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Abstract: Geostatistical methods were applied to forecasting area – time (3D) electrical 
power demand. Spatial analyses based on node load data for two kinds of electrical power 
networks, i.e. the 220/400 kV network covering the whole area of Poland and the 110 kV 
network for a selected subarea of Poland, were carried out. The 20-year power variation 
structure for the two kinds of networks was analyzed using the directional variogram func-
tion. Power demand forecasts for 1 year and 5 years were made using ordinary block 
kriging. The results of the power estimation and forecasting of averages Z* and the estima-
tion standard deviation σk show that the employed techniques are useful and effective. 
Therefore they are recommended for use by power firms. 

Key words: geostatistical (3D) modelling, area – time forecasting, electrical loads, direc-
tional variogram, ordinary kriging. 

1. Introduction 

The short- and long-term planning of a public utility’s activity or development often 
requires the use of 3D (area – time) forecasting techniques. This applies particularly 
to companies which service large areas, e.g. network companies such as telecommu-
nications companies and power companies, including electric power companies. The 
latter are the subject of analysis in this paper. 

For its operations an electricity provider needs a proper network infrastructure 
adequate to the demand for this energy at an appropriate time and place. 

Long-term area – time forecasts are useful for planning the development of the 
220/400 kV transmission network used for transporting electricity over longer dis-
tances or the distribution network which transmit this energy within smaller areas. 

Short-term forecasts are needed to plan the operation of the networks 24 hours, 
1 week and 1 year in advance. 

It would be interesting and very useful for planning economically effective and 
safe electrical power networks to answer the questions [Willis 2002]: 
– where are power demands increasing? 
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– how much do they vary depending on the location? 
– what is the geographical direction of the variation? 

The development of area – time forecasts of power demands could reduce the 
risk of wrong investment decisions concerning (transmission and distribution) elec-
trical power networks, taken in a situation when market mechanisms are being im-
plemented in the electrical power sector. Area – time models of power demand varia-
tion distribution over a given area for the particular hours in the 24-hour period can 
also be used in demand side management (DSM) [Willis 2002]. An analysis of the 
power demands shows where and when a significant increase in power occurs and 
within which subareas it amounts to zero or to a minimum. This is an important sig-
nal for the planners. Areas in which power demands can be subject to some adjust-
ment (e.g. periodic reduction) by means of DSM tools can be determined. Such an 
analysis can show the planners how all these factors may affect the shape and condi-
tion of the electrical power network in the future. 

This paper proposes a research methodology for the 2D and 3D modelling and 
forecasting of electrical power demand, which could be the basis for the modern 
planning of the development of power firms operating networks in the conditions of 
developing market mechanisms. 

2. Research methodology 

2.1. Introduction 

Geostatistical methods, i.e. the directional variogram function and the ordinary 
(block) kriging [Namysłowska-Wilczyńska, Wilczyński 2008; Wilczyński et al. 
2007], were employed to model and estimate average power demands in 3D and then 
to forecast them for 1-10 years. Until now geostatistical methods have been used for 
the 2D as well as the 3D modelling of phenomena in such fields as geology [Namys-
łowska-Wilczyńska 2006, 2007], mining [Journel, Huijbregts 1978], environmental 
protection [Namysłowska-Wilczyńska 2006], the civil engineering [Newsletters], the 
power industry [Namysłowska-Wilczyńska, Wilczyński 2004, 2005, Wilczyński 
2004], forestry [Newsletters], fishery [Newsletters], economics [Namysłowska- 
-Wilczyńska et al. 2003, Namysłowska-Wilczyńska, Wilczyński 2003], agriculture, 
oceanology, epidemiology, climatology, and hydrology [Newsletters]. 

2.2. Subject of analyses 

The studies into the possibility of developing area – time forecasts of power demands 
were carried out on the basis of load data (the values of power) coming from two 
kinds of electric networks. The investigations covered the whole area of Poland (the 
powers flowing from 101 nodes of the 220/400 kV network) and a subarea of Poland 
(the powers flowing from 30 nodes of the 110 kV network). The network node 
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power data were for the winter load peak hour of 5 p.1 The databases include geo-
graphic coordinates X and Y, specifying the locations of the measurements carried 
out over the 20-year period and the consecutive numbers of the measurements and 
coordinate Z (time). Since no proper amount of original input data was available for 
the calculations, the actual powers were supplemented with simulation data. 

