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Summary

Patient management in modern neurocritical care units relies heavily on brain multi-
modal monitoring, including secondary indices describing the homeostasis of the nervous
and circulatory systems. Interdisciplinary approaches combining the field of medicine
with technological advances play a crucial role in improving patient care through devel-
opment of novel diagnostic tools, predictive models, and therapeutic strategies. Still,
despite decades of study, our understanding of the pressure–volume relationships in the
intracranial space, and consequently, available management approaches for treatment of
intracranial pathologies, remain incomplete. Since Lundberg’s seminal 1965 paper on
continuous intracranial pressure (ICP) monitoring, various attempts have been made to
precisely characterise traumatic brain injury (TBI) patients and predict impending dete-
rioration of their condition. Cerebrospinal compliance, defined as the ratio of change in
volume to change in pressure and describing the cerebrospinal system’s ability to buffer
changes in volume without potentially threatening increases in pressure, is often consid-
ered as a promising tool to improve patient care. Diminished compliance indicates that
even a relatively small volume increment may produce disproportionately large increase in
ICP. In turn, ICP elevation is a hazardous condition as it may lead to restricted cerebral
blood flow or mechanical damage to the brain. Therefore, identification of TBI patients
at risk of increases in ICP before a hypertension episode occurs could allow for early ther-
apeutic intervention and help prevent the adverse effects from taking place, in contrast
to currently employed protocols where ICP elevation is managed rather than averted.
Compliance could also complement the current methods of assessing cerebrospinal fluid
dynamics in hydrocephalus, as in this group evaluation of the patient’s volume–pressure
compensation is included in the decision process for shunt implantation.

However, none of the methods of compliance estimation suggested to date have been
successfully incorporated into routine clinical practice. The earliest proposed approaches,
dating back to the 1970s, are based on manipulation of intracranial volume through either
bolus injection or constant rate infusion of fluid. Although these techniques remain the
primary method of direct compliance assessment, their clinical applicability is limited
due to the fact that they are additionally invasive, can only be performed intermittently,
and may be too dangerous in patients already at risk of uncontrolled ICP elevation.
Imaging techniques such as magnetic resonance imaging can be used to measure changes
in intracranial volume without external manipulation, but they cannot be employed in
continuous monitoring, and the measurements are still relatively expensive. On the other
hand, it has been shown in the 1980s that information on cerebrospinal compliance may
be derived indirectly through analysis of the ICP pulse waveform, i.e. the shape of the
signal over a single cardiac cycle. In normal conditions, the waveform contains three
characteristic local maxima, called peaks P1, P2, and P3. As compliance decreases and
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Summary

ICP increases, the height of the second peak increases to a greater extent than the other
two. Therefore, it has been suggested that the height ratio of the first two peaks may
be used to estimate compliance. However, the ICP pulse waveform presents a large
variety of complex shapes, changing both over time and between subjects, which makes
peak detection a highly challenging task. The solutions proposed so far have not gained
widespread acceptance or been introduced to clinical practice, and the validity of the
peak ratio as a measure of compliance has never been conclusively proven. Moreover,
it has been shown that at very high ICP the pulse waveform becomes rounded and the
peaks are no longer distinguishable, which causes peak detection to fail. More recently, a
different approach was proposed. In this technique, four characteristic shapes of the ICP
pulse waveform, roughly reflecting the changing configuration of peaks associated with
changes in compliance, were described using radial basis function approximation and
classified using an artificial neural network. A study in hydrocephalus patients showed
that automatic morphological classification is a promising new tool for indirect compliance
estimation, although further results using this method have not been published.

Building upon the groundwork laid down in previous studies, this dissertation ad-
dresses the problem of compliance estimation through analysis of the shape of ICP pulse
waveform. Firstly, the peak ratio approach is compared with other known methods of
compliance estimation during controlled changes in mean ICP in order to confirm the va-
lidity of using ICP pulse morphology as an indirect measure of cerebrospinal compliance.
Secondly, the existing body of knowledge on compliance-related changes in ICP pulse
waveform morphology is integrated with new developments in the field of machine learn-
ing in order to propose a novel solution for continuous monitoring of compliance. As ICP
measurement in TBI patients is usually performed over several days, producing record-
ings that contain hundreds of thousands of individual pulses, assessment of ICP pulse
morphology is already a challenging task due to the sheer volume of generated data. Tak-
ing that difficulty into account, the abovementioned pulse shape classification approach
is combined for the first time with deep learning algorithms that rose to prominence in
recent years as a tool for big data analysis. A deep neural network model, capable of clas-
sifying characteristic shapes of the ICP pulses and simultaneously detecting artefactual
waveforms is developed, and a new index describing the ICP pulse morphology, termed
pulse shape index (PSI), is introduced. It is demonstrated through a series of studies
in patients with intracranial pathologies that features of the ICP pulse waveform can be
used to monitor cerebrospinal volume compensation continuously and that assessment of
the shape of the ICP pulse waveform using deep learning has the potential to improve
neurocritical care management of TBI patients.

The studies presented in this dissertation were conducted as part of two research
projects: National Science Centre (Poland) OPUS grant no UMO-2019/35/B/ST7/00500
(Development of brain compliance monitoring methods by means of intracranial pressure
pulse waveform analysis in traumatic brain injury) and the National Agency for Academic
Exchange (Poland) International Academic Partnerships programme (Physics and engi-
neering for future electronic, optical and medical technologies; international collaboration
with University of Cambridge, Cambridge, UK).
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This dissertation includes six chapters.
Chapter 1 presents a review of ICP monitoring and the pressure–volume relationships

in the cerebrospinal space, including the relevant physiology and clinical significance of
compliance assessment, as well as an overview of the estimation methods proposed so far
with emphasis on analysis of the ICP pulse waveform.

In Chapter 2, the aims of this thesis and the research hypotheses are outlined.
Chapter 3 discusses a comparison study in hydrocephalus patients between the ‘gold

standard’ method of compliance estimation based on external manipulation of the in-
tracranial volume and two indirect methods: an approach based on analysis of charac-
teristic features of the ICP pulse waveform and another based on evaluation of changes
in ICP pulse pressure in relation to changes in cerebral blood volume. The results of
this study confirm the validity of using the P1/P2 ratio of the ICP pulse waveform as a
measure of relative changes in compliance.
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In Chapter 4, the feasibility of using deep learning to automatically classify charac-
teristic shapes of the ICP pulse waveform, and therefore overcome the need for precise
peak identification, is discussed. A residual neural network is proposed as a tool for mor-
phological classification of individual ICP pulses and used to assess the potential clinical
usefulness of this approach in long-term recordings obtained from TBI patients. The re-
sults show that it is possible to classify the ICP pulse waveform using deep neural networks
with high accuracy and good generalisation.

Chapter 5 continues the investigation into ICP pulse waveform classification as a
potential tool for continuous monitoring of the cerebrospinal volume compensation. A new
index describing the ICP pulse waveform, PSI, is introduced and investigated in a large,
multi-centre cohort of TBI patients. The relationship between PSI and other ICP-derived
metrics is discussed in relation to the pressure–volume relationships in the cerebrospinal
space. The results also show the link between the shape of ICP pulse waveform and
outcome after TBI as well as the presence of mass lesions in the brain.

Conclusions of this dissertation along with suggestions for further investigations are
presented in Chapter 6.
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Chapter 1

Review of physiological foundations
of cerebrospinal pressure–volume
compensation

1.1 Anatomy and physiology of cerebral circulation
In adult humans, the skull is viewed as a rigid, non-distensible box containing a fixed
volume of approximately 1500 ml. This space is filled with three major volume compo-
nents: brain tissue (approx. 80%), cerebrospinal fluid (CSF), and cerebral blood (approx.
10% each) (Heldt et al., 2019). The cerebrospinal compartment, enclosed by a boundary
with severely limited ability to deform, presents unique biomechanical conditions for the
functioning of the central nervous system, with a high degree of coupling between several
biological subsystems. Furthermore, under normal conditions, brain tissue remains settled
with the bounds set by the skull, but both CSF and cerebral blood circulate continuously,
influencing the intracranial pressure–volume relationships.

Cerebrospinal fluid circulation Normal CSF is a clear, colourless fluid, similar in
composition to blood plasma (although with different ion concentrations and not as rich
in proteins), that fills the cavities of the ventricular system and flows around the external
surfaces of the brain (Morrison, 2009). The role of CSF is twofold: firstly, it provides phys-
ical support for the brain by acting as a cushion against mechanical trauma and equalising
potential pressure gradients within the brain; secondly, it contributes to brain homeosta-
sis through distribution of biologically active substances and removal of metabolic waste
products (Noback et al., 2005).

CSF is secreted continuously at the rate of approximately 0.4 ml/min, primarily in
the choroid plexus lining the inner surfaces of the ventricles (Morrison, 2009). From there
is travels (mostly by bulk flow, although evidence of pulsatile and bidirectional flow has
also been presented) through the ventricular system into the subarachnoid space where it
is resorbed into venous blood by the arachnoid granulations (Hartman, 2009). In healthy
subjects, the rates of production and resorption are assumed to be equal, and the entire
CSF volume is replaced several times a day (Morrison, 2009). Despite making up a
relatively low proportion of the total intracranial volume, the presence of CSF is essential
for the central nervous system. Most notably, disturbances in CSF circulation are the
underlying source of hydrocephalus (Noback et al., 2005).
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Chapter 1

Cerebral blood flow The arterial supply to the brain is provided by two pairs of trunk
arteries: the vertebral arteries and the internal carotid arteries (Noback et al., 2005). The
vertebral arteries, supplying the brainstem and posterior brain, unite to form the basilar
artery which in turn bifurcates into the paired posterior cerebral arteries. Each of the
internal carotid arteries supplying the anterior brain divides into an anterior cerebral
artery and a middle cerebral artery, and they join to form the anterior communicating
artery. The two cerebral arterial systems, carotid and vertebral, although essentially
independent, contain a number of anastomotic connections and are collectively known
as the circle of Willis. In the event of vessel occlusion within the circle of Willis, the
interconnections serve as a safety valve, providing collateral blood supply to counteract
blood flow impairment. Blood supply within the substance of the brain is provided by
an extensive system of smaller arteries and capillaries. The venous drainage points are
comprised of a network of anastomotic veins and dural sinuses, with most of cerebral
venous volume draining into the internal jugular vein at the base of the skull.

Despite its low mass relative to the rest of the human body, the brain accounts for
nearly 20% of the arterial blood flow from the heart, with roughly 800 ml of blood flow-
ing through the brain every minute (Noback et al., 2005). Unlike other cells, neurons
cannot survive anaerobically, and almost always die within minutes if deprived of oxy-
gen. This requirement for continuous oxygen supply, combined with a high metabolic
demand, makes the brain very sensitive to hypoperfusion. Consequently, blood flow in
the intracranial space is tightly regulated by a mechanism called cerebral autoregulation
which works to maintain approximately stable blood supply adequate to the brain’s needs
(Gomes and Bhardwaj, 2009). Regulation of cerebral blood flow (CBF) is achieved via
either contraction or dilation of small arteries and arterioles in response to variations in
cerebral perfusion pressure (CPP). The changes in vessel diameter alter cerebrovascular
resistance which increases linearly with CPP, thus modifying CBF. The effective range
of cerebral autoregulation is estimated in normal subjects at 50 mm Hg to 150 mm Hg
(Panerai, 1998). Outside that range, vascular resistance is no longer dependent on CPP;
in particular, at very low CPP resistance increases due to collapse of small arterial vessels.

1.2 Intracranial pressure
Intracranial pressure (ICP) is the pressure exerted by the components of the intracranial
compartment, determined by their individual volumes, circulation of cerebral blood and
CSF, and in case of pathologies, additional space-occupying lesions (Gomes and Bhard-
waj, 2009). In adults resting in the horizontal position, the range of normal ICP is usually
specified as 5 mm Hg to 15 mm Hg. Certain variations in ICP are associated with fac-
tors such as age, body position, respiration, and systemic blood pressure. Each of the
components of the intracranial space may also undergo volume changes, and thus alter
ICP, in the course of different pathologies (Gomes and Bhardwaj, 2009). The indications
for ICP measurement vary between centres. In traumatic brain injury (TBI), ICP moni-
toring and management is recommended by established guidelines (Carney et al., 2017).
It also serves as a common diagnostic tool in hydrocephalus and idiopathic intracranial
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hypertension (Marmarou et al., 2005; Nakajima et al., 2021). Moreover, it may be used,
if the potential clinical benefits outweigh the cost and danger associated with placing the
sensor, in conditions such as intracerebral or subarachnoid haemorrhage, ischaemic stroke,
and encephalitis (Zweifel et al., 2011).

The criteria for raised ICP also vary between specific disorders. For instance, in
patients suspected of hydrocephalus, ICP over 15 mm Hg may already be considered
elevated (Czosnyka et al., 2017). In TBI, clinical guidelines recommend ICP-lowering
treatment over 20 mm Hg (Bratton et al., 2007); recently revised to 22 mm Hg (Carney
et al., 2017). Common symptoms of elevated ICP include headaches, vision impairment,
vomiting, problems with respiration and movement, and behavioural changes (Timofeev,
2008). Intracranial hypertension (IH) is also one of the most dangerous complications
in TBI, associated with higher mortality and worse outcomes (Badri et al., 2012). This
is explained through two pathophysiological links (Harary et al., 2018). Firstly, CPP is
defined as the difference between mean arterial blood pressure (ABP) and ICP; increased
ICP can therefore effectively lower brain perfusion, potentially leading to ischemia. Sec-
ondly, elevated ICP may induce herniation of brain structures, which in turn may cause
damage to the brain stem.

1.2.1 Intracranial pressure monitoring
Although several non-invasive methods of ICP estimation have been proposed to date,
they are not yet widely used in clinical practice, and invasive measurement remains the
current standard (Evensen and Eide, 2020). Historically, ICP measurement via lumbar
puncture dates back to the 19th century, and foundations for the modern catheter-based
sensors were laid down in the early 20th century (Heldt et al., 2019). Over the years,
various techniques were tested, including epidural, subdural, subarachnoid, parenchymal,
and ventricular sensor placement, but most were abandoned due to insufficient reliability;
today, two main approaches to ICP measurement in the neurocritical care unit (NCCU)
remain: external ventricular drains (EVDs) and intraparenchymal microsensors (Heldt
et al., 2019). ICP recording via lumbar puncture also remains in use, but it is most com-
monly employed in the management of hydrocephalus and idiopathic intracranial hyper-
tension, with rare applications in the NCCU (Czosnyka et al., 2017). Fluid-filled catheters
connected to external fluid pressure sensors are often considered the ‘gold standard’ as
they are placed into the ventricles and therefore not dependent on pressure gradients,
providing direct ICP measurement. Implantable sensors most commonly take the form of
fibre optic or strain gauge microtransducers placed into the brain tissue, measuring local
pressure at the site. They are potentially prone to errors due to the fact that pressure in
the intracranial compartment is not uniform (Evensen and Eide, 2020).

However, the choice of monitoring approach is primarily dependent on the patient’s
needs and the protocols of each clinical centre. All methods of invasive ICP measurement
require surgical procedures to position the sensor, and as such are associated with the
risk of haemorrhages, infection, and misplacement (Tavakoli et al., 2017). Implantable
sensors may produce misleading results due to the tissue pressure gradients, but ven-
tricular puncture required to introduce an EVD is considered more invasive with higher
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risk of complications (Evensen and Eide, 2020). Intraparenchymal probes lack the ma-
jor advantage of EVDs as they cannot be simultaneously used in therapy to lower ICP
through drainage of fluid, and they cannot be recalibrated or zeroed once placed, which
may lead to loss of accuracy over time (Heldt et al., 2019). On the other hand, brain
swelling and compression of ventricles in brain injury patients may make placement of
an EVD impossible, leaving intraparenchymal probes as the more viable option (Zweifel
et al., 2011). All of these factors need to be considered while choosing an appropriate
measurement approach.

1.2.2 Components of the intracranial pressure signal
Over the years various researches have pointed out that despite the widespread use of mean
ICP value in the clinical setting, ICP is in fact ‘more than a number’, and detailed analysis
of the signal can provide much more information than simple time average (Kirkness et al.,
2000; Czosnyka et al., 2007; Wagshul et al., 2011). In the time domain, the signal consists
of three overlapping components superimposed on the fluctuations in mean ICP level.
These components are separated in the frequency domain into slow waves, respiratory
waves, and the pulse waveform (Czosnyka et al., 2007).

Plateau waves (or A waves; see Figure 1.1a) were first characterised by Lundberg et al.
(1965). This term describes rapid increases in ICP up to 100 mm Hg evoked by intrinsic
vasomotor changes in cerebral blood volume (CBV) and associated with a phenomenon
called ‘vasodilatory cascade’ in which cerebral vasodilation initiates a positive feedback
loop of changes in CBV and ICP, leading to further vasodilation and eventually a crisis
(Rosner and Becker, 1984). Plateau waves are a common occurrence in TBI patients
and they usually terminate spontaneously after several minutes; however, the substantial
increase in ICP is accompanied by a loss of cerebral autoregulation and a decrease in
CPP which may lead to ischemia, and plateau waves lasting longer than 30 minutes are
correlated with worse outcome in TBI (Castellani et al., 2009).

The B waves (Figure 1.1b) are characterised as repeating increases in ICP (by 10–
20 mm Hg) occurring at 0.5–2 cycles/min (Martinez-Tejada et al., 2019). They present
varying shapes, most commonly divided into symmetrical and asymmetrical, and may also
include a plateau phase. Although B waves are usually linked with vasogenic activity and
cerebral dysfunction, their clinical usefulness, particularly in predicting the response to
shunting in hydrocephalus patients, has been disputed (Stephensen et al., 2005). C waves
occur at 4–8 cycles/min, synchronously with oscillations in ABP and with much smaller
amplitude than B waves (Smith, 2008). They are considered to not have any meaningful
diagnostic significance.

Respiratory waves (8–20 cycles/min) are induced by changes in CBV related to varia-
tions in intrathoracic pressure occurring with inspiration and expiration (Czosnyka et al.,
2007; Kasprowicz et al., 2016). Some studies examined the relationship between the res-
piratory waves and CSF dynamics (Foltz et al., 1990; Momjian et al., 2004), but they are
arguably more useful in assessment of cerebral autoregulation during slow, metronome-
controlled breathing (Diehl et al., 1995; Reinhard et al., 2003).
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Figure 1.1. Illustrative examples of characteristic components of the intracranial pressure
(ICP) signal: a) plateau wave, b) B waves, c) ICP pulse waveforms with annotated peaks P1,
P2, and P3.

Finally, the ICP pulse waveform (40–160 cycles/min; see Figure 1.1c) is associated
with fluctuations in CBV occurring naturally with each heartbeat. During each cardiac
cycle, arterial blood inflow and subsequent venous outflow produce short-term changes
in intracranial blood volume, and consequently, rhythmic instability of the ICP signal
synchronised with heart rate (Ambarki et al., 2007). The ICP pulse waveform usually
exhibits three distinct local maxima, or peaks, denoted P1 (‘percussion wave’), P2 (‘tidal
wave’), and P3 (‘dicrotic wave’), with P2 and P3 separated by the dicrotic notch (Germon,
1988). The precise origin of the waveform remains a subject of debate, but the overall
waveform shape is associated with a combination of vascular factors and the intracranial
pressure–volume relationships (Czosnyka and Czosnyka, 2020). The earliest peak, P1, is
synchronous with the systolic peak of the ABP pulse and associated with the propagation
of the arterial pulse and immediate distention of the arterial walls (Fan et al., 2008;
Carrera et al., 2010). Peaks P2 and P3 are linked to the interaction between changes
in CBV and the volume compensation mechanism (see Section 1.3.1), with P2 shown to
be synchronous with the maximum of the estimated cerebral arterial blood volume pulse
(Carrera et al., 2010). Some authors reputedly associate P3 with the dicrotic notch or
second peak of the ABP pulse (Czosnyka et al., 2017).
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Under normal conditions, specifically at low mean ICP, the ICP pulse waveform
presents the three characteristic peaks arranged in a descending saw-tooth pattern, with
P1 as the dominant peak (Germon, 1988). As mean ICP increases, the amplitude of
the ICP pulse also increases, and the peaks gradually become less defined, the waveform
eventually taking a ‘rounded’ or ‘monotonic’ shape. This observation led to a number of
studies aiming to use the features of the ICP pulse waveform as a tool in ICP monitoring.
The analysis methods proposed so far are discussed in detail in Section 1.4.2.

1.3 Volume–pressure relationships in the
intracranial space

1.3.1 Pressure–volume curve
According to a theoretical description called the Monro–Kellie doctrine (first proposed
in the works of Monro (1783) and Kellie (1824) and later refined by Cushing (1926), in
normal circumstances the three volume components of the intracranial space exist in a
state of equilibrium such that increases in the volume of one component are balanced by
decreases in the volume of another (Noback et al., 2005). As neither of the intracranial
components is particularly compressible, volume compensation mostly occurs through
downward migration of venous blood and displacement of CSF into the lumbar space
(Germon, 1988). Within the range permitted by the compensatory mechanisms, addition
of volume into the intracranial space is accompanied by relatively small changes in ICP,
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Figure 1.2. Schematic representation of the volume compensation mechanisms in the intracra-
nial space. a) Equilibrium state with normal volume of intracranial components. b) Volume
compensation working to accommodate additional volume without increases in pressure through
displacement of cerebrospinal fluid and venous blood. c) Exhaustion of the compensatory mech-
anisms and intracranial pressure (ICP) elevation due to additional volume exceeding the in-
tracranial compensatory reserve. Adapted from (Oswal and Toma, 2020). Proportions between
volumes of individual components are not preserved.
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but after the compensatory reserve is exhausted, further volume expansion results in ICP
elevation. Consequently, at each time instant ICP depends on the balance between the
intracranial compartments and the ability of the craniospinal system to buffer variations in
volume. A schematic representation of the volume compensation mechanism is presented
in Figure 1.2.

The relationship between volume and pressure in the intracranial space is mathemat-
ically expressed by a model called the pressure–volume (P–V) curve (Figure 1.3) (Ryder
et al., 1953; Lofgren et al., 1973). It should be noted that the P–V curve is not a fun-
damental property of the intracranial environment, but rather an approximation based
on observational studies (Wagshul et al., 2011). This model can be divided into three
regions. At low intracranial volume (region A in Figure 1.3), with working compensatory
mechanisms, increases in volume produce little to no changes in pressure. In the steep
exponential portion (region B), as intracranial volume increases and the compensatory
reserve is gradually depleted, even small volume increments result in disproportionate,
progressively larger changes in pressure. The third part (region C) corresponds to a
breakpoint in the P–V curve observed at extremely elevated ICP where the volume–
pressure relationship is disturbed by collapse of cerebral blood vessels and derangement
of cerebrovascular reactivity (Steiner and Andrews, 2006).
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Figure 1.3. The relationship between pressure (P ) and volume (V ) in the intracranial space
with schematic representation of changes in the intracranial pressure pulse. Region A: Baseline
intracranial volume with high compliance and good compensatory reserve. Region B: Gradual
reduction of compliance and depletion of the compensatory reserve accompanying increase in
intracranial volume and corresponding increase in intracranial pressure. Region C: Collapse
of cerebral vasculature at critically high intracranial pressure. Adapted from (Wagshul et al.,
2011).
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As noted in Section 1.2.2, the ICP pulse waveform is associated with short-term os-
cillations in CBV occurring naturally with each heartbeat. Taking into account the P–V
curve, cardiac-related oscillations in CBV are expected to produce progressively larger
changes in ICP as the compensatory mechanisms are diminished, manifested as increased
ICP pulsatility. Accordingly, it has been shown that the pulse pressure of ICP rises
concomitantly with the mean value (Szewczykowski et al., 1977; Avezaat et al., 1979).

1.3.2 Cerebrospinal compliance
Cerebrospinal compliance (C) is a measure derived from the P–V curve, expressed as the
inverse slope of the curve (Marmarou et al., 1975):

C = ∆V

∆P
, (1.1)

where ∆V is the change in intracranial volume and ∆P is the change in ICP. This pa-
rameter describes quantitatively the ability of the craniospinal space to adapt to changes
in volume (Figure 1.4). If the change in pressure produced by given increase in volume
is small, the system is characterised by high compliance. As the compensatory reserve
decreases and the pressure response to a volume increment becomes larger, a reduction in

In
tr

a
cr

a
n

ia
l 

p
re

ss
u
re

Intracranial 
volume

Intracranial 
pressure

C
o
m

p
lia

n
ce

'Critical' ICP

Good 
compensatory 

reserve

Poor 
compensatory 

reserve

High ICP
obstructing cerebral 

blood flow

Lower 
breakpoint

Upper 
breakpoint

Figure 1.4. Schematic representation of the relationship between the pressure–volume curve
and changes in cerebrospinal compliance. Adapted from (Czosnyka, 2021).
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compliance is observed. Finally, after the breakpoint associated with cessation of cerebral
blood flow due to vessel collapse, the severe disruption of the volume equilibrium results
in a non-physiological increase in compliance.

Although often presented as a single parameter, total brain compliance is in fact a
combination of the compliances of the components of the intracranial space: CSF and
venous pool (Czosnyka and Citerio, 2012). In literature, compliance is variously termed
‘brain’ or ‘cerebral’, ‘intracranial’, or ‘cerebrospinal’. One has to keep in mind that those
names usually stand for compliance of the low-pressure compartments, combining the CSF
and venous pools, a parameter substantially different from the compliance of the high-
pressure arterial bed. Separate analysis of compartmental compliances is a relatively
recent concept explored mainly in imaging (Alperin et al., 2005, 2006) and modelling
studies (Kim et al., 2009b, 2012). In this dissertation the term ‘compliance’ is used
exclusively to refer to cerebrospinal, and not arterial compliance.

1.3.3 Clinical significance of monitoring the volume–pressure
relationship

In the clinical setting, ICP is usually characterised by its mean value averaged over a longer
period of time (Czosnyka et al., 2007). For instance, internationally accepted guidelines
for the management of TBI patients in the NCCU recommend monitoring of mean ICP
and CPP and maintaining them within the safety range below 22 mm Hg (for ICP) and
between 60 mm Hg and 70 mm Hg (for CPP) (Carney et al., 2017). However, despite its
widespread use in clinical practice, the utility of ICP monitoring, particularly with one
general treatment threshold for the whole population, remains the subject of controversy
(Czosnyka et al., 2007; Lavinio and Menon, 2011; Chesnut et al., 2014; Hawthorne and
Piper, 2014), and the recommendation is still based only on level II (‘moderate degree of
certainty’) evidence (Carney et al., 2017).

Some authors attribute the limitations of the current approach to the missing infor-
mation on the cerebrospinal buffering capacity (Heldt et al., 2019). As shown by the P–V
curve, high ICP is by itself an indicator of decreased compliance, and upon detection
of ICP elevation appropriate ICP-lowering strategies should be introduced to reduce it
to a safe level. However, normal ICP alone cannot be regarded as a sign of sufficient
compensatory reserve. Within the margin of volume compensation, ICP may still be
relatively low, but significant amounts of volume may have already been displaced and
further increases may not be tolerated. As elevated mean ICP may signify that adverse
effects on the brain have already occurred, in order to introduce therapeutic strategies at
a sufficiently early point in time—therefore shifting from a reactive approach based on
mitigating damage that already exists to preventing it from happening in the first place—
clinical protocols should include not only monitoring of mean ICP but also the state of
cerebral compensatory reserve to identify in advance patients at risk of ICP elevation due
to reduced buffering capacity.

TBI in particular is a multifactorial condition where the primarily insult is often fol-
lowed by complications leading to changes in intracranial volume (Stocchetti et al., 2017).
The CSF compartment may expand due to disturbances in the CSF flow pathways. Cere-
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bral blood may accumulate within the intracranial space both intravenously, as a result
of increased arterial inflow or decreased venous outflow, or in the form of hemorrhage-
related lesions. Brain tissue may swell in the presence of injury due to evolving brain
oedema. While in non-traumatic hydrocephalus the deterioration of the intracranial
pressure–volume equilibrium is more gradual, in TBI patients the intracranial volume
changes may occur at a rapid rate, and the state of volume compensation needs to be
monitored continuously in order to detect them in time.

1.4 Assessment of cerebrospinal compliance and
compensatory reserve

1.4.1 Volume–pressure tests
The early methods of compliance estimation date back to the 1970s. Given the definition
expressed by Eq. 1.1, direct assessment of compliance requires simultaneous measurement
of changes in volume (i.e. the stimulus) and pressure (i.e. the system’s response). Miller
et al. (Miller and Garibi, 1972; Miller et al., 1973) introduced a metric called the volume–
pressure response (VPR), defined as the change in ICP induced by 1 ml addition or
withdrawal of fluid from the CSF space. VPR expresses cerebrospinal elastance, which
is the inverse of compliance, and VPR greater than 5 mm Hg/ml is thought to reflect a
reduction in the volume buffering capacity (Miller et al., 1973). Studies in neurosurgical
patients showed that VPR is significantly correlated with mean ICP level, as expected
on the basis of the P–V curve, and may provide information on the intracranial volume–
pressure relationship complementary to mean ICP (Miller et al., 1973) as well as reflect
the degree of volume decompensation caused by midline shift (Miller and Pickard, 1974).

Marmarou et al. (1975) in turn proposed an approach where the pressure response
is measured following the injection of a known volume into the CSF space and the in-
jected volume is subsequently plotted against the decadic logarithm of ICP, producing a
straight line whose slope is called the pressure–volume index (PVI). PVI expresses the
volume necessary to increase the pressure tenfold, and compliance can be calculated by
multiplying PVI by a factor of 0.4343 and dividing it by the mean ICP level at which
the parameter was estimated. Normal PVI is estimated at approximately 26 ml (Shapiro
et al., 1980); a decrease down to 18 ml signifies a reduction in compliance, with 13 ml
considered the critical level indicating exhaustion of the compensatory reserve (Tans and
Poortvliet, 1983). Notably, low PVI has been shown to correlate with outcome in TBI
(Maset et al., 1987; Pillai et al., 2004).

The infusion study is a different type of volume–pressure test, first proposed by Katz-
mann and Husey in the 1970s (Katzman and Husey, 1970) and now usually performed in
a modernised form, called the computerised infusion test (Børgesen et al., 1992). In this
approach, volumetric manipulation is performed in a slow, continuous manner by adding
known volumes of fluid to the CSF space at a constant rate (usually 1–1.5 ml/min) rather
than through bolus injection. The infusion test is routinely performed in patients with
symptoms of normal pressure hydrocephalus (NPH) to assess cerebral compensatory pa-
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rameters (including cerebrospinal compliance) or the function of ventricular shunts based
on the patient’s pressure response to controlled changes in intracranial volume (Eklund
et al., 2007). The analysis is based on Marmarou’s model of CSF dynamics (Marmarou,
1973) which can be solved analytically for constant rate infusion, providing a model curve
that is fitted to the full ICP recording. This model is described in detail in Chapter 3.

