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Abstract

Machine learning with deep neural networks is one of the leading approaches to com-

puter vision, natural language processing, automation and robotics, often achieving

far superior performance compared to humans. Therefore, deep learning has already

established a dominating role in artificial intelligence research, and one can expect

it to be applied in other areas where human results are subpar due to the amount

of data or complexity of the tasks.

This thesis presents several deep learning approaches focused on the area of 3-

dimensional computer vision. While deep neural networks are widely used for image

and video processing, their application to spectral data, with its non-regular forms

like point clouds and meshes, is still relatively new and under-explored. This work

provides a series of advancements to the representation learning field of machine

learning, particularly in application to point cloud data.

The thesis has seven chapters. The first chapter describes research motivation and

lists original contributions. Chapter 2 provides an overview of the fundamental con-

cepts related to the domains of machine learning and computer vision, as well as the

relevant works from the literature are presented, with attention to previous research

related to this thesis contribution. Chapters 3 to 6 present the research conducted

in the area of representation learning along with the empirical evaluation of the fol-

lowing methods: (a) Adversarial autoencoder, Hypernetwork-based and normalizing

flow approaches to data density estimation of point clouds and meshes (chapter 3),

(b) Autoencoder-like methods for continual learning (chapter 4), (c) Autoencoder-

based models for point cloud completion (chapter 5), (d) An analysis of proposed

ix



Abstract

techniques for feature extraction from point cloud shapes (chapter 6). The last

chapter offers concluding remarks with possible directions for future work.
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Streszczenie

Uczenie maszynowe z wykorzystaniem głębokich sieci neuronowych jest jednym z

wiodących podejść do problemów wizji komputerowej, automatycznego przetwarza-

nia języka naturalnego, automatyki i robotyki, wykazując się skutecznością działa-

nia przewyższającą ludzkie możliwości. Z tego powodu, uczenie głębokie jest szeroko

wykorzystywane w badaniach dotyczących rozwoju sztucznej inteligencji oraz w za-

stosowaniach praktycznych, gdzie manualnie uzyskiwane wyniki są niewystarczające

z powodu ilości danych, bądź złożoności zadań.

Niniejsza rozprawa przedstawia szereg opracowanych podejść, opartych o modele

uczenia głębokiego, skupione na automatycznym przetwarzaniu danych trójwymia-

rowych, reprezentowanych jako chmury punktów. Podczas gdy głębokie sieci neu-

ronowe są szeroko stosowane do przetwarzania danych obrazowych i filmowych, ich

zastosowanie do danych przestrzennych, (zwłaszcza o nieregularnych postaciach, jak

chmury punktów czy siatki wielokątów, w odróżnieniu od tablic wokseli) jest wciąż

relatywnie nową i rozwijającą się dziedziną. Ta praca przedstawia serię badań sta-

nowiących wkład do rozwoju obszaru uczenia reprezentacji na potrzeby uczenia ma-

szynowego, ze szczególnym skupieniem na problemach uczenia reprezentacji chmur

punktów.

Rozprawa składa się z siedmiu rozdziałów. Rozdział pierwszy przedstawia mo-

tywację do podjętych badań oraz streszczają oryginalny wkład autora w rozwój

dziedziny komputerowego widzenia trójwymiarowego. Rozdział drugi zawiera opis

podstawowych zagadnień związanych z uczeniem maszynowym i wizją komputero-

wą, a ponadto prezentuje najistotniejsze postępy w dziedzinie uczenia maszynowego,

xi



Streszczenie

ze szczególną uwagą poświęconą osiągnięciom w literaturze mieszczącej się w zakre-

sie badawczym tej pracy. Rozdziały 3 do chapter 6 opisują oryginalny wkład autora

w rozwój dziedziny uczenia maszynowego, przeprowadzone badania w zakresie ucze-

nia reprezentacji oraz eksperymentalną ewaluację następujących podejść: (a) Metod

opartych o architekturę autokoderów przeciwstawnych (ang. adversarial autoenco-

ders), hipersieci (ang. hypernetworks) i przepływów normalizacyjnych (ang. norma-

lising flows) dla celów estymacji gęstości rozkładu danych, reprezentowanych przez

chmury punktów i siatki wielokątów (ang. polygon meshes) (rozdział 3), (b) Metod

opartych o architekturę autokoderów dla problemu uczenia ciągłego (ang. continual

learning) modeli klasyfikujących chmury punktów (rozdział 4), (c) Metod opartych

o architekturę autokoderów dla problemu uzupełniania kształtu danych reprezento-

wanych jako chmury punktów (rozdział 5), (d) Metod łączenia reprezentacji indy-

widualnych punktów w celu uzyskania reprezentacji chmury punktów dla problemu

klasyfikacji (rozdział 6). Ostatni rozdział wskazuje wnioski końcowe z odniesieniem

do proponowanych kierunków dalszych prac badawczych.
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Roman symbols

a Scalar

a Vector

A Matrix

I Identity matrix

A Function

I Indicator function

L Loss function

P Probability

X,Y, Z Random variables

A Set / family of sets

D Dataset

N Normal distribution

P Point cloud

U Uniform distribution

x, x,X,X Input sample for a model

y, y,Y,Y Output sample for a model

z, z,Z,Z Samples from a prior distribution

x̃, x̃, X̃, X̃ Model prediction of the input sample

ỹ, ỹ, Ỹ, Ỹ Model prediction of the output sample

z̃, z̃, Z̃, Z̃ Samples from a posterior distribution
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H Entropy
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ℓ2(·) L2 vector norm
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a(i) i-th element of vector a
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A(i,:),A(:,j) i-th row / j-th column of matrix A
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1 Introduction

1.1 Research motivation

Rapid advancements in information technology provide the world with a rapid influx

of digital data. The unprecedented growth of computer systems, everyday access

to high-speed wireless internet, and ubiquitous media capture devices make up the

continuous stream of information that forces the necessity of developing automa-

tion systems implementing machine learning and artificial intelligence methods for

efficient data processing.

One of the most important methods are neural networks, that are used in many of

the core data processing applications in the domain of computer vision, e.g., object

recognition and localisation, image segmentation and retrieval, or key-points predic-

tion for human pose and emotion detection (Duch et al. 2000; Schmidhuber 2015;

Tadeusiewicz and Szaleniec 2015; Macukow 2016). However, while deep learning on

image data is already a well-established (albeit far from solved) domain, machine

learning methods applied to 3-dimensional data are still relatively new and under-

explored, especially in the context of irregular data types such as point clouds or

meshes (Y. Li et al. 2020; Singh et al. 2020). Since many industrial automation

systems (and even consumer-focused ones, with a present-day availability of cheap

LIDAR sensors) rely on depth estimation, the progress in processing spatial data is

crucial (Khan et al. 2020).

This thesis explores applications of deep neural networks to representation learn-

ing on point cloud data. Efficient and accurate extraction of data representation is a

1



1 Introduction

cornerstone of any machine learning method, as any downstream tasks (e.g., object

classification or localisation) can only be as good as the provided input. Therefore,

enhancements to this crucial first step of the data processing pipeline alleviate one

of the critical bottlenecks of any deep learning model.

1.2 Thesis goal and contributions

As a whole, the following dissertation is purposed to develop deep learning models

focused on advancing the representation learning capabilities to automate and sim-

plify 3-dimensional point cloud processing. This objective is realised by answering

the following research questions:

1.2.1 How to appropriately measure the quality of

representations?

The scientific method describes a rigorous approach to empirical experimentation.

Therefore the appropriate set of metrics on which the representation quality will be

measured must be defined to assess whether the proposed methods are beneficial to

solving a given problem.

Representations are abstract descriptions of features that characterise the data.

As multi-dimensional embeddings, their quality is impossible to assess without the

ground truth descriptions, that is seldom available. Therefore, to answer this re-

search question, the representations were measured based on the performance of the

simple models on the downstream tasks. Those models, such as linear support vec-

tor machine or k-neighbours classifier, received extracted embeddings as an input to

minimise the impact of the model on the final results. The type of metrics used for

evaluation depended on the nature of the downstream task. They included accuracy

for classification, mean average precision for information retrieval, Kullback-Leibler

and Jensen-Shannon divergences for probability distribution matching, as well as

fidelity, coverage and the nearest neighbour accuracy for data generation task.

2



1.2 Thesis goal and contributions

1.2.2 How to apply generative modelling to point cloud

representation learning?

The point cloud is a set of real-valued points in a given 3-dimensional space. The

unordered nature of sets causes the cloud consisting of k points to have k! equiva-

lent definitions, providing a challenge from the modelling standpoint. One of the

most popular generative methods applied to point clouds is Generative Adversarial

Networks (GANs) (Achlioptas et al. 2018; C.-L. Li et al. 2019). However, the GAN

implementations used in point cloud literature approximate data distribution and

generate point clouds from the random representation. As such, they do not offer a

possibility to extract and shape the latent representation so that it can be used for

downstream tasks. Therefore, applying other types of generative models that allow

learning of order-invariant representations while also modelling the latent space to

a given prior distribution may be beneficial to the overall quality of downstream

models.

Representation learning for point cloud data has already been studied in (Achliop-

tas et al. 2018) through the use of the PointNet (Qi et al. 2017a)-based autoencoder.

However, the application of generative modelling was restricted to the adversarial

training of Wasserstein GAN (Arjovsky et al. 2017; Gulrajani et al. 2017) for ap-

proximation of the autoencoder’s latent representation. To address this problem I

propose 3-dimensional Adversarial Autoencoder (3dAAE) (Zamorski et al. 2020a).

This method is a novel, single-stage, end-to-end generative approach to representa-

tion learning and point cloud data generation. An adversarial autoencoder archi-

tecture is used in the proposed approach, with a feature encoder implemented as

the PointNet model. Generative modelling of the data distribution allows for si-

multaneous data generation, feature extraction, clustering, and object interpolation.

These goals are attained using only unsupervised training with reconstruction loss

and prior latent distribution regularisation.

An in-depth description of the proposed solution is provided in chapter 3 with

particular emphasis on section 3.3.1.

3



1 Introduction

1.2.3 How to obtain compact binary representations for

3-dimensional point clouds?

Compact binary representations are essential to many real-time applications, such as

simultaneous localisation and mapping or autonomous driving. Calculating the dis-

tance between two binary vectors, also known as the Hamming distance (Hamming

1950), requires just two operations, i.e. popcount1-ing the result of their xor, of-

fering straightforward data processing and efficient information retrieval. Moreover,

assuming comparable representation length, binary representations require signifi-

cantly less storage than real-valued counterparts. However, obtaining accurate and

compact binary representations is non-trivial due to the size restrictions of the fea-

ture space. The question entails constructing a novel solution capable of learning

and extracting such embeddings.

The previous contribution described the development of an adversarial autoencoder-

based solution to the problem of representation learning on point clouds. Due to

being AAE-based, one of the advantages of the 3dAAE is the ability to regularise

the latent space to the arbitrary distribution (as long as it is possible to sample

from that distribution). The original 3dAAE model showed promising results when

trained with normal and a mixture of Gaussian priors.

Thus, the natural direction for obtaining even higher rate data compression and

simpler representations for point clouds required the regularisation of the feature

space with binary priors. After the experimentation with using strictly-binary

(Bernoulli) and easy-to-binarise (Beta with coefficients α, β < 1) distributions, the

proposed solution 3dAAE-Beta utilises the Beta(α = 0.01, β = 0.01) prior distribu-

tions with subsequent threshold at 0.5, to ensure the decoder’s ability to generate

data from the binary embeddings. The final 3dAAE-Beta model can represent 3D

point clouds in compact binary space (up to 100 bits) and achieves competitive re-

sults compared to models using wide and continuous representations. The model’s
1The CPU instruction counting the number of input bits set to 1, also known as the Hamming

weight.

4



1.2 Thesis goal and contributions

representation and generation capabilities were presented by producing samples from

latent interpolation and latent algebra of feature vectors.

An in-depth description of the proposed solution is provided in chapter 3 with

particular emphasis on section 3.3.2.

1.2.4 How to perform unsupervised clustering of 3-dimensional

point clouds?

Clustering is one of the oldest and most extensively researched tasks in the data

exploration domain. Its objective is to find a structure in the set of unannotated

data by discovering the groups (clusters) of similar samples, which is crucial as,

due to the amount of 3-d sensors, it is possible to annotate only a tiny portion of

the captured data manually. However, point clouds defined as order-less sets are

a challenge for classic approaches, such as k-means (Forgy 1965; Lloyd 1982) or k-

medoids (Kaufman and Rousseeuw 1990). Therefore, creating an automatic solution

for organising and learning from the unlabelled point cloud data is necessary, which

may be further used to improve existing supervised approaches with semi-supervised

learning.

The 3dAAE-Beta contribution described above presented the possibility of ob-

taining compact, binary embeddings of point cloud data. This leads to a natural

follow-up question: how much can the latent space be reduced while maintaining

the ability to infer some underlying knowledge structure of the data? More specifi-

cally, is it possible to create feature embeddings represented as one-hot vectors, i.e.

regularise latent space with the categorical distribution?

To answer this research question, the new 3dAAE-based model, called 3dAAE-C

(Categorical) was introduced. Reducing the whole feature space to just a handful

of possible values would hinder the reconstruction and generation capabilities, so

the 3dAAE-C extracts two latent representations for each shape. Each of those

representations is regularised with a separate discriminating module, which allows

them to have different dimensionality and prior distribution regularisation, with one
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of them being very compact, categorical distributions. By adding this categorical

prior distribution, the 3dAAE-C learns an unsupervised clustering even when trained

on the data belonging to a single class. Among the detected clusters, it can be noted

that the subgroups of chairs contain characteristic features and shapes (e.g., the

number and type of legs, the height etc.) that are unique to this particular group.

An in-depth description of the proposed solution is provided in chapter 3 with

particular emphasis on section 3.3.3.

1.2.5 How to effectively apply generative modelling to

representation learning on arbitrarily-sized point clouds?

Common generative approaches to representation learning utilise an architecture

inspired by Variational (Kingma and Welling 2014) or Adversarial (Makhzani et al.

2016) Autoencoders. Training these models is done by learning a reconstruction

of an input passed through encoding and decoding modules. For straightforward

comparison of input and output, the decoder is often implemented as fully-connected

or convolution-transposition layers and produces a fixed number of values, i.e. pixels

or points. While such an approach is adequate for image data represented as a

pixel grid, point clouds are inherently an approximation to a continuous surface.

Therefore, one would want to sample much more points than the model was trained

on for a better approximation of the object’s true shape. A solution supporting the

arbitrarily-sized sampling of point clouds may be provided by generative estimating

of the underlying shapes’ density.

The 3dAAE and its extensions successfully learned meaningful 3-dimensional

shapes’ representations for various downstream tasks. However, their main disad-

vantage was employing the fixed-size, fully-connected neural network as a generative

module. This approach created the model capable of producing point clouds con-

sisting of a constant number of points.

I answered the question of performing generative modelling on variable-sized point

clouds by taking part in the development of HyperCloud and Conditional Invertible
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Flow (CIF) models.

HyperCloud extends 3dAAE with two neural networks, called trainer and target

network. Instead of modelling the shapes directly, the trainer network, given the

feature representation as an input, learns to generate the network parameters for

the target, which transforms points in 3-dimensional space. That way, the model is

able to generate an arbitrary number of points and vertices.

On the other hand, CIF learns invertible transformations of points from latent to

point cloud data space. Employing a reversible architecture enables optimising the

model’s weights with log-likelihood training. Moreover, using an additional shape

embedding, CIF allows for the conditional generation of shapes.

An in-depth description of the proposed solution is provided in chapter 3 with

particular emphasis on sections 3.3.4 and 3.3.5.

1.2.6 How to learn point cloud representations suitable for

catastrophic forgetting mitigation?

The catastrophic forgetting phenomenon, i.e. the rapid degradation of the neural

network performance on the previous data after being re-trained on the new dataset,

is an active field of research for the image, video and text domains while still being

a relatively under-explored area in the context of the point cloud data. This poses

the question: do approaches explicitly prepared for the image data naturally ex-

tend to the 3-dimensional shapes, or does this problem require a point-cloud specific

solution? Assuming the latter, what approach produces the most valuable represen-

tations for 3-d point clouds in the context of continual learning?

To answer this research question, it was necessary to adapt existing approaches in

order to assess the quality of their performance on 3-dimensional data adequately.

Implementation of several existing methods for 2-dimensional input (images), i.e.

Learning Without Forgetting (Zhizhong Li and Hoiem 2017), Elastic Weight Con-

solidation (Kirkpatrick et al. 2017) and iCaRL (Rebuffi et al. 2017), resulted in

unsatisfactory performance on point cloud data, measured as the classification ac-
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curacy after subsequent re-trainings.

Therefore, the new approach, called Random Compressed Rehearsal (RCR) has

been proposed. The RCR uses basic autoencoder-like architecture and shares the

latent representation of the input point cloud with the classification component.

During the training, the reconstruction loss serves as an additional regularisation

term. Additionally, by introducing a new rehearsal technique to compress point

clouds from previous tasks, there is a need to store just a small number of points

from the past training datasets to mitigate the catastrophic forgetting effectively.

Moreover, this approach is architecturally simple and does not require training an

additional generative model, keeping a snapshot for the inference of soft labels, or

introducing several additional layers to the classifier.

An in-depth description of the proposed solution is provided in chapter 4.

1.2.7 How to learn meaningful representations for the point

cloud completion task?

Data restoration, an applied case of a matrix completion task, is a vital machine

learning issue that has already been successfully applied to the image domain in

the forms of up-scaling the resolution (Ledig et al. 2017), colourising the black and

white pictures (Cheng et al. 2015) or generating the missing data (Zheng et al.

2019). Contrary to the image domain, the 3-dimensional restoration (completion)

problem often requires generating an entirely new yet coherent view of input data

(e.g., creating a full 360-degree point cloud from the RGB-D data). This research

topic consists of creating a method that will be able to translate spatial features of

the input data to generate the missing portion of the given shape.

The problem of learning representations suitable for point cloud completion tasks

was attacked by comparing several modifications to 3dAAE in terms of the model’s

architecture, encoding backbone, and the prior distribution regularisation type.

The family of variational, adversarial, and regular (bottleneck) autoencoders was

considered in terms of architecture. The models, trained by using a reconstruction
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objective only, learn to generalise to samples containing too little information for

perfect completion, showing a lack of learned assumptions about data belonging to

a specific class or shape distribution. On the other hand, generative autoencoders

showed an ability to infer the general structure of a previously-unseen shape despite

seeing just the portion of the input (e.g. the chair with no legs).

The double encoding approach was applied to further increase the encoder’s ca-

pability to produce holistic representation. Therefore, after the first pass through

the encoder, the returned latent vector is concatenated to each 3-dimensional point

vector to obtain a shape’s features. The resulting multi-dimensional data structure

is then passed through the additional encoding module. This method resulted in

significantly improved qualitative results of shape completions.

An in-depth description of the proposed solution is provided in section 5.3.

1.2.8 What is the influence of the feature aggregation function

on the overall representation quality?

PointNet (Qi et al. 2017a) performs the feature extraction of the point cloud shape

by processing each point individually and aggregating the point-wise features with

the permutation-invariant max function. However, while effective and easy to imple-

ment, such an approach only considers the extreme value of each point-wise feature

distribution. Calculating global feature value based on the whole distribution may

increase the quality of extracted representations.

Several proposed representation extraction strategies were considered to answer

the question about the effect of the feature aggregation function. Instead of the

default max function described in the PointNet architecture, this research examines

extension to k-max values as well as single-statistic replacements (such as median,

mean and sum) and combinations of these functions. Evaluations were performed

quantitatively based on achieved classification accuracy, feature vector diversity and

qualitatively by key set visualisations. Conducted experiments show that using

combined statistics aggregation results in a performance increase in classification
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accuracy regardless of the feature vectors length. Moreover, the statistic that takes

the full feature’s value distribution into account results in a more holistic shape

representation.

An in-depth description of the proposed solution is provided in chapter 6.

1.3 Plan of this work

This dissertation is structured as follows:

• Chapter 1 describes the goals, purpose and contributions of this work.

• Chapter 2 provides preliminary information and gives an overview of the

representation learning domain, and reviews the relevant literature.

• Chapter 3 introduces the experimental setup.

• Chapter 4 describes proposed methodologies for generative modelling of point

clouds.

• Chapter 5 describes research in the area of continual learning of models

trained on point clouds.

• Chapter 6 presents the application of introduced methods to point cloud

completion tasks.

• Chapter 7 contains the experimental work focused on the classification task

of 3-dimensional point cloud data.

