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Abstract

The goal of this thesis is to propose methods of the statistical analysis of corneal
optical coherence tomography (OCT) speckle and validate their usability for
detection of changes in corneal properties connected with intraocular pressure
(IOP). Two approaches to speckle analysis, parametric and non-parametric,
are considered in this work. The parametric approach involves estimation
of distributional parameters based on pixel values in OCT images. A set of
eight distributions is analyzed in terms of fitting to empirical distribution
of pixel values. In the non-parametric approach three statistical distances
are proposed to compare empirical distribution of speckle amplitude with
benchmark Rayleigh distribution with constant value of its scale parameter.
Also, values of contrast ratio are considered in this approach. The described
methods of speckle analysis are presented on OCT images from three studies.
The first study is performed on phantoms made of epoxy resin, containing
different concentrations of scattering particles. The second study includes
two experiments ex-vivo on porcine eyeballs. In the first experiment eyeballs
are subjected to increasing IOP. The second experiment is analogous but with
IOP maintained at a constant level. In the third study human corneas are
examined in-vivo using OCT and IOP is also measured. The relation between
speckle statistics and concentration of scattering particles in examined medium
is evaluated in the phantom study. In the study on porcine and human
corneas, speckle statistics are linked to changes in IOP, which is supposed
to affect corneal properties. Additionally, the thesis considers corneal speckle
analysis using spatial maps of gamma distribution parameters. The influence of
OCT images averaging on speckle parameters is also examined incorporating
both the statistics of speckle as well as background noise. Based on these
results, a new theoretical model of speckle amplitude is calculated as a product
distribution of two gamma random variables. Summarizing, this work presents
different approaches to statistical analysis of corneal OCT speckle and shows
that they give similar results when changes in IOP are considered. It can
be concluded that the development of such methods should head towards
simplifying them rather than making them overly complicated.
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Streszczenie

Celem niniejszej pracy jest zaproponowanie metod statystycznej analizy szumu
plamkowego na obrazach optycznej tomografii koherencyjnej (OCT) rogówki
oka oraz ich zastosowanie w celu wykrywania zmian właściwości rogówki
wywołanych przez wzrost ciśnienia wewnątrzgałkowego (IOP). Przedstawione
zostały dwa podejścia do analizy szumu plamkowego: parametryczne oraz
nieparametryczne. W pierwszym z nich dla wartości pikseli na obrazach OCT
rogówki estymowane są parametry ośmiu rozkładów prawdopodobieństwa,
wybranych na podstawie literatury. Oceniane jest także dopasowanie tych
rozkładów do empirycznego rozkładu wartości pikseli. Z kolei w podejściu
nieparametrycznym zaproponowane zostały trzy miary odległości pomiędzy
empirycznym rozkładem wartości pikseli na obrazie OCT a teoretycznym
modelem, będącym rozkładem Rayleigha o stałej wartości parametru skali.
Ponadto, analizowane są również wartości współczynnika kontrastu, obliczone
na podstawie wartości pikseli na obrazie. Zaproponowane metody zastosowane
zostały do analizy szumu plamkowego na obrazach OCT pochodzących z trzech
badań. W pierwszym z nich obrazowane były fantomy przygotowane z żywicy
epoksydowej zmieszanej z cząsteczkami niebieskiego barwnika w różnych
stężeniach. W drugim badaniu przeprowadzone zostały dwa eksperymenty na
świńskich gałkach ocznych ex-vivo. Gałki te poddawane były kontrolowanemu
wzrostowi IOP w pierwszym eksperymencie, natomiast w drugim wszystkie
procedury były analogiczne, jedynie ciśnienie w gałkach ocznych utrzymywane
było cały czas na stałym poziomie. W ostatnim badaniu analizowane były
obrazy OCT rogówki oczu ludzkich in-vivo. Eksperyment z wykorzystaniem
fantomów umożliwił ocenę zależności pomiędzy parametrami statystycznymi
szumu plamkowego a stężeniem cząsteczek rozpraszających. Badania na
oczach świńskich i ludzkich pozwoliły natomiast na zbadanie wpływu IOP na
zmiany parametrów szumu plamkowego. Na podstawie obrazów świńskich
rogówek przygotowane zostały mapy wartości parametrów rozkładu gamma.
Dodatkowo przeprowadzona została również analiza wpływu uśredniania
obrazów OCT rogówki na statystykę szumu plamkowego oraz szumu tła. Na
podstawie uzyskanych wyników zaproponowany został teoretyczny model
szumu plamkowego, będący iloczynem dwóch zmiennych o rozkładzie gamma.
Ponieważ wszystkie przedstawione w pracy podejścia dały zbliżone rezultaty,
uzasadnione jest zatem w analizie statystycznej szumu plamkowego na obrazach
OCT rogówki kierowanie się w stronę jak najprostszych metod.
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Preface

Speckle was formerly undesirable in optical coherence tomography (OCT)
images and a number of methods were developed for its reduction to better
visualize structures of imaged tissues. Nowadays, more and more researchers
focus on extraction of information carried by speckle. Association of this
information with properties of examined tissue allows to indirectly explore
sample microstructure.

The main goal of this thesis is to develop some statistical methods of
speckle analysis to indirectly assess corneal properties, which may be influenced
by intraocular pressure (IOP). The motivation of this thesis results from the
importance of fast detection of undesired levels of IOP and to prevent potentially
harmful effects they could cause to eye structures. Moreover, elevated IOP
is the main risk factor for glaucoma, a disease leading to progressive and
irreversible vision loss. Obtaining indirect information about IOP from OCT
images could provide a new functionality of OCT devices that would facilitate
a quick screening of some pathological processes occurring in the eye.

The following scientific hypotheses are put in this work:

• Speckle in OCT images is dependent on the number of scattering particles
in examined medium and can be characterized using probabilistic models.

• Changes in corneal properties, induced by intraocular pressure, may be
evaluated indirectly using speckle statistics in OCT images.

• Speckle statistics can be evaluated by either distributional parameter
estimation or using a non-parametric method and both these approaches
are equivalent in terms of diagnostic power.

This thesis is divided into four chapters and two appendices. In the first
chapter, an introduction containing the most relevant and current information
based on literature review about technical realizations and applications of OCT
is provided, including speckle theory, methods used for speckle analysis and
basic description of the corneal structure and properties. In Chapter 2, the
methodology of three studies used in this work is presented with detailed
descriptions of experimental procedures and data analysis. The third chapter
contains the collection of results where changes in speckle statistics connected
with scatterer density and IOP are evaluated. The summary of the work,
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conclusions from the studies and future directions for the statistical analysis of
speckle in OCT images is presented in Chapter 4.

Two appendices are also included in this work. In the first one, the statistics
of speckle and background noise are considered for averaged OCT images. The
second appendix contains calculations leading to the formula of probability
density function of theoretical model of corneal OCT speckle. The assumed
model is the product distribution of two gamma random variables. The
moments of this distribution, as well as estimators of its parameters, are also
computed.



1

Chapter 1

Introduction

1.1 Optical coherence tomography

1.1.1 Principles and technical realizations

Optical coherence tomography (OCT) is an imaging technique that enables
cross-sectional imaging of a scattering medium. Since it is noninvasive and has
a relatively high resolution, it is particularly suitable in biomedical applications
for in-vivo imaging of tissues, especially when the traditional microscopy in-vitro
is inconvenient or even impossible to be performed. For that reason, this
method has been widely used in ophthalmology, optometry, dermatology,
otolaryngology, dentistry, gynaecology and many other medical fields [1].

OCT origins date back to 1980s when Fercher and his group were working
on the interferometric techniques that use partially coherent light for eye
measurements in-vivo [2]. Since then, many researchers studied methods
based on interferometry for eye structures imaging and finally the term "optical
coherence tomography" was defined in 1991 by Huang et al. [3].

The general working principle of OCT is analogous to ultrasonography
(USG), where amplitude and delay of the ultrasound beam, backreflected or
backscattered from tissues with various acoustic properties, are measured. In
OCT there is a near-infrared light beam instead of ultrasound wave, so the
examined structures are being imaged according to their optical properties. In
both methods the axial measurement of time it takes for ultrasound or light to
travel back to a detector from the tissue is called A-mode scanning. Combining
together multiple A-scans, the cross-section of the object, called B-scan, can
be obtained. The main difference between these methods is that the speed
of the sound is about 1500 m/s, while the light speed reaches 3 · 108 m/s.
Consequently, the OCT method allows to reach better axial resolution of about
1–10 µm, which is 10–100 times finer than that of USG [4].

There are two main technical realizations of OCT. First of them is time
domain OCT (TD-OCT), implemented in devices initially. A simple scheme of
this method is presented in figure 1.1. The light from low-coherence source is
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FIGURE 1.1: A scheme of a time-domain OCT system (author’s own artwork
based on [4]).

split into two arms. The first arm is the reference, which length is modified for
depth imaging. The light backreflected in this arm is combined with the sample
beam and interferes only when the optical path lengths are equal. Then it is
registered by a photodetector, processed into electronic signals and as a result
an A-scan is generated, presenting a depth profile of the sample reflectivity at
a particular beam position [5].

Another generation of OCT technology is known as a Fourier domain OCT.
It was first proposed by Fercher et al. [6] and uses spectral information to create
A-scans without the mechanical modification of the optical path length. It
comprises two systems: spectral domain OCT (SD-OCT), presented in figure 1.2,
and swept source OCT (SS-OCT), shown in figure 1.3. In SD-OCT there is
a broadband light source and the length of a reference arm is fixed. The spectral
interference pattern arises from the light from the reference arm and all depths
in the sample. It is then dispersed and collected on an array detector. The
SS-OCT differs in the implementation of the light source, which has narrow
linewidth with rapidly swept wavelength, so the spectral interference pattern
is detected by a photodetector as a function of time. In both systems the sample
depth-resolved structure is encoded in the spectral frequency of the interference
pattern and the A-scan is generated using inverse Fourier transform [4].

The development of spectral-based OCT configurations led to over hundred
times faster scan acquisition compared to TD-OCT [7]. It contributed to the
improvement of OCT sensitivity and resolution, and also the reduction of noise
and motion artifacts [8]–[10]. All these advantages caused the dominance of
Fourier domain systems in modern OCT devices.

OCT is a coherent imaging method, which means that the OCT signal is
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FIGURE 1.2: A scheme of a spectral domain OCT system (author’s own artwork
based on [5]).

FIGURE 1.3: A scheme of a swept source OCT system (author’s own artwork
based on [5]).
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the sum of complex amplitudes in contrary to incoherent methods, where the
intensities are summed. When turbid media are imaged by coherent modalities,
there is a special kind of noise observed, called speckle. It results from the
composition of the turbid media imaged with OCT, which typically have high
densities of sub-resolution scatterers [11].

Speckle is usually characterized as granular or mottled appearance of OCT
B-scans [12]. It is usually treated as noise impeding the differentiation of sample
morphological features. Thus, there is a number of works considering different
speckle reduction methods [13]–[17]. Nevertheless, it can be also considered as
a source of information [18]. OCT speckle is affected by the sample structure,
as well as by the distribution of scatterers in the sample, so the analysis of
speckle may be a valuable source of information about the sub-resolution
microstructure. It is worth noting, that speckle analysis should consider that
speckle is affected also by spatial extent and temporal coherence of the source of
light, the aperture of the detector and also by multiple scattering in the sample
volume [19].

1.1.2 Biomedical applications

The primary OCT application was ophthalmology. As a non-invasive and
high-resolution imaging method it allows to precisely visualize various eye
structures. It is used for imaging both the anterior and posterior parts of
the eye. Besides great resolution, compared to other imaging methods used
in medicine, OCT has also relatively low cost and does not employ ionizing
optical radiation. Moreover, it can be construed using fiber optical components,
what makes it portable and able to be incorporated into catheters or endoscopes.
That allows to use OCT for imaging the structure of internal organs that are
difficult to access [20]. In comparison with non-optical imaging modalities,
OCT is characterized by high axial and transversal resolution and also allows
contact-free and non-invasive imaging. The main disadvantage is that it has
limited penetration depth in high scattering media [21].

To show the diversity of OCT applications in medicine, table 1.1 shows the
exemplary publications, where the use of OCT for different organs or tissues
was presented. It is clear that because of its advantages this modality has found
a number of applications in different fields of medicine.
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TABLE 1.1: The review of OCT applications in medicine.

Publication Imaged tissues Field of medicine

Hee et al. [22] Retina, macula, optic nerve head

Ophthalmology

Grulkowski et al. [23] Retina, anterior segment, full eye

Manjunath et al. [24] Choroid

Schuman et al. [25] Nerve fiber layer

Haouchine et al. [26] Macula

Iskander et al. [27] Cornea

Leung et al. [28] Anterior chamber of the eye

Gladkova et al. [29] Skin

DermatologyPagnoni et al. [30] Skin with cutaneous changes

Aydin et al. [31] Nails

Capodanno et al. [32] Atherosclerotic plaque

CardiologyXu et al. [33] Blood vessels

Kume et al. [34] Coronary thrombus

Chu et al. [35] Articular cartilage
Orthopedics

Zheng et al. [36] Knee joint

Djalilian et al. [37] Tympanic membrane

Otolaryngology
Wong et al. [38] Larynx

Lueerssen et al. [39] Vocal folds

Mahmood et al. [40] Nasal cavity

Bouma et al. [41] Stomach, esophagus

Gastroenterology
Sivak et al. [42] Esophagus, stomach, colon, rectum

Arvanitakis et al. [43] Biliary tract

Testoni et al. [44] Pancreatic duct

Gallwas et al. [45] Uterine cervix

Gynecology
Kirillin et al. [46] Fallopian tubes

Hariri et al. [47] Ovarian cancer

Wessels et al. [48] Vulvar cancer

Schneider et al. [49] Tooth decay

DentistryShimada et al. [50] Teeth structure, dental caries

Fernandes et al. [51] Gingivae
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1.2 Speckle

1.2.1 Fundamentals of speckle theory

Speckle are random spatial intensity fluctuations that can be observed when
coherent light is reflected or transmitted through the medium with a large
number of scattering particles (scatterers). Thus, the obtained distribution of the
intensity is referred to as a speckle pattern. Its statistical characteristics depend
on the properties of both the incident light and the scattering medium [12].
From the physics standpoint speckle occurs in a signal when it is composed
of a number of complex components having random amplitudes and phases.
The summation of these components constitutes a random walk in a complex
plane, schematically presented in figure 1.4. Consequently, the amplitude of the
resultant phasor may be represented by the sum

A(x, y, z) =
N

∑
k=1

1√
N

ak(x, y, z) =
1√
N

N

∑
k=1

|ak|eiϕk , (1.1)

where ak(x, y, z)/
√

N, k = 1, 2, ..., N is the amplitude and ϕk, k = 1, 2, ..., N is
the phase of the kth elementary phasor. To preserve finite second moments of
the sum when the number of elementary phasors tends to infinity, the scaling
factor 1/

√
N is included here.

The investigation of statistical properties of the resultant complex field is
based on the following assumptions [52], [53]:

(i) The amplitude ak and the phase ϕk of the kth elementary phasor are
random variables, statistically independent from each other and from aj

and ϕj for all k ̸= j.

(ii) The phase ϕk is uniformly distributed on the interval [−π, π].

