
 PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 133

Pozyskiwanie wiedzy i zarządzanie wiedzą 2010

Antoni Ligęza, Grzegorz J. Nalepa
University of Science and Technology, Kraków

HEKATE RULE DESIGN
METHODOLOGY OVERVIEW

Summary: This paper presents a methodology and tools for design and development of rule-
based systems. Efficient knowledge representation is based on the Extended Tabular Trees –
XTT2 formalism. The design process is a top-down one. A conceptual model is developed with
the ARD+ diagrams representing functional dependencies among attributes. On the basis of
ARD+ a scheme of the XTT2 rule-based model is generated and filled with knowledge. A set
of tools supporting design and verification is described and design methodology is outlined.

Keywords: rule-based systems, design and development of rule-based systems.

1. Introduction

Rule-based systems constitute one of the most powerful and most popular knowl-
edge representation formalisms [3; 5]. They offer a relatively easy way of knowl-
edge encoding and interpretation. Formalization of knowledge within a rule-based
system can be based on mathematical logic (e.g. propositional, attributive, first-
order, or even higher order ones) or performed on the basis of an engineering intui-
tion. They have found numerous applications in various domains of engineering,
science, law, and computer science. Rule-based systems are also a prominent ex-
ample of successful application of Artificial Intelligence [16].

Rules are omnipresent in our everyday life, professional work, leisure and sport
activities; they are also popular in science and technology. They are result of
physical (and mathematical) laws, formed by men, tradition, culture, civilization,
law. The most precise rules are the ones found in technical and technological sys-
tems, however, many rule-based expert systems addressed the issues of medical di-
agnosis or business decision support as well.

In computer science rule-based systems appeared just after symbolic program-
ming languages had been developed. First such systems were termed production
systems or production rules. The golden age for rules came in the 1970s and 1980s
with developments and practical applications of expert systems. They were dedi-

HeKatE rule design methodology overview 59

cated to solving specific problems in narrow, well-formalized domains. A typical
construction of such a system was based on two components: a declarative rule-
base encoding domain-specific knowledge and an inference engine of general pur-
pose (the so-called expert system shell [5; 6]). Rule-based systems are also applied
in Decision Support Systems. In business the high-level knowledge encoding pro-
cedures, experience, domain knowledge and preferences is often encoded by vari-
ous forms of rule-based systems, decision tables, and decision trees.

Modern rule-based systems, such as Clips, Jess, Drools, Xpert, Aion, Ilog, G2,
follow the classical paradigm. Rules are developed using some predefined knowl-
edge representation framework (often close to attribute logic). The current rule-
based systems and tools for their development have reached a certain level of ma-
turity. Specialized editors that are able to check the syntax of rules are in use and
they provide tools for computer-aided development of final applications. However,
they have inherited a number of traditional features of classical rule-based systems,
which nowadays can be considered as drawbacks.

In this paper we mainly address the following issues which seem worth im-
provement: 1) single rules constitute items of low knowledge processing capabili-
ties, while for practical applications a higher level of abstraction is desirable, 2) in-
ference engines, especially ones forward-checking, are highly inefficient with re-
spect to the focus on the goal to be achieved, (in a certain sense, they perform a
blind search), 3) no practical methodology acceptable by engineers and assuring
quality of rules is available.

This paper presents a new approach to design and development of rule-based sys-
tems, based on the ideas presented in [7; 11]. More precisely, we present the state-of-
the-art of the HeKatE methodology (an acronym for Hybrid Knowledge Engineering,
see http://hekate.ia.agh.edu.pl), for design and development of complex rule-based
systems for control and decision support. This methodology is supported with visual
tools for development of knowledge bases and novel inference engine.

The main paradigm for rule representation, namely the eXtended Tabular
Trees2 (XTT2) [9; 10; 14], ensures high density and transparency of visual knowl-
edge representation. Contrary to traditional, flat rule-based systems, the XTT ap-
proach is focused on groups of similar rules rather than single rules. In this way we
address the first issue of low processing capabilities of single rules. Such groups
form decision tables which are connected into a network for inference.