Compliance estimation based on addition of fluid to (or withdrawal from) the cere-
brospinal space is still the established ‘gold standard’ method and the only technique
capable of measuring absolute values of compliance. However, the requirement for ex-
ternal volume manipulation remains its major drawback and the likely reason for the
limited use of compliance in clinical management. In order to assess compliance using
either of the methods described above, one has to obtain pressure recordings at differ-
ent volume levels. As a result, the measurement can only be performed intermittently,
making it unsuitable for routine monitoring in the NCCU (Robertson et al., 1989). The
Spiegelberg Brain Compliance Monitor (Piper et al., 1999) was an attempt to translate
this approach for continuous use with a periodically expanding intraventricular balloon,
but it has not been introduced to standard practice, presumably due to unsatisfactory
performance (Heldt et al., 2019). Additionally, the changes in volume required by the
‘gold standard’ method may result in unintentional, potentially dangerous increases in
ICP, which is of particular importance in TBI patients already at risk of uncontrolled
IH, and external manipulation carries the risk of introducing infection due to the invasive
nature of the procedure (Chopp and Portnoy, 1980; Robertson et al., 1989).

1.4.2 Analysis of intracranial pressure pulse waveform
In contrast to the volume–pressure tests based on controlled, externally induced changes
in intracranial volume, various contemporary studies on compliance estimation in both
humans and experimental animals attempted to analyse the pressure response to naturally
occurring volume changes in the form of the ICP pulse waveform. Due to the unknown
extent of volume change in each heartbeat, compliance estimators derived from the ICP
pulse waveform cannot be translated to absolute measures obtained with the volume–
pressure tests (Czosnyka and Citerio, 2012). However, a number of methods proposed so
far showed the potential to allow for continuous assessment, and thus overcome the major
disadvantage of the ‘gold standard’ approach, with the only limitation being the need for
invasive placement of the ICP sensor.

ICP pulse amplitude The application of pulse pressure analysis in compliance as-
sessment was proposed in the late 1970s. Szewczykowski et al. (1977) investigated the
changes in pulse amplitude of ICP (AmpICP) associated with alterations in mean ICP to
estimate cerebrospinal elastance. Based on the simplifying assumption that the cerebral
fraction of cardiac stroke volume is constant in each heartbeat, and therefore AmpICP
differs from intracranial elastance only by the constant factor 1/dV , the authors proposed
to analyse elastance by calculating the slope of the amplitude–pressure (AMP–P) charac-
teristic which describes changes in AmpICP as a function of mean ICP (Figure 1.5). The
study showed that the AMP–P plot consists of two regions. The initial part represents
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Figure 1.5. Schematic representation of the relationship between the pressure–volume curve
(left) and the amplitude–pressure plot (right). Region A: Baseline intracranial volume, low in-
tracranial pressure (ICP) with pulse amplitude (AmpICP) independent of mean ICP. Region B:
Gradual increase in AmpICP accompanying the increase in intracranial volume and correspond-
ing increase in ICP. Region C: Decrease in AmpICP following the collapse of cerebral vessels
and derangement of cerebrovascular reactivity at critically high mean ICP.

the baseline state of nearly constant elastance associated with low mean ICP while the
second part corresponds to gradual increase in elastance. It has since been established
that the AMP–P plot may include one more region where at very high mean ICP, follow-
ing a breakpoint associated with the collapse of cerebral blood vessels, AmpICP decreases
again (Czosnyka et al., 1996a).

Around the same time, a study by Avezaat et al. (1979) compared the changes in
AmpICP and VPR at different mean ICP levels. The authors observed that AmpICP
increases linearly with mean ICP up to the level of 60 mm Hg, reflecting the changes in
VPR. This led to the conclusion that the cerebral fraction of stroke volume can be assumed
to be constant in that range and AmpICP can be used as a measure of cerebrospinal
elastance. However, the study also showed that over 60 mm Hg VPR remains constant
while AmpICP continues to increase at a steeper rate. This observation was attributed to
a failure of autoregulation at highly elevated ICP, suggesting that in non-autoregulating
patients AmpICP may be a better clinical indicator than the volume–pressure test. It
should be noted that this study was performed in dogs and the level over which VPR and
AmpICP diverge may be different in humans, as ICP of 60 mm Hg is considered severely
elevated and may already exceed with the upper breakpoint of the AMP–P characteristic.

AmpICP is arguably the most frequently studied feature of the pulse waveform, with
more than half a century of studies showing changes in AmpICP in conditions such as
hydrocephalus (Eide and Brean, 2006; Czosnyka et al., 2008; Eide, 2016), TBI (Czos-
nyka et al., 1996a; Holm and Eide, 2008; Hall and O’Kane, 2016), and subarachnoid
haemorrhage (Eide and Sorteberg, 2006; Eide et al., 2011). Some authors propose to
estimate AmpICP directly in the time domain, as the peak-to-nadir value of the ICP
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pulse waveform (Eide, 2006), while others employ spectral analysis to calculate AmpICP
as the amplitude of the fundamental component of the signal’s Fourier spectrum (Czos-
nyka et al., 1988). The two approaches have been said to produce strongly correlated
results (Pearson correlation coefficient R = 0.97) (Czosnyka et al., 2007), although Holm
and Eide (Holm and Eide, 2008) suggested that the frequency domain approach under-
estimates AmpICP when the ICP pulse waveforms undergoes pathological changes with
ICP elevation. Nevertheless, neither technique has been conclusively proven to offer more
clinical benefit (Wagshul et al., 2011). Moreover, the validity of using elevated AmpICP
as an indicator of reduced compliance has been called into question (Wilkinson et al.,
1979), and it has been shown to be strongly influenced by vascular factors (Kaczmarska
et al., 2021).

RAP index The RAP index, proposed by Czosnyka et al. (1988), incorporates the
information contained in the P–V and AMP–P characteristics. The parameter is defined
as the moving Pearson correlation coefficient between mean ICP and AmpICP calculated
over longer periods of time, usually 5 minutes. Its name is derived from the common sym-
bol for the correlation coefficient (R) and the words ‘amplitude’ and ‘pressure’. Positive
values of RAP close to 0 suggest good compensatory reserve as the changes in AmpICP
are not driven by oscillations in mean ICP. Values close to 1 represent decreased compen-
satory reserve, with changes in mean ICP producing corresponding changes in AmpICP.
Finally, negative values are associated with disturbed cerebrovascular reactivity following
the upper breakpoint of the P–V curve. While not a direct estimate of cerebrospinal
compliance, RAP index serves as an indicator of the patients ‘working point’ on the P–V

Intracranial volume

In
tr

a
cr

a
n

ia
l 
p
re

ss
u
re

RAP = 0 RAP < 0

'Critical' 
ICP

In
tra

cra
n

ia
l p

re
ssu

re
 p

u
lse

 a
m

p
litu

d
e

RAP     1

Figure 1.6. Interpretation of the RAP index. Values close to 0 indicate the initial region of the
pressure–volume curve (green), values close to 1 suggest reduced compensatory reserve (yellow),
and negative values correspond to deranged cerebrovascular reactivity occurring at critically
elevated ICP (red). Adapted from (Czosnyka et al., 1996a).
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curve (Figure 1.6) and can be calculated continuously, therefore allowing for identification
of patients with exhausted volume compensation.

Since its introduction, RAP index has been studied in both hydrocephalus (Kim et al.,
2009a; Weerakkody et al., 2011) and TBI (Czosnyka et al., 1994, 1996a; Balestreri et al.,
2004; Steiner et al., 2005; Timofeev et al., 2008; Zeiler et al., 2018). In TBI, the superiority
of RAP index over other measures, primarily AmpICP, has been disputed (Howells et al.,
2012; Hall and O’Kane, 2016). However, its usefulness has been shown, for instance, in
RAP-weighted mean ICP (defined as ICP · (1 − RAP) and sometimes termed ‘true ICP’)
outperforming standard mean ICP in prediction of outcome after TBI (Czosnyka et al.,
2005; Calviello et al., 2018; Zeiler et al., 2019).

Spectral analysis In addition to providing an alternative method of calculating
AmpICP, spectral analysis based on the Fourier transform was used for more detailed
description of the changes the ICP pulse waveform undergoes at different mean ICP lev-
els. Chopp and Portnoy (1980) proposed a systems analysis approach to characterise the
ICP pulse waveform in relation to the ABP pulse, with the latter treated as the input
and the former as the output of the cerebrospinal system. Based on the transfer function
approach, the authors reported enhanced transfer from ABP to ICP with increased mean
ICP, suggesting that cerebral vasodilation which accompanies ICP elevation diminishes
the ability of the arterioles to attenuate the arterial pulse, leading to increased transmis-
sion in a dysautoregulated system. These results were later confirmed by Takizawa et al.
(1987) who postulated that the pulse transmission from ABP to ICP is influenced by a
combination of intracranial compliance and cerebral vasomotor reactivity. The authors
investigated further the shape of the ICP pulse waveform through analysis of the signal’s
Fourier spectrum, showing that at higher mean ICP, the higher harmonics of ICP are
reduced compared to the fundamental wave, and so is the distortion factor describing the
degree of dissimilarity between the ICP waveform and simple sine wave. This finding was
in line with the previously reported rounding of the pulse wave observed with increased
ICP in the time domain.

This avenue of study was also explored in research on the high frequency centroid
(HFC), defined as the frequency centroid (i.e. centre of mass) of the ICP power spectrum
in the range 4–15 Hz (Robertson et al., 1989). Bray et al. (1986) examined the changes
in HFC in relation to PVI and showed that HFC around 7 Hz is considered normal
whereas an increase up to 9 Hz corresponds to a reduction in PVI to approximately 13 ml
and signifies exhausted compensatory reserve. Later studies using HFC as a tool for
continuous monitoring in TBI patients showed that increased HFC correlates with higher
mortality and occurrence of IH (Robertson et al., 1989), and opposite direction of changes
in HFC can differentiate transient from refractory IH episodes (Contant et al., 1995). More
recently, focus has shifted to a different spectral centroid, called the higher harmonics
centroid (HHC) (Zakrzewska et al., 2021). In contrast to HFC, which is calculated in the
same range regardless of the fundamental cardiac frequency, HHC attempts to take into
account the variations in heart rate by defining the range in harmonic numbers rather
than Hz. HHC calculated from the 2nd through 10th harmonic was shown to be positively

14



Chapter 1

correlated with mean ICP in TBI patients and to decrease significantly during ICP plateau
waves (Zakrzewska et al., 2021).

However, it should be noted that the use of the Fourier transform requires that the
signal in question satisfies the stationarity condition. During continuous monitoring, with
frequent changes related to, for instance, cardiac arrhythmia, this requirement may not
always be fulfilled, potentially making this approach imprecise for ICP analysis.

ICP pulse waveform morphology ICP pulse waveform morphology refers to the
shape of the ICP signal observed during a single cardiac cycle. As mentioned in Sec-
tion 1.2.2, under normal conditions the ICP pulse waveform exhibits three distinct local
maxima, called peaks P1, P2, and P3, whereas at elevated ICP, in addition to increased
AmpICP, the waveform becomes more ‘rounded’ or ‘monotonic’, with the peaks gradually
disappearing (Germon, 1988). In 1983, Cardoso et al. (1983) investigated the changes in
the configuration of the characteristic peaks during alterations in mean ICP caused by dif-
ferent manoeuvres. The authors noted that in addition to the previously known influence
on AmpICP, hyperventilation-induced ICP reduction has a profound effect on the ICP
pulse contour in the form of decreasing prominence of peak P2. They suggested that since
hyperventilation influences cerebral bulk volume (and with it, cerebrospinal compliance)
through vasoconstriction of arterioles, the relative height of the first two characteristic
peaks may provide an indirect measure of compliance.

Based on those observations, other researches proposed to use the P2/P1 ratio in
prediction of impending rises in ICP. Studies in TBI patients demonstrated that the
ratio is indeed higher in patients who exhibit IH episodes compared to those who do
not (Fan et al., 2008) and P2 elevation may be predictive of increased frequency of IH
episodes (Mitchell et al., 1997). Yet when used with a prediction threshold of 0.8, this
approach showed low specificity, leading to the conclusion that elevated P2/P1 ratio alone
is not a reliable indicator of impending increases in mean ICP as it was also present in
the comparison data (Fan et al., 2008). Notably, however, the studies did not attempt
to validate the peak ratio approach against other methods of cerebrospinal compliance
assessment and the proposed threshold appears to have been chosen arbitrarily. A P2/P1
ratio of 0.8 corresponds to a waveform with dominating peak P1 and slightly lower P2,
which may still be considered normal; peak P2 can only be clearly said to dominate when
the ratio exceeds 1 (see Figure 1.7). One could therefore argue that the method’s apparent
failure as a tool for IH prediction could be rectified by a more in-depth investigation of
what constitutes an appropriate peak ratio threshold.

Meanwhile, various studies aimed to refine morphological analysis in order to replace
visual assessment of the waveform shape with automated tools. Hu et al. (2009) devel-
oped an algorithm called Morphological Clustering and Analysis of Continuous Intracra-
nial Pressure (MOCAIP) capable of assessing a number of pulse shape metrics, including
peak height, latency, and curvature. Proposed as a generalised method of ICP pulse
waveform analysis, MOCAIP-derived metrics have been used to investigate cerebrovas-
cular phenomena (Hu et al., 2010a; Asgari et al., 2011a,b), ICP slow waves (Kasprowicz
et al., 2010) and response to shunting (Hamilton et al., 2016), predict ICP elevation
(Hamilton et al., 2009; Hu et al., 2010b) and identify artefactual pulses (Megjhani et al.,
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Figure 1.7. Illustrative examples of intracranial pressure pulse waveforms with different ratio
of peaks P1 and P2.

2019), and the same group introduced different improvements to this technique (Scalzo
et al., 2009, 2010; Asgari et al., 2009). In a small group of four patients with slit ventricle
syndrome, increase in MOCAIP-based P2/P1 ratio was shown to correlate with enlarge-
ment of the lateral ventricles (Hu et al., 2008). Various other attempts to solve the task
of peak designation have also been reported (Elixmann et al., 2012; Scalzo et al., 2012;
Calisto et al., 2013; Lee et al., 2016). Still, analysis of ICP pulse waveform morphology
is yet to transition beyond the realm of research. The ICP signal is intricate, highly
variable, and the changes it undergoes occur both over time and between patients (Ellis
et al., 2005). The computational algorithms proposed to date demonstrate varying levels
of accuracy, and their technical complexity leads to limited understanding and acceptance
in the medical community.

Recently, a different approach based on machine learning was presented where peak
detection was substituted with easy to interpret visual criteria for overall pulse waveform
morphology. Nucci et al. (2016) isolated four classes of ICP pulse shapes reflecting the
changing configuration of characteristic peaks in hydrocephalus patients and proposed an
artificial neural network capable of classifying ICP pulse waveforms with 88% accuracy.
The categories ranged from normal waveforms with three peaks arranged in a descending
saw-tooth pattern to fully rounded pathological waveforms with only one defined maxi-
mum. Using the proposed classification model, the authors compared the dominant ICP
pulse waveform class with parameters describing CSF circulation obtained from analysis
of controlled changes in mean ICP caused by infusion of fluid into the CSF space. The
results showed that pathologically altered pulse waveform morphology at baseline is in-
dicative of disturbances in intracranial elastance revealed by the infusion test, suggesting
the predictive potential of this method of ICP pulse analysis. However, at the time of
writing this dissertation, further results utilising this approach have not been reported.
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Aims and hypotheses

Monitoring of mean ICP is one the cornerstones of modern neurocritical care. While it has
long been shown that information on the cerebrospinal system’s ability to buffer changes
in volume could potentially complement established mean ICP-based management of TBI
patients, current methods of assessing cerebrospinal compliance and compensatory reserve
are not very well suited to this scenario. The morphology of the ICP pulse waveform, i.e.
the shape of the signal during a single cardiac cycle, has been proposed as an indicator
of compliance almost four decades ago, but despite promising early reports and a certain
degree of interest over the years, it has not been examined in much detail and this method
still awaits introduction to standard medical practice.

The aim of this dissertation was to further explore the information encoded in the
features of the ICP pulse waveform and its potential for improving clinical management of
patients with intracranial pathologies. The following research hypotheses were formulated:

1. Changes in the shape of intracranial pressure pulse waveform, expressed by the ratio
of characteristic peaks P1 and P2, are correlated with compliance assessed during
volumetric manipulation (Chapter 3).

2. Deep neural networks can be used to automatically classify ICP pulse waveform
shapes in traumatic brain injury patients (Chapter 4).

3. Changes in the shape of intracranial pressure pulse waveform expressed by pulse
waveform classification are associated with outcome after traumatic brain injury
(Chapter 5).
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Chapter 3

Cerebrospinal compliance estimation
based on the shape of intracranial
pressure pulse waveform

The results presented in this chapter were published in:
Kazimierska, A., Kasprowicz, M., Czosnyka, M., Placek, M. M., Baledent, O., Smielewski, P.,
and Czosnyka, Z. (2021). Compliance of the cerebrospinal space: comparison of three
methods. Acta Neurochirurgica, 163(7):1979–1989.
Full text of the paper can be found in Appendix A.

3.1 Introduction
Over the years, features of the ICP pulse waveform have served as the basis of vari-
ous indices of cerebral compensatory reserve, including AmpICP and the AMP–P slope
(Szewczykowski et al., 1977; Avezaat et al., 1979), RAP index (Czosnyka et al., 1988,
1996a), and HFC (Bray et al., 1986; Robertson et al., 1989). The ratio of characteristic
peaks P1 and P2, despite promising early reports, has not been investigated in much
detail. In their 1983 study, Cardoso et al. (1983) showed that changes in the relative
height of peaks P1 and P2 reflect hyperventilation-induced decrease in mean ICP and
corresponding increase in compliance. Other researchers attempted to use the P2/P1 ra-
tio as a predictor of dangerous IH episodes (Mitchell et al., 1997; Fan et al., 2008). Still,
this approach has never been explicitly validated against other methods of compliance
estimation.

The aim of this chapter was to assess the feasibility of using the P1/P2 ratio as a mea-
sure of cerebrospinal compliance during controlled increases in mean ICP by comparing it
firstly to the ‘gold standard’ method of direct volumetric manipulation and secondly, to
a different indirect approach based on evaluation of changes in CBV using non-invasive
transcranial Doppler (TCD) ultrasonography measurement of cerebral blood flow velocity
(CBFV). If proven to be linked to the ‘gold standard’ compliance, estimates based on the
ICP pulse waveform or changes in CBV would allow for continuous monitoring of com-
pliance, thereby overcoming the major limitation of the volume–pressure tests. Results
of this study offer new insights into the indirect methods of compliance monitoring.
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3.2 Material

3.2.1 Data collection
Data used in this study were selected retrospectively from infusion test recordings collected
in NPH patients at Addenbrooke’s Hospital (Cambridge, UK) between 1993 and 1998.
The infusion test was executed via a pre-implanted Ommaya reservoir using two hypo-
dermic needles (25 gauge): one for ICP measurement and one for fluid infusion. The first
needle was connected to a pressure transducer via a saline-filled tube connected in turn to
a pressure amplifier (Simonsen & Will, Sidcup, UK). The second needle was connected to
an infusion pump. The full recording consisted of three phases: baseline (approximately
10 minutes), increase in ICP, and plateau. If the patient did not reach the plateau phase
by the time ICP approached the maximum acceptable level of 40 mm Hg, the infusion was
stopped due to safety concerns. Following the end of infusion, the recording was collected
until ICP returned to baseline. The rate of infusion was chosen based on the patient’s
baseline ICP level: 1.5 ml/min for baseline ICP below 15 mm Hg and 1 ml/min above
that threshold (Czosnyka et al., 1996b).

CBFV was simultaneously monitored in the middle cerebral artery using a TCD unit
(Neuroguard; MedaSonics, Fremont, CA, USA) with 2-MHz probes fixed in a stable posi-
tion at the temporal acoustic window using a commercially available fixation system. In a
subset of patients, ABP was also measured non-invasively using a photopletysmographic
system (Finapres; Finapres Medical Systems, the Netherlands) in the middle finger of the
left hand held at heart level. Data from pressure monitors and the TCD unit was collected
via an analogue-to-digital converter (DT 2814; Data Translation, Marlboro, USA) con-
nected to an IBM AT laptop computer (Amstrad ALT 386 SX; Amstrad, Brentwood, UK)
with custom software for waveform recording (WREC; W. Zabolotny, Warsaw University
of Technology, Warsaw, Poland). Sampling frequency ranged from 30 Hz to 50 Hz.

As part of routine clinical management of hydrocephalus patients, the infusion tests
alone did not require separate ethical agreement. Local Ethics Committee approval was
obtained for simultaneous TCD recording of CBFV (no 08/H0306/103).

3.2.2 Data selection
In this study only recordings of ICP measured via a pre-implanted Ommaya reservoir with
simultaneous monitoring of CBFV were used. In standard clinical practice, the infusion
test is more commonly performed via lumbar puncture instead of the Ommaya reservoir.
However, the ICP recorded via lumbar puncture is not strictly the same as observed
with ventricular or intraparenchymal probes (Behrens et al., 2013), and existing reports
on ICP pulse morphology have been based on the ICP waveform recorded intracranially
(Cardoso et al., 1983; Fan et al., 2008; Hu et al., 2009; Nucci et al., 2016). Furthermore,
lumbar recording places the measurement sites of ICP and CBFV, the latter of which
is measured in large cerebral arteries, at a considerable distance. As this study included
also the calculation of compliance estimates based on the CBFV signal, lumbar recordings
were excluded to enable more accurate comparison.
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72 recordings were initially considered for analysis. Further selection was made on the
basis of good quality of both ICP and CBFV signals and the visibility of peaks P1 and P2
in the ICP pulse waveform. 20 recordings were excluded due to low quality of either the
ICP or the CBFV signal. 16 recordings were excluded due to pathological rounding of the
pulse waveform, even at baseline, which made identification of both characteristic peaks
impossible. Finally, 36 recordings were included in the study, out of which 26 included
also the ABP signal. Figure 3.1 shows an illustrative example of full recording from a
single patient.

Mean age in the selected group was 54 years (range: 27–76 years). Based on the
bicaudate index assessed by a clinician using computed tomography (CT) exams with
age-dependent thresholds (Little et al., 2008), the patients showed signs of ventricular
dilation (mean bicaudate index: 0.27, range: 0.14–0.39), and 14% showed evidence of
white matter ischemia.
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Figure 3.1. Illustrative example of infusion test recording of (from top to bottom) intracranial
pressure (ICP), cerebral blood flow velocity (CBFV), and arterial blood pressure (ABP) for a
single patient. Vertical red lines indicate the start of constant rate infusion.

3.3 Methods

3.3.1 Assessment of cerebrospinal compliance
In order to assess the validity of using indirect methods of compliance estimation, the
infusion test recordings were analysed using three approaches: based on the model of
CSF dynamics (the ‘gold standard’ method of volumetric manipulation); based on the
height ratio of characteristic peaks P1 and P2 of ICP pulse waveform; and based on
evaluation of changes in arterial CBV. Unless explicitly stated otherwise, all analyses
were performed using programs custom written in Python 3.7.
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Figure 3.2. Electrical circuit equivalent of Marmarou’s compartmental model of cerebrospinal
fluid (CSF) circulation. RCSF—resistance to CSF outflow, PSS—pressure in the sagittal sinuses,
C—cerebrospinal compliance, P0—reference pressure. Adapted from (Marmarou, 1973).

Model of cerebrospinal fluid dynamics The mathematical model of CSF dynamics
in the intracranial space was first proposed by Marmarou (1973) to describe the rela-
tionship between different compartments of the CSF circulatory system. It is commonly
depicted using an electrical equivalent (Figure 3.2) comprised of the following elements:
a current source (corresponding to CSF formation), a resistor and diode branch (corre-
sponding to CSF absorption), and a non-linear capacitor (corresponding to compliance of
the CSF space).

Under normal conditions, the components of CSF circulation balance each other, as
described by the following equation:

CSF production = CSF storage + CSF reabsorption. (3.1)

The rate of CSF production (IP) is assumed to be constant. The rate of CSF storage (IS)
is proportional to cerebrospinal compliance (C):

IS = C
dP

dV
, (3.2)

where P is the CSF pressure. The rate of CSF reabsorption (IR) depends on the gradient
between CSF pressure P and pressure in the sagittal sinuses (PSS):

IR = P − PSS

RCSF
, (3.3)

where RCSF is a parameter called resistance to CSF outflow (unit: mm Hg/(ml/min)).
Compliance C is inversely proportional to the gradient between CSF pressure P and

reference pressure P0:
C = 1

E · (P − P0)
, (3.4)

where E represents cerebrospinal elastance (unit: ml−1). This relationship is considered
valid above certain pressure level termed ‘lower breakpoint pressure’ (Figure 3.3) above
which the P–V curve becomes exponential. Below that point the P–V curve is assumed
to be linear, and compliance is approximately constant.
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To describe the conditions present during the infusion test, a fourth term, represent-
ing the rate of external volume addition (I(t)), is added to Eq. (3.1). Combined with
Eqs (3.2)–(3.4), Eq. (3.1) can be rewritten as:

1
E · (P − P0)

dP

dt
+ P − Pb

RCSF
= I(t), (3.5)

where Pb is the baseline pressure approximating PSS. The solution to Eq. (3.5) for constant
rate infusion, with the assumption that P (0) = Pb, I(t) = 0 for t < 0 and I(t) = Iinf for
t > 0, where Iinf is the constant rate of infusion, is expressed as:

P (t) =

(
1 + Pb − P0

RCSF · Iinf

)
· (Pb − P0)

Pb − P0

RCSF · Iinf
+ exp

(
−E1

(
1 + Pb − P0

RCSF · Iinf

)
· t · Iinf

) + P0. (3.6)

In this study, ICP recordings collected during the infusion test were processed us-
ing the built-in infusion test analysis module of ICM+ software (Cambridge Enterprise
Ltd., Cambridge, UK) to obtain the parameters describing CSF dynamics from Eq. (3.6)
(namely, E, RCSF, and P0 for each patient. An example of analysis results produced by
ICM+ is presented in Figure 3.4. The time course of changes in compliance was subse-
quently calculated using Eq. (3.4). This compliance estimate is henceforth denoted as
CCSF (from ‘CSF dynamics’).
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Figure 3.3. The relationship between compliance (C), elastance (E) and pressure (P ) in
the intracranial space in the cerebrospinal fluid dynamics model. Below the ‘lower breakpoint
pressure’ (P0) compliance is approximately constant, and the P–V curve is linear. Above the
threshold compliance decreases with increasing pressure as described by Eq. (3.4) and the P–V
curve becomes exponential. Adapted from (Czosnyka et al., 1997a).
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Figure 3.4. Illustrative example of constant rate infusion test results for a single patient
obtained using the analysis module of ICM+ software. a) Upper plot: intracranial pressure
(ICP) recording with model curve according to Eq. (3.6). Lower plot: spectral ICP pulse
amplitude (AmpICP) recording. Grey background indicates the period of infusion. b) Upper
plot: pressure–volume curve obtained from the ICP recording. Lower plot: amplitude–pressure
plot obtained from the ICP and AmpICP recordings. Modified from (Kazimierska et al., 2021c).

Height ratio of peaks P1 and P2 According to the observations reported by Cardoso
et al. (1983), decreased cerebrospinal compliance manifests as relative elevation of the
characteristic peak P2 of the ICP pulse waveform over peak P1. In this study, the height
ratio of P1 to P2 was used as an estimator of cerebrospinal compliance. Some studies used
the inverse, P2 to P1 (Mitchell et al., 1997; Fan et al., 2008); however, there is no validated
standard for this method of ICP pulse waveform analysis, and unlike the P2/P1 ratio, the
changes in P1/P2 should theoretically be consistent with other compliance estimates, i.e.
show a decrease with increasing mean ICP.

Prior to analysis, ICP and CBFV signals (and ABP, where available) were low-pass fil-
tered with cutoff frequency of 10 Hz in order to reduce the high frequency noise, primarily
in the ICP signal which is prone to distortions. The cutoff frequency was selected based
on previous analyses showing that the power of the ICP signal is mostly contained in the
range below 8 Hz (Dai et al., 2020). Individual pulse onset points were automatically
marked in the ICP signal using the modified Scholkmann algorithm previously validated
for use with neuroscience data such as the ICP signal (Bishop and Ercole 2018); cor-
responding sections of CBFV (and ABP, where available) were extracted based on ICP
pulses. Each pulse was independently normalised to interval 0–1 and linearly detrended.

Peaks P1 and P2 were annotated pulse-by-pulse using a semi-automated algorithm
for detection of local maxima custom-written specifically for this study. Initial P1 and
P2 candidates were identified based on the shape of CBFV and ABP signals. Previous
studies have noted that the position of P1 corresponds to the systolic maximum of ABP
(Fan et al., 2008; Carrera et al., 2010). In some patients, due to unavailability of the
ABP signal, CBFV was used instead as the systolic part of both waveforms is similar.
In turn, P2 roughly correlates with the local maximum of pulsatile changes in cerebral
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Figure 3.5. Illustrative examples of individual intracranial pressure (ICP) pulse waveforms
with peak annotations (red dots: P1, green dots: P2) and supplementary signals: arterial blood
pressure (ABP) and change in cerebral arterial blood volume (CaBV). Dotted vertical lines show
the relationship between ICP pulse waveform and local maxima in the ABP and CaBV signals
(red and green circle, respectively). Modified from (Kazimierska et al., 2021a).

arterial blood volume (CaBV; see the next section for detailed description of the method of
obtaining this signal) (Carrera et al., 2010). In order to use the information contained in
the supplementary signals, ICP and CBFV pulses (and ABP, where available) were aligned
with regard to the pulse onset point to eliminate the phase shift resulting from distance
between measurement sites (i.e. between peripheral signal ABP and cranial signals ICP
and CBFV), and the P1, P2 candidates were marked automatically. Each pair of peak
candidates was then manually checked and corrected if necessary to ensure that the P1/P2
ratio was estimated as reliably as possible and not subject to errors in the peak designation
method. Pulses with distorted ICP waveform or unidentifiable P1 or P2 were excluded
from further analyses. Illustrative examples of ICP pulses with peak annotations and
supplementary signals are presented in Figure 3.5.

In each pulse the peak-based compliance estimate (denoted CP1/P2) was calculated as
the ratio of the height of peaks P1 and P2 with peak height calculated as the vertical
difference between the peak and pulse onset point. As the peak heights are expressed
in mm Hg, the resulting value is dimensionless and cannot be calibrated in units of
ml/mm Hg like in the ‘gold standard’ method.

