23 312.79 291.57 285.04 225.27 249.76 252.66 248.95
Driving mostly on business 435.21 407.28 379.65 371.15 293.33 325.22 328.99 324.16

 .ˆ jiij yBxr =

y1 y2 y3 y4

Model 1 0.854618 0.887850 1.071906 1.390519
0.850754 0.886292 1.073622 1.396364
0.850680 0.886265 1.073654 1.396471
0.850678 0.886264 1.073654 1.396473

Model 2 0.854744 0.888520 1.070131 1.386918
0.850158 0.885728 1.071178 1.394628
0.850034 0.885659 1.071205 1.394823
0.850031 0.885657 1.071205 1.394828

Model 3 0.842359 0.874037 1.056052 1.376687
0.838920 0.872723 1.057486 1.381844
0.838863 0.872704 1.057509 1.381921
0.838862 0.872703 1.057510 1.381922

Model 4 0.854173 0.887450 1.073693 1.393434
0.850980 0.886537 1.075486 1.398901
0.850929 0.886525 1.075513 1.398980
0.850928 0.886525 1.075513 1.989810
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Table 4, cont.

Source: own calculations.
In the example we observe that the estimated values do not vary significantly

when comparing different models. The estimation error d was computed to support
the choice of the optimal model (Table 5).

Table 5. Weighted absolute percentage bias

Source: own calculations.

In every analyzed model the weighted absolute percentage bias is a little bigger
than 4%, however, the smallest value was obtained in the fourth model which is
therefore taken as the optimal model for the given example. The above analysis can
be extended by including other rate making methods and by using the weighted
Pearson Chi-square statistics [3].

4. Monte Carlo simulation for the minimum bias procedure

The accuracy of the relativities depends on the claims’ behaviour in the future.
Thus, the simulation of the future claims is a useful tool illustrating changes in the
relativities for different scenarios. We propose a Monte Carlo simulation procedure,
where one iteration consists of five stages:

Stage 1. Assume the distribution for the average value of claims (independent
variable).

Stage 2. Generate the data matrix (with the average values of claims).
Stage 3. Compute the relativities.
Stage 4. Estimate the theoretical average values of claims.
Stage 5. Compute the model estimation error.

Model 1 Model 2 Model 3 Model 4

d → min 4.4537% 4.7045% 4.4229% 4.2584%

1 2 3 4 5 6 7 8 9
Model 3

Not driving to work 269.34 253.19 233.86 225.94 181.17 197.41 200.03 196.49
Driving to work < 10 miles 280.21 263.40 243.30 235.06 188.48 205.38 208.10 204.41
Driving to work > 10 miles 339.54 319.18 294.82 284.83 228.39 248.87 252.17 247.70
Driving mostly on business 443.71 417.09 385.26 372.21 298.46 325.21 329.52 323.68

Model 4
Not driving to work 254.90 253.70 235.19 225.37 181.47 196.33 199.34 195.00
Driving to work < 10 miles 265.56 264.31 245.02 234.80 189.06 204.54 207.67 203.16
Driving to work > 10 miles 322.17 320.66 297.26 284.85 229.37 248.15 251.95 246.47
Driving mostly on business 419.07 417.10 386.66 370.53 298.35 322.78 327.72 320.60
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In our simulation we assumed the Gamma distribution with the parameters α=1
and θ=rij (data in Table 1) for the average values of claims [3]. We used the fourth
model (the optimal model with the smallest error d) for estimating the relativities.
After iterating the procedure 1000 times we obtained the following variables
distributions (Tables 6-8).

Table 6. Distributions of the relativities for the variable X

Source: own calculations.

Table 7. Distributions of the relativities for the variable Y

Source: own calculations.