The above-mentioned assumptions are essential to calculate average values
of the real and imaginary parts of the resultant field as follows

⟨A(r)⟩ = ⟨Re{A}⟩ = 1√
N

N

∑
k=1

⟨|ak| cos ϕk⟩ =
1√
N

N

∑
k=1

⟨|ak|⟩⟨cos ϕk⟩ = 0 , (1.2)

⟨A(i)⟩ = ⟨Im{A}⟩ = 1√
N

N

∑
k=1

⟨|ak| sin ϕk⟩ =
1√
N

N

∑
k=1

⟨|ak|⟩⟨sin ϕk⟩ = 0 , (1.3)

where ⟨·⟩ denotes ensemble average. Because of the statistical independence of
amplitude and phase, which is provided by the assumption (i), the averaging
can be performed over |ak| and ϕk separately. The uniform distribution of
the phase, described in assumption (ii), provides zero values for ⟨cos ϕk⟩ and
⟨sin ϕk⟩.
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FIGURE 1.4: The summation of amplitude components 1√
N

ak to the resultant phasor A,
presented as a random walk in a complex plane (author’s own artwork based on [54]).

When the number N of elementary phasors is large, A(r) and A(i) amplitude
components are asymptotically Gaussian due to the central limit theorem. Thus
the joint probability density function (PDF) of the real and imaginary parts of
the field is in the form [54]

pr,i(A(r), A(i)) =
1

2πσ2 exp

{
− [A(r)]2 + [A(i)]2

2σ2

}
, (1.4)

where

σ2 = lim
N→∞

1
N

N

∑
k=1

⟨|ak|2⟩
2

. (1.5)

As such a PDF (equation 1.4) is referred to as a circular Gaussian density
function, the phasor amplitude A is a circular complex Gaussian random
variable.

The real and imaginary parts of the complex amplitude are connected with
intensity I and phase θ of the resultant field as follows

A(r) =
√

I cos θ , (1.6)

A(i) =
√

I sin θ . (1.7)
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Above dependencies may be equivalently written

I = [A(r)]2 + [A(i)]2 , (1.8)

θ = tan−1 A(i)

A(r)
. (1.9)

Having above-mentioned relationships, the distributions of amplitude, intensity
and phase of the speckle field may be obtained using basic transformations [55].
Since the amplitude of the speckle field is considered as a phasor in the complex
plane with its real and imaginary parts noted as A(r) and A(i), respectively, the
length of this phasor may be calculated as follows

|A| =
√
[A(r)]2 + [A(i)]2 , (1.10)

where A(r) ∼ N (0, σ2) and A(i) ∼ N (0, σ2) are independent normal random
variables. Then |A|, calculated due to the formula (1.10), is a Rayleigh distributed
random variable with the scale parameter σ and with the PDF described by the
equation

pX(x) =
x
σ2 exp

{
− x2

2σ2

}
, x ≥ 0 , (1.11)

where the random variable X = |A|.
For this distribution the ratio of the standard deviation to the mean is known

as contrast ratio (CR) [56] and is equal to

CR =
√
(4/π − 1) ≈ 0.52 . (1.12)

High values of CR indicate that the distortion caused by speckle (described by
the standard deviation) is large compared to the imaged underlying structure,
characterized by the mean [11].

Similarly, as the speckle field intensity is described by the formula (1.8), so
it is squared amplitude modulus, then it follows the exponential distribution
with the scale parameter 2σ2, described by the PDF

pX(x) =
1

2σ2 exp
{
− x

2σ2

}
, (1.13)

where the random variable X = I.
The phase, described by (1.9), is uniformly distributed on the interval

[−π, π] with the PDF

pX =
1

2π
, (1.14)

where the random variable X = θ.
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1.2.2 Sum of speckle patterns

The statistical properties presented so far are applied to the complex amplitude
and intensity at one or more points in a speckle pattern. In practice, the speckle
pattern is rather averaged over some area, for example by a scanning aperture.
As a result the integrated intensity I′(x, y) is obtained, which is related to the
intensity of a speckle pattern I(x1, y1) by a convolution

I′(x, y) =
∞∫

−∞

∞∫
−∞

I(x1, y1)B(x − x1, y − y1)dx1dy1 , (1.15)

where B(x, y) is the intensity point spread function of the averaging device,
normalized that the volume of B(x, y) is equal to 1 [12]. It can be proved that
after appropriate transformations an approximate distribution of the integrated
intensity is the gamma distribution with following probability density functions

for X = |A|
pX(x) =

1
Γ(ν)

aνxν−1 exp(−ax) , x > 0 , (1.16)

for X = I′ 1

pX(x) =
1

2Γ(ν)
aνx

ν
2−1 exp(−a

√
x) , x > 0 , (1.17)

with the shape parameter ν, the scale parameter a and Γ(·) denoting the gamma
function [57].

Following [12], gamma distribution parameters can be linked to the speckle
properties via ν = n0 and a = n0/⟨I⟩, where n0 is interpreted as the number
of independent correlation cells (speckles) within the scanning aperture and
⟨·⟩ denotes ensemble average.

1.2.3 Small number of scatterers

Sometimes the number of scattering particles which contribute to the amplitude
at a point in the observation plane is not sufficient to make the central limit
theorem applicable. Then, the distribution of the complex amplitude is no
longer complex Gaussian. The statistics of the speckle field in this case are
strongly dependent on the statistics of the scattering medium [12], [58]. The
number N of contributions to the speckle field is then assumed to fluctuate
in accordance with the negative binomial distribution [53], [59]. That leads to
the K distribution statistics for both the amplitude and intensity, described by
following probability density functions

1 I = |A|2 so the PDF for the intensity is obtained by the change of variable due to the
formula fY(y) = fX(g−1(y))|d/dy(g−1(y))| where X and Y denote random variables and
g−1(·) is the inverse function.
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for X = |A|

pX(x) =
4

Γ(ν)

√
ν

⟨x2⟩

(
νx2

⟨x2⟩

)ν/2

Kν−1

(
2

√
νx2

⟨x2⟩

)
, (1.18)

for X = I

pX(x) =
2

Γ(ν)

√
ν

x⟨x⟩

(
νx
⟨x⟩

)ν/2

Kν−1

(
2
√

νx
⟨x⟩

)
. (1.19)

In both of the above equations ⟨·⟩ denotes mean value, Γ(·) is the gamma
function and Kν−1(·) is the modified Bessel function of the second kind of order
ν − 1. The shape parameter of the K distribution, ν, is given by the formula

ν =
2

σ2
I − 1

, (1.20)

where σ2
I is the variance of the relative intensity I/⟨I⟩ [60].

In practical applications the average number of scattering particles is defined
within the probed optical resolution element, that is coherence volume for
volumetric scattering or coherence area for surface scattering [61]. Based on
experimental results, the number of scatterers in coherence volume should be
less than ∼ 10 to consider non-Gaussian scattering statistics [62].

1.2.4 Coherence volume

An important issue in speckle characterization is the initial evaluation if the
speckle field results from scattering that can be described by Gaussian statistics.
For that, it is essential to assess the number of scatterers in coherence volume,
referred also as a scatterer density. The calculation of coherence volume is based
on the properties of a light beam and scattering medium. It is defined as the
volume of an ellipsoid described by the equation

VC =
4πr2

1r2

3nM
, (1.21)

where r1 is the radius of the light beam lateral spot (i.e., half of the width at
1/e2-light-intensity-maximum), r2 is half width at 1/e amplitude of OCT signal
and nM is the refraction index of the scattering medium. It is assumed that the
OCT signal for a particular location in the sample has contributions only from
scatterers within the coherence volume around this location [61], [63].
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1.2.5 Fully developed speckle field

Another issue in the statistical analysis of speckle in OCT scans is to consider if
the imaged speckle field is fully developed. That is critical for choosing proper
statistical description of speckle. Fundamental statistics for the fully developed
speckle field were presented by Goodman [52]. The amplitudes and phases
of the speckle field are statistically independent and phases come from the
uniform distribution over [−π, π]. Based on that, the distributions of speckle
amplitude, intensity and phase are obtained and they are presented in this work
in section 1.2.1. Speckle field described by these statistics is referred to as fully
developed.

Fully developed speckle field was also studied by Uozumi and Asakura [64],
who showed that the phase of the speckle field does not always approach
uniform distribution on the interval [−π, π] and is dependent on the phase
distribution of scattering object. Wang [65] concluded that to constitute fully
developed speckle field, the ensemble average of the complex amplitude at
a particular point should be equal to zero, so the following conditions need to
be satisfied

⟨Ar⟩ = 0 and ⟨Ai⟩ = 0 . (1.22)

The above-mentioned definitions may seem confusing and they are difficult
to validate in practical applications. Usually the assumption of fully developed
speckle field is made when known or assessed number of scatterers in coherence
volume of analysed object is large enough to consider Gaussian scattering
statistics (see section 1.2.3) [19], [56].

1.2.6 Amplitude and intensity — nomenclature

In publications regarding statistical analysis of speckle pattern, the parameters
of probability distributions are usually estimated for pixel values from the
specified region of interest (ROI) in OCT B-scans. To evaluate accuracy of
distribution fitting, the PDF is usually compared with the histogram of these
pixel values. They represent in greyscale the amplitude or intensity of the
light backscattered from the sample. Both terms, amplitude and intensity, are
used in literature and that may be confusing which of them is relevant for the
description of speckle in OCT images. It is noteworthy due to different statistics
of speckle field amplitude and intensity, described in section 1.2.1.

There are different approaches to that problem in literature. Some works
consider pixel values in OCT images as amplitude and use Rayleigh distribution
to model them [63], [66]. Sugita et al. [61] presented histograms of intensities
considered as squared amplitude from pixel values in OCT B-scans. In other
works, pixel values are treated as intensity [67]–[69]. Ge et al. [57] in his
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work presented statistical analysis for both amplitude and intensity separately,
fitting theoretically justified probability distributions to each of them (Rayleigh,
K, gamma and Burr type XII distributions for amplitude and exponential,
K, gamma and Lomax distributions for intensity). There is also a number
of publications in which pixel values are referred as "pixel intensities" for
probability distribution fitting [27], [70]–[73] and there is no information which
of the light characteristics they represent in OCT B-scans. It is also worth noting
that typically in OCT images the logarithm of amplitude/intensity is presented
for better visualization.

In this work pixel values are considered as amplitude. Apart from the
literature, it is also supported by the example presenting the histogram of pixel
values from OCT B-scan, originally log-transformed in the device software,
also, the histogram of pixel values after inverse-log transformation, treated as
amplitude and the histogram of the squared values of amplitude, corresponding
to intensity. Figure 1.5 shows the selected ROI from which pixel values are taken
to create three described histograms. Also, PDFs of theoretically supported
Rayleigh and exponential distributions, for amplitude and intensity, respectively,
are shown for comparison. It is clearly visible from this image that pixel values
can be described by Rayleigh statistics while their squared values are consistent
with the exponential statistics of intensity in OCT images.

1.2.7 Speckle modelling

Parametric approach

A common approach to speckle modelling is based on the distribution fitting
to pixel intensities from the specified ROI in the OCT image. Since speckle
arises from the light scattered on particles smaller than OCT resolution, the
distributional parameters are thought to be associated with some properties of
sample microstructure. Thus, their estimation allows to indirectly obtain some
information about this microstructure.

A number of distributions were considered for this purpose, some of them
resulting from the theory of speckle formation and some chosen based on the
goodness of fit (GoF) to the histogram of appropriately transformed, when
needed, pixel values. The fundamental theoretical distribution of speckle
amplitude is the Rayleigh distribution, provided that the speckle field is fully
developed. Almasian et al. [63] showed a good fitting (Pearson correlation
coefficient, R > 0.980) of the Rayleigh distribution to the amplitude in the OCT
images of silica microspheres suspended in water. The number of scattering
particles in the coherence volume was in the order of 102 – 104 and the mean
diameter of the particles was about 0.47 – 1.60 µm.
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FIGURE 1.5: Illustrative OCT B-scan of cornea with the ROI indicated by red lines and
the histogram of pixel values from the ROI (Log(amplitude)). In the bottom panel the
histograms of amplitude (inverse-log transformed original pixel values) and intensity
(squared amplitude values) are presented together with PDFs of corresponding
theoretical distributions.

Some researchers considered K distribution for the description of speckle
statistics when the number of scatterers in coherence volume is less than ∼ 10
(see section 1.2.3). Weatherbee et al. [60] presented that for the microspheres
suspensions in water decreasing number of particles per voxel caused the fitting
deterioration of the Rayleigh and negative exponential distribution for the OCT
images amplitude and intensity, respectively. The K distribution was showed
to better fit both amplitude and intensity and also its shape parameter was
proportional to the average number of scatterers in coherence volume.
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Lindenmaier et al. [71] obtained a good fitting (R2 ∼ 0.985) of gamma
distribution for histograms of pixel values from OCT B-scans showing normal
and solid tumour mouse tissue. They showed statistically significant differences
in values of the ratio of gamma distribution shape and scale parameters for
normal and tumour tissues (p-value < 0.001). Kirillin et al. [70] experimentally
showed the relationship between the scale parameter of gamma distribution
and the concentration of scattering particles.

Ge et al. [57] proposed another approach to OCT speckle modelling based
on the work of Parker and Poul [74], who derived amplitude and intensity
distribution for ultrasound speckle using power law. They used Burr type XII
and Lomax (Pareto type II) distributions for the fitting of speckle amplitude
and intensity, respectively. It was shown, that these distributions fit OCT
amplitude/intensity histograms better compared to Rayleigh/exponential, K
and gamma distributions. Moreover, both Burr type XII and Lomax distributions
have exponent parameter, which was shown to have different values depending
on tissue type with smaller values for relatively transparent tissues (e.g., hand,
cornea) and higher values for optically denser ones (e.g., brain, liver).

Table 1.2 contains the summary of statistical distributions used for speckle
modelling in the literature and types of analysed scattering medium. It shows
a variety of distributions considered in parametric approach to speckle analysis.

Non-parametric approach

There are also some methods for speckle analysis that do not require the
estimation of distributional parameters, hereafter referred as non-parametric.
They are based on CR, defined by the equation 1.12, and changes of its values
in OCT images. The purpose of these methods, similarly to the parametric ones,
is to correlate some speckle characteristics with sample optical properties.

Hillman et al. [19] showed that CR of OCT speckle is dependent on the
density of scattering particles in a sample. For the number of scatterers in
coherence volume less than 5, CR is a decreasing function of scatterer density,
while for a large number of scatterers it approaches a constant value of ≈ 0.52,
consistent with Rayleigh distribution. Li et al. [75], [76] presented theoretically
that for the superficial region of a sample the contrast ratio is a linear function
of depth with the proportionality coefficient α dependent on the scattering
coefficient of the sample. Therefore, the slope α may be useful for differentiating
imaged tissues based on their scattering properties. Moreover, it was shown
that for the deep tissue there is a noise superiority over OCT signal and the
contrast ratio becomes constant, independent of depth. Similarly, Lee et al. [77]
presented the dependence of contrast ratio on sample depth and also on the
scattering coefficient of analysed medium.
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TABLE 1.2: Distributions used in literature for the fitting of pixel values in OCT B-scans.