Changes in cerebral arterial blood volume The fluctuations in cerebral arterial
blood volume (CaBV) occurring in each cardiac cycle, which contribute to the oscilla-
tions in ICP registered as the ICP pulse waveform, are governed by cerebral blood inflow
(CBFin) and simultaneous venous outflow (CBFout). Both CBF components are charac-
terised as pulsatile, and their differing waveforms generate changes in CaBV (∆CaBV).
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According to the description proposed based on experimental studies by Avezaat and
van Eijndhoven (1984), ∆CaBV over a single cardiac cycle can be expressed as:

∆CaBV(t) =
∫ t

t0
(CBFin(x) − CBFout(x)) dx, (3.7)

where t0, t are the beginning and end of the cardiac cycle, respectively, CBFin is the
cerebral arterial inflow, CBFout is the venous outflow, and x is the variable of integration.
CBFout is assumed to have low pulsatility compared to CBFin (Stoquart-Elsankari et al.,
2009). Consequently, venous outflow can be approximated by constant flow equal to mean
arterial inflow:

CBFout(t) = meanCBFin. (3.8)

In general, blood flow can be expressed as blood flow velocity multiplied by the cross-
sectional area of the vessel (Kim et al., 2009b). Assuming that the vessel diameter remains
constant during the measurement (see the Limitations section for discussion on this as-
sumption), CBF can be expressed as:

CBF = CBFV · Sa, (3.9)

where Sa is the cross-sectional area of the vessel (units: cm2), and Eq. (3.7) for discrete
values of CBFV obtained with finite sampling frequency can be rewritten as:

∆CaBV(n) = Sa ·
n∑

i=1
(CBFV(i) − meanCBFV) ∆t(i), (3.10)

where n is the number of samples from the beginning of the cardiac cycle and ∆t is the
time difference between two consecutive samples. An example of ∆CaBV produced by
Eq. (3.10) is presented in Figure 3.6.

Cerebrospinal compliance can be estimated based on pulsatile changes in CBV and
corresponding changes in ICP (this estimate is denoted CCaBV) as:

C = AmpCaBV
AmpICP , (3.11)

where AmpCaBV, AmpICP are the amplitudes of the fundamental (i.e. cardiac-related)
components of ∆CaBV and ICP, respectively. In this study, both AmpCaBV and AmpICP
were calculated pulse-by-pulse in the time domain as the peak-to-nadir value of each
waveform. Unlike the ‘gold standard’ CCSF, CCaBV obtained with TCD CBFV recordings
is expressed in cm/mm Hg rather than ml/mm Hg due to the unknown value of Sa. It
may be interpreted as compliance per unit (cm2) of net cross-sectional area of arterial
blood inflow bed.
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Figure 3.6. Illustrative example of changes in cerebral arterial blood volume (∆CaBV; lower
plot) calculated from cerebral blood flow velocity (CBFV; upper plot) recording for a single
patient using Eq. (3.10).

3.3.2 Statistical analysis
Normality of all analysed variables was tested using the Shapiro–Wilk test with signif-
icance level of 0.05 and the normality hypothesis was rejected for the majority of vari-
ables. Accordingly, non-parametric methods were selected to investigate the relationships
between compliance estimates and related metrics. The significance level of 0.05 was
assumed in all statistical tests.

The relationships between the time courses of compliance estimates (compared with
each other in pairs) and between each compliance estimate and mean ICP were assessed
using the Spearman correlation coefficient. Considering the difference in time scales used
in calculations (particularly the pulse-by-pulse approach employed in estimation of CCaBV

and CP1/P2 compared to analysis of whole recording in case of CCSF), 30-pulse moving
averages were used instead of ‘raw’ values. The correlations were assessed individually
between the time courses of each parameter for a single patient and then averaged over
the whole group.

Compliance estimates at baseline (low pressure) and plateau (high pressure) phase
of the infusion test, corresponding to ‘high’ and ‘low’ compliance conditions, were com-
pared using averages of manually selected 1-minute-long fragments of the recording. In
recordings where the signals at baseline were significantly distorted the initial stage of
infusion was used as baseline. Two patients were excluded from this part of the anal-
ysis due to unavailability of baseline values resulting either from low signal quality or
the lower breakpoint limit used in estimation of CCSF. In the remaining 34 patients, the
significance of changes in compliance estimates as well as changes in P1 and P2 height,
AmpCaBV, AmpICP, and pulse amplitude of CBFV (AmpCBFV) between the baseline
and plateau phase was examined with the Wilcoxon signed rank test. As CaBV cannot
be compared directly between patients, changes in AmpCaBV were expressed in %, with
baseline AmpCaBV taken as 100% individually for each patient.

All group-averaged results are presented as median [first–third quartile].
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3.4 Results

3.4.1 Changes in physiological signals and derived indices
Between the baseline and plateau phase of the infusion test (Table 3.1), statistically
significant increases were observed in mean ICP, peak-to-peak AmpICP, and AmpCaBV
while mean CBFV and AmpCBFV both slightly decreased.

The rise in mean ICP during infusion resulted in significant elevation of both charac-
teristic peaks (p ≪ .001). Larger degree of changes was registered for the height of P2
(from 3.5 [2.4–4.5] mm Hg at baseline to 6.2 [4.4–8.3] mm Hg during plateau) compared
to P1 (from 2.5 [1.4–3.6] mm Hg to 4.2 [2.7–4.7] mm Hg). In all patients the time courses
of both heights were significantly correlated with mean ICP with slightly stronger corre-
lation observed for P2 (group-averaged correlation coefficient: 0.98 [0.93–0.99]) than P1
(0.95 [0.82–0.96]). An illustrative example of changes in mean ICP and peak heights for
a single patient is presented in Figure 3.7.

Figure 3.7. Illustrative example of changes in a) mean intracranial pressure (ICP), b) peak-
to-peak pulse amplitude of ICP, and c) height of peak P1 (red symbols) and P2 (green symbols)
during constant rate infusion for a single patient. Full pulse-by-pulse time courses are presented
with dots and 30-pulse moving averages are presented with solid lines. Modified from (Kazi-
mierska et al., 2021a).
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Table 3.1. Comparison of physiological signals and calculated indices between the baseline and
plateau phase of the infusion test with Wilcoxon signed rank test p value. Data are presented
as median [first–third quartile].

Parameter Baseline Plateau p value

Mean ICP [mm Hg] 13.4 [9.5–16.5] 22.6 [18.7–28.1] ≪ .001

Mean CBFV [cm/s] 53.0 [39.4–59.1] 48.9 [39.6–57.5] < .001

AmpICP [mm Hg] 3.9 [2.6–4.8] 6.4 [4.7–8.6] ≪ .001

AmpCBFV [cm/s] 38.3 [31.1–49.8] 38.0 [31.9–51.8] .002

AmpCaBV [%] 100 [100–100] 105 [99–116] < .001

3.4.2 Comparison of cerebrospinal compliance estimates
All three compliance estimates decreased between the baseline and plateau phase of the
infusion test (Table 3.2). The largest change relative to baseline value of 100% was
observed for CCSF (46 [37–65] %), smaller for CCaBV (41 [31–48] %), and the smallest
for CP1/P2 (16 [7–28] %). The time courses of compliance estimates were strongly and
significantly (p < .05) correlated with each other: 0.94 [0.88–0.97] for CCSF vs CCaBV,
0.77 [0.63–0.91] for CCSF vs CP1/P2 and 0.68 [0.48–0.91] for CCaBV and CP1/P2. Further-
more, both CCaBV and CP1/P2 showed strong inverse correlation with mean ICP (CCSF

was not compared with mean ICP as it is directly calculated from this parameter):
−0.82 [−0.71–−0.86] and −0.71 [−0.46–−0.79], respectively. An illustrative example
of changes in mean ICP and compliance estimates for a single patient is presented in
Figure 3.8.

Table 3.2. Comparison of compliance estimates between the baseline and plateau phase of the
infusion test with Wilcoxon signed rank test p value. Data are presented as median [first–third
quartile]; a.u.—arbitrary units.

Compliance
estimate Baseline Plateau p value

CCSF [ml/mm Hg] 0.67 [0.37–1.16] 0.27 [0.17–0.51] ≪ .001

CP1/P2 [a.u.] 0.69 [0.58–0.90] 0.57 [0.46–0.74] ≪ .001

CCaBV [cm/mm Hg] 1.16 [0.71–1.75] 0.72 [0.50–1.00] ≪ .001
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Figure 3.8. Illustrative example of changes in a) mean intracranial pressure (ICP) and com-
pliance estimates obtained with b) the model of cerebrospinal fluid dynamics (CCSF), c) P1/P2
ratio of ICP pulse waveform (CP1/P2), d) evaluation of changes in cerebral arterial blood vol-
ume (CCaBV) during constant rate infusion test for a single patient. Full pulse-by-pulse time
courses are presented with dots and 30-pulse moving averages are presented with solid lines.
a.u.—arbitrary units. Modified from (Kazimierska et al., 2021a).

3.5 Discussion
The aim of this study was to assess the possibility of monitoring cerebrospinal compliance
using the information contained in the shape of the ICP pulse waveform. Three meth-
ods of compliance estimation were used to examine the changes produced by external
volumetric manipulation in the form of constant rate infusion in NPH patients. Firstly,
compliance was calculated using a model of CSF dynamics in the intracranial space, which
is considered the ‘gold standard’ method. Secondly, the P1/P2 height ratio of individ-
ual ICP pulse waveforms was assessed over the entire recordings, and finally, a model of
arterial CBV changes was used to compare changes in pulse amplitudes of CBV and ICP.

All three compliance estimates showed a marked decrease at elevated mean ICP. While
the results produced by each of the methods varied greatly in terms of value, all three
allowed for statistically significant differentiation between the ‘high’ and ‘low’ compliance
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level, corresponding to low (baseline phase) and high (plateau phase) mean ICP. Indi-
vidual time courses of CP1/P2 and CCaBV followed the ‘gold standard’ CCSF closely, with
median correlation coefficient of 0.77 and 0.94, respectively, suggesting a strong relation-
ship. These results provide validation to the long-held belief that the configuration of
characteristic peaks of the ICP pulse waveform reflects variations in cerebrospinal com-
pliance. As noted by Cardoso et al. (1983), while progressive changes in intracranial
volume and corresponding changes in compliance can be observed as variations in the
overall pulse amplitude, they primarily affect the second peak. Accordingly, although the
heights of both the first and second peak were strongly correlated with the time course
of mean ICP, peak P2 showed a more pronounced increase with reduced compliance than
peak P1, leading to diminished P1/P2 ratio. Additionally, performed analysis proved the
validity of using model-based CCaBV to monitor cerebrospinal compliance, as postulated
by previous studies (Kim et al., 2009b, 2012).

However, it should be noted that the three analysed estimates have certain inherent
differences. Most importantly, only CCSF is a direct approach producing absolute values
of compliance expressed in ml/mm Hg. CBFV, measured in cm/s, serves as a surrogate
for CBF with the assumption that the diameter of insonated vessel remains constant
during the measurement (see the Limitations subsection). As a result, CCaBV has the
units of cm/mm Hg instead of ml/mm Hg and cannot be directly compared between
patients, allowing instead for monitoring of relative changes over time. CP1/P2 as the
ratio of peak heights expressed in mm Hg is dimensionless. Peak ratios can theoretically
be compared between patients, as similar P1/P2 ratio indicates similar configuration of
the first two peaks even if the specific shape of the waveform varies, but each patient may
exhibit different baseline level and the cerebral fraction of stroke volume contributing to
the pulse waveform is unknown in this method. Therefore, absolute value of CP1/P2 must
be interpreted with caution and taking into account the patient’s reference point.

The three estimates are also calculated using different time scales, which could explain
certain dissimilarity between their time courses. The CSF dynamics model relies on the
trend in mean ICP both in initial estimation of model parameters and later in calculation
of compliance, and the time course of CCSF is obtained retrospectively from the analysis
of the entire recording. On the other hand, both of the indirect methods produce results
in a pulse-by-pulse manner, independent of the preceding and subsequent values. This
difference in time scales was only partially alleviated by the use of 30-pulse averages in
correlation analysis. Moreover, while CCSF and CP1/P2 are based solely on the ICP signal,
CCaBV also takes into account CBFV, which is recorded synchronously with ICP but is
fundamentally a different modality.

The separate CBFV measurement can be considered a limitation of the CCaBV ap-
proach as TCD monitoring cannot be performed if the acoustic window in the skull cannot
be accessed (which may concern 10–20% of patients (Baumgartner, 2006)) and continuous
recording over many hours is only possible if the probe is fixed in a stable position; the
latter can be easily disturbed, for instance, by the need to move the patient. Conversely,
the P1/P2 approach can be applied as long as the ICP signal is recorded with sufficiently
high sampling frequency to examine the pulse waveform in detail. This method, however,
is strongly dependent on precise peak identification. The aim of this study was to vali-
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date the proposed peak ratio method against the ‘gold standard’ rather than introduce a
new tool for morphological analysis. Consequently, peak detection was performed using
a semi-automated algorithm with supplementary signals and the results were manually
verified in order to minimise the influence of erroneous annotations. In order to employ
this technique in continuous monitoring, a fully automated peak identification tool would
have to be proposed. This task was undertaken by numerous groups over the years with
varying degree of success (Hu et al., 2009; Elixmann et al., 2012; Calisto et al., 2013;
Lee et al., 2016). Moreover, delineation of local maxima in the pulse contour becomes
impossible in pathologically rounded waveforms that appear at elevated mean ICP. In this
study, 16 recordings (22% of the initial group) were excluded from analysis due to the in-
ability to distinguish P1 even at baseline. While pathologically altered, nearly sinusoidal
pulses could potentially be identified separately and used as a form of ‘low compliance
indicator’, this problem further complicates the technical side of the P1/P2 approach.

Nevertheless, strong correlation between the ‘gold standard’ method and peak analy-
sis supports the application of the latter technique in continuous monitoring of relative
changes in cerebrospinal compliance without the need for volumetric manipulation. To
date only a limited number of studies focused on this approach, especially in TBI pa-
tients in whom compliance assessment offers the most potential benefits but externally
induced changes in intracranial volume can be too hazardous (Robertson et al., 1989). In
addition to the early observations by Cardoso et al. (1983), the peak ratio (expressed in
this case as P2/P1) was shown to differ in TBI patients who exhibited disproportionately
increased ICP and those who did not (Fan et al., 2008), even though P2/P1 higher than
0.8 was not an independent predictor of such episodes (Mitchell et al., 1997; Fan et al.,
2008). However, P2/P1 ratio of 0.8 roughly corresponds to P1/P2 of 1.2; in this study
all patients presented baseline CP1/P2 below that level. On the one hand, NPH and TBI
are different clinical entities and patients in both groups may exhibit different pattern of
changes in cerebrospinal compliance due to different underlying pathologies. On the other
hand, a revised threshold may improve the performance of peak ratio in identification of
patients at risk of potentially threatening ICP elevations. Further investigation into the
relationship between the shape of the ICP pulse waveform and the status of the patient
is required in order to employ the P1/P2 ratio as an indicator of volume decompensation
in the clinical setting. Interestingly, between the publication (Kazimierska et al., 2021a)
and the time of writing of this dissertation, there appeared some renewed interest in this
approach, with a study in decompressive craniectomy patients showing the link between
P2/P1 ratio and loss of skull integrity (Brasil et al., 2021). Analysis of the P1/P2 ratio
was also continued in a co-authored study on relative changes in the ICP and CBFV pulse
waveform shapes (Ziółkowski et al., 2021) which demonstrated that in NPH patients the
P1/P2 ratio estimated at baseline before infusion is significantly correlated with intracra-
nial elasticity (Spearman correlation coefficient R = −0.42, p = .018) and the RAP index
(R = −0.38, p = .040), suggesting its potential to reveal disturbances in CSF dynamics
without external volumetric manipulation.
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3.5.1 Limitations
This study was conducted as a retrospective analysis of recordings selected from the
existing database of infusion studies performed at Addenbrooke’s Hospital (Cambridge,
UK). As transcranial Doppler measurement is not part of routine clinical procedure in
hydrocephalus patients, these data constitute a unique set of simultaneously recorded
ICP and CBFV signals, with ICP monitored via pre-implanted Ommaya reservoirs rather
than the more common lumbar puncture. Repeated collection of the same type of data
could be regarded as a wasteful misuse of time and resources. However, as the recordings
were not originally collected with the explicit purpose of analysing the ICP and CBFV
pulse waveform in detail and the patient group was limited, a relatively high number of
cases were excluded due to insufficient quality of either signal (28%). The exclusion rate
was further increased by the presence of pathologically rounded waveforms that did not
allow for identification of peaks P1 and P2 (22%).

Secondly, the use of peak height ratio and evaluation of changes in CaBV in compliance
assessment is based on the assumption that the cerebral fraction of stroke volume is
constant during the infusion test. As the fraction of stroke volume is not measured
simultaneously, the indirect compliance estimates cannot be translated to absolute values
expressed in ml/mm Hg. Moreover, the CaBV evaluation method uses the CBFV signal
as a surrogate for CBF with the assumption that the diameter of insonated vessel remains
unchanged during the measurement and CBFV differs from CBF only by a constant factor
representing the cross-sectional area of the artery. This approach also assumes a lack of
pulsatility in cerebral venous outflow which is in fact pulsatile, albeit to a smaller extent
than arterial inflow. Analysis of the validity of these assumptions has been conducted
in one of the previous studies on the CaBV evaluation model (Kim et al., 2009b) and
the authors concluded it should not introduce significant errors to compliance estimation
based on TCD measurement in the middle cerebral artery.
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Morphological classification of
intracranial pressure pulse waveforms
using deep neural networks

The results presented in this chapter were published in:

• Mataczyński, C.*, Kazimierska, A.*, Uryga, A., Burzyńska, M., Rusiecki, A., and
Kasprowicz, M. (2022). End-to-end automatic morphological classification of in-
tracranial pressure pulse waveforms using deep learning. IEEE Journal of Biomed-
ical and Health Informatics, 26(2):494–504. *joint first authorship

• Kazimierska, A., Uryga, A., Mataczyński, C., Burzyńska, M., Ziółkowski, A., Ru-
siecki, A., and Kasprowicz, M. (2021). Analysis of the shape of intracranial pressure
pulse waveform in traumatic brain injury patients. In: 43rd Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2021),
pages 546–549, Mexico. IEEE.

Full text of the papers can be found in Appendix A.

4.1 Introduction
As shown in Chapter 3, the ICP pulse waveform contains information about cerebrospinal
compliance encoded in the ratio of local maxima P1 and P2 and the indirect measure
produced by waveform analysis allows for reliable monitoring of relative changes in com-
pliance. However, accurate peak detection is a complex task due to the wide variety
of pulse waveform shapes observed in the clinical setting (including distorted waveforms
considered as artefacts but not easily distinguished from valid pulses) and existing ap-
proaches have not gained universal acceptance outside research. Taking into account the
difficulties associated with precise peak identification and the occurrence of pathologically
changed, rounded waveforms with no distinguishable peaks, Nucci et al. (2016) proposed
a set of visual criteria for classification of ICP pulse waveforms observed in hydrocephalus
patients. In this approach, instead of denoting the peaks P1, P2, and P3, the overall
shape of the signal is inspected visually and assigned to one of four possible categories
which roughly correspond to different peak configurations. Class 1 (‘normal’) represents
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the saw-tooth shape with three identifiable peaks arranged in a descending pattern, with
P1 as the dominant peak. Class 2 (‘potentially pathological’) encompasses waveforms
with increased prominence of the middle peak P2 but P1 still dominating over P3 while
class 3 (‘likely pathological’) includes pulses where P2 and P3 significantly exceed the first
peak. Finally, class 4 (‘pathological’) is used to identify rounded or triangular waveforms
that do not permit peak annotation. In their study, Nucci et al. developed a method
of automatic classification of ICP pulse waveforms using a shallow artificial neural net-
work taking a radial basis function approximation of the pulse as input; this approach
was reported to have 88.3% accuracy compared to an expert examiner in an additional
set of pulses not included in training (Nucci et al., 2016), but it was not tested in data
derived from different patient groups. The authors suggested that in hydrocephalus pa-
tients, pulse shape classification could reveal the disruption of cerebral volume–pressure
equilibrium without the need for external volumetric manipulation.

This technique, however, has never been applied to continuous, long-term (i.e. lasting
several days and therefore much longer than the infusion test performed over approxi-
mately half an hour) ICP recordings obtained in TBI patients. In this group, previous
efforts to employ artificial neural networks focused generally on distinguishing valid from
artefactual patterns (Lee et al., 2019), detection of long-term trends (Mariak et al., 2000),
and predicting ICP elevation (Swiercz et al., 2000; Quachtran et al., 2016; Lee et al., 2021).
Meanwhile, the advancements in the field of machine learning in recent years brought to
light the potential of a relatively new type of models, the deep neural networks, to recog-
nise data patterns (Ganapathy et al., 2018; Rim et al., 2020), including various types of
blood pressure pulses (Li et al., 2019). Therefore, the aim of this study was to propose
a method for automatic classification of different ICP pulse waveform shapes reflecting
changes in cerebrospinal compliance based on deep neural networks with simultaneous
detection of invalid artefactual pulses. If proven to be successful, this approach would
offer the possibility of indirect continuous monitoring of cerebrospinal compliance not
burdened by the need for precise peak identification.

4.2 Material
Data used in this study were collected between 2014 and 2019 in patients admitted to
the NCCU of Wrocław University Hospital (Wrocław, Poland). The study was approved
by the Ethics Committee at Wrocław Medical University (approvals no KB-624/2014 and
KB-134/2014) and conducted in adherence to the Declaration of Helsinki. ICP was mea-
sured invasively with intraparenchymal sensors inserted into the frontal cortex (Codman
MicroSensor ICP Transducer; Codman & Shurtleff, Randolph, MA, USA). ABP was mea-
sured with standard monitoring kits (Baxter Healthcare, CardioVascular Group, Irvine,
CA, USA) in the radial or femoral artery. The signals were recorded simultaneously using
ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK) with sampling frequency of
50 Hz or higher (up to 300 Hz; all signals were later resampled to 50 Hz in order to reduce
computation time taking into account earlier studies on recommended minimum sampling
rate for ICP pulse waveform analysis (Holm and Eide, 2009). Monitoring commenced on
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Figure 4.1. Illustrative example of a long-term intracranial pressure (ICP; top panel) and
arterial blood pressure (ABP; bottom panel) recording spanning approximately two days. Note
that the recording of both signals contains a number of short-term disturbances visible as sharp
drops and spikes which may have been caused e.g. by movement of the patient, tracheal suction,
arterial blood sampling etc.

day 1 or day 2 after admission to the hospital (depending on the time of surgery), with ad-
mission occurring in most cases on the day of injury. Patients were monitored throughout
their NCCU stay until medical indications prompted the decision to remove the ICP sen-
sor (average monitoring time: 5 ± 3 days). Patient condition in the NCCU was assessed
using the Glasgow Coma Scale (GCS) (Teasdale and Jennet, 1974; Teasdale et al., 2014).
Outcome was assessed three months after discharge from the hospital using the Glasgow
Outcome Scale (GOS) (Jennet and Bond, 1975; McMillan et al., 2016). An illustrative
example of long-term ICP and ABP recording is presented in Figure 4.1.

The patients included in retrospective analysis were selected based on availability and
sufficient quality of the ICP signal. The full dataset of 50 patients consisted of two groups
with different clinical diagnosis: TBI or aneurysmal subarachnoid haemorrhage (aSAH).
TBI patients (n = 39) were treated according to the American Brain Trauma Foundation
guidelines applicable at the time of admission (Bratton et al., 2007; Carney et al., 2017).
Patients with confirmed aSAH (n = 11) were treated according to the American Heart
Association/American Stroke Association guidelines (Connolly et al., 2012). While TBI
and aSAH are separate clinical entities with distinct pathophysiology, both are linked with
disturbance of the volume equilibrium in the intracranial space and consequently, both are
expected to produce changes in the ICP pulse waveform. Previous studies have sometimes
combined data from different pathologies to increase the number of available recordings
during development of computational tools (Hu et al., 2009; Scalzo et al., 2009). In this
study, the two groups formed separate datasets used for training/validation and testing
of the proposed neural network, respectively (see Section 4.3.3 for details).

Clinical characteristics of the TBI cohort are summarised in Table 4.1 and presented
in detail in (Mataczyński, Kazimierska et al., 2022).
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Table 4.1. Clinical characteristics of the traumatic brain injury cohort (39 patients). Data
are presented as number of occurrences (% of total group) or as median [first–third quartile].
GCS—Glasgow Coma Scale, GOS—Glasgow Outcome Scale; n—number of occurrences, Q1—
first quartile, Q3—third quartile. Modified from (Mataczyński, Kazimierska et al., 2022).

Parameter Value

Age [years] mean & range mean: 43, range: 20–85

Sex n (%) male: 27 (69%), female: 12 (31%)

GCS
median [Q1–Q3] 6 [5–8]

GOS at discharge
median [Q1–Q3] 3 [2–3]

30-days mortality
n (%) 4 (10%)

GOS after 3 months
median [Q1–Q3] 3 [1–4]

4.3 Methods

4.3.1 Problem formulation
The aim of this study was to design a comprehensive solution for classification of ICP
pulse waveforms in long term ICP recordings obtained from NCCU patients. In particular,
the algorithm was expected to accept a raw, unprocessed ICP signal and produce final
results without human intervention during the pre-processing or analysis stages (i.e. an
end-to-end approach). The problem could therefore be stated to encompass two separate
tasks: pulse onset detection followed by classification of individual waveforms (including
both valid waveforms and simultaneously identified artefacts) and described as obtaining
a mapping from the full-length ICP signal to a set of values containing the location of
each pulse and its detected class.

An overview of the proposed analysis pipeline is presented in Figure 4.2. In addition
to the four classes introduced by Nucci et al. (2016), a fifth class representing artefactual
waveforms was included to simultaneously identify distorted waveforms resulting from
disturbances either at the signal collection stage (e.g. patient movement, sensor displace-
ment, tracheal suction, etc.) or individual pulse detection stage (i.e. incorrectly marked
pulse onset points). This change was made in order to avoid adding a separate artefact
removal algorithm to the pipeline while still reducing the influence of invalid waveforms
on final results.
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Figure 4.2. Overview of the proposed approach to intracranial pressure (ICP) pulse waveform
classification with illustrative examples of waveforms from each class.

4.3.2 Individual pulse detection and processing
The modified Scholkmann algorithm, previously validated for use with neuroscience data
such as the ICP signal (Bishop and Ercole, 2018), was used for pulse onset detection.
Pulse detection was performed in full long-term recordings low-pass filtered with the
cutoff frequency of 10 Hz, taking into account studies that showed that the power of the
ICP signal is mostly contained in the frequency range below 8 Hz (Dai et al., 2020).

In order to remove the effect of differences in pulse length and amplitude on classifi-
cation results, the latter of which is strongly correlated with mean ICP and could vary
between patients despite comparable pulse shape, the pulses were scaled to an interval
from 0 to 1 and resampled to uniform length of 180 samples using cubic resampling. One
dimensional (1-D) vectors of normalised signal samples were used as input to the clas-
sification model. Other types of data representations were tested but did not improve
classification accuracy and were rejected (see Section 4.4.3).

4.3.3 Classification datasets
The recordings from 39 TBI patients were the source of the training/validation dataset
while the data from 11 aSAH patients formed a separate testing dataset used to assess
the ability of the proposed model to generalise to different data distributions. In both
cases a number of individual ICP pulse waveforms was selected randomly from full-length
recordings and manually assigned a waveform class by an expert researcher.

In the training/validation dataset, 21390 ICP pulses were selected. Corresponding
fragments of the ABP signal were extracted simultaneously to aid in manual classification
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as it has been shown previously that the systolic part of the ABP pulse correlates with
the position of peak P1 in ICP pulse and the slopes of both signals become increasingly
divergent with more pathological waveform shape (Carrera et al., 2010). Each example
was then annotated by an expert researcher. It was noted that pulses from the same
patient within one waveform class show a high degree of similarity. In order to prevent that
similarity from influencing the model’s generalisation ability, the patients were divided
into non-overlapping training and validation groups. A simple binary genetic algorithm
was used to separate pulses with approximately 2:1 ratio of training to validation examples
in each class. This resulted in a split into the training dataset with 14578 pulses and the
validation dataset with 6812 pulses. Pulses exhibiting features of two adjacent classes
or lacking agreement between the experts’ assessment were assigned two labels: ‘primary
class’ and a secondary ‘possible class’. This step was introduced in acknowledgement of
the fact that a four-category scale is inherently unable to capture the full range of ICP
shapes observed in the clinical setting.

In the testing dataset formed of aSAH patients, 650 pulses were selected in the
abovedescribed manner. The examples were manually annotated by a panel of three
expert researchers. Inter-rater agreement between the experts’ primary type annotations
was tested with the Fleiss κ test (Artstein and Poesio, 2008) with significance level of 0.05
and showed statistically significant substantial agreement in the reference classification
(κ = 0.700, 95% CI 0.672–0.728, p < .001).

The distribution of pulse examples between classes in all three datasets is presented
in Figure 4.3.

Figure 4.3. Distribution of examples between waveform classes in the training (total number
of pulses: 14578), validation (total number of pulses: 6812), and testing dataset (total number
of pulses: 650). Modified from (Mataczyński, Kazimierska et al., 2022).
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Figure 4.4. Architecture of used residual network: a) full architecture, b) detailed represen-
tation of the Downsampling Residual Block, c) detailed representation of the Residual Block.
Modified from (Mataczyński, Kazimierska et al., 2022).

4.3.4 Classification model and its evaluation
A number of different neural network models were investigated to achieve the highest
classification accuracy; this section describes the best performing model while the rejected
configurations are presented in Section 4.4.3.

The best performing model in terms of classification accuracy was a 1-D Residual Neu-
ral Network (ResNet) whose architecture and hyperparameters are presented in Figure 4.4
and Table 4.2, respectively. The convolution nodes are all 1-D convolution. The Resid-
ual and Downsampling Residual blocks are standard residual blocks with convolutions of
size 3 and group normalisation with 32 groups. The Downsampling block is also scaling
the input by adding stride 2 to the first convolution in the main branch and adding size 1
convolution with stride 2 and the same number of filters as the main branch to the skip
connection branch. The initial Downsampling blocks are used to reduce the size of the
processed tensors.

The hyperparameters were chosen through the empirical choice method across multiple
experiments. Training was performed for 100 epochs optimised by stochastic gradient
descent with Nesterov momentum of 0.95 and starting learning rate of 0.01 and using cross
entropy loss. Learning rate was lowered to 0.001 on epoch 33 and to 0.0001 on epoch 66.
Classification accuracy was evaluated based only on primary class annotations (standard
single-label accuracy, denoted ‘strict accuracy’) as well as both primary and possible class.
In the latter approach (denoted ‘best accuracy’), the prediction was considered correct if
the predicted class matched either of the manual annotations. The second scoring method
was introduced to test the model’s performance in cases where the experts allowed the
possibility of assigning the waveform to more than one class.
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Table 4.2. Hyperparameters of the residual network presented in Figure 4.4. Reproduced
from (Mataczyński, Kazimierska et al., 2022).

Layer number Layer type Hyperparameters

1 1-D Convolution Filters = 64, Window = 3, Stride = 1

2–3 Downsampling
Residual Block Filters = 64, Stride = 2

4–9 Residual Block Filters = 64, Stride = 1

10 Group Normalisation Groups = 32, Channels = 64

11 ReLU Not applicable

12 Average Pooling Adaptive to size 1

13 Dropout 0.6 probability during training

14 Fully Connected 64 inputs, 5 neurons

4.3.5 Potential for real-time processing
In order to test the best performing model’s potential to be employed in near real-time
analysis of the ICP recording in the clinical setting, a single illustrative recording was
processed in 10-second chunks and the computation times for pulse onset detection and
pulse classification were recorded. The recording was presented to the algorithm in chunks
because the pulse detection stage cannot be performed on individual signals samples, and
short fragments of the signal can be said to approximate continuous monitoring. The test
was performed on a machine with AMD Ryzen 99 3900XT (3.8–4.7 GHz) 12 core CPU
and Nvidia GeForce RTX 3090 GPU with 24 GB of VRAM.

