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Abstract: This paper tests the applicability of deep reinforcement learning (DRL) algorithms 
to simulated problems of constrained discrete and online resource allocation in project 
management. DRL is an extensively researched method in various domains, although no 
similar case study was found when writing this paper. The hypothesis was that a carefully 
tuned RL agent could outperform an optimisation-based solution. The RL agents: VPG, 
AC, and PPO, were compared against a classic constrained optimisation algorithm in trials: 
“easy”/”moderate”/”hard” (70/50/30% average project success rate). Each trial consisted of 
500 independent, stochastic simulations. The significance of the differences was checked using 
a Welch ANOVA on significance level alpha = 0.01, followed by post hoc comparisons for 
false-discovery control. The experiment revealed that the PPO agent performed significantly 
better in moderate and hard simulations than the optimisation approach and other RL methods.

Keywords: reinforcement learning (RL), operations research, management, optimisation.

Streszczenie: W artykule zbadano stosowalność metod głębokiego uczenia ze wzmocnieniem 
(DRL) do symulowanych problemów dyskretnej alokacji ograniczonych zasobów w zarzą-
dzaniu projektami. DRL jest obecnie szeroko badaną dziedziną, jednak w chwili przeprowa-
dzania niniejszych badań nie natrafiono na zbliżone studium przypadku. Hipoteza badawcza 
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zakładała, że prawidłowo skonstruowany agent RL będzie w stanie uzyskać lepsze wyniki 
niż klasyczne podejście wykorzystujące optymalizację. Dokonano porównania agentów RL: 
VPG, AC i PPO z algorytmem optymalizacji w trzech symulacjach: „łatwej”/„średniej”/
„trudnej” (70/50/30% średnich szans na sukces projektu). Każda symulacja obejmowała  
500 niezależnych, stochastycznych eksperymentów. Istotność różnic porównano testem 
ANOVA Welcha na poziomie istotności α = 0.01, z następującymi po nim porównaniami  
post hoc z kontrolą poziomu błędu. Eksperymenty wykazały, że agent PPO uzyskał w najtrud-
niejszych symulacjach znacznie lepsze wyniki niż metoda optymalizacji i inne algorytmy RL.

Słowa kluczowe: uczenie ze wzmocnieniem, badania operacyjne, zarządzanie, optymalizacja.

1. Introduction 

According to selected definitions, project management is a set of actions, including 
the “application of knowledge, skills, tools, and techniques to project activities to 
meet project requirements. Project management refers to guiding project work to 
deliver the intended outcomes” (Institute, 2021; Manikantan and Gurusamy, 2016). 
Work on each project is usually divided into several phases: conceptualisation, 
definition, planning, execution, and termination (Schwindt, 2010). Optimal planning, 
including estimation, scheduling, and constrained allocation, has been addressed in 
many research studies because any project activities are subject to precedence, 
resource, and time constraints on limited resources (Selaru, 2012). The need for 
better precision and speed in decision-making has generated significant demand for 
automated systems, which have slowly started to replace older solutions (Gupta, 
Modgil, Bhattacharyya, and Bose, 2022). Numerous recommendations for the so- 
-called data-driven companies have been created, including the need to have systems 
for predictive modeling, forecasting, optimisation, and planning (Anderson, 2015; 
Sharda, Delen, and Turban, 2020). In particular, in fields like Operations Research 
(OR) which focuses on improving day-to-day company decisions (Gupta et al., 
2022), fusion with machine learning and big data fields have become more critical 
as the volumes and velocity of data grow every year (Bhimani and Willcocks, 2014; 
Duan, Edwards, and Dwivedi, 2019).

This paper aimed to assess the applicability of a rapidly growing family  
of machine learning algorithms, called Reinforcement Learning (RL), to the 
problem of constrained resource allocation in project management under a strong 
environment uncertainty. The research hypothesis in the study is that a carefully 
chosen RL-based agent can outperform a classic constrained-optimisation approach 
in a simulated environment.

The paper is structured as follows: Sections 1.1 and 1.2 give an overview  
of the existing research on resource allocation problems and the applicability  
of RL techniques. Section 1.3 presents some theoretical background necessary  
to understand RL mechanics. Part 2 describes the experimental setup: Sections 2.1 
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and 2.2 present the simulator design and possible actions, while 2.3 and2.4 give more 
detail on the objective function and experiment variants. Section 2.5 focuses on the 
algorithms selected for comparative study. Part 3 presents a detailed breakdown  
of the results and their analysis.

