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ON HARTWICK’S RULE1

Abstract

In this paper two mathematical versions of the Hartwick’s rule are described. The first is connected
with optimal control models, and price variables are used. The other one is formulated without price
variables in control models without optimization. It is shown that the first formulation can be used also
in general control models.

The Hartwick’s rule is connected with the following model of the development
of renewable and non-renewable capitals described by the well known system of
differential equations (briefly by the system), (see [1-4]):

k’ = f(k, r) − δk – c, (1)
s’ = −r,

where k is a renewable capital, s is a non-renewable capital, c denotes the
consumption, δ denotes the constant depreciation rate of the augmentable capital, 
r denotes the rate of extraction of non-renewable capital, f(k, r) denotes the production
function (differentiable of second order).

We use designations k’ = dk/dt, Fz = ∂F/∂z and suppose that population and
technology are constant over time.

The system (1) is a control system for variables (k, s)∈V with the control
parameters (c, r)∈U, where V and U are open sets in R2.

The tangent space TV≅V×R2 is the space of change rates (k, s, k’, s’) of capitals.
Its dual space (cotangent space) T∗V ≅ V×R2 is the space of evaluations (k, s, ξ, ψ) of
this change rates, i.e. of the linear maps ξk’ + ψs’.

The system (1) is autonomous for constants c = c0, r = r0 and thus determines:
1. Hamiltonian H(k, s, ξ, ψ, c, r) = ξk’ +ψs’= ξ(f(k, r) − δk − c) + ψ(−r) of the

system (1). It is a function on T∗V for any (r, c)∈ U, i.e. on T∗V×U. It expresses the
evaluation of change rates of capitals.
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2. The flow Φt on V, that is a local one-parameter group of diffeomorphism on V.
Its cotangent prolongation T∗Φt determines for c = c0, r = r0 the flow of the following
system

k’ = f(k, r) − δ k – c = Hξ,          ξ’ = −Hk = ξ(δ − fk), (2)
s’ = −r = Hψ,                           ψ’ = −Hs = 0, i.e. ψ =ψ0.

The system (1) is a subsystem of the system (2), i.e. every solution of (2) gives
the solution of (1). The system in the second column of (2) is well known from the
Pontryagin’s maximum principle. Readers are referred to [5; 6] for details in theory
of natural tangent and cotangent prolongations.

Now we introduce the Hartwick’s rule.

Hartwick’s rule: Invest the rent from the exhaustible resource used at each date
in the net accumulation of the produced capital good.

We discuss two mathematical versions of this rule used in literature.

a. k’ = fr r. (3)

This version (see for example [1]), says that the change rate of renewable capital
is equal to the part of the increment of the production function corresponding to 
Δr = r, if we neglect the infinitesimal values of the second and higher order.

b. ξk’ = ψr , i.e. H(k, s, ξ, ψ, c, r) = ξk’ + ψs’ = ξ(f(k, r) − δk − c) + ψ(−r) = 0.  (4)

It can be interpreted as follows. The prices of the increment of the renewable
capital and of the flow of exhaustible resource per time unit are equal (see [1; 4]). This
b.-version is in literature connected with optimal control problems. Our approach
shows that it can be used in any control problem.

We will compare these two versions and will find conditions when they are strictly
equivalent.

Definition 1
A curve ρ(t) = (r(t), c(t)) in U is called a control path. Solution of the systems (1)

and (2) for r = r(t), c = c(t) are called solutions corresponding to the control path ρ(t).
A control path ρ(t) is said to be a 1Hart-path if together with a corresponding solution
of the system (1) satisfy the relation (3). A control path ρ(t) is called a 2Hart-path or
a 2Hart-0-path if together with a corresponding solution of (2) satisfy H(t) = H(k(t),
s(t), ξ(t), ψ(t), ρ(t)) ≡ H/ρ(t) = const or H/ρ(t) = 0, i.e. if the relation (4) is satisfied.
A control path is called equitable if c(t) = c0 is constant.