Publication Scattering medium / tissue type Distribution
(best considered)

Ge et al. [57]

pig cornea and brain, mouse

Burr type XIIliver and brain, chicken muscle

gelatine phantom, human hand

Lindenmaier et al [71] mouse normal and tumour tissue
gamma

Kirillin et al. [70] polystyrene microspheres in water

Jesus et al. [72], [78] human cornea

generalized gamma
Iskander et al. [27] human cornea

Danielewska et al. [79] rabbit cornea

Seevaratnam et al. [73] polystyrene microspheres in
glycerin

Sugita et al. [61] polystyrene microspheres in water,

K

human skin and fingernail

Weatherbee et al. [60] polystyrene microspheres in water

Sugita et al. [80] rat brain and liver

Dubose et al. [67] retina

Sowa et al. [68] teeth lognormal

Mcheik et al. [81] human skin Nakagami

Almasian et al. [63] silica microspheres in water

RayleighPircher et al. [82] human skin

Adabi et al. [14] human retina

Demidov et al. [66] mouse skin and tumour tissue three-parameter
Rayleigh

Grzywacz et al. [69] human retina stretched
exponential

Textural approach

Another methods of speckle analysis consider texture features to be useful in
the evaluation of the optical properties of the sample. The spatial grey-level
dependence matrices also known as grey-level co-occurrence matrices (GLCM)
are used to characterize image texture. They are determined by the estimation of
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the probability distribution of different spatial combinations of grey-level pixel
values. Some statistical measures, such as contrast, correlation, homogeneity,
energy and entropy, can be calculated from these matrices and used for image
texture characterization.

Gossage et al. [83] used texture parameters of speckle in OCT images for
differentiation between tissue phantoms with various distributions and sizes of
scatterers. Statistically significant differences were obtained between values of
analysed parameters when comparing different endothelial cells concentrations
in gelled collagen and different sizes and concentrations of silica microspheres
in gelatine. Also, Kasaragod et al. [84] showed the successful usage of texture
parameters for the classification of different concentrations of scatterers in tissue
phantoms.

1.3 Cornea

1.3.1 Structure

Cornea is a transparent, avascular anterior layer of the eye, that forms a ’window’
for the light to entry into the eye. Figure 1.6 shows its position among other
ocular structures. Cornea constitutes the outer shell of the eyeball together with
the sclera, with which it is connected through the highly vascularized transition
zone called limbus. Interwoven collagen fibres, which are main components
of the cornea and sclera, provide mechanical strength to maintain the ocular
contour and protect inner eye structures from physical injury [85]. The main
function of the cornea is to provide the eyeball stiffness and also to transmit the
light into the eye with focusing it together with the lens [86].

Figure 1.7 shows the scheme of corneal layers. The stroma is the main
layer of the cornea which constitutes about 90% of its thickness. Stroma is
bounded on two sides by limiting membranes, Bowman’s layer and Descemet’s
membrane, and associated cellular layers — epithelium and endothelium.
Epithelium is the outermost segment of the cornea. It is composed of several
stratified, nonkeratinized, squamous cellular layers. It is characterized by
the uniform structure for entire width of the cornea. The epithelial thickness
is about 50 µm. Between epithelium and stroma there is a Bowman’s layer,
the acellular condensate of the most anterior part of the stroma, composed
of randomly oriented collagen fibrils. It is about 15 µm thick and its main
function is supporting the corneal shape [87]. The major part of the cornea,
stroma, is composed of collagen fibres. These collagen fibres create bundles
called fibrils. They are surrounded by proteoglycans supporting the regulation
of hydration, maintaining the space between the fibrils and their size. Parallel
fibrils, embedded in a viscous extrafibrillar matrix, form layers, called lamellae,
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FIGURE 1.6: Scheme of the eyeball with main structures marked (author’s own
artwork).

stacked almost parallel to the corneal surface. Corneal stroma consists of about
200 to 250 lamellae, each of 1–2 µm thick. Between stromal lamellae there
are keratocytes involved in maintaining the stromal structure and also able
to synthesize collagen molecules. A specific three-dimensional architecture
of collagen fibrils provides the corneal transparency [88]. Because of the
hydrophilic character of proteoglycans, the corneal stroma has a strong tendency
to absorb water and swell [87], [89], [90]. In the posterior stroma, there is
a slightly different region, containing higher lamellae density and increased
distances between collagen fibrils. It is extracted as a separate structure, called
Pre-Descemet’s layer or Dua’s layer [91]. Under the stroma there is a Descemet’s
membrane, composed of collagen fibres different than that of stroma. They form
a structure separate from the stroma, but tightly adhering to it. Its thickness
is of about 8–10 µm. The most posterior part of the cornea is endothelium,
consisting of the single layer of endothelial cells. The primary function of these
cells is the transport of solutes and nutrients into the cornea and allowing water
flow in the opposite direction [85].

Corneal thickness increases gradually through the cornea from about 500 µm
in its centre to about 700 µm at the periphery [90]. The posterior part of
the cornea has contact with the anterior chamber of the eye (space between
cornea’s endothelium and iris) filled with aqueous humor [85]. The anterior
part of the cornea is covered by the tear film which is smoothing out the
microirregularities on the epithelial surface, providing proper light refraction
as the cornea accounts for about 70% of the eye total refractive power [87], [92].
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FIGURE 1.7: Scheme of the structure of human cornea, not to scale (author’s own
artwork based on [92]).

1.3.2 Physical and optical properties

Average adult human cornea measures 11 to 12 mm horizontally and 9 to 11 mm
vertically. The radius of curvature is about 7.5 to 8 mm at the central 3 mm
of the cornea and it has greater values in the peripheral part. The cornea’s
refractive power is 40 to 44 diopters [85].

The refractive index of the cornea if varying through the depth and it has
values of about 1.400, 1.380, and 1.373 at the epithelium, Bowman’s layer and
endothelium, respectively. In the mid stroma refractive index value approaches
about 1.369 [93]. There are also differences in values of refractive index of
internal stromal structures. For the collagen fibres it approaches the value of
about 1.411, while for the extracellular matrix it is equal to 1.365 [94]. These
differences in refractive index values inside the stroma induce light scattering.

The collagen fibrils in corneal stroma are thought to be responsible for
light scattering. The electromagnetic wave radiated by a fibril depends on its
radius and the difference in refractive index between the fibril and the medium
around it. Also, the amplitude of the electric component of the oscillatory
electromagnetic field surrounding a fibril is determining the emitted light and
in addition it may be altered by adjacent fibrils. The light radiated by individual
fibrils interferes and the amount of scattered energy is dependent on whether
the interference is constructive or destructive. The dominating interference type
is strongly related to the fibrils arrangement. If they are spaced out regularly
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within the lamella, the scattered light interferes destructively in all directions
except that of the incident beam. For that reason the cornea is perceived as
transparent [95]. Ávila et al. [96] showed on the group of healthy subjects that
the corneal transparency is not altered by the thickness of the cornea.

1.3.3 Influence of IOP and age on the cornea

In this work the effect of the increase of intraocular pressure (IOP) on the corneal
properties, assessed indirectly using the statistics of speckle, is considered.
Additionally, the aging of the cornea is another factor which influences these
properties, so it is also taken into consideration. To better understand these
processes and their possible results on corneal microstructure, a short literature
review in this topic is presented here.

Wu and Yeh [97] used nonlinear optical microscopy to image the corneal
microstructure in rabbit eyes exposed to the increase of IOP. They showed the
decrease of the size of gaps between lamellae with increasing IOP. To examine
the potential effect of IOP on human corneal collagen fibres, Bell et al. [98]
exposed human corneas to tensile strain. Using X-ray scattering, he showed
a decrease in collagen fibrils diameter with increasing strain. Moreover, a corneal
deformation induced by tensile strain was the greatest in the peripheral region,
but it was also greater in the central ~2 mm of the cornea than in the adjacent
para-central regions.

Liu and He [99] presented in their study an inflation test on porcine eyeballs
in which higher raise in IOP was observed for corneas which were stiffened.
The corneal stiffening is one of the processes that occurs during aging. In the
ex-vivo study on human corneas, Elsheikh et al. [100] observed statistically
significant association between stiffness and age. Among a variety of processes
that occur during cornea aging, increase in collagen fibril diameter and decrease
in interfibrillar spacing, were observed [101], [102], as well as the decrease in
stromal keratocytes density [103], [104].
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Chapter 2

Methodology

2.1 Experimental procedures

2.1.1 Phantom study

Preliminary research was conducted on OCT images of purposely designed
phantoms to assess the effect of scatterers concentration on speckle statistics.
They were made of a transparent epoxy resin L-285 (Havel composited, Cieszyn,
Poland). Liquid resin was carefully mixed with a blue dye powder, with
scatterer particles of various sizes from few to tens micrometers. The mixtures
of different amounts of the blue dye uniformly distributed in the resin were
poured on the microscope slides to obtain convex discs of an approximate
diameter of 10 mm and thickness of about 1 mm. Then they were carefully
placed aside to cure. Figure 2.1 presents phantoms after drying with increasing
concentrations (C1, C2, ..., C9) of scattering particles. The C1 concentration
was obtained by adding about 10 mm3 of the blue dye to 1 cm3 of epoxy resin.
Consecutive concentrations were prepared by adding twice as much dye as
for the previous phantom, so about 20 mm3 of the dye was added to the resin
in the C2 phantom, 40 mm3 in the C3 phantom, and so on. The volumes of
the resin and the blue dye were not precisely controlled but the increasing
scatterers concentration was well maintained for subsequent phantoms. For
OCT imaging, the microscope slides were attached to the headholder in front of
the device imaging head. The B-scans of size 3077×708 pixels (about 10×2 mm)
were registered for the central part of each phantom. The scans were collected
using an instrument protocol with an external adapting lens to get scan of
width 10 mm. The OCT device used in this and consecutive studies in this
work was SOCT Copernicus REVO (Optopol Technology, Zawiercie, Poland)
with centre wavelength of 830 nm, half bandwidth of 50 nm, axial resolution of
5 µm, transversal resolution of 15 µm and scanning speed of 80 000 A-scans per
second.
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FIGURE 2.1: The resin phantoms used in the study (author’s own photograph).

2.1.2 Ex-vivo study on porcine eyes

The main part of the research presented in this thesis is performed using OCT
scans of ex-vivo porcine eyes. It is a collaborative study from which OCT images
are used in this research. The short description of experimental procedure as
well as the scheme of the setup are presented here for completeness. Detailed
information is presented in works [105], [106].

In the study on porcine eyes, fresh eyeballs were acquired from a local
abattoir (Meat Processing Plant, Otmuchow, Poland) and then stored at 4◦C
in phosphate-buffered saline (PBS) solution for no longer than 6 hours. Only
eyeballs with transparent corneas and with no damage or edema were selected
for further data collection. Before taking measurements, the eyeball was placed
in a specially designed holder, padded with the cotton moistened with PBS
to restrain dehydration. Also, the optic nerve was attached with a polyamide
sewing thread to the post behind the holder, so eyeball movements were
substantially minimized. Next, for such prepared eyeballs a 20-gauge needle
was inserted into the anterior chamber through the corneo-scleral area and
conected to a WIKA P-30 pressure transducer (WIKA Alexander Wiegand SE &
Co. KG, Klingenberg, Germany). This sensor is a part of a closed feedback loop,
together with a syringe pump, a reservoir column and a control unit, to set and
maintain desired IOP levels. The system automatically adjusts the volume of
PBS infused or withdrawn to obtain the set value of IOP in the anterior chamber
of the eyeball. The entire system is placed on a XY-linear translation platform
to enable eyeball positioning for OCT imaging using SOCT Copernicus REVO
(described in section 2.1.1) and for ocular biometry measurements using the
IOL Master 700 (Carl Zeiss Meditec AG, Jena, Germany). The described setup
is presented in figure 2.2.

Two experiments were performed on porcine eyeballs. In first of them,
referenced as Experiment 1, IOP was increased from 10 mmHg to 40 mmHg in
steps of 5 mmHg. To stabilize the pressure, a 3-minute break was provided after
setting IOP value. At each IOP level ocular biometric parameters were also
measured, involving central corneal thickness (CCT), axial length (AL), aqueous
depth (AQD) and keratometry parameters, translated next into power vectors
to calculate mean equivalent spherical power (M) and astigmatic components
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FIGURE 2.2: A scheme of the setup used for porcine eyes measurements in Experiment 1
(increasing IOP) and Experiment 2 (constant IOP). Source: co-authored paper [105].

of Jackson cross-cylinder (J0 and J45). The biometric parameters are described
in detail in section 2.2.5. Next, the platform was moved to place the eyeball
in front of the OCT device and three single, non-averaged B-scans of central
cornea were collected, each of them of size 1536×736 pixels (about 5 × 2 mm).
Afterwards, IOP was increased by 5 mmHg by setting desired value in the
control unit interface, and entire procedure was being repeated until reaching
an IOP value of 40 mmHg.

The second experiment, referenced as Experiment 2, was performed to
investigate how the duration of the experiment influences OCT speckle statistics.
Porcine eyeballs were examined in the same manner as in Experiment 1, with
the only difference that IOP was maintained constant at the level of 15 mmHg,
selected as the typical value for porcine eyes [107].

The entire measurement procedure for one eyeball took about 70 minutes
for seven considered IOP levels in Experiment 1 and corresponding time
points (t1, t2, ..., t7) in Experiment 2. That resulted in taking measurements
every 10 minutes. In both experiments the average ambient temperature was
22.5 ±1.9◦C (mean ± standard deviation) and the humidity was 50.2 ± 4.5%.
The eyeballs were chosen to have CCT from the assumed population limit
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from 800 µm to 950 µm [107]. After verification, 23 eyeballs were included in
Experiment 1 and 10 eyeballs in Experiment 2.

2.1.3 In-vivo study on human eyes

In the third study, a retrospective data set was analysed, containing a set of OCT
images derived from the measurements performed on a group of 56 healthy
Caucasian subjects. They were divided into two groups, according to age,
referred as OLD and YOUNG. First of them involved 29 subjects with the mean
(± standard deviation) age of 58.9 ± 8.4 (range from 50 to 87) and the second
contained 27 subjects with the mean age of 24.8 ± 2.7 (range from 21 to 30).
The analysed data set included also measurements of IOP, performed using
the air-puff tonometer Corvis Scheimpflug Technology (Corvis ST, OCULUS,
Wetzlar, Germany).

2.2 Data processing

2.2.1 Image analysis

All calculations in this thesis were performed using MATLAB programming
language (MathWorks, Inc. Natick, MA, USA). Analysed B-scans were in
a logarithmic scale, set automatically in the OCT software to better visualize
imaged structures. To obtain raw data, the inverse log-transformation was
applied to every image.

The statistical analysis of phantom OCT images was performed for pixel
values from the ROI of size 600 × 220 pixels (about 2 × 0.6 mm), with its centre
set 600 pixels on the left from the central reflection and with its top border set
20 pixels below the phantom top border (figure 2.3). For OCT images from
studies on porcine and human corneas ROI of width 600 pixels (about 2 mm)
was set centrally in relation to the corneal apex. The top border of the ROI was
placed 10 pixels below Bowman’s layer and the lower border was 10 pixels
above endothelium (figures 2.4 and 2.5). The pixel values from the ROIs were
treated as a random variable X. The statistical analysis for them is described
below.

2.2.2 Parametric approach

The fundamental problem in a parametric approach to statistical modelling of
speckle is choosing the proper probability distribution to fit the pixel values
from the B-scan. There are two main approaches in the literature for the speckle
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FIGURE 2.3: Illustrative OCT scan of phantom with its borders indicated by cyan lines
and ROI marked with red lines.

FIGURE 2.4: Illustrative OCT scan of porcine cornea from the ex-vivo study with
epithelium, Bowman’s layer and endothelium indicated by cyan lines and ROI marked
with red lines.

FIGURE 2.5: Illustrative OCT scan of human cornea from the in-vivo study with
epithelium, Bowman’s layer and endothelium indicated by cyan lines and ROI marked
with red lines.

statistical model selection. The first option is based on GoF, that can be construed
as an arbitrary measure of difference between, e.g., PDF and kernel density
estimator calculated from pixel values. This measure can be also based on other
distribution characteristics, such as cumulative distribution function (CDF) or
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characteristic function (CF). The second approach for speckle model selection
involves using distributions, which are theoretically justified (described in
chapter 1.2), without paying attention to their GoF to experimental data.