Efficient inference is assured thanks to firing only rules necessary for achieving
the goal. It is achieved by selecting the desired output tables and identifying the ta-
bles necessary to be fired first. The links representing the partial order assure that
when passing from a table to another one, the latter can be fired since the former
one prepares an appropriate context knowledge. Hence only rules working in the
current context of inference are explored. The partial order among tables allows to
avoid examining rules which should be fired later on.

60 Antoni Ligęza, Grzegorz J. Nalepa

Another distinctive feature is the design methodology allowing for formal veri-

fication of rules. A top-down design methodology based on successive refinement
of the project is put forward. It starts with development of an Attribute Relation-
ship Diagrams+ (ARD) which describes relationships among process variables.
Basing on the ARD the scheme of particular tables and links among them is gener-
ated. The tables are filled with expert-provided definitions of constraints over the
values of attributes; these are in fact the rule preconditions. The code for rules rep-
resentation is generated and interpreted with provided inference engine [12].

The rest of the paper is organized as follows: In the second section the perspec-
tive on the rule-based decision support is given, to present some important issues
addressed in this paper. This gives a background for the motivation for the research
given next. The HeKatE project, introduced in the subsequent sections aims at pro-
viding solutions for the problems identified in the motivation section. One of the
main goals of the project is to provide a new rule-based inference engine solution
assuring flexible and efficient control during the inference process. The practical
design of the XTT2 knowledge bases is supported by visual editors, and other tools
shortly presented later on. Concluding remarks are given in the final section.

2. Rule-based control and decision support

Rule-based systems are widely applied for operational knowledge representation in
business and technical applications. Technical applications include control, moni-
toring and diagnosis support. Business applications include decision support, pref-
erences modelling, recommendations systems, and many other applications. There
exist many tools for implementing the RBS in the form of so-called shell-systems.

An important step was the development of CLIPS (an acronym for C Language
Integrated Production System), a descendant of the OPS5 rule-based production
system written in Lisp. Clips was developed by NASA and, despite being developed
in C, it follows the Lisp-like style of knowledge specification (full of parentheses and
hardly readable for engineers). It has become perhaps one of the most popular rule-
based engines since it is relatively fast (employing the Rete algorithm), simple, and
free (now in the public domain). A more recent reincarnation of CLIPS is JESS (Java
Expert System Shell [1]), developed in Java, but still employing a bit ancient Lisp-
like style of rules encoding. Another example is Drools [15], also based on Rete.
Yet another example is the Sphinx system [17]. Wider application of the technol-
ogy of rule-based systems in the domain of automatic control started in the early
1980s, as soon as the technology itself has reached some maturity.

Some overview of current developments with respect to theory, knowledge rep-
resentation, tools and application areas is provided in [5]. A list of current tools is
enclosed at the back of [6]. A very recent book [2] gives a good overview of some
emerging technologies and tools in the area of rule-based solutions.

HeKatE rule design methodology overview 61

3. Motivation

Certain persistent limitations of the existing approaches to the design of rule-based
intelligent control systems exist. They are especially visible in the case of design-
ing of complex systems. They often make the high quality design as well as the re-
finement of such systems very difficult. These limitations are related to the three
aspects of rule design: 1) knowledge representation, where the lack of formally de-
scribed rule base often makes the semantics unclear, 2) transparent structure and
efficient inference in the rule base, where the focus is on the design of single rules,
with no structure explicitly identified by the user, and 3) well founded systematic
and complete design process, that preserves the quality aspects of the rule model,
and allows for gradual system design and automated implementation of rules.

The majority of rule-based systems work according to the classical principles
of forward chaining. They incorporate a relatively simple, blind inference engine.
In order to speed up the interpretation of rules they often employ some indexation
of changes that occur in the fact base and how they influence the rule preconditions
satisfaction, e.g. the Rete network. With respect to the knowledge representation
language being used the following issues may be raised: lack of formal relation of
the knowledge representation language to classical logic, and, as a consequence,
difficulties with understanding the expressive power of the language, and, as a con-
sequence, lack of knowledge portability.