Deciles y1 y2 y3 y4

Min 0.7793 0.8274 0.9806 1.0000
10% 0.8170 0.8631 1.0365 1.3262
20% 0.8273 0.8692 1.0447 1.3433
30% 0.8355 0.8737 1.0513 1.3565
40% 0.8416 0.8767 1.0567 1.3678
50% 0.8482 0.8801 1.0622 1.3777
60% 0.8540 0.8837 1.0671 1.3877
70% 0.8612 0.8873 1.0726 1.3991
80% 0.8689 0.8932 1.0798 1.4126
90% 0.8794 0.8998 1.0888 1.4282
Max 1.0000 1.0000 1.1230 1.5047

Standard
deviation

0.0251 0.0147 0.0207 0.0415

Deciles x1 x2 x3 x4 x5 x6 x7 x8

Min 0.8596 1.0000 1.0000 0.9912 0.7885 0.8928 0.8996 0.8715
10% 1.0665 1.1426 1.0907 1.0596 0.8453 0.9340 0.9413 0.9171
20% 1.1331 1.1683 1.1080 1.0742 0.8563 0.9424 0.9522 0.9283
30% 1.1736 1.1907 1.1172 1.0850 0.8646 0.9493 0.9585 0.9362
40% 1.2095 1.2047 1.1272 1.0937 0.8718 0.9549 0.9657 0.9434
50% 1.2447 1.2191 1.1363 1.1022 0.8807 0.9604 0.9716 0.9508
60% 1.2806 1.2369 1.1466 1.1096 0.8876 0.9656 0.9772 0.9592
70% 1.3224 1.2562 1.1577 1.1193 0.8938 0.9709 0.9831 0.9668
80% 1.3794 1.2796 1.1696 1.1297 0.9017 0.9763 0.9909 0.9749
90% 1.4536 1.3049 1.1870 1.1446 0.9134 0.9854 1.0017 0.9867
Max 1.8228 1.4535 1.2500 1.2144 1.0000 1.0391 1.0451 1.0386

Standard 
deviation

0.1466 0.0659 0.0376 0.0336 0.0265 0.0203 0.0235 0.0275
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Table 8. Distribution of the error d

Source: own calculations.

The simulation is also useful to compare the rate making results with the different
average value of claims distribution, like inverse Gaussian or log-normal.

5. Summary

In the article we presented four approaches used in the estimation of the
relativities in a priori rate making. All these approaches are based on the minimum
bias procedure and have iterative structure, which means in practice the need of
writing the computer implementation of the algorithm (it is not the case for, e.g.,
GLM models which are already implemented in the most widely used statistical
software). When the distribution of the variable describing the claims is known, we
are able to extend the iterative algorithms to the Monte Carlo simulation. As the result
we obtain the distribution of the relativities, which makes us feasible to conduct the
analysis of changes in the relativities for different scenarios.

The simulation can be applied even if it is hard to estimate the distribution of the
claims based on the historical data, e.g., when the insurance company does not have
the complete information about the claims experience in a given portfolio, in
particular when the available data sets lack or do not isolate certain rating variables.
The weakness of the simulation might appear when introducing too many rating
variables to the model, because large number of obtained results may cause the
analysis hard to conduct.

Deciles d

Min 3.40%

10% 4.60%

20% 4.89%

30% 5.12%

40% 5.36%

50% 5.54%

60% 5.76%

70% 5.99%

80% 6.28%

90% 6.61%

Max 100.00%

Standard 
deviation

0.0309
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PROCEDURY MINIMALNEGO OBCIĄŻENIA 
W TARYFIKACJI A PRIORI

Streszczenie

Zakłady ubezpieczeń działające w grupie ubezpieczeń majątkowych tworzą własne systemy
taryfikacyjne w celu ustalenia sprawiedliwego poziomu składki dla każdego ryzyka w różnego rodzaju
portfelach ubezpieczeniowych. Tworzenie systemu taryfikacyjnego jest oparte głównie na analizie
danych dotyczących szkodowości oraz przebiegu ubezpieczenia jednostek bądź grup (klas)
ubezpieczeniowych w danym portfelu ubezpieczeń. Ustalenie składki dla konkretnego ryzyka na
podstawie danego systemu taryfikacyjnego jest dwuetapowe: taryfikacja a priori oraz taryfikacja a
posteriori. W pracy analizowany jest proces taryfikacji a priori z wykorzystaniem tzw. procedur
minimalnego obciążenia służących do szacowania poziomu zmiennych taryfikacyjnych wpływających
na poziom szkodowości.
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