1.1. Previous work on optimisation techniques for resource allocation

Optimisation has been a research subject for over a century and laid a foundation for 
fields such as operations research (Ackoff, 1956). It is one of the critical tools, as it 
helps to make decisions that allow managers to choose the most promising options 
out of the available alternatives, often including the long-term horizon (Schwindt, 
2010). A review and meta-analysis of numerous publications from the late 1990s up 
to the present reveals an increasing interest in the design of optimisation systems 
with meta-heuristics, evolutionary algorithms, and parallel computing, that operate 
under strong uncertainty (Chiang and Lin, 2020; Farhang Moghaddam, 2019). 

The existing solutions to such problems included traditional linear programming 
(mostly mixed-integer constraint optimisation) (Islam, 2011; Kane and Tissier, 2012), 
entropy minimisation (Ye, Shi, Li, and Shi, 2014), or combinatorial multi-armed 
bandits (Zuo and Joe-Wong, 2021). The applicability of swarm or evolutionary 
algorithms, constraint satisfaction, and linear optimisation was assessed in key 
areas such as human resource allocation (Chiang and Lin, 2020). 

1.2. Previous work on reinforcement learning applications

Over the years, multiple approaches to utilise reinforcement learning for resource 
allocation have been made. Some of them were based on the fundamental principles 
of Markov Decision Processes (MDP) and their use in Supply Chain Management 
(Giannoccaro and Pontrandolfo, 2002); others directly followed early RL formulations 
such as Q-learning for Business Process Management (Huang, van der Aalst, Lu, 
and Duan, 2011). Numerous publications describe attempts to apply different RL 
tools for constrained task scheduling and packing problems (Jędrzejowicz and 
Ratajczak-Ropel, 2013; Mao, Alizadeh, Menache, and Kandula, 2016) and logistics 
(Yan et al., 2021; Yuan, Li, and Ji, 2021). 

The RL solutions for production planning and dynamic worker scheduling have 
been reviewed extensively (Koulinas, Xanthopoulos, Kiatipis, and Koulouriotis, 
2018; Shyalika, Silva, and Karunananda, 2020), which highlight the benefits and 
drawbacks of different algorithm families, assessed with criteria such as convergence 
speed and sampling efficiency. Production planning differs from the problems 
presented in this study, but the initial choice of the RL algorithms was based on 
previous research in this area and the existing recommendations (Shyalika et al., 
2020; Yu, Zhang, Jiang, Yang, and Shang, 2021). 

RL is widely used in technical constraint resource allocation problems, e.g. 
server load balancing, channel allocation in telecom, and network management  
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(Li et al., 2018; Xu et al., 2021; Ye, Li, and Juang, 2019). Most of these approaches 
utilise different Q-learning variants.

To date, no publications directly focused on RL in project management sequential 
resource allocation with simulation experiments have been found.

1.3. Reinforcement learning overview

Reinforcement learning (RL) is one of the subfields of machine learning, focused on 
the autonomous agent interacting with the environment. An agent receives rewards 
by randomly acting in the environment, gradually improving performance 
(Schulman, 2016). The goal is to learn the actions that maximise the expected 
cumulative reward over time (Mousavi, Schukat, and Howley, 2018). Typically, 
reinforcement learning problems are modelled using MDP, formalised as follows 
(Arulkumaran, Deisenroth, Brundage, and Bharath, 2017):

1.  is a set of states that describe an environment.
2.  is a set of actions that can be performed in the environment.
3.  – transition dynamics that describes the consequences of exe-

cuting action at state st. This part can be probabilistic, lading to different st+1 values.
4.  is a set of rewards obtained in transition.
5. A sequence of states, actions and rewards during the episode is called a tra-

jectory T rollout.
6. All rewards accumulated during the trajectory rollout are called returns, de-

noted as R. The agent attempts to remember the consequences of past actions and 
utilises a discounting future reward by factor . The return is formalised as 
follows
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The goal of any agent is to define a policy π that represents the agent’s behaviour 
during interaction. It is a strategy function that maps encountered states st into 
actions, and is denoted as (Sutton, Bach, and Barto, 2018):