With respect to the internal structure and inference mechanism the criticism
may be even stronger: typically, the set of rules is flat (it has no internal structure,
so hundreds of different rules are considered equally important, and equally unre-
lated), the inference engine (at least potentially) tries to examine all rules in turn
for firing within every cycle, there is no definite way to select which rules from the
conflict set should be fired, irrelevant rules can be fired even if they do not contrib-
ute to the problem solution.

With respect to the development methodology it should be pointed out that
most of the rule-based tools are just shells providing a rule interpreter and some-
times an editor. Hence: the knowledge acquisition task constitutes a bottleneck and
is arguably the weakest point in the design and development process, typical rule
shells are not equipped with consistent methodology and tools for efficient devel-
opment of the rule base; on the other hand, general methodologies such as KADS
or Common-KADS are too complex for practical engineering or business applica-
tions, verification of the knowledge is rarely supported, and, if supported verifica-
tion is performed only after the design of rules.

Three main principles following from the above analysis define the foundations
of the approach advocated here are:
– Formal Language Definition, we insist on a precise definition of a formal lan-

guage, its formal properties and inference rules. This is crucial for determining

62 Antoni Ligęza, Grzegorz J. Nalepa

the expressive power, definition of inference mechanism and solving verifica-
tion issues;

– Internal Knowledge Structure, we introduce internal structure of the rule base.
Similar rules, aimed at working within a specific context, are grouped together
and form the XTT2 tables;

– Systematic Design Procedure, we argue for a complete, well-founded design
process that covers all of the main phases of the system lifecycle, from the ini-
tial conceptual design, through the logical formulation, all the way to the
physical implementation.
We emphasize the need for a constant on-line verification of the system model

w.r.t. critical formal properties, such as determinism and completeness.
These principles served as guidelines for the HeKatE approach we introduce in

the next section.

4. HeKatE concepts

In order to deal with the shortcoming of current systems the presented methodol-
ogy is based on the following assumptions.

Support for the visual design methods. The traditional approach to the devel-
opment of expert systems consisted in providing the so-called shells. Shells offer a
rule language and a ready-to-use inference engine. Classic solutions, such as
CLIPS, do not offer any special support for the design of the rule base. The new
generation of tools focuses on the design phase, and provides some advanced vis-
ual tools that support the designer and speed up the process.

Markup language-based representation. In the wake of large number of tools,
the problem of data exchange has gained an increased importance. The most com-
mon solution to overcome it is to provide an XML-based knowledge encoding.
There are even some dedicated XML-based languages, such as RuleML.

Strong integration with existing software tools and environments. Today expert
systems often work as a knowledge-based component integrated into a large soft-
ware. This is why the new expert system development tools provide interfaces to
some common programming platforms, such as Java.

Metaprogramming and code generation. Integrating the knowledge engineering
approach with classic programming paradigms still poses some difficult problems.
One of the techniques used is the approach, where the code in a programming lan-
guage, such as Java, is automatically generated from the knowledge-based model.

Formal knowledge verification and evaluation. Several more advanced tools
not only lead the designer through the design, but also support formal means to
analyze and verify the knowledge base. Such a verification should be performed as
soon as possible during the design. Assuring some key formal system properties,
such completeness can lead to increased system performance and security.

HeKatE rule design methodology overview 63

Reuse of old solutions, ideas and tools. What is striking in most of the techno-
logically advanced tools, is the general lack of new concepts and approaches. Most
of the tools rely on some well-known, and often exploited techniques, such as the
Rete algorithm when it comes to the rule processing, and simple decision trees
support in the design. Few tools support the analysis of the rule base.

Following are the results of the survey of the selected tools. Jess can be consid-
ered a modern Java-based implementation of the classic CLIPS system. Drools at-
tempts to create rule-based programming platforms for a number of languages.
Basing on the well tested Prolog technology, VisiRules provides a visual support
for the system design. Experimental tools, KbBuilder and MirellaDesigner, provide
some advanced analysis and verification capabilities, while supporting integrated
visual design.