4.3.6 The relationship between waveform class and other
derived indices

Full classification results were obtained in 35 TBI patients. Four patients from the initial
group used to develop the model were excluded from further analysis as their ICP record-
ings included large gaps (lasting more than several hours and likely related to procedures
performed as part of clinical management) that had no effect on single pulse classification
but could impact the analysis of the relationship between ICP pulse waveform class and
other metrics.

Additionally, each patient was characterised by metrics calculated over the full record-
ings: mean ICP, pulse amplitude of ICP (AmpICP), and RAP index. Both mean ICP
and AmpICP were calculated in 10-second windows as the average ICP value and the
amplitude of the fundamental component in the signal’s Fast Fourier Transform spec-
trum (frequency range 0.6–3 Hz), respectively. RAP index was calculated as the Pearson
correlation coefficient between mean ICP and AmpICP in 5-minute windows shifted every
10 seconds. The interpretation of the RAP index is presented in Section 1.4.2 of Chap-
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ter 1. Each pulse was then assigned a corresponding mean ICP, AmpICP, and RAP value
and each patient was characterised by mean ICP, AmpICP, and RAP averaged over all
pulses of given class.

Statistical analysis was performed using Statistica software (v13.1, Tibco, Palo Alto,
Ca, USA) and Python 3.7. Significance level of 0.05 was assumed in all analyses. Data
distributions were tested for normality using the Shapiro–Wilk test and the normality of
most of analysed variables was rejected. The relationships between waveform class and
other ICP-derived metrics (mean ICP, AmpICP, and RAP index) were assessed using
partial correlation coefficient between analysed variables.

4.4 Results

4.4.1 Model performance
Table 4.3 outlines the overall classification accuracy of the selected best performing ResNet
model. In the validation dataset comprised of TBI patients, the network achieved strict
accuracy of 93%, and in the independent testing dataset of aSAH patients, almost 82%.
The use of best accuracy score resulted in improved performance in both sets, with increase
up to 95% and up to 86% in the validation and testing dataset, respectively.

As shown by the confusion matrices (Figure 4.5), in both datasets classification errors
for the non-artefactual classes primarily occurred between adjacent classes (e.g. class 1
and 2), with a small number of cases where a normal waveform was marked as fully patho-
logical or vice versa. One exception was a relatively high number of mislabelled examples
between classes 2 and 4. Furthermore, in the validation dataset a large percentage of
incorrect class assignments concerned the artefact class (A+E).

Interestingly, detailed classification scores for each of the waveform classes (Table 4.4)
revealed additional differences between the validation and testing datasets. Only class 1
retained consistently high scores across both sets, with comparable precision, recall, and
specificity. In the validation set, the other four classes showed similar F1 scores, but class 2
exhibited higher precision balanced by lower recall, an inverse relationship than classes 3,
4, and A+E. Class 2 was also characterised by the lowest specificity. Conversely, in the
testing dataset specificity was visibly decreased for class 4 and so was recall, leading to
a markedly smaller F1 score. Moreover, the relationship between precision and recall for
classes 2 and A+E was reversed compared to the other dataset.

Table 4.3. Overall classification accuracy of the residual network model in different datasets.
N—total number of pulses in dataset. Modified from (Mataczyński, Kazimierska et al., 2022).

Parameter Training set
(N = 14578)

Validation set
(N = 6812)

Testing set
(N = 650)

Strict accuracy [%] 97.8 93.0 81.9

Best accuracy [%] 98.5 95.2 86.0

43



Chapter 4

Table 4.4. Detailed classification scores of the residual network model in the validation and
testing dataset. N—total number of pulses in dataset. Reproduced from (Mataczyński, Kazi-
mierska et al., 2022).

Validation set (N = 6812)

Score Class 1 Class 2 Class 3 Class 4 Class
A+E

Precision 0.95 0.94 0.75 0.76 0.73

Recall 0.95 0.72 0.90 0.93 0.99

F1 0.95 0.82 0.82 0.84 0.84

Specificity 0.97 0.88 0.99 0.99 0.99

Testing set (N = 650)

Score Class 1 Class 2 Class 3 Class 4 Class
A+E

Precision 0.95 0.76 0.73 0.98 0.91

Recall 0.90 0.93 0.93 0.55 0.74

F1 0.93 0.84 0.82 0.70 0.82

Specificity 0.98 0.98 0.97 0.88 0.97
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Figure 4.5. Confusion matrices of the residual network model for the a) validation dataset
(total number of pulses: 6912) and b) testing dataset (total number of pulses: 650). The number
in each tile shows how many examples with given true label were assigned to given predicted
class. The darker the tile, the higher the percentage of all pulses it represents. Modified
from (Mataczyński, Kazimierska et al., 2022).
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4.4.2 Potential for real-time analysis
The average processing time in a subset of 1000 10-seconds-long chunks of the ICP signal
was 0.027 [0.026–0.029] seconds per pulse. The average time of pulse detection was 0.020
[0.019–0.021] seconds per pulse and the average time of pulse waveform classification was
0.0075 [0.0070–0.0080] seconds per pulse, making up approximately 73% and 27% of the
full analysis time, respectively.

4.4.3 Rejected approaches to ICP pulse waveform classification
Different types of neural networks A fully connected network was used as a base-
line for comparison. The ResNet that proved to have the highest accuracy was selected
as a type of convolutional neural network capable of extracting morphological features
using both the given sample and the neighbouring samples with more stable error prop-
agation. While the proposed approach was intended for short signals (i.e. single pulses
approximately one second long), and therefore not expected to require the modelling of
long-term dependencies, a long-short term memory fully convolutional network was se-
lected to test the possibility that those dependencies are more relevant to the classification
problem. Additionally, models based on long-short term memory cells, gated recurrent
unit cells, and shallow convolutional neural networks with different configurations were
examined. The baseline fully connect network showed strict accuracy of 74% in the vali-
dation dataset and 69% in the testing dataset. None of the other modifications resulted
in improved accuracy compared to the ResNet model, with the second-best performing
option (long-short term memory fully convolutional network) achieving 89% and 78%
accuracy in the validation and testing dataset, respectively.

Different data representations In addition to the 1-D vectors of signal samples that
proved to be the most effective, different representations of the ICP pulse waveform were
investigated: Fourier transform coefficients, spectrograms, orthogonal Chebyshev polyno-
mials, empirical mode decomposition, radial basis function coefficients (as used by Nucci
et al. (2016)), as well as signal conversion into a representative two-dimensional image
(previously used in classification of valid vs artefactual pulses (Lee et al., 2019)). None of
them showed improvement over the normalised 1-D vector, and the additional approxima-
tion steps could potentially lead to a loss of information on the ICP pulse morphology, so
the alternative approaches were rejected. Another test included foregoing of the normali-
sation step in favour of presenting the pulses to the model with their original amplitudes.
However, this reduced the generalisation ability of the model, suggesting the shape of the
waveform is not directly connected to the pulse amplitude.

Furthermore, given the relationship between the ICP and ABP pulse, particularly the
increasing dissimilarity of the waveforms associated with rounding of the ICP pulse, the
possibility of using ABP as a second input to the model was tested. However, neither
attaching the signal as a second input channel to the convolutional layers nor training a
shared weights model of two univariate feature extractors had a positive effect on classi-
fication accuracy.
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Multi-label classification The multi-label approach was used with the same type of
networks but with separate sigmoids (classification threshold: 0.5) as output instead of a
softmax block. The results were comparable to single-label classification (e.g. ResNet with
a multi-label output achieved best accuracy of 95.6% compared to 95.2% in the standard
approach), and this option was rejected as it introduces an additional level of complexity
to the algorithm without a significant benefit in terms of accuracy.

4.4.4 The relationship between ICP pulse waveform class and
other ICP-derived indices

Both mean ICP and AmpICP increased with higher waveform class (Figure 4.6), with par-
tial correlation coefficients of 0.63 (p < .001) and 0.61 (p < .001), respectively, although
AmpICP levelled off for class 3 and 4. RAP index rose with the change in waveform class
from 1 to 3, but then presented a breakpoint with subsequent decrease for class 4, leading
to a much smaller (although still statistically significant) partial correlation coefficient of
0.26 (p = .004).

a b

c

Figure 4.6. The relationship between intracranial pressure (ICP) pulse waveform class and
derived parameters: a) mean ICP, b) spectral pulse amplitude of ICP (AmpICP), and c) in-
dex of compensatory reserve (RAP). Grey boxes represent the interquartile range, central line
represents the median value and whiskers extend to extreme values not including outliers. a.u.—
arbitrary units. Modified from (Kazimierska et al., 2021b).
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4.5 Discussion
The primary aim of this study was to assess the feasibility of using deep neural networks
to classify characteristic shapes of the ICP pulse waveform. The ResNet taking as input
1-D vectors of normalised signal samples was identified as the best performing model,
capable of classifying the ICP pulse waveforms in the validation set with 93% accuracy
(compared to 88% reported previously by Nucci et al. (2016)). The model also showed
good accuracy of 82% in the independent testing dataset. As the testing examples were
not only kept separate from the training and validation set but selected from a different
group of patients, they represent a distinct data distribution which produced different
classification scores for some of the analysed classes. Therefore, relatively high overall
accuracy in the testing dataset proves good generalisation ability of the model and shows
the possibility of applying it to other patient cohorts without a substantial degradation
of performance. This is further supported by the fact that the classification was carried
out at single pulse level and does not require information about the waveform’s position
in the full recording, making this approach robust to varying length of the recordings.

Moreover, the proposed algorithm was constructed as an end-to-end solution that
encompasses both identification of individual pulses in full recordings and their classifi-
cation, without the need for human intervention at any stage. The pulses are presented
to the model with minimal pre-processing (i.e. only resampling and normalisation) which
reduces the potential data loss associated with using techniques such as polynomial ap-
proximation or the Fourier transform. As invalid pulses constitute a separate waveform
class, errors in pulse onset detection and artefacts in collected signals (e.g. spikes, drops,
or waveform deformation) can also be marked simultaneously with valid waveforms and
excluded from any further analyses, potentially reducing the number of false positive
alarms during continuous monitoring. It has been shown previously that artefacts are
a significant source of alarms in the clinical setting (Imhoff and Kuhls, 2006) and their
removal improves the performance of various metrics used in the management of TBI pa-
tients (Lee et al., 2019). By treating those invalid pulses as a different waveform type, the
proposed algorithm removes the need for an additional artefact detection step, reducing
the overall complexity. In its current form, assuming sufficient hardware configuration,
this approach could work in near real-time, with the computation time for a 10-second
fragment of the signal shown to be much lower than 10 seconds. As long as the recording
is presented in chunks rather than as individual samples, therefore making pulse onset
detection possible, classification results could be obtained with only a slight delay.

However, it should be noted that in all datasets the use of best accuracy as a more
relaxed metric allowing for two classes to be considered correct for a given example im-
proved the model’s performance. It increased the accuracy up to 95% and up to 86%
for the validation and testing dataset, respectively. Combined with the fact that the ma-
jority of classification errors occurred between adjacent classes, this could suggest that a
four-category scale is an imperfect and too coarse representation of the gradual changes
in the ICP pulse waveform, and a number of pulses exhibit the features of more than one
class. This problem could potentially be rectified by introducing a more fine-grained clas-
sification or a more balanced training set. On the other hand, even though every wrong
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label leads to a decrease in overall classification accuracy, from the standpoint of clinical
interpretation a one-class error is less severe than inaccurately labelling a normal pulse
as pathological or vice versa, especially given the ambiguity of certain waveform shapes
observed by the experts performing manual annotations. A simple four-category scale,
although inherently unable to capture all the possible waveform shapes that manifest in
real-life recordings, is easy to comprehend while still representing the major changes in
ICP pulse morphology.

This is supported by the observation that the increase in ICP pulse waveform class was
accompanied by increases in both mean ICP and AmpICP. According to the P–V curve
(Marmarou et al., 1975) and the AMP–P characteristic (Szewczykowski et al., 1977), at
elevated mean ICP the pulse pressure is expected to rise while compliance is expected to
decrease, reflecting the underlying changes in intracranial volume. Higher mean ICP and
AmpICP observed for pulses assigned to higher waveform classes are in accordance with
the model of pressure–volume relationship in the cerebrospinal space. On the other hand,
the markedly lower degree of correlation between waveform class and the RAP index,
resulting from a non-linear relationship, could suggest that although both RAP and ICP
pulse class provide information on the state of the intracranial space, they do in fact
assess different aspects of the system, with RAP representing the patient’s cerebrospinal
compensatory reserve associated with their position on the P–V curve (Czosnyka and
Citerio, 2012). With such interpretation, waveform class roughly reflects the information
on cerebrospinal compliance expressed by the P1/P2 ratio (Nucci et al., 2016).

Interestingly, although higher waveform classes were generally associated with in-
creased mean ICP and AmpICP, they also occurred at ICP levels below the clinical
intervention threshold of 20 mm Hg (Carney et al., 2017), as shown by the range of ex-
tremes in Figure 4.6a. This is especially pronounced in class 4 which is characterised by
the largest dispersion of mean ICP values. While the incidence of pathologically altered
waveforms at elevated ICP is not by itself alarming on the basis of the P–V curve, it can
be seen that they are also present at relatively low mean ICP (even below 10 mm Hg).
This observation in particular suggests that the shape of the ICP pulse waveform is not
strictly dependent on mean ICP level but contains additional information on the state
of the intracranial space, and diminished cerebrospinal compliance detected before ICP
increases may be an early indicator for the medical personnel that the patient is at risk of
volume decompensation and should be closely monitored. Measurement of the ICP signal
is already recommended by internationally accepted guidelines for the management of
TBI (Carney et al., 2017), and currently available measurement systems generally permit
high enough sampling frequency to analyse the ICP pulse morphology in detail (Holm and
Eide, 2009). As the pulse waveform classification approach does not require manipulation
of the intracranial volume, is not additionally invasive, and overcomes the major limita-
tions of the peak detection method when combined with a neural network with sufficiently
high accuracy, this technique offers the potential to track such changes in cerebrospinal
volume compensation continuously, at the same time as the routinely monitored mean
ICP. In order to test this hypothesis, the assessment of clinical significance of ICP pulse
waveform morphology in TBI was continued in large, multi-centre study presented in
Chapter 5.
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4.5.1 Limitations
This study was conducted as retrospective analysis of a relatively small number of record-
ings collected in a single medical centre. Evaluation of the relationship between ICP pulse
waveform class and other ICP-derived indices was restricted to a homogenous cohort of
TBI patients treated according to the same management guidelines and characterised by
comparable clinical status scores. Moreover, the analysis was performed using param-
eters averaged over the whole recordings and without any length restrictions. Patients
with continuous episodes of elevated mean ICP were not separated from those with highly
unstable ICP, and no information on whether ICP-lowering interventions were introduced
in any cases was included. Consequently, the results of this study represent global trends
rather than short-term changes, and the performed analysis does not allow for differen-
tiating patients with gradual transition from normal to pathological pulse morphology
from those in whom the shape of the waveform was already pathologically altered when
the monitoring started. The latter can potentially explain the wide range of mean ICP
values associated with pathological waveforms of class 4 and should be investigated in
more detail.

Finally, while the accuracy scores of the selected neural network model generally sug-
gest a good ability to distinguish between different waveform classes, the algorithm is not
perfect, and the final results are likely to be influenced to a certain degree by classification
errors.
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The index of intracranial pressure
pulse waveform shape in traumatic
brain injury

The results presented in this chapter were submitted for publication as:
Kazimierska, A., Uryga, A., Mataczyński, C., Pelah, A., Czosnyka, M., Kasprowicz, M.,
and the CENTER-TBI high resolution sub-study participants and investigators. The shape
of intracranial pressure pulse waveform in traumatic brain injury: a CENTER-TBI study.
As of April 2022, the manuscript is under peer review in Scientific Reports journal.

5.1 Introduction
The results presented in Chapter 4 support the potential of using deep neural networks
to automatically classify characteristic shapes of the ICP pulse waveform. The prelim-
inary small, single-centre study also hinted at the relationship between ICP pulse mor-
phology and clinical outcome of TBI patients, as patients with good outcome generally
presented higher incidence of normal waveforms and lower incidence of pathological wave-
forms (Mataczyński, Kazimierska et al., 2022) as well as higher dominant waveform class
(Kazimierska et al., 2021b). However, a major limitation of the straightforward classi-
fication approach is the coarse, four-category scale. On the one hand, it removes the
requirement for precise peak delineation in the ICP pulse contour in favour of easy to
interpret visual criteria. On the other hand, the changes in the ICP pulse waveform are
gradual rather than step-like and a wide variety of shapes is observed in clinical recordings,
not all of them falling neatly into the predefined categories. Consequently, classification
of individual waveforms is not particularly well suited to monitoring of changes over time
as an alteration of the pulse shape will only become visible if the change exceeds one full
class, and instantaneous waveform shape does note reliably characterise the state of the
cerebrospinal system. It is possible to analyse the dominant class (i.e. the most frequently
occurring one) in a moving window (e.g. 5 minutes), but this approach still leads to loss
of information on pulse shape variability.

Taking that drawback into account, the aim of the final part of this dissertation was to
propose a new index describing the ICP pulse waveform based on automatic morphologi-
cal classification, called the pulse shape index (PSI). This metric is calculated in 5-minute
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Figure 5.1. Proposed interpretation of the pulse shape index in relation to changes in the
intracranial pressure–volume balance.

windows (shifted every 10 seconds) as the weighted sum of class numbers, with weights
corresponding to the fraction of non-artefactual pulses assigned to given class. Proposed
interpretation of the index in relation to the P–V curve is presented in Figure 5.1. In
contrast to plain class numbers, PSI would change gradually with the occurrence of dif-
ferent waveform shapes, allowing for a more precise characterisation of the trends in the
ICP signal. At the same time, it retains a simple interpretation, with values close to 1
indicating normal pulse morphology (mostly waveforms of class 1) and values close to 4
indicating pathological changes (mostly waveforms of class 4), and the ability to remove
artefacts prior to analysis, potentially improving the reliability of calculated indices. In
this work, PSI was evaluated in a large, multi-centre cohort of TBI patients from the
CENTER-TBI project in order to compare the results of the previous small, single-centre
study (Mataczyński, Kazimierska et al., 2022; Kazimierska et al., 2021b) with a more di-
verse group and further examine the potential usefulness of this approach in neurocritical
care, including the relationship between PSI and other ICP-derived indices of cerebral
pressure—volume compensation and cerebrovascular pressure reactivity which have been
shown to correlate with outcome in TBI patients (Holm and Eide, 2008; Badri et al.,
2012; Sorrentino et al., 2012). Moreover, the link between PSI and mortality after TBI
and between PSI and the presence of mass lesions in CT scans was investigated.
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5.2 Material
Data used in this work were collected as part of the high resolution sub-study of the
CENTER-TBI project, a large European study on TBI epidemiology and management
(Maas et al., 2015), and used with permission from the CENTER-TBI committee (ap-
proval no 359). The CENTER-TBI study (EC grant 602150) was conducted in accordance
with all relevant laws of the EU if directly applicable or of direct effect and all relevant
laws of the country where the Recruiting sites were located, including but not limited to,
the relevant privacy and data protection laws and regulations (the “Privacy Law”), the
relevant laws and regulations on the use of human materials, and all relevant guidance
relating to clinical studies from time to time in force including, but not limited to, the
ICH Harmonised Tripartite Guideline for Good Clinical Practice (CPMP/ICH/135/95)
(“ICH GCP”) and the World Medical Association Declaration of Helsinki entitled “Eth-
ical Principles for Medical Research Involving Human Subjects”. Informed Consent by
the patients and/or the legal representative/next of kin was obtained, accordingly to the
local legislations, for all patients recruited in the Core Dataset of CENTER-TBI and
documented in the e-CRF. Ethical approval was obtained for each recruiting site and the
list of approvals is available on https://www.center-tbi.eu/project/ethical-approval.

In the CENTER-TBI high resolution sub-study, ICP was monitored using intra-
parenchymal strain gauge probes (Codman ICP MicroSensor; Codman & Shurtleff Inc.,
Raynham, MA, USA) or parenchymal fibre optic pressure sensors (Camino ICP Monitor;
Integra Life Sciences, Plainsboro, NJ, USA). ABP was measured via radial or femoral
arterial lines connected to pressure transducers (Baxter Healthcare Corp. CardioVascular
Group, Irvine, CA, USA). The signals were recorded using ICM+ software (Cambridge
Enterprise Ltd., Cambridge, UK) and/or Moberg CNS Monitor (Moberg Research Inc.,
Ambler, PA, USA) with sampling frequency of 100 Hz or higher. Data for the CENTER-
TBI project were collected through the Quesgen e-CRF (Quesgen Systems Inc., USA),
hosted on the INCF platform and extracted via the INCS Neurobot tool (INCF, Sweden).
In this study, version CENTER Core 3.0 of the CENTER-TBI dataset was used.

The high resolution sub-study dataset was comprised of 282 patients; 203 were selected
for final analysis. The exclusion process is outlined in Figure 5.2. Patients below the age
of 16 were excluded to limit the analysis to adult TBI. Patients with EVDs were excluded
because the ICP pulse waveform is unavailable during drainage periods. Patients who
underwent decompressive craniectomy before the start of monitoring were excluded due
to the disturbance of the intracranial pressure–volume relationships caused by removal
of a part of the skull. However, recordings from patients who had the procedure while
monitoring was already in progress were still included up to the date of surgery. Patients
with CPP below 40 mm Hg or ICP over 50 mm Hg were excluded to eliminate evidently
terminal data. Furthermore, all included recordings were truncated to seven days post
injury as previous studies have shown that the predictive power of ICP-derived metrics is
limited to that period (Adams et al., 2017). Average monitoring time (median [first–third
quartile]) was 115 [66–157] hours.

The clinical status of the patients at admission was assessed using the GCS scores.
Mortality was assessed after six months using the Glasgow Outcome Scale Extended
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(GOSE) (Wilson et al., 1998), with patients separated into deceased (GOSE score 1) and
surviving (GOSE scores 2–8). Presence of mass lesions in CT scans (defined as mass
volume > 25 cc) was analysed in scans taken within the first seven days post injury and
the patients were divided into those who did or who did not exhibit mass lesions in that
period. Summary characteristics of the patient cohort are presented in Table 5.1.

Table 5.1. Clinical characteristics of the CENTER-TBI patient cohort (203 patients). Data
are presented as number of occurrences (% of total group) or as median [first–third quartile]
unless otherwise indicated. GCS—Glasgow Coma Scale, GOS—Glasgow Outcome Scale, ICU—
intensive care unit; n—number of occurrences, Q1—first quartile, Q3—third quartile, NA—data
not available.

Parameter Value

Age [years] mean & range mean: 48, range: 16–85

Sex n (%) male: 156 (77%), female: 47 (23%)

GCS at admission
median [Q1–Q3] 7 [3–11]

6-months mortality
n (%)

survived: 148 (80%),
deceased: 36 (20%), NA: 19

Mass lesions in CT scans
n (%)

absent: 100 (60%), present: 67 (40%),
NA: 36

Center-TBI database
n = 282

Analysed recordings
n = 207

Included pa�ents
n = 203

Excluded (n = 4)

ICP > 50 mm Hg (n = 2)
CPP < 40 mm Hg (n = 2)

Excluded (n = 75)

Age < 16 years (n = 4)
EVD (n = 36)
Craniectomy before 
monitoring (n = 29)
Low signal quality (n = 6)

Figure 5.2. Selection criteria for the final patient dataset included in analysis. EVD—external
ventricular drain, ICP—intracranial pressure, CPP—cerebral perfusion pressure.
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5.3 Methods

5.3.1 Pulse shape index and other ICP-derived parameters
All steps of the analysis were performed using programs custom-written in Python 3.7.
The basis of PSI calculation was formed by the algorithm for ICP pulse waveform clas-
sification using a ResNet model described in detail in Chapter 4. First, all individual
pulses were identified in long-term recordings and classified into one of five classes: nor-
mal (class 1), possibly pathological (class 2), likely pathological (class 3), pathological
(class 4), or artefacts. Prior to further analyses all pulses marked as artefacts were ex-
cluded from the recordings. Then, the following parameters were calculated: occurrence
of different waveform classes, dominant class, and PSI. Occurrence of each of the four
non-artefactual classes was expressed as the percentage of all pulses assigned to given
class in the whole analysis period, with all valid pulses making up 100%. Dominant class
was determined as the class occurring most frequently in the recording. These two metrics
represent the global characteristics of the ICP pulse shape for each patient.

In turn, PSI was calculated in 5-minute windows shifted every 10 seconds using the
following equation:

PSI =
4∑

i=1
i · pi, (5.1)

where i is the class number, i ∈ {1, 2, 3, 4}, and pi is the fraction of pulses assigned to
given class i expressed on a scale from 0 to 1. Occurrence of each waveform class in each
PSI analysis window was again estimated after artefact exclusion, i.e. with non-artefactual
pulses making up 100%. In contrast to pulse class percentages and the dominant class,
PSI reflects gradual changes in the ICP pulse shape in a shorter time scale. An overview
of the algorithm to obtain PSI as an extension of the ICP pulse classification pipeline is
presented in Figure 5.3.

Mean ICP and AmpICP were calculated in 10-second windows as the average and
peak-to-nadir value of the ICP signal, respectively. Cerebrovascular pressure reactivity
index (PRx) was calculated in 5-minute windows (window shift: 10 seconds) as the mov-
ing Pearson correlation coefficient between mean ICP and mean ABP (Czosnyka et al.,
1997b). PRx is an indirect measure of cerebral autoregulation that reflects the ability of
cerebral blood vessels to constrict or dilate in response to changes in ABP. As changes
in vessel diameter affect CBV, and in turn ICP, negative values of PRx indicate good
pressure reactivity. PRx below 0 implies that changes in ABP produce an opposite reac-
tion in ICP, indicating that an increase in mean ABP is followed by a decrease in CBV,
and consequently a decrease in mean ICP (or vice versa, a decrease in mean ABP is
accompanied by increases in CBV and mean ICP). Conversely, positive PRx suggests a
pressure-passive system with non-reactive vessels and changes in ABP and ICP occur-
ring in the same direction. In TBI patients, PRx above 0.3 is considered a predictor of
mortality (Sorrentino et al., 2012).
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Figure 5.3. Overview of the proposed approach to calculate the pulse shape index (PSI) as an
extension of the intracranial pressure (ICP) pulse waveform classification pipeline.

Finally, each patient was characterised by a PSI, mean ICP, AmpICP, and PRx value
averaged over the whole analysis period as well as metrics computed globally: dominant
waveform class and occurrence of each of the non-artefactual classes. An illustrative
example of changes in calculated metrics for a single patient is presented in Figure 5.4.
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Figure 5.4. Illustrative example of the time course of derived parameters (from top to bottom):
mean intracranial pressure (ICP), peak-to-peak pulse amplitude of ICP (AmpICP), pressure
reactivity index (PRx), and pulse shape index (PSI; black line) overlaid on classification result
of individual ICP pulse waveforms (red dots).

5.3.2 Statistical analysis
Statistical analysis was performed using Statistica software (v13.1, Tibco, Palo Alto, Ca,
USA) and Python 3.7. Significance level of 0.05 was assumed in all analyses. Data
distributions were tested for normality using the Shapiro–Wilk test and the normality of
most analysed variables was rejected. The relationship between PSI and other derived
indices was examined visually using boxplots over values grouped into bins of width
7.5 mm Hg, 5 mm Hg, and 0.2 for mean ICP, AmpICP, and PRx, respectively. Only bins
containing more than 1% of the data or more than 1 patient (whichever was larger) were
included in analysis. Similarly, the relationship between mean ICP and the remaining
parameters in different outcome groups was studied using boxplots over mean ICP bins
(bin width: 7.5 mm Hg). The Mann–Whitney U test was used to assess the differences
between the deceased and surviving group as well as between patients with or without
mass lesions in CT scans.
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5.4 Results

5.4.1 The relationship between PSI and other ICP-derived
indices

Figure 5.5 presents the relationship between PSI and derived indices: mean ICP, AmpICP,
and PRx. With the exception of the first bin, PSI generally rose non-linearly with increases
in all other parameters. In all cases the changes in PSI started at approximately 2–2.5,
indicating the presence of possibly pathological waveforms, and progressed towards likely
pathological waveforms of class 3, suggesting that even at low mean ICP the incidence
of pathologically altered waveforms was higher than that of normal pulse morphology.
However, while the range of PSI values for low mean ICP (< 15 mm Hg) and low PRx
(< 0) did not greatly exceed 2.5, for low AmpICP (< 5 mm Hg) both low and high PSI
were observed, as shown by the large dispersion of values compared to the other bins. On
the other hand, average PSI values approaching 4 were not observed even with high mean
ICP.

a b

c

Figure 5.5. The relationship between pulse shape index (PSI) and other derived parameters:
a) mean intracranial pressure (ICP), b) peak-to-peak pulse amplitude of intracranial pressure
(AmpICP), and c) pressure reactivity index (PRx). Black squares represent the median of each
bin and whiskers (bar) represent the interquartile range. a.u.—arbitrary units.
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5.4.2 The relationship between ICP pulse waveform class,
other derived indices, and outcome

Table 5.2 presents the occurrence of different waveform classes in two outcome groups.
Patients who survived exhibited increased occurrence of normal (class 1) and possibly
pathological (class 2) waveforms compared to patients who died, although only the differ-
ence for class 1 reached statistical significance. In contrast, deceased patients showed a
significantly higher incidence of both likely pathological (class 3) and pathological (class 4)
waveforms. In the surviving group, most of the pulses were assigned to classes 1 to 3,
and the occurrence of pathological waveforms was very low, with the average below 1%.
On the other hand, in patients who died the majority of pulses were classified as likely
pathological, and the incidence of classes 1 and 2 was markedly lower than class 3.

Table 5.2. Group-averaged occurrence of intracranial pressure pulse waveform classes (ex-
pressed as % of all non-artefactual pulses) in the deceased and surviving patient group. Results
are presented as median [first–third quartile] with Mann–Whitney U test p value. n—number
of patients in group, n.s.—result not statistically significant.

Parameter Deceased (n = 36) Survived (n = 148) p value

Class 1 [%] 0.4 [0.0–19.5] 19.3 [1.7–63.7] < .001

Class 2 [%] 12.6 [1.4–38.1] 22.7 [7.5–45] n.s.

Class 3 [%] 41.5 [18.8–82.6] 15.4 [1.9–55.3] .008

Class 4 [%] 3.6 [0.0–17.1] 0.2 [0.0–3.9] .015

Table 5.3. Pulse shape index (PSI), mean intracranial pressure (ICP), peak-to-peak pulse
amplitude of ICP (AmpICP), and pressure reactivity index (PRx) in the deceased and surviving
patient group. Results are presented as median [first–third quartile] with Mann–Whitney U test
p value. n—number of patients in group, a.u.—arbitrary units.

