Wojciech ANIGACZ

GEODEZJA INŻYNIERYJNA Wybrane zagadnienia

Wyznaczenie odchylenia osi komina od pionu

Opole 2008

seria: MONOGRAFIE z. 226

Wojciech ANIGACZ

SURVEY ENGINEERING Selected problems.

Determining deviation of chimney axis from the plumb

Oficyna Wydawnicza Politechniki Opolskiej Opole 2008

Spis treści

	Przedmowa	5
1.	Wstęp	7
2.	Wymagania techniczne	11
3.	Wprowadzenie teoretyczne	19
4.	Dzienniki pomiarowe	27
5.	Poziom pierwszy	37
6.	Poziom drugi	61
7.	Poziom trzeci	79
8.	Poziom czwarty	97
9.	Zestawienie współrzędnych osi komina dla	115
	poszczególnych poziomów	
9.1.	Graficzne przedstawienie wyników pomiarów	115
10.	Uwagi końcowe	117
11.	Literatura	119
	Streszczenia	125

Przedmowa

Niniejsza monografia zawiera przykład pomiaru i opracowania wyników pomiaru odchylenia od pionu osi komina metoda wielokrotnego wcięcia kątowego w przód z trzech stanowisk. Zaprezentowany przykład przeliczony jest programem Mathcad 14 w rachunku macierzowym, którego podstawowa znajomość jest u czytelnika wskazana oraz w jezyku programowania Fortran. Literatura zawiera pozycje z zakresu geodezji i budownictwa dotyczące budowy, eksploatacji i geodezyjnej obsługi budowli wieżowych. W tekście nie podano odsyłaczy do wszystkich pozycji literatury, ponieważ przedstawione podejście i algorytm nie były wcześniej publikowane. Nowość prezentowanego podejścia polega na kompleksowym i bardzo szczegółowym potraktowaniu problemu, wręcz dydaktycznym. Na uwagę zasługuje zwłaszcza szeroko potraktowane wyprowadzenie równań poprawek i analiza dokładności. Zaprezentowany algorytm bez modyfikacji można wykorzystać do własnych obliczeń. Spośród wielu metod obliczeniowych wybrano metodę oparta na odniesieniu pomiarów kątowych do kierunków zorientowanych. Przedstawiony algorytm można wykorzystać do wykonania obliczeń odchylenia od pionu osi komina niezależnie od sposobu nawiazania kątowego na poszczególnych stanowiskach.

W tym miejscu chciałbym podziękować za pomoc pracownikom Katedry Geotechniki i Geodezji Wydziału Budownictwa Politechniki Opolskiej, a w szczególności Panu Danielowi OKOSOWI, technikowi geodecie za pomoc w przygotowaniu redakcyjnym niniejszej monografii.

Uwagi na temat monografii proszę kierować na adres Wydawcy lub autora <u>w.anigacz@po.opole.pl</u>.

Autor

1. WSTĘP

Pomiary parametrów geometrycznych obiektów budowlanych służą m.in. do określania ich stanu technicznego. Prof. R. Ciesielski pisze: "Głównymi dobrze mierzalnymi objawami wytężenia konstrukcji są zmiany ich geometrii" [2]. Trudno o lepszą rekomendację do wykonywania okresowych pomiarów obiektów budowlanych. Natomiast w załączniku nr 13 do instrukcji geodezyjnej resortu przemysłu ciężkiego "Wytyczne wykonania geodezyjnych pomiarów masywnych budowli wieżowych" [7] stwierdza się "Celem okresowych pomiarów przemieszczeń jest rejestracja postępujących odkształceń trwałych obiektu i zasygnalizowanie ewentualnej konieczności stosowania środków prewencyjnych", rys.1.

Rys. 1. Przykład katastrofy budowlanej komina **Fig. 1.** An example of chimney crash

W dalszej części przedstawiono wprowadzenie teoretyczne, wymagania techniczne, materiały z pomiarów polowych (dzienniki pomiarowe) pionowości

osi komina wykonanych z trzech stanowisk oraz analityczne i graficzne opracowanie wyników pomiaru. Przy trzech stanowiskach pomiarowych występują już obserwacje nadliczbowe. Obserwacji podlegały tworzące komina na czterech poziomach metodą trygonometryczną (rys. 2), sposobem dwusiecznych (rys. 3). Obliczenia wykonano algorytmem opracowanym przez autora w środowisku informatycznym Mathcad 14 i Fortran. W części teoretycznej podano wyprowadzenie równań poprawek i algorytm obliczeniowy wykorzystany w dalszej części monografii. W części praktycznej podano szczegółowo rozpisane obliczenia ze wskazówkami do korzystania z programu Mathcad. Bardzo istotną częścią opracowania wyników pomiarów terenowych jest ich wyrównanie. Dobrze ułożone równania obserwacyjne i współczynniki wagowe pozwalają na poprawne przeprowadzenie procesu wyrównania.

Rys. 2. Schemat komina z mierzonymi poziomami **Fig. 2.** A scheme of a chimney with measured height levels

Rys. 3. Schemat pomiaru metodą dwusiecznych jednego poziomu z jednego stanowiska **Fig. 3.** The scheme of measurement of one level from one position by the bisector method

$$\mathbf{r}_{\mathrm{i}} = \mathbf{l}_{\mathrm{S0}} \cdot \sin \frac{\alpha_{\mathrm{iP}} - \alpha_{\mathrm{iL}}}{2} \tag{1}$$

$$l_{s0} = \frac{l_0}{\cos\frac{\alpha_{ip} - \alpha_{iL}}{2}}$$
(2)

gdzie:

 l_{s0} – odległość od stanowiska pomiarowego do osi komina; obliczana jest ze współrzędnych wyrównanych,

 l_0 – odległość od stanowiska pomiarowego do punktu styczności osi celowej instrumentu do tworzącej komina,

 α_{iP} , α_{iL} – kąty od boku osnowy pomiarowej do prawej i lewej tworzącej przekroju i-tego,

r_i – promień komina na i-tym poziomie.

Przyjęto następujące założenia: współczynniki wagowe obserwacji kątowych odpowiadają rzeczywistej dokładności pomiaru wyznaczanej z dwukrotnego obliczenia kierunku na oś komina z czterech celowań na tworzące z jednego stanowiska dla jednego przekroju. Natomiast współrzędne stanowisk pomiarowych przyjęto za bezbłędne.

W końcowej analizie dokładności przeliczono i zestawiono wpływ błędów pomiarów kierunków dla: 1^{cc}, 5^{cc}, 10^{cc}, 15^{cc}, 20^{cc}, 50^{cc} i 100^{cc} na dokładność wyniku końcowego dla poziomu pierwszego. Przedstawiony algorytm można wykorzystać do pomiarów pionowości wysmukłych budowli wieżowych, jak: kominy, maszty i wieże, tam gdzie wykorzystuje się metodę wielokrotnego wcięcia kątowego w przód. W niniejszym opracowaniu dla pierwszego poziomu podano szczegółowy algorytm z komentarzami i wskazówkami, natomiast dla pozostałych trzech poziomów opis algorytmu ograniczono do niezbednego minimum, aby użytkownik mógł się zorientować, które dane są niezbędne do wykonania obliczeń. Czytelnik bardziej obeznany z Mathcadem może na podstawie algorytmu podanego dla pierwszego poziomu samodzielnie zaprogramować pętlę obliczeniową dla dowolnej liczby mierzonych przekrojów. W niniejszej monografii skoncentrowano się na analitycznym i graficznym opracowaniu wyników pomiaru. W niniejszej monografii posiłkowano się algorytmami zawartymi w pracach [1, 4]. Natomiast same pomiary obszernie przedstawione są m.in. na przykład w załączniku nr 13 do instrukcji geodezyjnej resortu przemysłu ciężkiego "Wytyczne wykonania geodezyjnych pomiarów masywnych budowli wieżowych" MPC opracowanych przez zespół: Ciesielski R., Żak M., Kawecki J., Bogusz J., Pieronek M. [7] i w rozdziale 7.6 Hohe Türme und Industrieschornsteine książki Ingenieurgeodäsie, Anwendung im Bauwesen und Anlagenbau autorów Hennecke F. i Werner H. [3].

2. WYMAGANIA TECHNICZNE

W literaturze technicznej problematyka projektowania, budowy i eksploatacji kominów zajmuje dużo miejsca. Wynika to ze znaczenia, jakie ma poprawna praca konstrukcji komina. Awaria komina na ogół przerywa gwałtownie proces produkcyjny, który ten komin obsługuje (rys.1). Stąd tak ważna jest współpraca inżynierów budownictwa i geodetów od etapu wznoszenia komina poprzez cały okres jego eksploatacji. Normy techniczne i inne akty prawne podają wybrane parametry geometryczne komina, które powinny podlegać obserwacjom geodezyjnym, a ich wyniki powinny być ocenione przez specjalistów z zakresu mechaniki budowli. Poniżej podano niektóre wymagania techniczne:

Polska Norma PN-N-02211, sierpień 2000. Geodezja. Geodezyjne wyznaczanie przemieszczeń. Terminologia podstawowa [8].

2.1.1 przemieszczenie punktu – zmiana położenia punktu względem przyjętego układu odniesienia zaistniała w określonym interwale czasowym.

2.1.11 przemieszczenie poziome punktu – pozioma składowa wektora przemieszczenia punktu.

2.1.14 przemieszczenie wyznaczone – wielkość przemieszczenia uzyskana na podstawie pomiarów i opracowania ich wyników.

2.1.20 odkształcenie obiektu, deformacja obiektu – zmiana uformowania niezdylatowanej bryły obiektu nie naruszająca jej ciągłości materialnej, wyrażająca się w zmianach wzajemnych odległości pomiędzy punktami tej bryły lub\i w zmianach wartości kątów pomiędzy liniami łączącymi te punkty.

2.1.28 monitorowanie stanu geometrycznego obiektu – okresowe bądź ciągłe wyznaczanie przemieszczeń i\lub deformacji elementów obiektu.

2.1.29 wyznaczanie przemieszczeń punktów – wykonywanie powtarzanych okresowo pomiarów i obliczeń w sieci kontrolnej służących ocenie stabilności punktów odniesienia i uzyskiwaniu wektorów przemieszczeń punktów kontrolowanych obiektu wraz z charakterystyką dokładności.

2.2.9 metoda trygonometryczna – metoda wyznaczania poziomych przemieszczeń punktów za pomocą okresowych pomiarów kątów lub kierunków w sieci kontrolnej.

Główny Urząd Geodezji i Kartografii. Instrukcja techniczna G-3. Geodezyjna obsługa inwestycji. Wyd. II Warszawa 1980 [6].

1. Należy stosować następującą ogólną zasadę ustalenia dokładności tyczenia (autor: pomiaru) określonej granicznym błędem wytyczania (pomiaru) M_t

$$\mathbf{M}_{\mathrm{t}} = \mathbf{r} \bullet \mathbf{m}_{\mathrm{t}} \le \mathbf{K} \bullet \mathbf{dL} \tag{3}$$

gdzie:

- r współczynnik, którego wartość zależy od wymaganego prawdopodobieństwa poprawności wytyczenia (wyniku) oraz od stopnia przypadkowości błędów tyczenia (pomiarów służących do wyznaczania przemieszczenia).
- m_t błąd średni tyczenia (pomiaru),
- K parametr określający, jaką częścią granicznej odchyłki dL może być graniczny błąd wytyczenia (pomiaru),
- dL graniczna odchyłka usytuowania tyczonego elementu obiektu.
- **2.** Wartość parametru K zależy od stopnia ważności wyniku tyczenia (pomiaru) dla możliwości prawidłowego wykonania robót montażowych, wytrzymałości obiektu, prawidłowości działania obiektu oraz zachowania przez obiekt walorów architektonicznych.
 - Wartość parametru K przyjmuje się od 0,4 (przy wysokim stopniu ważności przedmiotu tyczenia) do 1,0 przy niskim stopniu ważności.
 (...)
 - 3) Pożądaną wartość średniego błędu tyczenia określa się na podstawie wzoru:

$$m_t = M_t/r \tag{4}$$

 przy normalnym rozkładzie błędów tyczenia, gdy należy uzyskać prawdopodobieństwo poprawności wyniku tyczenia (pomiaru)

Table 1. A specification of	value of coefficient r
Prawdopodobieństwo	Wartość
Р	współczynnika r
(1)	(2)
0,9973	3,0
0,9876	2,5
0,9545	2,0

Tabela 1. Zestawienie wartości współczynnika r

- w przypadku występowania warunków pomiarów wskazujących na możliwość odbiegania rozkładu błędów tyczenia (pomiaru) od rozkładu normalnego, należy przyjmować r = 4.

§ 24.

- § 34.
- 1. Należy uznać za poprawne stosowanie następującej ogólnej zasady ustalenia dokładności wyznaczania przemieszczeń, określonej granicznym błędem wyznaczenia przemieszczeń M_P:

$$\mathbf{M}_{\mathbf{P}} = \mathbf{r} \bullet \mathbf{m}_{\mathbf{p}} \le \mathbf{R} \bullet \mathbf{P} \tag{5}$$

gdzie:

- r współczynnik, którego wartość zależy od wymaganego prawdopodobieństwa poprawności wyniku oraz od stopnia przypadkowości błędów pomiarów służących do wyznaczania przemieszczenia,
- m_p błąd średni wyznaczenia przemieszczenia,
- R parametr określający, jaką częścią granicznego przemieszczenia może być graniczny błąd jego wyznaczenia,
- P graniczne przemieszczenie określone dla danego obiektu.
- 2. Dla R należy przyjmować następujące wartości:
 - R = 0,5 przy automatycznej sygnalizacji niebezpiecznych stanów obiektu,
 - R = 0,3 przy pomiarach mających na celu stwierdzenie, czy graniczna wartość przemieszczenia nie została osiągnięta lub przekroczona,

 $0,01 \le R \le 0,1-$ przy pomiarach służących do jakościowego i ilościowego badania zależności między wielkościami przemieszczeń a ich przyczynami i skutkami.

§ 35.

- 1. Należy uznać za poprawną następującą ogólną zasadę ustalenia częstotliwości pomiarów okresowych i szybkości (rozciągłości w czasie) wykonywania jednego pomiaru okresowego.
 - a) odstęp czasu pomiędzy dwoma kolejnymi pomiarami okresowymi powinien być taki, aby przewidywane przemieszczenia były nie większe od 2 M_P i nie mniejsze od 0,5 M_P,
 - **b**) w czasie trwania jednego pomiaru okresowego zmienność (przyrost) przemieszczeń nie powinna przekraczać 0,3 M_P.

PN-93/B-03201. Konstrukcje stalowe. Kominy. Obliczenia i projektowanie. pkt 5.8; s.14. Umowne ugięcie montażowe jest określone wzorem [10]:

$$u_{\rm m} = {\rm H}/{\rm 300}$$
 (6)

gdzie:

H - wysokość komina nad fundamentem.

Przemieszczenie całkowite wierzchołka komina określone powyższym wzorem powinno spełniać warunek:

- w kominach jednopowłokowych	$u \leq H/75$,
- w kominach dwupowłokowych	$u \le H/100,$
- w kominach z wykładziną ceramiczną	$u \le H/150.$

PN-88/b-03004. Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie [9].

- pkt 8.5. s.17. Urządzenia kontrolno-pomiarowe. W celu umożliwienia sprawdzenia osiadania i pionowości komina należy osadzić w cokole fundamentu lub dolnej części trzonu komina na wysokości 0,5 m nad terenem, cztery repery stalowe rozmieszczone symetrycznie na obwodzie.
- **pkt 9.1.** s.17. Oddanie komina do eksploatacji. Przed oddaniem komina do eksploatacji należy wykonać pomiar odbiorczy, w wyniku którego otrzymuje się wyjściowy kształt komina oraz usytuowanie fundamentu.
- pkt 9.2. s. 17. Kontrola komina w czasie eksploatacji. Po pierwszym roku eksploatacji komina należy wykonać kontrolę stanu zewnętrznego komina oraz pomiary kontrolne osiadania i wychylenia od pionu. Jeżeli w wyniku pierwszej kontroli okaże się, że wystąpiło nierównomierne osiadanie podstawy komina

prowadzące do wartości wychylenia z pionu równej 70÷100% wartości wyka-

zanej w obliczeniach, należy powyższe badanie powtórzyć nie później niż po roku i na tej podstawie określić warunki dalszej eksploatacji komina. Przegląd zewnętrzny i wewnętrzny stanu zachowania komina należy przeprowadzać co 5 lat.

PN-B-03204:2002. Konstrukcje stalowe. Wieże i maszty. Projektowanie i wy-konanie [11].

pkt 51.3

- przemieszczenia wierzchołka wieży lub masztu nie większe niż 1/100 całkowitej wysokości:
- przemieszczenia węzłów masztu nie większe niż 1/100 odległości węzła od podstawy masztu;
- obrót wierzchołka oraz dowolnego przekroju wieży lub masztu nie więcej niż jeden stopień w poziomie i pionie – dla wież i masztów telekomunikacyjnych.

Tabela 2.Załącznik 7. Metryka komina. PN-88/b-03004 [9].Tablica Z7-1. Zestawienie niezbędnych informacji zawartych w metryce.

Lp.		Opracowanie infor	macji	
	Treść informacji	f 1. ' - 1-(odpowie	Uwagi
	-	laza obiektu	dzialny	_
(1)	(2)	(3)	(4)	(5)
1.	Wykaz kierunków	w trakcie	wykona-	Wykaz stanowi
	do celowników	wykonywania	wca	podstawę
	lub znaków	komina		do okresowego
	naturalnych			sprawdzania
				pionowości
2.	Szkic	w trakcie	wykona-	Wyniki są
	niwelacyjnej sieci	wykonywania	wca	podstawą
	kontrolnej	komina		do okresowego
	z wynikami			(p.9.2.normy)
	pomiaru			wyznaczania
	wyjściowego			przechyłu
	różnic wysokości			
3.	Pomiarowa	po wykonaniu	wykona-	
	weryfikacja linii	komina	wca	
	ugięcia komina			
4.	Wyniki pomiaru	okresowo	użytko-	
	przechyłu	zgodnie z p.9.2.	wnik	
		normy		
5.	Wykresy kształtu	po wykonaniu	wyko-	
	osi komina w wy-	komina	nawca	
	niku pomiaru od-			
	biorczego			
6.	Jak w Lp. 12	po wykonaniu	użytko-	
	w wyniku	remontu	wnik	
	pomiaru po			
	każdym remoncie			

Prawo geodezyjne i kartograficzne. DzU z dnia 21 listopada 2000 r. nr 100. Poz. 1086. Obwieszczenie Ministra Rozwoju Regionalnego i Budownictwa z dnia 24 października 2000 r. w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo geodezyjne i kartograficzne [13].

Prawo budowlane. DzU 1994, nr 89, poz. 414 (z późniejszymi zmianami) [12].

Art. 73.

1. Katastrofą budowlaną jest niezamierzone, gwałtowne zniszczenie obiektu budowlanego lub jego części (rys.1),

Rozporządzenie Ministra Gospodarki Przestrzennej i Budownictwa z dnia 21 lutego 1995 r. w sprawie rodzaju i zakresu opracowań geodezyjno-kartograficznych oraz czynności geodezyjnych obowiązujących w budownictwie. DzU nr 25 z dnia 13 marca 1995 r. poz. 133 [14].

Rozdział 4. Czynności geodezyjne w toku budowy

§12.

- **pkt 2**) pomiary przemieszczeń obiektu i jego podłoża oraz pomiary odkształceń obiektu,
- **pkt 3**) geodezyjną inwentaryzację powykonawczą obiektów lub elementów obiektów, o których mowa w art. 43 ust. 3 ustawy – Prawo budowlane.
- **§ 13.** Geodezyjna obsługa budowy i montażu obiektu budowlanego obejmuje tyczenie i pomiary kontrolne tych elementów obiektu, których dokładność usytuowania bez pomiarów geodezyjnych nie zapewni poprawnego wykonania obiektu.
- **§ 14.** W celu zapewnienia bezpieczeństwa budowy obiektu budowlanego oraz bezpieczeństwa jego utrzymania wykonuje się czynności geodezyjne związane z geodezyjnym wyznaczeniem przemieszczeń obiektu i jego podłoża oraz pomiary odkształceń obiektu.

Rozdział 5. Czynności geodezyjne po zakończeniu budowy

§ 18.

- **pkt 1.** Po zakończeniu prac budowlanych, a przed oddaniem obiektu do użytkowania, należy wykonać pomiar stanu wyjściowego obiektów wymagających w trakcie użytkowania okresowego badania przemieszczeń i odkształceń.
- pkt 2. Okresowe pomiary geodezyjne przemieszczeń i odkształceń wykonuje się, jeżeli pomiary takie przewiduje projekt budowlany lub na wniosek zainteresowanego podmiotu.

Ministerstwo Przemysłu Ciężkiego. Wytyczne wykonania geodezyjnych pomiarów masywnych budowli wieżowych. Załącznik nr 13 do instrukcji geodezyjnej resortu przemysłu ciężkiego. Wyd. Przemysłu Maszynowego WEMA. Warszawa 1976 r. [7].

3.1.1. Celem okresowych pomiarów przemieszczeń jest rejestracja postępujących odkształceń trwałych obiektu i zasygnalizowanie ewentualnej konieczności stosowania środków prewencyjnych.

3.1.10. Okresowe badania przemieszczeń należy prowadzić z następującą częstotliwością:

pierwszy rok eksploatacji	1
drugi rok eksploatacji	1
trzeci i następne lata eksploatacji	co trzy lata

2.3. Geodezyjna obsługa trzonu, s. 27:

Pomiar ten (autor: powykonawczy) wykonać należy w warunkach pochmurnej i bezwietrznej pogody, we wczesnych godzinach rannych, prowadząc obserwacje kierunków jednocześnie z wszystkich stanowisk obserwacyjnych. (...) Pomiar wykonać należy w dwóch seriach z średnim błędem kierunku $m = \pm 30^{cc}$. **s. 29.** (...) aktualny kształt budowli jest wypadkową odkształceń trwałych i dobowych.

s. 31. Pomiar pionowości przeprowadzać należy w taki sposób, by średni błąd wyznaczania przemieszczeń wyniósł: $m_{dmax} = \pm 5 \ cm$.