• Chapter 8 offers a summary and points to possible directions for future work.
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The first part of the chapter offers the necessary background on the theoretical

aspects of training machine learning models and describes the types of machine

learning tasks. The following section focuses on defining the representation learning

task. The chapter concludes with discussions about the most important formats of

storing two and three-dimensional data and relevant literature regarding learning

representations of those formats.

2.1 Machine learning

The approach to training machine learning models depends on their purpose and

the availability of the data. This section describes the essential learning methods

(such as supervised and unsupervised learning) and statistical approaches (i.e. dis-

criminative and generative modelling).

2.1.1 Learning methods

Due to the rapid technological advancements, there is an enormous amount of data

available. However, the vast majority of the data is provided without any description

of its content, e.g. a type of object in the picture. This type of description is called

a label of a data sample. Depending on the availability of those labels, machine

learning can be divided into two groups: supervised learning if they are present and

unsupervised learning otherwise.

Supervised learning assumes the existence of the dataset that contains data
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samples along with corresponding data labels. We can define such dataset of n

sample-label pairs as

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} , (2.1)

where x denotes the vector representing data sample and y its target value.

One of the fundamental and most well-known tasks for supervised machine learn-

ing models is classification. Assuming the dataset as described in equation (2.1),

the goal is to find a function F ∗ such that

F ∗ = min
F :X→Y

∑
x,y∈D

dist(F (x), y), (2.2)

where F is any function from data space X into class space Y and dist(·) is a

comparison (distance) function. In general, the term classification is reserved for

situations when the codomain of the function F is a set of a predetermined number

of classes, i.e. Y ⊂ N. When targeting a real-valued codomain, i.e. Y ⊆ R, the

task is called regression. An in-between case, named ordinal regression or ordinal

classification exists when predicting an ordinal variable, i.e. when there exists an

ordering between target variable values (in standard classification, the classes are

assumed to be independent), e.g. when predicting the score taking values 1 – bad,

2 – neutral to 3 – good.

Unsupervised learning often focuses on finding an underlying structure of the

dataset D, which we can define as:

D = {x1, x2, . . . , xn} , (2.3)

where x denotes the vector representing a single data sample and n is the number

of samples.

Typical instances of unsupervised learning tasks are clustering – discovering groups

of similar examples within the data and density estimation – determining the distri-

bution of data based on the given discrete samples (Murphy 2012).

Another vital purpose of unsupervised learning is projecting the high-dimensional

space into a lower-dimensional space without losing separability and information in
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the process, called dimensionality reduction or representation learning. The ability

to obtain meaningful features of the data that reduce the complexity of the data

samples significantly reduces the curse of dimensionality effect, as described in sec-

tion 2.2. Moreover, reducing the data to 2 or 3 dimensions allows for straightforward

visualisation of the data space (Wold et al. 1987; Van der Maaten and Hinton 2008).

As the main objective of this thesis, an in-depth description of this task is offered

in section 2.2.

In addition to the approaches mentioned above, we can also specify the semi-

supervised learning (Van Engelen and Hoos 2020) in which only a portion of a

dataset is labelled and self-supervised learning (Jing and Tian 2020), where the

labels are generated (usually on-the-fly during the training process) based on the

data samples.

Another area of machine learning is reinforcement learning (Sutton and Barto

2018). Instead of considering the datasets of input and (if they exist) corresponding

class values, reinforcement learning focuses on mapping situations to the sequence

of possible decisions. Rather than being trained on the optimal set of actions, the

machine learning agent tries to develop an action sequence on its own, and the only

feedback the model receives is through the reward function. The reward can be an

arbitrary objective describing the state of the situation, e.g. a number of points

scored in the given moment of the game.

While not a distinctive area in itself, continual learning (Parisi et al. 2019) is an

important extension of the learning methods presented above, which assume a single

optimisation process on the fixed training dataset. However, when conducting mul-

tiple optimisation phases (e.g., re-training the model on new data), the performance

of the model on the original dataset tends to deteriorate. The mitigation of this

phenomenon, called catastrophic forgetting is a critical research area, intending to

not only mitigate forgetting effects but also to use new data samples to enhance the

model’s quality on the past data (Ven and Tolias 2019).
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2.1.2 Statistical approaches

From probabilistic perspective, machine learning models can be divided into gener-

ative and discriminative. This subsection describes those approaches in supervised

and unsupervised scenarios.

2.1.2.1 Supervised

Let us assume X and Y to be random variables taking values from the data space

X and the class space Y respectively.

In a supervised learning scenario, mapping class labels to data samples relies on

estimating the joint probability P (X,Y ), which can be calculated using the product

rule as in equation (2.4).

P (X,Y ) = P (Y |X)P (X) = P (X|Y )P (Y ) (2.4)

By transforming equation (2.4) we can arrive at the equation (2.5), called Bayes’

theorem.

P (Y |X) =
P (X|Y )P (Y )

P (X)
=

P (X|Y )P (Y )∑
y∈Y P (X,Y = y)

. (2.5)

The classification using equation (2.5) is then performed by selecting the class

ỹ ∈ Y with the highest probability given the data sample x

ỹ = arg max
y∈Y

P (Y = y|X = x) = arg max
y∈Y

P (y|x) (2.6)

Note that in the equation (2.5) above, P (X) does not depend on the class label

and, for the classifier definition purpose, can be discarded without affecting the final

result. Therefore equation (2.6) is equivalent to

ỹ = arg max
y∈Y

P (X = x|Y = y)P (Y = y) = arg max
y∈Y

P (x|y)P (y). (2.7)

The approach of modelling P (y|x) directly is called discriminative approach, as

given by equation (2.6). On the other hand generative approach models both P (x|y)

and P (y), as in the equation (2.7).
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2.1.2.2 Unsupervised

Contrary to the supervised scenario, unsupervised learning assumes the case when

the data annotations are not available. Therefore it is only possible to model data

distribution, which will be presented as a random variable X taking values from the

data space X.

Discriminative modelling The discriminative approach to supervised learning mod-

els the conditional probability P (Y |X) directly. Since the actual class space Y is un-

known in the unsupervised setting, the standard approach is to create artificial (also

known as surrogate) classes, which are generated based on data samples themselves.

The surrogate classes generation technique depends on the structure of unlabelled

data. One possibility, as presented in (Dosovitskiy et al. 2014), assigns a distinct

class label for every image in the dataset. Then, additional data for each class is

generated by performing data augmentation on the exemplar sample. The further

procedure follows the discriminative approach of the supervised scenario.

Another strategy consists of defining the proxy objective that substitutes the main

goal with the one that can be defined using only the data at hand. Examples of

such auxiliary objectives are smoothness and photometric consistency in the optical

flow (Jonschkowski et al. 2020) and structural similarity in the monocular depth

estimation (Yinglong Feng et al. 2019).

Generative modelling While discriminative models that learn in an unsupervised

way exist, the generative approach is the prevailing methodology for training on

unlabelled datasets (Murphy 2022). This section will describe the deep generative

approaches to data distribution P (X) modelling.

Various machine learning methodologies for generative unsupervised learning have

been proposed in the literature. In (Tomczak 2021) the general taxonomy of such

models, depending on the approach to modelling P (X), are as follows (see figure 2.1):

• Autoregressive models base the training process on a series of conditional
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Figure 2.1: A hierarchy of deep generative models. Credit: (Tomczak 2021).

probabilities in which each consecutive piece (e.g. pixel in the image) of the

data sample is conditioned on all of the preceding pieces. A probability distri-

bution over data sample x ∈ X can be defined as:

P (x) = P (x(1))
d∏

i=2

P (x(i)|x(1:i−1)) (2.8)

• Flow-based models apply the change of variables formula, given as:

P (x) = Π(z)
∣∣∣∣∂z
∂x

∣∣∣∣ = Π(Ψ−1(x))
∣∣∣∣∂Ψ−1(x)

∂x

∣∣∣∣ , (2.9)

where Π – known probability distribution over z, Ψ : Z→ X – bijection.

Modelling the probability of the data is achieved by utilising a series of invert-

ible transformations from data space to the latent space, described with given

prior probability distribution, such as N (0, I). The flow-based model can be

therefore written down as:

P (x) = P (z = Ψ(x))
∥∥JΨ(x)

∥∥ , (2.10)

where Ψ = (Ψ1 ◦Ψ2 ◦ · · · ◦Ψk) is a composition of bijections and
∥∥JΨ(x)

∥∥ is the

absolute value of the determinant of the Jacobian of the transformation Ψ.

• Latent variable models aim to condition the distribution of the random

variable X taking values from the higher-dimensional data space X on the
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distribution of r.v. Z taking values from the lower-dimensional latent space

Z. The latent variable corresponds to underlying factors governing the dis-

tribution of the observable data. Their relationship can be summed up as

follows:

Z ∼ PZ(Z) (2.11)

X ∼ PX(X|Z) (2.12)

• Energy-based models represent the data distribution as the Boltzmann

distribution:

P (x) = exp(−E(x))∑
x∈X exp(−E(x)) , (2.13)

where E(x) – the energy function. The Energy-based model works by ap-

proximating the denominator of the equation above for and is known as

the Boltzmann machine (Ackley et al. 1985; Hinton, Sejnowski, et al. 1986)

when using an energy function E(x) = xTWx or as restricted Boltzmann ma-

chine (Hinton 2012) after an inclusion of latent variable to the energy function

as E(x) = xTWz.

2.2 Representation learning – Problem formulation

This section will describe the main objectives of representation learning. The subse-

quent section describes the essential feature extraction and dimensionality reduction

methods. After that, the description of representation learning will focus on method-

ologies applied to 3-dimensional data.

Representation learning is often equated with dimensionality reduction, i.e. em-

bedding the original, high-dimensional data into a lower-dimensional subspace with

an aim to preserve its structure. While dimensionality reduction is undoubtedly an

important outcome, it is only one of the effects of obtaining good data representa-

tions.
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In (Bengio et al. 2013) authors define representation learning as learning repre-

sentations of the data that make it easier to extract useful information when building

classifiers or other predictors.

Depending on the context useful can mean different things, and the precise def-

inition of the usefulness is most of the time challenging to formulate. In general,

representation learning is performed to extract embeddings composed of salient fea-

tures representing data, which will be further used for a given downstream task, e.g.

classification or regression. Obtaining good representation can significantly increase

the quality and simplicity of the machine learning model applied to this task.

This section will describe the desirable properties of good representations.

Disentanglement of underlying factors Almost all real-world data is based on

a set of hidden, underlying variables. While they are often impossible to explicitly

obtain, their existence is the core motivation for representation learning research.

It is hypothesised that an ideal representation is one in which the features within

the representation correspond to the underlying causes of the observed data, with

separate features or directions in feature space corresponding to different causes, so

that the representation disentangles the causes from one another (Goodfellow et al.

2016).

Therefore, one can define the disentanglement as the property of the representa-

tion where each feature correlates with a single latent factor describing the data.

According to (Lake et al. 2017) learning of the insufficiently disentangled represen-

tations is the reason for the poor performance of state-of-the-art machine learning

models on certain tasks, such as transfer of ideas in the reinforcement learning sce-

narios.

However, measuring the disentanglement of the representation is non-trivial. As-

suming the possibility of generating data in original dimensionality based on the

embedding, one could manually change the value of a single latent variable and ob-

serve the results. Nevertheless, this approach can be tedious and time-consuming,
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even for very low-dimensional embeddings. Recently, the disentanglement metrics

are starting to be introduced (Higgins et al. 2016; Zaidi et al. 2020), but require

knowledge about the actual latent factors and therefore work only on artificially

generated data.

Abstraction and transfer of features Another coveted characteristic of good rep-

resentations is the ability to contain semantically meaningful features at different

levels of abstraction. Constructing representations with deep architectures (such

as deep neural networks) promotes the reuse of features learned on the previous

layers and allows for learning higher-level data properties. Such stacking produces

hierarchically organised representations, reducing the number of parameters needed

to model complex data.

Moreover, learning abstract yet meaningful features allows for the straightforward

transfer of obtained knowledge within the task domain (Pan and Q. Yang 2009). By

first training a deep neural network on a richer but unrelated dataset, the model

will learn a range of primary and intermediate features that will remain useful when

fine-tuning the model to work on a much smaller dataset of interest. Training the

same architecture directly on the small dataset may result in overfitting the data

and, therefore, unsatisfactory performance on the actual task.

Increasing information density All the described data types are highly-dimensional

representations of reality. These large representations, although faithful, pose a sig-

nificant challenge from the machine learning standpoint that will be introduced on

an example.

Let us assume an image of the relatively small size of 6×6 pixels. Each pixel is usu-

ally defined by three integers in the 0-255 range, corresponding to red, green and blue

channel intensities. Therefore, a single pixel can represent up to 2563 ≈ 1.7 × 107

possible colours. Thus there exist over (1.7 × 107)36 ≈ 1.2 × 10260 unique 6 × 6

images. Such a vast space of possible samples poses a challenge from a machine

learning standpoint and is known as a curse of dimensionality (Bishop 2006). When
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dealing with high-dimensional data, the number of training samples we can gather

will usually be insignificant in comparison to the size of the entire data space. This

phenomenon reveals the necessity of learning concise and descriptive data repre-

sentations to avoid the risk of overfitting the model to available training data and

significantly increase the signal-to-noise ratio in the input values to the machine

learning model.

2.3 Representation learning for images

Pictures have long been the most popular visual medium in the world. Since an

image is worth a thousand words, the graphics are widely used as they offer a

complementary way to communicate information. Today there are more and more

devices able to capture and store image data, such as smartphones, cameras, drones

and even smartwatches, so it does not come as a surprise that images are ubiquitous

as a digital representation of data.

Figure 2.2: Example of an image represented as three 2-dimensional arrays corresponding

to red, green and blue channels. Number values represent channel intensities for a

given region.

In the digital world, graphical data may be stored using a variety of formats (e.g.

raster or vector), codecs (BMP, JPEG, PNG), colour representations (e.g. RGB,

P3) and colour depths (e.g. 8-bit, 10-bit). For the purpose of this work, an image

M will be defined as a matrix of width w, height h and channels c, i.e. M ∈ Rw×h×c.
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Depending on the tonality, there would be 1 channel for the greyscale, 3 channels

for the colour and when there is a necessity to account for transparency, up to 4

channels (see figure 2.2). Typically, each channel will take a value between 0 and

2d−1, with the usual values for d are d = 8 for standard images and d = 10 for high

dynamic range (HDR) data (Mantiuk et al. 2015).

This chapter reviews the most important works related to representation learning

on image data.

2.3.1 Principal Components Analysis

−4 −2 0 2 4
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−2

0

2

4

Figure 2.3: An illustrative example of PCA application for data projection R2 → R,

where circles – original data, crosses –reconstructions, red line – selected eigenvector.

Credit: (Murphy 2022).

One of the fundamental approaches to obtaining representations is Principal Com-

ponent Analysis (PCA) algorithm. While not dedicated to images specifically, PCA

is oftentimes used in preprocessing visual data for dimensionality reduction and

feature extraction purposes due to its easy-to-understand geometric interpretation

and inexpensive computational cost. As described in (Murphy 2022), PCA can

be described as calculating an linear, orthonormal projection W ∈ Rh×l of high-

dimensional data x ∈ Rh to lower-dimensional embeddings z ∈ Rl that minimise the

average reconstruction error objective E:
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E(W, z) = 1

n

n∑
i=1

∥xi −Wzi∥2 , (2.14)

where ∥·∥ – ℓ2-norm.

Assuming whitened data (i.e., data with the empirical mean subtracted and then

divided by the empirical standard deviation), the optimal solution is then obtained,

by selecting eigenvectors with largest eigenvalues of the following empirical covari-

ance matrix:

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T =
1

n
XT

c Xc, (2.15)

where x̄ is an average of vectors x1, x2, . . . , xn and the matrix Xc is a centred version

of the X ∈ Rn×h data matrix.

Figure 2.4: Application of PCA to non-linear dataset. Due to linear projection, PCA fails

to cluster two classes of data.

As PCA is restricted to linear projections from higher- to lower-dimensional spaces,

the simplicity it offers comes at the cost of the inability to model more complex

dependencies (as presented in the figure 2.4). Example modification to improve

PCA flexibility consists of KernelPCA, which utilises applying different functions for

calculating non-linear distances between objects (called kernels). Other approaches

include implementing the task from the perspective of Probabilistic PCA (Roweis

1997; Tipping and Bishop 1999) or even by considering the more general probabilistic

method of factor analysis (Ghahramani, Hinton, et al. 1996) or t-SNE (Van der

Maaten and Hinton 2008) (see figure 2.5).
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Figure 2.5: Application of non-linear projections to a non-linear dataset. Compared to the

linear PCA, they more or less correctly cluster the original two circles dataset.

.

2.3.2 t-Stochastic Neighbour Embedding

In contrast to the algebraic approach of PCA, t-Stochastic Neighbour Embedding

(t-SNE) (Van der Maaten and Hinton 2008) algorithm performs the data dimen-

sionality reduction by employing an optimisation framework. The t-SNE performs

learning the data embeddings by minimising the Kullback-Leibler divergence (see

section 2.6.3) between the joint probabilities P in the high-dimensional space (equa-

tion (2.16)) and the joint probabilities Q (equation (2.18)) in the low-dimensional

space. The modelling of the pairwise distances in the high-dimensional space is

given as a two-way mean of conditional Gaussian probabilities, which modifies an

original one-way approach in order to combat the original SNE (Hinton and Roweis

2002) problem of ignoring outliers:

P (i, j) =
P (j|i) + P (i|j)

2n
, (2.16)

where n is a number of samples, i, j are the indices of data samples in the high-

dimensional space and P (·|·) is defined as:

P (i|j) =


exp

(
−∥xi − xj∥2

2σ2
i

)(∑
k ̸=i

exp
(
−∥xi − xk∥2

2σ2
i

))−1

if i ̸= j

0 otherwise,
(2.17)
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where xi, xj denote higher-dimensional data representations and σ2
i is the variance

of the Gaussian that is centred on representation xi.

Moreover, as a way to solve the crowding problem (placing many samples that

are equidistant in the higher-dimensional space in the proximity to each other in

the lower-dimensional space), t-SNE introduces modelling the dissimilarity in the

lower-dimensional space using the Student’s t-distribution with 1 degree of freedom

(i.e. the Cauchy distribution):

Q(i, j) =


(1 + ∥hi − hj∥2)−1∑
k ̸=l(1 + ∥hk − hl∥2)−1

if i ̸= j

0 otherwise,
(2.18)

where hi, hj denote lower-dimensional data representations.

However, the disadvantage of t-SNE is the necessity for a manual selection of the

perplexity value that determines the binary-searched value of variance σi around

the higher-dimensional samples (equation (2.17)). The perplexity of probability

distribution P (i) induced by variation σi is defined as

Perplexity(Pi) = 2H(P (i)), (2.19)

where H is an entropy measured in bits and defined as:

H(P (i)) = −
∑
j

P (j|i) log2 P (j|i). (2.20)

While the perplexity can be described as a smoothing measure of the size of the

neighbourhood, and the literature specifies that the SNE and t-SNE approaches

are robust for the values in the range from 5 to 50, new research (Wattenberg et al.

2016) indicates that various values of perplexity can have a significant impact on the

outcome of the clustering (and, in the extreme cases, making a difference between

obtaining low-dimensional clusters and not). Furthermore, in contrast to PCA, the

size and shapes of clusters, as well as distances between them, do not correlate with

the original data (Van der Maaten and Hinton 2008).
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2.3 Representation learning for images

2.3.3 Contrastive learning

Another approach to perform representation learning is contrastive or metric learn-

ing. Instead of attempting to map the closeness of the objects in high- and low-

dimensional space, contrastive learning depends on additional labels provided along-

side the original data samples that specify whether two objects belong to the same

class. Contrastive learning works by learning non-linear transformations that keep

similar (in terms of the class label) samples close to each other and dissimilar ones

far apart in the latent space.

One of the earliest approaches to metric learning is contrastive loss (Chopra et al.

2005). For samples xi, xj belonging to the same class, the mapping is optimised to

minimise the distance between them in the feature space. The reverse criterion is

applied for the samples of different classes, which can be written as:

Lc(xi, xj) =


min
θ
∥Fθ (xi)− Fθ (xj)∥22 if yi = yj

max
θ
∥Fθ (xi)− Fθ (xj)∥22 otherwise,

(2.21)

where Fθ is the mapping function from higher- to lower-dimensional space parame-

terised with weights θ and usually represented as neural network, and ∥ · ∥22 – squared

ℓ2 norm.

An extension of contrastive loss, called triplet loss, was presented in (Schroff et

al. 2015). Instead of alternating between similar and different classes, triplet loss

processes three samples at once – an anchor x, a positive sample x+ (belonging to

the same class as x) and a negative sample x− (belonging to a different class). The

training objective Lt for this approach can be defined as

Lt(x, x+, x−) =
∑
x∈X

max
(
0, ∥F (x)− F (x+)∥22 − ∥F (x)− F (x−)∥22 + λ

)
, (2.22)

where λ ∈ [0,∞) – margin hyperparameter defining minimum difference in the

distance between similar and dissimilar samples and the rest as in equation (2.21).