For the kriging calculations the considered areas were covered with elementary 
grids. For the nodes of the 110 kV network the elementary grid superimposed on the 
analyzed (in 3D) supply area had the elementary block dimensions: 5 km × 2.5 km × 
1 year and the number of elementary blocks along the particular axes was: X – 47, Y 
– 60 and Z – 30 (Figure 1). 

 

Figure 1. Grid of elementary blocks for area supplied by 110 kV network, 
with marked locations of nodes 

Source: in-house study. 
 
The primary statistical parameters, calculated on the basis of the set of original 

data on the power demands in the nodes of the 110 kV network, used for the estima-
tion and forecasting are shown in Table 1. It is apparent that there is a large range 
between the minimum and maximum values of the power P drawn from the nodes, 
whereby the standard deviation (S) is high. Coefficient V indicates that power P 
variation (Table 1) is high in the analyzed area in the considered period. 

                                                      
1 The databases were prepared in ASCII, as required by geostatistical software ISATIS ver. 7.0.6 

(purchased from Geovariances & Ecole des Mines de Paris, France, by the Institute of Geotechnics 
and Hydrotechnics at Wrocław University of Technology) used in this research. 

110 kV
 325 

 300 

 275 

Y 
(k

m
) 

 250 

 225 

 200 

 175 

50 100 150 200 250 300 

X (km)
Isatis 



Barbara Namysłowska-Wilczyńska, Artur Wilczyński 98

Table 1. Global statistics for power demands in nodes of 110 kV electrical power network 

Number 
of electric-power 

nodes n 

Minimum 
power 

Pmin [MW] 

Maximum power 
Pmax [MW] 

Average 
power 

P [MW] 

Standard 
deviation 
S [MW] 

Coefficient 
of variation 

V [%] 
30 × 20 = 600 1.31 300.71 33.29 71.57 215 

Source: in-house study. 

Table 2 shows the basic statistics for the geostatistical power parameters deter-
mined for the 110 kV electrical power network for the analyzed (in 3D) supply area 
covered with the adopted elementary grid. 

Table 2. Global statistics of estimated power for values for 110 kV distribution network 
in (process history) years 1-20 

Estimated 
parameter 

Sample 
size n 

Minimum 
estimated value 

Z*
min [MW] 

Maximum 
estimated value 

Z*
max [MW] 

Average 
Z* [MW]

Standard 
deviation 
S [MW] 

Coefficient 
of variation 

V [%] 
Estimated value Z* 107,209 10.48 293.50 41.84 56.83 136.00 
Standard deviation 
of estimation σk 

107,209 0.78 8.96 4.46 1.69 38.00 

Source: in-house study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Grid of elementary blocks for area supplied from 220/400 kV network, 
with marked locations of nodes 

Source: in-house study. 
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The high variation coefficient V calculated from estimated averages Z* reaches 
a lower value (136%) (Table 2) in comparison with its very high value (215%) calcu-
lated on the basis of the original power data (Table 1). 

In the case of the 220/400 kV network, the elementary block dimensions of the 
grid were 10 km × 10 km × 1 year and the number of elementary blocks along the 
particular axes was: X – 74, Y – 73 and Z – 30 (Figure 2). 

The primary statistical parameters, calculated on the basis of the set of data on 
the power demands in the nodes of the 220/400 kV network, used for the estima-
tion and forecasting are shown in Table 3. 

Table 3. Global statistics for power demands in nodes of 220 kV/400 kV electrical power network 

Number of 
electric-power 

nodes n 

Minimum 
power 

Pmin [MW] 

Maximum 
power 

Pmax [MW] 

Average 
power 

P [MW] 

Standard 
deviation 
of power 
S [MW] 

Coefficient 
of variation 

V [%] 

101 × 20 = 2021 1.00 666.00 229.57 120.19 52.00 

Source: in-house study. 

The primary statistics for the investigated power demand processes, i.e. standard 
deviation S and variation coefficient V (Table 3), indicate great variation in the ana-
lyzed quantity (power) in the investigated area. 