First, the evaluation of GoF for different distributions is presented in this
work. It is defined as a mean square error between PDFs of the distributions
and kernel density estimator calculated for pixel values from the ROI in OCT
images. A set of distributions, selected based on the literature, is assessed for
the suitability for speckle modelling. The considered distributions are presented
below along with their PDFs.

(i) Burr type XII (hereinafter referred as Burr3)

p(x; a, ν, c) =
νc
a

(
x
a

)c−1
(

1 +
(

x
a

)c
)−(ν+1)

, x > 0 , (2.1)

where a is a scale parameter and ν and c are two shape parameters.

(ii) Burr type XII with one of its shape parameters, c, set as 2 (hereinafter
referred as Burr2)

p(x; a, ν) =
2νx
a2

(
1 +

(
x
a

)2
)−(ν+1)

, x > 0 , (2.2)

where a is a scale parameter and ν is a shape parameter.

(iii) gamma

p(x; a, ν) =
1

aνΓ(ν)
xν−1e−x/a, x > 0 , (2.3)

where a is a scale parameter, ν is a shape parameter and Γ(·) is the gamma
function.

(iv) generalized gamma

p(x; a, ν, c) =
pxνc−1

aνcΓ(ν)
· e−(x/a)c

, x > 0 , (2.4)

where a is a scale parameter, ν and c are shape parameters and Γ(·) is the
gamma function.

(v) K

p(x; a, ν) =
2

aΓ(ν + 1)

(
x
2a

)ν+1

Kν

(
x
a

)
, x > 0 , (2.5)

where a is a scale parameter, ν is a shape parameter and Kν(·) is the
modified Bessel function of the second kind of order ν.
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(vi) Nakagami

p(x; a, ν) =

(
ν

a

)ν 2
Γ(ν)

x(2ν−1)ex2(−ν/a), x > 0 , (2.6)

where a is a scale parameter and ν is a shape parameter.

(vii) Rayleigh
p(x; σ) =

x
σ2 e(−x2/2σ2), x > 0 , (2.7)

where σ is a scale parameter.

(viii) Weibull

p(x; a, ν) =
ν

a

(
x
a

)ν−1

e−(x/a)ν
, x > 0 , (2.8)

where a is a scale parameter and ν is a shape parameter.

The distributions fitting was based on the estimation of their parameters
for pixel values from ROI. For the most of the distributions (Burr3, gamma,
generalized gamma, Nakagami, Rayleigh, Weibull) the maximum likelihood
estimation (MLE) was performed. For the K distribution the parameters
were estimated using the method of Raghavan [108]. The Burr2 distribution
parameters were estimated using self-developed equations based on the sample
mean and sample median of the Burr3 distribution. Using equations presented
in [109] and setting the value of the shape parameter c equal to 2, the scale
parameter estimator takes the form

â =
xM√

21/ν̂ − 1
, (2.9)

where xM is a sample median and ν̂ is an estimator of the shape parameter of
Burr2 distribution. To obtain the value of the scale parameter described above,
the estimator of the shape parameter ν needs to be calculated numerically first,
using following equation

x =
xM

2
√

21/ν̂ − 1
β

(
1
2

, ν̂ − 1
2

)
, (2.10)

where x is a sample mean, xM is a sample median, and β(·) is the beta function.
To prove the validity of proposed method for the estimation of Burr2

distribution parameters, random samples of different size from the Burr2
distribution were generated. For that purpose a MATLAB function, allowing
generation of random sample from Burr3 distribution, was used with a shape
parameter c set as 2. After generating the random sample for a = 0.5 and
ν = 1.5, the parameters estimation was performed using proposed method.
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FIGURE 2.6: Mean values of the estimators of Burr2 distribution parameters with error
bars denoting standard deviation for different sample sizes. Red dashed lines indicate
a set value of parameter used for generating a random sample.

Figure 2.6 shows the mean values of estimators together with error bars. It
proves that proposed estimators asymptotically achieve the set parameter value
and the estimator values dispersion, expressed as standard deviation, decreases
with the increasing sample size, suggesting that the proposed estimator is
unbiased and consistent. In case of presented here analysis of OCT scans, the
sample size for Burr2 parameter estimation is of the order of 105.

For the analysis of OCT images from the study on porcine eyeballs, the
gamma distribution was selected as a statistical model of the amplitude of
speckle field on the grounds of the theory presented in chapter 1.2.2, as OCT
devices have scanning apertures, which are thought to average the speckle
pattern. For this distribution, an additional study was performed to assess the
influence of averaging of OCT images on the distributional parameters. The
methodology and the results of this study are presented in Appendix A. It was
revealed in this study that the background noise in OCT images follows gamma
distribution. Based on these results, in Appendix B a product distribution of
two gamma distributed random variables is proposed for corneal OCT speckle
modelling. The PDF of such distribution as well as estimators of its parameters
were calculated and next, simulations were performed to evaluate the obtained
estimators. Finally, the proposed model was validated on corneal OCT images
of 5 subjects in an in-vivo study. It was shown that parameter estimation is not
accurate for corneal OCT speckle and that the considered model is too intricate
to be practical in speckle modelling, pointing to simpler models to be more
beneficial.
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2.2.3 Spatial maps of distribution parameters

For the OCT images of porcine eyes, the spatial changes in distributional
parameters were of interest. To visually evaluate them, the maps of gamma
distribution parameter values were prepared for the corneal stroma, according
to the scheme in figure 2.7. At the beginning, the Bowman’s layer and epithelium
were delineated, as they comprise stroma borders. Next, the window of size
41 × 41 pixels was scanning the stroma image with a step of 10 pixels in
both horizontal and vertical directions. For each window position, the MLE
estimators of gamma distribution parameters were calculated for pixel values
from the window. These estimates were set as a value of central pixel for
a particular window position. The window size was chosen empirically, having
regard to a requirement for the sufficient number of pixel values within the
window to accurately estimate gamma distribution parameters. The step of
the moving window was a compromise between the resolution of the map
resolution and the time needed to calculate the parameter values for the map.

As a first and basic approach to the analysis of the maps, the mean values of
shape and scale parameters of the gamma distribution were calculated within
the ROI. The ROI was encompassing the central 2 mm (600 pixels) horizontally
and the entire thickness of the stroma vertically. After visual assessment of the
maps, spatial differences in parameter values for increasing IOP were observed.
Hence, the ROI was also divided in half to calculate mean parameter values for
the anterior and posterior part of stroma, as it is presented in figure 2.7c.

2.2.4 Non-parametric approach

There are different approaches in literature for the normalization of the pixel
values representing amplitude of the speckle field. The amplitude normalization
is done by dividing it by its root mean square (RMS) value, described as√
⟨A2⟩ [57], [61], [110]. For some distributions amplitude normalization leads

to constant values of the scale parameter. Such situation is observed also for the
Rayleigh distribution as presented below.

The scale parameter of the Rayleigh distribution can be estimated using
various methods. The most frequently used is MLE, which gives estimator in
the form

σ̂MLE =

√
1

2n

n

∑
i=1

X2
i , (2.11)

where Xi, i = 1, 2, . . . , n are discrete samples of the random variable X which
denotes speckle amplitude and n is the number of samples. For the normalized
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FIGURE 2.7: The scheme of preparation of the spatial maps of gamma distribution
parameters for the corneal stroma. (a) The moving window is scanning the OCT image
of cornea within the borders designated by the Bowman’s layer and the endothelium
(cyan lines). (b) The gamma distribution shape (ν) and scale (a) parameters are
estimated using pixel values within the scanning window in each position. (c) The
spatial maps of gamma distribution parameters are prepared by setting the parameter
estimates as values of central pixel in each window position. Cyan lines indicate ROI
selected for statistical analysis.

amplitude the above-mentioned estimator reduces to

σ̂MLE =

√
1

2n
· 1

1
n ∑n

i=1 X2
i
·

n

∑
i=1

X2
i =

√
2

2
, (2.12)

so the Rayleigh distribution is obtained with the constant value of the scale
parameter equal to

√
2/2, independent of the sample distribution.
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In order to verify the above-mentioned results, another estimation method,
proposed by Ardianti et al. [111], was used for the validation. That is Bayes
method with the estimator of the form

σ̂Bayes =

√
2Γ(n + 2)

2Γ
(
n + 5

2

) √ n

∑
i=1

X2
i . (2.13)

Again, for the normalized speckle amplitude following estimator is obtained

σ̂Bayes =

√
2Γ(n + 2)

2Γ
(
n + 5

2

) √ 1
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2

) · √n . (2.14)

The estimator in this form asymptotically for n → ∞ approaches
√

2/2.
Above results show that regardless of the estimation method, for any

normalized random sample, the scale parameter σ of the Rayleigh distribution
has constant value. Due to this property, in this work the Rayleigh distribution
with σ =

√
2/2 is used in non-parametric approach as a benchmark.

Having such a benchmark, some measures needed to be defined to evaluate
the difference between it and empirical distribution of the sample. They were
determined based on presented below characteristics of empirical distribution
of inverse-log transformed pixel values from ROIs in OCT images, treated as
a random variable X.

• Empirical cumulative distribution function (eCDF) [112]

eCDF =
1
n

n

∑
i=1

1{Xi ≤ t} , (2.15)

where n is the number of samples and 1{Xi ≤ t} is the indicator of the
event that the value of a random variable Xi is less than or equal to t.

• Kernel density estimator (KDE) [113]

KDE =
1
n

n

∑
i=1

1
h
K
(x − Xi

h

)
, (2.16)

where K(·) is the non-negative kernel function and h is the bandwidth
of the estimator. The kernel function was of Gaussian type with the
bandwidth h = (0.75n)(−1/5)σ̂x, where σ̂x is the sample standard deviation.
For KDE calculated from the sample, a boundary effect, resulting from
the limitation of the pixel values only to non-negative values, had to be
corrected by excluding KDE values for abscissa less than 0.05 [114].
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• Empirical characteristic function (eCF) [115]

eCF =
1
n

n

∑
i=1

ejtXi , j =
√
−1 . (2.17)

To quantify the differences between empirical distributions and the benchmark
distribution (BD), three distances were defined as follows:

• Kolmogorov–Smirnov distance between eCDF and the CDF of the benchmark
distribution [116]

DKS = sup
x

|eCDF(x)− CDFBD(x)| , (2.18)

where supx is the supremum of the set of distances across all x values,

• mean square error (MSE) distance, between KDE and the PDF of the
benchmark distribution

DMSE =
1
n

n

∑
i=1

(KDE(xi)− PDFBD(xi))
2 , (2.19)

• maximum mean discrepancy (MMD) distance, between eCF and the CF
of the benchmark distribution [117]

DMMD =

∥∥∥∥∥ 1
n

n

∑
i=1

eCF(xi)−
1
n

n

∑
i=1

CFBD(xi)

∥∥∥∥∥ . (2.20)

Additionally, for the pixel values from the ROI the contrast ratio was
calculated due to the following definition [52]

CR =
σ̂x

x
, (2.21)

where x is the sample mean. The calculated values of contrast ratio could be then
compared with the theoretical value for Rayleigh distribution, approximately
equal to 0.52.

2.2.5 Biometric parameters

In the ex-vivo study on porcine eyeballs, the measurements of the eye biometric
parameters were taken as it was described in section 2.1.2. Here, the explanation
of measured parameters will be presented.
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FIGURE 2.8: Scheme of the anterior chamber of the eye with CCT and AQD marked
(author’s own artwork).

• Central corneal thickness (CCT)

CCT is the axial distance between the anterior and posterior corneal
surfaces, measured in the most anterior point of the cornea, i.e., apex (see
figure 2.8) [118], [119].

• Aqueous depth (AQD)

The AQD is the axial distance measured between the central corneal
endothelium and the centre of anterior surface of the intraocular lens (see
figure 2.8) [120].

• Axial length (AL)

The AL is the axial length of the eyeball, which is measured in a straight
line between anterior corneal surface and the outer layer of the retina,
i.e., retinal pigment epithelium [121].

• Mean equivalent spherical power (M) and astigmatic components of
Jackson cross cylinder (J0 and J45)

These parameters are calculated based on corneal keratometric parameters,
so a few essential definitions will be presented here. Two principal
meridians of the eye need to be characterized. Eye meridians correspond
to the lines of longitude on a globe, with the pupil centre treated as a pole.
The steeper meridian (K1 in figure 2.9) is where the corneal radius of
curvature has the smallest value and the flat meridian (K2 in figure 2.9) is
where the corneal radius of curvature is the greatest. The angle between
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FIGURE 2.9: Schematic representation of the keratometric parameters. The circle
represents a front view at the eye with a pupil in the center, K1 and K2 are steeper and
flat meridians of the anterior corneal surface, respectively, and Ax is an angle between
the 0◦ meridian and the steeper meridian.

the 0◦ meridian (horizontal line passing through the pupil center) and
the steeper meridian, for which the optical power is the highest, is called
astigmatism axis (Ax in figure 2.9). The orthogonality of K1 and K2
meridians is assumed, which is known as regular astigmatism [122].

Next, the refractive power F is calculated for the steeper and flat meridian
using formula:

F =
n1 − n

RC
[D] , (2.22)

where n1 is the standard keratometric index of refraction equal to 1.3375,
corresponding to the combination of the refractive indices of the cornea
and aqueous humor. The refractive index of air is denoted as n and equal
to 1 and RC is the anterior corneal radius of curvature (in meters) for the
considered meridian [123].

Dioptric power of the eye is usually represented in terms of sphere
and cylinder. The sphere indicates the refractive power assuming the
equality of eye radii of curvature for all meridians and the cylinder
indicates the refractive power connected with astigmatism, being the
difference between the greatest and the weakest power of the eye. Using
the notation with negative cylinder and denoting the refractive power for
the K1 meridian as F1 and for the K2 meridian as F2, the sphere (S) and
cylinder (C) powers are described by the following formulas

S = (F1 + F2)/2 , (2.23)

C = F1 − F2 . (2.24)

It is useful to represent the sphero-cylindrical refractive error using three
fundamental dioptric components (M, J0, J45). The first component, M, is
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a spherical equivalent of the refractive error. After removing the spherical
component, a Jackson cross cylinder (JCC) is obtained, which is equal
to the power J of the conventional cylinder at axis Ax+90◦ crossed with
a cylinder −J at axis Ax. The astigmatic component is conventionally
described as a JCC of power J at axis Ax. The JCC can be resolved into
the sum of 2 JCC lenses with power J0 at axis 0◦ and J45 at axis 45◦. To
calculate these components the formulas presented below can be used.

M = S +
C
2

, (2.25)

J0 = −C
2

cos(2Ax) , (2.26)

J45 = −C
2

sin(2Ax) , (2.27)

where Ax is the astigmatism axis given in radians and providing that the
cylinder notation is with a minus sign [124], [125].

2.2.6 Statistical analysis

In the statistical analysis of the results from the study on porcine eyeballs,
gamma distribution parameters in a parametric approach, statistical distances
and CR in a non-parametric approach and ocular biometric parameters were
taken into consideration. To evaluate how these parameters vary with IOP
in Experiment 1 or with time in Experiment 2, a one-way repeated measures
analysis of variance (rmANOVA) was applied. Post-hoc analysis, using paired
t-test, was performed to evaluate differences in mean values of parameters
between consecutive IOP levels or the adjacent time points. There was no
correction in the post-hoc analysis because a large number of tests were carried
out (21 for 7 considered levels of IOP) without a preplanned hypothesis [126].
The results of this analysis are presented in the plots of the mean values of
parameters in a form of horizontal bars with asterisks denoting statistical
significance of test results (* p < 0.05; ** p < 0.01; *** p < 0.001).