Parameter Deceased (n = 36) Survived (n = 148) p value

PSI
[a.u.] 2.8 [2.3–3.0] 2.2 [1.5–2.8] < .001

Dominant
class [a.u.] 3 [2–3] 2 [1–3] .003

Mean ICP
[mm Hg] 15.6 [11.7–18.9] 12.6 [9.6–15.5] .003

AmpICP
[mm Hg] 12.0 [10.1–15.9] 8.6 [7.0–10.8] ≪ .001

PRx
[a.u.] 0.10 [0.01–0.32] −0.02 [−0.12–0.08] < .001
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c Deceased
Survived

ba

Figure 5.6. The relationship between mean intracranial pressure (ICP) and derived indices:
a) pulse shape index (PSI), b) peak-to-peak pulse amplitude of ICP (AmpICP), and c) pressure
reactivity index (PRx) separated into the deceased (red symbols) and surviving (green symbols)
patient group. Squares represent the median of each bin and whiskers (bar) represent the
interquartile range. a.u.—arbitrary units.

All of the other parameters were significantly increased in patients who died compared
to those who survived (Table 5.3). As shown in Figure 5.6a, deceased patients exhibited
increased PSI (around 2.5 and higher) even at relatively low ICP, with no consistent trend
of changes in PSI with rising mean ICP. Conversely, in patients who survived PSI generally
increased with increasing mean ICP, with a pronounced change between lower (below
15 mm Hg) and higher (over 15 mm Hg) mean ICP range. AmpICP (Figure 5.6b) was
slightly higher for patients who died than those who survived at all mean ICP levels and
in both groups mostly rose with increasing mean ICP, but presented a breakpoint in the
last bin for patients who survived. PRx also behaved differently in deceased and surviving
patients (Figure 5.6c). In patients who survived, it remained at a similar level in all bins,
with values around 0 or slightly negative. In patients who died, it was approximately 0
at very low mean ICP, but rose with increasing mean ICP up to approximately 0.4.
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5.4.3 The relationship between ICP-derived indices and
presence of mass lesions

Patients who exhibited mass lesions in CT scans showed increased PSI compared to
patients who did not (median [first–third quartile]: 2.5 [2.0–3.0] vs 1.9 [1.2–2.6], p ≪ .001)
as well as slightly elevated mean ICP (14.2 [11.0–16.5] vs 12.1 [8.7–15.6], p = .007) while
no significant differences were observed for AmpICP and PRx. Distribution of PSI values
for patients with mass lesions was visibly shifted towards higher values (Figure 5.7b) but
still wider than for patients who died (Figure 5.7a), suggesting higher incidence of lower
PSI in this group.

a b
p < .001 p << .001

Figure 5.7. Distribution of pulse shape index (PSI) values in a) patients who survived (green
plot) vs patients who died (red symbols) and b) patients who exhibited mass lesions in CT scans
(red plot) vs patients who did not (green plot). Central white dots represent medians, black
rectangles represent the interquartile ranges, and vertical lines extend to the extreme values.
Brackets above the plots show the p values of Mann–Whitney U test (all differences statistically
significant).

5.5 Discussion
In this chapter, a new index describing the ICP pulse waveform morphology, called PSI,
was proposed, and its potential usefulness in neurocritical care was investigated in a
large, multi-centre cohort of TBI patients. As shown in Chapter 4, the use of deep neural
networks allows for automatic classification of characteristic shapes of the ICP pulse
waveform with satisfyingly high accuracy. However, while the classification approach itself
uses easily interpretable visual criteria for pulse morphology and is independent of precise
peak detection (and therefore does not require that pathologically rounded pulses are
excluded from analysis), it is not very well suited to tracking changes over time due to its
discrete four-category scale. PSI is an attempt to overcome this limitation by performing
the calculations in a moving 5-minute window and describing the pulse shape as a weighted
sum of class numbers, incorporating the information on class incidence in given analysis
period, thus producing a metric more appropriate for continuous monitoring. Unlike the
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percentages of each waveform class, it does not require simultaneous tracking of four
different parameters, and is presented on a continuous scale in contrast to the categorical
dominant class which can only assume a limited number of values.

Results of this investigation confirm the observations from the previous small, single-
centre study (Mataczyński, Kazimierska et al., 2022; Kazimierska et al., 2021b) that
patients with worse outcome exhibit pathological waveforms more frequently than the
good outcome group. Accordingly, patients who died also showed significantly increased
PSI, indicating more pathologically changed waveform shape and therefore reduced vol-
ume compensation compared to those who survived. Interestingly, the difference in PSI
was more pronounced at mean ICP levels below the clinical threshold for ICP-lowering
interventions (Carney et al., 2017). While elevated ICP itself is linked with worse out-
come in TBI (Badri et al., 2012), the contrasting PSI values for deceased and surviving
patients at low ICP suggest that the disturbance of intracranial volume equilibrium may
be observed earlier than changes in mean ICP and patients at risk of worse outcome may
be identified in advance. It also supports the view that ICP pulse morphology is not
solely dependent on mean ICP (Ellis et al., 2005), and the compensatory mechanisms of
CSF and cerebral blood displacement may already be compromised while ICP remains
normal (Heldt et al., 2019). Moreover, the trend of changes in PSI with increasing mean
ICP in the two outcome groups was clearly different. Taking into account the relationship
modelled by the P–V curve, cerebrospinal compliance is high at low mean ICP and low
intracranial volume, with small volume increments producing small changes in pressure,
but progressively reduced as the curve becomes exponential. As high PSI is considered
an indirect measure of diminished compliance, it is expected to increase with rising mean
ICP. Here, patients who survived did in fact show PSI mostly increasing with mean ICP,
although the relationship was non-linear, suggesting that the metric cannot be considered
strictly as an inverse on mean ICP. Patients who died, however, exhibited no consistent
trend, with high PSI regardless of the mean ICP level.

Conversely, AmpICP was significantly elevated in deceased patients, but its relation-
ship with mean ICP was similar for both groups, with higher AmpICP accompanying
higher mean ICP. According to the AMP–P plot, AmpICP is expected to rise with mean
ICP up to the breakpoint associated with the collapse of cerebral blood vessels at critically
elevated ICP. Therefore, the general trend observed in this study is in line with previous
investigations (Szewczykowski et al., 1977; Avezaat et al., 1979), as is the link between
large AmpICP and worse outcome in TBI (Holm and Eide, 2008). Interestingly, PSI was
non-linearly related with AmpICP, with higher PSI occurring even with low AmpICP.
While AmpICP is not a direct estimate of compliance due to the unknown stroke volume
contributing to the ICP pulse, it has been used as a surrogate measure (Szewczykowski
et al., 1977; Avezaat et al., 1979). The non-linear relationship with PSI suggests that
the two metrics reflect different aspects of the cerebrospinal system. Accordingly, one
previous study reported that in TBI patients AmpICP depends more on changes in CBV
during the cardiac cycle than on mean ICP, implying strong influence of vascular factors
(Carrera et al., 2010), while pulse waveform classification used to obtain PSI is based on
compliance-related changes in peak configuration as described in Chapter 4.
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The difference between PSI and AmpICP could also be seen in patients who did or
did not exhibit mass lesions in CT scans, as only PSI and mean ICP were significantly
different between those two groups. Increased PSI in patients who developed mass le-
sions confirms the link between ICP pulse morphology and the volume equilibrium in the
intracranial space, with pathologically altered waveforms occurring more frequently in
patients in whom that balance is disturbed by additional volume. Moreover, it is in line
with the association between PSI and worse outcome, as the occurrence of lesions may
lead to potentially life-threatening complications related to the mass effect on the brain
(Stocchetti et al., 2017). However, more in-depth examination is required to determine if
PSI is capable of predicting impeding changes before they become visible in CT scans or
if it corresponds to the extent of volume imbalance, e.g. the degree of midline shift which
was shown to correlate with elastance assessed by the VPR (Miller and Pickard, 1974).

Finally, increases in PSI were also associated with disturbed cerebrovascular pressure
reactivity reflected by increased PRx. The connection between PRx and outcome in TBI
has been investigated in various previous studies (Czosnyka et al., 1997b; Sorrentino et al.,
2012; Adams et al., 2017; Ai Åkerlund et al., 2020). In accordance with those earlier stud-
ies, in patients who died PRx rose substantially with mean ICP, indicating progressive
disruption of cerebral autoregulation, while in patients who survived it remained consis-
tently below or around 0. The relationship with PSI also suggests that diminished vessel
reactivity and reduced effectiveness of buffering cardiac changes in CBV affect the ICP
pulse shape. Based on analysis of the transfer function between ABP and ICP, Chopp
and Portnoy (1980) concluded that cerebral vasodilation that accompanies increases in
mean ICP is reflected in increased AmpICP due to decreased ability of the cerebral ves-
sels to attenuate the arterial pulse. The results of this study indicate that this effect is
visible not only in pulse pressure but also in its morphology. Moreover, the links between
PSI, mean ICP, AmpICP, and PRx highlight the need for multiparametric assessment
in TBI patients, as the intracranial volume–pressure relationship and CBF dynamics are
unquestionably strongly interconnected.

The latter observation was also explored in a co-authored paper on the relationship
between IH episodes and mortality in TBI (Mataczyński et al., 2022b) (accepted for publi-
cation). Recently, a study by Lee et al. (2021) showed the application of machine learning
in prediction of life-threatening IH, a subset of IH episodes defined as elevated ICP (in-
dicated by increased pressure–time dose (Kahraman et al., 2010) rather than a single set
threshold) with simultaneous compromised cerebrovascular reactivity (indicated by posi-
tive PRx value). The authors demonstrated that the occurrence of these life-threatening
IH events is correlated with mortality in TBI, thus introducing a new concept to ICP
monitoring. In (Mataczyński et al., 2022b), we combined the definition proposed by Lee
et al. with assessment of ICP pulse morphology using the classification model described
in Chapter 4 and compared the incidence of different types of life threatening IH episodes
(i.e. defined only based on ICP pressure–time dose, on pressure–time dose and PRx, or on
pressure–time dose and ICP pulse waveform class) in the CENTER-TBI database. The
study showed that pathological ICP waveforms of class 4 are present during ICP increases
almost only in patients who died, as 42% of deceased patients developed at least one such
episode during the analysis period compared to only 6% in the much larger surviving
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group. The morphology-based definition of life-threatening IH also outperformed the pre-
vious PRx-based one in terms of mortality prediction, suggesting again the potential of
using the ICP pulse waveform shape analysis in TBI management.

5.5.1 Limitations
This work was conducted as a retrospective analysis of data compiled during the CENTER-
TBI project. While the high resolution dataset was collected with the purpose of analysing
the ICP pulse waveform and recorded with sufficiently high sampling frequency, evaluation
of ICP pulse waveform morphology was not the primary objective of the study reflected in
the original study protocol. Furthermore, in this study outcome after TBI was expressed
as mortality after six months based on available clinical records. As TBI is a complex,
multifactorial condition, outcome after six months depends on a number of factors, not
all of which will be reflected as changes in the shape of the ICP pulse waveform. The
prognostic value of PSI should be assessed in prospectively collected data, taking into
account clinical metrics with known association with long-term outcome after TBI, such
as age and GCS. The link between presence of mass lesions and ICP pulse waveform
morphology should also be studied in more detail as in this work this relationship was
examined based only on a binary description of the patients’ CT scans.

Secondly, calculation of PSI as a weighted sum of class numbers in a moving window
partially overcomes the limitations of the discrete four-category scale used in ICP pulse
waveform classification as gradual changes in pulse shape can be captured more easily
by PSI than by simple class numbers. However, this approach still relies on the under-
lying neural network which is characterised by high but not perfect accuracy. Therefore,
classification errors cannot be avoided and may influence PSI estimation.
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Conclusions and
directions for future studies

Continuous monitoring of mean ICP has been an essential part of neurocritical care for
more than half a century. In the 1980s, studies suggested that short-term variations in the
ICP signal over a single cardiac cycle may provide additional information on the state of
the intracranial pressure–volume compensation and improve the management of intracra-
nial pathologies, but interest in this approach waned in the following decades. However,
the advent of novel signal processing methods and machine learning approaches in recent
years offered new possibilities for ICP pulse waveform analysis. The work presented in
this dissertation was undertaken to revisit the concept of ICP pulse waveform morphol-
ogy as a measure of cerebrospinal compliance and propose a new method of monitoring
cerebrospinal volume compensation, taking those technological advances into account.
Firstly, it was demonstrated that the ratio of characteristic peaks P1 and P2 of the ICP
pulse waveform provides information on relative changes in cerebrospinal compliance in
good agreement with the ‘gold standard’ method based on volumetric manipulation. This
study proved for the first time that the P1/P2 peak ratio can be considered as an indi-
rect measure of compliance (Hypothesis 1). In order to overcome the requirement for
precise peak identification that could limit the applicability of this method in continuous
monitoring, a neural network model was developed to classify characteristic shapes of the
ICP pulse waveform reflecting the changes in peak configuration. In contrast to previously
suggested methods, the proposed algorithm does not include peak delineation and it takes
advantage of the benefits offered by deep neural networks as the ICP signal is presented
to the model with minimal pre-processing. The model achieved high accuracy and good
generalisation in data obtained from long-term recordings of TBI patients, proving Hy-
pothesis 2. The initial single-centre study conducted in a small number of TBI patients
also suggested that occurrence of pathologically changed waveforms is linked to clinical
outcome after TBI. However, as a categorical variable taking only one of four possible
values, the dominant waveform class used in that investigation was found to be ill-suited
for continuous monitoring of changes in ICP pulse morphology. Therefore, further studies
were performed in order to propose a more appropriate measure and assess its clinical
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significance in the management of TBI. This led to introduction of a new index, called
PSI, which describes the shape of the ICP pulse waveform based on the results of pulse
classification but is presented on a continuous scale and is suitable for tracking changes
in ICP pulse morphology over time. A study in a large, multi-centre cohort of TBI
patients showed that PSI is strongly correlated with outcome after TBI, which proved
Hypothesis 3.

The work presented in this dissertation was aimed at combining the existing body of
knowledge on compliance-related changes in the shape of the ICP pulse waveform with
advances in the field of machine learning. The belief that assessment of cerebrospinal
compliance could aid in the management of TBI patients, especially as a tool for predicting
impending decompensation and potentially life-threatening episodes of elevated ICP, was
expressed by numerous authors over the years, some of them quite recently, even though
the various direct and indirect measures of compliance proposed to date have not yet found
their place in standard clinical practice. The use of a validated index of cerebrospinal
volume compensation as a secondary modality describing brain homeostasis would be
strongly in line with the multimodal monitoring protocols common in modern neurocritical
care units.

The evidence presented in this dissertation may lead to renewed interest in contin-
uous monitoring of cerebrospinal compliance by means of morphological analysis of the
ICP pulse waveform and result in more effective management of patients with intracra-
nial pathologies, as there remain a number of avenues to explore in future studies. The
presented studies showed that pathologically changed ICP pulse waveforms may appear
even in the absence of ICP elevation, contradicting the view that compliance is strictly
dependent on mean ICP. Further investigation of temporal changes in ICP pulse mor-
phology compared to mean ICP will be conducted to assess if the former can be used as
an indicator of imminent hypertensive episodes, again making use of the potential of deep
learning algorithms as they have shown good performance in various forecasting tasks
but so far found limited application in ICP analysis. A well-performing model for early
prediction of ICP elevation remains one of the missing, and potentially crucial, elements
of neurocritical care in TBI. The shape of the ICP pulse waveform assessed using PSI
will also be studied during clinically significant events such as ICP plateau waves or con-
trolled hypocapnia to add new insights on the pressure–volume compensation mechanisms
in different scenarios. Moreover, it remains to be seen if changes in ICP pulse shape are
correlated with known measures derived from imaging studies, such as midline shift or
ventricular dilation, as the relationship between ICP pulse morphology and presence of
mass lesions explored here suggests the former’s potential importance in assessing the
changes in brain structure.

The ICP pulse waveform classification approach will also be explored further with
regard to the relationship between ICP pulse morphology and the shapes of ABP and
CBFV pulses. As the cerebrospinal system can be (to a certain extent) regarded as
converting blood pressure pulsations to pulsatile blood flow and further to the ICP pulse
waveform, it stands to reason that changes in ABP and CBFV pulse morphology may
influence the ICP waveform. Deep learning algorithms, shown in this dissertation to be
capable of successfully differentiating various ICP pulse shapes, will be used to propose a
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complementary model for ABP pulse classification. This, in turn, will provide the means
for concurrent evaluation of both pressure waveforms in the large, multi-centre database
of long-term recordings from TBI patients that is not burdened by the assumptions and
limitations of the previously applied Fourier transform-based systems analysis.

Finally, while this dissertation focused on the significance of monitoring the ICP pulse
waveform morphology in TBI patients, it can also be studied in hydrocephalus, as in-
dicated in the original study by Nucci et al. Currently, hydrocephalus patients usually
undergo infusion tests in order to evaluate the state of CSF dynamics or shunt function.
Automatic classification of ICP pulse shapes could complement the standard protocol or
reduce the need for external volumetric manipulation if ICP pulse morphology is proven
to contain meaningful information on cerebrospinal volume–pressure relationship in this
group.
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Abstract
Background Cerebrospinal compliance describes the ability of the cerebrospinal space to buffer changes in volume. Diminished
compliance is associated with increased risk of potentially threatening increases in intracranial pressure (ICP) when changes in
cerebrospinal volume occur. However, despite various methods of estimation proposed so far, compliance is seldom used in
clinical practice. This study aimed to compare three measures of cerebrospinal compliance.
Methods ICP recordings from 36 normal-pressure hydrocephalus patients who underwent infusion tests with parallel recording
of transcranial Doppler blood flow velocity were retrospectively analysed. Three methods were used to calculate compliance
estimates during changes in the mean ICP induced by infusion of fluid into the cerebrospinal fluid space: (a) based on
Marmarou’s model of cerebrospinal fluid dynamics (CCSF), (b) based on the evaluation of changes in cerebral arterial blood
volume (CCaBV), and (c) based on the amplitudes of peaks P1 and P2 of ICP pulse waveform (CP1/P2).
Results Increase in ICP caused a significant decrease in all compliance estimates (p < 0.0001). Time courses of compliance
estimators were strongly positively correlated with each other (group-averaged Spearman correlation coefficients: 0.94 [0.88–
0.97] for CCSF vs. CCaBV, 0.77 [0.63–0.91] for CCSF vs. CP1/P2, and 0.68 [0.48–0.91] for CCaBV vs. CP1/P2).
Conclusions Indirect methods, CCaBV and CP1/P2, allow for the assessment of relative changes in cerebrospinal compliance and
produce results exhibiting good correlation with the direct method of volumetric manipulation. This opens the possibility of
monitoring relative changes in compliance continuously.

Keywords Intracranial pressure . Cerebrospinal compliance . Infusion test . Cerebral arterial blood volume . Pulse waveform

Introduction

In adults, the skull is a closed non-distensible box filled with
three volume components: brain tissue, cerebral blood, and

cerebrospinal fluid (CSF) [16]. According to the Monro–
Kellie doctrine, in the long-term—and under normal
conditions—increases in the volume of one component are
compensated by decreases in the volume of another, maintain-
ing the total volume at an approximately constant level [20].
However, in the short-term scale, considering pulsatile blood
flow, for a part of the cardiac cycle, total blood volume in-
creases and then decreases, leaving total volume changes
equal to zero [2]. This produces rhythmic instability of the
intracranial pressure (ICP) signal, known as ‘pulse wave-
form’. The ability of the cerebrospinal space to accommodate
changes in volume is quantified by a parameter called com-
pliance which links changes in volume with corresponding
changes in pressure [23]. Low compliance puts the system at
risk of disproportionately large increases in ICP for even small
increases in intracranial volume, potentially leading to intra-
cranial hypertension [21]. To measure cerebrospinal compli-
ance, external gradual volume addition into the cerebrospinal
space is needed, which is a limitation preventing continuous
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monitoring.We aimed to examine and compare three methods
of assessment of cerebrospinal compliance. One is a ‘golden
standard’ based on external volume load, and two others rely
on the evaluation of changes related to blood stroke volume
over heart period. These two, if they are linked to ‘gold stan-
dard’ compliance, would allow for continuous monitoring in
various clinical scenarios, for instance, hydrocephalus ICP
monitoring or traumatic head injury (TBI) and subarachnoid
haemorrhage neuro-intensive care monitoring.

The infusion study is a type of volume–pressure test based
on the injection of additional volume into the cerebrospinal
space that allows for the estimation of compensatory parame-
ters, including cerebrospinal compliance, from amathematical
model of CSF circulation [13]. In the present work, we com-
pared compliance estimates obtained with the model of CSF
dynamics (the ‘gold standard’ method) during changes in the
mean ICP induced by constant rate infusion of fluid into the
CSF space in normal-pressure hydrocephalus (NPH) patients
with two other measures: based on the estimation of changes
in cerebral blood volume (CBV) in each cardiac cycle and
based on the analysis of changes in the ratio of characteristic
peaks P1 and P2 of ICP pulse waveform. The study offers new
insight into the feasibility of using the P1/P2 ratio and evalu-
ation of changes in CBV as a tool for continuous monitoring
of compliance of the cerebrospinal space.

Materials and methods

Data acquisition

Data from patients who underwent infusion studies with
simultaneous recording of ICP and cerebral blood flow
velocity (CBFV) signals at Addenbrooke’s Hospital
(Cambridge, UK) between 1993 and 1998 were selected
for retrospective analysis in this study. Selection of pa-
tients was made on a basis of good quality of ICP pulse
waveform and CBFV recording, and only those tests
where the shape of the pulse waveform of ICP presented
both P1 and P2 peaks were classified as suitable for anal-
ysis. Out of the full group of 72 considered recordings, 36
were chosen. Sixteen recordings (22%) were excluded be-
cause of rounded ICP pulse waveform that did not allow
for the identification of both characteristic peaks, and 20
recordings (28%) were excluded due to insufficient qual-
ity of either ICP or CBFV signals. The data were collect-
ed as part of routine clinical investigation following diag-
nosis of NPH. Ethics committee approval to record ICP
and CBFV using transcranial Doppler (TCD) ultrasonog-
raphy was obtained.

The computerized infusion test was performed with two
hypodermic needles (25 gauges). One of the needles was
used for ICP measurement and connected to a pressure

transducer through a saline-filled tube. The second needle
was used for infusion and connected to an infusion pump
containing a pressure amplifier (Simonsen & Will, Sidcup,
UK). The infusion of normal saline into the CSF space was
performed at the rate of 1.5 ml/min. The test began with
10 min of baseline recording of ICP before the start of the
infusion. Infusion continued until the increase in ICP
reached either the plateau phase or the maximum accept-
able level of 40 mm Hg, and the recordings were further
collected until ICP returned to baseline level. CBFV in the
middle cerebral artery was monitored during the test using
a TCD unit (Neuroguard; MedaSonics, Fremont, CA,
USA) with a 2-MHz probe locked in a stable position using
a commercially available fixation system. Twenty-six re-
cordings included also arterial blood pressure (ABP) mon-
itored noninvasively using a photoplethysmographic sys-
t em (Finapres ; F inap res Medica l Sys t ems , the
Netherlands).

An analogue-to-digital converter (DT 2814; Data
Translation, Marlboro, USA) connected to an IBM AT laptop
computer (Amstrad ALT 386 SX; Amstrad, Brentwood, UK)
was used for the collection of data from the pressure monitors
and the TCD system. The signals were sampled at frequency
ranging from 30 to 50 Hz using custom software for wave-
form recording (WREC;W. Zabolotny,WarsawUniversity of
Technology, Warsaw, Poland). An illustrative example of re-
corded signals is presented in Fig. 1.

Three methods of estimation of cerebrospinal
compliance

The relationship between pressure and volume in the intracra-
nial space is described by an exponential function known as
the pressure–volume curve, which shows that changes in ICP
increase progressively with the mean ICP [29]. Traditionally,
measurement of the pressure response requires external ma-
nipulation of intracranial volume, such as bolus injection or
constant rate infusion [18, 24]. A different approach to com-
pliance estimation relies on the possibility of measuring
changes in CBV alongside ICP. However, a method based
on magnetic resonance imaging [1], although potentially ac-
curate, is currently only applicable to the evaluation of instan-
taneous, or ‘snapshot’, values, and continuous estimation of
changes in CBV using TCD recordings of CBFV in large
cerebral arteries [19] does not allow for calibration of obtained
values due to the unknown cross-sectional area of insonated
vessels.

It has also been suggested that information about cerebral
compliance may be extracted from the pulse waveform of ICP
itself [6]. Three major features commonly used to characterize
ICP pulse waveform are peaks P1, P2, and P3 [16]. Although
the precise origin of those peaks is not universally agreed
upon, the shape of the ICP waveform is believed to arise from
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changes in both ABP and CBV [7]. Under normal circum-
stances, P1 dominates over the other two peaks, resulting in
a saw-tooth appearance of the waveform (Fig. 2a). As the
mean ICP increases, so does the amplitude of characteristic
peaks. However, the change is not uniform, and rising prom-
inence of P2 (Fig. 2b) eventually leads to a rounded or trian-
gular waveform with indistinguishable P1 and P3 [9, 10].
Given the relatively larger changes in the magnitude of the
P2 component, it has been suggested that the ratio of peak
amplitudes, P1/P2, may provide information about cerebral
compliance. Still, despite its potential as a means for long-
term monitoring of the state of the cerebrospinal space, very
little attention has been devoted to the application of this pa-
rameter in the evaluation of cerebral compensatory reserve.

In the present study, three methods were used to obtain
estimates of cerebrospinal compliance: (a) based on a model
of CSF dynamics, (b) based on evaluation of changes in CBV,
and (c) based on the ICP pulse waveform. Assessment of
model-based parameters describing CSF dynamics (a) was
performed using built-in algorithms of specialized software

(ICM+; Cambridge Enterprise, Cambridge, UK). All other
analyses were performed using programmes custom-written
in Python 3.8.

Model of cerebrospinal fluid dynamics

The first estimate of cerebrospinal compliance (denoted CCSF

from ‘cerebrospinal fluid dynamics’) was obtained from a
ma thema t i c a l mode l o f CSF vo lume–p r e s su r e
compensation [12]. Under normal conditions, in the absence
of long-term fluctuations in cerebral blood volume, it is as-
sumed that the production of CSF is balanced by its storage
and reabsorption. Including external CSF infusion, this can be
described by the following relationship:

production of CSFþ infusion

¼ storage of CSFþ reabsorption of CSF ð1Þ

The rate of CSF production is assumed to be constant. I(t)
is the rate of the external volume infusion (e.g.,1.5 ml/min in

a

b

c

Fig. 1 Illustrative example of signals recorded during the infusion test for a single patient. Grey vertical lines indicate the start and end of constant rate
(1.5 ml/min) infusion. a Intracranial pressure (ICP). b Cerebral blood flow velocity (CBFV). c Arterial blood pressure (ABP)
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the present study). The rate of CSF storage (Is) is proportional
to cerebrospinal compliance (C) and depends on the derivative
of CSF pressure (P) over time (dP/dt):

I s ¼ C
dP
dt

ð2Þ

Compliance is in turn inversely proportional to the gradient
of CSF pressure and reference pressure (P0):

C ¼ 1

E P−Poð Þ ð3Þ

where E is cerebral elasticity. The rate of CSF reabsorption
(Ir) is proportional to the gradient between CSF pressureP and
pressure in the sagittal sinuses (Pss):

I r ¼ P−Pss

Rout
ð4Þ

where Rout describes the resistance to CSF outflow.
Relationship (3) is considered valid only above certain pres-
sure level described as ‘lower breakpoint pressure’. It is the
pressure above which the cerebrospinal pressure–volume
curve becomes exponential. Below this pressure, the
pressure–volume relationship is linear. The combination of
Eqs. (1) to (4) produces the final equation:

1

E P−P0ð Þ
dP
dt

þ P−Pb

Rout
¼ I tð Þ ð5Þ

where Pb is the baseline pressure.

Parameters Rout, E, and P0 were estimated for ICP record-
ings used in this study based on the analytical solution of Eq.
(5) for constant rate infusion. E and P0 were then used to
obtain estimates of cerebrospinal compliance over the course
of the infusion test from Eq. (3). To maintain cohesion with
the other two pulse-by-pulse methods of estimation, the mean
ICP over each cardiac cycle was taken as P(t).

Evaluation of pulsatile changes in cerebral blood volume

The second estimate of cerebrospinal compliance (denoted
CCaBV from ‘cerebral arterial blood volume’) was obtained
from a mathematical model of cerebral blood circulation using
the approach described by Kim et al. [19]. The change in CBV
over a single cardiac cycle can be expressed as the difference
between arterial inflow (CBFa) and venous outflow (CBFv):

ΔCBV tð Þ ¼ ∫tt0 CBFa sð Þ−CBFv sð Þð Þds ð6Þ

where t0, t are the beginning and end of the cardiac cycle,
respectively, and s is the variable of integration. Given the
assumption that venous outflow has low pulsatility compared
to arterial inflow, the former can be approximated by a con-
stant flow equal to averaged arterial inflow:

ΔCaBV tð Þ ¼ ∫tt0 CBFa sð Þ−meanCBFað Þds ð7Þ

a b

Fig. 2 Illustrative examples of intracranial pressure (ICP) pulse wave-
forms from two different patients. Location of peaks P1 and P2 is indi-
cated by cross (P1) and star (P2) signs. ICP signals are plotted with solid
black lines. Additional signals used in the process of peak detection are
plotted as dashed (arterial blood pressure (ABP)) and dotted (cerebral

arterial blood volume (CaBV)) lines. All signals are normalized and
aligned with regard to pulse onset location. Vertical lines indicate the
correlation between the position of peaks P1 and P2 and the local maxima
of the ABP (dashed line) and CaBV (dotted line) waveforms, respectively
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Furthermore, cerebral arterial blood flow can be
expressed as cerebral blood flow velocity multiplied by
cross-sectional area of the vessel. Using TCD recordings
of CBFV in cerebral arteries and assuming that the cross-
sectional area of insonated vessel remains constant, Eq.
(7) can be approximated as

ΔCaBV nð Þ ¼ Sa � ∑n
i¼1 CBFVa ið Þ−meanCBFVað ÞΔt ið Þ ð8Þ

where n is the number of samples from the beginning of the
cardiac cycle,Δt is the time interval between two consecutive
samples, and Sa is the unknown cross-sectional area of
insonated vessel.

Based on pulsatile signals CaBV and ICP, cerebrospinal
compliance (C) can be estimated as

C ¼ AMPCaBV

AMPICP
ð9Þ

where AMPCaBV and AMPICP are the amplitudes of funda-
mental components of CaBV and ICP, respectively. However,
due to unknown Sa, resulting values of C cannot be calibrated
in units of ml per mm Hg.

In this study, CaBV was estimated from Eq. (8) based on
CBFV recordings in the middle cerebral artery. Peak-to-peak
amplitudes of CaBV and ICP in each cardiac cycle were then
used to obtain pulse-by-pulse estimates of cerebrospinal com-
pliance using Eq. (9).