5. HeKatE methods

The goals of the Hybrid Knowledge Engineering (HeKatE) methodology fulfil the
principles described previously. In this approach a system is controlled by an intel-
ligent rule-based controller. The control logic is expressed using forward-chaining
decision rules. The controller logic is decomposed into multiple modules repre-
sented by attributive decision tables (the so called object-attribute-value tables) The
controller is designed using the HeKatE methodology.

The goals of the Hybrid Knowledge Engineering (HeKatE) methodology are to
provide:
– an expressive formal logical calculus for rules, allowing for formalized infer-

ence and analysis,
– a structured visual rule representation method with formally described syntax

and semantics, based on decision tables, and
– a complete hierarchical design process based on the above, with an effective

on-line verification methods as well as automated implementation facilities.
The emphasis of the methodology is its possible application to a wide range of

intelligent controllers. In this context two main areas have been identified in the
project: control systems, in the field of intelligent control, and business rules and
business intelligence systems [8], in the field of software engineering [18].

In the case of the first area the meaning of the term “controller” is straightfor-
ward, and falls into the area discussed in this paper as intelligent control. In the
case of the second area the term denotes a well isolated software component im-
plementing the so-called application logic, or logical model. In the case of business
software this component is commonly integrated using a dedicated architectural
pattern, such as the Model-View-Controller [18].

In the HeKatE project a formalized language for an extended rule representa-
tion is introduced. Instead of simple propositional formulas, the language uses ex-

64 Antoni Ligęza, Grzegorz J. Nalepa

pressions in the so-called attributive logic [6]. This calculus has a stronger expres-
sivity than the propositional logic, while providing tractable inference procedures
for extended decision tables [13]. The current version of the rule language is called
XTT2 [14]. The current version of the logic, adopted for the XTT2 language, is
called ALSV(FD) (Attributive Logic with Set Values over Finite Domains).

Based on the attributive logic a rule language called XTT is provided [10; 14].
XTT stands for eXtended Tabular Trees, since the language is focused not only on
providing an extended syntax for single rules, but also allows for an explicit struc-
turization of the rule base. This solution allows for identifying system contexts dur-
ing the rule base design. XTT introduces explicit inference control solutions, al-
lowing for a fine grained and more optimized rule inference than in the classic
Rete-like solutions. XTT has been introduced with the visual design support in
mind. The representation has a compact and transparent visual representation suit-
able for visual editors.

Figure 1. ARD+ conceptual design of a drug dosage system

Source: own research.

HeKatE rule design methodology overview 65

The HeKatE project also provides a complete hierarchical design process for
the creation of the XTT-based rules. The process is based on the ideas originally
introduced in [9]. The main phase of the XTT rule design is called the logical de-
sign. This phase is supported by a CASE tool called HQEd [4]. The logical rule de-
sign process may be supported by a preceding conceptual design phase. In this
phase the rule prototypes are built with the use of the so-called Attribute Relation-
ship Diagrams. The ARD method has been introduced in [12], and later refined in
[6]. The principal idea is to build a graph, modelling functional dependencies be-
tween attributes on which the XTT rules are built.

The version used in HeKatE is called ARD+. The ARD+ design is supported
by two visual tools, VARDA and Hjed. The practical implementation on the XTT
rule base is performed in the physical design phase. In this stage the visual model
built with HQed is transformed into an algebraic presentation syntax. A custom in-
ference engine then can run the XTT model. Design tools are described in the next
section.

6. HeKatE tools

The HeKatE design process is supported by a number of tools supporting the visual
design and the automated implementation of rule-based systems.

The ARD+ design process is supported by the HJEd visual editor. It is a cross-
platform tool implemented in Java. Its main features include the ARD+ diagram
creation with on-line design history available through the TPH diagram. Once cre-
ated, the ARD+ model can be saved in a XML-based HML (HeKatE Markup Lan-
guage) file. The file can be then imported by the HQEd design tools supporting the
logical design. VARDA is a prototype semivisual editor for the ARD+ diagrams
implemented in Prolog, with an on-line model visualization with Graphviz. The
tool also supports prototyping of the XTT model, where table headers including a
default inference structure are created. The ARD+ design is described in Prolog,
and the resulting model can be stored in HML.