3.4. Metryka odkształceń.

Obliczenie wpływu parcia wiatru przeprowadzić należy opierając się na zależności:

$$y = \frac{\overline{M_r}}{EJ}$$
(7)

gdzie:

y – strzałka ugięcia na wysokości x(h_i),

M_r – tzw. moment wtórny zginający na wysokości x(h_i),

- J moment bezwładności przekroju budowli,
- E moduł Younga, który przyjmować należy (jeśli brak danych szczegółowych),

dla żelbetu: $E = 2\ 000\ 000\ t/m^2$, dla cegły: $E = 1\ 000\ 000\ t/m^2$. Obliczenie wpływu nasłonecznienia prowadzić należy wg zależności:

$$\mathbf{f}_{j} = \alpha_{t} \left[\sum_{i=1}^{j} \Delta t_{i} \frac{\mathbf{h}_{i}}{\mathbf{d}_{i}} \left(\frac{\mathbf{h}_{i}}{2} + \sum_{i=1}^{j-1} \mathbf{h}_{i} \right) \right]$$
(8)

gdzie:

 $\tilde{f_j}$ – strzałka ugięcia na wysokości j,

- Δ t_i różnica temperatury na wysokości i,
- h_i wysokość jednostkowa,
- d_i średnica przekroju,
- $\begin{array}{l} \alpha_t współczynnik rozszerzalności cieplnej, który można przyjmować, gdy brak danych szczegółowych, dla żelbetu: \\ \alpha_t = 0,00001/^{\circ}C, \\ dla cegły: \\ \alpha_t = 0,000005/^{\circ}C. \end{array}$

3. WPROWADZENIE TEORETYCZNE

Wielokrotne wcięcie kątowe w przód oparte na kierunkach zorientowanych (azymutach) dla jednego stanowiska można opisać jak na rys. 4. Szukanymi niewiadomymi są: przyrosty dx, dy do współrzędnych przybliżonych osi komina oraz poprawki do azymutów (v).

Fig. 4. A scheme of survey by the polar method in the support about azimuth directions

gdzie:

 α – azymut,

v – poprawka do azymutu,

 $0(x_0, y_0) - przybliżone współrzędne osi komina,$

S_i (x_i, y_i) – współrzędne i-tego stanowiska pomiarowego,

aio – odczyt koła poziomego na oś komina,

Aix – odczyt koła poziomego na kierunek północy (oś X),

dx, dy - przyrosty do współrzędnych przybliżonych osi komina.

$$\alpha = \operatorname{arc} tg \frac{y_{i} - y_{0}}{x_{i} - x_{0}} - \operatorname{arc} tg \frac{y_{N} - y_{i}}{x_{N} - x_{i}} \quad (9)$$

gdzie: $Y_N - Y_i = 0$

stąd różniczka zupełna:

$$d\alpha = \frac{\delta\alpha}{\delta x_0} \cdot dx_0 + \frac{\delta\alpha}{\delta y_0} \cdot dy_0$$
(10)

Pochodna po x₀

$$\frac{\delta \alpha}{\delta x_{0}} = (-1) \frac{1}{1 + \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)^{2}} \cdot \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)' \qquad (11)$$

$$\begin{array}{c} & & \\ & &$$

$$\frac{\delta\alpha}{\delta x_0} = -\frac{1}{1 + \left(\frac{y_i - y_0}{x_i - x_0}\right)^2} \cdot (-1) \cdot \left(y_i - y_0\right) \cdot \frac{1}{\left(x_i - x_0\right)^2}$$
(12)

$$\frac{\delta \alpha}{\delta x_{0}} = \frac{1}{\frac{(x_{i} - x_{0})^{2} + (y_{i} - y_{0})^{2}}{(x_{i} - x_{0})^{2}}} \cdot \frac{y_{i} - y_{0}}{(x_{i} - x_{0})^{2}}$$
(13)

$$\frac{\delta \alpha}{\delta x_{0}} = \frac{(x_{i} - x_{0})^{2}}{(x_{i} - x_{0})^{2} + (y_{i} - y_{0})^{2}} \cdot \frac{y_{i} - y_{0}}{(x_{i} - x_{0})^{2}}$$
(14)

$$\frac{\delta \alpha}{\delta x_{0}} = \frac{1}{1 + \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)^{2}} \cdot \frac{y_{i} - y_{0}}{(x_{i} - x_{0})^{2}}$$
(15)

$$\frac{\delta \alpha}{\delta x_{0}} = \frac{y_{i} - y_{0}}{(x_{i} - x_{0})^{2} + (y_{i} - y_{0})^{2}} = \frac{\Delta y_{0i}}{l_{0i}^{2}}$$
(16)

w wyniku otrzymujemy:

$$\frac{\delta\alpha}{\delta x_0} = \frac{\Delta y_{0i}}{l_{0i}^2}$$
⁽¹⁷⁾

Pochodna po y₀

$$\frac{\delta \alpha}{\delta y_{0}} = -\frac{1}{1 + \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)^{2}} \cdot \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)'$$
pochodna $\frac{y_{i}}{y_{i}} = \frac{y_{0}}{y_{i}}$
pochodna $\frac{y_{0}}{y_{i}} = \frac{y_{0}}{y_{i}}$
(18)
pochodna $\frac{y_{0}}{y_{i}} = \frac{y_{0}}{y_{i}}$
pochodna $\frac{y_{0}}{y_{i}} = \frac{y_{0}}{y_{i}}$
arctg x
$$(A \cdot x)' = A, \quad gdzie A - stała$$

$$\frac{\delta \alpha}{\delta y_{0}} = -\frac{1}{1 + \left(\frac{y_{i} - y_{0}}{x_{i} - x_{0}}\right)^{2}} \cdot \frac{1}{(x_{i} - x_{0})} \cdot \frac{1}{y_{i}}$$
(19)
stała pochodna
po y_{0}
gdyż $A = \frac{1}{x_{i} - x_{0}} \text{ oraz } x = (y_{i} - y_{0}),$
czyli $x' = (y_{i} - y_{0})' = 1 - 0 = 1;$

$$\frac{\delta \alpha}{\delta y_{0}} = \frac{1}{\frac{(x_{i} - x_{0})^{2} + (y_{i} - y_{0})^{2}}{(x_{i} - x_{0})^{2}}} \cdot \frac{1}{(x_{i} - x_{0})}$$
(20)

$$\frac{\delta \alpha}{\delta y_0} = \frac{(x_i - x_0)^2}{(x_i - x_0)^2 + (y_i - y_0)^2} \cdot \frac{1}{(x_i - x_0)}$$
(21)

$$\frac{\delta \alpha}{\delta y_0} = -\frac{x_i - x_0}{(x_i - x_0)^2 + (y_i - y_0)^2} = -\frac{\Delta x_{0i}}{l_{0i}^2}$$
(22)

w wyniku otrzymujemy:

$$\frac{\delta\alpha}{\delta y_0} = -\frac{\Delta x_{0i}}{l_{0i}^2}$$
(23)

stąd wzór (10) przyjmuje postać:

$$d\alpha = \frac{\Delta y_{0i}}{l_{0i}^{2}} \cdot \rho \cdot dx_{0} - \frac{\Delta x_{0i}}{l_{0i}^{2}} \cdot \rho \cdot dy_{0} \quad (24)$$

gdzie: ρ - współczynnik zamiany miary liniowej na łukową, ponieważ α wyrażone jest w gradach lub stopniach.

Stąd równanie poprawek w postaci macierzowej ogólnej przedstawia się następująco:

$$\mathbf{v} = \mathbf{A} \cdot \mathbf{dx} - \mathbf{L} \tag{25}$$

gdzie:

L – macierz wyrazów wolnych,

A – macierz współczynników przy niewiadomych,

x – niewiadome, przyrosty współrzędnych.

Przyrosty współrzędnych dx i dy oblicza się z układu równań:

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = (A^T P A)^{-1} \cdot A^T P L$$
⁽²⁶⁾

gdzie:

$$\mathbf{A} = \begin{vmatrix} \frac{\rho \cdot \Delta y_{01}}{(l_{01})^2} & -\frac{\rho \cdot \Delta x_{01}}{(l_{01})^2} \\ \frac{\rho \cdot \Delta y_{02}}{(l_{02})^2} & -\frac{\rho \cdot \Delta x_{02}}{(l_{02})^2} \\ \frac{\rho \cdot \Delta y_{03}}{(l_{03})^2} & -\frac{\rho \cdot \Delta x_{03}}{(l_{03})^2} \end{vmatrix}$$
(27)

$$L = \begin{bmatrix} azym. pom. - azym. obl. z 1 stan. \\ azym. pom. - azym. obl. z 2 stan. \\ azym. pom. - azym. obl. z 3 stan. \end{bmatrix}$$
(28)

$$P = \begin{bmatrix} \frac{1}{m_{Az_{1}}^{2}} & 0 & 0\\ 0 & \frac{1}{m_{Az_{2}}^{2}} & 0\\ 0 & 0 & \frac{1}{m_{Az_{3}}^{2}} \end{bmatrix}$$
(29)

gdzie:

 m_{Azi} – błąd wyznaczenia azymutu z i-tego stanowiska w gradach.

Współrzędne wyrównane wi:

$$\mathbf{w}_{i} = \mathbf{w}_{0} - \mathbf{d}\mathbf{p} \tag{30}$$

gdzie:

w_i – współrzędne wyrównane dla i-tego poziomu,

dp – przyrosty współrzędnych dla i-tego poziomu,

w₀ – współrzędne przybliżone i-tego poziomu.

Analiza dokładności.

Wartości poprawek dla azymutów oblicza się ze wzoru:

$$v = A \cdot \Delta p - L$$
 (31)

Sprawdzenie poprawności obliczeń ze wzoru:

$$A^{T}Pv = 0$$
 warunek konieczny. (32)

Wartość błędu m₀ oblicza się ze wzoru:

$$\mathbf{m}_0 = \sqrt{\frac{\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v}}{\mathbf{n} - \mathbf{k}}} \tag{33}$$

gdzie:

n – liczba równań obserwacyjnych,

k – liczba wyznaczanych niewiadomych.

Macierz błędów współrzędnych:

$$C_{x} = m_{0} (A^{T} P A)^{-1} = \begin{bmatrix} m_{x}^{2} & m_{xy} \\ m_{xy} & m_{y}^{2} \end{bmatrix}$$
 (34)

gdzie:

 m_x – błąd współrzędnej x, m_y – błąd współrzędnej y, m_{xy} – kowariancja między x i y.

Błąd położenia punktu:

$$m_{p} = \sqrt{m_{x}^{2} + m_{y}^{2}}$$
 (35)

Błąd położenia punktu w zadanym kierunku:

$$m(\alpha) = \sqrt{m_x^2 \cdot \cos^2 \alpha + m_{xy} \cdot \sin 2\alpha + m_y^2 \cdot \sin^2 \alpha}$$
(36)

Kąt skręcenia elipsy dla ekstremalnych wartości błędu położenia punktu:

$$\alpha_{\rm A} = \frac{1}{2} \arctan\left(\frac{2m_{\rm xy}}{m_{\rm x}^2 - m_{\rm y}^2}\right) \cdot \rho \tag{37}$$

$$\alpha_{\rm B} = \alpha_{\rm A} + 100^{\rm g} \tag{38}$$

W przykładzie podanym poniżej przedstawiono pomiar inwentaryzacyjny pionowości osi komina ceramicznego o przekroju kołowym. Pomiar wykonano z trzech stanowisk, aby uzyskać obserwacje nadliczbowe umożliwiające przeprowadzenie pełnej analizy dokładności pomiarów. Schemat osnowy pomiarowej, dane liczbowe i graficzne z pomiaru podano w kolejnych rozdziałach. W części obliczeniowej wykorzystano algorytm podany w tym rozdziałe.

Dziennik pomiaru kierunkow ze stanowiska ni ji
--

strona 1

		Ι	położe	enie lu	inety		II	położ	enie l	unety		Kier	unki	zredu	kowa	ne	4			0	blic	zenia	ı kon	ntroln	e]	Data:	
Stano- wisko	Cel		A B		śreć	lnia		A B		śred	nia	z poło	żenia	I II	śrec	lnia	Srednia wartość kąta		Sumy dla	śr. Od poszc	lcz. I z. kie	+ II er.	Ró kie	óżnice o erunkó ½ różn	obliczony w z kol. icy = kąt	ch 10	Str.	1/1
		o g	ć	<i>"</i> 	ć	<i></i>	o g	, C	<i></i>	ć	<i>"</i>	o g	ć	<i>"</i>	ć	<i>"</i>			0 0	ć		<i>"</i>	o g	,	, , ,	" "C	Sur	
1	2	8	3		4	4	8	5		6		8	7	00	5	8	9		8	10		00	8	1	11		12	2
S 1	S2	152	71 71	20 20	71	20	352	70 70	90 70	70	80	152	71 70	20 80	71	00								Z	4L		4P	
	1L	100	00 00	30 00	00	15	299	99 99	90 80	00	85	100 99	00 99	15 85	00	00								3			3P	
	1P	105	39 40	80 00	39	90	305	41 41	10 10	41	10	105	39 41	90 10	40	00						S 3	30	5			51	
	2L	100	15 15	60 60	15	60	300	15 15	50 30	15	40	100	15 15	60 40	15	50			(2			2P	
	2P	105	30 29	00 80	29	90	305	30 30	15 05	30	10	105	29 30	90 10	30	00			() •	Ň				1]	L		1P	
	3L	100	25 25	80 90	25	85	300	25 25	70 80	25	75	100	25 25	85 75	25	80				11)							
	3P	105	21 22	90 10	22	00	305	22 22	00 00	22	00	105	22 22	00 00	22	00	S1						2 °				1	
	4L	100	37 37	95 75	37	85	300	37 37	90 60	37	75	100	37 37	85 75	37	80	Pomiar wyko	on	ano	inst	rum	nente	em: I	Leica	a TPS	800)	
	4P	105	08 08	95 95	08	95	305	09 09	00 10	09	05	105	08 09	95 05	09	00	Stan na dzier Pomiar wyko	eń: con	ał:									
	S2	152	71 71	00 00	71	00	352	71 70	10 90	71	00	152	71 71	00 00	71	00												

		Ι	położ	enie l	unetv		II	położ	enie l	unety	7	Kier	runki	zredu	kowa	ne	_		-		Ol	oliczeni	ia kontro	lne	Data:	
Stano- wisko	Cel		A B	Γ	śrec	dnia		A B		śrec	dnia	z położe	enia	I II- 200	śrec	lnia	wa	Średni trtość l	ia kąta	Sumy dla	sr. Odd poszcz	cz. I + II . kier.	Różnic kierun ½ ró	e obliczonych ków z kol. 10 żnicy = kąt	Str. 1/2	
		° g	c	" сс	c	" сс	° g	c	" сс	, c	" cc	° g	c	" сс	c	" сс	° g	c	" сс	$\overset{\circ}{g}$, c	" сс	° g	с сс		
1	2		3			4		5		(6		7		8	3		9			10			11	12	
S2	S 1	88	40 40	10 10	40	10	288	39 39	90 90	39	90	88	40 39	10 90	40	00								4L	4P	
	S 3	188	40 40	10 20	40	15	388	39 39	80 90	39	85	188	40 39	15 85	40	00								31	3D	
	1L	135	70 70	00 00	70	00	335	70 69	10 90	70	00	135	70 70	00 00	69	80						S	31			
	1P	141	09 09	90 80	09	85	341	10 10	20 10	10	15	141	09 10	85 15	10	00						IP		2L	2P	
	2L	135	85 85	10 00	85	05	335	84 85	90 00	84	95	135	85 84	05 95	85	00				0 °				1L	1P	
	2P	140	99 98	10 80	98	95	340	99 99	10 00	99	05	140	98 99	95 05	99	00			11		/					
	3L	135	91 91	40 40	91	40	335	91 91	65 75	91	60	135	91 91	40 60	91	50	\$-	1				S	2			
	3P	140	87 87	25 35	87	30	340	87 87	20 40	87	30	140	87 87	30 30	87	30	Pom	niar w	iar wykonano instrumentem: Leica TPS800							
	4L	136	03 03	80 70	03	75	336	03 03	85 85	03	85	136	03 03	75 85	03	80	 80 Stan na dzień: Pomiar wykonał: 40 									
	4P	140	75 75	40 40	75	40	340	75 75	30 50	75	40	140	75 75	40 40	75	40										

Dziennik pomiaru kierunków ze stanowiska nr 2

strona 1

					Dz	ien	nik p	om	iaru	ı ki	eru	nkóv	v ze	e sta	ano	wis	ska nr 2 strona 2
		Ι	położ	enie l	unety		II	położ	zenie l	unety	7	Kier	unki	zredu	kowa	ne	Obliczenia kontrolne Data:
Stano- wisko	Cel		A B	1	śrec	dnia		A B	1	śrec	dnia	z położe	nia	I II- 200	śrec	lnia	Średnia wartość kąta Sumy śr. Odcz. I + II dla poszcz. kier. Różnice obliczonych kierunków z kol. 10 ½ różnicy = kąt Str. 2/2
		° g	c	" cc	c	<i>cc</i>	° g	c	" cc	c	cc	° g	, c	" cc	c	" cc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	2		3	• •		4		5		(6		7	• •	5	3	9 10 11 12
S2	S 1	88	40 40	20	40	20	288	<u>39</u> 39	90 70	39	80	88	40	20 80	40	00) 4L 4P
			10	10				10	10				40	00			
	S 3	188	40	$\frac{10}{00}$	40	05	388	40 39	90	39	95	188	40 39	05 95	40	00	
																	- S3? SL SP
													-				
																	2I $2P$
																	IP III III
-																	
																	<u>Š1</u> S2
																	4
																	Pomiar wykonano instrumentem: Leica TPS800
																	Stan na dzien: Pomiar wykonał:

		Ι	położ	enie l	unetv		II	położ	enie l	unety	7	Kier	unki	zredu	kowa	ne	_				(Oblie	czenia	kontrolne	Data:
Stano- wisko	Cel		A B	Γ	śrec	dnia		A B		śrec	dnia	z położe	enia	I II- 200	śrec	lnia	wa	Średni artość l	ia kąta	Sumy dla	y śr. C 1 posz	Odcz. 1 zcz. ki	I + II er.	Różnice obliczonych kierunków z kol. 10 ½ różnicy = kąt	Str. 1/1
		g	, c	cc	c	cc	° g	c	cc	, c	cc	° g	c	cc	c	cc	° g	c	" сс	° g		c	cc	g c cc	
1	2		3			4	Ŭ	5			6		7		8	3	Ŭ	9		Ŭ	1	0		11	12
S 3	S 2	303	93 92	00 80	92	90	103	93 93	15 05	93	10	303	92 93	90 10	93	00								4L	4P
	4.7	0.74	23	40		- 0		23	75	• •	- 0	0.7.1	23	50	• •										
	IL	351	23	60	23	50	151	23	65	23	70	351	23	70	23	60								21	2D
	1 D	250	63	90	<i>c</i> 2	0.5	150	63	80	(2)	0.5	250	63	85	\sim	00									SP
	IP	356	63	80	63	85	156	64	10	63	95	356	63	95	63	90						S	53 -	8	L I T
	21	251	34	50	24	40	151	34	35	24	40	251	34	40	24	40							~/	21	• 7 P
	2L	331	34	30	34	40	121	34	45	34	40	351	34	40	34	40			1F						
	n	256	48	35	10	25	156	48	50	10	15	256	48	35	10	40					N		/		
	2 r	550	48	35	40	55	130	48	40	40	43	550	48	45	40	40			((0°))/		1L	1P
	31	351	41	85	11	80	151	41	70	11	60	351	41	80	<i>I</i> 1	70			ľ			/1L	-		
	JL	551	41	75	41	80	131	41	50	41	00	551	41	60	41	70									
	3D	356	38	90	38	80	156	38	85	38	80	356	38	80	38	80							~ •		
	51	550	38	70	50	00	150	38	75	50	00	550	38	80	50	00	0	S 1					S 2	6	
	ΔI	351	55	25	55	25	151	55	20	55	15	351	55	25	55	20									
	ΨL	551	55	25	55	25	131	55	10	55	15	551	55	15	55	20	Pomiar wykonano instrumentem: Leica TPS800								
	ΛP	356	26	40	26	40	156	26	30	26	20	356	26	40	26	30 Stan na dzień:									
	71	550	26	40	20	40	150	26	10	20	20	550	26	20	20	Pomiar wykonał:									
	\$2	303	93	00	03	05	103	93	00	92	95	303	93	05	93										
	54	505	93	10	15	05	105	92	90		5	505	92	95	,,	00									