Recently, contrastive learning has seen a rapid increase in popularity. In super-

vised setting, many extensions to the methods presented above have been intro-

duced, such as Lifted Structured Loss (Oh Song et al. 2016), N-pair Loss (Sohn
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2016), NCE (Gutmann and Hyvärinen 2010), InfoNCE (Van den Oord et al. 2018),

Soft-Nearest Neighbours Loss (Frosst et al. 2019) or Quadruplet Loss (W. Chen et al.

2017). Metric learning has also been widely used for powerful self-supervised mod-

els, where samples belonging to the same class are obtained by performing various

preprocessing operations on crops of the sample, as is the case in SimCLR (T. Chen

et al. 2020), Barlow Twins (Zbontar et al. 2021) and BYOL (Grill et al. 2020).

2.3.4 Autoencoders

One of the first neural-network-based approaches to representation learning has

been the autoencoder (Rumelhart et al. 1985; Hinton and Salakhutdinov 2006). In

its basic form, the autoencoder consists of two parameterised functions – encoder

E producing the latent representation and decoder D aiming at reconstructing the

encoder’s input based on those features. The encoder and decoder parameters are

obtained during the optimisation (learning) process by minimising the reconstruc-

tion error function L on training samples x ∈ Rn:

L(x) = dist(x, D(E(x))), (2.23)

where dist(·, ·) is a distance function. It can be noted that when the encoder and de-

coder are modelled as one-layer linear layers and operate on representation lengths

z < n, the task becomes equivalent to obtaining a Probabilistic PCA representa-

tion of size z. However, most contemporary autoencoders implement encoders and

decoders as multi-layer neural networks with non-linear activations.

An exception to the typical case of bottleneck (or regularised) autoencoders (i.e.

the case when the representation size z is smaller than data dimensionality d) is a

concept of sparse autoencoder (Bengio et al. 2006). In this case bigger representa-

tions (z > d) are offset by penalising the output z of the representation layer with

Student’s-t penalty (Olshausen and Field 1996):

penalty(z) =
|z|∑
i=0

log
(
1 +

(
z(i)
)2)

. (2.24)

26



2.3 Representation learning for images

The representation learning using autoencoders has been described so far from

a non-probabilistic perspective. The probabilistic approach was introduced in per-

haps one of the most seminal works in the generative representation learning field

– Variational Autoencoder (VAE) (Kingma and Welling 2014). Although VAE is a

probabilistic derivation of the variational Bayesian method, its architecture resem-

bles the autoencoder framework and is often grouped alongside the abovementioned

approaches.

The objective of training the VAE is to model the true data distribution by ap-

proximating it with the parameterised joint distribution Pθ
1, which can be written

as:

Pθ(X) =

∫
Z

Pθ(X,Z)dZ =

∫
Z

Pθ(X|Z)︸ ︷︷ ︸
cond. likelihood

Pθ(Z)︸ ︷︷ ︸
prior

dZ, (2.25)

where Z is a random variable taking values from the latent representation space Z

and X is the random variable taking values from the data space X.

Assuming that the model is already trained (i.e. the optimal parameters θ∗ have

been found), generating the data from such model is performed in two steps. First

the value z̃ is drawn from the prior distribution Pθ∗(Z). Then, x̃ is sampled from a

distribution Pθ∗(X|Z = z̃).

The optimal set of parameters θ∗ is the set that maximises the (log-)likelihood of

real data, which can be written as

θ∗ = arg max
θ

∑
x∈D

logPθ(x) = arg max
θ

∑
x∈D

log
∫
Z

Pθ(X = x|Z)Pθ(Z)dZ. (2.26)

However, determining θ∗ as presented in equation (2.26) is infeasible due to the

necessity of checking all the possible values of Z. Therefore, there is a need to

obtain the posterior distribution Pθ(Z|X) that specifies the representation given

the data. Since posterior distribution Pθ(Z|X) is intractable, it is approximated

using a variational posterior Qϕ(Z|X).
1For the purpose of VAE definition, the Pθ will denote the probability density P represented with

function (e.g. neural network) parameterised with θ. Parameterisation with θ has been omitted

for brevity in the previous chapters without introducing ambiguity.
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Compared to the regularised autoencoder approaches, the distributions Pθ(X|Z)

and Qϕ(Z|X) fulfil roles similar to the decoder and encoder functions, respectively.

However, contrary to regular autoencoders, training of the VAE is done by matching

the approximated posterior distribution to the original one. It can be derived as:

DKL (Qϕ(Z|X)∥Pθ(Z|X)) =

∫
Qϕ(Z|X) log Qϕ(Z|X)

Pθ(Z|X)
dZ

=

∫
Qϕ(Z|X) log Qϕ(Z|X)Pθ(X)

Pθ(Z,X)
dZ

=

∫
Qϕ(Z|X)

(
logPθ(X) + log Qϕ(Z|X)

Pθ(Z,X)

)
dZ

= logPθ(X) +

∫
Qϕ(Z|X) log Qϕ(Z|X)

Pθ(Z,X)
dZ

= logPθ(X) +

∫
Qϕ(Z|X) log Qϕ(Z|X)

Pθ(X|Z)Pθ(Z)
dZ

= logPθ(X) + EZ∼Qϕ(Z|X)

[
log Qϕ(Z|X)

Pθ(Z)
− logPθ(X|Z)

]
= logPθ(X) +DKL (Qϕ(Z|X)∥Pθ(Z))− EZ∼Qϕ(Z|X) logPθ(X|Z),

(2.27)

where DKL is a Kullback-Leibler divergence, described in section 2.6.3.

By rearranging the terms of the final equality in equation (2.27) the model objec-

tive, consisting of likelihood maximisation Pθ(X) and matching the real posterior

to the approximate, variational posterior DKL (Qϕ(Z|X)∥Pθ(Z|X)) can be written

down as:

logPθ(X)−DKL (Qϕ(Z|X)∥Pθ(Z|X)) = EZ∼Qϕ(Z|X) logPθ(X|Z)−DKL (Qϕ(Z|X)∥Pθ(Z))

(2.28)

However, as mentioned before, the term DKL (Qϕ(Z|X)∥Pθ(Z|X)) is intractable.

Therefore, this term is dropped from the VAE objective function in practice. Know-

ing that DKL (Qϕ(Z|X)∥Pθ(Z|X)) ⩾ 0, by removing this term, the new joint objec-

tive is a lower bound of the true log-likelihood function and is called evidence lower

28



2.4 Representation learning for 3-dimensional data

bound (ELBO). It is defined as:

LV AE = − logPθ(X) +DKL (Qϕ(Z|X)|Pθ(Z|X))

= EZ∼Qϕ(Z|X)

− logPθ(X|Z)︸ ︷︷ ︸
reconstruction

+DKL (Qϕ(Z|X)∥Pθ(Z))︸ ︷︷ ︸
regularization

 .
(2.29)

It can be observed that the VAE training consists of not only optimising the model

for input reconstruction, but also by matching variational posterior Qϕ(Z|X) to

prior distribution Pθ(Z) (usually standard normal distribution N (0, I)).

An interesting modification to VAE optimisation objective is presented in β-

VAE (Higgins et al. 2016). By adding the scaling hyperparameter β > 1 to the

regularisation part of the VAE objective, the β-VAE puts a stronger constraint on

the latent representation, limiting its capacity. This model property can be used

to learn disentangled representations, i.e. representations where each feature is tied

with only a single underlying latent variable of the data.

The VAE and β-VAE utilise the KL divergence to regularise the latent representa-

tion distribution. However, this approach restricts the selection of prior distribution

to only ones for which KL divergence exists and is traceable. The Adversarial Autoen-

coder (AAE) (Makhzani et al. 2016) framework sidesteps this limitation by imposing

the regularisation on the latent distribution with an additional discriminator func-

tion. Trained in an adversarial fashion (Goodfellow et al. 2014), the discriminator

aims to differentiate between representations obtained from the encoder and those

sampled from the prior distribution. In contrast, an encoder tries to produce output

that would fool the discriminator. Therefore for a given prior distribution, adver-

sarial training assumes only an ability to sample without the need for divergence

calculations.

2.4 Representation learning for 3-dimensional data

This chapter reviews the most important developments related to deep learning

on 3-dimensional data. First, the approaches to obtain depth from the set of 2-
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dimensional images are introduced. Next, each section describes a specific type

of spatial data (i.e. voxels, point clouds and meshes, as presented in figure 2.6)

along with relevant literature. The section after that gives an overview of the most

popular 3-dimensional datasets. The chapter is concluded with metrics used for

methods evaluation on the most prominent problems researched for applications to

3-d data.

Figure 2.6: The example of different types of 3-dimensional data. From the left: voxel-

based shape, point cloud and a mesh. Adapted from (Hoang et al. 2019).

2.4.1 Multi-view-based approaches

The ability to capture 2-dimensional data came long before the first devices capable

of capturing three dimensions were created and, to this day, far outweigh them in

terms of popularity and ubiquity. Therefore, one of the fundamental challenges of

computer vision is reconstructing spatial information based on planar representa-

tions.

Several approaches to multi-view inference of 3-dimensional shapes have been

proposed, for the classification and recognition (Hang Su et al. 2015; Qi et al. 2016;

Kanezaki et al. 2018), generation (Arsalan Soltani et al. 2017) and retrieval (Ma

et al. 2018; J. Jiang et al. 2019).

Recently, there can be observed the growing popularity of approaches performing

single-view inference, e.g. for the purpose of monocular depth estimation (Godard

et al. 2017; Qi et al. 2018; Godard et al. 2019; Ranftl et al. 2021; Safadoust and
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2.4 Representation learning for 3-dimensional data

Güney 2021), 3-dimensional reconstruction (Hoiem et al. 2005; Fouhey et al. 2013;

Choy et al. 2016; Gkioxari et al. 2019).

2.4.2 Voxel-based approaches

Images present the 3-dimensional world in a 2-dimensional way, therefore losing

information in the process. Thus, an appropriate data type must be used if one wants

to capture the view without losing the scene’s depth. The natural generalisation of

a 2-dimensional pixel represented by a square to 3-dimensional space is a cube called

a voxel. Same as in the image case, voxel-based data must have a fixed width w,

height h, but with an additional dimension for depth d. Each space in the voxel

grid may contain information about the colour value c. Therefore, for this work, we

will define voxel-based data as a tensor V ∈ Nw×h×d×c.

Most often, the voxels are stored as a single scalar (i.e. c = 1 in the case of a

binary or monochromatic voxels) or as a vector containing colour information, as is

the case with regular images (i.e. c ∈ {3, 4}).

Voxel-based data can offer a realistic representation of 3-dimensional space. How-

ever, to do so, they require very high resolution, making them impractical in most

common uses, where spatial data would be used. However, voxels are still applied

in areas where high precision is a crucial requirement, such as computed tomogra-

phy scanning (Weese et al. 1997), magnetic resonance imaging (Hutton et al. 2008),

medical ultrasound (Aydin et al. 2020). On the other hand, low-resolution voxels

are often used as an intermediate representation when performing a rendering of

a 3-dimensional scene, making it useful for a fast and approximate preview of the

final result without the need for expensive computations (Levoy 1990; Kanzler et al.

2018; Yan et al. 2018)).

As the natural extension of pixels, voxels were among the first 3-dimensional

data types to be extensively studied for potential applications using deep learning.

Generalising the convolution operator known from 2-d convolutional neural networks

(CNNs) to 3 dimensions introduced several concepts utilised for image data to voxel-
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based data (Maturana and Scherer 2015; Brock et al. 2016; J. Wu et al. 2016; Zhou

and Tuzel 2018).

Moreover, adding the third dimension to the data introduced new classes of prob-

lems, such as object orientation (Sedaghat et al. 2017), 3-d shape generation (Z.

Chen and H. Zhang 2019), 3-dimensional medical imaging (Suzuki 2017; M. Kim

et al. 2019; S.-C. Huang et al. 2020) and 3-d object recognition (Xiang et al. 2015).

However, since voxel-based data lies on a structured grid, it may be insufficient to

capture highly detailed, unevenly structured data. Therefore it is most often used

in areas where the high recording fidelity is not required (e.g. approximations of the

results of computationally-complex operations (Levoy 1990; Kanzler et al. 2018; Yan

et al. 2018)) or with access to high precision scanners (e.g. computed tomography

scanners (Çiçek et al. 2016; Siddique et al. 2021))

Recently, methods applied to voxels are being enhanced with the point cloud

representations to take advantage of both structured and unstructured data (Cao

et al. 2019; Liu et al. 2019).

2.4.3 Point cloud-based approaches

Another type of 3-d data representation and the primary point of interest of this

dissertation is point cloud. Point cloud is a data type represented by a set of points

in a given multi-dimensional space. The d-dimensional point cloud P is defined as

a set of n real-valued points, such as

P = {p1, p2, . . . , pn} , (2.30)

where each point p ∈ P is represented by a column vector of size d, that we can

write as

p = [p1 p2 . . . pd]
T (2.31)

Compared to voxels, point clouds excel when capturing the objects, surfaces or

large areas of irregular granularity or density, e.g. when collecting the 3-dimensional

view of environmental surroundings or performing nuclear magnetic resonance (Guo
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et al. 2020). Therefore, it is one of the most common ways to store and represent 3D

data gathered by the scanning devices such as LIDAR or multi-camera setups. Point

clouds are the most commonly used for the purpose of simultaneous localisation and

mapping (SLAM) (P. Kim et al. 2018; Palomer et al. 2019; Singandhupe and La

2019), the self-driving technology (Y. Li et al. 2020), and environment or object

capture (Tang et al. 2010), where 3-dimensional, long-distance scanners, such as

LIDARs calculate ranges using lasers. They are also used in medical and biological

imaging, such as nuclear magnetic resonance (NMR) (Fitzpatrick et al. 2006).

One of the first models able to work on point sets was the PointNet (Qi et al.

2017a), by introducing a feature representation backbone that is able to encode the

latent factors of point clouds regardless of the order of the input. The encoder treats

each point of the point cloud independently and is utilising a permutation invariant

function as a final activation layer, namely a max(· ) function (detailed description

of the architecture in figure 2.7).

Figure 2.7: A PointNet architecture consists of three parts: (a) feature extraction encod-

ing separately each point of a given point cloud to a feature vector of length h, (b)

aggregation combining features feature-wise across all points, and (c) classification

part learning a mapping from aggregated features to class labels. The TNet K refers

to learnable affine transforms in k dimensions introduced in (Qi et al. 2017a).

PointNet (Qi et al. 2017a) achieved state-of-the-art results for point cloud classifi-

cation and instance as well as semantic segmentation. However, the main PointNet

drawback is treating each point without its context. In PointNet++ (Qi et al. 2017b)

the authors extend the PointNet’s idea to generating hierarchical point cloud fea-

tures. They do so by alternating between sampling & grouping layers and PointNet

processing modules to capture local context at different scales.

PointNet utilised 1-dimensional convolutional operators as an efficient way to

33



2 Problem background

share network parameters between each point in the cloud. A different approach,

presented in PointConv (W. Wu et al. 2019) proposes an extension of traditional con-

volution and deconvolution used in Convolutional Neural Networks for images into

the point clouds. The proposed adaptation works by performing a Monte Carlo ap-

proximation of the 3-d continuous convolution operator. A Multi-Layer Perceptron

is then used to approximate a weight function for each convolutional filter.

One of the first works to utilise the aforementioned representation learning for

point clouds was (Achlioptas et al. 2018). In this work, the authors present a gener-

ative approach that works on raw point clouds to reconstruct input and generate new

shapes. The authors utilised a two-step solution. First, the bottleneck autoencoder

is trained to obtain latent representations for point cloud shapes. Next, a generative

model (Wasserstein (Arjovsky et al. 2017) GAN with Gradient Penalty (Gulrajani

et al. 2017) or Gaussian Mixture Model (Murphy 2012)) is trained to approximate

the feature space mentioned above. Sampled feature vectors are then passed to the

decoding module of the autoencoder, producing a point cloud.

The other approach to the generation and matching of 3-dimensional shapes is

presented in (Deprelle et al. 2019). In this work, the authors introduce the idea of

storing and representing shapes as learnable elementary primitives. The obtained

primitives are then used to generate and visualise the underlying features of the

data.

The domain adaptation framework utilised in PointDAN (Qin et al. 2019) intro-

duces applying rich spatial and geometric information contained in point clouds to

the representation learning and cross-domain matching. PointDAN works by align-

ing features of point clouds from different datasets on a local and global level. The

Self-Adaptive module performs local alignment with an adjusted receptive field. On

the other hand, the authors employ an adversarial training framework for global

alignment.

Recently, another class of generative models called normalising flows (Rezende and

Mohamed 2015; Papamakarios et al. 2021) that is already frequently in application
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to image data (Dinh et al. 2015; Kingma et al. 2016; Dinh et al. 2017; Papamakarios

et al. 2017; Kingma and Dhariwal 2018; Grathwohl et al. 2019) is gaining popularity

for the purposes of representation learning and generation of 3-dimensional shapes.

In the point cloud domain, one of the first models that utilised normalising flows was

PointFlow (G. Yang et al. 2019). In this work, the authors present a probabilistic

framework to generate 3D point clouds by training the hierarchical distribution of

features. It is done by utilising Continuous Normalising Flows (R. T. Q. Chen et al.

2018) to model the shape and the class distribution separately.

In (Pumarola et al. 2020) the authors introduce C-flow – conditional training

for normalising flows. By conditioning the shape generation process on condition

embeddings, instead of sampling from the flow as in (G. Yang et al. 2019), C-flow

allows modelling of a distribution spanning multiple shapes. Moreover, using the

discrete normalising flow Glow (Kingma and Dhariwal 2018) instead of continuous

flows allows for much faster inference time by creating an entire shape at once,

instead of sequential inference point by point.

2.4.4 Mesh-based approaches

Voxels possessed one important property – they were able to model the volume of

the given object, unlike point clouds that were only able to represent the sparse

set of points on its surface. The possibility of modelling the continuous shape is a

critical feature required for many graphical and engineering applications. Therefore,

the polygon meshes are used where there is a need for a homogeneous shape.

We can describe the polygon mesh M as a tuple

M = (V , E ,F), (2.32)

consisting of vertices V – a point cloud, edges E – a set of tuples of points from a

point cloud and faces F – the set of closed sets of edges.

While meshes offer superior 3-dimensional volume representation compared to

point clouds, they are often difficult to process from the machine learning standpoint.

35



2 Problem background

Providing the vertices with additional information about edges and faces increases

the data complexity, requiring more extensive and more advanced deep learning

models (Gkioxari et al. 2019).

Training deep learning models on mesh data is a relatively new but dynamically

growing branch of 3-dimensional machine learning. One of the first works to intro-

duce deep learning on the meshes was MeshNet (Yutong Feng et al. 2019). This

paper introduces new design blocks that capture and aggregate features of poly-

gon faces based on their statistics, e.g. centre, corners, normal vector and their

neighbourhood.

Mesh R-CNN (Gkioxari et al. 2019) is an extension of previous work applied to

images, i.e. R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015), Faster R-

CNN (H. Jiang and Learned-Miller 2017), Mask R-CNN (He et al. 2017). While not

taking a mesh as an input to the network, it allows the creation of watertight meshes

from a single 2-dimensional image using voxel-based intermediate representation.

Similar work, presented in AtlasNet (Groueix et al. 2018) uses a set of parametric

surface elements to directly infer a surface representation of the shape from a still

image or a point cloud. The final mesh combines patch elements predicted by a

neural network based on sampled points from the 2- or 3-dimensional input.

The other interesting direction of research is focused on learning signed distance

functions (SDFs). In this approach, the goal is to model the shape as a decision

boundary, represented as a function that returns the positive, negative or zero value

depending on whether the given point lies outside, inside or precisely on the shape’s

surface. This method, implemented with deep neural networks, was introduced in

DeepSDF (Park et al. 2019). Due to the superior generalisation ability of deep mod-

els compared to more “classical” counterparts, it was possible to continuously model

the boundary, which removed the need to discretise the input and output. Similar

work was presented in Occupancy Networks (Mescheder et al. 2019), Convolutional

Occupancy Networks (Peng et al. 2020), Deep level sets (Michałkiewicz et al. 2019),

IM-NET (Z. Chen and H. Zhang 2019).
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2.5 Datasets

Most of the datasets presented here are mesh-based and provided as a collection

of points in 3-dimensional space, along with the pairs of point indices that form

edges. Since the primary objective of this work is focused on point clouds, the

data for the experiments described in the latter part of this thesis was usually

preprocessed by generating a 3-dimensional mesh from the provided data, which

was then transformed into a point cloud by uniformly sampling a given number of

points laying on the mesh surface.