In the ex-vivo study on porcine eyeballs, partial correlation analysis with IOP
(Experiment 1) or time (Experiment 2) set as a control variable, was performed
for the parameters of the gamma distribution and ocular biometry. In the in-vivo
study on human corneas, Pearson correlation coefficient (R) was computed to
assess if distributional parameters as well as statistical distances and CR values
are correlated with IOP. Also, in correlation analyses p-values are presented for
testing the hypothesis that there is no correlation between analysed variables.
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Chapter 3

Results

3.1 Phantom study

3.1.1 Parametric approach

In this approach the goodness of fit was first assessed for the considered set
of distributions for nine phantoms of different concentrations (C1, C2, ..., C9).
Based on the results presented in figure 3.1, the best fit to pixel values is obtained
for the generalized gamma distribution. Also gamma, Weibull and both Burr
distributions provide a comparable good fit. It is worth noting that the fit of
all presented distributions remains at a similar level for higher concentrations
of scattering particles (C9–C6) and then it gradually deteriorates (GoF values
increase) with decreasing scatterer density. The greatest rise in GoF values for
the concentrations from C6 to C1 is observed for the Rayleigh distribution.

FIGURE 3.1: Values of GoF of considered distributions fitted to pixel values from the
ROI in OCT images of phantoms. GG denotes generalized gamma distribution.
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FIGURE 3.2: Values of the scale and shape parameters of considered two-parameter
distributions for decreasing concentration of scattering particles in the phantom study.

FIGURE 3.3: Values of the parameters of considered three-parameter distributions for
decreasing concentration of scattering particles in the phantom study.

Values of the parameters of the considered distributions are presented in
figures 3.2 and 3.3. Despite good fitting of the three-parameter distributions,
their parameters show weak trend with scatterer concentration. Moreover,
the shape 1 parameter of the generalized gamma distribution for two lowest
concentrations encountered huge values, which were removed from the plot
for better visualization. For all considered distributions with two parameters,
the shape parameter shows descending trend with decreasing concentration of
scatterers in phantoms, with a saturation for concentrations from C9 to C6. The
scale parameter also shows dependence on scatterer concentration for different
distributions, especially it is the most pronounced for the Burr2 distribution.

For the two-parameter distributions, the parameters were also estimated
for the speckle amplitude after normalization, as described in chapter 2.2.4.
The results are presented in figure 3.4. Comparing to figure 3.2, for most
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FIGURE 3.4: Values of scale and shape parameters of the considered two-parameter
distributions estimated for the normalized speckle amplitude in OCT images of
phantoms for decreasing concentration of scattering particles.

distributions there are only slight differences in the changes of parameter
values with concentration of scattering particles. The Nakagami and Rayleigh
distributions are two exceptions for which the scale parameter, estimated for
normalized amplitude, has constant value, regardless of scatterer density.

3.1.2 Non-parametric approach

The consistency of the Rayleigh distribution scale parameter estimated for
normalized speckle amplitude was used as a foundation for the development
of the non-parametric approach, explained in chapter 2.2.4. In this approach, all
considered statistical distances in figure 3.5 show similar trend for decreasing
scatterer concentration. For the concentrations from C9 to C6 the DMSE, DKS

and DMMD distances have almost constant value of about 0.1. For the lower
concentrations their values are increasing, so the empirical distribution of
speckle field amplitude is deviating from the benchmark Rayleigh distribution.
Similar trend is observed for CR, which values for concentrations from C9 to C6

are slightly larger than theoretical value of 0.52 for the Rayleigh distribution
and from the C6 concentration it starts to increase to finally approach the value
of about 1.45.

3.2 Ex-vivo study on porcine eyes

3.2.1 Parametric approach

In the ex-vivo study on porcine eyeballs GoF was also first evaluated for the
analysed set of distributions. The results are presented in figure 3.6 and show
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FIGURE 3.5: Values of statistical distances (left) and contrast ratio (right) for decreasing
concentration of scattering particles in the phantom study.

that both three-parameter distributions (Burr3 and generalized gamma) best fit
the experimental data. Slightly increasing trend of GoF with increasing IOP is
observed for almost all distributions, except gamma and K distribution. For the
Rayleigh distribution changes of GoF values with IOP are the highest.

For non-normalized pixel values from ROIs in OCT images, the values of
parameters of considered distributions were estimated. One-way repeated
measures ANOVA (rmANOVA) was used to evaluate if these parameters
vary with IOP in Experiment 1 or with time in Experiment 2. The results are
presented in table 3.1. Statistically significant changes with IOP in Experiment 1
are observed for all distributions, except for the shape 2 parameter of Burr3
distribution. In Experiment 2 the changes in values of parameters are significant
for both parameters of Burr2, gamma, K and Weibull distributions, for the shape
parameter of the Nakagami distribution, and for one of the shape parameters
for Burr3 and generalized gamma distributions.

For one of the distributions the analysis of parameters was performed to
assess the potential of using them as markers of changes in corneal speckle
statistics induced by elevated IOP. Gamma distribution was selected from the
considered set of distributions on the basis of speckle theory, as it was described
in chapter 2.2.3, and also taking into account that both parameters of this
distribution change significantly with IOP and time (see table 3.1).

Gamma distribution parameters were estimated for non-normalized pixel
values and results are presented in figure 3.7 for two experiments performed
on porcine eyeballs. Statistical significance of differences between values of
parameters was evaluated using paired t-test for consecutive IOP levels in
Experiment 1 or consecutive time points in Experiment 2. The shape parameter
of gamma distribution shows similar, declining trend in both experiments.
Better differentiation between experiments is observed for the scale parameter,
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FIGURE 3.6: Mean values (± standard error) of the GoF of considered distributions
fitted to pixel values from the ROI in OCT images of porcine corneas for increasing IOP.
GG denotes generalized gamma distribution.

FIGURE 3.7: Mean values (± standard error) of gamma distribution shape (ν) and scale
(a) parameter, estimated for pixel values within the ROI in OCT images of porcine
corneas, as functions of IOP (Experiment 1) or time (Experiment 2).

which values are increasing with statistically significant differences for all
adjacent IOP levels in Experiment 1. In Experiment 2 the changes in parameter
values are lower with significant differences only between t1 and t2 and also t3

and t4 time points.
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TABLE 3.1: Results of rmANOVA for the changes of parameters of considered
distributions with IOP or time in Experiment 1 and Experiment 2, respectively, in
the study on porcine eyeballs.

Distribution Parameter
rmANOVA

Experiment 1 Experiment 2

Burr2
scale F = 15.59, p < 0.001 F = 7.59, p < 0.001

shape F = 17.84, p < 0.001 F = 7.69, p < 0.001

Burr3

scale F = 8.17, p < 0.001 F = 0.69, p = 0.658

shape 1 F = 28.59, p < 0.001 F = 9.21, p < 0.001

shape 2 F = 1.89, p = 0.088 F = 0.72, p = 0.639

gamma
scale F = 86.90, p < 0.001 F = 17.97, p < 0.001

shape F = 37.73, p < 0.001 F = 21.20, p < 0.001

generalized gamma

scale F = 9.12, p < 0.001 F = 0.96, p = 0.459

shape 1 F = 6.49, p < 0.001 F = 1.31, p = 0.270

shape 2 F = 11.44, p < 0.001 F = 5.74, p < 0.001

K
scale F = 10.87, p < 0.001 F = 5.56, p < 0.001

shape F = 28.33, p < 0.001 F = 14.04, p < 0.001

Nakagami
scale F = 27.30, p < 0.001 F = 1.94, p = 0.091

shape F = 39.78, p < 0.001 F = 23.46, p < 0.001

Rayleigh scale F = 29.09, p < 0.001 F = 2.18, p = 0.059

Weibull
scale F = 15.71, p < 0.001 F = 3.93, p = 0.003

shape F = 41.34, p < 0.001 F = 26.18, p < 0.001

3.2.2 Ocular biometric parameters

In experiments on porcine eyeballs ocular biometry measurements were taken
at each IOP level in Experiment 1 and for each time point in Experiment 2. To
evaluate changes in values of biometric parameters, rmANOVA was utilized,
and the results are presented in table 3.2. Statistically significant changes of CCT,
AQD and M are observed in Experiment 1 and CCT and AL in Experiment 2.

Figures 3.8 and 3.9 present changes in values of biometric parameters
with IOP (Experiment 1) or with time (Experiment 2). Statistically significant
decrease of CCT is observed for IOP from 10 to 20 mmHg in Experiment 1 and
between t1 and t2 time points in Experiment 2. The values of AQD parameter
slightly increase in both experiments and declining trend is observed for AL
parameter only in Experiment 2. For IOP from 10 to 20 mmHg also values of
M parameter decrease significantly. Astigmatic components of Jackson cross
cylinder, J0 and J45, remain at the similar level during both experiments.
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TABLE 3.2: Results of rmANOVA for ocular biometric parameters in Experiment 1 and
Experiment 2 in the study on porcine eyes.

CCT AQD AL M J0 J45

Experiment 1
F = 3.24 F = 7.44 F = 0.45 F = 9.33 F = 0.32 F = 0.38

p = 0.005 p < 0.001 p = 0.841 p < 0.001 p = 0.928 p = 0.888

Experiment 2
F = 2.39 F = 1.48 F = 5.15 F = 1.44 F = 0.52 F = 0.69

p = 0.040 p = 0.203 p < 0.001 p = 0.218 p = 0.792 p = 0.659

FIGURE 3.8: Mean values (± standard error) of ocular biometric parameters as functions
of set IOP (Experiment 1, left panel) or time (Experiment 2, right panel).
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FIGURE 3.9: Mean values (± standard error) of the mean equivalent spherical
power (M) and astigmatic components of the Jackson cross cylinder (J0 and J45) as
functions of set IOP (Experiment 1, left panel) or time (Experiment 2, right panel).

Partial correlation analysis was performed for the parameters of gamma
distribution and biometric parameters with IOP and time set as a control
variable for the results from Experiment 1 and Experiment 2, respectively.
In the analysis the sample size was taken into consideration for the evaluation
of statistical significance of the results. Based on the work of Bujang and
Baharum [127], in testing for zero correlation statistically significant values
of correlation coefficient (in absolute terms) should be larger than 0.6 for the
sample size of 23 in Experiment 1 and larger than 0.8 for the sample size of
10 in Experiment 2. According to that work, the obtained results, showed in
table 3.3, do not show statistically significant correlations between considered
parameters.
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TABLE 3.3: Results of partial correlation analysis (partial correlation coefficient, ρ, and
p-values for testing for zero correlation) between gamma distribution parameters and
ocular biometric parameters with IOP and time set as a control variable for the results
from Experiment 1 and Experiment 2, respectively.

Experiment 1 Experiment 2

ν a ν a

CCT
ρ = 0.012 ρ = −0.291 ρ = −0.290 ρ = 0.103

p = 0.880 p < 0.001 p = 0.016 p = 0.401

AQD
ρ = 0.133 ρ = −0.313 ρ = 0.006 ρ = −0.363

p = 0.094 p < 0.001 p = 0.960 p = 0.002

AL
ρ = 0.208 ρ = −0.088 ρ = −0.174 ρ = −0.313

p = 0.009 p = 0.271 p = 0.153 p = 0.009

M
ρ = 0.015 ρ = −0.157 ρ = 0.150 ρ = 0.331

p = 0.853 p = 0.048 p = 0.226 p = 0.006

J0
ρ = 0.027 ρ = −0.009 ρ = −0.512 ρ = 0.193

p = 0.735 p = 0.908 p < 0.001 p = 0.118

J45
ρ = −0.114 ρ = −0.056 ρ = 0.396 ρ = 0.291

p = 0.153 p = 0.482 p < 0.001 p = 0.017

3.2.3 Spatial maps of distribution parameters

Spatial maps of shape and scale parameter of gamma distribution are presented
in figures 3.10 and 3.11, respectively, together with corresponding OCT scans
of porcine corneas for IOP levels of 10, 20, 30 and 40 mmHg. These exemplary
maps show the potential of such analysis of parameter values since changes
in their spatial distribution with increasing IOP are evident. The values of
both parameters are higher in the central cornea comparing to the periphery.
For increasing IOP there is an evident rise of values of scale parameter. The
shape parameter has higher values located more centrally comparing to scale
parameter, but there is not obvious trend to clearly characterize the changes of
parameter values. Differences in pixel values for OCT scans are more difficult
to observe, but the spatial changes in pixel brightness for increasing IOP seem
to be comparable rather to the spatial changes of the shape parameter values
than to the maps of scale parameter.
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FIGURE 3.10: An example of spatial maps of the gamma distribution shape
parameter (ν) together with corresponding OCT scans for four out of seven IOP levels
in Experiment 1.

The visual evaluation of the maps gave information about spatial changes
in speckle statistics, however, a quantitative analysis was required to obtain
some measures of changes in parameter values. As a first approach for such
analysis, mean values of parameters were calculated from the maps within
the ROI presented in figure 2.7c. The calculations were performed for the ROI
encompassing entire corneal thickness as well as for its anterior and posterior
halves separately.

The results for the entire corneal thickness are presented in figure 3.12. They
show similar trends as for the values of parameters estimated directly from
pixel values in OCT scans (figure 3.7). In both cases there is an increase of shape
parameter values between 10 and 15 mmHg while for the remaining IOP levels
the decreasing trend of parameter values is observed. Statistically significant
differences in scale parameter values occur for IOP from 10 to 30 mmHg in
Experiment 1 and are almost not observed for Experiment 2.
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FIGURE 3.11: An example of spatial maps of the gamma distribution scale parameter (a)
together with corresponding OCT scans for four out of seven IOP levels in Experiment 1.

FIGURE 3.12: Mean values (± standard error) of gamma distribution shape (ν) and
scale (a) parameters, calculated from the ROI encompassing entire cornea thickness
in the spatial maps of parameters, as functions of IOP (Experiment 1) or time
(Experiment 2).
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FIGURE 3.13: Mean values (± standard error) of gamma distribution shape parameter ν,
calculated separately for the anterior and posterior halves of the cornea in the spatial
maps of parameters, as functions of IOP (Experiment 1) or time (Experiment 2).

FIGURE 3.14: Mean values (± standard error) of gamma distribution scale parameter a,
calculated separately for the anterior and posterior halves of the cornea in the spatial
maps of parameters, as functions of IOP (Experiment 1) or time (Experiment 2).

Also, the anterior and posterior halves of ROI were analysed separately to
roughly assess the location of changes in parameters values. Figures 3.13 and
3.14 show results for the shape and scale parameter of the gamma distribution,
respectively. The plots of the shape parameter values in Experiment 2 are
similar for anterior and posterior parts of cornea. In Experiment 1 the shape
parameter in the posterior part has lower values and decreases faster comparing
to the anterior part. It is also revealed that the statistically significant increase
in shape parameter values between 10 and 15 mmHg, observed for entire
corneal thickness, occurs only in the posterior cornea. The scale parameter has
higher values in the anterior cornea comparing to the posterior half in both
experiments. The significant increase of its values is observed in Experiment 1
for the posterior part between all consecutive IOP levels and in the anterior part
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TABLE 3.4: The results of rmANOVA for values of statistical distances and CR in the
study on porcine eyeballs.

Statistical distance
rmANOVA

Experiment 1 Experiment 2

DMSE F = 28.37, p < 0.001 F = 2.68, p = 0.024

DKS F = 33.69, p < 0.001 F = 7.30, p < 0.001

DMMD F = 29.11, p < 0.001 F = 3.74, p = 0.004

CR F = 38.54, p < 0.001 F = 23.10, p < 0.001

only from 10 to 25 mmHg. This analysis revealed that the changes in gamma
distribution parameters values are more pronounced in the posterior half of the
cornea in spatial maps of distributional parameters.