Dziennik pomiaru kierunków ze stanowiska nr 3

strona 1

Image: state Image: state<	Γ		-	Ιp	ołoż	enie	lune	ety	II p	ołoż	żenie	e lune	ety	Kat	pion	owy	Śroć	1	. <u>,</u> .	S	uma		Ko	ntro	la	Data pomiaru:
Nome Outcast: No Section Outcast: No Section Section<			celı			٨		5	^				-	z poło	, dzenia	ΙiΠ	nio	now	xąı v	odez	zytóv	v:	Kat r	oionc	owy	Obserwator:
$ \begin{array}{ $		ska	nie	Odez	vt	A	śrec	Inia	Odcz	vt	A	śrec	Inia	ZI	$= O_I$	0	$z = \frac{1}{2}$	$(z_I + z_I)$	$z_{II}) =$	O_I	$+ O_L$	I	z =	O_I –	μ	Sekretarz:
Image Image <t< td=""><td>ler</td><td>iwi</td><td>Icze</td><td>0</td><td>y c. I</td><td>В</td><td>5100</td><td>inna</td><td>0</td><td>ус. П</td><td>В</td><td>5100</td><td>anna</td><td>$z_{II} =$</td><td>: 400°-</td><td>$-O_{II}$</td><td>$=\frac{1}{2}(O_{I})$</td><td>$-O_{II}^{+}$</td><td>400^g)</td><td>Błąd $\mu = \frac{1}{2}(0)$</td><td>indek</td><td>su 100^g)</td><td>Błąd</td><td>inde</td><td>ksu</td><td></td></t<>	ler	i wi	Icze	0	y c. I	В	5100	inna	0	ус. П	В	5100	anna	$z_{II} =$: 400°-	$-O_{II}$	$=\frac{1}{2}(O_{I})$	$-O_{II}^{+}$	400 ^g)	Błąd $\mu = \frac{1}{2}(0)$	indek	su 100 ^g)	Błąd	inde	ksu	
2 3 4 5 6 7 8 9 10 11 1 1.1 1.00 $\frac{11}{400}$ 40 95 10 41 00 329 95 100 41 00 329 95 100 41 00 329 95 100 41 00 329 95 100 41 00 329 95 100 41 00 329 95 100 41 100 41 100 <	mm	tan ()zna	g	c	cc	с	cc	g	c	cc	C	cc	g	C	cc	g	c	cc	g	c	cc	$\mu = O_1$	C	00°	Uwagi i szkice
1 2 3 4 5 6 7 8 9 10 11 1 10 41 00 399 99 10 41 00 399 99 10 41 00 399 99 10 41 00 399 99 10 41 00 399 99 10 41 00 399 99 10 41 00 100 41 00 100 41 00 399 99 10 41 00 100 41 00 100 41 00 100 41 00 399 99 10 41 00 100 41 100 100 11 100 100 11 100 110 11 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110		S	0	-0	,	"	,	#	0 0	,	"	, ,		0	,	#	0	,	"	0	/	"	0	/	#	
1 1 100 41 000 41 000 399 99 000 1000 41 000 1000 <	1	_	2		3	0.0	4	4		5	0.0	(5		7	0.7		8		200	9	00	100	10	0.0	11
1 41 05 5 0	1		1L	100	41	00	40	95	299	59	00	58	95	100	40	95	100	41	00	399	99	90	100	41	00	
$ \begin{array}{ $		•			40	90				58	90				41	40				- 0	00	05	- 0	41	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1P	100	41	<u> </u>	41	40	299	58	40	58	40	100	41	40	100	41	50	399	99	80	100	41	50	
1 1		-			41	50				58	40				41	60				- 0	00	10	- 0	00	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2L	89	51	45	51	40	310	48	70	48	60	89	51	40	89	51	40	400	00	00	89	51	40	
2P 89 51 100 14 15 14 15 75 15 75 16 100 <		-			51	35				48	50				51	40				0	00	00	0	00	00	
1 1 10 </td <td></td> <td></td> <td>2P</td> <td>89</td> <td>51</td> <td>60 70</td> <td>51</td> <td>65</td> <td>310</td> <td>48</td> <td>25</td> <td>48</td> <td>25</td> <td>89</td> <td>51</td> <td>65</td> <td>89</td> <td>51</td> <td>60</td> <td>399</td> <td>99</td> <td>90</td> <td>89</td> <td>51</td> <td>60</td> <td></td>			2P	89	51	60 70	51	65	310	48	25	48	25	89	51	65	89	51	60	399	99	90	89	51	60	
31. 78 61 30 61 50 78 61 5		-			51	70				48	25				51	/5				- 0	00	05	- 0	00	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3L	78	61	<u> </u>	61	40	321	38	45	38	40	78	61	40	78	61	50	399	99	80	/8	61	50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			61	50				38	35				61	60				- 0	00	10	- 0	00	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3P	78	62	00	61	95	321	31	90	37	95	78	61	95	78	62	00	399	99	90	/8	62	00	
4L 66 32 10 33 68 15 68 10 66 32 00 400 100 <		-			61	90				38	00				62	05				- 0	00	05	- 0	00	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4L	66	32	10	32	10	333	68	15	68	10	66	32	10	66	32	00	400	00	20	66	32	10	
4P 66 31 90 400 00 100 90 86 31 85 30 86 30 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 31 85 30 99 99 90 100 90 50 90 95 90 90 90 90 100 91 90 90 90 90 90 00 100 91 90 90 90 00 100 91 90 <		-			32	10				68	05				31	90				0	00	10	0	00	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4P	66	31	90	31	85	333	68	30	68	25	66	31	85	66	31	80	400	00	10	66	31	80	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					31	80				68	20				31	15				0	00	05	0	00	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_		1L	100	90	40	90	45	299	09	50	09	45	100	90	45	100	90	50	399	99	90	100	90	50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	'			90	50				09	40				90	55				- 0	00	05	- 0	00	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1P	100	91	05	91	00	299	08	90	09	00	100	91	00	100	91	00	400	00	00	100	91	00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_			90 97	95				09	10				91	00				0	00	00	0	00	00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2L	90	05	00	05	10	309	95	10	95	10	90	05	10	90	05	00	400	00	20	90	05	00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			05	20				95	10				04	90				0	00	10	0	00	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2P	90	05	50	05	45	309	94	55	94	45	90	05	45	90	05	50	399	99	90	90	05	50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			05	40				94	55				05	33				- 0	00	05	- 0	100	05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3L	79	15	15	15	10	320	85	15	85	10	79	15	10	79	15	00	400	00	20	/9	15	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			15	05				85	05				14	90				100	00	10	0	15	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3P	79	15	20	15	40	320	84	50 70	84	60	79	15	40	79	15	40	400	00	00	/9	15	40	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-			15	30				84	/0				15	40				200	00	00	0	00	50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4L	66	90	40	90	45	333	09	40	09	45	66	90	45	66	90	50	399	99	90	00	90	50	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			90	20				09	30				90	25				- 0	00	10	- 0	00	20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			4P	66	90	20	90	25	333	09	90	09	85	66	90	23 15	66	90	20	400	00	10	00	90	20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					20	30 40				70	<u>40</u>				90 20	13				300	00	80	101	20	50	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		1L	101	20 20	40	20	40	298	79	40	79	40	101	20	+0 60	101	20	50	577	<i>99</i> 00	10	101	20	10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ſ	\vdash			$\frac{20}{20}$	4 0 65				70	4 0				20	55				400	00	10	101	20	50	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		1P	101	$\frac{20}{20}$	45	20	55	298	79 70	50	79	55	101	20	<u> </u>	101	20	50	00 - 0	00	05	101	20	05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	╞			20	70				66	30				20	4J 80		-	<u> </u>	400	00	00	00	33	80	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		2L	90	33	90	33	80	309	66	10	66	20	90	33	80	90	33	80	00-	00	00	0	00	00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					33	90 85				66	10				33	80				400	00	20	90	88	70	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Í		2P	90	33	75	33	80	309	66	40	66	40	90	33	60	90	33	70	100	00	10		00	10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		┢			<u>4</u> 7	55				52	60				47	55				400	00	10	79	47	50	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3L	79	47	55	47	55	320	52	50	52	55	79	47	45	79	47	50	0	00	05	0	00	05	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		┢			17 47	10				52	65				<u>4</u> 7	20				399	99	80	79	47	30	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3P	79	47	30	47	20	320	52	55	52	60	79	<u>4</u> 7	<u>20</u> 40	79	47	30	- 0	00	10	- 0	00	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	F			25	25				74	80				25	20			-	400	00	00	67	25	20	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		4L	67	25	15	25	20	332	74	80	74	80	67	25	$\frac{20}{20}$	67	25	20	0	00	00	0	00	00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	╞			25	80				74	60				25	70			-	400	00	20	67	25	60	1
	1		4P	67	25 25	60	25	70	332	7 <u>7</u>	40	74	50	67	25	50	67	25	60	.00	00	<u></u> 10	0	00	10	

Dziennik pomiaru kątów pionowych

Strona 1

5. POZIOM PIERWSZY

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 4 nacelowań.

Pomierzone kierunki ze stanowiska pierwszego na lewą tworzącą komina, poziomu pierwszego (dziennik pomiarowy s. 27):

$$S1_{L1} := \begin{pmatrix} 100.0030\\ 100.0000\\ 99.9990\\ 99.9980 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$$

Kierunki pomierzone zostały z tego samego stanowiska z tą samą dokładnością, dlatego do wagowania przyjmujemy dla każdego pomiaru kierunku

$$\mathbf{P} := \begin{pmatrix} \frac{1}{m_1^2} & 0 & 0 & 0 \\ 0 & \frac{1}{m_2^2} & 0 & 0 \\ 0 & 0 & \frac{1}{m_3^2} & 0 \\ 0 & 0 & \frac{1}{m_3^2} & 0 \\ 0 & 0 & 0 & \frac{1}{m_4^2} \end{pmatrix} \qquad \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{L1sr} := \frac{\sum S1_{L1}}{4} \quad S1_{L1sr} = 100.0000 \text{ g}}$$
$$v := S1_{L1} - S1_{L1sr} \quad v = \begin{pmatrix} 0.0030\\ 0.0000\\ -0.0010\\ -0.0020 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1L1} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1L1} = 0.0022$

Pomierzone kierunki ze stanowiska pierwszego na prawą tworzącą komina, poziomu pierwszego (dziennik pomiarowy s. 27):

$$S1_{P1} := \begin{pmatrix} 105.3980 \\ 105.4000 \\ 105.4010 \\ 105.4010 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (- 200g).$$

$$S1_{P1sr} := \frac{\sum S1_{P1}}{4} \quad S1_{P1sr} = 105.4000 \text{ g}}$$
$$v := S1_{P1} - S1_{P1sr} \quad v = \begin{pmatrix} -0.0020 \\ 0.0000 \\ 0.0010 \\ 0.0010 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1P1} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1P1} = 0.0014$

- 39 -Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest

błąd średniej arytmetycznej z 8 nacelowań. Obliczenie kierunku średniego oraz błędu wyznaczenia kierunku na stanowisko 2 ze stanowiska 1 (dziennik pomiarowy s. 27):

	(15	2.7120)						
		15	2.7120							
		15	2.7090							
~ .		15	2.7070							
\$1 _{S2}	:=	15	2.7100	- odo	czyty z	drugieg	go poło:	żenia lu	inety zo	stały
		15	2.7100	zre	dukowa	ane (- 2	200 ^g).			
		15	2.7110							
		. 15	2.7090)						
	$\left(\frac{1}{m_1}\right)$	2	0	0	0	0	0	0	0	
	0)	$\frac{1}{m_1^2}$	0	0	0	0	0	0	
	0)	0	$\frac{1}{m_1^2}$	0	0	0	0	0	
	0)	0	0	$\frac{1}{m_1^2}$	0	0	0	0	
P :=	0)	0	0	0	$\frac{1}{{m_1}^2}$	0	0	0	
	0)	0	0	0	0	$\frac{1}{m_1^2}$	0	0	
	0)	0	0	0	0	0	$\frac{1}{m_1^2}$	0	
	0)	0	0	0	0	0	0	$\left(\frac{1}{m_1^2}\right)$	

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{S2sr} := \frac{\sum S1_{S2}}{8} S1_{S2sr} = 152.7100 \text{ g} \\ \begin{pmatrix} 0.0020 \\ 0.0020 \\ -0.0010 \\ -0.0010 \\ 0.0000 \\ 0.0000 \\ 0.0010 \\ -0.0010 \end{pmatrix}$$

n := 8 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem wyznaczenia kierunku na stanowisko 2 ze stanowiska 1:

$$m_{S1S2} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1S2} = 0.0017$

Obliczenie rzeczywistego błędu wyznaczenia azymutu z pomiaru terenowego:

$$m_{S1} := \sqrt{\frac{(m_{S1L1})^2 + (m_{S1P1})^2}{4} + (m_{S1S2})^2} \qquad m_{S1} = 0.0021$$
$$m_{S2} = 0.0020$$

32

 $m_{S3} = 0.0015$

Obliczenie współrzędnych płaskich (x, y) osi komina o przekroju kołowym. Pomiar z trzech stanowisk o znanych współrzędnych (x, y) metodą dwusiecznych. Przykład dla poziomu pierwszego najniższego.

Rys. 5. Schemat pomiaru

Fig. 5. A survey scheme

- 42 -Odczyty wykonane podczas pomiaru komina:

1) ze stanowiska S1:

wysokość instrumentu i_{h1} := 1.54

Hz	V
- $\alpha_{12} := 152.7100^{\text{g}}$	
- $\alpha_{1L} := 100.0000^{\text{g}}$	$V_{1L} := 100.4100^{\text{g}}$
- $\alpha_{1P} := 105.4000^{\text{g}}$	$V_{1P} := 100.4150^{\text{g}}$
1.58	
- $\alpha_{21} := 88.4000 \text{ g}$	
- α _{2L} := 135.6700 g	$V_{2L} := 100.9050 \text{ g}$
- α _{2P} := 141.1000 g	$V_{2P} := 100.9100 \text{ g}$
1.63	
- $\alpha_{32} := 303.9300$ g	
- α _{3L} := 351.2360 ^g	$V_{3L} := 101.2050^{\text{g}}$
- α _{3P} := 356.6390 ^g	$V_{3P} := 101.2050^{\text{g}}$
	Hz - $\alpha_{12} := 152.7100^{\text{g}}$ - $\alpha_{1L} := 100.0000^{\text{g}}$ - $\alpha_{1P} := 105.4000^{\text{g}}$ 1.58 - $\alpha_{21} := 88.4000^{\text{g}}$ - $\alpha_{2L} := 135.6700^{\text{g}}$ - $\alpha_{2P} := 141.1000^{\text{g}}$ 1.63 - $\alpha_{32} := 303.9300^{\text{g}}$ - $\alpha_{3L} := 351.2360^{\text{g}}$ - $\alpha_{3P} := 356.6390^{\text{g}}$

gdzie :

 ${\rm \ddot{H}z}_{\rm iL}$ - odczyt koła poziomego z i-tego stanowiska na lewą tworzącą komina,

Hz_{iP} - odczyt koła poziomego z i-tego stanowiska na prawą tworzącą komina,

V_{iL} - odczyt koła pionowego z i-tego stanowiska na lewą tworzącą komina,

V_{iP} - odczyt koła pionowego z i-tego stanowiska na prawą tworzącą komina.

- 43 -Obliczenie wartości kierunków od bazy na oś komina:

Rys. 6. Schemat obliczenia wartości kierunków na oś komina

Fig. 6. The calculation scheme of the value of directions on the axis of the chimney

$$\alpha_{10} \coloneqq \alpha_{12} - \frac{\alpha_{1L} + \alpha_{1P}}{2} \qquad \alpha_{10} = 50.0100 \text{ g}$$

$$\alpha_{20} \coloneqq \frac{\alpha_{2L} + \alpha_{2P}}{2} - \alpha_{21} \qquad \alpha_{20} = 49.9850 \text{ g}$$

$$\alpha_{30} \coloneqq \frac{\alpha_{3L} + \alpha_{3P}}{2} - \alpha_{32} \qquad \alpha_{30} = 50.0075 \text{ g}$$

gdzie:

pierwsza cyfra w indeksie przedstawia numer stanowiska, a druga odpowiednio: L - lewa tworząca komina,

P - prawa tworząca komina,

S - środek komina (oś).
- 44 -Obliczenie przyrostów Δx_i , Δy_i pomiędzy stanowiskami pomiarowymi i długości boków bazy pomiarowej ze współrzędnych

Rys. 7. Schemat bazy pomiarowej

Fig. 7. The survey base scheme Współrzędne stanowisk: $x_1 := 100.01 \text{ m}$ $x_2 := 100.00 \text{ m}$ $y_1 := 1000.00 \text{ m}$ $y_2 := 1100.00 \text{ m}$ $z_1 := 118.45 \text{ m}$ $z_2 := 118.98 \text{ m}$ $\alpha_{10} := \alpha_{10} \text{ grad}$ $\alpha_{20} := \alpha_{20} \text{ grad}$ $\Delta x_{12} := x_2 - x_1$ $\Delta x_{12} = -0.010 \text{ m}$ $\Delta y_{12} := y_2 - y_1$ $\Delta y_{12} = 100.000 \text{ m}$ $\Delta x_{21} := x_1 - x_2$ $\Delta x_{21} = 0.010 \text{ m}$ $\Delta y_{21} := y_1 - y_2$ $\Delta y_{21} = -100.000 \text{ m}$ $1_{12} := \sqrt{(\Delta x_{12})^2 + (\Delta y_{12})^2}$ $1_{12} = 100.000 \text{ m}$

grad := $\frac{\pi}{200}$ x₃ := 200.00 m y₃ := 1100.00 m z₃ := 119.26 m

	- 4	-5 -	
$\Delta x_{23} := x_3 - x_2$	$\Delta x_{23} = 100.000$	m	
$\Delta y_{23} \coloneqq y_3 - y_2$	$\Delta y_{23} = 0.000 \text{ m}$		
$\Delta x_{32} \coloneqq x_2 - x_3$	$\Delta x_{32} = -100.000$	m	
$\Delta y_{32} \coloneqq y_2 - y_3$	$\Delta y_{32} = 0.000 \ m$		
$l_{23} := \sqrt{\left(\Delta x_{23}\right)^2 + \left(\Delta x_{23}\right)^2} + \left(\Delta x_{23}\right)^2 + \left(\Delta x_{2$	$(y_{23})^2$ l_{23}	= 100.00000	m

Obliczenie przybliżonych współrzędnych osi komina ze stanowisk S1 i S2:

Rys. 8. Schemat bazy pomiarowej do obliczenia współrzędnych przybliżonych osi komina

Fig. 8. The survey base scheme to calculate the approximate co-ordinates of the chimney axes

$p := l_{12} \cdot \frac{\sin(\alpha_{20})}{\sin(\alpha_{10} + \alpha_{20})}$	p = 70.694	m
$q := l_{12} \cdot \frac{\sin(\alpha_{10})}{\sin(\alpha_{10} + \alpha_{20})}$	q = 70.722	m
$a := \frac{p^2 - q^2 + (l_{12})^2}{2 \cdot l_{12}}$	a = 49.980	m
$\mathbf{b} := \sqrt{\mathbf{p}^2 - \mathbf{a}^2}$	b = 49.996	m

$$x_{0} := x_{1} + a \cdot \frac{\Delta x_{12}}{l_{12}} + b \cdot \frac{\Delta y_{12}}{l_{12}} \qquad \qquad -46 - x_{0} = 150.001 \text{ m}$$
$$y_{0} := y_{1} + a \cdot \frac{\Delta y_{12}}{l_{12}} - b \cdot \frac{\Delta x_{12}}{l_{12}} \qquad \qquad y_{0} = 1049.985 \text{ m}$$

Przybliżone współrzędne osi komina obliczone ze stanowisk S1 i S2:

$$\mathbf{w}_0 \coloneqq \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \end{pmatrix} \qquad \mathbf{w}_0 \equiv \begin{pmatrix} 150.001 \\ 1049.985 \end{pmatrix}$$

gdzie : x_0 , y_0 - przyblożone współrzędne osi komina.

Obliczenie przyrostów Δx_{i0} , Δy_{i0} pomiędzy stanowiskami pomiarowymi a przybliżonymi współrzędnymi osi komina i długości boków od stanowiska do środka komina (przybliżonego).

Fig. 9. A scheme of the complete survey base

 $\rho := \frac{200}{\pi}$ Współrzędne stanowisk i kąty pomierzone od baz pomiarowych: $x_1 = 100.01 \text{ m}$ $\alpha_{10} \coloneqq \alpha_{10} \rho$ $\alpha_{10} = 50.0100$ g $y_1 = 1000.00 \text{ m}$ $\alpha_{20} = 49.9850$ g $\alpha_{20} \coloneqq \alpha_{20} \rho$ $x_2 = 100.00$ m $\alpha_{30} = 50.0075$ g $y_2 = 1100.00$ m $x_3 = 200.00 \text{ m}$ $y_3 = 1100.00$ m $\Delta x_{10} := x_0 - x_1$ $\Delta x_{10} = 49.991$ m $\Delta y_{10} := y_0 - y_1$ $\Delta y_{10} = 49.985 \text{ m}$ $\Delta x_{01} := x_1 - x_0$ $\Delta x_{01} = -49.991$ m $\Delta y_{01} := y_1 - y_0$ $\Delta y_{01} = -49.985$ m $l_{10} := \sqrt{(\Delta x_{10})^2 + (\Delta y_{10})^2}$ $l_{10} = 70.694 \text{ m}$ - odległość od stanowiska S1 do osi komina (przybliżona) $\Delta x_{20} := x_0 - x_2$ $\Delta x_{20} = 50.001 \text{ m}$ $\Delta y_{20} := y_0 - y_2$ $\Delta y_{20} = -50.015$ m $\Delta x_{02} := x_2 - x_0 \qquad \Delta x_{02} = -50.001 \text{ m}$ $\Delta y_{02} := y_2 - y_0$ $\Delta y_{02} = 50.015 \text{ m}$ $l_{20} := \sqrt{(\Delta x_{20})^2 + (\Delta y_{20})^2}$ $l_{20} = 70.722 \text{ m}$ - odległość od stanowiska S2 do osi komina (przybliżona) $\Delta x_{30} := x_0 - x_3$ $\Delta x_{30} = -49.999$ m $\Delta y_{30} := y_0 - y_3$ $\Delta y_{30} = -50.015 \text{ m}$ $\Delta x_{03} := x_3 - x_0$ $\Delta x_{03} = 49.999$ m $\Delta y_{03} := y_3 - y_0$ $\Delta y_{03} = 50.015$ m $l_{30} := \sqrt{(\Delta x_{30})^2 + (\Delta y_{30})^2}$ $l_{30} = 70.720 \text{ m}$ odległość od stanowiska S3 do osi komina (przybliżona)

Obliczenie promienia komina dla poziomu pierwszego (1):

$$\mathbf{r}_{11} := \mathbf{l}_{10} \cdot \sin\left[\left(\frac{\alpha_{1P} - \alpha_{1L}}{2}\right) \cdot \operatorname{grad}\right] \qquad \mathbf{r}_{11} = 2.997 \text{ m}$$

$$\mathbf{r}_{21} \coloneqq \mathbf{l}_{20} \cdot \sin\left[\left(\frac{\alpha_{2P} - \alpha_{2L}}{2}\right) \cdot \operatorname{grad}\right] \qquad \mathbf{r}_{21} = 3.015 \text{ m}$$

$$r_{31} \coloneqq l_{30} \cdot sin\left[\left(\frac{\alpha_{3P} - \alpha_{3L}}{2}\right) \cdot grad\right] \qquad r_{31} = 3.000 \text{ m}$$

Obliczenie średniego promienia z trzech stanowisk:

$$r_{1sr} \coloneqq \frac{r_{11} + r_{21} + r_{31}}{3} \qquad r_{1sr} = 3.004 \text{ m}$$

Obliczenie wysokości dla poziomu pierwszego:

$$Z_{11} := z_1 + l_{10} \cdot \cos\left[\left(\frac{V_{1L} + V_{1P}}{2}\right) grad\right] + i_{h1}$$
 $Z_{11} = 119.532 \text{ m}$

$$Z_{21} := z_2 + l_{20} \cos \left[\left(\frac{V_{2L} + V_{2P}}{2} \right) \operatorname{grad} \right] + i_{h2} \qquad \qquad Z_{21} = 119.552 \text{ m}$$

$$Z_{31} := z_3 + l_{30} \cdot \cos\left[\left(\frac{V_{3L} + V_{3P}}{2}\right) \cdot \operatorname{grad}\right] + i_{h3}$$
 $Z_{31} = 119.551 \text{ m}$

Średnią wysokość poziomu pierwszego przyjęto jako poziom zerowy w układzie lokalnym komina i w odniesieniu do niego będą obliczane wysokości dla następnych poziomów.