ModelNet The ModelNet 10 (MN10) and its expansion ModelNet40 (MN40) (Z.

Wu et al. 2015; Sedaghat et al. 2017) were among the first 3-dimensional bench-

mark datasets that are still being widely used today. In terms of relative popularity,

they can be compared to such image datasets as MNIST (LeCun et al. 1998), CI-

FAR10 (Krizhevsky 2009) or SVHN (Netzer et al. 2011).
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Figure 2.8: Class distribution for ModelNet datasets.

MN10 contains 4899 samples that belong to 10 classes, while MN40 distributes

12311 shapes among 40 categories. The datasets offer shapes cleaned of any scanning

artefacts and aligned to the vertical axis.

However, the class distribution is heavily imbalanced, with over 50 % of all the

samples belonging to the top-3 in the case of ModelNet10 and the top-9 most rep-
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resented shapes of ModelNet40 (see figure 2.8).
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Figure 2.9: Class distribution for ShapeNet dataset.

ShapeNet In ShapeNet (Chang et al. 2015) the problem of imbalanced classes is

even more noticeable. While containing over 55,000 models, over 50 % of all the

samples belong to the four biggest out of 55 shape classes in total. However, this

imbalance proves challenging when training the machine learning models on classes

that are barely represented in the dataset, especially when considering the variety

of shapes and their level of detail.

ScanNet The ScanNet (Dai et al. 2017a) dataset features over 1500 samples for

over 700 unique scenes. The samples present indoor environments and are seman-

tically segmented into 20 classes that cover around 90 % of the total surface of the

shapes (Y. Xie et al. 2020).

The data was captured by scanning the surroundings using RGB-D cameras and

was later reconstructed into mesh scenes. The dataset was converted into voxel

representation for segmentation purposes and annotated manually.

The dataset has seen usage in tasks of 3-dimensional object detection and seg-

mentation (Tchapmi et al. 2017; Qiangui Huang et al. 2018; Qi et al. 2019; Guo

et al. 2020), monocular depth estimation (Fu et al. 2018; Ranftl et al. 2020), as well

as shape and scene completion (Dai et al. 2017b; Yuan et al. 2018; Y. Zhang and
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Funkhouser 2018).

D-FAUST The Dynamic FAUST (D-FAUST) dataset (Bogo et al. 2017) consists

of full-body 3-dimensional scans of 10 human subjects performing a total of 129

activities, such as jumping, running etc. The dataset is a further work based on the

FAUST dataset (Bogo et al. 2014) extending it to 4-dimensional data by providing

over 40,000 spatio-temporally coherent meshes. Captured by the multi-camera setup,

they are recorded at 60 frames per second, offering a smooth transition between

each step for accurate modelling of a human silhouette in motion. In addition to

registering the general shape of participants, D-FAUST contains information about

texture, making it possible to present the data realistically.

D-FAUST dataset is often used in tasks of reconstructing 3-dimensional models

of people based on images and videos (Alldieck et al. 2018a; Alldieck et al. 2018b;

Lazova et al. 2019; Y. Chen et al. 2020), as well as object key-point tracking and

body segmentation (Pons-Moll et al. 2017; Niemeyer et al. 2019; Paschalidou et al.

2020).

Pix3D The Pix3D (Sun et al. 2018) provides three collections of data – the dataset

of images, the dataset of 3-dimensional voxel-based shapes and the image-shape pairs

for aligning the shapes of different modalities. It consists of almost 400 3-dimensional

shapes belonging to nine categories. In total, over 10,000 pixel-accurate pairings

between 3-d and 2-d were provided.

The Pix3D dataset was created by extending the existing IKEA dataset (Lim

et al. 2013) with new images found on the web as well as by scanning an additional

RGBD data. The shapes were then aligned by solving for the 3-d pose of the object

in the image using the Efficient Perspective-n-Point (EPnP) algorithm (Levenberg

1944).

This dataset is often used for the problems of multi-modal matching (Georgakis

et al. 2019; Popov et al. 2020) and generating 3-dimensional shape from a single- or

multi-view (H. Xie et al. 2019; Nie et al. 2020).
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Table 2.1: The comparison of the selected datasets used in machine learning research ap-

plied to spatial data. The datasets used for training and evaluation purposes in the

approaches presented in the following dissertation are marked with the bolded font.

Dataset Type # samples # classes Balanced Annotations

MNIST 2-d point cloud 50,000 10 3 class labels

ModelNet10 3-d mesh 4,899 10 7 class labels

ModelNet40 3-d mesh 12,311 40 7 class labels

ShapeNet 3-d mesh over 55,000 55 7 class, part and keypoint labels

ScanNet rgb-d 1513 19 7 voxel semantic segmentation labels

D-FAUST mesh + texture over 40,000 129 3 class labels

Pix3D image and voxel 400 9 7 class labels, correspondence between 2-d and 3-d

Datasets summary The table 2.1 contains a summary of datasets discussed in

this section. For training and evaluation purposes of the methods that constitute

the contribution of this dissertation, four of the presented datasets were selected:

MNIST, ModelNet 10 & 40 and ShapeNet. The choice of the datasets is dictated

by their popularity in similar methods from the literature, therefore providing an

opportunity to compare the proposed approaches against state-of-the-art methods

directly. The ModelNet 10 is widely regarded as the MNIST of point clouds, making

it the standard dataset for model evaluation. Additionally, both ModelNet 40 and

ShapeNet contain a large number of samples belonging to diverse classes. Moreover,

ModelNet and ShapeNet datasets share a substantial amount of class labels, making

it possible to evaluate the abstraction and transfer of features between datasets, as

described in section 2.2. On top of that, the 2-d point cloud MNIST dataset serves

the purpose of evaluating the proposed Random Compression Rehearsal approach

(chapter 4) on lower-dimensional point clouds.

2.6 Metrics

Metrics constitute the indispensable way to evaluate the examined approaches. How-

ever, representations obtained from machine learning models consist of abstract,
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numerical features that cannot be easily deciphered, therefore posing a challenge

in creating a well-defined and interpretable metric of the quality of a given repre-

sentation. Instead of measuring the representation quality directly, the standard

approach is to evaluate it on downstream tasks, such as classification or clustering,

in which the representation is passed as an input. This section outlines the essential

metrics for assessing machine learning models, presented from the point cloud data

point of view.

2.6.1 Classification

The fundamental metric for any classification model is accuracy, describing the

fraction of predictions performed correctly. Formally, it is defined as:

accuracy(y, ỹ) = 1

n

n∑
i=1

I(y(i) = ỹ(i)), (2.33)

where I(·) is the indicator function, y – true labels, ỹ – predicted labels and n – the

length of vectors y and ỹ.

The definition of accuracy provided above counts each classified example equally.

In the case of unbalanced datasets (i.e. when dataset classes are represented with

different number of examples) one can also use balanced accuracy:

balanced accuracy(y, ỹ) = 1

c

c∑
ci=1

1

si

si∑
s=1

I(ỹ(s)
ci

= ci), (2.34)

where c - number of classes in the dataset, si - number of samples that belong to

class ci, ỹci - vector of predicted labels that correspond to true label y = c and the

rest as in equation (2.33).

In case of binary classification task (i.e. classification with only two possible

classes), accuracy can also be defined in terms of positives and negatives:

accuracy(y, ỹ) = tp+ tn

tp+ tn+ fp+ fn
(2.35)

where tp – number of true positives (ỹ = 1 = y), tn – number of true negatives

(ỹ = 0 = y), fp – number of false positives (ỹ = 1 ̸= y), fn – number of false

negatives (ỹ = 0 ̸= y) and the rest as in equation (2.33).
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The accuracy scores range from 0 (worst, when none of the predicted class labels

matches the corresponding true label) to 1 (best, when y = ỹ). Although the higher

the accuracy score, the better it usually fails to faithfully describe the classifier

quality, especially in the case of a heavily unbalanced dataset (e.g. the dataset

consisting of 1 example of a positive class and 99 examples of a negative class,

marked by a classifier as all negative will have 99% accuracy). Therefore, there

is a need for additional metrics of precision (the proportion of correct, positive

identification) and recall (the proportion of identified actual, positives). They are

defined as follows:
precision =

tp

tp+ fp

recall = tp

tp+ fn
,

(2.36)

with tp, fp, fn defined as in equation (2.35). Same as with accuracy, precision

and recall values range from 0 (worst) to 1 (best result). For the extreme example

described above, they would both be equal to 0 (no true positives).

It is often convenient to have only one value for comparison purposes. Thus the

value of harmonic mean between precision and recall is calculated, called F-measure

or F1-score, defined as:

F1 = 2 · precision · recall
precision + recall =

tp

tp+ 0.5(fp+ fn)
, (2.37)

with tp, fp, fn as in equation (2.35).

2.6.2 Information retrieval

One of the key metrics for measuring the model quality on information retrieval

tasks is mean average precision (mAP). It is defined based on precision and average

precision (AP) metrics. Average precision at place k is defined as the change of

recall based

APk(y, ỹ) =
1∑k

i=1 y(k)

k∑
i=1

precision(y(1:k), ỹ(1:k)) · I(y(k) = ỹ(k) = 1), (2.38)
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where y – vector of ground truth values, ỹ – vector of predictions. Therefore it can

be observed, that the highest value of Average Precision occur when two condition

are met: 1) all the searched values have been found and 2) the relevant samples have

been retrieved as soon as possible (e.g. when returning 10 results with 5 relevant

samples, it is best if they are placed at spots 1-5.)

Mean average precision is defined as a mean of AP over all possible values of k:

mAP(y, ỹ) = 1

n

n∑
k=1

APk(y, ỹ), (2.39)

where n - length of the vectors (y and ỹ).

2.6.3 Distribution fit

One of the key metrics in any domain related to information theory is Kullback-

Leibler divergence (KLD, also called relative entropy) (Kullback and Leibler 1951).

Given probability distributions P and Q, the KLD is defined as in equation (2.40):

DKL(P∥Q) =

∫ ∞

−∞
P (x) log P (x)

Q(x)
dx, (2.40)

or with the integral replaced by sum if the P and Q are discrete distributions instead,

as in equation (2.41):

DKL(P∥Q) =
∑
x∈X

P (x) log P (x)

Q(x)
. (2.41)

The Kullback-Leibler divergence can be described as the average number of addi-

tional bits of data needed for encoding the true distribution P with the approximate

distribution Q (Murphy 2012). Therefore, the better the Q distribution matches P ,

the closer the KLD will be to 0 i.e.

DKL(P∥Q) = 0 ⇐⇒ P = Q. (2.42)

Thus, in the machine learning domain, the Kullback-Leibler divergence is mainly

used for applications of learning the approximation of (often difficult or impossible
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to compute) true distribution or as regularisation of a given space to a specified

a priori distribution. The notable examples of using the KLD to train the neural

networks are Variational Autoencoders (Kingma and Welling 2014).

However, in general, KLD is not symmetrical, i.e. DKL(P ∥ Q) ̸= DKL(Q ∥ P ),

making it unfit to be used as a distance function between two probability distri-

butions. Therefore, in order to obtain the symmetrical divergence between two

distributions P and Q the Jensen-Shannon divergence (JSD) (Menéndez et al. 1997)

is used instead, which is defined as:

DJS(P∥Q) =
DKL(P∥M) +DKL(Q∥M)

2
, (2.43)

where M is an average between distributions P and Q, i.e.

M =
P +Q

2
. (2.44)

The square root of JSD is also often used as a metric, called Jensen-Shannon distance

function (Endres and Schindelin 2003).

The Kullback-Leibler divergence, defined as in equation (2.41), can be rewritten

as:

DKL(P∥Q) =

−H(P )︷ ︸︸ ︷∑
x∈X

P (x) logP (x)−

−H(P,Q)︷ ︸︸ ︷∑
x∈X

P (x) logQ(x) . (2.45)

The first term H(P ) called entropy measures the uncertainty of probability distribu-

tion P . Therefore it is the highest in the case of the uniform and 0 (lowest) for the

degenerate distribution. The second entropy term H(P,Q) is called cross-entropy.

From an information theory perspective, it can be interpreted as an expected num-

ber of bits needed to compress the distribution P with Q (Murphy 2022).

Cross-entropy is primarily used as a loss function in classification tasks, in which

the distribution P is represented with one-hot vectors, i.e. binary vectors with only

a single value set. In this case, cross-entropy can be defined as:

H(P = δ(X = c), Q) = −
∑
x∈X

δ(x = c) logQ(x) = − logQ(c), (2.46)

where δ(·) – Dirac delta and c – the position of one-hot vector set to 1. The

equation (2.46) is known as negative log-likelihood loss.
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2.6.4 Distance between sets

Due to the unordered nature of point clouds, the usual distance functions calculat-

ing the element-wise difference between objects are not applicable. Therefore, to

represent the dissimilarity between two point clouds, one needs to use the metric

calculating the distance between sets. The most common are the Chamfer Distance

(CD) and the Earth Mover’s Distance (EMD) or Wasserstein Distance (Rubner et al.

2000).

Given in equation (2.47), Chamfer Distance between two point clouds P1 and P2

is defined as an average of two sums – a sum of the shortest distances from each

point in P1 to it’s closest point in P2 and analogically, from each point in P2 to its

closest point in P1:

CD(P1,P2) =
∑

p1∈P1

min
p2∈P2

∥p1 − p2∥22 +
∑

p2∈P2

min
p1∈P1

∥p1 − p2∥22 , (2.47)

where ∥·∥22 – squared ℓ2 norm.

On the other hand, Earth Mover’s Distance, given in equation (2.48), solves the

optimal transport problem (Kolouri et al. 2017) between point clouds P1 and P2,

i.e., finds a bijection between input sets that results in the infimum distance between

matched points. It can be written as

EMD(P1,P2) = inf
Ψ:P1→P2

∑
p∈P1

∥p−Ψ(p)∥22
2

, (2.48)

where ∥·∥22 – squared ℓ2 norm and Ψ is a bijection.

However, due to the vast search space of possible pairings, calculating the exact

value of an EMD is computationally infeasible (Villani 2009) and various relaxation

methods (Bertsekas 1985) are used to obtain approximate results quickly.

2.6.5 Data generation

The measure of fidelity, or minimum matching distance (MMD) (Achlioptas et al.

2018) describes the quality of created point clouds (either reconstructed or gener-

ated). It is computed as an average of distances between every point cloud in the
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reference set and its nearest neighbour from the set of created shapes.

MMD(X , X̃ ) = 1

|X |
∑
Pr∈X

min
Pc∈X̃

dist(Pr,Pc), (2.49)

where dist(·, ·) is the distance metric (e.g. Chamfer Distance or Earth Mover’s

Distance), X – reference set, X̃ – created set and | · | denotes the cardinality of the

set.

The coverage (COV) (Achlioptas et al. 2018) is a metric complementary to fidelity,

that assesses the diversity of created point clouds. It is measured as a fraction of

point clouds in the reference set that were matched as a nearest neighbour for at

least one sample in the created set.

COV(Sr,Sc) =
∣∣{arg minPr∈Sr

dist(Pr,Pc) | Pc ∈ Sc
}∣∣

|Sr|
, (2.50)

with notation as in equation (2.49).

The 1-nearest neighbour accuracy (1-NNA) (Lopez-Paz and Oquab 2017) is often

used for comparing two empirical distributions (Xu et al. 2018). Let us assume Sr
– reference set and Sc – created set. In this case, for each point cloud P ∈ Sr ∪ Sc,

let us denote the set S−P = (Sr ∪Sc) \ P , as well as the closest neighbour CP of the

sample P in the set S−P . Then the nearest neighbour classifier classifies the point

cloud P as to whether it is taken from the reference set Sr or the created set Sc. The

1-NNA is therefore an accuracy of a such leave-one-out classifier over all samples in

Sr ∪ Sc, and can be written down as:

1-NNA(Sr,Sc) =
1

|Sr|+ |Sc|

(∑
P∈Sc

I (CP ∈ Sc) +
∑
P∈Sr

I (CP ∈ Sr)

)
(2.51)

where I (·) is the indicator function with the rest of denotations as in equation (2.49).

For Sr and Sc coming from the identical distributions, the leave-one-out classi-

fier should predict the P target class at random, i.e. 1-NNA(Sr,Sc) = 1/2. For

point cloud applications, the closest neighbour is usually picked using the Chamfer

Distance or Earth Mover’s Distance.
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The advantage of calculating the 1-NNA over Jensen-Shannon Divergence lies in

the simplicity of use. Contrary to JSD, where samples in the point cloud sets have

to be discretised into voxels, the 1-NNA requires no preprocessing of the data.

2.7 Summary

The section 2.4 described state of the art for deep learning methodologies for pro-

cessing 3-dimensional data 2. The presented methods for point cloud data offer

unsatisfactory results regarding the quality of extracted features and the ability

to learn representations. At the time of research, there were no methods to gen-

erate arbitrary-sized point clouds and meshes. Moreover, the continual learning

for 3-d data was underdeveloped and offered subpar classification accuracy during

subsequent re-trainings. Therefore, it was necessary to develop new methods for rep-

resentation learning on 3-dimensional point clouds, as described later in this thesis

in chapters 3 to 6.

2The literature review was done continuously at the time of conducting the research described in

this dissertation and may not contain the developments announced since then.
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3 Representation learning for

generative modelling

3.1 Research objective

This chapter describes the research on representation learning in the area of gener-

ative modelling, applied to the problem of point cloud generation.

Generative modelling of the data distribution is one of the key areas of machine

learning, with application in out-of-distribution detection (J. Yang et al. 2021), com-

puter vision (Creswell et al. 2018) and medical imaging (Ilse et al. 2020). However,

due to its complexity, it usually requires the data to be low-dimensional or described

with meaningful features (Murphy 2012). As mentioned in section 2.4.3, set-based

representation of the point clouds makes them order-less, and the order of magni-

tude of a single cloud’s possible representations grows at factorial speed with respect

to its size. Therefore, extracting defining features in the point cloud-permutation

invariant way is paramount to reducing the model complexity.

At the time of the publication, the generative approaches applied to point cloud

data were based on the two-step models, consisting of training an autoencoder and

subsequently training GAN (Goodfellow et al. 2014) on latent representations (Achliop-

tas et al. 2018). However, they did not offer a possibility to regularise the latent

space or condition the generative process.

This section contains three approaches to generative modelling of point clouds.

First, the 3dAAE (Zamorski et al. 2020a) – family of models based on adversar-
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ial autoencoder architecture (Makhzani et al. 2016) – is presented. By utilising

PointNet (Qi et al. 2017a) as the encoder network, 3dAAE offers feature space reg-

ularisations to an arbitrary probability distribution. Second, HyperCloud (Spurek

et al. 2020), an extension of 3dAAE, by replacing the generator with the hyper-

network (Ha et al. 2017) that, instead of generating the shape directly, produces

the weights for an additional network that transforms the point from the sampled

3-dimensional ball into the data space. This approach allows for generating point

clouds consisting of an arbitrary number of points. Third, the CIF (Stypułkowski

et al. 2021), a normalising flow (Dinh et al. 2015; Dinh et al. 2017) approach capa-

ble of conditional generation of shapes, and out-of-distribution detection by direct

log-likelihood optimisation.s

3.2 Problem formulation

Let’s consider a dataset D consisting of m point clouds, each represented as a set of

n points, i.e.:

D =
{
Pi =

{
pj ∈ R3

}n
j=1

}m

i=1
. (3.1)

The goal is to create a model able to embed the data into the d-dimensional latent

space Z ⊆ Rd and later generate the reconstruction based on this embedding. There-

fore, the aim is to obtain functions called the encoder E : X→ Z and the generator

G : Z→ X, that minimise the reconstruction error between P and G(E(P)).

Furthermore, one wishes to regularise the encoder such that the produced embed-

dings z ∈ Z follow the prior distribution PZ specified beforehand. After fitting the

model, said regularisation would make shape generating possible by sampling from

prior distribution to obtain the shape embedding z̃ ∼ PZ and passing it as an input

to the generator, therefore obtaining a new shape P̃ = G(z̃).
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3.3 Methods

3.3.1 3dAAE – 3-d Adversarial Autoencoder

This section describes the introduced architecture named 3-dimensional Adversarial

Autoencoder (3dAAE). Development of 3dAAE contributes to the research ques-

tion concerning the generative modelling applied to representation learning on 3-

dimensional point clouds that can be used for tasks such as shape generation, re-

construction, compression, and clustering. The detailed description of the research

question is provided in section 1.2.2.