Table 4 shows the primary statistics for the geostatistical power parameters, de-
termined for the 220/400 kV power network for the investigated (in 3D) supply area 
covered with the adopted elementary grid. 

In the case of both geostatistical parameters, i.e. average values Z* and standard 
deviations σk, obtained from estimation for the Poland area, one notices high and low 
coefficient V values, falling into the group of so-called very large and average varia-
tion, particularly lower for standard deviation of estimation σk (Table 4). 

Table 4. Global statistics for estimated power values in (process history) years 1-20 for 220/400 kV 
transmission network (ordinary block kriging) 

Estimated 
parameter 

Sample 
size 

n 

Minimum 
estimated 

value 
Z*

min [MW] 

Maximum 
estimated 

value 
Z*

max [MW] 

Average
Z* MW]

Standard 
deviation 
S [MW] 

Coefficient 
of variation 

V [%] 

Estimated 
average Z* 204,795 19.72 587.24 207.64 320.46 154.00 

Standard 
deviation of 
estimation σk 

204,795 3.44 90.80 63.46 16.02 25.00 

Source: in-house study. 
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2.3. Analysis of directional variograms 

The basic tool of geostatistics is the variogram, which is used to determine the kind 
of surface or spatial correlation between the analyzed variables. The variogram is 
modelled by an analytical mathematical function, which is referred to as a geostatis-
tical model [Armstrong 1998; David 1977; Isaaks, Srivastava 1989; Namysłowska- 
-Wilczyńska 2006]. The variogram function is assumed for the investigated variable. 
The function allows one to obtain the best (as regards minimum estimation variance 
(estimation error)) picture of the variation of the regionalized variable in 1D, 2D or 
3D [Armstrong 1998; David 1977; Isaaks, Srivastava 1989; Namysłowska- 
-Wilczyńska 2006]. 

An empirical variogram, showing the correlation between variables arranged on 
a surface (in 2D), represents the following relation: 

 *

1

1( ) [ ( ) ( )] ,
2

hn

i
h i

h z x h z
n

γ
=

= + −∑ 2
ix  (1) 

where: z(xi + h), z(xi) – electrical power values in points xi and xi + h, i.e. separated 
by distance h; nh – the number of pairs (xi, xi + h) of power values in points 
separated by distance h, used to calculate semivariogram function γ*(h). 

The empirical variogram shows the character of the variation of a studied region-
alized variable (power in the nodes). This variation is best illustrated by an omnidi-
rectional (isotropic) variogram (with all the measuring data taken into account) or 
a directional variogram calculated on the basis of measurements oriented along 
specified directions (zones). Averaged variograms do not give a full picture of varia-
tion differentiation in space. For this reason, directional variograms (which show 
variation in the particular directions) are calculated. 

In this research the directional variogram was used to investigate power variation 
along time axis Z and to make forecasts. 

When modelling the surface variation of the investigated variable, the above 
form of variogram should be extended by a component representing changes along 
time axis Z. 

Then the isotropic variogram determined in the horizontal plane has this form 
[Wackernagel 1998]: 

 ( ) ( )2 2 2
0 1 2 3 ,h h h hγ γ= + +  (2) 

and the third (time) component is: 

 ( ) ( )1 3 .h hγ γ=  (3) 

The variogram describes the character of the variation of the regionalized vari-
able – the power in the nodes of the electrical power networks. In order to analyze 
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and estimate the considered regionalized variable in 3D one must built a variogram 
model depicting the surface variation in 2D, and then extend it by the time variable, 
i.e. expressing changes along the time axis for the 20-year period. 

A directional variogram, calculated along time axis Z (i.e. for 20 years), was used 
to characterize the power variation structure and then to make forecasts. 

2.4. Estimation by means of kriging 

Kriging is the technique of interpolation performed using the weighted average. In 
kriging a set of weights assigned to the values of the analyzed variable (power sam-
ples or observations) minimizes the estimation variance of the estimate (the so-called 
kriging variance), which is calculated as a function of the adopted variogram model 
and the mutual location of the samples, and in relation to the point or block being the 
subject of estimation [Armstrong 1998; David 1977; Isaaks, Srivastava 1989; Na-
mysłowska-Wilczyńska 2006]. Kriging is used for “local estimation” since it takes 
into account data from the nearest neighbourhood. 