 $Z_{01} := 3.000 \text{ m}$

gdzie: γ_{i0} - kąt z i-tego stanowiska na oś komina obliczony ze współrzędnych przybliżonych.

$$\gamma_{10} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 50.0100 \text{ g}$$

$$\gamma_{20} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \gamma_{20} = 49.9850 \text{ g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 50.0100 \text{ g}$$

- 50 -Obliczenie azymutów (kierunków zorientowanych) dla baz pomiarowych:

$$Az_{21} := 400 - \left(atan\left(\frac{\left|\Delta y_{21}\right|}{\left|\Delta x_{21}\right|}\right)\rho\right) \qquad \qquad Az_{21} = 300.0064 \text{ g}$$

$$Az_{12} \coloneqq 200 - \left(atan\left(\frac{\left|\Delta y_{12}\right|}{\left|\Delta x_{12}\right|}\right)\rho\right) \qquad Az_{12} = 100.0064 \text{ g}$$

$$Az_{32} := 200 + \left(atan\left(\frac{\left|\Delta y_{32}\right|}{\left|\Delta x_{32}\right|}\right)\rho\right) \qquad Az_{32} = 200.0000 \text{ g}$$

$$Az_{23} := \operatorname{atan}\left(\frac{\left|\Delta y_{23}\right|}{\left|\Delta x_{23}\right|}\right)\rho \qquad \qquad Az_{23} = 0.0000 \text{ g}$$

Obliczenie azymutów na oś komina z kątów obliczonych ze współrzędnych przybliżonych: 1.5

$$\begin{aligned} Az_{010} &:= \operatorname{atan} \left(\frac{|\Delta y_{10}|}{|\Delta x_{10}|} \right) \rho & Az_{010} = 49.9964 \text{ g} \\ Az_{020} &:= 400 - \left(\operatorname{atan} \left(\frac{|\Delta y_{20}|}{|\Delta x_{20}|} \right) \rho \right) & Az_{020} = 349.9914 \text{ g} \\ Az_{030} &:= 200 + \left(\operatorname{atan} \left(\frac{|\Delta y_{30}|}{|\Delta x_{30}|} \right) \rho \right) & Az_{030} = 250.0100 \text{ g} \end{aligned}$$

Obliczenie azymutów z kątów pomierzonych:

- 51 -

Równanie poprawek w postaci ogólnej według wzoru (24) s. 23:

$$\mathbf{v} := \left[\frac{\rho \cdot \Delta \mathbf{y}_{0S}}{\left(\mathbf{1}_{S0}\right)^2} \cdot \Delta \mathbf{x}_0 - \frac{\left(\rho \cdot \Delta \mathbf{x}_{0S}\right)}{\left(\mathbf{1}_{S0}\right)^2} \cdot \Delta \mathbf{y}_0 + \left(\mathbf{A} \mathbf{z}_{0S0} - \mathbf{A} \mathbf{z}_{pS0}\right)\right]^{\bullet}$$

gdzie:

 $\Delta x_{0S},\,\Delta y_{0S}$ - różnica między współrzędną stanowiska S a współrzędną przybliżoną komina 0 (np. $\Delta x_{10} = x_0 - x_1$),

 l_{S0} - odległość od danego stanowiska S do osi komina 0 obliczona ze współrzędnych przybliżonych,

Az_{oS0}- azymut z danego stanowiska S na oś komina 0 obliczony ze współrzędnych przybliżonych,

 $\mathrm{Az}_{\mathrm{pS0}}$ - azymut z danego stanowiska S na oś komina obliczony z kątów pomierzonych (np. Az_{p10}).

Zestawienie równań poprawek (wzory 27, 28, 29):

$$\begin{aligned} \mathbf{v}_{1} &\coloneqq \frac{\rho \cdot \Delta y_{01}}{\left(l_{10}\right)^{2}} \cdot \Delta x_{0} - \frac{\rho \cdot \Delta x_{01}}{\left(l_{10}\right)^{2}} \cdot \Delta y_{0} + \left(Az_{010} - Az_{p10}\right) \\ \mathbf{v}_{2} &\coloneqq \frac{\rho \cdot \Delta y_{02}}{\left(l_{20}\right)^{2}} \cdot \Delta x_{0} - \frac{\rho \cdot \Delta x_{02}}{\left(l_{20}\right)^{2}} \cdot \Delta y_{0} + \left(Az_{020} - Az_{p20}\right) \\ \mathbf{v}_{3} &\coloneqq \frac{\rho \cdot \Delta y_{03}}{\left(l_{30}\right)^{2}} \cdot \Delta x_{0} - \frac{\rho \cdot \Delta x_{03}}{\left(l_{30}\right)^{2}} \cdot \Delta y_{0} + \left(Az_{030} - Az_{p30}\right) \end{aligned}$$

Macierz współczynników (A) przy niewiadomych ($\Delta x, \Delta y$):

_

$$A := \begin{bmatrix} \frac{\rho \cdot \Delta y_{01}}{(l_{10})^2} & -\frac{\rho \cdot \Delta x_{01}}{(l_{10})^2} \\ \frac{\rho \cdot \Delta y_{02}}{(l_{20})^2} & -\frac{\rho \cdot \Delta x_{02}}{(l_{20})^2} \\ \frac{\rho \cdot \Delta y_{03}}{(l_{30})^2} & -\frac{\rho \cdot \Delta x_{03}}{(l_{30})^2} \end{bmatrix} \qquad A = \begin{pmatrix} -0.636733 & 0.636806 \\ 0.636606 & 0.636433 \\ 0.636633 & -0.636433 \\ 0.636806 & 0.6366433 \\ -0.636433 & -0.636433 \end{bmatrix}$$

Macierz wyrazów wolnych L (28):

$$L := \begin{pmatrix} Az_{010} - Az_{p10} \\ Az_{020} - Az_{p20} \\ Az_{030} - Az_{p30} \end{pmatrix} \qquad L = \begin{pmatrix} -0.0000 \\ 0.0000 \\ 0.0025 \end{pmatrix}$$

Macierz wag P:

$$P := \begin{pmatrix} \frac{1}{m_{S1}^2} & 0 & 0 \\ 0 & \frac{1}{m_{S2}^2} & 0 \\ 0 & 0 & \frac{1}{m_{S3}^2} \end{pmatrix} P = \begin{pmatrix} 221052.632 & 0.000 & 0.000 \\ 0.000 & 241379.310 & 0.000 \\ 0.000 & 0.000 & 443271.768 \end{pmatrix}$$

gdzie m_{Si} - patrz s. 40

Rozwiązując układ równań:

$$\begin{pmatrix} \Delta x_0 \\ \Delta y_0 \end{pmatrix} := (A^T \cdot P \cdot A)^{-1} \cdot A^T \cdot P \cdot L$$

$$A^T \cdot P \cdot A = \begin{pmatrix} 367103.37341348 & -171437.41341001 \\ -171437.41341001 & 366957.96280593 \end{pmatrix}$$

$$(A^T \cdot P \cdot A)^{-1} = \begin{pmatrix} 0.00000348 & 0.00000163 \\ 0.00000163 & 0.00000349 \end{pmatrix}$$

$$\mathbf{A}^{\mathrm{T}} \cdot \mathbf{P} \cdot \mathbf{L} = \begin{pmatrix} 704.87965764 \\ -704.65829692 \end{pmatrix}$$

otrzymuje się:

$$\Delta \mathbf{p} := \begin{pmatrix} \Delta \mathbf{x}_0 \\ \Delta \mathbf{y}_0 \end{pmatrix} \qquad \qquad \Delta \mathbf{p} = \begin{pmatrix} 0.0013 \\ -0.0013 \end{pmatrix}$$

gdzie:

 Δp - przyrosty współrzędnych pomiędzy współrzędnymi wyrównanymi a przybliżonymi.

Wyrównane współrzędne osi komina:

$$w_1 := w_0 - \Delta p$$
 $w_1 = \begin{pmatrix} 150.000\\ 1049.987 \end{pmatrix}$

gdzie:

 w_0 - współrzędne przybliżone osi komina,

 Δp - przyrosty współrzędnych pomiędzy współrzędnymi wyrównanymi a przybliżonymi,

w₁ - współrzędne osi komina dla pierwszego poziomu wyrównane.

$$\begin{pmatrix} x_{01} \\ y_{01} \end{pmatrix} := w_1 \qquad \begin{pmatrix} x_{01} \\ y_{01} \end{pmatrix} = \begin{pmatrix} 150.000 \\ 1049.987 \end{pmatrix}$$

gdzie:

 $\boldsymbol{x}_{01},\,\boldsymbol{y}_{01}\,$ - współrzędne osi komina wyrównane dla pierwszego poziomu.

Ocena dokładności:

$$v := A \cdot \Delta p - L$$
$$v = \begin{pmatrix} -0.0017 \\ 0.0000 \\ -0.0008 \end{pmatrix}$$

Warunek konieczny $A^T P v = 0$

$$A^{T} P \cdot v = \begin{pmatrix} 0.0000 \\ -0.0000 \end{pmatrix}$$
 - warunek spełniony

Obliczenie wartości błędu m₀

n := 3 - liczba równań obserwacyjnych.

k := 2 - liczba wyznaczanych niewiadomych.

$$\mathbf{m}_0 \coloneqq \sqrt{\frac{\mathbf{v}^T \mathbf{P} \cdot \mathbf{v}}{\mathbf{n} - \mathbf{k}}} \qquad \mathbf{m}_0 = 0.9595$$

- 54 -

Wyrównanie azymutów obliczonych z kątów pomierzonych:

$$Az_{p} := \begin{pmatrix} Az_{p10} \\ Az_{p20} \\ Az_{p30} \end{pmatrix} \qquad Az_{p} = \begin{pmatrix} 49.9964 \\ 349.9914 \\ 250.0075 \end{pmatrix}$$

Azymuty po wyrównaniu:

$$\begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} := Az_{p} - v \quad \begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} = \begin{pmatrix} 49.9980 \\ 349.9914 \\ 250.0083 \end{pmatrix}$$

gdzie:

v - obliczone poprawki dla azymutów.

Obliczenie przyrostów i odległości z wyrównanych współrzędnych osi komina:

$$\begin{aligned} \Delta x_{10} &\coloneqq x_{01} - x_1 & \Delta x_{10} = 49.990 \text{ m} \\ \Delta y_{10} &\coloneqq y_{01} - y_1 & \Delta y_{10} = 49.987 \text{ m} \\ \Delta x_{01} &\coloneqq x_1 - x_{01} & \Delta x_{01} = -49.990 \text{ m} \\ \Delta y_{01} &\coloneqq y_1 - y_{01} & \Delta y_{01} = -49.987 \text{ m} \\ 1_{10} &\coloneqq \sqrt{\left(\Delta x_{10}\right)^2 + \left(\Delta y_{10}\right)^2} & 1_{10} = 70.694 \text{ m} \\ \Delta x_{20} &\coloneqq x_{01} - x_2 & \Delta x_{20} = 50.000 \text{ m} \\ \Delta y_{20} &\coloneqq y_{01} - y_2 & \Delta y_{20} = -50.013 \text{ m} \\ \Delta x_{02} &\coloneqq x_2 - x_{01} & \Delta x_{02} = -50.000 \text{ m} \\ \Delta y_{02} &\coloneqq y_2 - y_{01} & \Delta y_{02} = 50.013 \text{ m} \\ 1_{20} &\coloneqq \sqrt{\left(\Delta x_{20}\right)^2 + \left(\Delta y_{20}\right)^2} & 1_{20} = 70.720 \text{ m} \\ \Delta x_{30} &\coloneqq x_{01} - x_3 & \Delta x_{30} = -50.000 \text{ m} \\ \Delta y_{30} &\coloneqq y_{01} - y_3 & \Delta y_{30} = -50.013 \text{ m} \\ \Delta x_{03} &\coloneqq x_3 - x_{01} & \Delta x_{03} = 50.013 \text{ m} \\ \Delta y_{03} &\coloneqq y_3 - y_{01} & \Delta y_{03} = 50.013 \text{ m} \\ 1_{30} &\coloneqq \sqrt{\left(\Delta x_{30}\right)^2 + \left(\Delta y_{30}\right)^2} & 1_{30} = 70.720 \text{ m} \end{aligned}$$

- 55 -Kąty od bazy obliczone ze współrzędnych wyrównanych osi komina:

Rys. 11. Schemat bazy pomiarowej po wyrównaniu współrzędnych osi komina

Fig. 11. A scheme of the survey base after settlement of the co-ordinate of the chimney

$$\gamma_{10} := \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 50.0083 \text{ g}$$

$$\gamma_{20} := \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{10} \cdot \Delta x_{10} + \Delta x_{10} \cdot \Delta y_{10}} \right) \cdot \rho \qquad \gamma_{20} = 49.9850 \text{ g}$$

$$\delta_{20} := \operatorname{atan} \left(\frac{\Delta x_{20} \cdot \Delta y_{20} + \Delta y_{20} \cdot \Delta y_{21}}{\Delta x_{20} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{20}} \right) \cdot \rho \qquad \qquad \delta_{20} = 50.0086 \text{ g}$$

$$\gamma_{30} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 50.0083 \text{ g}$$

- 56 -Obliczenie ze współrzędnych kąta S1-S2-S3:

$$\gamma_{13} := \operatorname{atan}\left(\frac{\Delta x_{21} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{23} + \Delta y_{21} \cdot \Delta y_{23}}\right) \cdot \rho \qquad \gamma_{13} = 99.9936 \text{ g}$$

Suma kątów γ_{20} i δ_{20} obliczonych ze współrzędnych wyrównanych powinna się równać kątowi S1-S2-S3 po wyrównaniu.

 $\gamma_{20} + \delta_{20} = 99.9936$ g $\gamma_{13} = 99.9936$ g - warunek spełniony Obliczenie azymutów z kątów obliczonych ze współrzędnych wyrównanych:

$$\begin{aligned} Az_{o10W} &\coloneqq \operatorname{atan} \left(\frac{\Delta y_{10}}{\Delta x_{10}} \right) \rho & Az_{o10W} &= 49.9980 \text{ g} \\ Az_{o20W} &\coloneqq 400 - \left(\operatorname{atan} \left(\frac{|\Delta y_{20}|}{|\Delta x_{20}|} \right) \rho \right) & Az_{o20W} &\equiv 349.9914 \text{ g} \\ Az_{o30W} &\coloneqq 200 + \left(\operatorname{atan} \left(\frac{|\Delta y_{30}|}{|\Delta x_{30}|} \right) \rho \right) & Az_{o30W} &\equiv 250.0083 \text{ g} \end{aligned}$$

Azymuty po wyrównaniu kątów:

 $Az_{p10W} = 49.9980 \text{ g}$ $Az_{p20W} = 349.9914 \text{ g}$ $Az_{p30W} = 250.0083 \text{ g}$

gdzie :

 $a_{\rm iW}$ - azymut ze stanowiska i-tego na oś komina obliczony z kątów

pomierzonych po wyrównaniu.

Azymuty obliczone ze współrzędnych wyrównanych oraz azymuty wyrównane z poprawek są sobie równe, zatem obliczenia wykonano prawidłowo.

Podstawiamy wyrównane dane (x,y - osi komina) do równań poprawek:

$$v_{1} := \frac{\rho \cdot \Delta y_{01}}{(l_{10})^{2}} \cdot \Delta x_{0} - \frac{\rho \cdot \Delta x_{01}}{(l_{10})^{2}} \cdot \Delta y_{0} + (Az_{010W} - Az_{p10W}) \qquad v_{1} = -0.0017 \text{ g}$$

$$\mathbf{v}_{2} := \frac{\rho \cdot \Delta y_{02}}{\left(l_{20}\right)^{2}} \cdot \Delta \mathbf{x}_{0} - \frac{\rho \cdot \Delta \mathbf{x}_{02}}{\left(l_{20}\right)^{2}} \cdot \Delta \mathbf{y}_{0} + \left(\mathbf{A} \mathbf{z}_{o20W} - \mathbf{A} \mathbf{z}_{p20W}\right) \qquad \mathbf{v}_{2} = 0.0000 \text{ g}$$

$$v_{3} := \frac{\rho \cdot \Delta y_{03}}{(l_{30})^{2}} \cdot \Delta x_{0} - \frac{\rho \cdot \Delta x_{03}}{(l_{30})^{2}} \cdot \Delta y_{0} + \left(Az_{030W} - Az_{p30W}\right) \qquad v_{3} = 0.0017 \text{ g}$$

• macierz błędów współrzędnych $C_x := m_0^2 (A^T \cdot P \cdot A)^{-1}$

$$\mathbf{C}_{\mathbf{x}} = \mathbf{m}_{0}^{2} (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} = \begin{bmatrix} m_{x}^{2} & m_{xy} \\ m_{xy} & m_{y}^{2} \end{bmatrix}$$

$$C_{\rm X} = \begin{pmatrix} 0.00000321 & 0.0000150 \\ 0.00000150 & 0.00000321 \end{pmatrix}$$

• błędy wyrównanych azymutów

i := 1..rows(A), $a_i :=$ submatrix(A, i, i, 1, cols(A))

$$m_{Az.i} := \sqrt{\begin{vmatrix} a_i C_x \cdot a_i^T \end{vmatrix}}$$
$$m_{Az.} = \begin{pmatrix} 0.0012 \\ 0.0020 \\ 0.0012 \end{pmatrix}$$

• błędy poprawek

$$m_{V} := \begin{bmatrix} \sqrt{m_{S1}^{2} - [m_{AZ.(1,1)}]^{2}} \\ \sqrt{m_{S2}^{2} - [m_{AZ.(2,1)}]^{2}} \\ \sqrt{m_{S3}^{2} - [m_{AZ.(3,1)}]^{2}} \end{bmatrix}$$
$$m_{V} = \begin{pmatrix} 0.0018 \\ 0.0006 \\ 0.0009 \end{pmatrix} \qquad K := \frac{v}{m_{V}} \qquad K = \begin{pmatrix} -0.9411 \\ 0.0006 \\ 1.7860 \end{pmatrix}$$

Błąd wyrównanego azymutu m_{vi} musi być mniejszy od dokładności jego pomiaru m_{kat}, tj. m_{vi} < m_{kat}.

• błędy współrzędnych

$$m_{x} := \sqrt{C_{x_{1,1}}} \qquad m_{x} = 0.0018 \text{ m}$$
$$m_{y} := \sqrt{C_{x_{2,2}}} \qquad m_{y} = 0.0018 \text{ m}$$
$$m_{xy} := C_{x_{1,2}} \qquad m_{xy} = 0.00000150 \text{ m}$$

• błąd położenia punktu:

$$m_P := \sqrt{m_X^2 + m_y^2}$$
 $m_P = 0.003$ m

• błąd położenia punktu w zadanym kierunku α

$$m(\alpha) := \sqrt{m_{x}^{2} \cdot \cos(\alpha)^{2} + m_{xy} \cdot \sin(2 \cdot \alpha) + m_{y}^{2} \cdot \sin(\alpha)^{2}}$$

gdzie:

 $\cos(\alpha)^2 = (\cos \alpha)^2$ forma zapisu wynika z wymagań programu Mahcad

Aby program Mathcad wykreślił elipsę błędów, należy z menu wybrać - insert - graph, następnie "X-Y plot" i opisać w sposób jak niżej.

 $m(\alpha) \cdot \sin(\alpha), m_P \cdot \sin(\alpha)$ Rys. 12. Elipsa błędów dla poziomu pierwszego

Fig. 12. The errors ellipse for first height level

• kąt skręcenia elipsy dla ekstremalnych wartości błędu położenia punktu:

$$\alpha_{C} := \left(\frac{1}{2}\right) \cdot \operatorname{atan} \left(\frac{2 \cdot m_{xy}}{m_{x}^{2} - m_{y}^{2}}\right) \cdot \rho + 400 \qquad \qquad \alpha_{C} = 350.0135 \text{ g}$$

$$\alpha_{D} := \left(\alpha_{C} + 100\right) - 400 \qquad \qquad \alpha_{D} = 50.0135 \text{ g}$$
obliczenie maksymalnych wartości błędu położenia punktu:

$$C := m\left(\alpha_{C}\right) \qquad \qquad C = 0.0020 \text{ m}$$

$$D := m(\alpha_D) \qquad \qquad D = 0.0016 m$$

- 59 -

- 61 -

6. POZIOM DRUGI

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 4 nacelowań.

Pomierzone kierunki ze stanowiska pierwszego na lewą tworzącą komina, poziomu drugiego (dziennik pomiarowy s. 27):

$$S1_{L2} := \begin{pmatrix} 100.1560 \\ 100.1560 \\ 100.1550 \\ 100.1530 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$$

Kierunki pomierzone zostały z tego samego stanowiska z tą samą dokładnością, dlatego do wagowania przyjmujemy dla każdego pomiaru kierunku

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{L2sr} := \frac{\sum S1_{L2}}{4} \quad S1_{L2sr} = 100.1550^{-g}$$

$$v := S1_{L2} - S1_{L2sr} \qquad v = \begin{pmatrix} 0.0010 \\ 0.0010 \\ 0.0000 \\ -0.0020 \end{pmatrix}$$

`

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1L2} := \sqrt{\frac{\binom{V}{v} P \cdot v}{n-1}}$$
 $m_{S1L2} = 0.0014$

Pomierzone kierunki ze stanowiska pierwszego na prawą tworzącą komina, poziomu drugiego (dziennik pomiarowy s. 27):

 $S1_{P2} := \begin{pmatrix} 105.3000 \\ 105.2980 \\ 105.3015 \\ 105.3005 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$

$$S1_{P2sr} := \frac{\sum S1_{P2}}{4} \quad S1_{P2sr} = 105.3000 \text{ g}}$$
$$v := S1_{P2} - S1_{P2sr} \quad v = \begin{pmatrix} 0.0000 \\ -0.0020 \\ 0.0015 \\ 0.0005 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1P2} := \sqrt{\frac{\binom{V}{v} P \cdot v}{n-1}}$$
 $m_{S1P2} = 0.0015$

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 8 nacelowań.

Obliczenie kierunku średniego oraz błędu wyznaczenia kierunku na stanowisko 2 ze stanowiska 1 (dziennik pomiarowy s. 27):

$$S1_{S2} := \begin{pmatrix} 152.7120 \\ 152.7020 \\ 152.7090 \\ 152.7070 \\ 152.7100 \\ 152.7100 \\ 152.7100 \\ 152.7110 \\ 152.7090 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{S2sr} := \frac{\sum S1_{S2}}{8} S1_{S2sr} = 152.7100 \text{ g} \\ \begin{pmatrix} 0.0020 \\ 0.0020 \\ -0.0010 \\ -0.0010 \\ 0.0000 \\ 0.0000 \\ 0.0010 \\ -0.0010 \end{pmatrix}$$

n := 8 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem wyznaczenia kierunku na stanowisko 2 ze stanowiska 1:

$$m_{S1S2} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1S2} = 0.0017$

Obliczenie rzeczywistego błędu wyznaczenia azymutu z pomiaru terenowego:

$$m_{S1} := \sqrt{\frac{(m_{S1L2})^2 + (m_{S1P2})^2}{4} + (m_{S1S2})^2} \qquad m_{S1} = 0.0020$$

$$m_{S2} = 0.0020$$

$$m_{S3} = 0.0012$$

- 63 -

Obliczenie współrzędnych płaskich (x, y) osi komina o przekroju kołowym. Pomiar z trzech stanowisk o znanych współrzędnych (x, y) metodą dwusiecznych. Przykład dla poziomu drugiego.