3.2.4 Non-parametric approach

In the non-parametric approach to corneal speckle analysis, rmANOVA was
first used to assess the significance of changes in values of statistical distances
and CR with IOP in Experiment 1 or time in Experiment 2. This analysis,
presented in table 3.4, showed that all statistical distances and CR values change
significantly in both experiments.

Figure 3.15 presents mean values of considered distances and CR together
with the results of post-hoc analysis. All distances and values of CR show
similar increasing trend in Experiment 1 with statistically significant differences
between IOP levels from 15 to 35 mmHg. Analysing results from Experiment 2
there are some significant changes in values of distances, but the mean values
only slightly increase with time.

3.3 In-vivo study on human eyes

3.3.1 Parametric approach

In the analysis of the results obtained in the in-vivo study on human corneas,
Pearson correlation coefficient was calculated between IOP and parameters of
considered distributions estimated for pixel values from selected ROI in OCT
scans. The greatest values of correlation coefficient were obtained for the shape
parameter of Burr2 distribution for both YOUNG and OLD groups. Taking into
account sample size (27 subjects in the YOUNG group and 29 subjects in the
OLD group), the values of correlation coefficient should be greater than 0.6 to be
considered as statistically significant due to the guidelines described by Bujang
and Baharum [127]. None of the correlations satisfy this condition, nevertheless
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FIGURE 3.15: Mean values (± standard error) of statistical distances and CR as
functions of IOP in Experiment 1 or time in Experiment 2 in ex-vivo study on porcine
eyeballs.

the shape parameter of the Burr2 distribution shows the highest correlation
with IOP among analysed set of distributions. In general, correlations are higher
for the YOUNG group except for the gamma distribution scale parameter and
the shape parameter of Burr2 and generalized gamma distribution.

3.3.2 Non-parametric approach

In the non-parametric approach Pearson correlation coefficient was calculated
to assess if changes in statistical distances and CR are associated with IOP.
Analysing the results presented in figures 3.16 and 3.17 it can be concluded that
the statistical distances as well as CR show higher correlations for the YOUNG
group of patients than for the OLD group. The greatest correlation is observed
for DMSE distance in the OLD group and for DKS distance in the YOUNG group.
In both groups CR shows the weakest correlation with IOP.
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TABLE 3.5: The values of Pearson correlation coefficient (R) between IOP and
parameters of considered distributions for YOUNG and OLD groups of subjects
together with the p-values for testing for zero correlation.

Distribution Parameter
Pearson correlation coefficient

YOUNG OLD

Burr2
scale R = −0.386, p = 0.047 R = −0.308, p = 0.105

shape R = −0.432, p = 0.024 R = −0.503, p = 0.005

Burr3

scale R = 0.358, p = 0.066 R = 0.215, p = 0.264

shape 1 R = −0.338, p = 0.085 R = −0.240, p = 0.210

shape 2 R = −0.358, p = 0.066 R = 0.021, p = 0.912

gamma
scale R = 0.166, p = 0.407 R = 0.417, p = 0.025

shape R = −0.354, p = 0.070 R = −0.269, p = 0.159

generalized
gamma

scale R = 0.085, p = 0.675 R = 0.072, p = 0.710

shape 1 R = −0.173, p = 0.390 R = −0.067, p = 0.731

shape 2 R = 0.054, p = 0.789 R = −0.274, p = 0.151

K
scale R = −0.265, p = 0.181 R = −0.013, p = 0.945

shape R = −0.406, p = 0.036 R = −0.227, p = 0.236

Nakagami
scale R = −0.202, p = 0.313 R = 0.060, p = 0.757

shape R = −0.370, p = 0.058 R = −0.280, p = 0.141

Rayleigh scale R = −0.206, p = 0.302 R = 0.079, p = 0.684

Weibull
scale R = −0.246, p = 0.216 R = 0.023, p = 0.908

shape R = −0.391, p = 0.044 R = −0.278, p = 0.144
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FIGURE 3.16: Values of statistical distances in the non-parametric approach to speckle
analysis as functions of IOP for the OLD group. In top right corner of each plot there
are values of Pearson correlation coefficient (R) and corresponding p-values. Straight
line in the plots represents the linear fit to the experimental data.

FIGURE 3.17: Statistical distances and CR as functions of IOP for the YOUNG group.
In top right corner of each plot there are values of Pearson correlation coefficient (R)
and corresponding p-values. Straight line in the plots represents the linear fit to the
experimental data.
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Chapter 4

Discussion and future directions

4.1 Discussion

Two approaches for corneal OCT speckle analysis were presented in this
thesis: a parametric, involving estimation of distributional parameters, and
a non-parametric, where the differences between the empirical distribution of
normalized amplitude of a speckle field was compared to a benchmark Rayleigh
distribution with a constant value of its scale parameter. These approaches were
presented on tree different studies, in which OCT scans of phantoms, ex-vivo
porcine corneas, and in-vivo human corneas were utilized.

In the phantom study, for the analysed set of distributions, GoF values were
lower and almost constant for high concentrations of blue dye particles while
they were increasing with the decrease of concentration. The observed changes
and trend in the GoF suggest that the speckle field in OCT images is probably
fully developed only for C9 – C6 concentrations of scattering particles. The
more the speckle field departs from being fully developed, the worse is the
distributions fitting to pixel values from ROI in OCT scans of phantoms. That
is supported by the results obtained from the non-parametric approach, where
trends similar to that of GoF were observed for considered statistical distances
and CR values. It also suggests that speckle field departs from being fully
developed for lower concentrations of blue dye particles, because according
to the theory, the Rayleigh distribution is a fundamental distribution of the
amplitude of a fully developed speckle field [54], [128].

For phantoms, distributional parameters estimated from the pixel values of
OCT scans, usually show similar trends as GoF, with approximately constant
values for higher concentrations of scattering particles and some trends for the
C5 – C1 concentrations. According to figures 3.2 and 3.4, the normalization
of amplitude is affecting scale parameters while shape parameters remains
unchanged. It is important to pay attention to this fact in statistical analysis
of speckle field. The results obtained from the phantom study confirm the
first hypothesis put in this work that the scatterer density affects OCT speckle
statistics.
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In case of the three-parameter distributions, a good fitting to experimental
data was observed in the study on phantoms as well as on ex-vivo porcine
eyeballs. However, in the phantom study the distributional parameters showed
weak trends with scatterer density (figure 3.3). That arises from correlation
of the estimators of distributional parameters resulting in different well-fitted
distributional representations obtained for more than one set of parameter
estimates. The estimates orthogonality is rare in distributions with three or
more parameters because of the high complexity of the differential equations
required to construct orthogonal estimators [129]. Overall, despite better fitting
of three-parameter distributions to experimental data, their estimators may
have worse discriminating power (i.e., may provide worse tissue biomarkers)
while compared with distributions with one or two parameters.

In the ex-vivo study on porcine eyeballs two experiments were performed
to assess if observed changes in corneal OCT speckle statistics are related
to changes in IOP (Experiment 1) and to differentiate observed results from
the effect of the duration of ex-vivo experiment (Experiment 2). From a set
of distributions, gamma distribution was selected as the most appropriate to
model corneal OCT speckle owing to its theoretical justification for the sum
of speckle patterns [52]. Since OCT device has some aperture, the speckle
pattern may be assumed to be averaged over some area. Moreover, the gamma
distribution showed quite good fitting to empirical distribution of pixel values
in OCT images and invariance of its GoF for different levels of IOP (see
figure 3.6). Also, gamma distribution is used in the literature for OCT speckle
modelling [70], [71].

In this work the gamma distribution was utilized in two different ways. First,
its parameters were estimated for pixel values (after inverse-log transformation)
from a ROI within the OCT scan. The scale parameter showed statistically
significant changes for IOP elevation while in the experiment with constant IOP
there was only a slight increase of parameter values with time. That indicates
the potential of using scale parameter values as a marker of changes in IOP.
The changes in shape parameter were similar for both experiments and the
decreasing trend with IOP and time was observed. Kirillin et al. [70] presented
similar observations for OCT images of polystyrene microspheres phantoms.
Based on simulations and experimental studies he showed the increase of the
scale parameter values with increasing concentration of particles, while the
values of shape parameter were almost constant or slightly decreasing.

The use of gamma distribution parameters as biomarkers is supported by
theoretical calculations presented by Dainty [12], indicating that the shape
parameter of gamma distribution is related to the number of speckles within
the scanning aperture and the scale parameters is proportional to that number
as well but also inversely proportional to the average intensity (or amplitude)
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of speckle field. Kirillin et al. [70] suggested that the shape parameter of gamma
distribution is thought to be related to the scatterer density while the scale
parameter is dependent on mean speckle amplitude which is connected with
both scatterer concentration and cross-section.

Based on the analysis of the changes in gamma distribution parameters in
the ex-vivo study using porcine eyeballs, another method for the analysis of OCT
images was proposed. In this method distributional parameters are estimated
in a small window moving through the image, giving as a result a spatial
map of parameter values. Since the changes of values of both shape and scale
parameter observed in maps are evident for increasing IOP, as a basic approach
a simple quantitative analysis, based on mean parameter value calculation, was
proposed. The results were similar to those obtained for parameters estimated
from ROI in OCT scans. In both cases, the shape parameter showed similar
trends for Experiment 1 and 2, so its values were influenced mostly by the effect
of the experiment duration rather than the effect of IOP increase. Conversely,
for the scale parameter there was a clear difference between experiments. The
increase of parameter values with increasing IOP was observed in Experiment 1
with statistically significant differences between adjacent IOP levels. Such
changes in scale parameter values were not observed for Experiment 2, so it
could be concluded that they resulted from the effect of IOP increase.

Changes in mean values of gamma distribution parameters with IOP and
time were also assessed for anterior and posterior half of stroma separately.
Values of both parameters were lower in posterior stroma compared to the
anterior part. Moreover, there were more statistically significant differences
of both parameters between consecutive IOP levels in posterior stroma in
Experiment 1. In Experiment 2 the trends in parameter values were comparable.
That result suggests lower sensitivity of anterior stroma to changes in corneal
properties induced by IOP. A possible explanation was presented by DelMonte
and Kim [87]. Because the organization of collagen bundles is tighter in the
anterior stroma, it contributed to tighter cohesive strength in this area and
that may be a reason of higher resistance of this part of the cornea to changes
in stromal hydration compared to the posterior stroma, which tends to more
easily develop folds. The results of the study on porcine eyeballs confirmed the
second hypothesis, which claimed that changes in corneal properties caused by
the variations in IOP can be detected using speckle statistics in OCT images.

Analysing changes in biometric parameters of porcine eyeballs, statistically
significant decrease in CCT is observed at the beginning of both experiments.
Similar results were observed in the work of Kazaili et al. [130] who obtained
14% decrease in CCT of porcine corneas subjected to IOP elevation from 0 to
60 mmHg. In the study of Wu et al. [97], a decrease in size of gaps between
lamellar structures with increasing IOP was observed for rabbit corneas using



56 Chapter 4. Discussion and future directions

non-linear optical microscopy for increasing IOP. That may be one of possible
causes of CCT decrease in Experiment 1 presented in this work. Nonetheless,
slight but statistically significant decline in CCT occurred also between t1 and
t2 time points in Experiment 2, where IOP was maintained at the constant level
of 15 mmHg. Such small changes in CCT were also showed in the study of
Vetter et al. [131] for untreated porcine eyeballs with constant IOP of 20 mmHg
maintained for 120 minutes. It is likely that the CCT decrease is not only due
to the effect of IOP but also results from eyeball adaptation to experimental
conditions.

Another significant differences were observed for AL only in Experiment 2
and did not occur when IOP was increased, although in literature a correlation
between AL and IOP can be found [132], [133]. One of possible explanations is
that the changes of AL in the study presented in this work may be connected
with some processes occurring postmortem, e.g., eyeball hydration loss, and in
Experiment 1 they are compensated by IOP elevation.

Significant changes were also observed for AQD and M parameters in
Experiment 1. Increase of AQD parameter is thought to be connected with the
PBS injection directly to the anterior chamber of the eyeballs. The decrease of the
M parameter is linked to the increase of corneal radius of curvature. It occurs
only at the beginning of Experiment 1 when IOP is below the physiological
value for porcine eyes [134]. For IOP values greater than 20 mmHg and for all
time points in Experiment 2, where IOP was kept at the level of 15 mmHg all
the time, no significant changes in M parameter were observed. Similarly, in
the study of Pierscionek et al. [135] corneal curvature was unchanged for IOP
elevation from 15 to 45 mmHg.

The last study presented in this work included OCT images of human
corneas in the in-vivo study. Subjects were divided into two groups using their
age to classify them. In the YOUNG group the age of subjects was less than
30 years and in the OLD group it was greater than 50 years. In the parametric
approach, the majority of the correlations between distributional parameters
and IOP were greater in the YOUNG group while compared to the OLD group.
Also, in the non-parametric approach, correlations between IOP and statistical
distances or CR were higher for younger subjects. Moreover, increasing trend
of statistical distances and CR values with IOP is in accordance with the results
obtained for porcine eyeballs, although the range of IOP in this study was much
smaller compared to the study on porcine eyeballs.

It is likely that lower correlations between IOP and estimated parameters
or calculated statistical distances in older subjects result from a number of
factors affecting the aging eyes. Malik et al. [89] in his study showed the
decrease with age in the interfibrillar spacing within human corneas for a fixed
hydration, which may be related to changes in the proteoglycan composition
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of the interfibrillar matrix. He also showed increase in the cross-sectional area
in corneal collagen associated with age. Also, Daxer et al. [101] demonstrated
an increase in collagen fibril diameter with age. Elsheikh et al. [100] showed
the corneal stiffening (increased resistance to deformation) with increasing
age and indicated age-related changes in corneal microstructure as well as
changes in collagen fibril strength as a possible reasons of that. It is worth
noting that ocular changes due to aging should be considered as a nonlinear
process, affected not only by environmental factors, but primarily by factors
dependent on patient, such as diseases, genetics, lifestyle and others.

Intraocular pressure is affecting entire eyeball inducing changes also in
corneal microstructure. Wu and Yeh [97] showed decrease in size of interlamellar
gaps in rabbit corneas subjected to IOP elevation. In the study on rat corneas,
decreasing collagen fibrils diameter was observed with IOP increase [136]. For
the human corneas reorganization of stromal lamellae induced by IOP was
revealed [137]. There is also a number of works showing changes not only in
corneal microstructure but also in its geometry or biomechanical properties.
Kazaili et al. [130] applied line-field OCT to measure mechanical properties
of porcine corneas. Linear increase in corneal elastic modulus was observed
for IOP from 20 to 60 mmHg. Higher values of elastic modulus are related to
stiffening of examined material. Changes in statistics of corneal OCT speckle
result from the properties of backscattered light, which is thought to contain
information about variations in corneal microstructure. Thus, such methods
of speckle analysis may be a valuable tool for indirect evaluation of corneal
microstructure. In this work changes in statistical distances in the study on
porcine eyeballs show similar trend as for decreasing scatterers concentration
in the phantom study. It suggests that increasing IOP causes the reduction
of corneal structures which scatter the light. Nevertheless, further studies
combining statistical analysis of speckle and corneal imaging in micro- or
nanoscale are required to better understand the relations between statistical
parameters and corneal microstructure.