Weighted (moving) average Z* is estimated using this relation: 

 *

1

,
n

k ik
i

iZ w z
=

=∑   (4) 

where: zi – the value of power in point i, for i = 1, ..., n; wik – a kriging weight coeffi-
cient assigned to sample i. 

The selection of kriging coefficients (kriging weights) wik is a critical step. Un-
weightedness condition  is fulfilled if:  Z k

*

( )* 0,kE Z m− =  

hence the constraints that the sum of weights is equal to 1: 

 
1
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and that the variance is minimum: 

  (6) ( )22 * min,E kE Z mσ ⎡ ⎤= − =⎢ ⎥⎣ ⎦

are introduced. 
Having a system of kriging equations [Namysłowska-Wilczyńska 2006; Wack-

ernagel 1998] one can determine weight kriging coefficients wik assigned to given 
samples within and near the estimated area. The coefficients are used to calculate the 
average kriging error whose variance is defined by the formula: 
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 2 ( , ) ( , ),k i iw S A A Aσ γ λ γ= + −∑  (7) 

where: γ (A, A) – the average variogram value between each two points of block A; 
γ (Si, A) – the average variogram value for all the segments connecting meas-
uring point Si with calculation block A within which the average of the inves-
tigated quantity is estimated; λ – the Lagrange multiplier. 

3. Directional variograms of power demands in nodes 
of 110 kV and 220/400 kV networks 

In view of the research goal, which was to demonstrate the possibility of short- and 
long-term forecasting using geostatistical methods, empirical variograms along time 
axis Z (20 years) were calculated. The directional variograms calculated on the basis 
of node power demands for the 110 kV distribution network and the 220/400 kV 
transmission network, including the geostatistical models (analytical functions) used 
for the variograms approximating, are shown in Figures 3 and 4. 
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Figure 3. Directional variogram (along time axis Z) of power demands in nodes 
of 110 kV distribution network, approximated by theoretical model 
(against histogram of distribution of number of power measurement pairs) 

Source: in-house study. 
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No nugget effect C0 appeared in the directional variogram (approximated by the 
spherical model) for the power demands in the nodes of the 110 kV network and the 
variogram shape shows a weak upward trend (Figure 3). The range of influence a of 
the variogram is 67.62 years and its sill variance C reaches 382.95 [MW]2. The direc-
tional variogram indicates that the load values in the nodes of the 110 kV network 
are mutually correlated for the period of ca 15 years. 

Table 5. Results of calculations connected with cross-validation of theoretical model  
of directional variogram of power demands in nodes of 110 kV network (test data) 

Analyzed 
parameter 

Sample size 
n 

Test data 

Mean error 
[MW] 

Error variance
[MW]2 

Mean 
standardized 

error 

Standardized 
error variance 

Power demand 600 –0.005 1.273 –0.006 1.000 

Source: in-house study. 

The results of calculations carried out on the basis of the 110 kV network node 
load data according to the cross-validation procedure, taking into account ordinary 
point kriging and the moving kriging neighbourhood, show the fitted (spherical) 
model to be in agreement with the directional variogram (Tables 5 and 6). The stan-
dardized error variance values are in limits of 0.41-1.00, depending on the kind of 
data used for the calculations, i.e. the test data (n = 600, Table 5) and the robust data 
(n = 578, Table 6). 

Table 6. Results of calculations connected with cross-validation of theoretical model 
of directional variogram of power demands in nodes of 110 kV network (robust data) 

Analyzed 
parameter 

Sample size 
n 

Robust data 

Mean error 
[MW] 

Error 
variance 
[MW]2 

Mean 
standardized 

error 

Standardized 
error variance 

Power demand 578 0.043 0.470 0.029 0.408 

Source: in-house study. 

The directional power demand variogram determined for the nodes of the 
220/400 kV network shows a clearer trend in nonrandom variation (Figure 4) than 
the variogram investigated for the 110 kV network (Figure 3). 