Fig. 13. A survey scheme

- 65 -Odczyty wykonane podczas pomiaru komina:

1) ze stanowiska S1:

wysokość instrumentu i_{h1} := 1.54

Hz	V	
$-\alpha_{12} := 152.7100^{\text{g}}$		
- $\alpha_{1L} := 100.1550^{\text{g}}$	$V_{1L} := 89.5140$	g
- $\alpha_{1P} := 105.3000^{\text{g}}$	$V_{1P} := 89.5160$	g
1.58		
- $\alpha_{21} := 88.4000 \text{ g}$		
- α _{2L} := 135.8500 g	$V_{2L} := 90.0500$	g
- α _{2P} := 140.9900 g	$V_{2P} := 90.0550$	g
1.63		
- $\alpha_{32} := 303.9300$ g		
- α _{3L} := 351.3440 ^g	$V_{3L} := 90.3380$	g
- α _{3P} := 356.4840 ^g	$V_{3P} := 90.3370$	g
	Hz - $\alpha_{12} := 152.7100^{\text{g}}$ - $\alpha_{1L} := 100.1550^{\text{g}}$ - $\alpha_{1P} := 105.3000^{\text{g}}$ 1.58 - $\alpha_{21} := 88.4000^{\text{g}}$ - $\alpha_{2L} := 135.8500^{\text{g}}$ - $\alpha_{2P} := 140.9900^{\text{g}}$ 1.63 - $\alpha_{32} := 303.9300^{\text{g}}$ - $\alpha_{3L} := 351.3440^{\text{g}}$ - $\alpha_{3P} := 356.4840^{\text{g}}$	Hz V - $\alpha_{12} := 152.7100^{\text{g}}$ - $\alpha_{1L} := 100.1550^{\text{g}}$ V _{1L} := 89.5140 - $\alpha_{1P} := 105.3000^{\text{g}}$ V _{1P} := 89.5160 1.58 - $\alpha_{21} := 88.4000^{\text{g}}$ - $\alpha_{2L} := 135.8500^{\text{g}}$ V _{2L} := 90.0500 - $\alpha_{2P} := 140.9900^{\text{g}}$ V _{2P} := 90.0550 1.63 - $\alpha_{32} := 303.9300^{\text{g}}$ - $\alpha_{3L} := 351.3440^{\text{g}}$ V _{3L} := 90.3380 - $\alpha_{3P} := 356.4840^{\text{g}}$ V _{3P} := 90.3370

- 66 -Obliczenie wartości kierunków od bazy na oś komina:

Rys. 14. Schemat obliczenia wartości kierunków na oś komina

Fig. 14. The calculation scheme of the value of directions on the axis of the chimney

$$\alpha_{10} := \alpha_{12} - \frac{\alpha_{1L} + \alpha_{1P}}{2} \qquad \alpha_{10} = 49.9825 \text{ g}$$

$$\alpha_{20} := \frac{\alpha_{2L} + \alpha_{2P}}{2} - \alpha_{21} \qquad \alpha_{20} = 50.0200 \text{ g}$$

$$\alpha_{30} := \frac{\alpha_{3L} + \alpha_{3P}}{2} - \alpha_{32} \qquad \alpha_{30} = 49.9840 \text{ g}$$

Obliczenie przyrostów Δx_i , Δy_i pomiędzy stanowiskami pomiarowymi i długości boków bazy pomiarowej ze współrzędnych.

- 67 -

$$l_{23} := \sqrt{(\Delta x_{23})^2 + (\Delta y_{23})^2} \qquad \qquad l_{23} = 100.000 \text{ m}$$

Obliczenie przybliżonych współrzędnych osi komina ze stanowisk S1 i S2:

Rys. 16. Schemat bazy pomiarowej do obliczenia współrzędnych przybliżonych osi komina

Fig. 16. The survey base scheme to calculate the approximate co-ordinates of the chimney axes

$$p := l_{12} \cdot \frac{\sin(\alpha_{20})}{\sin(\alpha_{10} + \alpha_{20})} \qquad p = 70.733 \text{ m}$$

$$q := l_{12} \cdot \frac{\sin(\alpha_{10})}{\sin(\alpha_{10} + \alpha_{20})} \qquad q = 70.691 \text{ m}$$

$$a := \frac{p^2 - q^2 + (l_{12})^2}{2 \cdot l_{12}} \qquad a = 50.029 \text{ m}$$

$$b := \sqrt{p^2 - a^2} \qquad b = 50.002 \text{ m}$$

$$x_0 := x_1 + a \cdot \frac{\Delta x_{12}}{l_{12}} + b \cdot \frac{\Delta y_{12}}{l_{12}} \qquad x_0 = 150.007 \text{ m}$$

$$y_0 := y_1 + a \cdot \frac{\Delta y_{12}}{l_{12}} - b \cdot \frac{\Delta x_{12}}{l_{12}} \qquad y_0 = 1050.034 \text{ m}$$

- 69 -Przybliżone współrzędne osi komina obliczone ze stanowisk S1 i S2:

$$w_0 := \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 $w_0 = \begin{pmatrix} 150.007 \\ 1050.034 \end{pmatrix}$

Obliczenie przyrostów Δx_{i0} , Δy_{i0} pomiędzy stanowiskami pomiarowymi a przybliżonymi współrzędnymi osi komina i długości boków od stanowiska do środka komina (przybliżonego).

Współrzędne stanowisk i kąty pomierzone od baz pomiarowych:

 $\begin{array}{ll} \alpha_{10}\coloneqq\alpha_{10}\rho & \alpha_{10}=49.9825 \ {}^{g}\\ \alpha_{20}\coloneqq\alpha_{20}\rho & \alpha_{20}=50.0200 \ {}^{g}\\ \alpha_{30}=49.9840 \ {}^{g} \end{array}$

- 70 -

Obliczenie przyrostów współrzędnych i długości boków:

$$\Delta x_{10} := x_0 - x_1 \qquad \Delta x_{10} = 49.997 \text{ m}$$

$$\Delta y_{10} := y_0 - y_1 \qquad \Delta y_{10} = 50.034 \text{ m}$$

$$\Delta x_{01} := x_1 - x_0 \qquad \Delta x_{01} = -49.997 \text{ m}$$

$$\Delta y_{01} := y_1 - y_0 \qquad \Delta y_{01} = -50.034 \text{ m}$$

$$l_{10} := \sqrt{(\Delta x_{10})^2 + (\Delta y_{10})^2} \qquad l_{10} = 70.733 \text{ m}$$

$$\Delta x_{20} := x_0 - x_2 \qquad \Delta x_{20} = 50.007 \text{ m}$$

$$\Delta y_{02} := y_0 - y_2 \qquad \Delta y_{20} = -49.966 \text{ m}$$

$$\Delta x_{02} := x_2 - x_0 \qquad \Delta x_{02} = -50.007 \text{ m}$$

$$\Delta y_{02} := y_2 - y_0 \qquad \Delta y_{02} = 49.966 \text{ m}$$

$$l_{20} := \sqrt{(\Delta x_{20})^2 + (\Delta y_{20})^2} \qquad l_{20} = 70.691 \text{ m}$$

$$\Delta x_{03} := x_0 - x_3 \qquad \Delta x_{30} = -49.993 \text{ m}$$

$$\Delta y_{30} := y_0 - y_3 \qquad \Delta y_{30} = -49.966 \text{ m}$$

$$l_{30} := \sqrt{(\Delta x_{30})^2 + (\Delta y_{30})^2} \qquad l_{30} = 70.681 \text{ m}$$
Obliczenie promienia komina dla poziomu drugiego (2):

$$r_{12} := l_{10} \cdot \sin \left[\left(\frac{\alpha_{1P} - \alpha_{1L}}{2} \right) \cdot \text{grad} \right] \qquad r_{12} = 2.857 \text{ m}$$

$$r_{22} := l_{20} \cdot \sin \left[\left(\frac{\alpha_{3P} - \alpha_{3L}}{2} \right) \cdot \text{grad} \right] \qquad r_{22} = 2.853 \text{ m}$$

$$r_{32} := l_{30} \cdot \sin\left[\left(\frac{\alpha_{3p} - \alpha_{3L}}{2}\right) \cdot \text{grad}\right]$$
 $r_{32} = 2.853 \text{ m}$

Obliczenie średniego promienia z trzech stanowisk:

$$r_{2sr} := \frac{r_{11} + r_{21} + r_{31}}{3}$$
 $r_{2sr} = 3.004 \text{ m}$

- 71 -Obliczenie wysokości poziomu drugiego:

$$Z_{12} := z_1 + l_{10} \cdot \cos\left[\left(\frac{V_{1L} + V_{1P}}{2}\right) \text{grad}\right] + i_{h1} \qquad Z_{12} = 131.587 \text{ m}$$

$$Z_{22} := z_2 + l_{20} \cdot \cos\left[\left(\frac{V_{2L} + V_{2P}}{2}\right) \text{grad}\right] + i_{h2} \qquad Z_{22} = 131.561 \text{ m}$$

$$Z_{32} := z_3 + l_{30} \cdot \cos\left[\left(\frac{V_{3L} + V_{3P}}{2}\right) \text{grad}\right] + i_{h3} \qquad Z_{32} = 131.577 \text{ m}$$

$$Z_{02} := \frac{Z_{12} + Z_{22} + Z_{32}}{3} - \left(\frac{Z_{11} + Z_{21} + Z_{31}}{3}\right) + Z_{01}$$

$$Z_{02} = 15.030 \text{ m}$$

Fig. 18. A scheme to the calculate angles from the survey base

$$\gamma_{10} := \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 49.9825 \text{ g}$$

$$\gamma_{20} \coloneqq \text{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \qquad \gamma_{20} = 50.0200 \text{ g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 49.9825 \text{ g}$$

Obliczenie azymutów (kierunków zorientowanych) dla baz pomiarowych:

$$Az_{21} \coloneqq 400 - \left(atan\left(\frac{|\Delta y_{21}|}{|\Delta x_{21}|}\right)\rho\right) \qquad Az_{21} \equiv 300.0064 \text{ g}$$
$$Az_{12} \coloneqq 200 - \left(atan\left(\frac{|\Delta y_{12}|}{|\Delta x_{12}|}\right)\rho\right) \qquad Az_{12} \equiv 100.0064 \text{ g}$$

$$Az_{32} := 200 + \left(\operatorname{atan} \left(\frac{|\Delta y_{32}|}{|\Delta x_{32}|} \right) \rho \right) \qquad Az_{32} = 200.0000 \text{ g}$$

$$Az_{32} := \operatorname{atan} \left(\frac{|\Delta y_{23}|}{|\Delta x_{32}|} \right) \rho \qquad Az_{32} = 0.0000 \text{ g}$$

$$Az_{23} := \operatorname{atan}\left(\frac{|\Delta y_{23}|}{|\Delta x_{23}|}\right)\rho \qquad \qquad Az_{23} = 0.0000 \text{ g}$$

Obliczenie azymutów na oś komina z kątów obliczonych ze współrzędnych przybliżonych:

$$Az_{010} \coloneqq \operatorname{atan}\left(\frac{\left|\Delta y_{10}\right|}{\left|\Delta x_{10}\right|}\right)\rho \qquad Az_{010} \equiv 50.0239 \text{ g}$$

$$Az_{020} \coloneqq 400 - \left(\operatorname{atan}\left(\frac{\left|\Delta y_{20}\right|}{\left|\Delta x_{20}\right|}\right)\rho\right) \qquad Az_{020} \equiv 350.0264 \text{ g}$$

$$Az_{030} := 200 + \left(atan\left(\frac{|\Delta y_{30}|}{|\Delta x_{30}|}\right)\rho\right)$$
iczenie azymutów z katów pomierzonych

Az₀₃₀ = 249.9825 g

Obli nych: ą

$\operatorname{Az}_{p10} \coloneqq \operatorname{Az}_{12} - \alpha_{10}$	$Az_{p10} = 50.0239$ g
$\operatorname{Az}_{p20} := \operatorname{Az}_{21} + \alpha_{20}$	$Az_{p20} = 350.0264$ g
$Az_{p30} := Az_{32} + \alpha_{30}$	$Az_{p30} = 249.9840$ g

Macierz współczynników (A) przy niewiadomych (Δx , Δy):

$$\mathbf{A} = \begin{pmatrix} -0.636658 & 0.636181 \\ 0.636531 & 0.637059 \\ 0.636708 & -0.637059 \end{pmatrix}$$

Macierz wyrazów wolnych L (wzór 28):

$$\mathbf{L} = \begin{pmatrix} -0.0000 \\ -0.0000 \\ -0.0015 \end{pmatrix}$$

Macierz wag P:

$$\mathbf{P} = \begin{pmatrix} 256488.55 & 0 & 0 \\ 0 & 262500 & 0 \\ 0 & 0 & 646153.846 \end{pmatrix}$$

Rozwiązując układ równań (26), otrzymuje się:

$$\Delta \mathbf{p} := \begin{pmatrix} \Delta \mathbf{x}_0 \\ \Delta \mathbf{y}_0 \end{pmatrix} \qquad \qquad \Delta \mathbf{p} = \begin{pmatrix} -0.0009 \\ 0.0009 \end{pmatrix}$$

Wyrównane współrzędne osi komina:

$$w_{2} := w_{0} - \Delta p \qquad w_{2} = \begin{pmatrix} 150.008 \\ 1050.034 \end{pmatrix}$$
$$\begin{pmatrix} x_{02} \\ y_{02} \end{pmatrix} := w_{2} \qquad \begin{pmatrix} x_{02} \\ y_{02} \end{pmatrix} = \begin{pmatrix} 150.008 \\ 1050.034 \end{pmatrix}$$

Ocena dokładności:

Ocena dokładności:

$$v := A \cdot \Delta p - L$$
 $v = \begin{pmatrix} 0.0011 \\ 0.0000 \\ 0.0004 \end{pmatrix}$

- 74 -

Warunek konieczny $A^T P v = 0$

$$A^{T} P \cdot v = \begin{pmatrix} 0.0000\\ 0.0000 \end{pmatrix}$$
 - warunek spełniony

Obliczenie wartości błędu m₀

- liczba równań obserwacyjnych n := 3

k := 2 - liczba wyznaczanych niewiadomych $\mathbf{m}_0 := \sqrt{\frac{\mathbf{v}^T \mathbf{P} \cdot \mathbf{v}}{n-k}}$ $m_0 = 0.6487$

Wyrównanie azymutów obliczonych z kątów pomierzonych:

$$Az_{p} := \begin{pmatrix} Az_{p10} \\ Az_{p20} \\ Az_{p30} \end{pmatrix} \qquad Az_{p} = \begin{pmatrix} 50.0239 \\ 350.0264 \\ 249.9840 \end{pmatrix}$$

Azymuty po wyrównaniu:

$$\begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} := Az_{p} - v \quad \begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} = \begin{pmatrix} 50.0228 \\ 350.0264 \\ 249.9836 \end{pmatrix}$$

Obliczenie przyrostów i odległości z wyrównanych współrzędnych osi komina:

$$\Delta x_{10} \coloneqq x_{02} - x_1 \qquad \Delta x_{10} = 49.998 \text{ m}$$

$$\Delta y_{10} \coloneqq y_{02} - y_1 \qquad \Delta y_{10} = 50.034 \text{ m}$$

$$\Delta x_{01} \coloneqq x_1 - x_{02} \qquad \Delta x_{01} = -49.998 \text{ m}$$

$$\Delta y_{01} \coloneqq y_1 - y_{02} \qquad \Delta y_{01} = -50.034 \text{ m}$$

$$l_{10} \coloneqq \sqrt{(\Delta x_{10})^2 + (\Delta y_{10})^2} \qquad l_{10} = 70.733 \text{ m}$$

$$\Delta x_{20} \coloneqq x_{02} - x_2 \qquad \Delta x_{20} = 50.008 \text{ m}$$

$$\Delta y_{20} \coloneqq y_{02} - y_2 \qquad \Delta y_{20} = -49.966 \text{ m}$$

$$\begin{array}{c} -75 \\ \Delta x_{02} := x_2 - x_{02} & \Delta x_{02} = -50.008 \text{ m} \\ \Delta y_{02} := y_2 - y_{02} & \Delta y_{02} = 49.966 \text{ m} \\ 1_{20} := \sqrt{\left(\Delta x_{20}\right)^2 + \left(\Delta y_{20}\right)^2} & 1_{20} = 70.692 \text{ m} \\ \Delta x_{30} := x_{02} - x_3 & \Delta x_{30} = -49.992 \text{ m} \\ \Delta y_{30} := y_{02} - y_3 & \Delta y_{30} = -49.966 \text{ m} \\ \Delta x_{03} := x_3 - x_{02} & \Delta x_{03} = 49.992 \text{ m} \\ \Delta y_{03} := y_3 - y_{02} & \Delta y_{03} = 49.966 \text{ m} \\ 1_{30} := \sqrt{\left(\Delta x_{30}\right)^2 + \left(\Delta y_{30}\right)^2} & 1_{30} = 70.681 \text{ m} \\ \end{array}$$

 $S1(x_1,y_1,z_1)$ Rys. 19. Schemat bazy pomiarowej po wyrównaniu współrzędnych osi komina

 $S2(x_2,y_2,z_2)$

Fig. 19. A scheme of the survey base after settlement of the co-ordinate of the chimney

$$\gamma_{10} := \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 49.9836 \text{ g}$$

$$\gamma_{20} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \qquad \gamma_{20} = 50.0200 \text{ g}$$

$$\delta_{20} := \operatorname{atan} \left(\frac{\Delta x_{20} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{20}}{\Delta x_{20} \cdot \Delta x_{23} + \Delta y_{23} \cdot \Delta y_{20}} \right) \cdot \rho \qquad \qquad \delta_{20} = 49.9736 \quad \text{g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \qquad \gamma_{30} = 49.9836 \text{ g}$$

Obliczenie ze współrzędnych kąta S1-S2-S3:

$$\gamma_{13} := \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{23} + \Delta y_{21} \cdot \Delta y_{23}} \right) \cdot \rho \qquad \gamma_{13} = 99.9936 \text{ g}$$

Suma kątów γ_{20} i δ_{20} obliczonych ze współrzędnych wyrównanych powinna się równać kątowi S1-S2-S3 po wyrównaniu.

$$\begin{aligned} Az_{o10W} &\coloneqq \operatorname{atan}\left(\frac{\Delta y_{10}}{\Delta x_{10}}\right)\rho & Az_{o10W} &= 50.0228 \quad \text{g} \\ Az_{o20W} &\coloneqq 400 - \left(\operatorname{atan}\left(\frac{|\Delta y_{20}|}{|\Delta x_{20}|}\right)\rho\right) & Az_{o20W} &= 350.0264 \quad \text{g} \\ Az_{o30W} &\coloneqq 200 + \left(\operatorname{atan}\left(\frac{|\Delta y_{30}|}{|\Delta x_{30}|}\right)\rho\right) & Az_{o30W} &= 249.9836 \quad \text{g} \end{aligned}$$

Azymuty po wyrównaniu kątów:

 $Az_{p10W} = 50.0228 \text{ g}$ $Az_{p20W} = 350.0264 \text{ g}$ $Az_{p30W} = 249.9836 \text{ g}$

Azymuty obliczone ze współrzędnych wyrównanych oraz azymuty wyrównane z poprawek są sobie równe, zatem obliczenia wykonano prawidłowo.

$$v_2 = 0.0000$$
 g

 $v_3 = -0.0011$ g

• macierz błędów współrzędnych
$$C_x := m_0^2 (A^T \cdot P \cdot A)^{-1}$$

$$C_{\rm X} = \begin{pmatrix} 0.00000128 & 0.0000070\\ 0.0000070 & 0.00000128 \end{pmatrix}$$

• błędy wyrównanych azymutów

$$i := 1 .. rows(A), a_i := submatrix(A, i, i, 1, cols(A))$$
$$m_{Az._i} := \sqrt{\left|a_i C_x \cdot a_i^T\right|}$$
$$m_{Az.} = \begin{pmatrix} 0.0007 \\ 0.0013 \\ 0.0007 \end{pmatrix}$$

• błędy poprawek

$$m_{V} := \begin{bmatrix} \sqrt{m_{S1}^{2} - [m_{Az.(1,1)}]^{2}} \\ \sqrt{m_{S2}^{2} - [m_{Az.(2,1)}]^{2}} \\ \sqrt{m_{S3}^{2} - [m_{Az.(3,1)}]^{2}} \end{bmatrix}$$
$$m_{V} = \begin{pmatrix} 0.0019 \\ 0.0015 \\ 0.0010 \end{pmatrix} \qquad K := \frac{v}{m_{V}} \qquad K = \begin{pmatrix} 0.5850 \\ 0.0005 \\ -1.0432 \end{pmatrix}$$

Błąd wyrównanego azymutu m_{vi} musi być mniejszy od dokładności jego pomiaru m_{kat}, tj. m_{vi} < m_{kat}.

• błędy współrzędnych

$$m_{x} := \sqrt{C_{x_{1,1}}} \qquad m_{x} = 0.0011 \text{ m}$$

$$m_{y} := \sqrt{C_{x_{2,2}}} \qquad m_{y} = 0.0011 \text{ m}$$

$$m_{xy} := C_{x_{1,2}} \qquad m_{xy} = 0.00000070 \text{ m}$$

• błąd położenia punktu:

$$m_{\rm P} := \sqrt{m_{\rm X}^2 + m_{\rm y}^2}$$
 $m_{\rm P} = 0.002$ m

• błąd położenia punktu w zadanym kierunku α

 $m(\alpha) \cdot sin(\alpha), m_P \cdot sin(\alpha)$ **Rys. 20.** Elipsa błędów dla poziomu drugiego

Fig. 20. The errors ellipse for second height level

• kąt skręcenia elipsy dla ekstremalnych wartości błędu położenia punktu: $\alpha_{\rm C}$ = 49.9811 g

 $\alpha_{\rm D} = 149.9811 \text{ g}$

obliczenie maksymalnych wartości błędu położenia punktu: C := m(α_C) C = 0.0009 m D := m(α_D) D = 0.0008 m

7. POZIOM TRZECI

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 4 nacelowań.