 ( ): | .p aπ → =    (2)

An agent should learn a policy that achieves a maximum return from all the 
states
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During the learning process, the agents use some additional functions that help 
them find the best way to construct the policy. Policy action value (Mnih et al., 2016; 
Sutton et al., 2018)
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describes the expected return from executing action while being in state and is often 
called a “q-function” or “q-value”. It can be expressed in a recursive form, known as 
the Bellman equation which laid the foundation for more advanced RL algorithms 
(Arulkumaran et al., 2017; Bellman, 1954)

 ( ) ( )( )
1 1 1 1, , .

tt t s t t tQ s a r Q s sπ πγ π
+ + + + = +   (5)

This equation can be interpreted as the relationship between the current and 
future Q-values. The current value consists in the actual reward and discounted 
future Q-values, each one being a reward obtained from following policy π (as 
described in equation (2)), starting from current state st.

The value function of state st under policy π describes the expected returns when 
following π from state st

 ( ) [ ]| .tV s R s sπ = =  (6)

In practice, there are multiple paradigms and approaches for learning such 
mappings. Two prominent families of algorithms include on-policy and off-policy 
learning. In the on-policy setting, an agent executing the algorithm is restricted 
to following a policy learnt so far; it can improve in a later phase. An agent can 
gain experience using functions other than the current policy in the off-policy 
approach (Sutton et al., 2018). Typical examples of these approaches are SARSA 
and Q-learning algorithms, where the former is an on-policy, and the latter is an off- 
-policy. SARSA is formalised as follows (see Sutton et al., 2018)

 ( ) ( ) ( ) ( )1 1, , , ,t t t t t t t t tQ s a Q s a r Q s a Q s aπ π π πα γ + + ← + + −  , (7)

where α is a learning speed parameter. This function corrects the current estimation 
of the q-value for a given state-action pair, after calculating and receiving future 
values, when following current policy. In contrast, off-policy Q-learning update 
utilises maximal next time-step q-value, not necessarily the one from policy π

 ( ) ( ) ( ) ( )1, , max , ,  .t t t t t t t ta
Q s a Q s a r Q s a Q s aπ π πα γ +

 ← + + − 
 (8)

In a deep learning RL variant (DRL), both functions are approximated 
with a set of (at least one) neural networks parameters θ, which is formalized as  
Qπ(s, a, θ) ≈ Qπ(s, a) and Vπ(s, θ) ≈ Vπ(s) (Mnih et al., 2016; Sutton et al., 2018). One of 
the significant improvements over the previous methods was the introduction of the 
so-called ‘policy gradient’. It optimises the policy by calculating the gradient with 
respect to its parameters. Formally (Schulman, 2016): 
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where is a trajectory rollout under policy parameters θ and R(T) is the total reward 
of the trajectory.

The implementations of this general idea include approaches such as “Vanilla” 
Policy Gradient (VPG), which calculates a policy gradient after each episode 
termination, effectively performing a Monte Carlo update (Schulman, 2016). Due to 
its instability and sampling inefficiency, such an approach was further extended by 
combining a policy learning and value function learning simultaneously – called the 
actor-critic method. “Actor” (parametrised by θ) learns policy π, which is verified 
by the “critic” – a value function estimator parameterised by ϕ (Mnih et al., 2016; 
Schulman, 2016; Sutton et al., 1999). In that case, a learned value-function is treated 
as a baseline in the policy gradient, which serves the normalisation and correction 
purposes (Arulkumaran et al., 2017). Stability and variance improvement was 
achieved with the so-called “advantage estimations”, where the returns per each 
time step are replaced by other calculations, emphasising the differences between 
actions and the default state-value (Mnih et al., 2016; Schulman, Moritz, Levine, 
Jordan, and Abbeel, 2016). In that context, an advantage can be defined as

 ( ) ( ) ( ), : , . t t t t tA s a Q s a V sπ π π= −  (10)

Several variants of such calculation exist, including Generalised Advantage 
Estimation (GAE), utilising an exponentially-weighted moving average of subsequent 
time-step advantages (Schulman et al., 2016)
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where λ is an additional smoothing parameter, used along with discounting factor γ.