The Cauchy model was used to approximate the power demands directional 
variogram in the nodes of the 220/400 kV network. No C0 effect appeared in this 
variogram. The variogram’s very large range of influence of 96.41 years is conspicu-
ous. Sill variance C amounts to 4845.89 [MW]2. The correlation between the load 
values, evident in the directional variogram, is due to the much shorter time horizon 
of ca 7.5 years (Figure 4) than in the case of the corresponding variogram for the 
110 kV network (Figure 3). 
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Figure 4. Directional variogram (along time axis Z) of power demands in nodes of 220/400 kV 
transmission network, with fitted theoretical model 

Source: in-house study. 

Table 7. Results of calculations connected with cross-validation of theoretical model 
of directional variogram of power demands in nodes of 220/400 kV network (test data) 

Analyzed 
parameter 

Sample size 
n 

Test data 

Mean error 
[MW] 

Error 
variance 
[MW]2 

Mean 
standardized 

error 

Standardized 
error variance 

Power 
demand 2019 –0.784 61.61 –0.015 1.000 

Source: in-house study. 

Table 8. Results of calculations connected with cross-validation of theoretical model 
of directional variogram of power demands in nodes of 220/400 kV network (robust data) 

Analyzed 
parameter 

Sample 
size n 

Robust data 

Mean error 
[MW] 

Error 
variance 
[MW]2 

Mean 
standardized 

error 

Standardized 
error variance 

Power demand 1984 –0.764 48.926 –0.011 0.385 

Source: in-house study. 



3D electric power demand forecasting   105 
 

The results of calculations carried out on the basis of the 220/00 kV network 
node load data according to the cross-validation procedure, using ordinary point 
kriging and the moving kriging neighbourhood, show the theoretical (Cauchy) 
model approximating the shape of the analyzed directional variogram to be correct. 
The standardized error variance would reach the reference value of 1 and only 
0.385 when respectively the test data (n = 2019, Table 7) and the robust data 
(n = 1984, Table 8) were used. 

4. Area – time forecast of power demands for 110 kV network, 
made using ordinary block kriging 

Figures 5 and 6 show raster maps of the distributions of power values Z* in the nodes 
of the 110 kV network, forecasted for 1 year and 5 years. The maps were calculated 
using ordinary (block) kriging, taking into account the geostatistical parameters of 
the directional variogram model (Figure 6) and the moving kriging neighbourhood. 
The global statistics for the 1 year and 5 year forecasts are shown in Tables 9 and 10. 

 

[MW]

N/A

292.83
274.01
255.19
236.37
217.55
198.73
179.91
161.09
142.27
123.46
104.64
 85.82
 67.00
 48.18
 29.36
 10.54
 -8.28

[MW]
Above
300.71
1.3097
Below
Test

110 kV

1 year

 50  100  150  200  250 

X (km)

 175 

 200 

 225 

 250 

 275 

 300 

 325 

Y
 
(
k
m
)

Isatis  

Figure 5. Raster map showing distribution of forecasted (for 1 year) power demands Z* in nodes 
of 110 kV network for selected area of western part of Poland 
(forecast based on the results of ordinary block kriging); highest forecasted values 
Z*: 255.19 ÷ 292.83 MW, lowest forecasted values Z*: 10.54 ÷ 48.18 MW 

Source: in-house study. 
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The estimation method was ordinary (block) kriging. This technique is used to 
estimate the block average for an elementary grid node (the block centre) as 
weighted average Z* of sample values from a local neighbourhood (a samples search-
ing area or the centre of an ellipse or circle, located in the block). Simultaneously 
with each estimated averages Z* (kriging estimates), the estimation standard devia-
tions – kriging deviations σk or kriging estimation variances σk

2 are calculated. 

Table 9. Global statistics of forecasted (for 1 year) power demands in nodes of 110 kV network 
(ordinary block kriging) 

Geostatistical 
parameter 

Number 
of elementary 
grid nodes n 

Minimum 
estimated 

value 
Xmin [MW] 

Maximum 
estimated 

value 
Xmax [MW]

Average 
X [MW] 

Standard 
deviation 
S [MW] 

Variation 
coefficient 

V [%] 