Figure 3.1: The architecture of the 3dAAE. The model consists of three neural networks:

an encoder E, a generator G and a discriminator D. The encoder, implemented using

PointNet, extracts two feature vectors interpreted as means µ and standard deviations

σ from the input sample X . After reparametrisation trick (3.2) they result in the

shape representation z̃. This representation is then a starting point of creating a

reconstruction X̃ by the generator G and is checked by the discriminator D for fit to

the normal distribution.

Architecture The scheme of the 3dAAE architecture is presented in figure 3.1.

The model is based on the Adversarial Autoencoder architecture, described in sec-

tion 2.3.4. The 3dAAE is composed of three main modules:

• An encoder E implemented as PointNet (Qi et al. 2017a), extracting repre-
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sentations z̃ of input shapes X 1. The PointNet architecture is presented in

figure 2.7. For the purpose of extracting representation, the feature extraction

and aggregation parts are used. Therefore, it consists of four feed-forward neu-

ral networks – two TNets performing affine transforms in 3 and 64 dimensions

and two multi-layer perceptrons (of sizes 64-64 and 64-128-h, where h is the

size of the obtained representations), implemented as 1-dimensional convolu-

tions. Each TNet is built out of six layers, three 1-d convolutional and three

fully-connected, of sizes 64 − 128 − 1024 − 512 − 256 − k2, where k is the di-

mensionality of the affine transform the TNet models. Multi-layer perceptrons

consist of 64− 64 and 64− 128− h layers. After every TNet and MLP layer,

the 1-d batch normalisation and ReLu non-linearities are added, except for

the last layer of the MLP2, containing the permutation-invariant max function

and the last layers of the TNet models.

Moreover, to facilitate the regularization of obtained representation to the

prior distribution N (0, I), two parallel layers µ and σ (each of size h) were

added. By transforming the values of those layers with the so-called repa-

rameterisation trick, it is possible to sample from the parameterised normal

distribution while maintaining the ability for optimisation with backpropaga-

tion. The trick is defined as follows:

z̃ = µ+ σε, (3.2)

where µ and σ are vectors of approximated posterior means and standard

deviations, as presented in figure 3.1, and ε ∼ N (0, I). In the further part

of the 3dAAE description, the reparameterisation trick will be omitted for

brevity, and the encoding part will be denoted as z̃ = E(X ).
1In the earlier part of this dissertation, the point cloud shape was denoted as P. However, the

notation X will be used from here on out when describing point clouds from the perspective of

their role as an input to the model. This adjustment aims to keep consistency with the rest of

the machine learning literature, where the usual nomenclature for input data is x, for target

label – y and hidden variables – z (with various cases and font styles).
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• A generator G, constructing a sample X̃ based on a provided representation

z or z̃. It is implemented as a feed-forward network consisting of five fully-

connected layers of sizes 64− 128− 512− 1024− 3n, where n is a number of

generated points. After each layer (excluding the last) non-linear function is

applied in the form of ReLU.

• A discriminator D, providing feedback to the encoder about the fit between

posterior and prior distribution. It is implemented as a feed-forward network

consisting of five fully-connected layers of sizes 512−512−128−64−1. After

each layer (excluding the last) ReLU non-linearity is applied.

Additionally, for comparison purposes, two more generative models are prepared:

1. 3dVAE – a model similar to 3dAAE architecturally, with the exception of

regularising the posterior to the standard normal distribution, is done with

Kullback-Leibler divergence instead of a discriminator.

2. 3dAAE-GMM – a variation of the 3dAAE model, in which the prior distribu-

tion is given as a mixture of 32 isotropic Gaussians instead of the standard

normal distribution.

Adversarial training The standard training procedure of generative adversarial

networks (Goodfellow et al. 2014) consists of a competition between two modules.

One of the modules is network learning to approximate the data distribution. In

the case of the 3dAAE, an encoder E is learning to produce samples from the

normal distribution. On the other hand, the discriminator D tries to differentiate

between samples from the true (i.e. prior) distribution and generated (i.e. posterior)

distribution. This results in behaviour, defined in the game-theoretical terms as

a two-player min-max game (Von Neumann and Morgenstern 2007). The value

function for the game between those two actors can be written down as:

min
E

max
D

VGAN(E,D) = Ez∼PZ logD(z) + EX∼PX log(1−D(z̃)), (3.3)

53



3 Representation learning for generative modelling

where PZ is a prior distribution and z̃ = E(X ) is an approximated posterior.

Based on the value function defined in the equation (3.3) above, the loss functions

for the encoder E and the discriminator D are defined as opposites, i.e. V and −V ,

respectively. Additionally, the reconstruction objective is added for the encoder-

generator pair to incorporate the generative training into this framework. Therefore,

the loss functions for the adversarial training of 3dAAE could be defined as:

LE,G = VGAN(E,D) + EX∼PXdist(X , X̃ ) (3.4)

LD = −VGAN(E,D), (3.5)

where dist(·, ·) is the distance function between two sets (CD or EMD).

However, training GANs with optimisation objective defined in equation (3.3)

leads to unstable training, with the loss values diverging rapidly once one of the

sides will obtain an advantage over the other (Creswell et al. 2018; Zamorski et

al. 2019), a phenomenon known as mode collapse. One of the leading solutions

to improve training stability is to reformulate adversarial training using Wasser-

stein (or Earth-Mover) objective (Arjovsky et al. 2017) with gradient penality reg-

ularisation (Gulrajani et al. 2017). Wasserstein criterion changes the role of the

discriminator2 D from the function that judges from which distribution the input

representation came from. Instead, the discriminator is interpreted as a 1-Lipschitz

function, that follows the constraint:

|D(a1)−D(a2)| ⩽ 1 · ∥a1 − a2∥22 , (3.6)

where a1, a2 are any real-valued vectors of the same length.

The enforcement of the constraint (3.6) is performed with the gradient penalty

regularisation. Since a differentiable function D is 1-Lipschitz if and only if it has

2In literature related to adversarial training using the Wasserstein objective, due to the different

purpose it serves in the training process, the discriminator is referred to as critic. However, for

the sake of consistency of names and symbols between solutions presented in this dissertation,

the term discriminator will continue to be used instead.
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gradients with the norm at most 1 everywhere, the penalty can be defined as:

GP (D) = Ez∼PZEX∼PX (∥∇D(αz + (1− α)z̃)∥2 − 1)2 , (3.7)

where α ∼ U(0, 1), z̃ = E(X ) and ∥ · ∥2 is the L2-norm of the gradient values. Based

on Wasserstein distance between two distributions given in equation (2.48) the value

function is defined as:

min
E

max
D∈L1

VWGAN-GP(E,D) = Ez∼PZD(z)− EX∼PXD(z̃), (3.8)

where L1 is a set of all possible 1-Lipschitz functions and the rest of the denotations

as in equation (3.3). By adding terms for reconstruction objective and gradient

penalty constraint, the explicit losses for discriminator and the encoder-generator

pair are defined as follows:

LE,G = −VWGAN-GP(E,D) + EX∼PXdist(X , X̃ ) (3.9)

LD = VWGAN-GP(E,D) + λGP (D), (3.10)

where λ is a scaling hyperparameter and GP (·) is the gradient penalty regularisation,

as defined in the equation (3.7). The adversarial training procedure implementing

the min-max game given in equations equations (3.9) and (3.10) is presented in

algorithm 3.1.

3.3.2 3dAAE-Beta – 3dAAE for binary representations

The previous section described the solution for applying generative modelling to

point cloud data, dubbed 3dAAE. By utilising an adversarial training, the discrim-

inator regularised the representations produced by 3dAAE’s encoder so that their

distribution followed specified prior, given as normal distribution.

However, while effective, the real-valued features also have drawbacks. In compar-

ison to binary features (and assuming the same number of features in both cases),

real-valued representations require more storage space (16, 32 or 64 times, depending

on the precision) and are much slower to process, as the arithmetic on the floating-

point numbers is in general much more expensive than on the integers. On the other
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Algorithm 3.1: The adversarial training procedure of 3dAAE. The Wasser-
stein GAN with gradient penalty regularisation is used to stabilise the min-
max optimisation. Contrary to the usual GAN training, Wasserstein GAN
performs several discriminator training iterations per one encoder-generator
pair iteration.
In :D = {X1,X2, . . . ,Xn} – training samples, PZ – prior distribution, m ⩽ n –

minibatch size, κ – number of discriminator iterations per one
encoder-generator pair iteration, λ – gradient penalty weight

Out : θ∗E , θ
∗
G, θ

∗
D – optimal parameters for encoder, generator and discriminator

1 θE , θG, θD ← Random initialisation
2 while convergence not reached do

// discriminator training
3 for i← 1 to κ do
4 X ← X ⊆ D // sample minibatch X of size m from D
5 Z̃← E(X ) // encode minibatch samples
6 Z← [zj ∼ PZ]

m
j=1 // sample equal amount of embeddings from prior

7 α← [αj ∼ U(0, 1)]mj=1 // sample cut-offs from the uniform dist.

8 LD ← D(Z)−D(Z̃) + λ
(
∥∇D(αZ + (1−α)Z̃)∥2 − 1

)2
// (3.10)

9 θD ← optimiser(∇LD, θD) // update model weights
// encoder-generator training

10 X ← X ⊆ D // sample minibatch X of size m from D
11 Z̃← E(X ) // encode minibatch samples
12 Z← [zj ∼ PZ]

m
j=1 // sample equal amount of embeddings from prior

13 X̃ ← G(Z̃) // reconstruct input shapes
14 LE,G ← D(Z̃)−D(Z) + dist(X , X̃ ) // (3.9)
15 θE , θG ← optimiser(∇LE,G, θE , θG) // update model weights
16 θ∗E , θ

∗
G, θ

∗
D ← θE , θG, θD

17 return θ∗E , θ
∗
G, θ

∗
D

hand, calculating the distance between two binary vectors consists of just two ma-

chine instructions on almost all modern processors. Given that many point cloud ap-

plications, such as 3-d processing for autonomous vehicles, are time-sensitive, there

is a need for an approach that extracts binary features from 3-dimensional data.

This section presents 3dAAE-Beta, a modification to the 3dAAE model, that

contributes to answering the research question about the method of obtaining the

compact binary representations of 3-dimensional shapes, as stated in section 1.2.3.
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Since it is impossible to obtain the binary representations from the PointNet encoder

directly, the 3dAAE-Beta approach utilises a continuous approximation in the form

of the Beta distribution.
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Figure 3.2: Probability density functions of Beta distribution, as given by equation (3.11)

for the three sets of distribution parameters α, β. It can be observed that by setting

α, β < 1 the density function takes the “U” shape, putting most of the probabilistic

density into regions close to (but excluding) 0 and 1, since PDF (x)→∞ as x→ 0∨1.

Beta distribution Beta distribution is a continuous probability distribution pa-

rameterised by two shape parameters, α and β and defined on the [0, 1] ⊂ R or (if

α < 1 or β < 1) on (0, 1) ⊂ R interval. The probability density function of the Beta

distribution is defined as:

PDF (x, α, β) =
1

B(α, β)
xα−1(1− x)β−1, (3.11)

where α ∈ R+, β ∈ R+ are shape parameters, and B(·, ·) is the beta function defined

as in the equation (3.12) below:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0

tα−1(1− t)β−1dt, (3.12)

where Γ(·) is the gamma function.

Figure 3.2 presents three examples of probability density functions of the Beta

distribution. As can be observed, the closer the parameters α, β are to the zero, the
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more probabilistic density is concentrated near values 0 and 1. Therefore, setting

sufficiently low values will continuously approximate the binary random variable.

Figure 3.3: The architecture of the 3dAAE-Beta model. In comparison to the base 3dAAE

architecture, presented in figure 3.1, this modification does not contain the µ and σ

layers for distribution modelling. Prior distribution is modelled as Beta distribution

with parameters α = β = 0.01.

Architecture The architecture of the introduced approach is presented in figure 3.3.

In comparison to the original 3dAAE architecture depicted in figure 3.1, 3dAAE-

Beta does not consist of µ and σ layers of an encoder E, since in place of the Normal

distribution, the Beta distribution with parameters α = β = 0.01 is used instead.

The choice of the parameter value 0.01 is motivated by the following lemma:

Lemma 3.3.1. Given the random variable X that is beta-distributed with parameters

α = β = 0.01, the probability of sampling a value further than r = 0.01 from the

probability support’s boundaries is less than 5 %, i.e. P (r < X ⩽ 1− r) < 0.05.

Proof. The cumulative distribution function (CDF) for Beta distribution is given as

follows:

CDF (x;α, β) =
B(x;α, β)

B(α, β)
=

∫ x

0
ta−1(1− t)b−1dt

B(α, β)
, (3.13)

where B(·;α, β) is the incomplete beta function, and B(α, β) is the beta function
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defined in equation (3.12). Therefore:

P (0.01 < X ⩽ 0.99) = 1− (P (X ⩽ 0.01) + P (0.99 < X))

= 1− 2P (X ⩽ 0.01)

= 1− 2CDF (0.01)

= 1− 2 · B(x = 0.01;α = 0.01, β = 0.01)

B(α = 0.01, β = 0.01)

= 1− 2 ·
∫ 0.01

0
t−0.99(1− t)−0.99dt∫ 1

0
t−0.99(1− t)−0.99dt

Numerical approximation using the WolframAlpha engine evaluates the expression

above to:

P (0.01 < X ⩽ 0.99) ≈ 1− 2 · 95.5087
199.9675

≈ 0.0448 < 0.05. (3.14)

The training procedure for the 3dAAE-Beta model is conducted in a similar man-

ner to the original 3dAAE approach, described in algorithm 3.1, with the difference

lying in the choice of the prior distribution for regularisation. The generator mod-

ule is trained on the representations consisting of the real-valued features close to

0 and 1. However, to evaluate the encoder and the generator’s ability to work on

actual binary representations, the randomly sampled prior and extracted posterior

distribution embeddings will be processed according to the formula:

Bin(z) = [sgn(2z − 1) | z ∈ z] , (3.15)

where sgn(·) is a sign function returning ±1. By representing the binary embeddings

as ±1 values, the model is able to utilise the entire range of parameters and activa-

tions during training and inference. In the case of the standard 0 and 1 encoding, all

of the parameters that were multiplied by 0 (around half of them, since the model

is regularised with symmetrical Beta distribution) would provide no information to

the downstream modules.
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3.3.3 3dAAE-C – 3-d Adversarial Autoencoder for unsupervised

clustering

The previous section described the generative modelling approach to obtaining bi-

nary representations of 3-dimensional shapes. Taking this idea to the extreme would

entail binary vectors with precisely one feature value set to one while the rest are

being set to zero. In literature. this type of representations is called one-hot encod-

ing. The most frequently used one-hot representations can be seen in classification

and clustering tasks. Classes (or clusters) are then represented as one-hot vectors

of size equal to the total number of classes (or clusters) with the bit’s position set

according to the class label value. For example, the third out of the ten classes

would be represented as:

c = [0 0 1 0 0 0 0 0 0 0]T . (3.16)

This section describes 3dAAE-C, an extension of the 3d Adversarial Autoen-

coders that contributes to solving the problem of unsupervised clustering of the

3-dimensional point clouds, as stated in the research question in section 1.2.4. The

extension is implemented by an additional posterior representation, regularised with

the categorical distribution.

Categorical distribution Categorical distribution is a discrete probability distri-

bution defined with probabilistic mass function:

PMF (x, c) =


1

c
if x ∈ {1, 2, . . . , c}

0 otherwise,
(3.17)

where c is a number of classes.

However, using discrete distributions in neural network training is not feasible.

This is because the argmax function, used to convert real-valued vectors into cat-

egorical ones, is non-differentiable. Therefore, in situations when sampling from

the discrete distributions is required for the training of the machine learning model,
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the often-times used solution is to apply the categorical reparameterisation using

Gumbel-Softmax distribution (Jang et al. 2017).

Another advantage of the proposed approach is the ability to optimise for the

categorical distribution directly, without the need to perform reparameterisation

and sampling from the Gumbel distribution.

Figure 3.4: The architecture of the 3dAAE-C model. In comparison to the base 3dAAE

version, presented in figure 3.1, this extension consists of an additional output z̃c
from an encoder E, as well as additional discriminator Dc that regularises z̃c to the

categorical prior distribution. For categorical distribution, every possible one-hot

encoding is sampled with uniform probability.

Architecture The categorical distribution alone is not sufficiently complex to model

the entire data distribution of 3-dimensional point clouds. Therefore, the 3dAAE-C,

as presented in figure 3.4, extracts two types of representations simultaneously:

1. Real-valued representation z̃n – an encoding of the 3-dimensional shape reg-

ularised to the Normal distribution with discriminator Dn, as presented in

section 3.3.1.

2. Categorical representation z̃c – an additional encoding regularised with the

Categorical distribution with uniform probabilities on the bits.

61



3 Representation learning for generative modelling

For an easier approximation of one-hot vectors by the categorical part of the encoder,

the additional fully-connected layer ρ, followed by the softmax activation, given as

in equation (3.18) is applied on the z̃c embedding.

Softmax
(
z̃(i)c

)
=

exp
(

z̃(i)c

)
∑|z̃c|

j=1 exp
(

z̃(j)c

) , for i = 1, 2, . . . , |z̃c| (3.18)

As the 3dAAE-C model is trained in an unsupervised manner, no additional con-

straints are put on the z̃c extraction procedure. The only objective of the encoder,

in terms of the distribution modelling, is to produce indistinguishable samples for

the respective discriminators.

Training of the 3dAAE-C is a generalisation of the base 3dAAE approach to the

adversarial game between encoder producing two outputs and two discriminators.

Therefore, the value function VWGAN-GP extended for this approach can be written

down as:

min
E

max
Dn,Dc∈L1

VWGAN-GP(E,Dn, Dc) =Ezn∼PZn
Dn(zn) + Ezc∼PZc

Dc(zc)

− EX∼PXDn(z̃n)− EX∼PXDc(z̃c),
(3.19)

where L1 is a set of 1-Lipschitz functions and the rest as in equation (3.3).

Based on the value function defined in equation (3.19), the loss functions for

encoder-generator pair and discriminators pair is defined as follows:

LE,G = −VWGAN-GP(E,Dn, Dc) + EX∼PXdist(X , X̃ ) (3.20)

LD = VWGAN-GP(E,Dn, Dc) + λ (GP (Dn) +GP (Dc)) , (3.21)

where λ is a scaling hyperparameter and GP (·) is the gradient penalty regularisation,

as defined in the equation (3.7).

The detailed training procedure, implementing the objectives given by equations (3.20)

and (3.21) is provided in algorithm 3.2.
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Algorithm 3.2: The training procedure of 3dAAE-C model, based on the
Wasserstein GAN with gradient penalty regularisation routine. In contrast
to procedure provided in algorithm 3.1, the 3dAAE-C encoder produces two
representation vectors z̃n, z̃c that are regularised by two discriminators Dn

and Dc simultaneously, inducing the normal and categorical distribution, re-
spectively.
In :D = {X1,X2, . . . ,Xn} – training samples, PZn , PZc – normal and categorical

prior distributions, m ⩽ n – minibatch size, κ – number of discriminator
iterations per one encoder-generator pair iteration, λ – gradient penalty
weight

Out : θ∗E , θ
∗
G, θ

∗
Dn

, θ∗Dc
– optimal parameters for encoder, generator and

discriminators
1 θE , θG, θDn , θDc ← Random initialisation
2 while convergence not reached do

// discriminators training
3 for i← 1 to κ do
4 X ← X ⊆ D // sample minibatch X of size m from D
5 Z̃n, Z̃c ← E(X ) // encode minibatch samples
6 Zn ← [zj ∼ PZn ]

m
j=1 // sample m embeddings from normal prior

7 Zc ← [zj ∼ PZc ]
m
j=1 // sample m embeddings from categorical prior

8 α← [αj ∼ U(0, 1)]mj=1 // sample cut-offs from the uniform dist.

9 LDn ← Dn(Zn)−Dn(Z̃n) + λ
(
∥∇Dn(αZn + (1−α)Z̃n)∥2 − 1

)2
10 LDc ← Dc(Zc)−Dc(Z̃c) + λ

(
∥∇Dc(αZc + (1−α)Z̃c)∥2 − 1

)2
11 LD ← LDn + LDc // equation (3.21)
12 θD ← optimiser(∇LD, θDn , θDc) // update model weights

// encoder-generator training
13 X ← X ⊂ D // sample minibatch X of size m from D
14 Z̃n, Z̃c ← E(X ) // encode minibatch samples
15 Zn ← [zj ∼ PZn ]

m
j=1 // sample m embeddings from normal prior

16 Zc ← [zj ∼ PZc ]
m
j=1 // sample m embeddings from categorical prior

17 X̃ ← G(Z̃n, Z̃c) // reconstruct input shapes

18 LE,G ←
(
Dn(Z̃n)−Dn(Zn)

)
+
(
Dc(Z̃c)−Dc(Zc)

)
+ dist(X , X̃ )

// equation (3.20)
19 θE , θG ← optimiser(∇LE,G, θE , θG) // update model weights
20 θ∗E , θ

∗
G, θ

∗
Dn

, θ∗Dc
← θE , θG, θDn , θDc

21 return θ∗E , θ
∗
G, θ

∗
Dn

, θ∗Dc
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3.3.4 HyperCloud – Hypernetwork for 3-d point clouds

The proposed approaches constituting the 3dAAE family of models, described in

sections 3.3.1 to 3.3.3 above, have one major drawback – generation of fixed-size

point clouds, equal in size to the shapes at training time. This constraint is caused

by the architectural design of the generator module, which is implemented as a

fully-connected neural network.

