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Abstract

At present, two principal approaches to volatility modelling exist: the GARCH and stochastic
volatility models. In this paper, the GARCH models have been applied both to selected Czech capital
market and exchange rates time series. The first aim of investigation consists in possible differences in
behaviour with respect to time scale (days, weeks, months). The second level is given by differences
between stock prices and exchange rates. Finally, besides univariate models, multivariate GARCH were
also used to discover possible relations among different time series. 

1. Input data and descriptive methods

The main aim of this study is to compare the behaviour of stock returns and
exchange rate returns at Czech financial markets. Input data are given as daily values
of corresponding time series values xt during the period 2001-2007, i.e.1757 daily
values of stock prices. We have selected four most liquid stocks: CEZ (energetics),
KB (finance), TEL (telecommunication) and UP (petrochemicals). As for exchange
rates, there are 1302 daily values observed in the years 2003-2007, and, namely, CHF,
EUR, GBP and USD. The subject of our analysis were one-day logarithmic returns
expressed as percentage and computed as

yt=100 (ln xt − ln xt-1) . (1)

Similarly, 5-day (weekly) and 21-day (monthly) returns were computed too using
non-overlapping intervals. Thus, lengths of corresponding weekly time series are 364
(stocks) and 273 (exchange rates). Monthly time series have lengths 86 (stocks) and
65 (exchange rates).

First, some elementary summary statistics related to daily returns were computed.
The results obtained are compiled in the following tables.
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Table 1. Summary statistics for stock returns

Source: own calculations.

Table 2. Summary statistics for exchange rates

Source: own calculations.

2. Univariate modelling

The next step is the possibility of modelling of the return time series. First, the
behaviour of daily returns was investigated. In general, ACF values statistically
significant at 5% level occurred up to relatively high orders. Therefore, combined

Average Median StDev LowerQ UpperQ InterQ Skewness Kurtosis
CHF_01 –0.02 –0.02 0.44 –0.26 0.20 0.46 0.15 13.12
CHF_05 –0.11 –0.10 0.64 –0.62 0.37 0.99 –0.07 –0.36
CHF_21 –0.47 –0.52 1.04 –1.34 0.31 1.65 –0.19 –0.43
EUR_01 –0.01 –0.01 0.33 –0.20 0.18 0.38 0.10 2.69
EUR_05 –0.07 –0.06 0.55 –0.42 0.29 0.71 –0.24 0.28
EUR_21 –0.30 –0.44 0.99 –1.00 0.52 1.52 0.03 –0.86
GBP_01 –0.02 0.00 0.50 –0.33 0.29 0.62 0.04 1.18
GBP_05 –0.12 –0.08 0.84 –0.64 0.44 1.08 –0.15 0.22
GBP_21 –0.51 –0.56 1.68 –1.68 0.63 2.31 0.08 0.02
USD_01 –0.04 –0.02 0.66 –0.41 0.35 0.76 0.04 1.33
USD_05 –0.20 –0.24 1.21 –0.98 0.52 1.50 0.26 0.19
USD_21 –0.83 –0.66 2.46 –2.36 1.07 3.43 –0.35 –0.22

Average Median StDev LowerQ UpperQ InterQ Skewness Kurtosis
0.15 0.17 1.95 –0.81 1.20 2.01 –1.11 13.33
0.75 1.03 3.53 –1.06 2.83 3.89 –0.45 1.89
2.95 3.87 8.53 –3.19 8.19 11.38 –0.21 0.56
0.09 0.14 1.83 –0.94 1.08 2.02 –0.08 2.38
0.43 0.71 3.52 –1.63 2.65 4.28 –0.33 0.72
1.58 3.00 8.72 –3.57 7.44 11.01 –0.45 –0.01
0.00 0.02 2.07 –0.82 0.87 1.69 –0.45 5.78
0.02 0.32 3.90 –1.46 1.90 3.36 –0.62 3.09
0.08 0.98 9.74 –4.02 4.58 8.60 –0.33 2.96
0.09 0.12 2.29 –0.75 1.03 1.78 –0.61 10.54
0.48 0.55 4.63 –1.47 2.68 4.15 –1.39 12.28
1.79 1.95 11.54 –3.24 7.48 10.72 –0.07 1.93
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AR-GARCH models suitable for the modelling in the presence of heteroscedasticity
were employed. The governing equations are [4; 8]:

where σt denotes conditional standard deviation and et is normal white noise. First,
we employed the simplest GARCH (1,1) model, which was quite efficient in most
cases. Second, EGARCH (1,1) model was employed to model possible asymmetric
reaction with respect to positive and negative shocks et. General form of conditional
variance in EGARCH models can be written as [7]