Estimated 
average Z* 57,138 10.54 293.15 41.76 57.05 137 

Standard 
deviation of 
estimation σk 

57,138 0.78 8.96 4.50 1.69 38 

Source: in-house study. 
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Figure 6. Raster map showing distribution of forecasted (for 5 years) power demands Z* in nodes 
of 110 kV network for selected area of western Poland 
(forecast based on the results of ordinary block kriging); highest forecasted values 
Z*: 242.44 ÷ 277.96 MW, lowest forecasted values Z*: 11.57 ÷ 47.09 MW 

Source: in-house study. 
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The high values of variation coefficient V for forecasted (for 1 and 5 years) aver-
ages Z*, reaching 136-137% (Tables 9 and 10), indicate extreme variation of aver-
ages Z*. Whereas the other geostatistical parameter – standard estimation (forecast) 
deviation σk – does not vary so much as for averages Z*. The coefficients (V) of 
variation of deviations σk reach 37-38%, falling into the range of average variation 
(Tables 9 and 10). 

Table 10. Global statistics of forecasted (for 5 years) power demands in nodes of 110 kV network 
(ordinary block kriging) 

Geostatistical 
parameter 

Number of 
elementary 

grid nodes n 

Minimum 
estimated 

value 
Xmin [MW] 

Maximum 
estimated 

value 
Xmax [MW] 

Average 
X [MW] 

Standard 
deviation 
S [MW] 

Variation 
coefficient 

V [%] 

Estimated 
average Z* 68,008 11.57 293.15 41.90 57.04 136 

Standard 
deviation of 
estimation σk 

68,008 0.78 8.96 4.51 1.68 37 

Source: in-house study. 

For the fifth year of the forecast based on the power demand data for the 110 kV 
nodes, the average of values Z* is only slightly higher (Table 10) than the one for the 
first year (Table 9), but also higher than the average of values Z* for the analyzed 
history (1-20 years) of the process. Also the lower limit of minimum values Z* is set 
higher (Table 10). 

5. Area – time forecast of power demands 
for 220/400 kV network, based on ordinary block kriging 

Figures 7 and 8 show the raster maps of the distributions of forecasted (for 1 year and 
5 years) power values Z* in the nodes of the 220/400 kV network. The maps were 
calculated using ordinary block kriging, taking into account the parameters of the 
geostatistical directional variogram model (Figure 7). The global statistical parame-
ters for the 1-year and 5-year forecasts are shown in Tables 11 and 12. 

If the forecasts for the geostatistical parameters of the power demands in the 
nodes of 220/400 kV for one and five years are compared, a distinct upward trend in 
Z* values (Tables 11 and 12) becomes apparent against the estimation results for the 
analyzed history (1-20 years) of the process. Higher minimum estimated values Z*, 
maximum estimated values Z* and estimated averages Z* were obtained for the fifth 
forecast year (Table 12). It turns out that more accurate forecasting is possible on the 
basis of the power demands in the nodes of the 220/400 kV network. 
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Table 11. Global statistics for forecasted (for 1 year) power demands in nodes 
of 220/400 kV network (ordinary block kriging) 

Geostatistical 
parameter 

Number of 
elementary 
grid nodes n 

Minimum 
estimated 

value 
Xmin [MW] 

Maximum 
estimated 

value 
Xmax [MW] 

Average 
X [MW] 

Standard 
deviation 
S [MW] 

Variation 
coefficient 

V [%] 

Estimated 
average Z* 104,895 19.80 587.67 210.53 362.46 172.00 

Standard 
deviation of 
estimation σk 

104,895 3.44 90.80 63.46 16.02 25.00 

Source: in-house study. 
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Figure 7. Raster map showing distribution of forecasted (for 1 year) power demands Z* in nodes 
of 220/400 kV networks for whole area of Poland 
(forecast based on the results of ordinary block kriging); highest forecasted values 
Z*: 506.55 ÷ 587.67 MW; lowest forecasted values Z*: 19.80 ÷ 100.93 MW 

Source: in-house study. 
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Figure 8. Raster map showing distribution of forecasted (for 5 years) power demands Z* in nodes 
of 220/400 kV network for whole area of Poland 
(forecast based on the results of ordinary block kriging); highest forecasted values 
Z*: 603.38 ÷ 697.72 MW; lowest forecasted values Z*: 37.37 ÷ 131.71 MW 

Source: in-house study. 