Pomierzone kierunki ze stanowiska pierwszego na lewą tworzącą komina, poziomu trzeciego (dziennik pomiarowy s. 27):

$$S1_{L3} := \begin{pmatrix} 100.2580 \\ 100.2590 \\ 100.2570 \\ 100.2580 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$$

Kierunki pomierzone zostały z tego samego stanowiska z tą samą dokładnością dlatego do wagowania przyjmujemy dla każdego pomiaru kierunku

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{L3sr} := \frac{\sum S1_{L3}}{4} \quad S1_{L3sr} = 100.2580^{g}$$

$$v := S1_{L3} - S1_{L3sr} \qquad v = \begin{pmatrix} 0.0000 \\ 0.0010 \\ -0.0010 \\ 0.0000 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1L3} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1L3} = 0.0008$
Pomierzone kierunki ze stanowiska pierwszego na prawą tworzącą komina, poziomu trzeciego (dziennik pomiarowy s. 27):

 $S1_{P3} := \begin{pmatrix} 105.2190 \\ 105.2210 \\ 105.2200 \\ 105.2200 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$

$$S1_{P3sr} := \frac{\sum S1_{P3}}{4} \quad S1_{P3sr} = 105.2200 \text{ g}}{0.0010}$$
$$v := S1_{P3} - S1_{P3sr} \qquad v = \begin{pmatrix} -0.0010\\ 0.0010\\ 0.0000\\ 0.0000 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1P3} := \sqrt{\frac{\binom{V}{v} P \cdot v}{n-1}}$$
 $m_{S1P3} = 0.0008$

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 8 nacelowań.

Obliczenie kierunku średniego oraz błedu wyznaczenia kierunku na stanowisko 2 ze stanowiska 1 (dziennik pomiarowy s. 27):

$$S1_{S2} := \begin{pmatrix} 152.7120 \\ 152.7120 \\ 152.7090 \\ 152.7070 \\ 152.7100 \\ 152.7100 \\ 152.7100 \\ 152.7110 \\ 152.7090 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (- 200g).$$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$v := S1_{S2} - S1_{S2sr} \qquad v = \begin{pmatrix} 0.0020 \\ 0.0020 \\ -0.0010 \\ -0.0010 \\ 0.0000 \\ 0.0000 \\ 0.0010 \\ -0.0010 \end{pmatrix}$$

n := 8 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem wyznaczenia kierunku na stanowisko 2 ze stanowiska 1:

$$m_{S1S2} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1S2} = 0.0017$

Obliczenie rzeczywistego błędu wyznaczenia azymutu z pomiaru terenowego:

$$m_{S1} := \sqrt{\frac{(m_{S1L3})^2 + (m_{S1P3})^2}{4} + (m_{S1S2})^2} \quad m_{S1} = 0.0018$$
$$m_{S2} = 0.0020$$
$$m_{S3} = 0.0014$$

Obliczenie współrzędnych płaskich (x, y) osi komina o przekroju kołowym. Pomiar z trzech stanowisk o znanych współrzędnych (x, y) metodą dwusiecznych. Przykład dla poziomu trzeciego.

Rys. 21. Schemat pomiaru

Fig. 21. A survey scheme

Odczyty wykonane podczas p	omiaru komina:		
1) ze stanowiska S1:			
wysokość insrumentu i _{h1} :=	1.54		
	Hz	V	
na stanowisko S2	- $\alpha_{12} := 152.7100^{\text{g}}$		
lewa tworząca komina	- $\alpha_{1L} := 100.2580^{\text{g}}$	$V_{1L} := 78.6150^{-g}$	
prawa tworząca komina	- $\alpha_{1P} := 105.2200^{\text{g}}$	$V_{1P} := 78.6200^{-g}$	
2) ze stanowiska S2: wysokość instrumentu i _{h2} := 1.58			
na stanowisko S1	- α ₂₁ := 88.4000 g		
lewa tworząca komina	- α _{2L} := 135.9150 g	$V_{2L} := 79.1500$ g	
prawa tworząca komina	- $\alpha_{2P} := 140.8730 \text{ g}$	$V_{2P} := 79.1540$ g	
3) ze stanowiska S3: wysokość instrumentu i _{h3} := 1.63			
na stanowisko S2	- $\alpha_{32} := 303.9300$ g		
lewa tworząca komina	- $\alpha_{3L} := 351.4170^{\text{ g}}$	V _{3L} := 79.4750 ^g	
prawa tworząca komina	- α _{3P} := 356.3880 ^g	$V_{3P} := 79.4730^{\text{g}}$	

Obliczenie wartości kierunków od bazy na oś komina:

- 84 -

Rys. 22. Schemat obliczenia wartości kierunków na oś komina

Fig. 22. The calculation scheme of the value of directions on the axis of the chimney.

$\alpha_{10} \coloneqq \alpha_{12} - \frac{\alpha_{1L} + \alpha_{1P}}{2}$	$\alpha_{10} = 49.9710$ g
$\alpha_{20} \coloneqq \frac{\alpha_{2L} + \alpha_{2P}}{2} - \alpha_{21}$	$\alpha_{20} = 49.9940$ g
$\alpha_{30} \coloneqq \frac{\alpha_{3L} + \alpha_{3P}}{2} - \alpha_{32}$	$\alpha_{30} = 49.9725$ g

- 85 -Obliczenie przyrostów Δx_i , Δy_i pomiędzy stanowiskami pomiarowymi i długości boków bazy pomiarowej ze współrzędnych

 $l_{23} := \sqrt{(\Delta x_{23})^2 + (\Delta y_{23})^2}$ - 86 $l_{23} = 100.000 \text{ m}$

Obliczenie przybliżonych współrzędnych osi komina ze stanowisk S1 i S2:

Rys. 24. Schemat bazy pomiarowej do obliczenia współrzędnych przybliżonych osi komina

Fig. 24. The survey base scheme to calculate the approximate co-ordinates of the chimney axes

$\mathbf{p} := 1_{12} \cdot \frac{\sin(\alpha_{20})}{\sin(\alpha_{10} + \alpha_{20})}$	p = 70.704 m
$q := l_{12} \cdot \frac{\sin(\alpha_{10})}{\sin(\alpha_{10} + \alpha_{20})}$	q = 70.678 m
$a := \frac{p^2 - q^2 + (l_{12})^2}{2 \cdot l_{12}}$	a = 50.018 m
$b := \sqrt{p^2 - a^2}$	b = 49.973 m
$x_0 := x_1 + a \cdot \frac{\Delta x_{12}}{l_{12}} + b \cdot \frac{\Delta y_{12}}{l_{12}}$	$x_0 = 149.978$ m
$y_0 := y_1 + a \cdot \frac{\Delta y_{12}}{l_{12}} - b \cdot \frac{\Delta x_{12}}{l_{12}}$	$y_0 = 1050.023$ m

- 87 -Przybliżone współrzędne osi komina obliczone ze stanowisk S1 i S2:

$$w_0 := \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 $w_0 = \begin{pmatrix} 149.978 \\ 1050.023 \end{pmatrix}$

Obliczenie przyrostów Δx_{i0} , Δy_{i0} pomiędzy stanowiskami pomiarowymi a przybliżonymi współrzędnymi osi komina i długości boków od stanowiska do środka komina (przybliżonego).

Rys. 25. Schemat pełnej bazy pomiarowej

Fig. 25. A scheme of the complete survey base

Współrzędne stanowisk i kąty pomierzone od baz pomiarowych:

 $\begin{array}{ll} \alpha_{10}\coloneqq\alpha_{10}\rho & \alpha_{10}=49.9710 \ \mbox{g} \\ \alpha_{20}\coloneqq\alpha_{20}\rho & \alpha_{20}=49.9940 \ \mbox{g} \\ \alpha_{30}=49.9725 \ \ \mbox{g} \end{array}$

- 88 -Obliczenie przyrostów współrzędnych i długości boków:

$$\begin{array}{lll} \Delta x_{10} \coloneqq x_0 - x_1 & \Delta x_{10} = 49.968 \ m \\ \Delta y_{10} \coloneqq y_0 - y_1 & \Delta y_{10} = 50.023 \ m \\ \Delta x_{01} \coloneqq x_1 - x_0 & \Delta x_{01} = -49.968 \ m \\ \Delta y_{01} \coloneqq y_1 - y_0 & \Delta v_{01} = -50.023 \ m \\ l_{10} \coloneqq \sqrt{\left(\Delta x_{10}\right)^2 + \left(\Delta y_{10}\right)^2} & l_{10} = 70.704 \ m \end{array}$$

$$\Delta x_{20} := x_0 - x_2 \qquad \Delta x_{20} = 49.978 \text{ m}$$

$$\Delta y_{20} := y_0 - y_2 \qquad \Delta y_{20} = -49.977 \text{ m}$$

$$\Delta x_{02} := x_2 - x_0 \qquad \Delta x_{02} = -49.978 \text{ m}$$

$$\Delta y_{02} := y_2 - y_0 \qquad \Delta y_{02} = 49.977 \text{ m}$$

$$l_{20} := \sqrt{(\Delta x_{20})^2 + (\Delta y_{20})^2} \qquad l_{20} = 70.678 \text{ m}$$

$$\Delta x_{30} := x_0 - x_3 \qquad \Delta x_{30} = -50.022 \text{ m}$$

$$\Delta y_{30} := y_0 - y_3 \qquad \Delta y_{30} = -49.977 \text{ m}$$

$$\Delta x_{03} := x_3 - x_0 \qquad \Delta x_{03} = 50.022 \text{ m}$$

$$\Delta y_{03} := y_3 - y_0 \qquad \Delta y_{03} = 49.977 \text{ m}$$

 $l_{30} := \sqrt{(\Delta x_{30})^2 + (\Delta y_{30})^2} \qquad l_{30} = 70.710 \text{ m}$ Obliczenie promienia komina dla poziomu trzeciego (3):

$$\mathbf{r}_{13} \coloneqq \mathbf{l}_{10} \cdot \sin\left[\left(\frac{\alpha_{1P} - \alpha_{1L}}{2}\right) \cdot \operatorname{grad}\right] \qquad \mathbf{r}_{13} = 2.755 \text{ m}$$

$$\mathbf{r}_{23} \coloneqq \mathbf{l}_{20} \cdot \sin\left[\left(\frac{\alpha_{2P} - \alpha_{2L}}{2}\right) \cdot \operatorname{grad}\right] \qquad \mathbf{r}_{23} = 2.752 \text{ m}$$
$$\mathbf{r}_{33} \coloneqq \mathbf{l}_{30} \cdot \sin\left[\left(\frac{\alpha_{3P} - \alpha_{3L}}{2}\right) \cdot \operatorname{grad}\right] \qquad \mathbf{r}_{33} = 2.760 \text{ m}$$

Obliczenie średniego promienia z trzech stanowisk:

$$r_{3sr} := \frac{r_{11} + r_{21} + r_{31}}{3}$$
 $r_{3sr} = 3.004$ m

- 89 -Obliczenie wysokości poziomu trzeciego:

$$Z_{13} \coloneqq z_1 + l_{10} \cdot \cos\left[\left(\frac{V_{1L} + V_{1P}}{2}\right) \text{grad}\right] + i_{h1} \qquad Z_{13} = 143.294 \text{ m}$$

$$Z_{23} \coloneqq z_2 + l_{20} \cdot \cos\left[\left(\frac{V_{2L} + V_{2P}}{2}\right) \text{grad}\right] + i_{h2} \qquad Z_{23} = 143.294 \text{ m}$$

$$Z_{33} \coloneqq z_3 + l_{30} \cdot \cos\left[\left(\frac{V_{3L} + V_{3P}}{2}\right) \text{grad}\right] + i_{h3} \qquad Z_{33} = 143.296 \text{ m}$$

$$Z_{03} \coloneqq \frac{Z_{13} + Z_{23} + Z_{33}}{3} - \left(\frac{Z_{11} + Z_{21} + Z_{31}}{3}\right) + Z_{01}$$

 $Z_{03} = 26.749$ m

Fig. 26. A scheme to the calculate angles from the survey base

$$\gamma_{10} := \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 49.9710 \text{ g}$$

$$\gamma_{20} \coloneqq \text{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \qquad \gamma_{20} = 49.9940 \text{ g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 49.9710 \text{ g}$$

Obliczenie azymutów (kierunków zorientowanych) dla baz pomiarowych:

$$\begin{aligned} Az_{21} &:= 400 - \left(\operatorname{atan} \left(\frac{\left| \Delta y_{21} \right|}{\left| \Delta x_{21} \right|} \right) \rho \right) & Az_{21} = 300.0064 \quad \text{g} \\ Az_{12} &:= 200 - \left(\operatorname{atan} \left(\frac{\left| \Delta y_{12} \right|}{\left| \Delta x_{12} \right|} \right) \rho \right) & Az_{12} = 100.0064 \quad \text{g} \\ Az_{32} &:= 200 + \left(\operatorname{atan} \left(\frac{\left| \Delta y_{32} \right|}{\left| \Delta x_{32} \right|} \right) \rho \right) & Az_{32} = 200.0000 \quad \text{g} \\ Az_{23} &:= \operatorname{atan} \left(\frac{\left| \Delta y_{23} \right|}{\left| \Delta x_{23} \right|} \right) \rho & Az_{23} = 0.0000 \quad \text{g} \end{aligned}$$

Obliczenie azymutów na oś komina z kątów obliczonych ze współrzędnych przybliżonych:

$$\begin{aligned} Az_{o10} &\coloneqq \operatorname{atan} \left(\frac{|\Delta y_{10}|}{|\Delta x_{10}|} \right) \rho & Az_{o10} &\equiv 50.0354 \text{ g} \\ Az_{o20} &\coloneqq 400 - \left(\operatorname{atan} \left(\frac{|\Delta y_{20}|}{|\Delta x_{20}|} \right) \rho \right) & Az_{o20} &\equiv 350.0004 \text{ g} \\ Az_{o30} &\coloneqq 200 + \left(\operatorname{atan} \left(\frac{|\Delta y_{30}|}{|\Delta x_{30}|} \right) \rho \right) & Az_{o30} &\equiv 249.9710 \text{ g} \end{aligned}$$

Obliczenie azymutów z kątów pomierzonych:

- 91 -Macierz współczynników (A) przy niewiadomych ($\Delta x, \Delta y$): -0.637033 0.636326 0.636906 0.636914 A = 0.636333 -0.636913 Macierz wyrazów wolnych L (wzór 28): 0.0000 L =0.0000 -0.0015 Macierz wag P: 0.0000 313432.8358 0.0000 0.0000 0.0000 P =241379.3103 0.0000 0.0000 509090.9091

Rozwiązując układ równań (26), otrzymuje się:

$$\Delta \mathbf{p} \coloneqq \begin{pmatrix} \Delta \mathbf{x}_0 \\ \Delta \mathbf{y}_0 \end{pmatrix} \qquad \qquad \Delta \mathbf{p} \equiv \begin{pmatrix} -0.0007 \\ 0.0007 \end{pmatrix}$$

(0.0009)

Wyrównane współrzędne osi komina:

$$w_{3} := w_{0} - \Delta p \qquad w_{3} = \begin{pmatrix} 149.978 \\ 1050.022 \end{pmatrix}$$
$$\begin{pmatrix} x_{03} \\ y_{03} \end{pmatrix} := w_{3} \qquad \begin{pmatrix} x_{03} \\ y_{03} \end{pmatrix} = \begin{pmatrix} 149.978 \\ 1050.022 \end{pmatrix}$$

Ocena dokładności:

/

$$\mathbf{v} := \mathbf{A} \cdot \Delta \mathbf{p} - \mathbf{L} \qquad \mathbf{v} = \begin{bmatrix} 0.0000\\ 0.0006 \end{bmatrix}$$

Warunek konieczny $A^T P v = 0$

$$A^{T} P \cdot v = \begin{pmatrix} -0.0000\\ 0.0000 \end{pmatrix}$$
 - warunek spełniony.

Obliczenie wartości błędu m₀

n := 3 - liczba równań obserwacyjnych.

k := 2 - liczba wyznaczanych niewiadomych.

$$m_0 := \sqrt{\frac{v^T P \cdot v}{n - k}} \qquad m_0 = 0.6593$$

Wyrównanie azymutów obliczonych z kątów pomierzonych:

$$Az_{p} := \begin{pmatrix} Az_{p10} \\ Az_{p20} \\ Az_{p30} \end{pmatrix} \qquad Az_{p} = \begin{pmatrix} 50.0354 \\ 350.0004 \\ 249.9725 \end{pmatrix}$$

Azymuty po wyrównaniu:

$$\begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} := Az_{p} - v \quad \begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} = \begin{pmatrix} 50.0344 \\ 350.0004 \\ 249.9719 \end{pmatrix}$$

Obliczenie przyrostów i odległości z wyrównanych współrzędnych osi komina:

$$\begin{aligned} \Delta x_{10} &\coloneqq x_{03} - x_1 & \Delta x_{10} = 49.968 \text{ m} \\ \Delta y_{10} &\coloneqq y_{03} - y_1 & \Delta y_{10} = 50.022 \text{ m} \\ \Delta x_{01} &\coloneqq x_1 - x_{03} & \Delta x_{01} = -49.968 \text{ m} \\ \Delta y_{01} &\coloneqq y_1 - y_{03} & \Delta y_{01} = -50.022 \text{ m} \\ 1_{10} &\coloneqq \sqrt{\left(\Delta x_{10}\right)^2 + \left(\Delta y_{10}\right)^2} & 1_{10} = 70.704 \text{ m} \\ \Delta x_{20} &\coloneqq x_{03} - x_2 & \Delta x_{20} = 49.978 \text{ m} \\ \Delta y_{20} &\coloneqq y_{03} - y_2 & \Delta y_{20} = -49.978 \text{ m} \\ \Delta x_{02} &\coloneqq x_2 - x_{03} & \Delta x_{02} = -49.978 \text{ m} \\ \Delta y_{02} &\coloneqq y_2 - y_{03} & \Delta y_{02} = 49.978 \text{ m} \\ 1_{20} &\coloneqq \sqrt{\left(\Delta x_{20}\right)^2 + \left(\Delta y_{20}\right)^2} & 1_{20} = 70.679 \text{ m} \\ \Delta x_{30} &\coloneqq x_{03} - x_3 & \Delta x_{30} = -50.022 \text{ m} \\ \Delta y_{30} &\coloneqq y_{03} - y_3 & \Delta y_{30} = -49.978 \text{ m} \\ \Delta x_{03} &\coloneqq x_3 - x_{03} & \Delta x_{03} = 50.022 \text{ m} \\ \Delta y_{03} &\coloneqq y_3 - y_{03} & \Delta y_{03} = 49.978 \text{ m} \\ 1_{30} &\coloneqq \sqrt{\left(\Delta x_{30}\right)^2 + \left(\Delta y_{30}\right)^2} & 1_{30} = 70.710 \text{ m} \end{aligned}$$

Kąty od bazy obliczone ze współrzędnych wyrównanych osi komina:

Rys. 27. Schemat bazy pomiarowej po wyrównaniu współrzędnych osi komina

Fig. 27. A scheme of the survey base after settlement of the co-ordinate of the chimney

$$\gamma_{10} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 49.9719 \text{ g}$$

$$\gamma_{20} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \gamma_{20} = 49.9940 \text{ g}$$

$$\begin{split} \delta_{20} &\coloneqq \operatorname{atan} \left(\frac{\Delta x_{20} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{20}}{\Delta x_{20} \cdot \Delta x_{23} + \Delta y_{23} \cdot \Delta y_{20}} \right) \cdot \rho & \qquad \delta_{20} = 49.9996 \quad \text{g} \\ \gamma_{30} &\coloneqq \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho & \qquad \gamma_{30} = 49.9719 \quad \text{g} \end{split}$$

- 93 -

- 94 -Obliczenie ze współrzędnych kąta S1-S2-S3:

$$\gamma_{13} := \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{23} + \Delta y_{21} \cdot \Delta y_{23}} \right) \cdot \rho \qquad \qquad \gamma_{13} = 99.9936 \text{ g}$$

Suma kątów γ_{20} i δ_{20} obliczonych ze współrzędnych wyrównanych powinna się równać kątowi S1-S2-S3 po wyrównaniu.

 $\gamma_{20} + \delta_{20} = 99.9936$ g $\gamma_{13} = 99.9936$ g - warunek spełniony Obliczenie azymutów z kątów obliczonych ze współrzędnych wyrównanych:

$$\begin{aligned} Az_{o10W} &\coloneqq \operatorname{atan} \left(\frac{\Delta y_{10}}{\Delta x_{10}} \right) \rho & Az_{o10W} &= 50.0344 \text{ g} \\ Az_{o20W} &\coloneqq 400 - \left(\operatorname{atan} \left(\frac{\left| \Delta y_{20} \right|}{\left| \Delta x_{20} \right|} \right) \rho \right) & Az_{o20W} &\equiv 350.0004 \text{ g} \\ Az_{o30W} &\coloneqq 200 + \left(\operatorname{atan} \left(\frac{\left| \Delta y_{30} \right|}{\left| \Delta x_{30} \right|} \right) \rho \right) & Az_{o30W} &\equiv 249.9719 \text{ g} \end{aligned}$$

Azymuty po wyrównaniu kątów:

 $Az_{p10W} = 50.0344 \text{ g}$ $Az_{p20W} = 350.0004 \text{ g}$ $Az_{p30W} = 249.9719 \text{ g}$

Azymuty obliczone ze współrzędnych wyrównanych oraz azymuty wyrównane z poprawek są sobie równe, zatem obliczenia wykonano prawidłowo.

Podstawiamy wyrównane dane (x, y - osi komina) do równań poprawek: $v_1 = 0.0009$ g

$$v_2 = 0.0000 g$$

 $v_3 = -0.0009$ g

• macierz błędów współrzędnych $C_x := m_0^2 (A^T \cdot P \cdot A)^{-1}$

$$C_{\mathbf{X}} = \begin{pmatrix} 0.00000144 & 0.00000078 \\ 0.00000078 & 0.00000144 \end{pmatrix}$$

błędy wyrównanych azymutów •

$$m_{Az_{\cdot i}} := \sqrt{\begin{vmatrix} a_i C_x \cdot a_i^T \end{vmatrix}}$$
$$m_{Az_{\cdot}} = \begin{pmatrix} 0.0007 \\ 0.0013 \\ 0.0007 \end{pmatrix}$$

błędy poprawek •

$$m_{V} = \begin{pmatrix} 0.0016\\ 0.0015\\ 0.0012 \end{pmatrix} \qquad \qquad K = \begin{pmatrix} 0.5678\\ 0.0008\\ -0.7731 \end{pmatrix}$$

Błąd wyrównanego azymutu ${\rm m}_{\rm vi}$ musi być mniejszy od dokładności jego pomiaru m_{kat} , tj. $m_{vi} < m_{kat}$.

błędy współrzędnych •

$$\begin{split} m_{x} &\coloneqq \sqrt{C_{x_{1,1}}} & m_{x} = 0.0012 \text{ m} \\ m_{y} &\coloneqq \sqrt{C_{x_{2,2}}} & m_{y} = 0.0012 \text{ m} \\ m_{xy} &\coloneqq C_{x_{1,2}} & m_{xy} = 0.00000078 \text{ m} \end{split}$$

$$\mathbf{n}_{\mathbf{X}\mathbf{Y}} \coloneqq \mathbf{C}_{\mathbf{X}_{1,2}}$$

błąd położenia punktu: •

$$m_{\rm P} := \sqrt{m_{\rm X}^2 + m_{\rm y}^2}$$
 $m_{\rm P} = 0.002$ m

• błąd położenia punktu w zadanym kierunku α

Rys. 28. Elipsa błędów dla poziomu trzeciego

Fig. 28. The errors ellipse for third height level

• kąt skręcenia elipsy dla ekstremalnych wartości błędu położenia punktu:

 $\alpha_{C} = 49.9935$ g $\alpha_{D} = 149.9935$ g

obliczenie maksymalnych wartości błędu położenia punktu: C := $m(\alpha_C)$ C = 0.0010 m D := $m(\alpha_D)$ D = 0.0008 m

8. POZIOM CZWARTY

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 4 nacelowań.