Clearly, if γ1= 0, then both positive and negative shocks exert the same influence
on volatility. On the other hand, for -1< γ1 0, a positive shocks influence volatility less
than negative ones. Indeed, this second case actually occurs, as can be seen from
Table 3. In all cases, EGARCH (1,1) model led to slightly better results in comparison
with GARCH (1,1).

Table 3. Estimated parameters of AR-EGARCH models for daily stock returns (SL=0.05)

Source: own calculations.

Clearly, there is strong direct dependence of conditional standard deviation on its
previous values, manifested by large values of β parameter. Secondly, β values vary
only slightly among individual stocks returns. On the other hand, GARCH (1,1)
models proved to be sufficient for exchange rate daily returns and the results are
presented in Table 4.

Table 4. Estimated parameters of AR-GARCH models for daily exchange rate returns (SL=0.05)

Source: own calculations.

φ (1) φ (3) φ (6) ω α β
CHF_01 −0.056 - - - 0.036 0.946
EUR_01 −0.072 - −0.055 0.002 0.053 0.929
GBP_01 - −0.052 - - 0.023 0.971
USD_01 - - - - 0.029 0.967

φ (1) φ (2) φ (4) φ (05) φ (7) φ (8) ω α β γ
CEZ_01 0.054 - - - - 0.054 - 0.241 0.892 −0.085
KB_01 0.072 - 0.058 - −0.047 - −0.075 0.216 0.924 −0.079
TEL_01 0.048 - - - - - −0.174 0.267 0.996
UP_01 0.052 0.037 - - - - −0.170 0.420 0.940 −0.090
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As for weekly stock returns, the matter is more stratified. There is no need for
GARCH model in the case of KB and EGARCH is more efficient only for TEL.
Again, this situation is summarized in Table 5.

Table 5. Estimated parameters of AR-EGARCH models for weekly stock returns (SL=0.05)

Source: own calculations.
On the contrary, the modelling of weekly exchange rate returns does not demand

GARCH at all and simple AR models are quite sufficient (Table 6).

Table 6. Estimated parameters of AR models for weekly exchange rate returns (SL=0.05)

Source: own calculations.

As for monthly stock returns, classical ARMA models are fully satisfactory (Table 7).

Table 7. Estimated parameters of ARMA models for monthly stock returns (SL=0.05)

Source: own calculations.

The same is true for 21-day exchange rate returns. Moreover, only MA models are
needed.

Table 8. Estimated parameters of MA models for monthly exchange rate returns (SL=0.05)

Source: own calculations.

CHF_05 EUR_05 GBP_05 USD_05
MA (1) - 0.290 0.244 0.283
MA (3) - - - −0.345
MA (5) 0.427 - - -
MA (7) - - - −0.763
MA (9) −0.507 - −0.512 -
MA (10) - - −0.531 -

CEZ_21 KB_21 TEL_21 UP_21
AR (7) - −0.633 - -
AR(10) −0.403 - - -
MA(7) - 0.891 0.268 0.271
MA(10) 0.878 - - -

CHF_05 EUR_05 GBP_05 USD_05
AR (1) 0.140 0.209 0.201 0.291
AR (2) −0.121 −0.161 - -

φ (1) φ (2) φ (3) φ (4) φ (5) ω α β γ
GARCH(1,1)
CEZ_05 0.307 - - - - - - 0.864 -
KB_05 0.190 - - - - - - - -
UP_05 0.235 - 0.097 -0.113 0.067 - 0.159 0.742 -
EGARCH(1,1)
TEL_05 0.261 -0.148 - - - 0.085 - 0.985 -0.139
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3. Multivariate modelling

First of all, the values of cross-correlation function for zero time lag were
computed. Clearly, it is the case of synchronous correlation between all time series
of returns under consideration.

Table 9. Estimated values of sample cross-correlation function for stock returns (SL=0.05)

Source: own calculations.

Table 10. Estimated values of sample cross-correlation function for exchange rate returns (SL=0.05)

Source: own calculations.