Such calculations can be used optionally in the VPG algorithm and its later 
extensions, e.g. Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016), 
Advantage Actor-Critic (A2C) (Wu et al., 2017) and Proximal Policy Optimisation 
(PPO) (Schulman, Wolski, Dhariwal, Radford, and Klimov, 2017). The latter 
algorithm further improves the policy stability by introducing a clipped surrogate 
objective function, limiting the amount of changes to the policy on each iteration 
(Schulman et al., 2017).
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2. Experiments

2.1. Simulator overview and observation space

In order to assess the applicability of RL in resource allocation for project 
management, a dedicated simulator was designed. It can be treated as an analogy to 
a constrained human resource allocation task for a company in subsequent months 
or any other venture that requires subsequent allocation of limited resources. 

It is composed of multiple discrete time steps, and in each timestep, two 
projects are available. Each project has a different resource allocation requirement, 
associated probability (chance) of success, and payout per resource allocated; it can 
be formalised as follows: 

1. bi  – is the balance of simulated “company” at time step i, the total amount 
of money available. The starting balance is indicated as b0.

2. resi  – is the number of resources available to the simulated “company,” at 
step i. The starting resources are indicated as res0.

3. C  – is the upkeep cost for each idle resource unit. If the unit is not al- 
located to any project, a “company” will have to pay the given amount of money for 
upkeep.

4. C+  – is the resource increase cost, incurred when the agent wants to in-
crease the number of resources available. It replicates the real-world market (e.g. the 
recruitment process for new employees).

5. N  – number of discrete time steps, equal to the number of decision points.
6.  – for each -th timestep, is the probability of success for 

projects one and two.
7.  – for each i-th timestep, is the reward in each project 

(payout) per resource allocated.
8.  – for each i-th timestep, is the maximum demand for resources 

in projects one and two.
Therefore, the observation space in each timestep (si) is a vector composed of the 

following elements

 { }1 1 1 2 2 2, , , , , , ,  i i i i i i i i is d pay p d pay p res b= . (13)

The vectors with such a structure are used as input in subsequent timesteps for 
all agents in the simulations.

2.2. Action space

After receiving a vector indicated by equation (13), the agent must pick an action. In 
a discrete control setting, it can choose one action out of the following:

1. a1 – try to allocate demand for project 1, resulting in alloci
1 = min (di

1, resi).
2. a2 – try to allocate demand for project 2, resulting in alloci

2 = min (di
2, resi).



Utilization of Deep Reinforcement Learning for Discrete Resource Allocation Problem… 63

3. a12 – try to allocate half of the demand for project 1 and a half for project 2, 

resulting in  and .

4. a0 – keep all resources idle (incurring upkeep cost), resulting in alloci
0 = resi.

5.  – reduce the number of resources by respectively 
10/25/50%, while keeping the remaining idle (incurring upkeep cost), resulting in 
alloci

−x = min (0, (1−x)resi).
6.  – increase the number of resources by respectively 

10/25/50%, while keeping the remaining idle (incurring upkeep cost), resulting in 
alloci

+x = x × resi).
If the number of resources changes (due to action selection), a modified number 

of resources will become the starting value for the next time step. Therefore:
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2.3. Simulation objective and rewards

After the allocation is selected, the simulator will check if the selected project(s) 
succeeded; each project is an independent Bernoulli trial with a probability of 
success pi

1, pi
2. The agent will receive a reward, depending on the allocation choice 

and if the project j succeeded in time step i (indicated as ).
The agent will receive a reward depending on the allocation choice and success 

of the project
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The accumulated rewards change the running balance of the agent. The goal 
is to maximise the rewards accumulated during the whole episode. The simulation 
terminates in one of three situations: when the balance is less or equal to zero, or 
when the agent runs out of resources, or after a predefined number of time steps.
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Fig. 1. Example of agent interaction

Source: own work.

2.4. Simulation variants

In order to judge how different agents behave in different conditions, three scenarios 
were used in the simulation. The distinctive parameter for these environments was 
the probability of project success capped to a min/max between 0.1.

1. In an “easy” environment, the probability of success was a random number 
drawn from a truncated normal distribution with μ1 = 0.7, σ1 = 0.2. The mean chance 
for a project to succeed in this setting is 70%. With an initial resource pool and star-
ting balance, it should be easy for an agent to successfully generate large incomes 
during simulation without risking “bankruptcy” or running out of resources too early.