HQEd provides support for the logical design with XTT. It is able to import a
HML file with the ARD+ model, visualize it and generate the XTT prototype. It is
also possible to import the prototype generated by VARDA. HQEd allows to edit
the XTT structure with on-line support for syntax checking on the table level. At-
tribute values entered are checked against their domains and a number of possible
anomalies is eliminated. The editor is integrated with a custom inference engine for
XTT2 called HeaRT. The role of the engine is twofold: run the rule logic designed
with the use of the editor, as well as provide on-line formal analysis of the rule
base. The communication uses a custom TCP-based protocol. An example of an
ARD+ design capturing functional dependencies between system attributes is
shown in Figure 1, with the logical XTT2 design shown in Figure 2.

66 Antoni Ligęza, Grzegorz J. Nalepa

Figure 2. XTT2 design of a drug dosage systems, anomalies detected

Source: own research.

HeKatE Run Time (HeaRT) is a dedicated inference engine for the XTT2 rule
bases. It is implemented in Prolog in order to directly interpret the HMR represen-
tation which is generated by HQEd. HMR (HeKatE Meta Representation) is a tex-
tual representation of the XTT2 logic designed by HQEd. It is a human readable
form, as opposed to the machine readable HML format. The HeaRT engine imple-
ments the inference based on the ALSV(FD) logic. HeaRT also provides a modu-
larized verification framework, also known as HalVA (HeKatE Verification and
Analysis). So far several plugins are available, including completeness, determin-
ism and redundancy checks. The plugins can be run from the interpreter or indi-
rectly from the HQEd editor using the communication protocol.

7. Concluding remarks

The paper outlines some important elements of the HEKATE methodology for de-
sign and development of the rule-based systems for business and technological ap-
plications. The presented tools, namely: visual design support, automatics XTT2

HeKatE rule design methodology overview 67

scheme generation and automatic final code generation introduce a new quality in
the area of Rule-Based System design and development. In the paper a new ap-
proach to the practical development of rule-based expert systems is presented. The
approach developed at the Institute of Automatics of AGH UST provides a multi-
level hierarchical development process for Prolog-backed rule-based expert sys-
tems. It uses new knowledge representation methods, such as XTT (eXtended
Tabular Trees) and ARD (Attribute Relationship Diagrams). Using computer tools
developed in the HeKatE project it allows for the visual design of the knowledge base
with dynamic Prolog-code generation.

References

 [1] FRIEDMAN-HILL E. J., Jess, The Rule Engine for the Java Platform. Distributed Computing
Systems, Sandia National Laboratories, Livermore, CA, Version 6.1p8 (23 March 2005),
http://www.jessrules.com/jess/docs/61.

 [2] Giurca A., Gasevic D., Taveter K., Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches, Information Science Reference, 2009.

 [3] Harmelen F. van, Lifschitz V., Porter B., Handbook of Knowledge Representation, Elsevier Sci-
ence, 2007.

 [4] Kaczor K., Nalepa G.J., Design and Implementation of HQED, the Visual Editor for the XTT+
Rule Design Method (No. CSLTR02/2008), AGH University of Science and Technology,
Kraków 2008.

 [5] Liebowitz J., The Handbook of Applied Expert Systems, CRC Press, Boca Raton 1998.
 [6] Ligęza A., Logical Foundations for Rule-Based Systems, Springer-Verlag, Berlin, Heidelberg

2006.
 [7] Ligęza A., Nalepa G.J., (2005). Visual design and on-line verification of tabular rule-based sys-

tems with XTT, [in:] K.P. Jantke, K.-P. Fuhnrich, W.S. Wittig (eds.), Marktplatz Internet: Von
e-a Learning bis e-Payment : 13. Leipziger Informatik-Tage, LIT 2005, “Lecture Notes in
Informatics”, Gesellschaft für Informatik, Bonn 2005, pp. 303-312.