To investigate dynamical dependence among individual returns, Granger causality
test was applied in two-dimensional system of jointly stationary time series [1]. We
say, variable x Granger cause variable y, if delayed values of x variable improve
prediction of y, despite the fact that delayed values of y are introduced as explanatory
variables. The model assumed is bivariate VAR(p) in the form

Then the test of Granger causality in direction x → y can be understood as F-test
of parameters α21,α22,…, α2p, in regression model (4), whereas the test of Granger

(4)

 
1 1 1 1

1 1

2 2 2 2
1 1

p p

t i t i i t i t
i i

p p

t i t i i t i t
i i

x c x y u

y c x y u

α

α

β

β

− −
= =

− −
= =

= + + +

= + + +

∑ ∑

∑ ∑

CHF CHF CHF EUR EUR GBP

EUR GBP USD GBP USD USD

Daily 0.689 0.456 0.324 0.638 0.531 0.634

Weekly 0.748 0.442 0.425 0.572 0.593 0.615

Monthly 0.739 0.492 0.516 0.660 0.629 0.633

CEZ CEZ CEZ KB KB TEL

KB TEL UP TEL UP UP

Daily 0.465 0.362 0.417 0.408 0.349 0.276

Weekly 0.397 0.294 0.438 0.368 0.256 0.236

Monthly 0.465 0.302 0.558 0.288 - 0.236
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causality in direction y → x is related to parameters β11,β12,…, β1p. The results obtained
are summarized in Table 11.

Table 11. Results of testing Granger causality

Source: own calculations.

Further, it is of interest to generalize univariate GARCH (1,1) employed formerly
to multivariate case. This approach allows us to study time-varying behaviour
conditional covariances, which is an important problem in the portfolio theory. 
A general multivariate GARCH model related to k-dimensional random process et can
be written in the form [6]:

where et is a k-dimensional iid process with zero mean and covariance matrix equal
to identity matrix. As a generalization of univariate case, Ht denotes time-varying
conditional covariance matrix that needs to be specified. A general representation for
the multivariate analogue of the GARCH (1,1) is so-called VEC model [5]:

vech (Ht) = Ω* + A* vech (εt−1 εt−1
T) + B vech (H t−1) , (6)

where vech operator stacks the lower portion of a matrix in a vector. For example, in
the simplest bivariate case, this expression takes the form
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1-DAY CEZ → UP TEL → KB - - -

P-value 0.021 0.047 - - -

5-DAY CEZ → UP KB → CEZ UP → KB - -

P-value 0.045 0.048 0.008 - -

21-DAY - - - - -

P-value - - - - -

1-DAY USD → EUR USD → CHF EUR → CHF

P-value 0.016 0.014 0.001

5-DAY USD → EUR

P-value 0.029

21-DAY USD → EUR USD → GBP GBP → USD GBP → CHF GBP → EUR

P-value 0.049 0.006 0.005 0.004 0.002
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containing 21 parameters to be estimated, and, generally, (k(k+1)/2)*(1+2(k(k+1)/2)).
Thus, to overcome this shortcoming, diagonal VEC model was constructed with
elements [3]:

containing generally 3(k(k+1)/2) parameters. Again, written explicite for bivariate
case k = 2

and there are 9 parameters to be estimated.
Bollerslev developed an alternative approach by assuming time-invariant

conditional correlations ρij between the elements of εt (CCC model). This model can
be written as [2]:

The results of computation are summarized in the tables below.

Table 12. Estimated parameters of diagonal VEC-GARCH model for daily stock returns. 
Parameters ρij were computed using CCC model

Source: own calculations.

φ (1) ω α β ρ
CEZ 0.055 0.241 0.094 0.851

KB 0.078 0.145 0.076 0.893

TEL 0.052 0.019 0.077 0.919

UP 0.051 0.194 0.131 0.830

CEZ_KB 0.057 0.044 0.914 0.432

CEZ_TEL 0.032 0.053 0.912 0.401

CEZ_UP 0.071 0.067 0.876 0.389

KB_TEL 0.016 0.041 0.937 0.372

KB_UP 0.051 0.046 0.907 0.352

TEL_UP 0.018 0.052 0.915 0.300

 2
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Fig. 1. Time-varying conditional correlation between daily stock returns

Source: own elaboration.