ICP waveform analysis

The third estimate of cerebrospinal compliance (denoted CP1/

P2 from the P1/P2 amplitude ratio) was based on the analysis
of the ICP pulse waveform. Prior to the analysis, ICP, CBFV,
and ABP (where available) signals were filtered using a low-
pass filter with the cut-off frequency of 10 Hz. Individual
pulses in the ICP signal were identified using a modified
Scholkmann algorithm [4]; corresponding sections of CBFV
and ABP signals were extracted based on pulse onset loca-
tions from ICP. For the purpose of peak annotation, each pulse
was normalized and linearly detrended, and the three signals
were aligned with regard to pulse onset in order to remove the
phase shift resulting from distance between measurement
sites.

A semi-automated algorithm based on the detection of
the local maxima was used for peak identification. The
algorithm incorporated information about the local maxi-
ma of ABP and CaBV (derived from the CBFV signal
using Eq. (8)), taking into account observations from pre-
vious studies which showed that P1 is associated with the
propagation of the pulse pressure wave through cerebral
arteries and usually coincides with the systole of ABP,

while P2 is derived from arterial blood volume load and
coincides with the maximum of CaBV [8, 15]. In each
pulse waveform, the local maxima of ICP corresponding
to the position of maxima in ABP and CaBV were select-
ed as candidates for P1 and P2, respectively. In the ab-
sence of the ABP signal, the first maximum of the CBFV
signal was used instead to identify P1 candidates. Full
detection results were reviewed and manually corrected
in cases of insufficient detection accuracy, particularly in
pathologically rounded waveforms. Pulses with distorted
ICP waveform or unidentifiable P1 and P2 were excluded
from further analyses. Illustrative examples of ICP pulse
waveforms with peak annotations are presented in Fig. 2.

The amplitude of peaks P1 and P2 in each pulse was
calculated as the vertical distance to the preceding local
minimum identified as pulse onset. Pulse-by-pulse P1/P2
amplitude ratio was then used as a compliance estimate.

Statistical analysis

Statistical analyses were performed using Python 3.8 with
the built-in methods included in the SciPy 1.5.0 package.
The Shapiro–Wilk test with a significance level of 0.05
was used to assess normality of data distributions. Upon
rejection of the normality hypothesis for most of the
analysed variables, non-parametric methods were chosen
to analyse the relationship between compliance estimates.
Time courses of compliance estimates obtained for indi-
vidual patients with each of the three methods were com-
pared with each other and with ICP using the Spearman
correlation coefficient. To reduce the effect of difference
in time scales used in compliance estimation, 30-pulse
moving averages were used.

In order to compare the ‘high’ and ‘low’ compliance
states reflecting the baseline and plateau phase of the in-
fusion test, 1-minute-long fragments of the recordings
where all three compliance estimates could be obtained
were selected manually. Due to significant distortion of
the ICP pulse waveform during baseline in a number of
recordings, the initial stage of infusion was selected in-
stead as baseline. Two patients for whom baseline values
were not available either due to low quality of the ICP
signal or the lower breakpoint pressure limit used in esti-
mation of CCSF were excluded from this part of the anal-
ysis. Values averaged over the baseline and plateau
phases of the infusion test were compared using the
Wilcoxon signed rank test. The same methods were used
to determine the significance of changes in amplitude of
peaks P1 and P2.

A significance level of 0.05 was assumed in all statistical
tests. All group-averaged values are presented as median [first
quartile–third quartile].
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Results

Patient characteristics

The mean age of the patients was 54 years (range, 27–76
years). The patients showed ventricular dilation marked by
increased bicaudate index (mean, 0.27; range, 0.14–0.39),
and 14% showed white matter ischemia. Initial ICP in the
group was 8.7 [3.8–11.4] mm Hg. Group-averaged Rout and
elasticity were 12.1 [8.9–15.8] mm Hg/(ml/min) and 0.19
[0.14–0.33] ml−1, respectively.

Amplitude of peaks P1 and P2 during changes in
mean ICP

Figure 3 shows an illustrative example of the time courses of
P1 and P2 amplitude during infusion test for a single patient.
The rise in the mean ICP during infusion resulted in an in-
crease in amplitude of both P1 and P2 (p < 10−6), with a
visibly larger change for P2: up to 6.22 [4.44–8.35] mm Hg
mm Hg from baseline amplitude of 3.52 [2.44–4.49] mm Hg
vs. 4.23 [2.7–4.74] mm Hg from baseline of 2.51 [1.44–3.56]
mm Hg for P1. While baseline P1/P2 ratio varied between
patients, with some patients exhibiting pronounced P1 (P1/
P2 > 1) and some already showing increased P2 (P1/P2 <
1), the P1/P2 ratio during plateau fell to around 1 and below.
Time courses of both amplitudes were strongly correlatedwith
changes in the mean ICP; however, slightly higher correlation
was observed for P2 (group-averaged correlation coefficient
equal 0.98 [0.93–0.99] vs. 0.95 [0.82–0.96] for P1). The mag-
nitude of decrease in P1/P2 ratio between baseline and plateau
phases was not correlated with either baseline ICP, change in

ICP, or elasticity estimated based on the CSF dynamics mod-
el. It showed weak although statistically significant, inverse
correlation with baseline P1/P2 ratio (R = –0.38, p = 0.03; Fig.
4), with largest changes observed in cases where baseline ICP
waveform contained P1 dominating over P2. Figure 5 shows
an example of changes in ICPwaveform between baseline and
plateau for patients with high and low baseline P1/P2 ratio.

Comparison of three estimates of cerebrospinal
compliance

Figure 6 shows an illustrative example of the time courses of
compliance estimates obtained with each of the three methods
for a single patient. Compliance estimates were positively and
statistically significantly (p < 0.05) correlated: 0.94 [0.88–
0.97] for CCSF vs. CCaBV, 0.77 [0.63–0.91] for CCSF vs. CP1/

P2, and 0.68 [0.48–0.91] for CCaBV vs. CP1/P2. Similarly, com-
pliance estimates CCaBV and CP1/P2 showed inverse correla-
tion with the mean ICP, although the correlation was stronger
for CCaBV (−0.82 [−0.71–−0.86]) than CP1/P2 (−0.71 [−0.46–
−0.79]); as CCSF was calculated using the mean ICP itself, this
pair of parameters was not compared.

Between baseline and plateau phase of the infusion test,
group-averaged mean ICP increased from 13.4 [9.5–16.5] to
22.6 [18.7–28.0] mm Hg. Accordingly, all three methods
showed a statistically significant decrease in compliance esti-
mates between baseline and plateau (Wilcoxon signed rank
test p-value < 10−4) but with a varying degree of absolute
changes, with the largest change observed for the values ob-
tained with the CaBVmodel (baseline vs. plateau, 1.16 [0.71–
1.75] cm/mm Hg vs. 0.72 [0.50–1.00] cm/mm Hg), smaller
for the CSF dynamics model (0.67 [0.37–1.16] ml/mm Hg vs.

Fig. 3 Illustrative example of
time courses of amplitude of
peaks P1 and P2 for a single
patient. Full pulse-by-pulse time
courses are presented as dots
while 30-pulse moving averages
are presented as solid lines. a
Mean intracranial pressure (ICP).
b Amplitude of peaks P1 (light
grey symbols) and P2 (dark grey
symbols) of the ICP pulse
waveform
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0.27 [0.17–0.51] ml/mmHg)), and smallest for the P1/P2 ratio
(0.69 [0.58–0.90] vs. 0.57 [0.46–0.74]). Decrease in compli-
ance estimates relative to baseline was 46.3% [36.5–65.1%],
41.0% [30.8–48.4%], and 16.4% [7.3–27.9%] for the CCSF,
CCaBV, and CP1/P2 method, respectively.

Discussion

The analysis of ICP pulse waveform, which relies on the as-
sumption that variations in the pulsatile component of ICP
reflect the pressure response to volume changes induced by

the flow of cerebral blood in each cardiac cycle [2], has been
the basis of various indirect methods of compensatory reverse
estimation proposed over the years, such as the amplitude–
pressure curve [31], high-frequency centroid [28], or RAP
index [11]. The P1/P2 ratio, although suggested as a measure
of cerebral compliance in the 1980s, so far has not been ex-
plored in much detail. A study by Cardoso et al. [6] showed
that hyperventilation-induced reduction in the mean ICP is
accompanied by a decrease in P2 and relatively small change
in P1, while similar reduction caused by head elevation or
CSF withdrawal has little to no effect on the shape of the pulse
waveform. It was suggested that this would indicate the de-
pendence of P2 on cerebral compliance. Results of the present
study are in accordance with previously reported observations
[6, 22]. Increase in the mean ICP caused by infusion of vol-
ume into the CSF space produced a noticeably larger change
in the amplitude of P2 for similar baseline amplitudes of P1
and P2, resulting in decreases in the P1/P2 ratio. Individual
time courses of the P1/P2 ratio followed the time courses of
compliance estimated based on the CSF dynamics model rel-
atively well, with mean correlation coefficient at the level of
0.75.

The differences in the time courses can be explained by the
dependence of CCSF on the trend in the mean ICP, used both in
the estimation of elasticity and P0 and further calculation of
compliance, as the P1/P2 ratio is calculated only from the shape
of the ICP waveform and on a pulse-by-pulse basis. However,
this effect was partially mitigated by the use of moving aver-
ages in correlation analysis. The slightly weaker correlation
with values of CCaBV may in turn be the effect of inclusion of
another signal, CBFV, in the model. Although the extent of

Fig. 4 Relationship between baseline P1/P2 ratio and change in P1/P2
ratio between baseline and plateau phases of infusion test. Values above
the scatter plot indicate Spearman correlation coefficient and its p-value

a b

Fig. 5 Illustrative examples of changes in intracranial pressure (ICP)
pulse waveform between baseline and plateau phases of infusion test.
Baseline and plateau phases are presented in the top and bottom plots,

respectively. Location of peaks P1 and P2 is indicated by cross (P1) and
star (P2) signs. a Patient with high baseline P1/P2 ratio. b Patient with
low baseline P1/P2 ratio
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decrease in compliance varied between methods, largely due to
varying range of values obtained with each approach, all three
methods allowed for statistically significant differentiation be-
tween the ‘high’ and ‘low’ compliance state associated with
baseline and plateau phases of the infusion test. However, as
the CaBV and P1/P2methods examine the ICP pulse waveform
resulting from unknown volume load, they are indirect mea-
sures that cannot be translated to units of compliance, and
straightforward comparison of the values is not feasible.
Table 1 outlines major features and limitations of each method
of compliance estimation considered in this study.

One advantage of assessing cerebral compliance based on
the P1/P2 ratio is the fact that it does not depend on external
volumetric manipulation necessary to derive the pressure–
volume curve. In principle, the method also does not require
any additional signals beside ICP that are needed to estimate
changes in CBV. It should be noted, however, that the major
difficulty lies in reliable, fully automated detection of peaks P1
and P2. A number of algorithms of often impressive complexity

have been proposed over the years for the task of ICP peak
identification [5, 14, 17, 30]. Those methods remain a relatively
recent development in the continuously advancing field of bio-
medical signal processing, and despite promising results report-
ed so far, they are yet to find acceptance in the medical com-
munity and most importantly validation in large scale trials that
would allow for introduction to standard clinical practice. Still,
the ICP pulse waveform exhibits large inter- and intrapatient
differences, with varying height and prominence of character-
istic peaks that may not all be visible even in patients with
normal compliance. Whereas the detection of P2 is usually
possible despite pathological rounding of the pulse, the detec-
tion of P1 becomes unachievable. Incorporation of the ABP
signal may improve general peak identification accuracy by
allowing for better differentiation between P1 and P2 candi-
dates. Nevertheless, the P1/P2 ratio approach relies heavily on
the performance of the underlying detection algorithm, and that
in turn requires that the signal is recorded with sufficiently good
quality of ICP pulse waveform.

a

b

c

d

Fig. 6 Illustrative example of time courses of compliance estimates for a
single patient. Full pulse-by-pulse time courses are presented as grey
lines, while 30-pulse moving averages are presented as black lines. a

Mean intracranial pressure (ICP). b–d Compliance estimates obtained
with b CSF dynamics model (CCSF), c cerebral blood volume model
(CCaBV) and d P1/P2 peak ratio of ICP pulse waveform (CP1/P2)
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In the present study, in order to provide as reliable as possible
assessment of the feasibility of using the P1/P2 ratio as an esti-
mate of cerebrospinal compliance, P1 and P2 candidates identi-
fied by the algorithm using both the analysis of ICP pulse wave-
form and its relationship with ABP (where available), CBFV,
and CaBV signals were manually reviewed and corrected in
cases of insufficient detection accuracy. In order to consider
validating this approach in the clinical setting, further work is
required to refine the prototype and develop it into a fully auto-
mated method of peak identification. Moreover, a comprehen-
sive solution would not only need to be capable of analysing in
real time the large variety of ICP pulse waveform shapes en-
countered in patients with intracranial pathologies but also de-
tecting artefacts and selecting pulses where the peaks, particu-
larly P1, become impossible to distinguish due to the rounding
of the waveform and not due to the low quality of the signal.

On the other hand, assuming that the peaks are identified
reliably, it is theoretically possible to compare the results be-
tween separate measurements and between individuals. A pre-
vious study by Fan et al. [15] attempted to use the P2/P1 ratio
(as opposed to the P1/P2 ratio used in the present study) as a
predictor of disproportionate increases in ICP in TBI patients.
Elevated P2 amplitude was signified by P2/P1 ratio equal to or
exceeding 0.8. The study showed that the P2/P1 ratio, while
not a unique predictor of intracranial hypertension episodes,
was significantly higher in the group exhibiting ICP increases.
A different study in paediatric hydrocephalus patients con-
firmed the applicability of the P2/P1 ratio in the identification
of intracranial hypertension and assessment of the response to
shunting [3]. It should be noted that other works focused on
the classification of ICP pulse waveform patterns [14, 26]
suggested that decrease in compliance is associated with P2
visibly dominating over P1. A threshold ratio of 0.8 could
therefore potentially lead to the inclusion of normal wave-
forms in the elevated P2 group and influence the results.

Ultimately, the use of the P1/P2 ratio as an indicator of
decreased buffering capacity of the cerebrospinal system
would require further investigation with regard to the correla-
tion between the value of P1/P2 ratio and the clinical status of
the patient, as this measure cannot be directly converted to
units of compliance. Given earlier reports on the relationship
between measures of compliance and compensatory reserve
and outcome in TBI patients [25, 27, 28, 32], combined with
the possibility of continuously recording the ICP waveform in
modern neuro-critical care units, this avenue of study seems
nonetheless to be a promising one.

Limitations

Compliance estimation based on the evaluation of changes in
CBV as used in this study is based on a number of assump-
tions, including constant diameter of insonated vessels during
TCD recording. Due to unknown cross-sectional area of the
vessels, CCaBV values cannot be calibrated in units of compli-
ance. The same applies to the P1/P2 ratio as changes in the
ICP pulse waveform are analysed as a response to unknown
blood stroke volume. Consequently, direct comparison be-
tween those two methods and the ‘gold standard’ approach
based on the model of CSF dynamics was limited to the cor-
relation between the time courses.

Moreover, this study was performed as a retrospective analy-
sis of infusion test recordings of the ICP signal with the addition-
al requirement of availability of simultaneously collected CBFV.
As TCD measurements are not part of routine clinical investiga-
tion in NPH patients, the number of available recordings was
limited, and given the size of the study group, the results of this
study should be regarded as preliminary. Considered recordings
were not collected with the explicit purpose of analysing the ICP
pulse waveform in detail, which led to a relatively high

Table 1 Comparison of three methods of cerebrospinal compliance estimation

Characteristic Method

Based on the model of CSF
dynamics

Based on the evaluation of
CaBV from TCD recordings

Based on the analysis of the
P1/P2 ratio of ICP pulse waveform

Units Absolute [ml/mm Hg] Express compliance per unit of
cross-sectional area of insonated
vessel

[cm/mm Hg]

Relative changes only [dimensionless]

Assessment One-off measurement (based
on a recording from entire
infusion test)

Continuous but limited by positioning
of TCD probes

Continuous

Accuracy Good Relative changes only Relative changes only

Availability Always when access to CSF space
is possible

Requires TCD monitoring Requires that P1 and P2 are detectable
in the ICP pulse waveform

Additional requirements Requires invasive ICP measurement Requires invasive ICP measurement
(with good quality of pulse waveform)

Requires invasive ICP measurement
(with good quality of pulse waveform)
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percentage of cases (almost 30% of the initial dataset) excluded
on the basis of low signal quality.

However, even assuming sufficiently high quality of the sig-
nal, the visibility of peaks remains a significant limitation. On the
other hand, pulses with indistinguishable P1 due to the rounding
of the waveform constitute a separate class of signals. Whereas
they do not allow for monitoring of relative changes over time,
they could be incorporated as a form of low compliance indica-
tor. This could be a viable solution especially in long-term mon-
itoring aimed at detecting decreases in compensatory reserve,
where peak visibility is expected to vary.

Conclusions

Apart from the ‘gold standard’ method, compliance of the
cerebrospinal fluid system may be evaluated using pulse
waveform of ICP and TCD recordings of blood flow velocity
in the cerebral arteries. The latter two methods agree with the
‘gold standard’ approach based on volume addition. It poten-
tially opens new perspectives for continuous brain compliance
monitoring in various clinical scenarios.

List of abbreviations ABP, Arterial blood pressure [mm Hg]; CBFV,
Cerebral blood flow velocity [cm/s]; CBV, Cerebral blood volume [ml];
CSF, Cerebrospinal fluid; ICP, Intracranial pressure [mm Hg]; NPH,
Normal-pressure hydrocephalus; TBI, Traumatic brain injury; TCD,
Transcranial Doppler
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Abstract—Objective. Mean intracranial pressure (ICP) is
commonly used in the management of patients with in-
tracranial pathologies. However, the shape of the ICP signal
over a single cardiac cycle, called ICP pulse waveform, also
contains information on the state of the craniospinal space.
In this study we aimed to propose an end-to-end approach
to classification of ICP waveforms and assess its potential
clinical applicability. Methods. ICP pulse waveforms ob-
tained from long-term ICP recordings of 50 neurointensive
care unit (NICU) patients were manually classified into four
classes ranging from normal to pathological. An additional
class was introduced to simultaneously identify artifacts.
Several deep learning models and data representations
were evaluated. An independent testing dataset was used
to assess the performance of final models. Occurrence of
different waveform types was compared with the patients’
clinical outcome. Results. Residual Neural Network using
1-D ICP signal as input was identified as the best perform-
ing model with accuracy of 93% in the validation and 82% in
the testing dataset. Patients with unfavorable outcome ex-
hibited significantly lower incidence of normal waveforms
compared to the favorable outcome group even at ICP lev-
els below 20 mm Hg (median [first-third quartile]: 9 [1–36]%
vs. 63 [52–88] %, p = 0.002). Conclusions. Results of this
study confirm the possibility of analyzing ICP pulse wave-
form morphology in long-term recordings of NICU patients.
Proposed approach could potentially be used to provide ad-
ditional information on the state of patients with intracranial
pathologies beyond mean ICP.
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I. INTRODUCTION

INTRACRANIAL pressure (ICP) is frequently monitored
in patients with brain pathologies as elevated ICP puts the

patient at risk of cerebral ischemia or herniation of structures
within the cranial vault. However, the clinical state of the patient
cannot be fully characterized by mean ICP alone as the changes
in intracranial volume which influence ICP can be buffered
to a certain degree [1]. The ability of the craniospinal system
to tolerate or compensate for volume increases is quantified
by a parameter called ‘brain compliance’ [2]. As long as the
compensatory mechanisms for adapting to increased volume
are intact and the compliance of the system is normal, small
increases in intracranial volume result in small increases in
ICP. When brain compliance is decreased and the compensatory
mechanisms are exhausted, small increases in volume lead to
disproportionately large increases in ICP. The pressure–volume
curve, i.e., the exponential relationship between pressure and
volume in the intracranial space, has long been regarded as
a potential source of useful information on the state of the
craniospinal system [3]. Despite promising results published on
that subject, direct measurement of compliance has, however,
proven difficult to implement in clinical practice on a larger
scale [2].

On the other hand, it has long been known that the ICP signal
contains much more information than can be captured by simple
mean value [1]. ICP pulse morphology, which refers to the shape
of the pressure signal over a single cardiac cycle, is believed to
contain indirect information about brain compliance [4]. Under
normal conditions, the ICP pulse is characterized by three dis-
tinct subpeaks, denoted P1, P2, and P3, arranged in a saw-tooth
pattern. As brain compliance decreases and ICP increases, the
subpeaks gradually become less pronounced, eventually result-
ing in a ‘rounded’ or sinusoidal wave [5]. Rounding of the pulse
wave is often observed at elevated ICP levels; however, the rate
of changes in pulse morphology varies both across patients and
over time [6]. As the patients exhibit decreased compliance at
different pressure levels, the analysis of the shape of ICP pulse
waveform is key to characterizing the state of the intracranial
space.
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Due to high variability of the ICP pulse waveform, identifi-
cation of characteristic peaks is a highly complex task, which
in turn requires highly complex algorithms. Several attempts
have been made to automatically analyze the changes in ICP
pulse waveform based on detection of peaks and notches [7]–
[11]. However, in addition to high complexity, limiting their
understanding and acceptance in the medical community, those
methods often rely on averaged pulses or fail in case of patho-
logically rounded signals. In recent years, deep learning rose to
prominence in the field of biomedical signal processing, includ-
ing pattern recognition tasks. Deep learning models have been
successfully applied to remove artifacts from the ICP signal [12]
and to detect ICP elevation [13] but as far as we know, a deep
learning approach has never been used for the task of ICP pulse
morphology classification not only in terms of valid vs. invalid
pulses, but also with separate categories reflecting the changes
in the configuration and visibility of characteristic peaks, i.e.,
the progression from normal, triphasic waveform to a rounded,
sinusoidal shape.

Therefore, in this work we aimed to develop an automated
method for morphological classification of different shapes of
ICP pulse waveforms using deep neural networks. An end-to-end
approach was proposed for the purpose of analyzing long-term
recordings collected from neurointensive care unit (NICU) pa-
tients with intracranial pathologies, comprising stages responsi-
ble for single pulse detection, artifact detection, and classifica-
tion of non-artifactual waveforms. Deep learning models were
developed, evaluated, and compared in terms of their accuracy
in identifying four types of ICP pulses as well as artifacts in
the ICP signal. Additionally, we investigated the link between
the occurrence of different morphological types of ICP pulse
waveform and treatment outcomes of the patients to assess the
potential clinical usefulness of the proposed approach.

II. RELATED WORK

Nucci et al. [14] introduced the classification criteria for ICP
pulse waveform analysis based on overall shape of the signal,
reflecting the changes in the configuration of characteristic peaks
of the ICP pulse. The authors used a small neural network with
coefficients of radial basis function (RBF) kernel approximation
of the ICP signal serving as network input, and reported accuracy
of 88.3% in data collected in normal pressure hydrocephalus
patients during infusion studies. We attempted to replicate this
method but were unable to choose universal RBF midpoints
for our dataset that would allow for representation of artifacts as
well as valid ICP pulses. We hypothesize that differences in data
acquisition and general aim of the system make it unsuitable for
our study.

A similar approach to analysis of infusion study recordings
was also previously proposed by Elixmann et al. [9] who identi-
fied five distinct waveform patterns. However, the study used a
decision algorithm based on results of peak and notch detection,
namely the number, relative height, and distance between sub-
peaks, to distinguish between waveform types. Various methods
have also been presented for the task of binary classification of
ICP waveforms into valid pulses versus artifacts, and multi-class

classification as investigated in this study could theoretically
be considered an extension of the previously proposed binary
classification approaches. However, previous studies either also
rely on peak identification [8], [10], [15], potentially producing
higher number of false positives and false negatives related to
difficulty in peak annotation in irregular but otherwise valid
waveforms, are not a deep approach [16], or include a number
of preprocessing steps that may significantly extend the compu-
tation time [12]. Consequently, in this study we propose a new
approach taking into account recent developments in the field
of deep learning. As we are not aware of any other studies that
aimed to classify various pulse waveform patterns (i.e., beyond
valid versus artifactual pulses) in long-term recordings obtained
from NICU patients using deep neural networks, we compare
our proposed model with the approach shown in [12], which was
selected as the work with the most similar aim and methodology.
However, it should be noted that [12] introduced a procedure
for identification of artifacts in physiological signals, and for
the purpose of comparison we used a modified version of that
model allowing for multi-class instead of binary classification.
Furthermore, we extended our analysis by investigating the
possible relationship between the occurrence of different shapes
of pulse ICP waves and clinical outcome in NICU patients.

III. METHODOLOGY

A. Problem Formulation

The aim of this study was to produce an end-to-end approach
for detecting and annotating ICP pulse waveforms in long
(i.e., lasting upwards of several hours) signals. Specifically, this
means an algorithm capable of taking as input a raw, unpro-
cessed recording and producing final results without manual
preprocessing or human intervention during computations. The
algorithm is therefore comprised of two steps: division of full
signals into short pulse waveforms followed by classification of
said pulse waveforms into one of five morphological classes:
T1 – normal, T2 – potentially pathological, T3 – likely patho-
logical, T4 – pathological, or A+E – artifacts and measurement
errors (Figure 1). The classification expands upon criteria pro-
posed previously by Nucci et al. [14] for analysis of infusion
studies. First four classes reflect the changing relative height
and visibility of characteristic subpeaks P1, P2, and P3 of the
ICP pulse waveform, with class T1 (normal) representing the
saw-tooth shape associated with normal compliance and class T4
(pathological) representing pathologically rounded pulse with
unrecognizable peaks. The fifth class (A+E) was introduced to
separate artifactual pulses related to loss of signal quality or
failure to accurately identify pulse onset points without the need
for introducing an additional step of artifact detection.

The problem can be formulated as obtaining a mapping m
from full-length ICP signal to a set of tuples containing location
and detected class of each of the pulses:

m : RL → (Position, Class)N

where L ∈ N is the number of data points in full-length ICP
signal, Position ∈ {1, ..L} is the number of data point in the
full signal that marks the beginning of the pulse waveform, and



496 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 2, FEBRUARY 2022

Fig. 1. (a) Overview of proposed approach to pulse waveform classification. (b) Illustrative examples of pulse waveform shapes in each of the five
morphological classes.

TABLE I
PATIENT CHARACTERISTICS IN TOTAL GROUP OF 50 PATIENTS. DATA ARE

PRESENTED AS N (% OF TOTAL GROUP) OR AS MEDIAN [FIRST-THIRD
QUARTILE] UNLESS OTHERWISE INDICATED

Class ∈ {T1, T2, T3, T4, A+ E} is the morphological class
to which that pulse waveform belongs. The end of each pulse is
also the beginning of a subsequent pulse, thus only one positional
argument is required to unambiguously mark the whole pulse
waveform location.

B. Data Collection

Data from 50 patients admitted to the Neurointensive Care
Unit (NICU) of University Hospital in Wroclaw, Poland between
2014 and 2019 were chosen for retrospective analysis in this
study. The patients were selected out of all patients admitted
to the NICU during this period on the basis of availability and
acceptable quality of ICP recordings. The study was conducted
with approval from the Bioethics committee at the Wroclaw
Medical University, Poland (approvals no KB–624/2014 and
KB–134/2014). All patients were adults over 18 years of age.

Out of the entire group of 50 patients (see Table I), 39 patients
suffered from traumatic brain injury (TBI) and 11 had confirmed
aneurysmal subarachnoid haemorrhage (aSAH). TBI and aSAH
are two distinct clinical entities with different pathophysiology.
However, both conditions are associated with changes in mean
ICP and the shape of ICP pulse waveform due to disturbances in
the intracranial volume equilibrium, and are subject to the same
method of assessing the patient’s outcome. As a result, previous

TABLE II
DETAILED PATIENT CHARACTERISTICS OF TBI PATIENTS (N=39).

DATA ARE PRESENTED AS N (% OF TOTAL GROUP) OR AS MEDIAN
[FIRST–THIRD QUARTILE]

studies on ICP pulse morphology combined various groups to
increase the number of available recordings [7], [8]. In this study,
the aSAH patients were selected in order to introduce a second,
independent set of data that would allow for evaluation of final
model performance.

TBI patients were treated according to the American Brain
Trauma Foundation guidelines applicable at the time of ad-
mission [17], [18]. Patients with aSAH were treated according
to guidelines from the American Heart Association/American
Stroke Association [19]. The patients were classified in the
NICU using the Glasgow Coma Scale (GCS). Outcome was
assessed at discharge from the hospital and after three months
using the Glascow Outcome Scale (GOS), with scores IV-V
representing favourable outcome and scores I-III unfavourable
outcome. The patient cohort was homogenous with regard to
severity of the injury and treatment protocol. Table II presents
detailed characteristics of the TBI group used in the assessment
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Fig. 2. Measurement setup. Intracranial pressure (ICP) was measured
invasively using intraparenchymal probes. Arterial blood pressure (ABP)
was measured invasively in the radial or femoral artery using standard
monitoring kits. The blood pressure transducer was calibrated at the
phlebostatic axis. Signals were monitored using standard bedside vital
signs monitors and recorded on a portable computer using ICM+ soft-
ware with custom-written measurement profile.

of the relationship between classification results and clinical
outcome.

ICP was measured invasively using intraparenchymal probes
(Codman MicroSensor ICP Transducer, Codman & Shurtleff,
Randolph, MA, USA) inserted into the frontal cortex. Although
the parenchymal ICP sensor is considered more invasive than the
ventricular sensor due to implantation into the brain tissue, it was
found to be more accurate, as the calibration and zeroing process
only needs to be done once before insertion and the readings
are not dependent on the patient’s position in relation to the
transducer. Arterial blood pressure (ABP) was measured in the
radial or femoral artery using standard monitoring kits (Baxter
Healthcare, CardioVascular Group, Irvine, CA, USA). The sig-
nals were recorded continuously and synchronously (Figure 2)
using ICM+ software (Cambridge Enterprise Ltd, Cambridge,
U.K.) with sampling frequency ranging from 50 Hz to 300 Hz.
The signals were resampled to 50 Hz prior to further analyses
in order to reduce computation time, but taking into account the
minimum sampling frequency requirements reported in previous
experimental studies [20].

The signals were monitored and recorded continuously start-
ing on day 1 or day 2 after admission to the hospital, depending
on the date of surgery, and in most cases the day of admission
was the same date the injury occurred. Patients were monitored
throughout their ICU stay with average recording length of 5
± 3 days. In each case the decision to remove the sensor was
made by the neurosurgeon and/or intensivist based on medical
indications, particularly low mean value and stability of the ICP
signal and progressive improvement of the patient’s conditions.

C. Single Pulse Detection

A modified Scholkmann algorithm proposed by Bishop and
Ercole [21] for analysis of neuroscience data was used for the
purpose of single pulse detection. Pulse detection was performed
in full long-term signals low-pass filtered with a cutoff frequency
of 10 Hz. Individual ICP pulse onset points were defined as local
minima preceding the first peak of the waveform occurring at

intervals corresponding to the length of the cardiac cycle (i.e.,
around 1 s).