To alleviate this shortcoming, this section proposes HyperCloud, the adversarial

autoencoder and hypernetwork-based approach that provides the solution of rep-

resentation learning for the generative modelling of point clouds consisting of an

arbitrary number of points, as described in the research question provided in sec-

tion 1.2.5. Instead of modelling the generative module with the network producing

the fixed number of points, HyperCloud implements hypernetwork, i.e. network

outputting parameters for another function, called target, which in turn transfers

points from the prior distribution onto the generated shape surface.

Hypernetworks Hypernetworks (Schmidhuber 1992; Ha et al. 2017) consists of

two parameterised functions, usually implemented as neural networks:

• hypernetwork (also called generator network) – the function that, given the

input in the form of the one or more representations, produces the weights for

another parameterised function

• target network – the parameterised function, in which parameters are not

trained directly and are obtained from the hypernetwork output instead.

Therefore, the hypernetworks approach can be defined as generative modelling on

the function space, allowing for obtaining a variety of smaller, but specialised to the

given task target networks.

Architecture The HyperCloud approach combines two types of models: adversar-

ial autoencoders and hypernetworks, as presented in figure 3.5. Similarly to 3dAAE,
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Figure 3.5: The architecture of the HyperCloud approach. The model is an extension of

the 3dAAE, presented in figure 3.1, substituting a generator implemented as a fully-

connected network for a one implemented as hypernetwork G and target network T

pair. The target network produces output based on parameters provided by G and

input points sampled from the uniform distribution on the unit sphere.

Algorithm 3.3: The training procedure of the HyperCloud approach. The
following pseudo-code snippet substitutes line line 13 of algorithm 3.1.

1 θT ← G(Z̃) // generate weights for T based on Z
2 S ← {Sj = {si ∼ PS2}ki=1}mj=1 // sample points from shape prior
3 X̃ ← TθT (S) // transform sampled priors S to reconstruct input

the HyperCloud model employs a PointNet-like encoder for feature extraction from

3-dimensional point clouds. Moreover, the regularisation of obtained shape repre-

sentation to the normal distribution prior is modelled with adversarial training.

As a generator, HyperCloud introduces a hypernetwork architecture, as described

in section 3.3.4 above. Instead of generating a fixed-size point cloud (as was the

case with the 3dAAE models), HyperCloud generates a set of weights for a target

network. It is worth noting that thanks to processing each point individually, the

hypernetwork approach can generate point clouds of arbitrary size, which constitutes

the main improvement over the base 3dAAE model.

The training procedure of the HyperCloud approach, described in algorithm 3.3

consists of an adversarial training and data reconstruction. The loss functions for
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the discriminator and the encoder-generator pair, on which the training is based,

are as follows:

LE,G = −VWGAN-GP(E,D) + EX∼PX ,ES∼PS2dist(X , X̃ = Tθ=G(z̃)(S)) (3.22)

LD = VWGAN-GP(E,D) + λGP (D), (3.23)

where VWGAN-GP is a value function as defined in equation (3.8), dist is a distance

metric between two sets (in this case EMD), Tθ=G(z̃) is a target network with pa-

rameters θ given by generator G based on an embedding z̃ of shape X , S is a set

of points sampled from the surface of the S2 sphere and GP is the gradient penalty

regularisation, scaled by a hyperparameter λ.

3.3.5 CIF – Conditional Invertible Flow

Previous approaches relay on adversarial generative modelling for learning represen-

tations of the 3-dimensional shapes. While the Wasserstein criterion with gradient

penalty regularisation significantly reduces the possibility of mode collapse during

the training, it does not eliminate it completely.

An alternative approach assumes model optimisation with a standard log-likelihood

criterion. By employing a model based on normalising flows, one is able to train

an invertible function, embedding samples from the data distribution into the given

prior distribution, making maximum likelihood estimation possible. Moreover, since

the modelled function is a bijection, sampling new shapes is straightforward and done

by passing the sample from the prior distribution as the input to the inverted func-

tion. The description of the generative modelling with normalising flows is provided

in section 2.1.2.2.

This section describes Conditional Invertible Flow (CIF) networks, the normalis-

ing flow-based approach to the generative representation learning on 3-dimensional

point clouds. The CIF networks contribute to the solution to the research question

on representation learning for the generative modelling of point clouds consisting of

an arbitrary number of points, as described in section 1.2.5. This model, similarly to
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HyperCloud, allows sampling from the prior distribution of any number of embed-

dings, which will be transformed into points on the surface of the generated point

cloud. Additionally, the whole architecture is possible to be trained with explicit

likelihood optimisation.

Figure 3.6: The architecture of the Conditional Invertible Flow networks. The model con-

sists of three modules: an encoder E implemented as PointNet, conditioning flow F

providing the shape representation that is normally-distributed and generating flow

G, embedding input points into the normal distribution, based on a shape represen-

tation from F .

Architecture The Conditional Invertible Flow models point cloud shapes as prob-

ability densities in the 3-dimensional space. The architecture of the proposed ap-

proach is presented in figure 3.6 and consists of the three modules:

• The encoder module E implemented as a PointNet model for extracting feature

vectors from input samples in an order-invariant way,

• The normalising flow F , taking PointNet features as an input and transforming

them into encoded representation e that follows the standard normal distribu-

tion given as a prior,

• The normalising flow G, conditioned on features e returned by F , processing

the points of an input cloud X into the standard normal distribution given as

a prior.
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Algorithm 3.4: The training procedure of the Conditional Invertible Flow
networks. Contrary to the approaches presented in sections 3.3.1 to 3.3.4,
the CIF optimisation criterion is defined in terms of negative log-likelihood
minimisation and does not invoke the generation of reconstruction samples.
In :D = {X1,X2, . . . ,Xn} – training samples, PZ – prior distribution, m ⩽ n –

minibatch size
Out : θ∗E , θ

∗
F , θ

∗
G – optimal parameters for encoding, conditioning and generating

modules
1 θE , θF , θG ← Random initialisation
2 while convergence not reached do
3 X ← X ⊆ D // sample minibatch X of size m from D
4 X (g),X (f) ← X // randomly split samples from X into halves
5 ẽ = (F ◦ E)(X (f)) // obtain conditioning vectors in posterior dist.
6 z̃ = G

(
X (g), ẽ

)
// obtain point representations in posterior dist.

7 L← −LG

(
X (g),X (f))− LE,F

(
X (f)) // equations (3.24) to (3.26)

8 θE , θF , θG ← optimiser(∇L, θE , θF , θG) // update model weights
9 θ∗E , θ

∗
F , θ

∗
G ← θE , θF , θG

10 return θ∗E , θ
∗
F , θ

∗
G

The model is trained by minimising the following loss, defined as negative condi-

tional log-likelihood:

L = −LG

(
X (g),X (f))− LE,F

(
X (f)) (3.24)

where X (f),X (h) are two subsets sampled from a point cloud X , LE,F (·) is log-

likelihood as defined in equation (3.25) and LG(·, ·) is log-likelihood as defined in

equation (3.26):

LE,F (X (f)) = logPZ(ẽ) + log
∣∣∣∣det ∂ẽ

∂E(X (f))

∣∣∣∣ (3.25)

LG(X (g),X (f)) =
∑

x∈X (g)

logPZ(z̃) + log
∣∣∣∣det ∂z̃

∂x

∣∣∣∣ , (3.26)

where PZ(·) – likelihood based on N (0, I), ẽ = (F ◦E)(X (f)) – extracted conditional

embedding and z̃ = G(x, ẽ) – extracted point embedding, conditioned on ẽ.

In order to generate a new point cloud X̃ composed of n points, one needs to

sample n + 1 embeddings from the N (0, I) distribution. Next, one of the sampled
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Figure 3.7: The point cloud generation procedure using the Conditional Invertible Flow

networks. The shape representation ẽ and point representations z̃1, z̃2, . . . , z̃n are

sampled from the standard normal distribution defined as a prior. Then, each point

encoding is processed by an inverse normalising flow G−1 conditioned on ẽ into the

data points distribution.

embeddings is used as a conditioning vector e, while the rest is passed as point

representations z1, z2, . . . , zn to the inverted flow G−1.

3.4 Experiments

This section describes the results obtained during the quantitative and qualitative

evaluation of the proposed architectures for generative modelling of point cloud

shapes. The conducted experiments evaluate the capabilities of the models and ob-

tained representations to estimate data density when reconstructing and generating

new data as well as separability of the latent representation space.

The experiments were conducted on the following point cloud datasets:

1. ModelNet 40 (Z. Wu et al. 2015) – as described in the section 2.5,

2. ShapeNet (Chang et al. 2015) – as described in the section 2.5.

Each shape was preprocessed by sampling 2048 points from the provided mesh’s

surface. Additionally, every point cloud was augmented by being randomly rotated

around #»z (vertical) axis, and had added noise ε ∼ N (µ = 0, σ = 0.01) during
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Table 3.1: Reconstruction capabilities of proposed generative models trained with earth

mover’s distance measured as minimum matching distance on the test split of the

chair class. Autoencoder and l-GAN results from (Achlioptas et al. 2018). PointFlow

results from (G. Yang et al. 2019).

Method MMD-CD (↓) MMD-EMD (↓)

AE 13.00 5.20

l-GAN 8.85 5.26

PointFlow 7.54 5.18

3dVAE 10.00 5.20

3dAAE 9.00 5.20

3dAAE-GMM 8.00 5.10

training. No augmentation was performed for the validation and test splits of the

datasets.

Details of the metrics and distance functions, that are used for evaluation, are

provided in sections 2.6.4 and 2.6.5.

3.4.1 Reconstruction capabilities

Before evaluating the ability of proposed approaches to generate data from the rep-

resentations sampled from the prior distribution, the models are assessed in a more

straightforward scenario. In this experiment, the proposed models – 3dVAE, 3dAAE

and 3dAAE-GMM (Gaussian Mixture prior) – are tested on reconstruction task, i.e.

data generation based on the representation extracted from the input 3d shape. This

test checks for generalisation to the unseen, real data. Low reconstruction fidelity

(i.e. high minimum matching distance) scores may suggest over-regularisation of the

model or models. Over-regularization is an issue of sacrificing reconstruction and

representation quality, favouring fitness to the prior distribution. An encoder has

failed to embed data instance features into the hidden vector when the prior and
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posterior distributions are indistinguishable. Control for over-regularisation is usu-

ally done by monitoring the statistics of posterior distributions during training and

then manually balancing the reconstruction and regularisation losses by introducing

a hyperparameter (Higgins et al. 2016).

Table 3.1, presents the obtained minimum matching distances (see section 2.6.5)

on test data reconstructed by Autoencoder, 3d Variational Autoencoder, and 3d

Adversarial Autoencoder with standard normal and a mixture of normals prior dis-

tributions. It can be noted that none of the proposed models suffers from an over-

regularisation problem. The results show significant improvement of the fidelity of

the reconstructions compared to the baseline autoencoder. Minimum matching dis-

tance scores are comparable with other methods from the literature, despite using

a much simpler, 1-stage architecture.

3.4.2 Generation capabilities

This section contains the evaluation of representations modelled by the proposed

generative approaches in application to the generation tasks. The representations

are measured with Jensen-Shannon divergence, minimum matching distance (MMD,

also named fidelity), coverage (COV) and 1-NNA, with MMD and coverage calcu-

lated using both chamfer distance and earth mover’s distance.

The parameters for models are selected based on the Jensen-Shannon Divergence

on the validation split of the dataset measurement on the validation set. However,

depending on the architecture, the evaluation approach slightly differs:

1. 3dAAE methods – to reduce the sampling bias, each generator produces a set

of synthetic samples thrice the population of the comparative set (i.e. test or

validation). It is denoted with grey background in table 3.2.

2. HyperCloud, CIF – each generator produces a number of samples equal to the

population of the comparative set. It is denoted with neutral background in

table 3.2.
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Table 3.2: The results of generative modelling experiments for proposed approaches

(3dAAE, HyperCloud, CIF) compared to relevant methods from the literature (l-

GAN, PointFlow). Values on the grey background indicate results obtained by gen-

erating from the model three times the number of samples compared to the number

of shapes in the reference dataset. Values on the neutral background indicate results

from the experiments involving equinumerours generated and reference data, hence

lower overall scores. The best value is marked in bold separately for grey and neu-

tral backgrounds. The results are scaled by: MMD-CD ×103, MMD-EMD ×102,

JSD ×102.

MMD (↓) COV (%, ↑) 1-NNA (%, 50)
Category Methods JSD (↓)

CD EMD CD EMD CD EMD

l-GAN 3.61 0.269 3.29 47.90 50.62 87.65 85.68

PointFlow 4.92 0.217 3.24 46.91 48.40 75.68 75.06

HyperCloud 4.84 0.266 3.28 39.75 43.70 93.80 88.95

CIF 4.24 0.221 3.14 47.57 52.67 77.08 72.59
Airplane

Training set 6.61 0.226 3.08 42.72 49.14 70.62 67.53

l-GAN 2.00 1.80 6.50 68.90 67.40 - -

3dAAE 1.40 1.70 6.22 67.30 67.00 - -

3dAAE-GMM 1.40 1.70 6.43 69.60 68.70 - -

l-GAN 2.27 2.61 7.85 40.79 41.69 64.73 65.56

PointFlow 1.74 2.42 7.87 46.83 46.98 60.88 59.89

HyperCloud 2.73 2.56 7.84 41.54 46.67 68.20 68.80

CIF 1.42 2.38 7.85 44.01 47.03 62.71 63.39

Chair

Training set 1.50 1.92 7.38 57.25 55.44 59.67 58.46

l-GAN - - 4.10 - 65.30 - -

3dAAE - - 4.00 - 66.20 - -

3dAAE-GMM - - 3.90 - 67.60 - -

l-GAN 2.21 1.48 5.43 39.20 39.77 69.74 68.32

PointFlow 0.87 0.91 5.22 44.03 46.59 60.65 62.36

HyperCloud 1.07 1.14 5.30 45.74 47.44 64.63 62.78

CIF 0.79 0.90 5.12 44.79 49.24 64.82 61.36

Car

Training set 0.86 1.03 5.33 48.30 51.42 57.39 53.27

The difference is cased by the paradigm shift in the literature concerning the com-

mon way of evaluating the generative performance of the model, between the time
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(Zamorski et al. 2020a) and (Spurek et al. 2020; Stypułkowski et al. 2021) was pub-

lished. While (Achlioptas et al. 2018) proposed the evaluation based on the former

style, the work (G. Yang et al. 2019) standardised using the the latter. Due to the

different approaches to evaluation, the results reported for l-GAN in table 3.2 are

provided twice, once for each evaluation methodology. The presented results are

the averages after repeating the process three times.

Table 3.3: Results of point cloud retrieval and embedding classification with Linear SVM

on ModelNet 40 dataset. The 3dAAE model has been trained with initial value of

a hyperparameter λ = 2.0 that was exponentially decayed as the training proceeds.

Its purpose is to keep a balance between reconstruction and adversarial losses, as

demonstrated in (Higgins et al. 2016).

Method
Continuous Binary

Accuracy Accuracy mAP

3dGAN 83.30 - -

l-WGAN 84.50 - -

PointFlow 86.80 - -

AE 84.85 78.12 41.76

3dAAE 84.35 79.78 44.09

HyperCloud 84.70 - -

Table 3.2 contains generation results achieved by the proposed 3dVAE, 3dAAE,

3dAAE-GMM, HyperCloud and CIF architectures, measured by fidelity, coverage

and 1-NNA metrics on different classes from the ShapeNet dataset. They are com-

pared against the relevant methods from the literature, namely (Achlioptas et al.

2018) and (G. Yang et al. 2019). Additionally, the memorisation model is provided

as a reference result, in which ”generating” consists of sampling the required amount

of data from the training set.

It can be noted that those models match or surpass the state-of-the-art results in
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all of the metrics while offering desired properties, such as generating an arbitrary

number of points or conditional data generation.

In addition to regularising the 3dAAE approach with Gaussian-based prior dis-

tributions, the Beta(α = β = 0.01) distribution was applied to impose binarisation

on the embeddings during training. Table 3.3 contains results for two proposed

models on retrieval and classification (by using LinearSVM on learned representa-

tions) tasks using real-valued and binary embeddings. The first model has been

trained with λ = 2.0, the best value found in the ablation studies, where λ is a

balance between reconstruction and adversarial losses. The second model uses an

exponential decay to reduce λ as the training proceeds. It can be observed that,

while the binary embedding causes a drop in classification accuracy compared to

real-valued representations, the mean average precision (see section 2.6.2) improves

in comparison to binarised features from standard autoencoder.

Figure 3.8: The samples of the generated point clouds and mesh-based shapes from the

HyperCloud model. The samples shown above belong to table, chair and car cate-

gories. Each cloud (mesh) consists of 2048 sampled points (vertices). The shapes are

obtained by processing 2048 points sampled from the surface of the S2 sphere (for

point clouds) or 2048 vertices from generated triangle mesh of the sphere.

In addition to the quantitative results presented above, figures 3.8 and 3.9 present

qualitative samples of generative modelling capabilities of the proposed approaches.

The point clouds are randomly generated by HyperCloud and CIF networks based on

the embeddings sampled from the respective prior distributions. It can be observed

that the quality of produced samples is similar to true data, and the mismatched

points happen sporadically.
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Figure 3.9: Samples of the generated point clouds from the Conditional Invertible Flow

networks model, obtained with G normalising flow. Rows show samples from car and

chair categories. Each cloud consists of 2048 sampled points.

Moreover, the figure 3.8 represents the ability of HyperCloud to generate realistic,

watertight meshes. Notably, the colour-coding of the meshes’ triangles suggests that

vertices initially close to each other stay that way after transformation. It shows

that produced meshes contain smooth surfaces without generation artefacts, such

as holes.

3.4.3 Latent space coverage

One of the characteristics of a good generative model is producing realistic samples

based on interpolated representations. By generating samples based on such embed-

dings, it is possible to qualitatively assess whether the generative model smoothly

covers the joint data and representation distributions. The concept is visualised in

figure 3.10. In this figure, one can notice the interpolation gap between two chairs

Figure 3.10: The t-SNE plot of the latent spaces obtained from AE and 3dAAE models.
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for AE. On the other side, the encodings obtained from the 3dAAE model do not

suffer from this phenomenon and allow for smooth transition within the data space

with a much denser latent space. This confirms that the model learns to embed

meaningful semantic features into the hidden vector. Furthermore, such a result

shows generalisation capability beyond the samples from the training dataset. This

section presents the results of data generation by transitioning underlying represen-

tations from one state to another. The results are provided for 3dAAE, HyperCloud

and CIF architectures for real-valued representations and for 3dAAE-Beta for binary

ones.

Figure 3.11 shows that the interpolation of latent representations produces smooth

transitions between two distinct types of objects belonging to the same class. The

3dAAE model is able to change multiple characteristics of objects at once, as can

be seen with the shape and legs of the table.

Figure 3.11: Shape interpolations generated by 3dAAE. The leftmost and rightmost ob-

jects are samples from the test split of the ShapeNet dataset. Point clouds in between

are the result of generating shapes from the linear interpolation between the repre-

sentations of the samples from the test set.

A similar experiment has been performed on compact, binary embeddings. Con-

trary to the real-valued representations, it is impossible to perform smooth interpola-

tion over every latent dimension simultaneously. Therefore, the transition between

two binary representations z̃1, z̃2 was performed by calculating the difference (bi-

nary xor operation) between representations of two shapes from the test split of the

dataset. Next, the places where binary representations z̃1 and z̃2 were different were
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split into s equinumerous3 steps, which can be written as:

∆b =
1∑|z̃1|

i (z̃1 ⊕ z̃2)(i)
× 100%, (3.27)

where ∆b is a percentage of bits that change between two representations and ⊕ is

a binary xor operation.

Source object Targret object

Compact binary embeddings

Interpolated objects

Figure 3.12: Compact binary representations (100 bits) of 3-d point clouds. For each of

the 3-d shapes, we provide corresponding binary codes.