Pomierzone kierunki ze stanowiska pierwszego na lewą tworzącą komina, poziomu czwartego (dziennik pomiarowy s. 27):

$$S1_{L4} := \begin{pmatrix} 100.3795\\ 100.3775\\ 100.3790\\ 100.3760 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$$

Kierunki pomierzone zostały z tego samego stanowiska z tą samą dokładnością dlatego do wagowania przyjmujemy dla każdego pomiaru kierunku $m_1 := 1$

$$P := \begin{pmatrix} \frac{1}{m_1^2} & 0 & 0 & 0 \\ 0 & \frac{1}{m_1^2} & 0 & 0 \\ 0 & 0 & \frac{1}{m_1^2} & 0 \\ 0 & 0 & \frac{1}{m_1^2} & 0 \\ 0 & 0 & 0 & \frac{1}{m_1^2} \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$S1_{L4sr} := \frac{\sum S1_{L4}}{4} S1_{L4sr} = 100.3780 \text{ g}$$
$$v := S1_{L4} - S1_{L4sr} \qquad v = \begin{pmatrix} 0.0015 \\ -0.0005 \\ 0.0010 \\ -0.0020 \end{pmatrix}$$
$$n := 4 \quad - \text{ilość spostrzeżeń}$$

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1L4} := \sqrt{\frac{\left(v^T P \cdot v\right)}{n-1}}$$
 $m_{S1L4} = 0.0016$

Pomierzone kierunki ze stanowiska pierwszego na prawą tworzącą komina, poziomu czwartego (dziennik pomiarowy s. 27):

 $S1_{P4} := \begin{pmatrix} 105.0895\\ 105.0895\\ 105.0900\\ 105.0910 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g).$

$$S1_{P4sr} := \frac{\sum S1_{P4}}{4} \quad S1_{P4sr} = 105.0900 \text{ g}}$$
$$v := S1_{P4} - S1_{P4sr} \quad v = \begin{pmatrix} -0.0005 \\ -0.0005 \\ 0.0000 \\ 0.0010 \end{pmatrix}$$

n := 4 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem:

$$m_{S1P4} := \sqrt{\frac{\binom{V}{v} P \cdot v}{n-1}}$$
 $m_{S1P4} = 0.0007$

Rzeczywistą dokładnością pomiaru (celowania) na tworzącą komina jest błąd średniej arytmetycznej z 8 nacelowań.

Obliczenie kierunku średniego oraz błedu wyznaczenia kierunku na stanowisko 2 ze stanowiska 1 (dziennik pomiarowy s. 27):

$$S1_{S2} := \begin{pmatrix} 152.7120 \\ 152.7120 \\ 152.7090 \\ 152.7070 \\ 152.7100 \\ 152.7100 \\ 152.7110 \\ 152.7090 \end{pmatrix} - odczyty z drugiego położenia lunety zostały zredukowane (-200g)$$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S1_{S2sr} := \frac{\sum S1_{S2}}{8} S1_{S2sr} = 152.7100 g$$

$$v := S1_{S2} - S1_{S2sr} v = \begin{pmatrix} 0.0020 \\ 0.0020 \\ -0.0010 \\ 0.0000 \\ 0.0000 \\ 0.0010 \\ -0.0010 \end{pmatrix}$$

n := 8 - ilość spostrzeżeń

Błąd pojedynczego spostrzeżenia przed wyrównaniem wyznaczenia kierunku na stanowisko 2 ze stanowiska 1:

$$m_{S1S2} := \sqrt{\frac{\left(v^{T} P \cdot v\right)}{n-1}}$$
 $m_{S1S2} = 0.0017$

Obliczenie rzeczywistego błędu wyznaczenia azymutu z pomiaru terenowego:

$$m_{S1} := \sqrt{\frac{(m_{S1L4})^2 + (m_{S1P4})^2}{4} + (m_{S1S2})^2} m_{S1} = 0.0019$$

$$m_{S2} = 0.0019$$

$$m_{S3} = 0.0014$$

- 99 -

Obliczenie współrzędnych płaskich (x, y) osi komina o przekroju kołowym. Pomiar z trzech stanowisk o znanych współrzędnych (x, y) metodą dwusiecznych. Przykład dla poziomu czwartego.

Fig. 29. A survey scheme

Odczyty wykonane podczas pomiaru komina:

1)	ze stanowiska S1:		
	wysokość instrumentu	$i_{1,1} := 1.54$	

wysokość instrumentu _{1h1} :=	= 1.54	
	Hz	V
na stanowisko S2	- $\alpha_{12} := 152.7100^{\text{g}}$	
lewa tworząca komina	- $\alpha_{1L} := 100.3780^{\text{g}}$	$V_{1L} := 66.3200^{-g}$
prawa tworząca komina	- $\alpha_{1P} := 105.0900^{\text{g}}$	$V_{1P} := 66.3180^{-g}$
2) ze stanowiska S2: wysokość instrumentu i _{h2} :=	= 1.58	
na stanowisko S1	- α ₂₁ := 88.4000 g	
lewa tworząca komina	- α _{2L} := 136.0380 g	$V_{2L} := 66.9050$ g
prawa tworząca komina	- α _{2P} := 140.7540 g	$V_{2P} := 66.9020$ g
 ze stanowiska S3: wysokość instrumentu i_{h3} := 	= 1.63	
na stanowisko S2	- $\alpha_{32} := 303.9300$ g	
lewa tworząca komina	- α _{3L} := 351.5520 ^g	$V_{3L} := 67.2520^{\text{g}}$
prawa tworząca komina	- α _{3P} := 356.2630 ^g	$V_{3P} := 67.2560^{-g}$

- 101 -

- 102 -Obliczenie wartości kierunków od bazy na oś komina:

Rys. 30. Schemat obliczenia wartości kierunków na oś komina

Fig. 30. The calculation scheme of the value of directions on the axis of the chimney

$\alpha_{10} \coloneqq \alpha_{12} - \frac{\alpha_{1L} + \alpha_{1P}}{2}$	$\alpha_{10} = 49.9760$ g
$\alpha_{20} \coloneqq \frac{\alpha_{2L} + \alpha_{2P}}{2} - \alpha_{21}$	$\alpha_{20} = 49.9960$ g
$\alpha_{30} \coloneqq \frac{\alpha_{3L} + \alpha_{3P}}{2} - \alpha_{32}$	$\alpha_{30} = 49.9775$ g

Rys. 31. Schemat bazy pomiarowej

Fig. 31. The survey base scheme

W	spółrzę	dne s	tanowis	k:
---	---------	-------	---------	----

$\Delta x_{12} \coloneqq x_2 - x_1$	$\Delta x_{12} = -0.010 \text{ m}$
$\Delta y_{12} \coloneqq y_2 - y_1$	$\Delta y_{12} = 100.000 \text{ m}$
$\Delta x_{21} \coloneqq x_1 - x_2$	$\Delta x_{21} = 0.010 \text{ m}$
$\Delta y_{21} \coloneqq y_1 - y_2$	$\Delta y_{21} = -100.000 \text{ m}$
$l_{12} := \sqrt{\left(\Delta x_{12}\right)^2 + \left(\Delta x_{12}\right)^2} + \left(\Delta x_{12}\right)^2 + \left(\Delta x_{1$	$\overline{y_{12}}^2$ $l_{12} = 100.000 \text{ m}$
$\Delta x_{23} \coloneqq x_3 - x_2$	$\Delta x_{23} = 100.000 \text{ m}$
$\Delta y_{23} \coloneqq y_3 - y_2$	$\Delta y_{23} = 0.000 \text{ m}$
$\Delta x_{32} \coloneqq x_2 - x_3$	$\Delta x_{32} = -100.000 \text{ m}$
$\Delta y_{32} \coloneqq y_2 - y_3$	$\Delta y_{32} = 0.000 \text{ m}$

 $l_{23} := \sqrt{(\Delta x_{23})^2 + (\Delta y_{23})^2} \qquad -104 - l_{23} = 100.000 \text{ m}$

Obliczenie przybliżonych współrzędnych osi komina ze stanowisk S1 i S2:

Rys. 32. Schemat bazy pomiarowej do obliczenia współrzędnych przybliżonych osi komina

Fig. 32. The survey base scheme to calculate the approximate co-ordinates of the chimney axes

$$p := l_{12} \cdot \frac{\sin(\alpha_{20})}{\sin(\alpha_{10} + \alpha_{20})} \qquad p = 70.706 \text{ m}$$

$$q := l_{12} \cdot \frac{\sin(\alpha_{10})}{\sin(\alpha_{10} + \alpha_{20})} \qquad q = 70.684 \text{ m}$$

$$a := \frac{p^2 - q^2 + (l_{12})^2}{2 \cdot l_{12}} \qquad a = 50.016 \text{ m}$$

$$b := \sqrt{p^2 - a^2} \qquad b = 49.978 \text{ m}$$

$$x_0 := x_1 + a \cdot \frac{\Delta x_{12}}{l_{12}} + b \cdot \frac{\Delta y_{12}}{l_{12}} \qquad x_0 = 149.983 \text{ m}$$

$$y_0 := y_1 + a \cdot \frac{\Delta y_{12}}{l_{12}} - b \cdot \frac{\Delta x_{12}}{l_{12}} \qquad y_0 = 1050.021 \text{ m}$$

- 105 -Przybliżone współrzędne osi komina obliczone ze stanowisk S1 i S2:

$$w_0 := \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 $w_0 = \begin{pmatrix} 149.983 \\ 1050.021 \end{pmatrix}$

Obliczenie przyrostów Δx_{i0} , Δy_{i0} pomiędzy stanowiskami pomiarowymi a przybliżonymi współrzędnymi osi komina i długości boków od stanowiska do środka komina (przybliżonego).

Rys. 33. Schemat pełnej bazy pomiarowej

Współrzędne stanowisk i kąty pomierzone od baz pomiarowych:

- 106 -Obliczenie przyrostów współrzędnych i długości boków:

Obliczenie promienia komina dla poziomu czwartego (4):

$$r_{14} \coloneqq l_{10} \sin \left[\left(\frac{\alpha_{1P} - \alpha_{1L}}{2} \right) \cdot \text{grad} \right] \qquad r_{14} \equiv 2.616 \text{ m}$$

$$r_{24} \coloneqq l_{10} \sin \left[\left(\frac{\alpha_{2P} - \alpha_{2L}}{2} \right) \cdot \text{grad} \right] \qquad r_{24} \equiv 2.618 \text{ m}$$

$$r_{34} \coloneqq l_{10} \sin \left[\left(\frac{\alpha_{3P} - \alpha_{3L}}{2} \right) \cdot \text{grad} \right] \qquad r_{34} \equiv 2.616 \text{ m}$$

Obliczenie średniego promienia z trzech stanowisk:

$$r_{4sr} := \frac{r_{14} + r_{24} + r_{34}}{3}$$

$$r_{4sr} = 2.617 \text{ m}$$
Obliczenie wysokości poziomu czwartego:
$$Z_{14} := z_1 + l_{10} \cdot \cos\left[\left(\frac{V_{1L} + V_{1P}}{2}\right) \text{grad}\right] + i_{h1}$$

$$Z_{14} = 155.677 \text{ m}$$

$$Z_{24} := z_2 + l_{20} \cdot \cos\left[\left(\frac{V_{2L} + V_{2P}}{2}\right) \text{grad}\right] + i_{h2}$$

$$Z_{24} := z_3 + l_{30} \cdot \cos\left[\left(\frac{V_{3L} + V_{3P}}{2}\right) \text{grad}\right] + i_{h3}$$

$$Z_{34} := z_3 + l_{30} \cdot \cos\left[\left(\frac{V_{3L} + V_{3P}}{2}\right) \text{grad}\right] + i_{h3}$$

$$Z_{34} = 155.678 \text{ m}$$

$$Z_{04} := \frac{Z_{14} + Z_{24} + Z_{34}}{3} - \frac{Z_{11} + Z_{21} + Z_{31}}{3} + Z_{01}$$

$$Z_{04} = 39.131 \text{ m}$$

Rys. 34. Schemat do obliczenia kątów od bazy

Fig. 34. A scheme to the calculate angles from the survey base

$$\gamma_{10} \coloneqq \operatorname{atan}\left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}}\right) \cdot \rho \qquad \gamma_{10} = 49.9760 \text{ g}$$

$$\gamma_{20} := \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \gamma_{20} = 49.9960 \text{ g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{\Delta x_{32} \cdot \Delta y_{30} - \Delta x_{30} \cdot \Delta y_{32}}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 49.9760 \text{ g}$$

Obliczenie azymutów (kierunków zorientowanych) dla baz pomiarowych:

$$\begin{aligned} Az_{21} &:= 400 - \left(\operatorname{atan} \left(\frac{|\Delta y_{21}|}{|\Delta x_{21}|} \right) \rho \right) & Az_{21} = 300.0064 \text{ g} \\ Az_{12} &:= 200 - \left(\operatorname{atan} \left(\frac{|\Delta y_{12}|}{|\Delta x_{12}|} \right) \rho \right) & Az_{12} = 100.0064 \text{ g} \\ Az_{32} &:= 200 + \left(\operatorname{atan} \left(\frac{|\Delta y_{32}|}{|\Delta x_{32}|} \right) \rho \right) & Az_{32} = 200.0000 \text{ g} \\ Az_{23} &:= \operatorname{atan} \left(\frac{|\Delta y_{23}|}{|\Delta x_{23}|} \right) \rho & Az_{23} = 0.0000 \text{ g} \end{aligned}$$

Obliczenie azymutów na oś komina z kątów obliczonych ze współrzędnych przybliżonych:

$$\begin{aligned} Az_{o10} &\coloneqq \operatorname{atan}\left(\frac{\left|\Delta y_{10}\right|}{\left|\Delta x_{10}\right|}\right)\rho & Az_{o10} &\equiv 50.0304 \quad \text{g} \\ Az_{o20} &\coloneqq 400 - \left(\operatorname{atan}\left(\frac{\left|\Delta y_{20}\right|}{\left|\Delta x_{20}\right|}\right)\rho\right) & Az_{o20} &\equiv 350.0024 \quad \text{g} \\ Az_{o30} &\coloneqq 200 + \left(\operatorname{atan}\left(\frac{\left|\Delta y_{30}\right|}{\left|\Delta x_{30}\right|}\right)\rho\right) & Az_{o30} &\equiv 249.9760 \quad \text{g} \end{aligned}$$

Obliczenie azymutów z kątów pomierzonych:

- 109 -

Macierz współczynników (A) przy niewiadomych ($\Delta x, \Delta y$):

 $\mathbf{A} = \begin{pmatrix} -0.636963 & 0.636356 \\ 0.636836 & 0.636884 \\ 0.636403 & -0.636883 \end{pmatrix}$

Macierz wyrazów wolnych L (wzór 28):

$$L = \begin{pmatrix} -0.0000 \\ 0.0000 \\ -0.0015 \end{pmatrix}$$

Macierz wag P:
$$P = \begin{pmatrix} 277227.723 & 0 & 0 \\ 0 & 291161.179 & 0 \\ 0 & 0 & 543689.32 \end{pmatrix}$$

Rozwiązując układ równań (26), otrzymuje się:

$$\Delta p := \begin{pmatrix} \Delta x_0 \\ \Delta y_0 \end{pmatrix} \qquad \qquad \Delta p = \begin{pmatrix} -0.0008 \\ 0.0008 \end{pmatrix}$$

Wyrównane współrzędne osi komina:

$$w_{4} := w_{0} - \Delta p \qquad w_{4} = \begin{pmatrix} 149.984 \\ 1050.020 \end{pmatrix}$$
$$\begin{pmatrix} x_{04} \\ y_{04} \end{pmatrix} := w_{4} \qquad \begin{pmatrix} x_{04} \\ y_{04} \end{pmatrix} = \begin{pmatrix} 149.984 \\ 1050.020 \end{pmatrix}$$

Ocena dokładności:

$$v := A \cdot \Delta p - L$$
 $v = \begin{pmatrix} 0.0010 \\ 0.0000 \\ 0.0005 \end{pmatrix}$

Warunek konieczny $A^T P v = 0$

$$A^{T} P \cdot v = \begin{pmatrix} 0.0000 \\ -0.0000 \end{pmatrix}$$
 - warunek spełniony

Obliczenie wartości błędu m₀

n := 3 - liczba równań obserwacyjnych

k := 2 - liczba wyznaczanych niewiadomych

$$m_0 := \sqrt{\frac{v^T P \cdot v}{n - k}}$$
 $m_0 = 0.6423$

Wyrównanie azymutów obliczonych z kątów pomierzonych:

$$Az_{p} := \begin{pmatrix} Az_{p10} \\ Az_{p20} \\ Az_{p30} \end{pmatrix} \qquad Az_{p} = \begin{pmatrix} 50.0304 \\ 350.0024 \\ 249.9775 \end{pmatrix}$$

Azymuty po wyrównaniu:

$$\begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} := Az_{p} - v \quad \begin{pmatrix} Az_{p10W} \\ Az_{p20W} \\ Az_{p30W} \end{pmatrix} = \begin{pmatrix} 50.0294 \\ 350.0024 \\ 249.9770 \end{pmatrix}$$

Obliczenie przyrostów i odległości z wyrównanych współrzędnych osi komina:

$$\Delta x_{10} \coloneqq x_{04} - x_1 \qquad \Delta x_{10} = 49.974 \text{ m}$$

$$\Delta y_{10} \coloneqq y_{04} - y_1 \qquad \Delta y_{10} = 50.020 \text{ m}$$

$$\Delta x_{01} \coloneqq x_1 - x_{04} \qquad \Delta x_{01} = -49.974 \text{ m}$$

$$\Delta y_{01} \coloneqq y_1 - y_{04} \qquad \Delta y_{01} = -50.020 \text{ m}$$

$$l_{10} \coloneqq \sqrt{(\Delta x_{10})^2 + (\Delta y_{10})^2} \qquad l_{10} = 70.706 \text{ m}$$

$$\Delta x_{20} \coloneqq x_{04} - x_2 \qquad \Delta x_{20} = 49.984 \text{ m}$$

$$\Delta y_{20} \coloneqq y_{04} - y_2 \qquad \Delta y_{20} = -49.980 \text{ m}$$

$$\Delta x_{02} \coloneqq y_2 - y_{04} \qquad \Delta y_{02} = 49.980 \text{ m}$$

$$l_{20} \coloneqq \sqrt{(\Delta x_{20})^2 + (\Delta y_{20})^2} \qquad l_{20} = 70.685 \text{ m}$$

$$\Delta x_{30} \coloneqq x_{04} - x_3 \qquad \Delta x_{30} = -50.016 \text{ m}$$

$$\Delta y_{30} \coloneqq y_{04} - y_3 \qquad \Delta y_{30} = -49.980 \text{ m}$$

$$\Delta x_{03} \coloneqq x_3 - x_{04} \qquad \Delta x_{03} = 50.016 \text{ m}$$

$$\Delta y_{03} \coloneqq y_3 - y_{04} \qquad \Delta y_{03} = 49.980 \text{ m}$$

$$l_{30} \coloneqq \sqrt{(\Delta x_{30})^2 + (\Delta y_{30})^2} \qquad l_{30} = 70.708 \text{ m}$$

- 111 -Kąty od bazy obliczone ze współrzędnych wyrównanych osi komina:

Rys. 35. Schemat bazy pomiarowej po wyrównaniu współrzędnych osi komina

Fig. 35. A scheme of the survey base after settlement of the co-ordinate of the chimney

$$\gamma_{10} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{10} \cdot \Delta y_{12} - \Delta x_{12} \cdot \Delta y_{10}}{\Delta x_{10} \cdot \Delta x_{12} + \Delta y_{10} \cdot \Delta y_{12}} \right) \cdot \rho \qquad \gamma_{10} = 49.9770 \text{ g}$$

$$\gamma_{20} \coloneqq \operatorname{atan} \left(\frac{\Delta x_{21} \cdot \Delta y_{20} - \Delta x_{20} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{20} + \Delta y_{20} \cdot \Delta y_{21}} \right) \cdot \rho \qquad \gamma_{20} = 49.9960 \text{ g}$$

$$\delta_{20} := \operatorname{atan} \left(\frac{\Delta x_{20} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{20}}{\Delta x_{20} \cdot \Delta x_{23} + \Delta y_{23} \cdot \Delta y_{20}} \right) \cdot \rho \qquad \qquad \delta_{20} = 49.9976 \text{ g}$$

$$\gamma_{30} := \operatorname{atan} \left(\frac{32}{\Delta x_{32} \cdot \Delta x_{30} + \Delta y_{32} \cdot \Delta y_{30}} \right) \cdot \rho \qquad \gamma_{30} = 49.9770 \text{ g}$$

- 112 -Obliczenie ze współrzędnych kąta S1-S2-S3:

$$\gamma_{13} := \operatorname{atan}\left(\frac{\Delta x_{21} \cdot \Delta y_{23} - \Delta x_{23} \cdot \Delta y_{21}}{\Delta x_{21} \cdot \Delta x_{23} + \Delta y_{21} \cdot \Delta y_{23}}\right) \cdot \rho \qquad \gamma_{13} = 99.9936 \text{ g}$$

Suma kątów γ_{20} i δ_{20} obliczonych ze współrzędnych wyrównanych powinna się równać kątowi S1-S2-S3 po wyrównaniu.

$$\gamma_{20} + \delta_{20} = 99.9936$$
 g $\gamma_{13} = 99.9936$ g - warunek spełniony

Obliczenie azymutów z kątów obliczonych ze współrzędnych wyrównanych:

$$\begin{aligned} Az_{o10W} &\coloneqq \operatorname{atan}\left(\frac{\Delta y_{10}}{\Delta x_{10}}\right)\rho & Az_{o10W} &= 50.0294 \text{ g} \\ Az_{o20W} &\coloneqq 400 - \left(\operatorname{atan}\left(\frac{\left|\Delta y_{20}\right|}{\left|\Delta x_{20}\right|}\right)\rho\right) & Az_{o20W} &\equiv 350.0024 \text{ g} \\ Az_{o30W} &\coloneqq 200 + \left(\operatorname{atan}\left(\frac{\left|\Delta y_{30}\right|}{\left|\Delta x_{30}\right|}\right)\rho\right) & Az_{o30W} &\equiv 249.9770 \text{ g} \end{aligned}$$

Azymuty po wyrównaniu kątów:

 $Az_{p10W} = 50.0294 \text{ g}$ $Az_{p20W} = 350.0024 \text{ g}$ $Az_{p30W} = 249.9770 \text{ g}$

Azymuty obliczone ze współrzędnych wyrównanych oraz azymuty wyrównane z poprawek są sobie równe, zatem obliczenia wykonano prawidłowo.