Comparing two approaches to speckle analysis presented in this work, the
main difference is the computational complexity. In a parametric approach the
estimation of parameters is required, usually using the method of maximum
likelihood. That involves calculations that are usually more computationally
intensive compared to the non-parametric approach, where no distributional
parameters are estimated. Nevertheless, the results obtained using these two
approaches are comparable. There are statistically significant differences in
distributional parameters, statistical distances and CR values observed for
changes in IOP or scatterer concentration. These observations lead to conclusion
that simpler methods of speckle analysis should be considered before other
more complicated approaches. That confirms the third hypothesis of this
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work that both proposed approaches (non-parametric and parametric) can
be successfully utilized for speckle analysis with similar diagnostic power.

4.2 Limitations

The main limitation of the studies presented in this thesis is their relatively
small sample sizes. The influence of scatterer density on speckle was presented
on 9 phantoms with different concentration of blue dye particles. Although
that was only a preliminary study, which aim was to demonstrate that speckle
statistics are influenced by the density of scatterers in examined medium, more
samples would allow to perform a statistical analysis of obtained results. Also
in the study on porcine eyeballs sample size was rather small, especially in
Experiment 2. That resulted from limited availability of porcine eyeballs from
the abattoir, which, moreover, were often damaged and thus excluded from
experiments. In the in-vivo study on human corneas, the total number of subjects
was 56 and that may appear small. Nevertheless, sample sizes in the study of
porcine and human corneas was sufficient to obtain reliable results, perform
statistical analysis and draw conclusions about the influence of IOP on speckle
in OCT images.

In ex-vivo experiments there is a number of factors affecting the tissues
which are subjected to non-physiological conditions, i.e., experiment duration,
ambient temperature and humidity, moisturizing (frequency, type of utilized
solution), processes occurring postmortem. The main problem with ex-vivo
eyeball is fast loss of hydration, as the eyeball consists of water in 78% [138].
Another problem is corneal swelling caused by the hydrophilic character of
proteoglycans in stroma [87]. Only slight changes in CCT were observed
in this study suggesting that regular hydrating of the eyeballs prevented
excessive corneal swelling. In ex-vivo experiments it is impossible to assure the
conditions provided in-vivo. Nevertheless, such experiments on intact eyeballs
are commonly used for mechanical testing of the eyeball properties [139], [140].

The main part of the analysis presented in this work was performed on
porcine corneas, so the results cannot be translated directly for human corneas.
The use of human corneas in ex-vivo studies is difficult due to their limited
availability. Thus an important issue was the choice of a human eye model. The
study of Subasinghe et al. [141] showed that there are statistically significant
differences in collagen fibrillar diameter, interfibrillar distance and interlamellar
distance between porcine, rabbit and human corneas, but all five corneal layers
were observed for these three species. They concluded that despite porcine and
rabbit corneas being not structurally identical to human cornea, they are similar
enough to be used as research models.
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Another limitation is that in the study on human corneas the true value of
IOP was unknown. However, measurements performed by air-puff tonometer
provide an estimate of the real value of IOP that can be used for analysis.
This limitation did not occur in the study on porcine eyeballs as IOP was
controlled and measured directly using the needle inserted into the anterior
chamber of the eye connected to a pressure transducer. For obvious reasons
such measurement was not possible in the in-vivo study, so it should be only
taken into consideration in results analysis that IOP values were estimated with
some limited accuracy.

4.3 Future directions

There are a lot of possibilities of future development of proposed speckle
analysis methods. For higher concentrations of scattering particles in phantoms
there are slight variations of parameters or statistical distances, so the speckle
field is supposed to be fully developed. Thus, there is a need for development
of measures sensitive to changes in speckle field which is fully developed.

Also, the gamma distribution used in this work for speckle modelling could
be replaced by any other distribution or new distribution should be calculated
with parameters reflecting specific features of scatterers. When analysing maps
of parameters, only simple description, based on mean parameter value, was
considered. Other measures, taking into account spatial variations of the values
of parameters, should be developed. Images from only one OCT device were
considered in this study, so it would be beneficial to compare the obtained
results with those from similar studies performed using other devices.

4.4 Conclusions

To sum up, corneal OCT speckle reflects changes in corneal properties induced
by IOP. The statistics of speckle may be used for indirect evaluation of these
changes. That provides a background for the new interesting functionalities of
OCT devices.
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Appendix A

Averaging of OCT scans

Speckle noise in OCT images causes low image quality and as a result reduced
distinguishing power of imaged structures. Due to the assumption that noise
in images is randomly distributed, a common method of noise reduction is
averaging of B-scans [142]. Some OCT devices provide in their software an
image averaging function and even allow to select the number of single B-scans
averaged in order to enhance image quality. However, there are also OCT
devices that generate only averaged B-scans. For this reason, the impact of such
averaging on speckle statistics should be considered.

The theoretical model of averaged corneal OCT speckle will be introduced
here assuming that the speckle field in a single non-averaged OCT B-scan
is a gamma distributed random variable. Next, the proposed model will be
validated on a small data set containing averaged OCT images.

Let Y be a random variable representing speckle field of averaged OCT
image and defined as follows

Y =
1
N

N

∑
1

Xi , (A.1)

where Xi ∼ Γ(ν, a), i = 1, ..., N are gamma distributed random variables with
a shape parameter ν and a scale parameter a. The same distribution of speckle
in all averaged images is assumed because in a short time of their acquisition
no changes in corneal properties, influencing speckle statistics, are supposed to
occur. The gamma distribution is described by the PDF

pXi(x; a, ν) =
1

aνΓ(ν)
xν−1e−x/a, x > 0 , (A.2)

where Γ(·) is the gamma function.
Based on the properties of gamma distribution, the summation of gamma

distributed random variables Xi ∼ Γ(ν, a) with the same shape and scale
parameters results in a random variable, which also comes from the gamma
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FIGURE A.1: Illustrative OCT image of the cornea, averaged from five single B-scans.
Cyan lines indicate epithelium, Bowman’s layer and endothelium. The ROI, marked
with red lines, contains corneal speckle.

distribution in a form
N

∑
i=1

Xi ∼ Γ
(

Nν, a
)

. (A.3)

The scaling of gamma distributed random variable X ∼ (ν, a) gives for any
c > 0

cX ∼ Γ(ν, ca) . (A.4)

Combining properties of gamma distribution from equations A.3 and A.4 and
applying them for the considered random variable Y, defined in equation A.1,
one obtains

Y ∼ Γ
(

Nν,
a
N

)
. (A.5)

The presented theoretical distribution of averaged speckle field is compared
with experimental results. OCT images used in this analysis were acquired
using OCT Copernicus REVO for 5 healthy subjects, at the age from 25 to
30 years old. The number of B-scans averaged to obtain the final image was
set in the device software. Images averaged from 1, 5, 10, 20, 30, 40, 50, and
100 B-scans were collected for each subject and then included in the study.
Figure A.1 presents an illustrative image and marked ROI of size 300× 80 pixels,
from which pixel values, after inverse-log transformation, were utilized for the
estimation of distributional parameters.

Gamma distribution parameters were estimated for all images of each
subject and mean values of parameters for different number of averaged images
are presented in figure A.2. The fitting of a linear function using least squares
method was performed for the shape parameter and a power function was fitted
for the mean values of the scale parameter. It is clear that presented values of
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FIGURE A.2: Mean values of gamma distribution shape (ν) and scale (a) parameter,
estimated for corneal speckle as functions of a number of averaged images N. Red
dashed lines are linear and power functions fitted using the method of least squares
for the shape and scale parameter values, respectively. Also, the equations of fitted
functions are included in the plots together with the coefficient of determination R2.

parameters do not satisfy the theoretical relation between gamma distribution
parameters and the number of averaged images, showed in equation A.5.

Gamma distribution parameters were also estimated from ROI containing
only background noise, presented in figure A.3, and their analysis, analogous
to that presented above, was performed. Mean values of the shape and
scale parameter, together with their fitting with linear and power function,
respectively, are presented in figure A.4. In this case estimated values of
parameters satisfy the relations from equation A.5. The shape parameter value
of non-averaged image is 1.76, so it is close to the slope of fitted function,
equal to 1.80. This indicates that next values of parameter are approximately
equal to the number of averaged images N multiplied by the initial parameter
value. Similarly, analyzing the equation of power function fitted to the plot of
scale parameter values, the number of averaged images with a power of −1 is
multiplied by 0.013, corresponding to the scale parameter value estimated for
the non-averaged B-scan. That also satisfies the relation from equation A.5.

To sum up, the statistics of corneal speckle in averaged OCT images do
not satisfy assumed theoretical model for averaging gamma random variables.
However, the proposed model surprisingly is appropriate for background noise
in OCT images. It suggests that gamma distributed background noise should
be taken into consideration in calculations of statistics from OCT images.
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FIGURE A.3: Illustrative OCT image of the cornea, averaged from five single B-scans.
Cyan lines indicate epithelium, Bowman’s layer and endothelium. The ROI, marked
with red lines, contains background noise.

FIGURE A.4: Mean values of gamma distribution shape (ν) and scale (a) parameter,
estimated for background noise as functions of a number of averaged images N. Red
dashed lines are linear and power functions fitted using the method of least squares
for the shape and scale parameter values, respectively. Also, the equations of fitted
functions are included in the plots together with the coefficient of determination R2.
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Appendix B

Product distribution for OCT
speckle modelling

An attempt to calculate an exact probability distribution of pixel values in
OCT images was made in this work. Calculations leading to assumed product
distribution and estimators of its parameters will be presented here.

A few assumptions about speckle statistics had to be made first. Taking
into account the results from Appendix A, background noise is treated as
a gamma distributed random variable. Based on speckle theory described by
Goodman [52], OCT speckle, arising from light scattering on sample structures,
are averaged by scanning aperture giving the sum of speckle patterns which
is treated as another gamma distributed variable. The noise in the form of
grainy structures, observed on the cornea in OCT scans is considered as the
combination of multiplicative background noise and speckle. This concept is
presented schematically in figure B.1.

FIGURE B.1: Schematic representation of the idea of product distribution for modelling
pixel values in OCT images.
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Background noise is denoted as a random variable X from the gamma
distribution Γ(ν1, a1) with a shape parameter ν1 and a scale parameter a1.
Speckle are treated as a random variable Y from the gamma distribution
Γ(ν2, a2) with a shape parameter ν2 and a scale parameter a2. Corresponding
PDFs are presented below

X ∼ Γ(ν1, a1) pX(x) =
1

Γ(ν1)aν1
1

xν1−1e−
x

a1 , x ∈ (0, ∞) , (B.1)

Y ∼ Γ(ν2, a2) pY(y) =
1

Γ(ν2)aν2
2

yν2−1e−
y

a2 , y ∈ (0, ∞) (B.2)

where Γ(·) is the gamma function. Both parameters of gamma distribution
should be positive, so following criteria are defined

ν1 > 0, a1 > 0, ν2 > 0, a2 > 0. (B.3)

To calculate a product distribution, a random variable Z is defined as

Z = X · Y . (B.4)

The PDF for the product distribution is described by the equation

pZ(z) =
∫ ∞

−∞
pX(x)pY

(
z
x

)
1
|x|dx . (B.5)

Using PDFs B.1 and B.2 in equation B.5 one obtains

pZ(z) =
∫ ∞

0

1
Γ(ν1)aν1

1
xν1−1e−

x
a1 · 1

Γ(ν2)aν2
2

(
z
x

)ν2−1

e−
z

xa2 · 1
x

dx =

=
1

Γ(ν1)Γ(ν2)
· 1

aν1
1 aν2

2
· zν2−1

∫ ∞

0
xν1−ν2−1 · e−

x
a1
− z

xa2 dx .

(B.6)

Now the integral from the equation B.6 need to be resolved. First, the new
variables ν = ν2 − ν1 and w = 2

√
z

a1a2
are defined giving

∫ ∞

0
x−ν−1 · e−

x
a1
−w2a1

4x dx . (B.7)
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For solving such integral, the substitution t = x
a1

is applied which results in

a−ν
1

∫ ∞

0
t−(ν+1) · e−t−w2

4t dt . (B.8)

From the theory of Bessel functions it is known that

∫ ∞

0
e−t−w2

4t · t−(ν+1)dt = 2
(

w
2

)−ν

Kν(w) , (B.9)

where Kν(·) is the modified Bessel function of the second kind of order ν [143].
Using equation B.9, the integral B.8 can be resolved, which gives

a−ν
1 · 2

(
w
2

)−ν

Kν(w) . (B.10)

As a result the PDF from equation B.6 is in the form

pZ(z) =
1

Γ(ν1)Γ(ν2)
· 1

aν1
1 aν2

2
· zν2−1 · a−ν

1 · 2
(

w
2

)−ν

Kν(w) =

=
2

Γ(ν1)Γ(ν2)
· 1

aν1
1 aν2

2
· aν1−ν2

1 · zν2−1 ·
(

z
a1a2

) ν1−ν2
2

Kν2−ν1

(
2
√

z
a1a2

)
=

=
2

z · Γ(ν1)Γ(ν2)
·
(

z
a1a2

) ν1+ν2
2

· Kν2−ν1

(
2
√

z
a1a2

)
.

(B.11)

Finally, the PDF of considered product distribution is given by

pZ(z) =
2

z · Γ(ν1)Γ(ν2)
·
(

z
a1a2

) ν1+ν2
2

· Kν2−ν1

(
2
√

z
a1a2

)
, z ∈ (0, ∞). (B.12)

Next, moments of the distribution are calculated using the general formula for
the k-th moment

µk =
∫ ∞

−∞
xk p(x)dx , (B.13)

where p(x) denotes PDF of distribution.
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Using above formula, the first moment of considered product distribution can
be obtained as follows

µ1 =
∫ ∞

0
z · 2

zΓ(ν1)Γ(ν2)
·
(

z
a1a2

) ν1+ν2
2

· Kν2−ν1

(
2
√

z
a1a2

)
dz =

=
2−(ν1+ν2)(a1a2)

1
2

Γ(ν1)Γ(ν2)

∫ ∞

0

(
2
√

z
a1a2

)ν1+ν2+1

· Kν2−ν1

(
2
√

z
a1a2

)
· z−

1
2 dz .