2. In a “moderate” environment, the probability of success was a random num-
ber drawn from a truncated normal distribution with μ2 = 0.5, σ2 = 0.2. On average, 
only 50% of the projects succeed. With an initial balance and resource pool, the 
agent should choose projects wisely, potentially splitting allocation or investing in 
new resources, to avoid bankruptcy or inability to operate.

3. In a “hard” environment, the probability of success was a random number 
drawn from a truncated normal distribution with μ3 = 0.3, σ3 = 0.2. Only 30% of 
projects succeed in this setting. It will be tough for an agent to generate any income 
and avoid failure even in the early stages of the simulation.
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The success probabilities mentioned before, are presented in Figure 2.

Fig. 2. Success probabilities across environments

Source: own work.

The upkeep costs were kept constant across all variants. The payouts for each 
project were random numbers generated from a truncated normal distribution with 
μpay = 1.0, σpay = 0.5 capped to a min/max of between −0.5/ +1.5. Each environment 
consisted of 300 timesteps before termination.

2.5. Agents in the study

Five different types of agents were tested. 
1. Random agent – treated as a benchmark, selects random actions at every 

timestep.
2. Optimisation agent – performs classic constraint optimisation on each step. 

It checks the expected reward for each action based on the probability of success. 
Therefore it seeks an action that maximises the following

 { }1 12

1 2

, , , , 
max  | ,  

i o x x
i i i ia a a a a a

b r p p
+ −∈

 +   , (16)

where ri is a reward as indicated in equation (15). The predictions (decisions) of this 
agent are deterministic.
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Fig. 3. Policy net architecture

Source: own work.

Fig. 4. Value net architecture

Source: own work.
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3. Reinforcement learning, policy gradient agents (based on the algorithms 
described in Section 1.2):

a. The VPG agent, composed of “Actor” and “Critic” neural networks. 
The agent was improved with a GAE calculation for the full Monte Carlo 
episode for better performance and variance stability.

b. The A2C agent with N-step GAE advantage estimation. During the tuning 
of the parameters, the optimal number of steps was set to 25.

c. The PPO agent with N-step GAE advantage estimation and surrogate 
objective clipping function was set to 0.2.

The Actor and Critic neural networks for all the aforementioned agents have the 
same architecture and are presented in the figures 3 and 4.

The inner network layers utilised a hyperbolic tangent activation function due to 
its scaling properties. The outer layer of a critic network utilised a linear activation 
function, while the actor-network performed a softmax classification to one of the 
available actions.

2.6. Experimental design

The testing procedure remained the same in all the environments. It consisted of the 
following steps:

1. Check the score of each agent on 500 independent, random simulation 
iterations before the training or fitting procedure.

2. Fit the agent (if applicable) on 300 independent, random simulation iterations.
3. Check the final scores on 500 independent, random simulation iterations. 

Store the results.
4. Perform statistical tests on gathered data – scores after the training.
5. Assumptions:

a. Each test score is independent from the others and identically distributed 
– each model is trained on 500 random episodes. The simulation environ-
ment is reset every time.

b. Each set of results per model was checked for normality using the Shapiro 
Wilk test; because of skewness, the tests did not confirm that data comes 
from a normal distribution.

c. Equality of variance across model scores was checked using the Levene 
test. In each case the null hypothesis was rejected, so population variances 
cannot be considered equal.

6. According to the research (Arcuri and Briand, 2014; Colas, Sigaud, and 
Oudeyer, 2019), the Welch T-test with p-value correction, followed by post-hoc 
pairwise testing, is considered the most robust in comparing RL algorithms results 
violating equality of variance and normality assumptions. Considering the large number 
of independent samples (N = 500), the Welch T-test on a stricter significance level  
α = 0.01 can be considered as the primary testing procedure (Arcuri and Briand, 
2014). It yielded the lowest false positive errors compared to the non-parametric 
Mann-Whitney or ranked t-tests (Colas et al., 2019). Therefore, the following 
methods were utilised for each simulation setup:
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a. Perform a single Welch ANOVA on a significance level α = 0.01, to test if 
there is a significant difference in the scores between all agents. 

b. Perform a series of post-hoc tests between pairs of agents to judge which one 
in the pair performs better. The method of choice for pairwise comparison 
was the Games-Howell test, as it can be combined with the Welch ANOVA 
in a non-equal variances setup (Bagherzadeh, Kahani, and Briand, 2021; 
Games and Howell, 1976).