Podstawiamy wyrównane dane (x, y - osi komina) do równań poprawek: $v_1 = 0.0010$ g

 $v_2 = 0.0000 g$ $v_3 = -0.0010 g$

• macierz błędów współrzędnych $C_x := m_0^2 (A^T \cdot P \cdot A)^{-1}$

 $\mathbf{C}_{\mathbf{X}} = \begin{pmatrix} 0.00000118 & 0.00000056 \\ 0.00000056 & 0.00000118 \end{pmatrix}$

- 113 -

• błędy wyrównanych azymutów

$$\mathbf{m}_{Az.} = \begin{pmatrix} 0.0007\\ 0.0012\\ 0.0007 \end{pmatrix}$$

• błędy poprawek

$$m_{V} = \begin{pmatrix} 0.0018\\ 0.0014\\ 0.0012 \end{pmatrix} \qquad \qquad K = \begin{pmatrix} 0.5634\\ 0.0006\\ -0.8587 \end{pmatrix}$$

Błąd wyrównanego azymutu m_{vi} musi być mniejszy od dokładności jego pomiaru m_{kat}, tj. m_{vi} < m_{kat}.

• błędy współrzędnych

$$m_{x} := \sqrt{C_{x_{1,1}}} \qquad m_{x} = 0.0011 \text{ m}$$
$$m_{y} := \sqrt{C_{x_{2,2}}} \qquad m_{y} = 0.0011 \text{ m}$$
$$m_{xy} := C_{x_{1,2}} \qquad m_{xy} = 0.00000056 \text{ m}$$

• błąd położenia punktu:

$$m_P := \sqrt{m_X^2 + m_y^2}$$
 $m_P = 0.002$ m

błąd położenia punktu w zadanym kierunku α

 $m(\alpha) \cdot sin(\alpha), m_P \cdot sin(\alpha)$ Rys. 36. Elipsa błędów dla poziomu czwartego

Fig. 36. The errors ellipse for fourth height level

• kąt skręcenia elipsy dla ekstremalnych wartości błędu położenia punktu: $\alpha_{\rm C}$ = 449.9900 $^{\rm g}$

 $\alpha_{\rm D} = 149.9900 \ {\rm g}$

obliczenie maksymalnych wartości błędu położenia punktu: C := $m(\alpha_C)$ C = 0.0013 m D := $m(\alpha_D)$ D = 0.0008 m

9.1 GRAFICZNE PRZEDSTAWIENIE WYNIKÓW POMIARÓW

Rys. 37. Wykres odchyleń osi komina od pionu (widok z góry)
- 116 - Fig. 37. A deviations graph of the chimney axis from the plumb line (view on the top).

Rys. 38. Wykres odchyleń osi komina od pionu (widok w płaszczyźnie YOH)

Fig. 38. A deviations graph of the chimney axis from the plumb line (the top view YOH)

Rys. 39. Wykres odchyleń osi komina od pionu (widok w płaszczyźnie XOH)

Fig. 39. A deviations graph of the chimney axis from the plumb line (the top view YOH)

10. UWAGI KOŃCOWE

Celem pomiarów i obliczeń było określenie odchyleń osi komina od pionu. Przyjęto następujące założenia: współczynniki wagowe obserwacji kątowych odpowiadają rzeczywistej dokładności pomiaru kierunku, natomiast współrzędne stanowisk pomiarowych przyjęto za bezbłędne. W przedstawionej poniżej analizie dokładności przeliczono i zestawiono wpływ błędów pomiarów kierunków dla (m_{kat}): 1^{cc}, 5^{cc}, 10^{cc}, 15^{cc}, 20^{cc}, 30^{cc}, 40^{cc}, 50^{cc} i 100^{cc} na dokładność wyniku końcowego dla poziomu pierwszego.

 Tabela nr 1. Zestawienie błędów wyznaczenia osi komina w zależności od dokładności pomiaru kierunku.

m_{kat} [^{cc}]		1^{cc}	5 ^{cc}	10 ^{cc}	15 ^{cc}	20^{cc}	30 ^{cc}	40^{cc}	50 ^{cc}	100 ^{cc}
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
[mm]	m _x	0,4	0,9	1,3	1,6	1,9	2,3	2,7	3,0	4,2
	my	0,4	0,9	1,3	1,6	1,9	2,3	2,7	3,0	4,2
	m _p	0,6	1,3	1,9	2,3	2,2	3,3	3,8	4,2	6,0
m_0		19,4	3,89	1,94	1,30	0,97	0,65	0,49	0,39	0,19
[]	v_1	-14	-14	-14	-14	-14	-14	-14	-14	-14
	v_2	0	0	0	0	0	0	0	0	0
	V ₃	-14	-14	-14	-14	-14	-14	-14	-14	-14
[]	m_{v1}	$\sqrt{-0}$	$\sqrt{-0}$	2	9	14	25	35	45	95
	m_{v2}	$\sqrt{-0}$	$\sqrt{-0}$	$\sqrt{-0}$	$\sqrt{-0}$	3	18	29	39	90
	m _{v3}	$\sqrt{-0}$	$\sqrt{-0}$	2	9	14	25	35	45	95
$v_{1}/m_{v_{1}}$		4,7i	2,8i	-8,3	-1,6	-1,0	-0,6	-0,4	-0,3	-0,1
v_2/m_{v_2}		0,0i	0,0i	0,0i	0,0i	0,0	0,0	0,0	0,0	0,0
$v_{3}/m_{v_{3}}$		-4,7i	-2,8i	8,3	1,6	1,0	0,6	0,4	0,3	0,1

Table 1. A specification of errors in determination of the chimney axis depending on the accuracy of direction survey.

gdzie: $\sqrt{-0}$ – oznacza pierwiastek z liczby ujemnej,

"i" – oznacza liczbę urojoną.

Obliczenie współrzędnych osi komina metodą wielokrotnego wcięcia kątowego w przód można interpretować jako wyznaczenie współrzędnych punktu osnowy poziomej zgodnie z wytycznymi technicznymi G-2.5 [5] (Szczegółowa pozioma i wysokościowa osnowa geodezyjna. Projektowanie, pomiar i opracowanie wyników, s. 49). Jeśli dla którejś obserwacji zależność v_i/ $m_{vi} \ge 3$ jest spełniona, to powinna być ona szczegółowo sprawdzona. Błędne obserwacje należy skorygować i ponownie wyrównać.

Z danych zestawionych z powyższej tabeli wynika, że dokładność pomiaru kierunku (dla analizowanego zestawu danych) rzędu 20^{cc} jest wystarczająca dla odległości stanowisk pomiarowych od komina zbliżonych jak w przeliczonym przykładzie, tj. do 100 m. Przedstawiony algorytm umożliwia wykonanie pełnej analizy dokładnościowej pomiaru. Zaprezentowany algorytm bez modyfikacji można wykorzystać do własnych obliczeń. Spośród wielu metod obliczenio-wych wybrano metodę opartą na odniesieniu pomiarów kątowych do kierunków zorientowanych. Taki sposób podejścia umożliwia wykonanie obliczeń według przedstawionego algorytmu, niezależnie od sposobu nawiązania kątowego na poszczególnych stanowiskach. Może to być nawiązanie na sąsiednie stanowisko jak w zaprezentowanym przykładzie albo np. na punkt wyznaczony metodą GPS. W takim przypadku obliczenia należy rozpocząć od podania współrzę-dnych przybliżonych osi komina.

W wartościach błędów m_x , m_y , m_{xy} , m_p i poprawek zawarte są błędy: obserwatora, instrumentów pomiarowych, zmiany geometrii trzonu komina w trakcie pomiarów, jak i niekołowość przekroju komina. Błąd średni jednostkowy m_0 przyjmuje wartość zbliżoną do 1 dla dokładności pomiaru kierunku rzędu 20^{cc} . Odchyłki większe o 20% od 1 świadczą o niewłaściwym wagowaniu lub o błędach występujących w obserwacjach. W takich przypadkach konieczna jest szczegółowa analiza danych, wprowadzenie odpowiednich zmian i ponowne wyrównanie.

LITERATURA CYTOWANA

- [1] CHOJNICKI W.: Geodezyjny rachunek wyrównania w zadaniach. PPWK, Warszawa 1968, s. 95-99.
- [2] CIESIELSKI R.: O zmianach stanu konstrukcji inżynierskich, ich przyczynach i sprawdzeniach pomiarowych. Prace IGiK. 2001.
 t. XLVIII, z. 102, s. 19-37.
- [3] HENNECKE F., WERNER H.: Ingenieurgeodäsie. Anwendungen im Bauwesen und im Anlagenbau. 2. bearbeitete Auflage. VEB Verlag für Bauwesen. Berlin. 1986, pp. 280-308.
- [4] OSADA E.: Geodezja. Oficyna Wyd. Politechniki Wrocławskiej. Wrocław 2002, s. 397-398.

CYTOWANE AKTY PRAWNE, NORMY TECHNICZNE, INSTRUKCJE I WYTYCZNE

- [5] Główny Geodeta Kraju. Wytyczne techniczne G-2.5. Szczegółowa pozioma i wysokościowa osnowa geodezyjna. Projektowanie, pomiar i opracowanie wyników. GUGiK. Warszawa 2002.
- [6] Główny Urząd Geodezji i Kartografii. Instrukcja techniczna G-3. Geodezyjna obsługa inwestycji. Wyd. II. Warszawa 1980.
- [7] Ministerstwo Przemysłu Ciężkiego. Wytyczne wykonania geodezyjnych pomiarów masywnych budowli wieżowych. Załącznik nr 13 do instrukcji geodezyjnej resortu przemysłu ciężkiego. Wyd. Przemysłu Maszynowego WEMA. Warszawa 1976 r.
- [8] PN-N-02211, sierpień 2000. Geodezja. Geodezyjne wyznaczanie przemieszczeń. Terminologia podstawowa.
- [9] PN-88/b-03004. Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie.

- [10] PN-93/B-03201. Konstrukcje stalowe. Kominy. Obliczenia i projektowanie.
- [11] PN-B-03204:2002. Konstrukcje stalowe. Wieże i maszty. Projektowanie i wykonanie.
- [12] Prawo budowlane. DzU 1994 nr 89, poz. 414 (z późniejszymi zmianami).
- [13] Prawo geodezyjne i kartograficzne. DzU z dnia 21 listopada 2000 r. nr 100. Poz. 1086. Obwieszczenie Ministra Rozwoju Regionalnego i Budownictwa z dnia 24 października 2000 r. w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo geodezyjne i kartograficzne.
- [14] Rozporządzenie Ministra Gospodarki Przestrzennej i Budownictwa z dnia 21 lutego 1995 r. w sprawie rodzaju i zakresu opracowań geodezyjno-kartograficznych oraz czynności geodezyjnych obowiązujących w budownictwie. DzU nr 25 z dnia 13 marca 1995 r. poz. 133.

LITERATURA PRZEDMIOTU

- [15] BARTKIEWICZ A., GAŁDA M., PIJANOWSKI L., RYCHLEWSKI G.: Ćwiczenia polowe z geodezji. Wyd. Politechniki Rzeszowskiej. Rzeszów 1986, s. 89-98.
- [16] BERNASIK J.: Elementy fotogrametrii i teledetekcji. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH. Kraków 2003, s. 53-55
- [17] BRYŚ H., PRZEWŁOCKI St.: Geodezyjne metody pomiarów przemieszczeń. PWN. Warszawa 1998, s. 24-28.
- [18] Budownictwo betonowe. t. XII "Budowle przemysłowe",część I i II. Arkady 1970/71.
- [19] Budownictwo betonowe. t. XIII "Zbiorniki, zasobniki, kominy i maszty. Arkady. Warszawa 1966.

- [20] CIESIELSKI R.: Obliczenia dynamiczne wysokich kominów żelbetowych. Budownictwo Przemysłowe. Nr 1-4/1954.
- [21] CZAJA J.: Geodezja inżynieryjno-przemysłowa. Zbiór przykładów i zadań. Część druga. Wyd. IV. Wyd. AGH, Kraków 1992. Skrypt uczelniany 1319, s. 280-309.
- [22] FIJAK St.: Kominy przemysłowe. Gliwice 2005, s. 85-86.
- [23] GALAS B.: Fotogrametria w pracach inżynierskich. Wyd. Polit. Wrocławskiej. Wrocław 1976, s. 132-134.
- [24] GARGULA T.: Rachunek wyrównawczy. Przykłady opracowania ćwiczeń. Wyd. GEODPIS Andrzej Jagielski. Kraków 2005.
- [25] GIL J.: Pomiary geodezyjne w praktyce inżynierskiej. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2005, s. 254-262.
- [26] Główny Geodeta Kraju. Wytyczne techniczne G-2.5. Szczegółowa pozioma i wysokościowa osnowa geodezyjna. Projektowanie, pomiar i opracowanie wyników. GUGiK. Warszawa 2002.
- [27] Główny Geodeta Kraju. Instrukcja techniczna G-3. Geodezyjna obsługa inwestycji. Wyd. II Warszawa 1980.
- [28] GRALIŃSKI M.: Fotogrametria. III fotogrametria naziemna. Wyd. ART. Olsztyn 1988, s. 70-78.
- [29] GRUBER F.J., JOECKEL R.: Formelsammlung f
 ür das vermessungswesen. 13. Auflage. Treubner Stuttgart/Leipzig/ Wiesbaden 2007.
- [30] JANUSZ W.: Obsługa geodezyjna budowli i konstrukcji. PPWK. Warszawa 1975, s. 380-391.
- [31] JASIAK A., LELONKIEWICZ H., WÓJCIK M., WYCZAŁEK I.: Pomiary inżynierskie. Wyd. Politechniki Poznańskiej. Poznań 1999, s. 92-98.

- [32] KŁOŚ Cz.: Kominy. BA. Warszawa 1956.
- [33] KOBIAK J., STACHURSKI W.: Konstrukcje żelbetowe. Cz. II. Wyd. Arkady. Warszawa 1969, s. 229-276.
- [34] KRAL L.: Elementy budownictwa przemysłowego. Cz. I. PWN. Warszawa 1973.
- [35] KRAL L.: Elementy budownictwa przemysłowego, t. II. PWN. Warszawa 1973, s. 133-134.
- [36] KWAŚNIEWSKI J.: Pomiar odkształceń komina przemysłowego. Szczecińskie Towarzystwo Naukowe, Wydział Nauk Matematycznych i Technicznych. Tom I, Zeszyt 1. Szczecin 1959, s. 1-39.
- [37] LAZZARINI T.: Geodezyjne pomiary przemieszczeń budowli i ich otoczenia. PPWK. Warszawa 1977, s. 326-331; s. 365-371.
- [38] MELER M., PACEK M.: Kominy przemysłowe. Wydawnictwo Uczelniane Politechniki Koszalińskiej. Koszalin 2001, s. 39-40.
- [39] Metody pomiarów konstrukcji budowlanych w profilaktyce i diagnostyce. Praca zbiorowa pod redakcją St. Przewłockiego. Wyd. Politechniki Łódzkiej. Łódź 1993, s. 121-132.
- [40] MIELNIK A.: Budowlane konstrukcje przemysłowe. PWN. Warszawa 1975, s. 395-515.
- [41] MONTI C., VASSENA G. The leaning tower of Pisa: the geodetic approach to the control of the deformations. Proceedings of 1st Turkish International Symposium on Deformations, Istanbul (Turkey), 5-9 September, 1994, pp. 1104-1114.
- [42] PAŚKO J.: Pomiar pionowości komina przemysłowego. Ćwiczenie nr 1 w pracy zbiorowej pod redakcją M. Pękalskiego: Ćwiczenia terenowe z geodezji inżynieryjnej i miejskiej. Oficyna Wyd. Politechniki Warszawskiej, Warszawa 2003, s. 5-51.

- [43] PAWŁOWSKI W., PRZEWŁOCKI St.: Pomiary inżynierskie metodami geodezyjnymi. Ćwiczenia z przykładami. Wydawnictwo Politechniki Łódzkiej. Łódź 1997, s. 54-64.
- [44] PRÓSZYŃSKI W., KWAŚNIAK M.: Niezawodność sieci geodezyjnych. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa 2002.
- [45] RYKALUK K.: Konstrukcje stalowe: kominy, wieże, maszty. Oficyna Wyd. Politechniki Wrocławskiej. Wrocław 2005.
- [46] SAAD B.: Deformation of minarets procedure and application. Proceedings of 1st Turkish International Symposium on Deformations, Istanbul (Turkey), 5-9 September, 1994, pp. 1115-1123.
- [47] SIECZKOWSKI J.M.: Zagadnienia projektowania konstrukcyjnobudowlanego zakładów przemysłowych. Wyd. Politechniki Wrocławskiej. Wrocław 1977, s. 302-348.
- [48] UREN J., PRICE W.F.: Surveying for engineers. 4th edition. Palgrave Macmillan, New York 2006.
- [49] WIŚNIEWSKI Z.: Rachunek wyrównawczy w geodezji (z przykładami). Wydawnictwo UWM. Olsztyn 2005.
- [50] WŁODARCZYK W., KOWALSKI A., PIETRZAK K.: Projektowanie wybranych konstrukcji przemysłowych. Przykłady. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa 1995.
- [51] WOLSKI B., TOŚ C.: Geodezja inżynieryjno-budowlana. Wyd. Politechniki Krakowskiej. Kraków 2005, s. 133-134.
- [52] WOLSKI B.: Monitoring metrologiczny obiektów geotechnicznych. Politechnika Krakowska. Kraków 2006, s.1-275.
- [53] ŻAK M.: Obsługa geodezyjna przemysłowego budownictwa wieżowego. Praca zbiorowa. Geodezja inżynieryjna. Tom II, Rozdz. 6. wyd. II, PPWK. Warszawa 1994 r., s. 278-380.

GEODEZJA INŻYNIERYJNA Wybrane zagadnienia Wyznaczenie odchylenia osi komina od pionu

Streszczenie

W monografii przedstawiono kompleksowo sposób określenia odchyleń osi komina od pionu metodą wielokrotnego wcięcia kątowego w przód. Monografia zawiera wprowadzenie teoretyczne, materiały z pomiarów polowych (dzienniki pomiarowe) pionowości osi komina wykonanych z trzech stanowisk oraz analityczne i graficzne opracowanie wyników pomiaru. W zaprezentowanym przykładzie obserwacjom geodezyjnym podlegały tworzące komina na czterech poziomach metodą dwusiecznych. Obliczenia wykonano algorytmem opracowanym przez autora w środowisku informatycznym Mathcad 14. W cześci teoretycznej podano wyprowadzenie równań poprawek i algorytm obliczeniowy wykorzystany w dalszej części monografii. W części praktycznej podano szczegółowo rozpisane obliczenia ze wskazówkami do korzystania z programu Mathcad. Bardzo istotną częścią opracowania wyników pomiarów terenowych jest ich wyrównanie. Przyjęto następujące założenia: współczynniki wagowe obserwacji kątowych odpowiadają rzeczywistej dokładności pomiaru kierunku, natomiast współrzedne stanowisk pomiarowych przyjeto za bezbłedne. W końcowej analizie dokładności przeliczono i zestawiono wpływ błędów pomiarów kierunków dla: 1^{cc} ,5^{cc}, 10^{cc}, 15^{cc} ,20^{cc}, 50^{cc} i 100^{cc} na dokładność wyniku końcowego dla poziomu pierwszego. Z analizy wynika, że dokładność pomiaru kierunku z dokładnością rzędu 20^{cc} jest w zupełności wystarczająca dla odległości stanowisk pomiarowych od komina zbliżonych jak w przeliczonym przykładzie, tj. do 100 m.

Zaprezentowany algorytm bez modyfikacji można wykorzystać do własnych obliczeń. Spośród wielu metod obliczeniowych wybrano metodę opartą na odniesieniu pomiarów kątowych do kierunków zorientowanych. Taki sposób podejścia umożliwia wykonanie obliczeń według przedstawionego algorytmu, niezależnie od sposobu nawiązania kątowego na poszczególnych stanowiskach. Przedstawiony algorytm można wykorzystać do zagadnień, gdzie wykorzystuje się metodę wielokrotnego wcięcia kątowego w przód.

ENGINEERING SURVEY Selected problems Determining deviation of chimney axis from the plumb

Summary

The following monograph presents in a complex way a procedure of determining deviation of a chimney axis from the plumb by the multi-point intersection method. It contains a theoretical introduction, research materials gathered at site measurements (survey logs) of the chimney axis plumb-line executed from three different stations as well as graphic representations of the survey results. In the presented example, survey observations focused on generating lines of the chimney on four levels, with use of the bisector method. The calculations have been made with use of an algorithm worked out by the author in the Mathcad 14 and Fortran Power environment. The theoretical part contains derivation of correction equations and a calculation algorithm used in the further part of the monograph. The practical part presents detailed calculations with instructions how to use the Mathcad programme. Settlement of results constitutes a crucial part of the description of site survey results. The following assumptions have been made: weight coefficients of angle observations agree with actual direction survey accuracy, where the station coordinates have been assumed correct. In the final accuracy analysis the author has calculated and prepared a specification of influence of survey errors for 1^{cc}, 5^{cc}, 10^{cc}, 15^{cc}, 20^{cc}, 50^{cc} and 100^{cc} upon the accuracy of the final result for the first level. As it results from the analysis, the accuracy of direction survey of 20^{cc} is good enough for the distance of survey stations from the chimney approximating at 100 m, as in the calculated example.

It can, with no modifications, be used for own calculations. From among numerous calculation methods, the one has been chosen which is based upon the relation of angle surveys towards the azimuth. Such an approach makes it possible to execute calculations in accordance with the presented algorithm, regardless the way of angular reference in individual stations. The presented algorithm can be used to problems where the method of multipoint intersection is used.