(B.14)

Applying u = 2
√

z
a1a2

to solve the integral by substitution one obtains

µ1 =
2−(ν1+ν2)a1a2

Γ(ν1)Γ(ν2)

∫ ∞

0
uν1+ν2+1 · Kν2−ν1(u)du . (B.15)

To resolve the integral from equation B.15, following relationship, obtained by
applying Mellin transform to the modified Bessel function of the second kind
[144], is involved∫ ∞

0
ts−1Kν(t)dt = 2s−2 · Γ

(
s
2
+

ν

2

)
Γ
(

s
2
− ν

2

)
. (B.16)

Using above relation for the integral from equation B.15, after appropriate
transformations, the formula for µ1 is given by

µ1 = a1a2
Γ(ν1 + 1)Γ(ν2 + 1)

Γ(ν1)Γ(ν2)
. (B.17)

The moments of 2nd and 3rd order were calculated in the same manner. Finally,
the general formula for the kth moment of considered product distribution was
obtained in the form

µk = (a1a2)
k · Γ(ν1 + k)Γ(ν2 + k)

Γ(ν1)Γ(ν2)
(B.18)

PARAMETER ESTIMATION

The estimation of distributional parameters is presented here using the following
first three moments, calculated based on the formula B.18

µ1 = a1 · a2 · ν1 · ν2 (B.19)

µ2 = (a1a2)
2ν1(ν1 + 1)ν2(ν2 + 1) (B.20)
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µ3 = (a1a2)
3ν1(ν1 + 1)(ν1 + 2)ν2(ν2 + 1)(ν2 + 2) . (B.21)

From equation B.19 following relationship is obtained

a1a2 =
µ1

ν1ν2
. (B.22)

The ratios of moments µ2/µ1 and µ3/µ2 are given by

µ2

µ1
= a1a2(ν1 + 1)(ν2 + 1) (B.23)

µ3

µ2
= a1a2(ν1 + 2)(ν2 + 2) . (B.24)

Combining then equations B.22 and B.23 results in the formula linking two
shape parameters as follows

ν1 =
ν2 + 1

µ2
µ2

1
ν2 − ν2 − 1

. (B.25)

Similarly, combining equations B.22 and B.24 gives another formula for ν1 as
follows

ν1 =
2ν2 + 4

µ3
µ2µ1

ν2 − ν2 − 2
(B.26)

Comparing equations B.25 and B.26 results in

ν2
2

[
2

µ2

µ2
1
− µ3

µ2µ1
− 1
]
+ ν2

[
4

µ2

µ2
1
− µ3

µ2µ1
− 3
]
− 2 = 0 , (B.27)

which is a quadratic equation in the form

Aν2
2 + Bν2 + C = 0 , (B.28)

where
A = 2

µ2

µ2
1
− µ3

µ2µ1
− 1 (B.29)

B = 4
µ2

µ2
1
− µ3

µ2µ1
− 3 (B.30)

C = −2 . (B.31)

Then the roots are given by

ν2 =
−B ±

√
B2 − 4AC

2A
. (B.32)
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Note that equation B.27 is also valid for the ν1 instead of ν2, so ν1 can be
calculated as follows

ν1 =
−B ±

√
B2 − 4AC

2A
(B.33)

with A, B and C described by equations B.29, B.30 and B.31, respectively.

The product of scale parameters may be obtained combining equations B.32
and B.33 with B.22, which results in

a1a2 = µ1
A
C

. (B.34)

Combining equation B.34 with other formulas does not give a solution for a1

and a2 separately, because the multiplication a1a2 is always present and these
two scale parameters are inseparable. Because of that a parameter a is defined
as follows

a = a1a2 = µ1
A
C

(B.35)

and hereinafter referred as a scale parameter.
An attempt to calculate MLE estimators of considered product distribution

was made. As a result convoluted functions for ν1 and ν2 were obtained, so
shape parameters could not be uniquely estimated.

MODEL VALIDATION

Simulations were performed in MATLAB to validate proposed parameter
estimation method. Two random samples were generated: first from the gamma
distribution Γ(ν1, a1), where ν1 = 1.5 and a = 0.01 and the second from the
distribution Γ(ν2, a2) with ν1 = 3.5 and a = 0.5. The values of parameters were
selected to approximately correspond to parameters of gamma distribution
estimated for pixel values from cornea and background in OCT image. The size
of generated samples was from 103 to 106. Next, for the product of generated
random samples, the estimators of parameters were calculated using formulas
from equations B.32, B.33 and B.34. Figures B.2 and B.3 present mean values of
parameters estimated in simulations together with the standard deviation. It is
shown that the estimators asymptotically achieve set values of parameters and
also standard deviation decreases with sample size, suggesting that proposed
estimators are unbiased and consistent.

Proposed distribution was verified also experimentally using 5 non-averaged
single OCT B-scans from the data set described in Appendix A. Pixel values
from the ROI of size 300× 80 pixels, encompassing corneal speckle and presented
in figure A.1 in Appendix A, were used for the estimation of parameters of
considered product distribution. To verify if proposed distribution could
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FIGURE B.2: Mean values of estimators of the scale parameter of considered product
distribution with error bars denoting standard deviation for different sample sizes. Red
dashed line indicates a set value of parameter used for generating a random sample.

FIGURE B.3: Mean values of estimators of two shape parameters of considered product
distribution with error bars denoting standard deviation for different sample sizes. Red
dashed lines indicate set values of parameters used for generating a random sample.

be potentially a statistical model for pixel values in OCT images of cornea,
parameters of gamma distribution were also estimated for the pixel values
from the ROI of the same size containing background noise, presented in
figure A.3 in Appendix A. Table B.1 shows values of estimated parameters
of considered product distribution and the values of gamma distribution
parameters estimated for the background noise. It is clear that the values
of ν2 parameter are comparable to the shape parameter of gamma distribution
of background noise, which suggests that one component of the estimated
product distribution corresponds to background noise. Two scale parameters
are inseparable, its parts related to speckle and background are impossible to
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TABLE B.1: Values of product distribution parameters estimated for pixel values from
the cornea and gamma distribution parameters for background in OCT images for
5 subjects involved in the study.

Subject

Cornea Background

a ν1 ν2 a ν

1 0.0013 -10.066 1.586 0.0125 1.724

2 0.0014 -10.052 1.655 0.0126 1.789

3 0.0015 -9.553 1.581 0.0128 1.719

4 0.0013 -10.159 1.648 0.0125 1.777

5 0.0013 -9.854 1.621 0.0121 1.768

be obtained separately, so it cannot be verified if the value of scale parameter
estimated for background noise is included in parameters of product distribution.
The ν1 parameter has negative values, which suggests that the estimation of
this parameter for pixel values from cornea is not correct referring to criteria
defined in equation B.3.

The fact that one of the shape parameters of proposed product distribution
is roughly equal to the shape parameter of the distribution of background noise,
confirms that the proposed model potentially could be appropriate for pixel
values in OCT images of cornea. On the other hand, the negative values of the
estimator of ν2 parameter and inability to obtain values of a1 and a2 parameters
separately are a major problem of the proposed model. Moreover, the number
of distributional parameters that need to be estimated causes that samples
of greater size, compared to one- or two-parameter models, are required for
the parameter estimation. That makes the considered product distribution
impractical to speckle modelling. To conclude, in speckle modelling the use of
distributions with one or two parameters rather than those more complicated is
beneficial, even though their fitting for experimental data is worse.
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Danielewska, “Corneal pulsation and biomechanics during induced
ocular pulse. An ex-vivo pilot study,” PLoS One, vol. 15, e0228920, 2020.

[107] I. Sanchez, R. Martin, F. Ussa, and I. Fernandez-Bueno, “The parameters
of the porcine eyeball,” Graefe’s Archive for Clinical and Experimental
Ophthalmology, vol. 249, pp. 475–482, 2011.

[108] R. S. Raghavan, “A method for estimating parameters of K-distributed
clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 27,
pp. 238–246, 1991.

[109] M. K. Okasha and M. Y. Matter, “On the three-parameter Burr type XII
distribution and its application to heavy tailed lifetime data,” Journal of
Advances in Mathematics, vol. 10, pp. 3429–3442, 2015.

[110] T. K. Stanton, W. J. Lee, and K. Baik, “Echo statistics associated with
discrete scatterers: a tutorial on physics-based methods,” The Journal of
the Acoustical Society of America, vol. 144, pp. 3124–3171, 2018.

[111] F. Ardianti, “Estimating parameter of Rayleigh distribution by using
Maximum Likelihood method and Bayes method,” in IOP Conference
Series: Materials Science and Engineering, vol. 300, 2018, p. 012 036.

[112] A. W. van der Vaart, Asymptotic statistics. Cambridge University Press,
1998, ch. Empirical, pp. 265–290.

[113] B. W. Silverman, Density estimation for statistics and data analysis. Routledge,
2018.

[114] M. C. Jones, “Simple boundary correction for kernel density estimation,”
Statistics and Computing, vol. 3, pp. 135–146, 1993.

[115] H. Cramer, Mathematical methods of statistics. Asia Publishing House,
1946.

[116] F. J. Massey, “The Kolmogorov–Smirnov test for goodness of fit,” Journal
of the American Statistical Association, vol. 46, pp. 68–78, 1951.



Bibliography 83

[117] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” Journal of Machine Learning Research, vol. 13,
pp. 723–773, 2012.

[118] N. Ehlers and J. Hjortdal, “Corneal thickness: measurement and impli-
cations,” Experimental Eye Research, vol. 78, pp. 543–548, 2004.

[119] S. Mishima and B. O. Hedbys, “Measurement of corneal thickness
with the haag-streit pachometer,” Archives of Ophthalmology, vol. 80,
pp. 710–713, 1968.

[120] G. Savini, K. Hoffer, and M. Carbonelli, “Anterior chamber and aqueous
depth measurement in pseudophakic eyes: agreement between ultra-
sound biometry and Scheimpflug imaging,” Journal of Refractive Surgery,
vol. 29, pp. 121–125, 2013.

[121] V. Bhardwaj and G. P. Rajeshbhai, “Axial length, anterior chamber depth
— a study in different age groups and refractive errors,” Journal of Clinical
and Diagnostic Research, vol. 7, pp. 2211–2212, 2013.

[122] A. Abass, J. Clamp, F. Bao, R. Ambrósio, and A. Elsheikh, “Non-orthogonal
corneal astigmatism among normal and keratoconic Brazilian and Chinese
populations,” Current Eye Research, vol. 43, pp. 717–724, 2018.

[123] T. Olsen, “On the calculation of power from curvature of the cornea,”
British Journal of Ophthalmology, vol. 70, pp. 152–154, 1986.

[124] L. N. Thibos and D. Horner, “Power vector analysis of the optical
outcome of refractive surgery,” Journal of Cataract & Refractive Surgery,
vol. 27, pp. 80–85, 2001.

[125] W. Harris, “Astigmatism,” Ophthalmic and Physiological Optics, vol. 20,
pp. 11–30, 2000.

[126] R. A. Armstrong, “When to use the Bonferroni correction,” Ophthalmic
& Physiological Optics, vol. 34, pp. 502–508, 2014.

[127] M. A. Bujang and N. Baharum, “Sample size guideline for correlation
analysis,” World, vol. 3, pp. 37–46, 2016.

[128] V. Y. Zaitsev, L. Matveev, A. Matveyev, G. Gelikonov, and V. Gelikonov,
“A model for simulating speckle-pattern evolution based on close to
reality procedures used in spectral-domain OCT,” Laser Physics Letters,
vol. 11, p. 105 601, 2014.

[129] V. S. Huzurbazar, “Probability distributions and orthogonal parameters,”
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 46,
pp. 281–284, 1950.



84 Bibliography

[130] A. Kazaili, S. Lawman, B. Geraghty, et al., “Line-field optical coherence
tomography as a tool for in vitro characterization of corneal biomechanics
under physiological pressures,” Scientific Reports, vol. 9, pp. 1–13, 2019.

[131] J. M. Vetter, S. Brueckner, M. Tubic-Grozdanis, U. Voßmerbäumer, N.
Pfeiffer, and S. Kurz, “Modulation of central corneal thickness by various
riboflavin eyedrop compositions in porcine corneas,” Journal of Cataract
& Refractive Surgery, vol. 38, pp. 525–532, 2012.

[132] S. A. Read, M. J. Collins, and D. R. Iskander, “Diurnal variation of axial
length, intraocular pressure, and anterior eye biometrics,” Investigative
Ophthalmology & Visual Science, vol. 49, pp. 2911–2918, 2008.

[133] C. Leydolt, O. Findl, and W. Drexler, “Effects of change in intraocular
pressure on axial eye length and lens position,” Eye, vol. 22, pp. 657–661,
2008.

[134] T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “In vivo
evidence of porcine cornea anisotropy using supersonic shear wave ima-
ging,” Investigative Ophthalmology & Visual Science, vol. 55, pp. 7545–7552,
2014.

[135] B. K. Pierscionek, M. Asejczyk-Widlicka, and R. A. Schachar, “The effect
of changing intraocular pressure on the corneal and scleral curvatures in
the fresh porcine eye,” British Journal of Ophthalmology, vol. 91, pp. 801–803,
2007.

[136] K. Wu, S. Li, A. Lo, et al., “Micro-scale stiffness change of cornea tissues
suffered from elevated intraocular pressure investigated by nanoinden-
tation,” Soft Materials, vol. 11, pp. 244–253, 2013.

[137] A. Benoit, G. Latour, S. K. Marie-Claire, and J. M. Allain, “Simultaneous
microstructural and mechanical characterization of human corneas at
increasing pressure,” Journal of the Mechanical Behavior of Biomedical
Materials, vol. 60, pp. 93–105, 2016.

[138] Z. D. Taylor, J. Garritano, S. Sung, et al., “THz and mm-wave sensing of
corneal tissue water content: electromagnetic modeling and analysis,”
IEEE Transactions on Terahertz Science and Technology, vol. 5, pp. 170–183,
2015.

[139] S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos,
“Corneal biomechanical changes after collagen cross-linking from porcine
eye inflation experiments,” Investigative Ophthalmology & Visual Science,
vol. 51, pp. 3961–3968, 2010.

[140] E. Pavlatos, H. Chen, K. Clayson, X. Pan, and J. Liu, “Imaging corneal
biomechanical responses to ocular pulse using high-frequency ultra-
sound,” IEEE Transactions on Medical Imaging, vol. 37, pp. 663–670, 2017.



Bibliography 85

[141] S. K. Subasinghe, K. C. Ogbuehi, L. Mitchell, and G. J. Dias, “Animal
model with structural similarity to human corneal collagen fibrillar
arrangement,” Anatomical Science International, vol. 96, pp. 286–293, 2021.

[142] D. Podkowinski, E. Sharian Varnousfaderani, C. Simader, et al., “Impact
of B-scan averaging on Spectralis optical coherence tomography image
quality before and after cataract surgery,” Journal of Ophthalmology,
vol. 2017, 2017.

[143] H. J. Malik, “Exact distribution of the product of independent generalized
gamma variables with the same shape parameter,” The Annals of Mathema-
tical Statistics, vol. 39, pp. 1751–1752, 1968.

[144] D. Zwillinger and A. Jeffrey, Table of integrals, series, and products. Elsevier,
2007.


	Abstract
	Streszczenie
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Preface
	Chapter 1. Introduction
	1.1 Optical coherence tomography
	1.1.1 Principles and technical realizations
	1.1.2 Biomedical applications

	1.2 Speckle
	1.2.1 Fundamentals of speckle theory
	1.2.2 Sum of speckle patterns
	1.2.3 Small number of scatterers
	1.2.4 Coherence volume
	1.2.5 Fully developed speckle field
	1.2.6 Amplitude and intensity — nomenclature
	Speckle modelling
	Parametric approach
	Non-parametric approach
	Textural approach


	1.3 Cornea
	1.3.1 Structure
	1.3.2 Physical and optical properties
	1.3.3 Influence of IOP and age on the cornea


	Chapter 2. Methodology
	2.1 Experimental procedures
	2.1.1 Phantom study
	2.1.2 Ex-vivo study on porcine eyes
	2.1.3 In-vivo study on human eyes

	2.2 Data processing
	2.2.1 Image analysis
	2.2.2 Parametric approach
	2.2.3 Spatial maps of distribution parameters
	2.2.4 Non-parametric approach
	2.2.5 Biometric parameters
	2.2.6 Statistical analysis


	Chapter 3. Results
	3.1 Phantom study
	3.1.1 Parametric approach
	3.1.2 Non-parametric approach

	3.2 Ex-vivo study on porcine eyes
	3.2.1 Parametric approach
	3.2.2 Ocular biometric parameters
	3.2.3 Spatial maps of distribution parameters
	3.2.4 Non-parametric approach

	3.3 In-vivo study on human eyes
	3.3.1 Parametric approach
	3.3.2 Non-parametric approach


	Chapter 4. Discussion and future directions
	4.1 Discussion
	4.2 Limitations
	4.3 Future directions
	4.4 Conclusions

	Appendix A. Averaging of OCT scans
	Appendix B. Product distribution for OCT speckle modelling
	Bibliography