Table 13. Estimated parameters of diagonal VEC-GARCH model for daily exchange rate returns.
Parameters ρij were computed using CCC model

Source: own calculations.

φ (1) ω α β ρ
CHF −0.078 0.005 0.060 0.904
EUR −0.053 0.002 0.044 0.932
GBP - 0.002 0.025 0.966
USD - 0.003 0.021 0.971
CHF_EUR 0.002 0.054 0.919 0.758
CHF_GBP 0.002 0.030 0.935 0.475
CHF_USD 0.002 0.038 0.912 0.323
EUR_GBP 0.002 0.029 0.944 0.615
EUR_USD 0.002 0.030 0.939 0.519
GBP_USD 0.001 0.020 0.970 0.616

-.2

.0

.2

.4

.6

.8

250 500 750 1000 1250 1500 1750

Cor(CEZ_R01,KB_R01)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

250 500 750 1000 1250 1500 1750

Cor(CEZ_R01,TEL_R01)

.0

.2

.4

.6

.8

250 500 750 1000 1250 1500 1750

Cor(KB_R01,TEL_R01)

-.2

.0

.2

.4

.6

.8

250 500 750 1000 1250 1500 1750

Cor(CEZ_R01,UP _R01)

.0

.1

.2

.3

.4

.5

.6

.7

250 500 750 1000 1250 1500 1750

Cor(KB_R01,UP _R01)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

250 500 750 1000 1250 1500 1750

Cor(TEL_R01,UP _R01)

Conditional Correlation



Jiří Trešl80

Fig. 2. Time-varying conditional correlation between daily exchange rate returns

Source: own elaboration.

Table 14. Estimated parameters of diagonal VEC-GARCH model for weekly stock returns. Parameters
ρij were computed using CCC model

Source: own calculations.

Again, like in univariate case, there was no need for multivariate GARCH model
in the case of weekly exchange rate returns.

φ (1) ω α β ρ
CEZ 0.229 - 0.033 0.919
TEL 0.227 - 0.047 0.941
UP 0.210 0.772 0.064 0.889
CEZ_TEL - 0.073 0.625 0.366
CEZ_UP - 0.015 0.969 0.393
TEL_UP - 0.068 0.625 0.309

Conditional Correlation
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Fig. 3. Time-varying conditional correlation between weekly stock returns

Source: own elaboration.

4. Conclusion

As for descriptive statistics, there is clear tendency to positive kurtosis and
negative skewness in the case of daily and weekly stock returns. One the other hand,
these findings are not repeated in exchange rate returns. Thus, GARCH models
proved to be unavoidable for the modelling of daily and mostly also weekly stock
returns and daily exchange rate returns. Secondly, asymmetric EGARCH (1,1) model
capable to capture non-symmetry in reaction to positive and negative shocks was
needed in the case of daily stock returns. It was manifested that positive shocks
influenced volatility less than negative ones. On the contrary, the modelling of weekly
and monthly exchange rate returns demands only ARMA models. The same is true
also for monthly stock returns.
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Further, the values of cross-correlation function were always positive, signalizing
some measure of coherent movement among time series. The measure of cross-
correlation is higher in the case of exchange rate returns. Granger causality test
revealed some directions of possible influence, exerted by lagged values of
explanatory time series (for example the influence of lagged CEZ returns on UP ones
and lagged USD returns on EUR ones). Finally, the use of multivariate GARCH (1,1)
model led to the possibility of modelling dynamical time-varying correlations among
individual daily returns. In practice, this can help in the problems connected with
portfolio theory.
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MODELOWANIE ZMIENNOŚCI 
NA CZESKICH RYNKACH FINANSOWYCH

Streszczenie

Istnieją dwa zasadnicze podejścia do modelowania zmienności (volatility): GARCH i modele
stochastyczne. W artykule modele GARCH są zastosowane do wybranych szeregów czasowych
dotyczących rynku kapitałowego, a także stopy wymiany.

Pierwszy cel badawczy polegał na analizie zróżnicowania zachowań ze względu na zmianę skali
czasu (dni, tygodnie, miesiące), drugi zaś na analizie różnicy między cenami giełdowymi a stopami
wymiany. Ponadto wielowymiarowa wersja GARCH posłużyła do wykrycia możliwych związków
między szeregami czasowymi.
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