 [8] Nalepa G.J., Business rules design and refinement using the XTT approach, Paper presented at
the FLAIRS-20: Proceedings of the 20th International Florida Artificial Intelligence Research
Society Conference, May 7-9, 2007, Key West, Flo., Menlo Park, Cal., 2007.

 [9] Nalepa G.J., Ligęza A., A graphical tabular model for rule-based logic programming and veri-
fication, “Systems Science” 2005, Vol. 31, No. 2, pp. 89-95.

 [10] Nalepa G.J., Ligęza A., HeKatE methodology, hybrid engineering of intelligent systems, “Inter-
national Journal of Applied Mathematics and Computer Science” 2009 [accepted for publica-
tion].

 [11] Nalepa G.J., Ligęza A., A visual edition tool for design and verification of knowledge in rule-
based systems, “Systems Science” 2005, Vol. 31, No. 3, pp. 103-109.

 [12] Nalepa G.J., Ligęza A., Conceptual modelling and automated implementation of rule-based sys-
tems, [in:] K. Zieliński, T. Szmuc (eds.), Software Engineering: Evolution and Emerging Tech-
nologies, Frontiers in Artificial Intelligence and Applications, Vol. 130, IOS Press, Amsterdam
2005, pp. 330-340.

 [13] Nalepa G.J., Ligęza A., Prolog-based analysis of tabular rule-based systems with the XTT ap-
proach, [in:] G.C.J. Sutcliffe, R.G. Goebel (eds.), FLAIRS 2006: Proceedings of the Nineteenth

68 Antoni Ligęza, Grzegorz J. Nalepa

International Florida Artificial Intelligence Research Society Conference [Melbourne Beach,
Florida, May 11-13, 2006], FLAIRS, AAAI Press, Menlo Park, Cal., 2006.

 [14] Nalepa G.J., Ligęza A., XTT+ rule design using the alsv(fd), [in:] A. Giurca, A. Analyti,
G. Wagner (eds.), ECAI2008: 18th European Conference on Artificial Intelligence: 2nd East
European Workshop on Rule-based applications, RuleApps2008: Patras, 22 July 2008, Univer-
sity of Patras, Patras 2008.

 [15] Rupp A.N., An Introduction to The DROOLS Project. TheServerSide.COM, Enterprise Java
Community, May 2004, http://www.theserverside.com/articles/article.tss?l=Drools.

 [16] Russell S., Norvig P., Artificial Intelligence: A Modern Approach, Prentice-Hall, 2003.
 [17] Simiński R., Dynamiczna weryfikacja poprawności baz wiedzy w procesie ich weryfikacji, In-

stytut Podstaw Informatyki PAN, Warszawa 2002.
 [18] Sommerville I., Software Engineering, International Computer Science, Pearson Education,

2004.

PRZEGLĄD METODOLOGII
PROJEKTOWANIA SYSTEMÓW REGUŁOWYCH HEKATE

Streszczenie: W pracy przedstawiono metodologię i narzędzia do projektowania i budowy
systemów regułowych. Prezentowane rozwiązanie cechuje wysoka efektywność reprezentacji
wiedzy oparta na użyciu sieci specjalnych atrybutowych tablic decyzyjnych XTT2. Sam proces
projektowania ma charakter zstępujący. W pierwszej fazie projektowany jest diagram zależno-
ści funkcyjnych pomiędzy atrybutami ARD+. Na podstawie diagramu ARD+ generowany jest
automatycznie schemat tablic XTT2 i połączeń między nimi. Tablice te muszą zostać następnie
wypełnione szczegółową wiedzą eksperta. W pracy przedstawiono zestaw narzędzi wspoma-
gający proces projektowania i implementacji.

	HEKATE RULE DESIGNMETHODOLOGY OVERVIEW
	1. Introduction
	2. Rule-based control and decision support
	3. Motivation
	4. HeKatE concepts
	5. HeKatE methods
	6. HeKatE tools
	7. Concluding remarks
	References