Table 12. Global statistics for forecasted (for 5 years) power demands in nodes 
of  220/400 kV network (ordinary block kriging) 

Geostatistical 
parameter 

Number of 
elementary 

grid nodes n 

Minimum 
estimated 

value 
Xmin [MW] 

Maximum 
estimated 

value 
Xmax MW]

Average 
X [MW] 

Standard 
deviation 
S [MW] 

Variation 
coefficient 

V [%] 

Estimated 
average Z* 124,872 37.37 697.72 211.57 334.00 158.00 

Standard 
deviation of 
estimation σk 

124,872 3.44 91.46 63.47 16.02 25.00 

Source: in-house study. 
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Regardless of the time horizon, high values of variation coefficients V for fore-
casted averages Z* (136–172%), indicating the latter’s very large variation in the 
analyzed space – time space, were obtained (Tables 9-12). This applies to the nodes 
of both the 110 kV network and the 220/400 kV network. The variation coefficients 
V of the forecast deviations σk indicate average and relatively small changes of the σk 
values in the nodes of respectively the 110 kV network (37-38%) and the 220/400 kV 
network (25%), regardless of the time horizon (Tables 9-12). 

6. Conclusions 

The aim of this research was to investigate the possibility of applying geostatistical 
methods to forecast the surface distribution of electrical loads in a specified time 
period (interval). The results of forecasting the power demand in areas supplied by 
selected nodes of the 110 kV network (in western part of Poland) and in areas sup-
plied from the nodes of the 220/400 kV network (for the whole area of Poland) have 
been presented. 

The obtained results indicate that the proposed approach is useful for forecasting. 
The following observations have been made: 
– the use of the moving kriging neighbourhood during estimation and forecasting 

gives better results than the use of all the data (the unique kriging neighbour-
hood), 

– from among the tested estimation methods the technique of ordinary block 
kriging yields the most accurate estimates and forecasts, 

– the investigations have a preliminary character and they should be continued to 
qualitatively improve the forecasts, 

– further investigations should focus on fitting the theoretical function better to 
the description of the directional variogram, carrying calculations for different 
parameters of the kriging neighbourhood and verifying the usefulness of still 
other estimation kriging methods, 

– the forecast model should include a component (e.g. a zero-one component) 
representing a deterministic factor, e.g. one taking into account the fact that an 
industrial facility is to be built in a given area or a large electricity consumer is 
to close down. 
The 3D geostatistical model (which incorporates time through axis Z) developed 

for two kinds of electrical power network allows one to carry out various spatial 
analyses for all kinds of test variants, such as: modelling and estimating load varia-
tion as well making area – time forecasts for the nodes of a spatial (3D) elementary 
network as or its part. It is also possible to make forecasts for subareas of nodes, 
specified through indicators of their location in area (along axes X, Y) and in time 
(along axis Z). 
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PROGNOZOWANIE (3D) ZAPOTRZEBOWANIA 
NA MOC ELEKTRYCZNĄ JAKO NARZĘDZIE W PLANOWANIU 
DZIAŁALNOŚCI FIRMY ENERGETYCZNEJ 
Z ZASTOSOWANIEM METOD GEOSTATYSTYCZNYCH 

Streszczenie: metody geostatystyczne zastosowano do prognozowania obszarowo-czaso-
wego (3D) zapotrzebowania na moc elektryczną. Analizy przestrzenne przeprowadzono na 
podstawie danych stanowiących obciążenia w dwóch rodzajach sieci elektroenergetycznych, 
tj. w węzłach sieci 220 oraz 400 kV dla całego obszaru Polski i w węzłach sieci 110 kV dla 
wytypowanego podobszaru Polski. Strukturę zmienności mocy dla tych dwóch rodzajów 
sieci analizowano w okresie 20 lat, z wykorzystaniem funkcji wariogramu kierunkowego. 
Opracowano prognozy obciążeń elektrycznych, z zastosowaniem krigingu zwyczajnego 
blokowego, z wyprzedzeniem czasowym, wynoszącym 1 rok i 5 lat. Uzyskane wyniki sza-
cowania i prognozowania wartości średnich Z* i standardowego odchylenia estymacji σk 
mocy wskazują na efektywność i przydatność użytych technik polecanych do wykorzystania 
w działalności firm energetycznych. 
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