The visualisation of binary interpolation and data generation results from those

interpolated representations are shown in figure 3.12. Although the transition in

binary space is ultimately limited in regard to the number of possible interpolation

steps, the presented results show smooth transposition between two chair shapes

even when generating point clouds from the compact binary representation.

Figure 3.13: Interpolations between two 3-d point clouds and their mesh representations.

The interpolation experiments have also been conducted for the HyperCloud, and

CIF networks approaches. The qualitative results are provided in the figures 3.13

and 3.14. In the case of the mesh generation with HyperCloud, it can be observed

that the generative capabilities of the model generalise to producing coherent meshes

on a smooth cover of the representation space.
3With possible difference of 1, due to the integer division.
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Figure 3.14: Interpolation of latent vectors z makes smooth transition between their re-

constructions (from left to right). Each row shows interpolation on different classes

of shapes.

3.4.4 Disentangled and abstract representations

Section 2.2 provided disentanglement and abstraction of features as some of the

traits of good representations. By performing the linear algebra on the extracted

embeddings, it can be deduced if the encoder learned to put semantically similar

features in the same latent regions and if those regions only code one factor of the

data.

- +

- +

=

=

- + =

- + =

Figure 3.15: Modifying point clouds by performing additive algebra on latent space encod-

ings.

The figure 3.15 presents 3dAAE ability to learn abstract representations that

allow to perform addition and subtraction in latent space. Those operations mod-

ify existing point clouds according to the differences between point clouds in the

equation while leaving other characteristics unchanged. The example shows adding

rockers and armrests to chairs and changing the shape and legs of the table.

Figure 3.16 presents clustering results of the 3dAAE-C model trained with a

separate regularization to 32-dimensional one-hot distribution. Presented are three
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Figure 3.16: Selected examples from test set clustered with adversarial autoencoder with

an additional categorical unit.

randomly selected representatives from the four most dominant clusters. It can

be seen that among the detected clusters, the chairs contain characteristics for the

subgroup features and shapes.

3.5 Discussion

This chapter presents the contributions to the area of representation learning in

application to generative modelling of 3-dimensional point clouds. The first section

motivated research in this area. Next, section 3.3 describes original contributions

during the course of PhD studies. Sections 3.3.1 to 3.3.3 present approaches I have

introduced, namely 3-dimensional Adversarial Autoencoder regularised with normal

distribution along with its extensions, regularised with beta and categorical distri-

butions. These models aim to answer research questions concerning unsupervised

training of representations (with real-valued or binary features) with an application

to data distribution estimation and clustering, as stated in sections 1.2.2 to 1.2.4.

Moreover, in sections 3.3.4 and 3.3.5 I present the methods that I have collaborated

on, namely HyperCloud, and Conditional Invertible Flow network, which relax the
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restriction of generating the same number of points every time, as described in sec-

tion 1.2.5. The chapter is concluded with section 3.4, which discusses quantitative

and qualitative results obtained by proposed architectures.
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continual learning

4.1 Goal of the studies

This chapter describes the results of research related to the application of the pro-

posed method Random Compression Rehearsal (RCR) in the domain of continual

learning of deep learning models on 3-dimensional data. A rehearsal technique of

point cloud undersampling is introduced as a way to re-train machine learning ar-

chitectures.

The growing popularity of deep learning and its applications to increasingly com-

plex tasks and a vast amount of data collected result in machine learning models

of a rapidly rising number of parameters. While some problems require simple ap-

proaches, most of the usages evolve or are being redefined during the model’s life

cycle. Therefore, incorporating the new knowledge by re-training the model is a

vital dilemma from the computational, performance, and storage standpoint. Sim-

ply re-training on a new dataset causes the model’s performance on the original

data rapidly degrade, a phenomenon known as catastrophic forgetting. Training the

model from scratch whenever new data is available is not always possible due to

time or monetary constraints. Consequently, it is paramount to arrive at a solution

that can continuously train machine learning models with minimal computational

and storage overhead.

The solution introduced in this section contributes to the problem of learning data

81



4 Representation learning for continual learning

representations for catastrophic forgetting mitigation during continual training on

point cloud shapes, as stated in the research question provided in section 1.2.6. The

existing methods for continual classification were constructed for an application to

the image data domain and therefore offer inadequate performance when used on

3-dimensional data. By tailoring the proposed solution to point cloud datasets,

it is possible to achieve high accuracy and efficiency. To minimise the proposed

solution overhead, it was necessary to achieve a small additional cost in terms of

extra computation and storage required for RCR to work while maintaining the

satisfactory quality of classification accuracy.

4.2 Problem formulation

Let’s consider a machine learning model, trained on a dataset D1, consisting of m

pairs of data samples X ∈ X1 and corresponding class labels y ∈ Y1 ⊂ N, i.e.

D1 = {(Xm, ym)}Mm=1. (4.1)

The goal is to re-train the model on the new dataset D2, that contains samples

belonging to a different class domain Y2 ⊂ N, i.e.

Y1 ∩ Y2 = ∅, (4.2)

without degrading the classification performance on samples from the original dataset

D1. Each dataset D1,D2, . . . ,Dt that the model was trained on, will be referred to

as a task.

The research will be evaluated on two continual learning scenarios, as described

in (Ven and Tolias 2019) – task incremental learning (Task-IL, i.e. solve task, know-

ing beforehand which one it is) and class incremental learning (Class-IL, i.e. solve

the task after inferring it).

Several approaches to mitigate catastrophic forgetting have been proposed, in-

cluding the usage of progressive growing of neural network architecture (Rusu et al.
1See footnote 1 on page 52.
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2016), regularising re-training with soft labels (Zhizhong Li and Hoiem 2017) as

well as restricting the gradient on specific parameters that are vital for previous

tasks (Kirkpatrick et al. 2017). The other popular direction employs the replay and

rehearsal approaches, in which re-training is supplemented with the past data pro-

vided by generative model (Shin et al. 2017) or by storing a portion of original data

respectively (Rebuffi et al. 2017).

However, all of those methods were developed with the intention of training models

on the image data. Some of the very few continual learning approaches for point

clouds are extensions of existing methods (Chowdhury et al. 2021; Dong et al. 2021).

4.3 Methods

This section presents the proposed architecture of Random Compression Rehearsal.

The aim is to create a model that is able to capture general and high-level, as well

as discriminative and low-level features of 3D point cloud shapes. While detailed

features are fundamental to training any classifier, extracting the all-around repre-

sentation provides twofold benefits:

• regularisation method – the application of autoencoder architecture that shares

the latent space and uses reconstruction loss, prevents classifier from overfit-

ting,

• future-proofing – mitigates catastrophic forgetting by conditioning classifier

on features that may be useful in future tasks.

Discriminative modelling and representation learning are employed jointly to en-

sure the embedding of both types of features described above. Discriminative mod-

elling allows learning specific, low-level features, while the representation learning

approach focuses more on the broad properties of the data samples.

The RCR consists of three parameterised functions, implemented as neural net-

works (see architecture schema in figure 4.1).
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Figure 4.1: The architecture and the training procedure of Random Compression Re-

hearsal. The RCR consists of three neural networks: an encoder E, a generator

G and a classifier C. The model trains by solving in tandem the classification and

reconstruction task, as shown in step 1. The data used for the current task is then

sub-sampled (step 2) and stored for rehearsal purposes, as presented in step 3.

• An encoder E, implemented as a PointNet module, extracting representations

z̃ from the input sample X . Detailed description is provided in section 3.3.1.

• A generator G, constructing a sample X̃ based on an encoded representation z̃.

It is implemented as a feed-forward network consisting of five fully-connected

layers of sizes 64− 128− 512− 1024− 3n, where n is a number of generated

points. After each layer (excluding the last) non-linear function is applied in

the form of ReLU.

• A classifier C, predicting the class of the input sample X based on extraction

representation z̃. It is implemented as a feed-forward network consisting of

three fully-connected layers of sizes 512 − 256 − 2t, where t is the number

of the current task. After each layer (excluding the last) batch normalisation,

ReLU non-linear function and dropout are applied. When first created (i.e. for

the task t = 1) the classifier’s last layer consists of only two outputs (figure 4.1,

step 1). When expanding the last layer for re-training, additional outputs are

created (figure 4.1, step 3). It is implemented by adding randomly initialised

rows to the last parameter matrix and extending the corresponding bias vector

with zero values.
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The training procedure of the Random Compression Rehearsal is outlined in fig-

ure 4.1. The course of learning is as follows:

1. First, the model is trained to simultaneously reconstruct and classify an input

shape X . Those tasks are performed based on features z̃ extracted by PointNet

backbone E. The input shape reconstruction X̃ is obtained using generator

G, and prediction of class label y is acquired with classifier C.

The optimisation criteria consists of minimising a reconstruction loss Lr and

classification loss Lc, as defined in equation (4.4), based on outputs X̃ and ỹ.

2. Next, the training dataset is compressed for future rehearsal use. The com-

pression is performed by uniformly selecting a subset of each point cloud X

in the training dataset D. Each compression sample from the input cloud X

a fixed number of points without replacement. Then, the new dataset Dc is

created by pairing the compressed samples with the corresponding class labels.

Whole operation can be written down as:

Dc =
{
X (c) ⊂ X , y) | (X , y) ∈ D

}
. (4.3)

3. For re-training, the classification layer of the classifier C is expanded to ac-

commodate new class labels. Then, the new dataset Dnew is merged with the

compressed dataset Dc obtained in the previous step. The training procedure

is then conducted in the matter described in point 1, but based on the joined

dataset D = Dnew ∪ Dc.

4. Afterwards, the compressed dataset Dc is extended by the samples from the

new dataset Dnew in the manner described in step 2.

As mentioned above, the classification module tends to benefit from more detailed

features, while the reconstruction counterpart focuses more on the overall shape of

the data samples. Therefore encoder extracts latent representations of the given

3D shapes with focus balancing between discriminative and more general features.

85



4 Representation learning for continual learning

Thus, the combined optimisation objective can is defined as:

L(X , y, X̃ , ỹ) = Lc(y, ỹ) + Lr(X , X̃ )

= CrossEntropy(y, ỹ) + ChamferDistance(X , X̃ ),
(4.4)

where Cross Entropy is the classification loss as defined in equation (2.46), Chamfer

Distance is the distance function defined in equation (2.47), X , y refer to original

point cloud and its label, while X̃ , ỹ refer to point cloud reconstruction and predicted

class returned by the generator G and the classifier C respectively.

Algorithm 4.1: Random Compression Rehearsal training procedure for t

tasks. By A ⊂k B we denote a point cloud A that is a random sub-sampling
consisting of k points form point cloud B.
In : t – number of tasks, Dt̂ = {(Xt̂,1, yt̂,1), . . . , (Xt̂,n, yt̂,n)} – training samples

with corresponding class labels for the task t̂ ∈ {1, 2, . . . , t}
Out : θ∗E , θ∗G, θ∗C – optimal model parameters for encoder, generator and classifier

modules, Dc – dataset of compressed past samples
1 θE , θG, θC ← Initialisation // parameters for encoder, generator and

classifier
2 Dc ← ∅ // create a dataset for compressed rehearsal data
3 for t̂← 1 to t do
4 while convergence not reached do
5 X , y← (X , y) ⊆ (Dt ∪ Dc) // sample minibatch
6 Z̃← E(X ) // encode point clouds in X
7 X̃ ← G(Z̃) // reconstruct shapes from X based on Z̃
8 ỹ← C(Z̃) // classify shapes from X based on Z̃

9 L← Lr(X , X̃ ) + Lc(y, ỹ) // loss function as in equation (4.4)
10 θE , θG, θC ← optimiser(∇L, θE , θG, θC) // update weights
11 Dc ← Dc ∪ {(X̃t̂ ⊂k Xt̂, yt̂) | (Xt̂, yt̂) ∈ Dt̂} // Compress current data and

add it to rehearsal dataset
12 θ∗E , θ

∗
G, θ

∗
C ← θE , θG, θC

13 return θ∗E , θ
∗
G, θ

∗
C ,Dc

Further mitigation of catastrophic forgetting is obtained with the rehearsal pro-

cedure. This procedure consists of saving a portion of the original data that will be

added to the new task inputs in order to preserve the model’s performance quality

on the previous tasks. The mentioned portion can consists of picking a number of
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complete samples out of the original dataset, picking a small portion of each sam-

ple of the original dataset or a combination of those two. Random Compression

Rehearsal implements the second approach and selects a small subset, consisting of

100 points of every point cloud, significantly reduces storage requirements to keep

past tasks’ data. These compressed samples are subsequently used as a supplemen-

tary dataset during model re-training. The procedure pseudocode is described in

algorithm 4.1.

4.4 Experiments

This section presents the results of the empirical evaluation of the Random Compres-

sion Rehearsal approach. The experiments were conducted on the following point

cloud datasets:

1. Point cloud MNIST – the 2-dimensional point cloud equivalent to the popular

MNIST dataset (LeCun et al. 1998), created by sampling the points lying

inside the digit’s area. Due to the dataset containing only 10 classes, it was

used only for evaluating RCR on the 5-task distance,

2. ModelNet 10 (Z. Wu et al. 2015) – similarly to MNIST, only 5-task experiments

were performed, due to the dataset only having 10 classes,

3. ModelNet 40 (Z. Wu et al. 2015) – the dataset was used for 5- and 20-task

distance,

4. ShapeNet (Chang et al. 2015) – although containing over 50 classes, the

ShapeNet dataset was used for 5- and 20-task distance, for comparison reasons

with ModelNet 40.

Detailed description of the datasets, are provided in the section 2.5.

All datasets were prepared as a collection of point clouds consisting of 2048 points

per shape. In the case of the 3-d MNIST, the points were sampled from the area
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of a white digit on black background with the probability based on a pixel intensity

value. The points were sampled uniformly from the corresponding 3-dimensional

meshes for the rest of the specified datasets.

The task datasets were prepared by first sorting class labels by their popularity

in the dataset and then assigning the two largest classes to task number one, the

third and the fourth largest to task number two, etc.

During optimisation the samples were augmented by random rotation (±15◦ in

case of a MNIST dataset and ±180◦ around vertical axis #»z otherwise), random noise

ε ∼ N (0, 0.02) capped at 0.05 and random flip (with chances of a flip vs # »xy plane

– 25% , # »yz plane – 25% and no flip – 50 % chance). Optimisation was performed

using Adam optimiser (Kingma and Ba 2015), with the learning rate 5 · 10−4 and

hyperparameters β = (0.9, 0.999). Exponential decay on the learning rate and the

batch normalisation rate was also applied. For every 100,000 training iterations, the

learning rate was multiplied by 0.7, with the lowest possible value of 10−5. The

batch normalisation rate, starting at 0.5, was also decayed every 100,000 iterations.

The decay rate was set to 0.5 with the minimum b.n. rate value of 0.01.

The experiment results for RCR and related works are shown in the table 4.1.

The models were compared based on the classification accuracy for 5 and 20 tasks

(i.e. after 4 and 19 re-trainings). Moreover, two scenarios were tested – when the

task information was known (Task-IL) and unknown (Class-IL) at evaluation time.

Additionally, the following results were provided for comparison purposes:

• baseline – fine-tuning, i.e. re-training with no catastrophic forgetting mitiga-

tion,

• toplines – supervised learning on all classes from the start and incremental

training using complete datasets from the past tasks.

As we can observe, by using Random Compression Rehearsal the catastrophic

forgetting effect has been severely reduced compared to other continual learning ap-

proaches, including I3DOL (Dong et al. 2021), explicitly prepared for 3-dimensional
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Table 4.1: Continual classification results after 5 and 20 tasks. For reference, two topline

and one baseline experiments are provided. Topline include single supervised training

on a complete data on all classes and incremental training.with carrying over complete

past data. Baseline was obtained by fine-tuning the model only on the new data,

without any catastrophic forgetting preventing measures. All experiments were scored

over three independent runs and are presented as a mean with a standard deviation

value. Class-IL values for LwF and EWC are omitted since these models assume

knowledge about the task. The I3DOL results are taken from (Dong et al. 2021)

in which the authors evaluate training with four (ModelNet 40) and six (ShapeNet)

classes per task. Therefore, the error for ShapeNet on 40 classes is obtained by

interpolating error values for 36 and 42 classes.
Dataset Tasks Supervised Task type Fine-tune Incremental LwF EWC iCaRL I3DOL RCR

Task-IL 71.2 ± 5.5 99.3 ± 0.1 84.5 ± 0.3 86.8 ± 0.1 93.4 ± 0.3 - 99.7 ± 0.1
MNIST 5 98.3 ± 0.1

Class-IL 19.5 ± 0.3 95.1 ± 0.4 - - 60.5 ± 1.8 - 97.0 ± 0.1

Task-IL 72.3 ± 1.1 96.6 ± 0.4 91.5 ± 0.4 86.3 ± 0.8 87.1 ± 0.2 - 96.8 ± 0.2
ModelNet10 5 92.1 ± 0.2

Class-IL 15.0 ± 0.1 90.4 ± 0.2 - - 72.2 ± 1.5 - 90.2 ± 0.1

Task-IL 52.4 ± 1.1 99.7 ± 0.1 91.7 ± 0.4 92.4 ± 0.8 90.2 ± 0.4 - 99.8 ± 0.1
5 97.6 ± 0.2

Class-IL 20.0 ± 0.1 96.7 ± 0.2 - - 82.2 ± 2.4 - 94.2 ± 0.2

Task-IL 56.4 ± 2.7 99.3 ± 0.1 91.2 ± 0.4 87.1 ± 1.6 89.2 ± 0.3 - 99.0 ± 0.1
ModelNet40

20 88.2 ± 0.8
Class-IL 1.7 ± 0.1 88.6 ± 0.5 - - 53.3 ± 0.9 61.5 86.9 ± 0.2

Task-IL 85.3 ± 2.8 99.8 ± 0.1 96.4 ± 0.6 85.9 ± 0.9 93.5 ± 1.4 - 99.5 ± 0.1
5 97.3 ± 0.1

Class-IL 8.4 ± 0.1 96.5 ± 0.1 - - 77.3 ± 1.0 - 95.1 ± 0.3

Task-IL 62.4 ± 4.4 99.8 ± 0.1 69.1 ± 0.3 69.6 ± 0.6 81.0 ± 0.7 - 99.2 ± 0.1
ShapeNet

20 90.8 ± 0.2
Class-IL 0.6 ± 0.1 91.5 ± 0.3 - - 30.5 ± 4.2 74.4 87.3 ± 0.1

shapes while being significantly more straightforward and easier to train.

The results presented in figures 4.2 and 4.3 show comparisons between Random

Compression Rehearsal and other relevant approaches for task-by-task rolling accu-

racy for Task-IL (a task known at test time) and Class-IL (task unknown at test

time) scenarios, respectively. All models have a length of the feature vector set to

2048. The RCR saves 100 points of each point cloud for rehearsal. We set the size of

the memory buffer for iCaRL proportionally to the compression ratio of RCR (i.e.,

5% of the total number of samples). The results for I3DOL are calculated based on
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4 Representation learning for continual learning

Figure 4.2: Average accuracy after t tasks completed, with task known during the infer-

ence. The confidence intervals are omitted for brevity.

the data reported in (Dong et al. 2021)2.

As presented, the RCR approach manifests a much slower rate of performance

degradation compared to methods from the literature.

4.5 Discussion

This section presents an application of representation learning to the continual train-

ing of a 3-dimensional point cloud classifier, with which I intend to answer the re-

search question stated in section 1.2.6, concerning learning representations capable

of retaining learned features of 3-dimensional shapes. The main objective of this

approach is to solve the problem of re-training the model on a new dataset without

2I3DOL results are reported when training with 4 and 6 classes per task for ModelNet 40 and

ShapeNet, respectively. Error for ShapeNet trained on 40 classes was obtained by interpolating

error values for 36 and 42 classes.
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Figure 4.3: Average accuracy after t tasks completed, with task unknown during the

inference. The confidence intervals are omitted for brevity.

losing the performance on the data it was trained on before, known as catastrophic

forgetting. First, a precise description of the research objective was provided, along

with a review of the current state-of-the-art solutions. Following, the proposed archi-

tecture of Random Compression Rehearsal was introduced, along with the training

and evaluating methodology. In the end, the results in the table 4.1 and in fig-

ures 4.2 and 4.3 were presented, showing the superior classification ability of RCR

after multiple re-trainings, compared to the literature.
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5 Representation learning for point

cloud completion

5.1 Goal of the studies

This chapter describes the research related to the application of proposed autoencoder-

based architectures to learning holistic representations for the problem of point cloud

completion, as stated in section 1.2.7.