3. Results and discussion

3.1. Results overview

The table 1 presents the mean, median and standard deviation of the results achieved 
by each agent in the simulations. The numbers in brackets indicate the standard 
deviation for the scores. The maximal score for a given setup is given in bold. All the 
scores were rounded up to the third decimal place.

Table 1. Scores of each agent in each environment

Setup/Agent Random Optimization VPG AC PPO

Easy
−290.89
−270.731
(181.360)

5400.996
5423.375
(619.269)

4681.178
4680.816
(437.656)

4685.794
4690.119
(425.214)

5221.025
5367.668
(653.343)

Medium
−266.279
−171.603
(187.549)

1696.866 
2050.942

(1081.587)

1649.711
1721.975
(653.539)

1524.030
1640.094
(668.603)

3145.002 
3471.829

(1426.586)

Hard
−268.207 
−171
(185.856)

−115.573
−113.268

(12.073)

−73.364
−72.109
 (9.932)

137.743 
−107.305
(531.494)

529.445
532.573

(134.387)

Numbers represent mean/median/(std) of scores.

Source: own work.

The boxplot below presents a graphical distribution of each model’s scorings 
in each environment. The bounds of the box represent the 25th and 75th percentile, 
while the line in the middle – the median. The Upper/lower whiskers are the lowest/
highest values that are within 2.5 standard deviations from the mean. The more 
spread or the longer the box is – the more stretched the scorings distribution.

Looking at the table and plots, it is clear that the PPO algorithm performed best in 
the most challenging environments, i.e. “moderate” and “hard”. As described in the 
section “experimental design”, a series of statistical tests were performed to judge 
the significance of differences between the models: Welch ANOVA on significance
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Fig. 5. Distribution of scores per each model

Source: own work.

level α = 0.01 to evaluate the overall differences, and a series of pairwise comparisons 
using the Games-Howell method, followed by a p-value correction for controlling 
the false discovery level; the results are presented below. In all the tables, the top row 
represents the Welch ANOVA test with degrees of freedom 1 (treatment levels/
groups), degrees of freedom 2 (no. of observations – no. of groups), the test statistic, 
and p-value. The subsequent rows represent pairwise model comparisons, with the 
score’s difference, its standard deviation, the test statistic, and Hedge’s effect size 
(*/**/***– small/medium/large) (Ferguson, 2009; Sullivan and Feinn, 2012). The 
insignificant comparisons (with pval ≥ 0.01) were greyed out. In each pair, the model 
with better results was highlighted in bold and underlined.

Table 2. Pairwise comparisons of agents on the “easy” environment

Model A Model B Score diff Diff se Statistic P-val Eff. size
AC PPO −535.23 34.86 −15.35 <<0.001 −0.97***
AC VPG 4.62 27.29 0.17 0.9 0.01*
AC optimiser −715.2 33.59 −21.29 <<0.001 −1.35***
AC random 4976.68 20.67 240.73 <<0.001 15.21***

PPO VPG 539.85 35.17 15.35 <<0.001 0.97***
PPO optimiser −179.97 40.26 −4.47 <<0.001 −0.28**
PPO random 5511.91 30.32 181.77 <<0.001 11.49***
VPG optimiser −719.82 33.91 −21.23 <<0.001 −1.34***
VPG random 4972.07 21.19 234.68 <<0.001 14.83***

optimiser random 5691.89 28.86 197.24 <<0.001 12.47***

In the table: conducted statistical test is Welch ANOVA with degrees of freedom equal to 4  
and 1151.14 (for groups 1 and 2 respectively), F-statistic equal to 34759.39, and overall test p-value 
<< 0.001

Source: own work.
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Table 3. Pairwise comparisons of agents on the “moderate” environment.