D. Classification Datasets

The full group of 50 patients was divided between the train-
ing/validation and test datasets, with 39 TBI patients assigned
to the training and validation datasets and 11 aSAH patients
assigned to the test dataset.

In the training and validation datasets, full long-term ICP
signals from TBI patients were divided into pulse waveforms
(see III-C), and a total of 21 390 pulses were randomly selected
from all recordings. In addition to ICP, corresponding ABP pulse
waves were selected to aid in manual classification as it has been
previously shown that the systolic part of an ABP pulse corre-
lates with the position of peak P1 in ICP pulse waveform and
the slopes of ABP and ICP become increasingly divergent with
higher waveform type [22]. Each example was then annotated
by an expert researcher.

As pulses from the same patient within one waveform class are
largely similar and could therefore influence generalization, in
order to mitigate the correlation between examples the patients
in the training set were selected in such a way that the group did
not intersect with the validation dataset. A simple binary genetic
algorithm was set up to divide the patients into two sets where
one includes 2/3 of the total number of examples in each class
and the other includes the remaining pulses. This created a split
of the data into the training set consisting of 14 578 pulses and
the validation set consisting of 6812 pulses.

The testing dataset was in turn extracted from 11 aSAH pa-
tients. Full ICP signals were again divided into pulse waveforms,
and 650 pulses were randomly selected from all recordings. The
examples were annotated by a panel of three expert researchers
using ICP and corresponding ABP pulses. In cases of ambiguous
waveform type (particularly signals exhibiting features of two
adjacent classes) or disagreement between the experts’ assess-
ment, an additional label, the ‘possible type’, was added. This
label was later used in an alternative scoring method (see III-F)
and to test multi-label classification described in Appendix II.
Inter-rater agreement between the three experts’ primary type
annotations was tested using Fleiss’ kappa test [23] with sig-
nificance level of 0.05. The reference classification provided by
the experts showed statistically significant substantial agreement
κ=0.700 (95% CI, 0.672 to 0.728), p < 0.001.

As shown in the class distribution in Figure 3, the result-
ing datasets were not balanced, making the classification task
more challenging for smaller models. This issue is discussed in
Appendix II.

E. Data Representations

Cubic resampling was used to unify the length of pulses to 180
samples. The pulses were then scaled to an interval between 0
and 1. This step was introduced to test classification based purely
on the shape of the waveform and to remove the influence of ICP
pulse amplitude which is strongly correlated with mean ICP level
and may therefore vary across patients despite comparable pulse
morphology. Other types of data representations, such as Fourier
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Fig. 3. Number of examples in each dataset.

transform coefficients or time-frequency representations, were
investigated but did not result in improved classification accu-
racy (see Appendix II); therefore, only 1-D vectors of normalized
signal samples were used as input. We did, however, investigate
the generalization of the models using univariate ICP time series
versus multivariate input including both ICP and ABP, as ABP
was used in the process of manual annotation.

F. Classification Models and Evaluation

A number of different models were investigated in this study;
however, this paper focuses on models identified as best per-
forming: 1-D Residual Neural Network (ResNet) [24], its two
variants: dual channel network with joint ICP and ABP sig-
nal input or Siamese feature extractors, and Long-Short Term
Memory Fully Convolutional Network (LSTM-FCN) [25]. The
fully connected neural network was selected as the baseline
for our results. Additionally, the approach introduced in [12]
was adapted for multi-class classification for the purpose of
comparison with proposed models and trained in the same way
as the other models.

Convolutional neural networks (CNN) extract information
based not only on a single sample but also on the sample’s
neighborhood, which allows them to easily extract morpholog-
ical features and therefore makes them a perfect fit for the task
of morphological classification. Additionally, in this case, due
to the relatively short duration of processed signals (mostly less
than 1 s in length), the networks are not required to overcome
the challenge of modelling the long term dependencies. ResNets
are deep convolutional models that use residual connections
between layers for more stable error propagation. The hyper-
parameters were chosen through the empirical choice method
across many conducted experiments with each of the proposed
models. The architecture of residual models used in this study
is presented in Figure 4, and the hyperparameters of the models
are shown in Appendix I.

In addition to changing the number of channels in the first
layer of the network, a Siamese architecture with residual feature
extractors was tested (however, the latter was not trained on
contrastive loss function as in the original paper [26], but through
standard procedures). This approach was used to emulate the
behaviour of manual annotators who used features of both ICP
and ABP signals in the decision making process.

The LSTM-FCN models were employed to test the possibility
that long-term dependencies are more relevant to the classifi-
cation problem. The networks are composed of two different
feature extractors, one with a CNN-based architecture, and the
second consisting of LSTM cells. Based on the concatenated
output of the two arms, an embedding is created and used by
the fully connected network to make the final prediction. The
main difference from the residual network lies in the LSTM
layer which allows the embedding to consider the whole signal,
as the memory cell of the LSTM is affected by all previous
observations. The structure and hyperparameters of LSTM-FCN
models used in this study are presented in Appendix I.

The model proposed in [12] is a combination of a stacked
convolutional autoencoder (SCAE) and a CNN that takes 2-
D images generated from 1-D signals as input. The first part
converts segmented pulse waveforms into representative images.
In the original paper, the second part classifies the input as either
artifactual or valid. In our reproduction, the SCAE part was
preserved while the last layer of the CNN classifier was modified
to produce multinomial instead of binary classification.

An universal training loop using Python’s PyTorch [27] pack-
age was created for all the models to ensure fair comparison
of their scoring (see Appendix I). Additionally, taking into
account that discrete classification employed in this study does
not fully capture the gradual changes in the shape of the ICP
pulse waveform cause by physiological and pathophysiological
processes, two approaches to evaluation of the models’ perfor-
mance were investigated. First, the standard single-label accu-
racy score, denoted ‘strict accuracy’, and the second, denoted
‘best accuracy’, where the prediction is considered correct in
the same cases as strict accuracy but also if it matches the class
marked as ‘possible’ in manual annotations. The second scoring
was proposed to test the models’ performance in cases where it
is acceptable to classify a waveform as belonging to more than
one type.

G. Analysis of the Relationship Between Waveform Type
and Outcome

Classification results were obtained from long-term record-
ings of 35 TBI patients. 4 patients from the original TBI group
were excluded due to gaps in their recordings that did not have
any impact on single ICP pulse classification but could influence
the results of the analysis of the relationship between occurrence
of ICP waveform types in long-term recordings and the patients’
outcome. Each ICP pulse was assigned a waveform type based
on classification results and mean ICP calculated as the average
over the whole pulse. Classification results were compared with
outcome assessed by GOS score after three months. GOS at
discharge from the hospital was not used due to significant in-
equality of favourable versus unfavourable outcome groups that
would have prevented reliable statistical analysis. Occurrence
of different waveform types was calculated as the percentage
of pulses classified as types T1-T4 in the recording. Pulses
classified as artifacts (class A+E) were treated as noise and
excluded from analysis.
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Fig. 4. Model of used Residual Network. The hyperparameters of the model are presented in Appendix I. The convolution nodes are one-
dimensional convolution. The initial downsampling residual blocks are used to reduce the size of the processed tensors.

TABLE III
TRAINING RESULTS OF SELECTED MODELS IN DIFFERENT DATASETS. ALL OF THE MODELS SHOWN HERE USED SINGLE LABEL CLASSIFICATION

(SEE APPENDIX II)

In order to separately analyze areas of the recordings where
ICP falls within normal or increased range, the range of ICP
values was subsequently divided into areas with ICP<= 20 mm
Hg and ICP > 20 mm Hg based on moving average (window
length: 5 minutes, window shift: 30 s) of single pulse mean ICP
values.

Normality of all parameters used in the analyses was tested
using the Shapiro-Wilk test. Upon rejection of the normality
hypothesis for most of analyzed variables, non-parametric sta-
tistical tests were used to assess the difference between groups
where applicable. Significance level of 0.05 was used in all
analyses. All group-averaged results are presented as median
[first-third quartile].

H. Analysis of the Potential for Real-Time Processing

Finally, in order to assess if proposed end-to-end approach
could be realistically used to process ICP signals in real-time, an
additional experiment was performed using a single illustrative
ICP recording and the best performing 1-D ResNet model. In or-
der to simulate real-life continuous measurement, but taking into
account that the classification stage requires individual pulses to
be detected first, the recording was divided into 10-seconds-long
chunks. Each chunk was then processed with the hardware
specification described in Appendix I. and the computation

times for both single pulse detection and classification step were
recorded.

IV. RESULTS

A. Classification Results

Table III shows classification accuracy of selected best per-
forming models compared to baseline accuracy of the fully con-
nected network. The results shown are the best results obtained
for each model after empirically choosing hyperparameters
through a series of experiments. All three variants of the ResNet
model as well as the LSTM-FCN model outperformed the fully
connected network, with the highest accuracy registered for the
single channel ResNet using only the ICP signal as input. The
addition of the ABP signal in the dual channel and Siamese
ResNet did not improve classification accuracy in the validation
and test datasets, although dual channel ResNet achieved the
highest accuracy in the training dataset. As discussed in Ap-
pendix II, the single channel ResNet model also retained the
highest accuracy in experiments including addition of artificially
created A+E examples, weighing of the gradients, or unsuper-
vised pretraining. The modified version of the model proposed
in [12] achieved comparable accuracy in the training dataset,
but performed considerably worse than the ResNet models in
the other two datasets.
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Fig. 5. Confusion matrices for the best performing ResNet model. The number in each tile shows how many examples with given true label were
classified as given predicted label.

TABLE IV
DETAILED CLASSIFICATION SCORES FOR THE BEST-PERFORMING

RESNET MODEL

The use of best accuracy scoring instead of standard strict
accuracy showed improved classification accuracy of all mod-
els (e.g., from 82% to 86% in the test dataset in case of the
best performing single channel ResNet). However, attempts at
multi-label classification did not boost the models’ performance
(see Appendix II). The confusion matrices for the single channel
ResNet model (Figure 5) show that while in the validation
dataset the main problem was presented by the artifact class
characterized by the lowest number of examples, in the test
dataset the errors primarily concern likely pathological and
pathological pulses (types T3 and T4), and detailed classification
scores (Table IV) in the latter dataset show that type T4, although
characterized by high precision, showed markedly lower recall
compared to other types.

B. Relationship Between Waveform Type and Outcome

Mean ICP and ICP waveform type. Figure 6 shows aver-
age ICP in each waveform class based on data from patients
separated into favourable and unfavourable outcome groups. In
both cases, mean ICP increased with progressively more patho-
logical waveform type. There were no statistically significant
differences in mean ICP between patients with favourable and
unfavourable outcome. However, while mean ICP was slightly
lower in the favourable outcome group in waveform type T1, it

Fig. 6. Mean ICP in each ICP waveform type for unfavourable (red,
left-hand side boxes) vs. favourable (green, right-hand side boxes) out-
come groups. Central box line: median, box edges: first-third quartile,
whiskers: most extreme data points not including outliers (circle signs).

TABLE V
GROUP-AVERAGED OCCURRENCE OF ICP WAVEFORM TYPES FOR

UNFAVOURABLE VS. FAVOURABLE OUTCOME GROUPS. RESULTS ARE
PRESENTED AS MEDIAN [FIRST-THIRD QUARTILE] WITH P-VALUE OF

MANN-WHITNEY U TEST. NS - RESULTS NOT STATISTICALLY SIGNIFICANT

grew to higher values than in the unfavourable outcome group
in more pathological types T3 and T4.

Occurrence of different ICP waveform types. Occurrence of
different waveform types in the favourable and unfavourable
outcome groups is presented in Table V. Significantly higher
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incidence of normal waveforms (type T1) as well as lower
incidence of pathological waveforms (type T4) was observed
in patients with favourable outcome for ICP <= 20 mm Hg.
An inverse relationship was found for ICP > 20 mm Hg, with
markedly increased occurrence of pathological waveforms in the
unfavourable outcome group.

C. Potential for Real-Time Processing

In a subset of 1000 chunks of length equal 10 seconds ex-
tracted from an illustrative ICP recording the average processing
time was 0.027 [0.026-0.029] seconds per pulse for full analysis,
with 0.020 [0.019-0.021] seconds per pulse for single pulse
detection and 0.0075 [0.0070-0.0080] seconds per pulse for
waveform shape classification.

V. DISCUSSION

In this work we investigated the feasibility of using deep
neural networks for identification of different shapes of ICP
pulse waveform as well as artifacts in recordings obtained from
patients with intracranial pathologies. Given the small number
of previous studies on the subject of morphological classification
of ICP pulse waveforms, none of which–to the best of our
knowledge–used deep learning methods, we tested different
approaches to solving this task, including different models, data
representations, and training and evaluation methods. The single
channel ResNet model using 1-D vector of ICP signal samples
as input was identified as the best performing model, achieving
best classification accuracy of 86% (82% strict accuracy) in
an independent test dataset which suggests good generaliza-
tion ability. This shows the potential of classifying ICP pulse
waveform with relatively high accuracy. Additionally, proposed
approach is robust to recordings of different length than the ones
used in this study as ICP waveform classification is performed
on a single-pulse level and does not require information about
the position of each pulse in the full recording. Assessment of
changes in pulse morphology over time (i.e., changes in the
occurrence of different waveform classes) is secondary to clas-
sification of individual pulses and could therefore be performed
on both short and long-term measurements.

The fact that neither different models nor alternative data
representations resulted in further improvement in accuracy
could be to a certain degree explained by the complexity of
the task. Despite the use of four distinct non-artifactual classes
of ICP pulse waveforms in this study, it should be noted that
the changes in brain compliance represented by changes in
the shape of the waveform are continuous rather than discrete.
As a result, some of the pulses may exhibit the features of
more than one class or fall into the ‘gray area’ between two
classes. This phenomenon is visible in the test dataset confusion
matrix of the single channel ResNet model where the majority
of classification errors occurred between two adjacent classes,
and very few were observed between types that are far apart.
While this reduces the accuracy score of the models, from the
viewpoint of clinical utility this type of mistake is less severe than
erroneous classification of normal pulses as pathological or vice
versa. Additionally, the increase in best accuracy score compared

to strict accuracy shows that a number or errors stems from
ambiguity of the waveform shape that has also been noted by
the experts performing manual annotations. Taking into account
the accuracy recorded in the validation set (best accuracy of over
95% for the single channel ResNet model), we hypothesize that
classification accuracy of the model could be further improved
by providing a bigger and more balanced training dataset. It
should be noted that the test dataset was not only independent
from the training and validation datasets, but included data from
a different distribution. Whereas all datasets were selected to
provide examples of different shapes of ICP pulse waveforms,
the test dataset was collected in a separate group of patients
for the purpose of assessing the models’ real-life applicabil-
ity. Therefore, despite the decrease in accuracy between the
validation and test datasets, the models’ performance can still
be considered acceptable as the model correctly classifies a
large percentage of pulses from a completely different data
distribution.

Interestingly, while manual classification of ICP pulses by
expert researchers was based on the ICP signal as well as
corresponding ABP signal, taking into account previous studies
which showed the correlation between the systolic part of ABP
and the P1 portion of ICP pulse waveform [22], inclusion of the
ABP signal did not improve the performance of deep learning
models, and single channel ResNet outperformed both its dual
channel and Siamese counterpart. As indicated by comparison
of results achieved in the training and test datasets, the use of
an additional signal only made the models prone to overfitting.
This, however, is an advantage, as a simpler model means
that the computation time is lower, and the classification could
theoretically be performed in a continuous and real-time manner.

The potential for real-time processing is further supported
by the use of an end-to-end pipeline including single pulse
detection and artifact exclusion steps in addition to pulse wave-
form classification. ICP recordings are subject to a variety of
disturbances that manifest, for instance, as very short spikes in
mean value or waveform deformations. Those disturbances do
not carry clinically useful information but instead are related to
the purely technical aspect of collecting the signal. It has been
shown that artifacts are the cause of a significant number of
false positive alarms in the intensive care units [28] and that
artifact removal improves the performance of other measures
used in TBI management [12]. Various methods of reducing the
impact of artifacts on ICP signal analysis have been proposed
so far [29], [30], also using deep learning models [12]. Our
approach, instead of introducing further algorithms for artifact
detection, treats it as part of the classification stage, with artifacts
such as noise, sensor calibration signal, or distorted waveforms
regarded as an additional class. This also allows for mitigation
of false positives resulting from errors in the single pulse de-
tection step. Furthermore, within the proposed pipeline average
processing time of a single 10-seconds-long fragment of the
ICP signal is over 10 times shorter than the collection time. This
shows that the algorithm is capable of effectively working in
real-time if adapted to process the full signal in smaller chunks
as soon as they are recorded. Given the large difference between
computation and collection time, the windows could also be
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overlapping, removing the potential problem of losing data from
pulses located at the edges of the window that would be discarded
by the single pulse detection step.

To investigate the potential clinical applicability of proposed
approach we obtained classification results in a group of patients
with intracranial pathologies using the best performing single
channel ResNet model. In accordance with the relationship
described by the pressure–volume curve, higher waveform types
were associated with progressively higher mean ICP. While
within each waveform class we did not register statistically
significant differences in mean ICP between the favourable and
unfavourable outcome groups, in the favourable outcome group
mean ICP rose more steeply. Given the assumption that higher
waveform types are associated with decreasing compliance, this
suggests that reduction of the compensatory reserve occurs more
slowly in patients with favourable outcome. On the other hand,
in patients with unfavourable outcome larger variance of results
in each waveform type suggests weaker dependence on mean
ICP.

The latter is supported by further analysis of results divided
between two ICP levels. The threshold used in this study to
separate low and high ICP ranges, 20 mm Hg, reflects the
value adopted in the clinical setting as the level above which
therapeutic interventions should be introduced [31]. In our study
the difference between outcome groups was already pronounced
at ICP levels below the threshold for clinical intervention, where
the unfavourable outcome group exhibited significantly lower
incidence of type 1 waveforms in favour of higher waveform
types suggesting diminished compensatory reserve. Over the
threshold both groups moved towards higher waveform types,
although in terms of average number of pulses of given type
the change was more pronounced in patients with unfavourable
outcome, with markedly increased incidence of pathological
waveforms.

The occurrence of pathologically changed waveforms at lower
ICP should be treated as a warning sign, indicating that despite
normal levels of pressure the compensatory reserve is already
reduced and the system may not be able to tolerate further in-
creases in volume. Evaluation of intracranial compliance based
on analysis and interpretation of ICP pulse morphology would
also represent a method free of any additional risks to the patient
as it is not additionally invasive. In most clinical settings, ICP
is monitored continuously (as recommended by The American
Brain Trauma Foundation guidelines [18]) and at sufficiently
high sampling frequency to analyze the pulse shape in detail.
Furthermore, in contrast to imaging techniques, monitoring of
cerebral compliance by means of ICP pulse morphology analysis
can be performed in a continuous manner during the entire time
of ICP monitoring. Consequently, this approach would avoid the
frequently cited constraints of the standard method of assessing
the full pressure–volume curve by injection or withdrawal of
fluid from the cerebrospinal fluid space, namely the intermittent
nature of the procedure and the risk of causing potentially
dangerous increases in ICP through changes in intracranial
volume [32].

It has to be noted, however, that this work was conducted as
a retrospective study in a relatively small group of patients and

TABLE VI
HYPERPARAMETERS OF USED RESNET ARCHITECTURE. BOTH RESIDUAL

AND DOWNSAMPLING RESIDUAL BLOCKS ARE STANDARD RESIDUAL BLOCKS
WITH CONVOLUTIONS OF SIZE 3 AND GROUP NORMALIZATION WITH 32

GROUPS. THE DOWNSAMPLING BLOCK IS ALSO SCALING THE OUTPUT BY
ADDING STRIDE 2 TO THE FIRST CONVOLUTION IN THE MAIN BRANCH

WHILE ADDING SIZE 1 CONVOLUTION WITH THE SAME NUMBER OF FILTERS
AS MAIN BRANCH AND STRIDE 2 TO TO THE SKIP CONNECTION BRANCH

with certain limitations. During identification of ICP ranges in
full recordings we did not differentiate patients with continuous
hypertensive episodes from patients with high instability of the
signal, and information about medical interventions affecting
mean ICP was not included. The length of analyzed recordings
was not standardized and although patients who did not exhibit
values in both ICP ranges were excluded from further analysis,
no lower length limit for low/high ICP portion of the recording
was used. Furthermore, the parameter used to assess the oc-
currence of different waveform types, i.e., the percentage of all
pulses, was global in nature, derived from all data points in given
ICP range, not taking into consideration whether they occurred
prior to or following ICP increases or at which stage of moni-
toring. Finally, outcome as assessed by the Glasgow Outcome
Scale provides information on the patient’s general condition
following injury and is a commonly accepted metric [33], but it
does not take into account the diverse character of brain injury in
terms of type, severity, and comorbidities. Specifically, it may be
influenced by extracranial injury, such as damage to the spinal
cord or limb amputations [34] which will not result in changes
in ICP pulse morphology, and it assigns a disproportionate
weight to physical disability over cognitive impairment [35].
The GOS scores were chosen in this study taking into account
its pilot nature in order to assess the potential utility of proposed
method of ICP pulse analysis and with full awareness that a
more exhaustive description of the patient cohort, with regard to
both clinical assessment and other physiological factors, would
be required to definitively show the benefits of this approach in
the clinical setting.

APPENDIX I

The hyperparameters of used networks are shown in Tables VI
(ResNet) and VII (LSTM-FCN). The fully connected baseline
network consisted of 3 Layers with 64, 32 and 5 neurons with
dropout between layers with small probability of 0.3 and ReLU
activation functions between hidden layers. The models were
trained on a machine with AMD’s Ryzen 9 3900XT (3.8 -
4.7 GHz) 12 core CPU and Nvidia’s GeForce RTX 3090 GPU
with 24 GB of VRAM. The training was performed for 100
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TABLE VII
HYPERPARAMETERS OF USED LSTM-FCN ARCHITECTURE.

ARCHITECTURE PRESENTED IN THE TABLE PRODUCES THE EMBEDDING
WHICH IS LATER CLASSIFIED BY A FULLY CONNECTED LAYER OF 128

INPUTS AND 5 NEURONS

epochs optimized by Stochastic Gradiant Descent with Nesterov
momentum of 0.95 and starting learning rate of 0.01. Learning
rate was lowered to 0.001 on epoch 33 and to 0.0001 in epoch
66. Training times were relatively short - around 4 minutes for
ResNet, 2 minutes for LSTM-FCN and less than 1 minute for
fully connected baseline. Single label classfication and multi-
label classification experiments used Cross Entropy Loss and
Binary Cross Entropy, respectively. Model performance in the
validation dataset was logged at the end of every epoch and
running averages of the training dataset every 10 steps. Batch
training with batch size of 256 was used. The source code used
for analysis is available https://github.com/MaczekO/ICP_NN
in this GitHub repository.

APPENDIX II

This section describes alternative approaches to the classifi-
cation task that did result in improved accuracy.

Models. In an attempt to simplify the model without a reduc-
tion in accuracy, networks based on Long-Short Term Memory
cell (LSTMs) [36], Gated Recurrent Unit cell (GRUs) [37],
and Shallow Convolutional Neural Networks (CNNs) [38] with
different configurations were tested. However, the results were
not satisfactory, showing at least 5% drop in accuracy scores.

Data representations. In an attempt to boost the performance
of the models, different representations of ICP pulse wave-
forms were tested: Fourier transform coefficients, spectrograms,
approximation by orthogonal Chebyshev polynomials, empiri-
cal mode decomposition, and RBF approximation coefficients.
However, none of the methods resulted in an improvement over
the 1-D vector of signal samples, and some of them resulted
in loss of information during the approximation step, posing an
additional challenge for the model.

Secondly, the effect of using the ABP signal as a second input
was tested by attaching the signal as a second channel for input to
convolutional layers and by training a shared weights model of
two univariate feature extractors, then concatenating the results

and performing classification through a fully connected network.
Neither method, however, improved the classification accuracy.

Addressing class imbalance. To reduce the great imbalance
between the A+E class and non-artifactual classes, artificial
examples were created by choosing a number of examples from
other classes and heavily obscuring them with a composition of
multiple sine waves with different parameters, as it is similar to
the experimental data. This did not improve the results, possibly
due to the fact that the method of creating artificial examples
introduced new distribution of data into the class that did not
match the distribution of existing examples.

Pretraining. The possibility of pretraining on a large, unanno-
tated dataset was investigated in place of starting the classifica-
tion from a random distribution of weights. A dataset consisting
of all pulses from all patients in the training dataset was created
and used in pretraining based on an autoencoder structure with
a ResNet model without the classfication layer as encoder and
a simple fully connected network as decoder. The pretraining
lasted 15 epochs with Adam as optimizer, reducing the MSE
of signal reconstruction. Unfreezing of only the classification
layer during supervised training resulted in a large reduction in
accuracy (66% in the validation dataset), probably due to high
correlation between pulses from the same patient. Unfreezing
of all layers with trained weights used as a starting point for
the network resulted in slightly lower (90.24% in the validation
dataset) accuracy than starting from random weights.

Multi-label classification. The multi-label approach was
based on the same types of networks but with separate sigmoids
instead of softmax as output. The classification threshold was
unified to 0.5 for all classes. Binary cross entropy for minimiza-
tion with SGD optimizer was used. Achieved results were similar
to single label classification, e.g., ResNet with multi-label output
achieved Jaccard score of 82.44% and best accuracy of 95.59%
in the validation dataset.

ResNet depth ablation. In a second attempt to reduce the
complexity of the network, additional experiments with ResNet
architecture were performed. The change in the number of
residual blocks lowered the number of parameters as well the
complexity of the network. While this procedure did not affect
the results in the validation dataset, it significantly affected
the generalization to the test dataset, with removal of blocks
resulting in a decrease of 4 to 6% in best accuracy and 3 to
6% in strict accuracy. This indicates that all of the layers are
important for the generalization ability of used ResNet.
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Analysis of the Shape of Intracranial Pressure Pulse Waveform
in Traumatic Brain Injury Patients

Agnieszka Kazimierska1, Agnieszka Uryga 1, Cyprian Mataczyński2, Małgorzata Burzyńska3,
Arkadiusz Ziółkowski1, Andrzej Rusiecki2, and Magdalena Kasprowicz1

Abstract— Intracranial pressure (ICP) pulse waveform,
i.e., the shape of the ICP signal over a single cardiac cycle,
is regarded as a potential source of information about
intracranial compliance. In this study we aimed to compare
the results of automatic classification of ICP pulse shapes on a
scale from normal to pathological with other ICP pulse–derived
metrics. Additionally, identification of artifacts was performed
simultaneously with pulse classification to assess the effect of
artifact removal on the results. Data from 35 traumatic brain
injury (TBI) patients were analyzed retrospectively in terms of
dominant waveform shape, mean ICP, mean amplitude of ICP
(AmpICP), mean index of compensatory reserve (RAP index),
and their association with the patient’s clinical outcome. Our
results show that patients with poor outcome exhibit more
pathological waveform shape than patients with good outcome.
More pathological ICP pulse shape is associated with higher
mean ICP, mean AmpICP, and RAP.

Clinical relevance— In the clinical setting, ICP pulse wave-
form analysis could potentially be used to complement the
commonly monitored mean ICP and improve the assessment
of intracranial compliance in TBI patients. Artifact removal
from the ICP signal could reduce the frequency of false positive
detection of clinically adverse events.

I. INTRODUCTION

Traumatic brain injury (TBI) is considered an important
public health concern because of its high incidence and
significant socioeconomic costs [1]. In the clinical setting,
monitoring of mean intracranial pressure (ICP) is often used
in the management of TBI patients due to the association
between increases in ICP and higher mortality and worse
outcome [2]. However, pressure (P) and volume (V) in the
intracranial space are nonlinearly related (mathematically
modelled as an exponential P-V curve), and a reduction in
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brain compliance (i.e., the cerebrospinal system’s ability to
compensate changes in volume without potentially threaten-
ing increases in ICP) may occur before a rise in mean ICP
is detected [3].

Various studies have been conducted to develop tools
for the assessment of intracranial compliance. A number of
such studies included the analysis of ICP pulse waveform,
i.e., the ICP signal over a single cardiac cycle. Notably,
there have been attempts to derive that information from
changes in the amplitude of the ICP pulse (AmpICP) and
its relationship with changes in the mean value [4], [5] or
from changes in the configuration of peaks and notches of
ICP pulse contour [6], [7]. The RAP index [5], which is
the correlation coefficient between changes in mean ICP
and AmpICP, is a clinically accepted method of assessing
cerebral compensatory reserve that provides an estimation
of the patient’s position along the P-V curve. However, peak
detection methods proposed so far are yet to gain widespread
clinical application. More recently, a different approach was
suggested, which is based on classification of different shapes
of the ICP pulse waveform using a neural network [8]
instead of relying on the results of peak identification. In this
work we aimed to compare the results of pulse waveform
classification using a previously developed deep learning
model with other metrics used to describe TBI patients and
to assess the possible relationship between ICP pulse type
and the patients’ outcome.

II. MATERIALS AND METHODS
A. Data collection

This study was performed as a retrospective single-center
trial at Wroclaw University Hospital (Wroclaw, Poland) with
approval from the local Ethics Committee (approval no. KB-
624/2014) and in adherence to the Declaration of Helsinki.
35 patients suffering from TBI were selected for analysis.
All patients were treated according to guidelines applicable at
the time of admission [9]. The study group was homogenous
with regard to severity of the injury and treatment protocol.
The patients’ condition was assessed using the Glasgow
Coma Scale (GCS), Marshall scale, and Rotterdam scale. The
patients’ outcome was assessed using the Glasgow Outcome
Scale (GOS) at 3 months after discharge from the hospital,
with poor outcome represented by scores I–III and good
outcome by scores IV–V.

ICP was measured invasively using an intraparenchymal
sensor (Codman MicroSensor ICP Transducer, Codman &
Shurtleff, MA, USA) inserted into the frontal cortex. The
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signal was recorded with sampling frequency of 200 Hz us-
ing ICM+ software (Cambridge Enterprise Ltd, Cambridge,
UK). The patients were monitored continuously, starting in
day 1 or day 2 after admission to the hospital, depending on
the date of surgery. On average, the patients were monitored
for 5 ± 3 days.

B. Signal analysis and ICP pulse waveform classification

All analyses were performed using programs custom writ-
ten in Python 3.8 with PyTorch package. A residual neural
network (ResNet) model using 1-D vector of signal samples
(standardized to an interval between 0 and 1 and resampled
to uniform length of 180 samples) was trained to classify
ICP pulse waveforms into four morphological classes: 1–
normal, 2 – possibly pathological, 3 – likely pathological, 4
– pathological, reflecting the changes in the configuration
and visibility of characteristic peaks P1, P2, and P3 of
the waveform (Fig. 1) [8]. An additional class (A+E) was
introduced to identify invalid pulses in the signal, such as
artifacts or errors in pulse onset detection. Pulse detection
was performed using modified Scholkmann algorithm [10].
The model was trained using 23252 waveforms (divided into
training and validation datasets of 17011 and 6241 pulses,
respectively) randomly selected from full recordings of TBI
patients and manually classified by an expert researcher. All
waveforms from the same patient were assigned to only one
of the datasets to prevent correlation between datasets that
could limit the model’s generalization ability.