The vast amount of visual data is often available to record for just a brief period

of time. Even with a modern capturing device, taking more than one exact copy

is often impossible due to many random, uncontrollable factors. Therefore, the re-

construction of corrupted data is an essential problem in many areas of information

technology. In the context of 3-dimensional point clouds, data corruption, in addi-

tion to physical damage, may consist of objects of interest being occluded by other

moving targets, synchronisation errors or uneven sampling of the object’s surface.

Thus, it is vital to create a solution that, given a corrupted sample, would be able

to reconstruct the original shape.

This section considers the problem of reconstructing defective shapes, defined as

representation learning of complete point cloud data. The task assumes the feature

extraction from input data and subsequent generation of the missing part of the

point cloud. However, depending on the severity of the data corruption, the input

sample may not provide enough information about the rest of the shape. Therefore,

in such cases, it may be impossible to reconstruct the data perfectly and predicting
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5 Representation learning for point cloud completion

the probable completion is also considered a success (Yuan et al. 2018).

5.2 Problem formulation

Let us consider a point cloud P , represented as a set of 3-dimensional points p ∈ R3.

Furthermore, let us denote P #»a ,1 and X #»a ,2 the new point clouds created by splitting

P in two equinumerous, disjoint sets along the axis #»a ∈ { #»x , #»y , #»z }, such that:

Xa,1 ∪ Xa,2 = X and Xa,1 ∩ Xa,2 = ∅ (5.1)

Given one such part of the point cloud, the goal of the point cloud completion

task is to predict the other part (from the quantitative standpoint) and to do it in

semantically coherent manner (from the qualitative results perspective).

5.3 Methods

This section describes the proposed approaches to point cloud completion tasks.

This research (Zamorski et al. 2020c) compares three popular representation

models: Autoencoders (AE), Variational Autoencoders (VAE) and Adversarial Au-

toencoders (AAE). A detailed description of those architectures is provided in sec-

tion 2.3.4. In order to adapt those models to 3-dimensional data, the PointNet

feature extractor (as described in the figure 2.7) was used as an encoder backbone.

Moreover, Adversarial Autoencoders were evaluated with two prior distribution reg-

ularizations – using standard, isotropic Gaussian distribution N (0, I) and Beta dis-

tribution Beta(α = 0.01, β = 0.01). Such Beta distribution has the probability mass

concentrated heavily towards the ends of the distribution support range [0, 1]. This

property allows for easy binarisation of features by setting the cutoff threshold value

at 0.5.

The two AAE variants are denoted AAE-Normal and AAE-Beta, for regularisation

with Normal and Beta distributions, respectively.
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a)

b)

Figure 5.1: Architecture of (a) PointNet and (b) Double PointNet encoders used as feature

extracting backbones in the proposed approaches. Double PointNet architecture

consists of four parts: 1) feature extraction encoding each point separately to a

vector of h features, 2) aggregation function, combining vectors feature-wise across

all points to obtain intermediate shape representation. 3) an additional network

calculating global features based on a concatenated vectors of point location and

intermediate shape representation, 4) aggregation function as in point 2. TNet k

denotes k-dimensional affine transformation (Qi et al. 2017a).

In the original approach, features extracted from each point are calculated with-

out considering the whole shape. To consider the distribution of all points during

the feature extraction procedure, an extension to the PointNet architecture, called

Double PointNet is proposed. The approach is presented in the figure 5.1. Inspired

by PointNet’s approach to segmentation, the obtained representation of the shape is

then appended to every point 3-dimensional vector of position, resulting in a matrix

of size n × (3 + h). Afterwards, said matrix is processed by an additional neural

network (MLP 3 in the figure 5.1). The returned features are aggregated once more

to produce the final global representation of the point cloud shape.

Representing shape as a matrix of size n × (3 + h) ties the point location to

the features of an overall shape, providing information about each point based on

the cloud as a whole. The justification for this process comes from the fact that

selecting a global feature vector just by max-pooling individually obtained local

feature vectors may result in representations concerned with most discriminative

features while dropping information about an entire shape. By double processing,

the encoder is able to produce representations that are obtained based on raw point
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5 Representation learning for point cloud completion

location and point location relative to the distribution of points.

5.4 Experiments

This section describes the results obtained during the empirical evaluation of the

proposed reconstruction architectures for learning representations in the context of

the point cloud completion task.

Table 5.1: Comparison of a reconstruction fidelity using different models, measured as

the EMD distance between original and completed point cloud. Prefix D symbolizes

architectures using Double PointNet encoder. Suffixes N and B stand for Normal and

Beta, respectively.

Class AE VAE AAE-N AAE-B D-AE D-VAE D-AAE-N D-AAE-B

Chair 64.99 216.22 68.79 72.58 56.29 122.59 64.76 70.69

Airplane 39.65 143.24 48.19 51.08 31.08 104.94 36.05 43.47

All experiments were conducted on the shapes belonging to chair and airplane

classes of the ShapeNet dataset. The dataset details are provided in section 2.5. The

point clouds were prepared by sampling 2048 points from the surface of each mesh

and were augmented with random rotations around the #»z -axis. After augmentation,

the split was performed by randomly choosing an axis ( #»x , #»y , #»z ) and taking points

with the upper or lower half of values along that dimension.

For each autoencoder model (AE, VAE, AAE-Normal, AAE-Beta), two architec-

tures are considered – with the original and with Double PointNet, for a total of

eight evaluated approaches. Prefix Double will be added to the name of every model

using Double PointNet as an encoder to distinguish between architectures. All the

experiments were conducted with a fixed representation size h = 100.

The table 5.1 presents the reconstruction fidelity of input samples joined with

their completions with regards to the ground truth data, measured with the Earth
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Mover’s Distance, as defined in the equation (2.48). By comparing VAE and AAE-

Normal models, two generative approaches regularised with Gaussian distribution

prior, it can be observed that VAE is unable to learn any meaningful completions.

It leads to the conclusion that Kullback-Leibler divergence-based regularisation may

be too strong of a constraint for the encoder considering the completion task. On the

other hand, AAE-Normal and D-AAE-Normal do not seem to suffer from imposing

a latent space regularisation, having only a slight decrease in completion quality

compared to the baseline.

Comparing the results of adversarial autoencoders regularised with normal and

beta distributions shows that the application of binary encoding results in a minor

drop in the model’s quality. It suggests that meaningful binary representations for

shape completions that match the real-valued features are possible to obtain.

It can be observed that approaches based on the Double PointNet significantly

outperformed methods with the standard encoder. Out of those “double” archi-

tectures, the best reconstruction fidelity was achieved using the basic Autoencoder

model. However, while the autoencoder approach offers the best reconstruction

quantitatively, it does not offer a possibility to regularise the latent distribution

and create new completions in a generative manner.

Figure 5.2: Visualisations of the point clouds completions for 3 examples from the test set.

Columns represent: a) input, b) AE, c) VAE, d) AAE-Normal, e) ground truth.
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5 Representation learning for point cloud completion

Figure 5.2 presents the qualitative results achieved by compared approaches on

selected samples from the chair and the airplane classes. By comparing results for

models using standard and double PointNet, the difference in favour of “double” can

be observed. The presented visual results show that the Adversarial Autoencoder

models learned the point cloud completion task instead of underfitting or landing

early in the bad local minima, as with Variational Autoencoders. Moreover, the

quality drop is minuscule despite the quantitative differences between AE and AAE-

based models.

Figure 5.3: Visualisations of the point clouds completions for 3 examples from the test set.

Columns represent: a) input, b) D-AAE-Normal, c) D-AAE-Beta, d) ground truth.

Figure 5.3 shows examples comparing the results of creating point cloud comple-

tion by D-AAE-Normal and D-AAE-Beta models. It can be noted that the AAE

model with the double PointNet encoder can encode both point-wise and structure-

wise information to the latent representation and obtain good completions from

binary vectors. Qualitative results obtained from the D-AAE-Beta model confirm

that a minuscule drop in EMD fidelity in comparison to D-AAE-Beta (see table 5.1)

translates with no noticeable negative consequences to visual quality produced from

binary representations.
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5.5 Discussion

5.5 Discussion

This chapter presents an application of representation learning and generative mod-

elling to the problem of shape completion of 3-dimensional point clouds as my pro-

posed answer to the research question outlined in section 1.2.7 concerning extracting

holistic features describing the entire shape based on incomplete input. First, Point-

Net, along with the proposed approach dubbed DoublePointNet to missing part

generation, were described along with the employed prior distributions (Normal and

Beta) to latent space regularisations. Next, the evaluation procedure was outlined,

and its quantitative results were provided in the table 5.1. Lastly, the qualitative

results for all the models were shown in the figure 5.2 with architectures producing

real-valued and binary features being compared in figure 5.3.
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6 Representation learning for

classification

6.1 Goal of the studies

This chapter describes the results of research concerning the problem of feature

selection strategy for PointNet architecture, as described by the research question

in section 1.2.8.

Obtaining the meaningful representations of data is the cornerstone of all machine

learning methods. Doing so efficiently is especially important for 3-dimensional point

clouds, usually structured as sets of points, which causes the factorial number of

points of the possible orderings, ultimately representing the same shape. Although

the proposed models for dealing with volumetric data have shown steady progress in

classification and semantic segmentation accuracy, the point cloud domain architec-

tures were mainly unsuccessful until the introduction of PointNet. By treating each

point individually with the shared-weight network and then merging the point-wise

features with the order-invariant function, it was able to achieve the identical rep-

resentation regardless of the permutation of the input (detailed description of the

model is provided in the section 2.4.3).

However, the PointNet architecture assumes a specific feature-aggregation func-

tion – max pooling. While giving the state-of-the-art classification and segmentation

scores, selecting a different aggregation method may lead to further progress on those

key machine learning tasks. This chapter considers several different approaches to
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6 Representation learning for classification

selecting shape-wise features from point-wise ones. Moreover, while the max function

takes only the extreme value of the feature distribution, the proposed alternatives

consider the entire range of features or employ multi-statistic calculation for obtain-

ing the global representation.

6.2 Problem formulation

Let us consider a PointNet (Qi et al. 2017a) classification architecture to predict

shape classes of the 3-dimensional point cloud. Part of the model architecture (see

figure 2.7) is the permutation invariant function F that can be described as

F : Rn×h → Rh, (6.1)

where n – number of points in the point cloud and h – size of the latent representation.

In (Qi et al. 2017a) the function F is implemented as a max-pooling operation that

calculates the global, shape-wise feature vector from the local, point-wise features.

The goal is to construct different permutation-invariant function Φ : Rn×h → Rh

that improves the classification accuracy and balanced accuracy scores on point

cloud data.

6.3 Methods

The original PointNet approach of aggregation with max function comes with lim-

itations. Constructing feature using max ignores the shape of the distribution of

the activation and reduces it to just the most extreme value, which may be an

outlier. Creating a global feature vector using other aggregation functions that con-

sider local feature distribution in its entirety may benefit the quality of produced

representations.

This research focuses on comparing three classes of approaches to permutation-

invariant feature selection:
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1. Single-statistic – The sum, median, mean and max functions, obtaining vec-

tors of size h each,

2. Multi-statistic – Combinations of single-statistics approaches Max-Mean-Sum

(MMS) and Max-Mean-Median (MMM), resulting in vectors of size 3h. Those

results were subsequently passed through a two-layer neural network (with

layers of length 2h and h) to reduce the global vector size from 3h to h for a

fair comparison with single-statistic functions.

3. Multi-valued single-statistic – The top-k function, a modification of de-

scribed max function that returns k biggest values from the input set, instead

of just the maximal one, resulting in the feature vector of size k · h. Those

values are later passed through a one-layer neural network to reduce the vector

size from k · h to h in order to compare this method with other approaches.

6.4 Experiments

This section describes the results obtained during the empirical evaluation of the

aggregation functions. All experiments were conducted on the ShapeNet (Chang

et al. 2015) dataset, prepared as a collection of point clouds made of 2048 points per

shape, augmented with random rotations around the #»z -axis. The proposed methods

of obtaining shape embeddings are evaluated using the downstream classification

task and are compared using prediction accuracy (equation (2.33)) and balanced

accuracy (equation (2.34)). Additionally, two functions that return a feature of

a specific point from the distribution are compared based on a number of unique

points used to create the global representation. For representing this diversification,

the diversity metric was used, defined as:

diversity(F ) =
1

n

n∑
i=1

∣∣∣set
(
F̂ (Xi)

)∣∣∣
h

, (6.2)
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where F̂ is an arg-version of an aggregation function F (i.e. argmax instead of

max and argmedian instead of median), set(a) – unique elements of a vector a, |a| –

number of elements of a vector a, h – size of a feature vector, n – number of samples.

Five sizes h of the feature vector z were used for experiments, i.e. h ∈ {8, 16, 25, 50, 100}.

Table 6.1: Comparison of a classification accuracy given different aggregation functions

and lengths h of the global feature vector.

aggregation h = 8 h = 16 h = 25 h = 50 h = 100

max 0.8426 0.8468 0.8494 0.8471 0.8484

mean 0.8563 0.8610 0.8632 0.8648 0.8703

median 0.8536 0.8559 0.8623 0.8636 0.8677

MMS 0.8561 0.8580 0.8642 0.8677 0.8717

MMM 0.8735 0.8671 0.8701 0.8739 0.8765

The table 6.1 presents the global model accuracy (i.e. number of correctly pre-

dicted samples divided by the total number of samples). It can be noted that

combining different types of features (e.g. MMM) offers better results than using just

a single statistic or three with heavy correlation (MMS). However, when restricting

the results to just single statistic function, then mean and median aggregations offer

superior performance than the baseline statistic max.

The different conclusions can be drawn by taking the class imbalance of the

ShapeNet dataset into account. By calculating the local model accuracy (i.e. the

average of accuracy scores calculated among each class individually), the results

(presented in the table 6.2) suggest that when using a very narrow feature vector

(i.e. h ⩽ 25) it is enough to use the single statistic that takes every feature into

account (such as mean or median) instead of the one that focuses only the most

extreme case (as is with max). Moreover, combining multiple statistics offers no

noticeable improvement. Combined feature vectors offer a minimal accuracy gain

even for cases on more extensive feature vectors (i.e. h ⩾ 50).
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Table 6.2: Comparison of a classification balanced accuracy given different aggregation

functions and lengths h of the global feature vector.

aggregation h = 8 h = 16 h = 25 h = 50 h = 100

max 0.6704 0.6785 0.6805 0.6826 0.6879

mean 0.6966 0.7029 0.7091 0.6938 0.7075

median 0.6861 0.6824 0.6954 0.6956 0.7094

MMS 0.6682 0.6767 0.7082 0.7056 0.7021

MMM 0.6854 0.6880 0.7035 0.7072 0.7182

Table 6.3: Comparison of accuracy and balanced accuracy between top-k of max values.

Note that using the top−1 aggregation is the same as using the standard max function.

top-k accuracy b. accuracy

k = 1 0.8468 0.6785

k = 2 0.8547 0.6802

k = 3 0.8560 0.6796

k = 4 0.8554 0.6987

k = 5 0.8555 0.6869

The table 6.3 compares the results of classification accuracy, when the usage of k

instead of just one maximum feature value is considered for h = 100. The values of

k are in the range k ∈ {1, 2, 3, 4, 5}, as there was no noticeable improvement above

those values. Based on the outcomes, it can be concluded that adding the second

or the third-highest feature value may offer minor improvement in classification

balanced and unbalanced accuracy.

The results in the table 6.4 offer a view of the number of repetitions of samples

in which feature values were selected into global feature vector z̃. Depending on the

characteristic of a downstream task, it may be beneficial to construct a latent repre-

sentation that consists of a more diverse subset of points from the point cloud. Much

105



6 Representation learning for classification

Table 6.4: Comparison of the diversity of the points that compose the feature vector. A

higher value means that a bigger portion of the feature vector was created by taking

values of the unique points from the point cloud.

aggregation h = 8 h = 16 h = 25 h = 50 h = 100

max 0.9333 0.8829 0.8659 0.7736 0.6409

median 0.9821 0.9530 0.9197 0.8063 0.7151

higher values obtained using median aggregation suggest that there usually exists

a much smaller subset of points that are considered important from the statistic-

picking point of view than when using the max function. This result suggests that

median aggregation may be better suited to any problems related to the generation

or reconstruction of point clouds, where it is usually beneficial to represent as much

detail of the shape as possible.

Figure 6.1: Visualisation of points that were used for global feature vector composition

for different types of aggregation function F and feature vector length h. Original

point clouds are presented in the left column.
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The diversity scores can be compared qualitatively by plotting the critical points

(see figure 6.1) of shapes, i.e. points whose feature values were picked by the aggre-

gation functions for the construction of the global feature vector. The critical points

form either the outline of the shape (when using max) or a more uniform, complete

shape (median aggregation).

6.5 Discussion

This section presents an application of representation learning to train a neural net-

work classifier to solve the task of predicting the 3-dimensional point cloud data

shapes, with which I aim to answer the research question stated in section 1.2.8

concerning the assembly of partial representation into holistic one. This research

focuses on determining the optimal permutation-invariant function, which serves as

a selector from the collection of local, point-wise features into a global, shape-wise

feature vector. First, the justification for choosing the selected function for evalua-

tion was provided along with the analysis methodology. Following, the results for

the classification experiments are provided in tables 6.1 to 6.3. Next, the model se-

lection of critical points was assessed in the context of the shape type, feature vector

length and aggregation function used (figure 6.1). In the end, the results in table 6.4

describe the diversity of selected points used to obtain a latent representation of the

input data.
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7 Conclusions

7.1 Original contribution

The main achievements of the work that contributes to the domain of machine

learning are as follows:

• The introduction of three generative modelling approaches for fea-

ture extraction and 3-dimensional point cloud data generation. This

thesis describes three novel architectures for representation learning on point

clouds1:

1. 3dAAE – adversarial-autoencoder based model, capable of regularising

the obtained embeddings to the arbitrary probability distribution. This

flexibility was presented by obtaining features following the Normal, Mix-

ture of Gaussians, Beta and Categorical distributions.

2. HyperCloud – hypernetwork-based approach, capable of generating an

arbitrary number of points per cloud, as well as creating mesh-based

shapes.

3. CIF Network – normalising flow-based architecture, with a conditional

generation of arbitrarily sized point clouds.

1I am the primary author of the first approach, i.e. 3dAAE and worked as one of the secondary

authors on research concerning HyperCloud and CIF models. My contributions as a secondary

author consist of designing and running experiments, analysing the results, as well as reviewing

the manuscript.
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For each of those solutions, an extensive assessment was performed. These

empirical evaluations confirmed the high quality of the proposed methods

compared to the related works from the literature.

• The development of an autoencoder-based architecture for a prob-

lem of completing missing parts of the point cloud shapes. This work

tackles the challenging problem of generating the missing parts that seam-

lessly fit the input shape. For this purpose, several generative models were

introduced and presented with both qualitative and quantitative results.

• The introduction of a novel procedure to perform continual learning

for point cloud data. The proposed procedure tackles the problem of re-

training the model on a set of new data without losing the prediction quality

on the past samples. By regularising the training with the reconstruction

module of an autoencoder-like model and high compression of the past training

samples, the high degree of catastrophic forgetting mitigation was achieved.

The evaluation of this approach based on the preservation of the classification

accuracy as well as in terms of possible re-trainings approach rendered better

results than relevant existing work.

• The analysis of the effect of the feature aggregation method on

obtaining the representation of 3-dimensional point cloud shapes

with subsequent improvement on the classification accuracy task.

This work compares several permutation-invariant approaches for calculating

the shape-wise latent representation on point clouds. Considering the proce-

dures that produce features based on the entire point-wise feature distribution

yielded an improvement in representation quality measured by the accuracy

of the classification task.

The presented research topics that constitute this thesis are described based on

the following research publications: (Zamorski and Zięba 2019; Spurek et al. 2020;
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Zamorski et al. 2020a; Zamorski et al. 2020b; Zamorski et al. 2020c; Stypułkowski

et al. 2021; Zamorski et al. 2022).

7.2 Proposed directions of the future work

The analysis of the subject of deep representation learning and the obtained results

lead to the following indication about the directions of future work:

1. The introduction of the generative approach of thermodynamics-based diffu-

sion probabilistic approaches (Sohl-Dickstein et al. 2015; Y. Song and Ermon

2019; Ho et al. 2020) and score-based models (Vahdat et al. 2021) to the

problem of learning representation and generation of point clouds,

2. The proposal of generative models able to work with multi-modal (i.e. different

types of shapes) point cloud and mesh-based data,

3. Proposing of continual learning strategies that are capable of re-training with-

out explicitly specifying the task information (so-called task-agnostic continual

learning (Kirichenko et al. 2021)) to the domain of 3-dimensional point cloud

data,

4. The development of methods to learn the optimal permutation-invariant selec-

tion of features during the training procedure.
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