Model A Model B Score diff Diff se Statistic P-val Eff. size
AC PPO −1620.97 70.46 −23.01 <<0.001 −1.45***
AC VPG −125.68 41.81 −3.01 0.02 −0.19
AC optimiser −172.84 56.87 −3.04 0.02 −0.19
AC random 1790.31 31.05 57.65 <<0.001 3.64***

PPO VPG 1495.29 70.17 21.31 <<0.001 1.35***
PPO optimiser 1448.14 80.06 18.09 <<0.001 1.14***
PPO random 3411.28 64.35 53.01 <<0.001 3.35***
VPG optimiser −47.16 56.51 −0.83 0.9 −0.05
VPG random 1915.99 30.41 63.01 <<0.001 3.98***

optimiser random 1963.14 49.09 39.99 <<0.001 2.53***

In the table: conducted statistical test is Welch ANOVA with degrees of freedom equal to 4  
and 1080.87 (for groups 1 and 2 respectively), F-statistic equal to 2581.87, and overall test p-value  
<< 0.001.

Source: own work.

Table 4. Pairwise comparisons of agents on the “hard” environment.

Model A Model B Score diff Diff se Statistic P-val Eff. size
AC PPO −391.7 24.52 −15.98 <<0.001 −1.01***
AC VPG 211.11 23.77 8.88 <<0.001 0.56**
AC optimiser 253.32 23.78 10.65 <<0.001 0.67**
AC random 405.95 25.18 16.12 <<0.001 1.02***

PPO VPG 602.81 6.03 100.03 <<0.001 6.32***
PPO optimiser 645.02 6.03 106.89 <<0.001 6.76***
PPO random 797.65 10.26 77.77 <<0.001 4.91***
VPG optimiser 42.21 0.7 60.37 <<0.001 3.82***
VPG random 194.84 8.32 23.41 <<0.001 1.48***

optimiser random 152.63 8.33 18.33 <<0.001 1.16***

In the table: conducted statistical test is Welch ANOVA with degrees of freedom equal to 4  
and 1136.26 (for groups 1 and 2 respectively), F-statistic equal to 3694.87, and overall test p-value  
<< 0.001.

Source: own work.

In the “easy” environment, where the chance for success for each project is 
relatively high, the agent utilising classic optimisation procedures performed the 
best, followed by the PPO and AC agents, which proved to be slightly less effective. 
This difference can be attributed to the stochastic nature of the RL algorithms 
and their inherent instability – as machine learning procedures, their results may 
vary. When the chance of success is very high, the sequential problem reduces to 
subsequent single-step, greedy optimisation tasks, for which classic tools proved to 
be the best choice.
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In both the “moderate” and “hard” environments, the PPO agent significantly 
outperformed both the classic optimisation method and the other RL algorithms. 
These differences’ size of effect and absolute value are large, measured in thousands 
for the “moderate” environment. This effect can be attributed to the fact that the 
RL algorithms possess the ability to plan in the long-term horizon due to reward 
discounting and advantage estimation, which is not possible for more straightforward, 
greedy optimisation tools.

In conclusion, the study shows that deterministic optimisation remains the best 
choice for stable, well-defined environments. Advanced RL methods, such as PPO, 
are best suited for challenging, stochastic environments connected with uncertainty.

3.2. Discussion

The simulation presented in this study is far from being a perfect model of a real 
resource allocation scenario. 

The first improvement and future study direction could be to transform it into a 
continuous control problem, where an agent can allocate an exact number of resources 
or their proportion to projects instead of discrete chunks. Problem simplification to 
discrete actions instead of numerical ones is standard for many RL algorithms. Such 
an approach can be problematic when the dimensionality of the action vector is 
large (Dulac-Arnold et al., 2015; Lillicrap et al., 2016; Smart and Kaelbling, 2000). 
Therefore it will be a natural extension to transform the simulator presented in this 
study to operate in numerical action-space, and properly adjust the agents’ policies.

Other improvements could include resource-locking for long-term projects, 
nondeterministic project shutdowns, and sudden resource outages to make the 
simulation more realistic.

4. Conclusion

The simulation experiment performed in this study was supposed to replicate 
sequential resource allocation processes similar to these in various project 
management tasks. The classic resource optimisation algorithm was compared to 
RL algorithms on different difficulty levels to judge the performance of such 
methods. Strict statistical experimentation proved that the PPO algorithm performed 
best out of all the tested methods in a more challenging setup connected with 
uncertainty. 

The implementation of a simulator presented in this paper can be treated as  
a starting point for more complicated designs that include resource locking, changing 
market conditions, and continuous control.
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