If a 1Hart-path is equitable then calculating the derivative (3) with respect to twe
get

dfr/dt = fkfr − δfr. (5)
Definition 2
A control path is said to be competitive if, together with a corresponding solution

of (1), it satisfies the relation (5).
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Evidently a 1Hart-path is equitable iff it is competitive. Authors in [1] proved
that if ρ(t) is equitable and competitive, then it is a 1Hart-path and δ= 0.

By a direct computation we get that a control path ρ(t) is a 2Hart-path iff, together
with a corresponding solution of (2), it satisfies the relations

Hrr’ + Hcc’ = 0,      i.e.  (ξfr − ψ0)r’ − ξc’ = 0. (6)
Evidently every constant control path ρ(t) = (r0, c0) is a 2Hart-path.

Definition 3
A control path is said to be regular if there is a corresponding solution of the

system (2) such that ξ(t)≠ 0 for t≥0.

Proposition 1. If a regular 2Hart-path is equitable but not constant then it is
competitive.

Proof. By (6) ξfr − ψ0 = 0. Calculating the derivative with respect to t we get that
the relation (5) is satisfied.

Definition 4
A regular control path is called r-stationary if it together with a corresponding

solution of the system (2) satisfies the condition Hr = 0, i.e. ψ0 = ξ(t)fr(k(t),r(t)).

From the relation (6) immediately follows
Proposition 2. If a control path is r-stationary then it is a 2Hart-path iff it is

equitable.
Proposition 3. If a control path is r-stationary then it is competitive.
Proof. As it holds ξfr − ψ0 = 0 then proof is identical with the proof of Proposition 1.

Theorem 1
Let a control path be r-stationary. Then it is a 2Hart-0-path if it is a 1Hart-path.

Proof. Let ψ0 = ξ(t)fr(k(t),r(t)). Then k’ = fr r iff ξ k’ = ξ fr r, that is iff ξk’ = ψ0r.

Remark 1. If a control path is r-stationary then it is competitive. If it is also
equitable then it is both a 2Hart-path and a 1Hart-path.

Remark 2 (about optimal control models). An optimal control model is
determined by the system (1) with the following optimization condition

max ∫∞
0 U(c(t))dt,

where U(c) is an utility function and integral is supposed to be convergent.



60 Anton Dekrét

By the standard procedure (see [7]), the basic system of this model arises from the
system (1) adding the equation p’ = U(c). Then the cotangent prolongation of the
basic system is

p’ = U(c) = Hϑ,                        ϑ’ = −Hp = 0, i.e. ϑ = ϑ0,              (7)
k’ = f(k,r) − δk – c = Hξ = Hξ,     ξ’= −Hk = ξ(δ − fk) = −Hk,                                   
s’= −r = Hψ = Hψ,                     ψ’ = −Hs = −Hs = 0, i.e. ψ =ψ0,

where H = ϑU(c) + H. The system (2) is a subsystem of (7), so every solution of the
system (7) gives the solution of the system (2).

If ρ∗(t) = (r∗(t), c∗(t)) is an optimal control path, then by the Pontryagin’s
maximum principle this path together with a corresponding solution of the system
(7) satisfy the following equations

Hc = ϑ0dU/dc = 0,           Hr = ξfr − ψ0 = 0.

Then every optimal control path is r-stationary. Therefore a regular optimal
control path is a 2Hart-0-path iff is a 1Hart-path.

Remark 3. Let H/ρ∗ or H/ρ∗ denote the values of the function H or H on the path ρ∗

and on a corresponding solution of the system (7). It is easy to see that H/ρ∗ = 0. If ρ∗

is also a 2Hart-path, i.e. H/ρ∗ = 0, then ρ∗ is equitable, i.e. is constant and thus U(c∗(t))
is constant too. Then integral is divergent. If we take U(c) = π(t)u(c) , where π(t) is
the so called discount factor, then also u(c∗(t)) is constant but integral is convergent.
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O REGULE HARTWICKA

Streszczenie

W artykule rozważane są dwie matematyczne wersje reguły Hartwicka. Jedna z nich związana jest
z modelami optymalnego sterowania, gdzie zmienne cenowe są wykorzystywane. Druga zaś jest
sformułowana bez tych zmiennych. Wykazano, że pierwsza wersja może być stosowana w ogólnych
modelach sterowania.
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