The model was then tested in an independent dataset
of 650 pulses extracted from 11 aneurysmal subarachnoid
hemorrhage patients and manually classified by a panel of
three experts (who showed significant agreement as tested
by Fleiss kappa test, κ=0.700 (95% CI: 0.672 to 0.728),
p < 0.001) to ensure its applicability to patient cohorts
with different data distributions. In cases with waveform
type at the border between two classes two labels were
allowed, and during assessment of classification accuracy the
label produced by the model was considered correct if it
matched either of the two. A detailed description of model
development and evaluation methodology is presented in our
earlier paper [11].

Classification results were obtained for all pulses in the full
recordings of TBI patients using the ResNet model with each
patient characterized by dominant pulse type (i.e., the pulse
type occurring most frequently in the whole recording with
pulses classified as artifacts excluded from analysis). The
long-term recordings were also used to obtain RAP index [5]
with AmpICP calculated as the amplitude of the fundamental
component of the ICP signal in range 0.6–1.8 Hz using Fast
Fourier Transform. The interpretation of the RAP index is as
follows: values around 0 indicate good compensatory reserve
whereas values increasing to +1 indicate poor compensatory
reserve; negative values are associated with cessation of
blood flow due to the collapse of cerebral arterial bed at very
high ICP [12]. Mean ICP and mean AmpICP were calculated
in 10-second-long windows and the correlation coefficient
between them was calculated in 5-minute-long windows

shifted every 10 seconds. The calculations were performed
for each raw recording and for modified recordings where
the pulses identified by the model as artifacts were removed.
Finally, episodes of mean ICP exceeding 20 mm Hg and
episodes of RAP exceeding 0.6 (with minimum length of
each episode no less than 5 minutes) were identified in each
recording before and after artifact removal. The thresholds
reflect values used in clinical practice to identify intracranial
hypertension [9] and reduced compensatory reserve [13],
respectively. Total duration of all identified episodes was
analyzed as well as the number of individual episodes and
mean duration of a single episode.

Fig. 1. Illustrative examples of ICP pulse waveform shapes in each class:
a) 1 – normal, b) 2 – possibly pathological, c) 3 – likely pathological, d) 4
– pathological, e) A+E – artifact or error.

C. Statistical analysis

Statistical analysis was performed using Statistica software
(v13.1, Tibco, Palo Alto, CA, USA). Statistical significance
level of 0.05 was assumed in all analyses. Data distri-
butions were tested for normality using the Kolmogorov-
Smirnov test with Lillefors correction. Difference between
two independent outcome groups was assessed using Mann-
Whitney U test and difference between metrics derived from
recordings before and after artifact removal (i.e., dependent
variables) using Wilcoxon singed rank test. The Fisher-
Freeman-Halton exact test of independence was used to
determine the association between two categorical variables
(outcome vs. dominant pulse waveform type) with 2x4
contingency table, where the effect size was assessed using
V Cramer’s coefficient. The relationships between pulse type
and mean ICP, mean AmpICP, and mean RAP averaged
over the whole recording were calculated using multiple
linear or linearized regression analysis with subjects treated
as categorical factors using dummy variables (with respect
to the inter-subject variability) and using partial coefficient
(Rp) between analyzed variables. All results are presented as
median ± interquartile range unless otherwise indicated.

III. RESULTS

A. Patient characteristics

The study group consisted of 26 men and 9 women with
median age of 38 ± 29 years. All patients had comparable
GCS score with median 6 ± 4. Detailed patient characteris-
tics are presented in Table I.
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TABLE I
PATIENT CHARACTERISTICS

Clinical feature Number of patients / Value
total group n = 35 (100%)

GCS on admission n (%) 3-8: 30 (86%), 9-12: 3 (8%),
13-15: 2 (6%)

Marshall score median ± IQR 3 ± 3

Rotterdam score median ± IQR 4 ± 1

30-days mortality n (%) 4 (10%)

GOS (3 months) n (%) I-III: 20 (57%), IV-V: 15 (43%)

B. Classification results

The ResNet model achieved classification accuracy of 95%
in the validation dataset and 81% in the independent test
dataset. Detailed scores for each pulse type are presented in
Table II.

TABLE II
RESNET MODEL PERFORMANCE

Validation dataset
n = 6241

Test dataset
n = 650

Pulse type Precision Recall Precision Recall

1 0.97 0.96 0.86 0.93

2 0.90 0.94 0.71 0.92

3 0.89 0.87 0.71 0.95

4 0.85 0.91 0.84 0.57

A+E 0.99 0.92 0.98 0.46

C. Relationship between outcome, ICP pulse type, and other
metrics

There were no statistically significant differences in mean
ICP, mean AmpICP, or mean RAP between good and poor
outcome groups (see Table III). Dominant ICP pulse type was
significantly lower (Z = 2.93, p = 0.003) in the good outcome
group (1.0 ± 1.0) compared to the poor outcome group
(2.0 ± 2.0). Additionally, there was a significant association
between ICP pulse type and the following parameters: mean
ICP (Rp = 0.63, p < 0.001), mean AmpICP (Rp = 0.61, p <
0.001), and mean RAP (Rp = 0.26, p = 0.004), as presented
in Fig. 2.

Dominant ICP pulse type (see Fig. 3) was significantly
associated with outcome: χ2(3) = 10.11, p = 0.011, with V
Cramer’s coefficient of 0.56 indicating a strong effect of this
relationship. Patients in the good outcome group frequently
exhibited dominant ICP pulse type 1 (73.3% of patients)
and rarely types 3 or 4 (7.3% and 0.0%, respectively). On
the other hand, a significant number of patients with poor
outcome exhibited pulse types 3 (15.0%) and 4 (30.0%).

TABLE III
MEAN ICP, AMPICP, RAP INDEX AND DOMINANT ICP PULSE TYPE FOR

PATIENTS WITH POOR AND GOOD OUTCOME. NS - RESULT NOT

STATISTICALLY SIGNIFICANT

GOS after 3 months Poor outcome
n = 20

Good outcome
n = 15 p

ICP [mm Hg] 13.88 ± 5.69 12.31 ± 4.52 ns

AmpICP [mm Hg] 1.15 ± 0.74 0.87 ± 0.54 ns

RAP [a.u.] 0.32 ± 0.23 0.46 ± 0.27 ns

Dominant pulse type 2.0 ± 2.0 1.0 ± 1.0 0.003

Fig. 2. The relationship between dominant ICP pulse type and mean ICP
(left), mean AmpICP (middle), and RAP index (right).

D. Effect of artifact removal

For episodes of RAP > 0.6, artifact removal resulted in a
statistically significant decrease in the total duration of the
episodes (from 29.7 ± 37.6 hours to 25.3 ± 38.2 hours, p <<
0.001) and in the number of individual episodes (from 141
± 135 to 125 ± 156, p < 0.001). For episodes of intracranial
hypertension (ICP > 20 mm Hg), artifact removal resulted
in a decrease in the total duration of the episodes (from 174
± 804 minutes to 160 ± 750 minutes, p = 0.006).

IV. DISCUSSION

In this work we aimed to use a deep learning model
to classify different shapes of ICP pulse waveforms and
compare them with other ICP pulse–derived indices in order
to further explore the meaning of ICP pulse morphology.

Our results show that in TBI patients dominant ICP pulse
type is associated with the patients’ outcome. Patients in
the good outcome group more frequently exhibit normal
waveforms (type 1) with dominant peak P1. In the poor
outcome group the number of normal waveforms decreases in
favor of pathologically changed pulses, particularly rounded
pulses with no identifiable peaks (type 4). In the clinical
setting, ICP–guided management mostly relies on a set
threshold for mean ICP above which therapeutic interven-
tions should be introduced [15]. The application of a general
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Fig. 3. The interaction between dominant ICP pulse type and the number
of patients with poor or good outcome.

threshold in all TBI patients remains controversial [16], and
attention has been called to the fact that the relationship
between the state of the craniospinal system and mean ICP
is not straightforward [3]. Accordingly, our results show that
despite comparable mean ICP, the poor and good outcome
groups show differences in dominant pulse type, and pulse
type is the only parameter whose changes reach statistical
significance when compared against outcome. Furthermore,
ICP pulse types are significantly correlated with both ICP
and AmpICP, reflecting the trends expressed by the pressure–
volume and amplitude–pressure curves. Statistically signifi-
cant but weak correlation between ICP pulse shape and RAP
index may be explained by their different interpretation, as
ICP pulse shape is more related to intracranial compliance
while RAP provides information on the patient’s position on
the P-V curve. We also found that identification of artifacts
simultaneously with the classification of valid pulses changes
the total duration of detected episodes of increased ICP and
RAP, which is in line with previous studies highlighting the
role of artifacts in generating false alarms in the clinical
setting [17].

Presented observations are based on the results of a pre-
liminary study conducted in a small patient cohort and with
a simple neural network model. Performance of the model
can potentially be further improved by providing a more
balanced training and validation dataset or by introducing
modifications to the classification criteria which in their
current form were derived from patients with a different type
of intracranial pathology.

V. CONCLUSION

Analysis of brain compliance by means of automatic ICP
pulse shape classification is a promising approach to con-
tinuous monitoring of the state of the compensatory reserve
that could be used in patients with intracranial pathologies
alongside standard mean ICP measurement and improve the
assessment of the state of the intracranial space. Results
of this study suggest an association between dominant ICP
waveform type and the clinical outcome of TBI patients.
Clinical significance of proposed approach should be con-
firmed in a larger set of patients.

REFERENCES

[1] M. C. Dewan, A. Rattani, S. Gupta, R. E. Baticulon, Y. Hung, M.
Punchak, A. Agrawal, A. O. Adeleye, M. G. Shrime, A. M. Rubiano,
J. V. Rosenfeld, and K. B. Park, ”Estimating the global incidence of
traumatic brain injury,” J. Neurosurg., vol. 130, no. 4, pp. 1080–1097,
Apr. 2019, doi: 10.3171/2017.10.JNS17352.

[2] S. Badri, J. Chen, J. Barber, N. R. Temkin, S. S. Dikmen, R. M.
Chesnut, S. Deem, N. D. Yanez, and M. M. Treggiari, ”Mortality
and long-term functional outcome associated with intracranial pressure
after traumatic brain injury,” Intensive Care Med., vol. 38, no. 11, pp.
1800–1809, Nov. 2012, doi: 10.1007/s00134-012-2655-4.

[3] T. Heldt, T. Zoerle, D. Teichmann, and N. Stocchetti, “Intracranial
pressure and intracranial elastance monitoring in neurocritical care,”
Annu. Rev. Biomed. Eng., vol. 21, pp. 523–551, June 2019, doi:
10.1146/annurev-bioeng-060418-052257.

[4] J. Szewczykowski, S. Sliwka, A. Kunicki, P. Dytko, and J. Korsak-
Sliwka, “A fast method of estimating the elastance of the intracranial
system,” J. Neurosurg., vol. 47, no. 1, pp. 19–26, July 1977, doi:
10.3171/jns.1977.47.1.0019.

[5] M. Czosnyka, E. Guazzo, M. Whitehouse, P. Smielewski, Z. Czos-
nyka, P. Kirkpatrick, S. Piechnik, and J. D. Pickard, “Signifi-
cance of intracranial pressure waveform analysis after head injury,”
Acta Neurochir. (Wien)., vol. 138, no. 5, pp. 531–542, 1996, doi:
10.1007/BF01411173.

[6] E. R. Cardoso, J. O. Rowan, and S. Galbraith, “Analysis of the cere-
brospinal fluid pulse wave in intracranial pressure,” J. Neurosurg., vol.
59, no. 5, pp. 817–821, Nov. 1983, doi: 10.3171/jns.1983.59.5.0817.

[7] C. S. Robertson, R. K. Narayan, C. F. Contant, R. G. Grossman, Z. L.
Gokaslan, R. Pahwa, P. Caram Jr, R. S. Bray, and A. M. Sherwood,
“Clinical experience with a continuous monitor of intracranial com-
pliance,” J. Neurosurg., vol. 71, no. 5 Pt 1, pp. 673–680, Nov. 1989,
doi: 10.3171/jns.1989.71.5.0673.

[8] C. G. Nucci, P. De Bonis, A. Mangiola, P. Santini, M. Sciandrone, A.
Risi, and C. Anile, “Intracranial pressure wave morphological classi-
fication: automated analysis and clinical validation,” Acta Neurochir.
(Wien)., vol. 158, no. 3, pp. 581–588, Mar. 2016, doi: 10.1007/s00701-
015-2672-5.

[9] Brain Trauma Foundation, American Association of Neurological
Surgeons, Congress of Neurological Surgeons, “Guidelines for the
management of severe traumatic brain injury,” J. Neurotrauma, vol.
24 Suppl 1, pp. S1-106, doi: 10.1089/neu.2007.9999.

[10] S. M. Bishop and A. Ercole, “Multi-scale peak and trough detection
optimised for periodic and quasi-periodic neuroscience data,” Acta
Nerochirurgica Suppl., vol. 126, pp. 189–195, 2018, doi: 10.1007/978-
3-319-65798-1 39.

[11] C. Mataczynski, A. Kazimierska, A. Uryga, M. Burzynska, A.
Rusiecki, and M. Kasprowicz, “End-to-end automatic morphological
classification of intracranial pressure pulse waveforms using deep
learning,” IEEE J. Biomed. Health Inform., June 2021, published
online ahead of print, doi: 10.1109/JBHI.2021.3088629.

[12] L. Calviello, J. Donelly, D. Cardim, C. Robba, F. A. Zeiler, P.
Smielewski, and M. Czosnyka, “Compensatory-reserve-weighted in-
tracranial pressure and its association with outcome after traumatic
brain injury,” Neurocrit. Care, vol. 28, no. 2, pp. 212–220, Apr. 2018,
doi: 10.1007/s12028-017-0475-7.

[13] L. A. Steiner, M. Balestreri, A. J. Johnston, J. P. Coles, P. Smielewski,
J. D. Pickard, D. K. Menon, M. Czosnyka, ”Predicting the response of
intracranial pressure to moderate hyperventilation’,” Acta Neurochir.
(Wien)., vol. 147, no. 5, pp. 477–483, May 2005, doi: 10.1007/s00701-
005-0510-x.

[14] M. Czosnyka and G. Citerio, “Brain compliance: the old story with
a new ‘et cetera,’” Intensive Care Med., vol. 38, no. 6, pp. 925–927,
June 2012, doi: 10.1007/s00134-012-2572-6.

[15] C. Hawthorne and I. Piper, “Monitoring of intracranial pressure in
patients with traumatic brain injury,” Front. Neurol., vol. 5, pp. 121,
July 2014, doi: 10.3389/fneur.2014.00121.

[16] M. Czosnyka, P. Smielewski, I. Timofeev, A. Lavinio, E. Guazzo, P.
Hutchinson, and J. D. Pickard, “Intracranial pressure: more than a
number,” Neurosurg. Focus, vol. 22, no. 5, p. E10, May 2007, doi:
10.3171/foc.2007.22.5.11.

[17] M. Imhoff and S. Kuhls, “Alarm algorithms in critical monitoring,”
Anesth. Analg., vol. 102, no. 5, pp. 1525–1537, May 2006, doi:
10.1213/01.ane.0000204385.01983.61.

549

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 24,2022 at 11:23:02 UTC from IEEE Xplore.  Restrictions apply. 



Intracranial Pressure Pulse Morphology-based Definition of
Life-threatening Intracranial Hypertension Episodes
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Abstract— Intracranial hypertension (IH) is associated
with poor outcome in traumatic brain injury (TBI) patients
and must be avoided to prevent secondary brain injury. In
clinical practice the most common method of IH detection
is the calculation of the mean value of intracranial pressure
(ICP) and the therapeutic intervention is usually introduced
when the mean exceeds a certain threshold. This threshold,
however, is rather individual for each patient than universal
for all. Impaired cerebrovascular reactivity and reduced
intracranial compliance are associated with raised ICP. This
work explores a new definition of life-threatening hypertension
(LTH) which accounts for the state of cerebral compliance.
In the proposed method, changes in compliance are analysed
through identification of likely pathological and/or pathological
shapes of ICP pulse waveforms using a neural network. In
terms of predictive power for mortality in TBI, detection of
both shape clasess of ICP pulse waveforms during raised ICP
offers similar results to previously proposed LTH definition
accounting for the state of cerebrovascular reactivity (77.8%
vs 76.9% accuracy, respectively). On the other hand, the fully
pathological shapes of ICP pulses are present during ICP rises
almost only in recordings of patients who died: out of 216
analysed patients only 6% of surviving and as many as 42%
of deceased patients developed this type of LTH event. The
stricter definition of LTH events including only pathological
shape of ICP pulses presents the highest accuracy among the
analysed approaches for mortality prediction (87.9%).

Clinical relevance—Reliable detection of potentially life-
threatening episodes of ICP elevation offers the possibility
of improving clinical management of TBI by identifying the
patients at risk of unfavourable outcome.

I. INTRODUCTION

Intracranial hypertension (IH) is usually defined as sus-
tained elevation of intracranial pressure (ICP) above a certain
threshold (20 or 22 mm Hg) lasting more than 5 minutes.
However, an increase in mean ICP above a fixed value does
not always indicate the need for immediate intervention as
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1Cyprian Mataczyński (corresponding author) is with the Department

of Computer Engineering, Faculty of Information and Communication
Technology, Wroclaw University of Science and Technology, Wroclaw,
Poland. cyprian.mataczynski@pwr.edu.pl
2A. Kazimierska, A. Uryga, and M. Kasprowicz are with the

Department of Biomedical Engineering, Faculty of Fundamental
Problems of Technology, Wroclaw University of Science and Technology,
Wroclaw, Poland. agnieszka.kazimierska@pwr.edu.pl,
agnieszka.uryga@pwr.edu.pl,
magdalena.kasprowicz@pwr.edu.pl

the precise ICP threshold and event length above which the
patient requires treatment are still unknown.

As recent studies demonstrated that both the magnitude
of ICP elevation and its duration are associated with worse
outcome [1], a metric that accounts for the cumulative extent
of IH episodes has been proposed [2]. In this approach, the
pressure-time dose (PTD) is calculated as the area under
the ICP curve above a certain threshold. It has also been
shown that IH is poorly tolerated in patients with impaired
cerebrovascular autoregulation and cerebrovascular reactivity
status should be considered jointly with ICP levels [3].
Consequently, Lee et al. [4] introduced a new concept of life-
threatening hypertension (LTH) that accounts for the findings
described above. In order to recognize potentially dangerous
IH events, the proposed method incorporates identification of
IH and evaluation of cerebrovascular reactivity based on the
pressure reactivity index (PRx) calculated from relative slow
changes in mean arterial blood pressure (ABP) and mean
ICP [5].

However, impaired cerebrovascular reactivity is not the
only complication accompanying ICP elevation. Reduced
cerebrospinal compliance, defined as diminished ability of
the craniospinal system to buffer changes in volume, is
a major risk factor for disproportionate ICP increases in
TBI patients [6]. As patients with decreased compliance
may be exposed to greater increase in ICP from a given
increase in volume than patients with normal compliance,
the combined analysis of PTD and intracranial compliance
may be crucial in detecting LTH episodes. Although sev-
eral approaches have been proposed so far for compliance
estimation, direct assessment requires potentially dangerous
modification of intracranial volume and does not allow for
continuous evaluation [7], [8]. In this study we used an
indirect method based on the analysis of cardiac-induced
oscillations in the ICP signal, called the ICP pulse waveform.
In this approach, a naturally occurring pulsatile increment in
cerebral blood volume associated with each heartbeat is used
as a substitute for volumetric manipulation and the change in
ICP pulse shape is analysed as the system’s response to the
change in volume. This method is free of any added risks
to the patient as it is not additionally invasive and it has
been validated in studies on cerebrospinal compliance [9],
[10]. Using a recently developed deep learning algorithm for
morphological classification of ICP pulse waveforms based
on artificial neural network [11], we tested the hypothesis
that an LTH event can be detected by simultaneous analysis
of ICP rises and the state of cerebrospinal compliance



estimated based on changes in ICP pulse shape. Pressure
reactivity- and morphology-based LTH definitions as well as
their combination were investigated in the context of their
association with mortality in TBI patients.

II. METHODOLOGY

A. Data acquisition

Data collected in 282 TBI patients as part of the high-
resolution CENTER-TBI project [12], [13] was selected for
analysis in the presented work (version CENTER Core 3.0).
The use of these data has been approved officially by the
CENTER-TBI committee (approval number 359). 37 patients
(13%) were excluded due to external ventricular drains
and 29 patients (10%) because of craniectomy performed
before the start of monitoring. Aditionally, one patient was
removed due to very short ICP recording (less than 5
minutes). Final dataset included 216 recordings of ICP and
ABP signals. ICP was acquired using an intraparenchymal
strain gauge probe (Codman ICP MicroSensor, Codman &
Shurtleff Inc., Raynham, MA) or parenchymal fiber optic
pressure sensor (Camino ICP Monitor, Integra Life Sciences,
Plainsboro, NJ). ABP was obtained through either radial
or femoral arterial lines connected to pressure transducers
(Baxter Healthcare Corp. CardioVascular Group, Irvine, CA).
All signals were recorded with sampling frequency of 100 Hz
or higher using ICM+ software (Cambridge Enterprise Ltd.,
Cambridge, UK) or Moberg CNS Monitor (Moberg Research
Inc., Ambler, PA). Data for the CENTER-TBI study has been
collected through the Quesgen e-CRF (Quesgen Systems Inc,
USA), hosted on the INCF platform and extracted via the
INCF Neurobot tool (INCF, Sweden).

The CENTER-TBI study (EC grant 602150) has been
conducted in accordance with all relevant laws of the EU
if directly applicable or of direct effect and all relevant
laws of the country where the Recruiting sites were located,
including but not limited to, the relevant privacy and data
protection laws and regulations (the “Privacy Law”), the
relevant laws and regulations on the use of human materials,
and all relevant guidance relating to clinical studies from
time to time in force including, but not limited to, the
ICH Harmonised Tripartite Guideline for Good Clinical
Practice (CPMP/ICH/135/95) (“ICH GCP”) and the World
Medical Association Declaration of Helsinki entitled “Ethical
Principles for Medical Research Involving Human Subjects”.
Informed Consent by the patients and/or the legal repre-
sentative/next of kin was obtained, accordingly to the local
legislations, for all patients recruited in the Core Dataset
of CENTER-TBI and documented in the e-CRF. Ethical
approval was obtained for each recruiting site and the list of
approvals is available on https://www.center-tbi.
eu/project/ethical-approval.

The analysed cohort included 50 females and 166 males
with median age of 51 [29–62] years. 13 patients (6%)
underwent craniectomy after the start of monitoring; in those
patients only the part of the signals recorded before surgery
was analysed. The patients were divided into surviving and
deceased group based on their ICU discharge status. In the

final dataset, 26 patients (12%) died in the ICU. Median
recording time was 135 [114–207] hours.

B. Signal processing and morphological classification of
ICP pulse waveforms

Prior to analysis, all recordings were cut to include only
those parts where both the ICP and ABP signals were avail-
able. Manually annotated artifacts and invalid values within
the data were replaced by the median of their immediate
surroundings.

Modified Scholkmann algorithm [14] was used for ICP
pulse onset detection and resulting pulses were scaled to
interval 0–1 and resampled to uniform length of 180 samples
before classification. Classification of ICP pulse waveforms
was performed using a Residual Neural Network model
trained to assign individual pulse waveforms to one of five
types: four morphological classes or artifacts (see Figure 1).
The first four classes (as proposed in [15]) represent the
progressive change from normal waveform with three char-
acteristic local maxima to pathologically rounded waveform
associated with decreased brain compliance. The last class
is reserved for local artifacts such as distorted waveforms or
errors in pulse onset detection and serves as an additional
filtering tool. The algorithm is described in detail in [11].

Fig. 1: Examples of intracranial pressure pulse waveforms
annotated by the classification model

C. Identification of IH and LTH episodes

IH episodes were identified as parts of the recording where
mean ICP in 5 minute window was greater than 20 mm Hg.
If the IH episode started within 5 minutes of the end of
the previous episode, both episodes were merged into one.
The following metrics were calculated for each detected IH
episode: PTD, dominant class of ICP pulse waveform, and
mean PRx. PTD measured in mmHg ∗hour, was defined as
the area between the constant threshold line of 20 mm Hg
and the raw ICP curve for the whole IH event [1]. Dominant
class of ICP pulse waveform was defined as the class with
the highest incidence within the IH event excluding pulses



Fig. 2: Illustrative example of an IH episode identified as PTD >5 and class 3+4.

marked by the model as artifacts. PRx was calculated in 5
minute windows (window shift: 10 seconds) as the Pearson
correlation coefficient between mean ICP and mean ABP
obtained from non-overlapping 10-seconds-long windows
[5].

LTH episodes were identified using three approaches.
The reference definition was based only on PTD >5. The
second approach, described in [4], defined the LTH event
as an IH episode with PTD >5 and PRx >0. In the third
approach we defined the morphology-based LTH event as
an IH episode with PTD >5 and pathologically changed
ICP pulse waveform. Two versions of this approach were
tested: one including both likely pathological and pathologi-
cal waveforms (class 3 and 4) and the second including only
pathological waveforms of class 4. An illustrative example
of an LTH episode with traces of PRx and ICP pulse
waveform class is presented in Figure 2. All LTH definitions
were compared in terms of event incidence in surviving
versus deceased patient groups. Additionally, the influence of
adding a PRx threshold of 0 (previously identified as having
the most predictive power [4]) on morphology-based LTH
detection was analysed. Statistical analysis was performed
using MedCalc Software Ltd [16].

III. RESULTS

In the full dataset, at least one IH episode was detected
in 193 patients (90%). Out of 23 patients (10%) who did
not exhibit any IH events throughout the whole recording, 4
(2%) died in the ICU.

The incidence of different LTH events, assessed as the
percentage of patients who presented at least one LTH event
of given type during the whole recording, is presented in
Figure 3a. LTH events defined as PTD >5 and class 3+4,
while less frequent than PTD >5 and PRx >0, showed a
similar performance in distinguishing between surviving and
deceased patients. LTH episodes identified using the stricter
morphological definition (PTD >5 and only pathological
waveforms of class 4) were almost non-existent in the data

from surviving patients, amounting to less than 1% of all
IH episodes in that group (Figure 3b). This is confirmed by
the data shown in Table I. While all prediction scores were
similar for PTD >5 with PRx >0 and PTD >5 with class
3+4, the comparison with PTD >5 and class 4 shows that not
only did the stricter definition have higher overall accuracy,
but also much higher specificity.

The addition of PRx >0 to PTD >5 and PTD >5 with
class 3+4 definitions led to an increase in accuracy in
predicting the patient’s ICU outcome of approximately 5%,
associated with increased specificity and little to no change
in sensitivity. On the other hand, the inclusion of PRx >0
resulted in only marginal changes for PTD >5 with class 4
(mainly, 0.5% increase in accuracy).

IV. DISCUSSION

In this study we compared the performance of reactivity-
based LTH definition in predicting mortality of TBI patients
with a different approach that includes information about the
state of cerebrospinal compliance represented by the shape
of ICP pulse waveform. Our results show that the incidence
of LTH events identified using either the reactivity- or
morphology-based definition distinguished deceased vs. sur-
viving patients with over 70% accuracy. However, while the
episodes detected with the reactivity-based and morphology-
based definition including two ICP pulse waveform classes
were balanced predictors with comparable sensitivity and
specificity, the stricter morphology-based definition which
considered only pathological ICP waveforms of class 4
as an indicator of decreased compliance allowed for high
confidence in declaring the IH episode as life-threatening as
this type of events rarely occured in patients who survived
in the ICU. Furthermore, its predictive power was not in-
fluenced significantly by the inclusion of PRx which has a
practical implication on potential real-time monitoring as this
definition requires only the ICP signal.

One of the acknowledged limitations of existing methods
of predicting elevated ICP is their reliance on relatively
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b

Fig. 3: Comparison of incidence of each LTH event type found in patients’ ICP recordings in the survived vs deceased
group. The values were obtained as the percentage of patients who developed at least one LTH event in the whole dataset
(a) and as the percentage of events identified as LTH in the whole set of detected IH episodes aggregated from all patients
(b).

TABLE I: Performance of each LTH event type as predictor of mortality in the ICU. A true positive is defined as a patient who
exhibited at least one LTH episode and died in the ICU. Data are expressed as percentages with 95% confidence intervals.
SE – Sensivity, SP – Specificity, PPV – Positive Predictive Value, NPV – Negative Predictive Value, Acc – Accuracy.

PTD>5 PTD>5 and PRx>0 PTD>5 and class 3+4 PTD>5 and class 3+4
and PRx>0 PTD>5 and class 4 PTD>5 and class 4

and PRx>0

SE 73.1 (52.2–88.4) 73.1 (52.2–88.4) 69.2 (48.2–85.7) 65.4 (44.3–82.8) 42.3 (23.4–63.1) 42.3 (23.6–63.1)
SP 71.6 (64.6–77.9) 77.4 (70.8–83.1) 78.9 (72.5–84.5) 85.3 (79.4–89.9) 94.2 (89.9–97.1) 94.7 (90.5–97.5)

PPV 26.0 (20.3–32.7) 30.7 (23.7–38.6) 31.0 (23.6–39.6) 37.8 (28.1–48.6) 50.0 (32.6–67.4) 52.4 (34.2–70.0)
NPV 95.1 (91.1–97.4) 95.5 (91.7–97.6) 94.9 (91.3–97.1) 94.7 (91.4–98.8) 92.3 (89.6–94.3) 92.3 (89.6–94.4)
Acc 71.8 (65.3–77.7) 76.9 (70.7–82.3) 77.8 (71.6–83.1) 82.9 (77.2–87.6) 87.9 (82.9–91.9) 88.4 (83.4–92.4)

simple IH definitions with set thresholds for mean ICP and
episode duration which in turn makes them prone to false
alarms. The combination of the PTD-based approach with
morphological analysis of the ICP pulse waveform could
potentially be used as a basis for a more sophisticated model
predicting the occurrence of clinically-relevant IH events
and therefore improve the chances of preventing secondary
insults leading to worse outcomes.

However, it has to be noted that this work was performed
as a retrospective analysis in a highly unbalanced dataset
with low percentage of patients who died in the ICU. Further
prospective studies are required to fully assess the perfor-
mance of proposed LTH definitions in predicting mortality in
TBI patients. Additionally, as we did not investigate in detail
the influence of PTD and PRx thresholds on morphology-
based LTH detection but used the thresholds proposed for
reactivity-based analysis for comparison purposes, this factor
should be examined. Our previous study showed that nor-
malization of ICP pulse waveforms improves classification
accuracy. However, the potential usefullness of ICP pulse

amplitude as an additional parameter in LTH detection
should also be explored in further studies. Lastly, in this
study we did not consider the effect of ageing on the shape
of ICP pulse waveforms.
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Charité – Universitätsmedizin Berlin, Berlin, Germany 33Department of
Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
34Department of Neurosurgery, Charité – Universitätsmedizin Berlin, cor-
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