
 
 
 
 

DOCTORAL THESIS 
 

 
 
 

Methods for Interpretation and Validation of 
Representations Generated by Deep 

Convolutional Neural Networks 
 
 
 

mgr inż. Tomasz Michał  
Szandała 

 
 
 

Supervisor 
dr hab. inż. Henryk Maciejewski 

 
 
 
 
 

 
 

WROCŁAW 2022 



 

 

 

 

 

 

 

      

Doktorat był niezwykłą przygodą w trakcie, której 

towarzyszyło mi liczne grono osób. Teraz chciałbym Im 

złożyć podziękowania za to, że byli ze mną przez ostatnie 

lata. 

  

Za wsparcie, rady i cierpliwość chciałbym podziękować 

mojej najbliższej Rodzinie: Mamie, Siostrze Violi z 

Kamilem i Bratu Irkowi z Anią, oraz wszystkim moim 

Siostrzeńcom, Bratankom i Siostrzenicy.  

  

Mojej Cioci Zosi i Siostrom Różowym z Nysy dziękuję za 

wsparcie duchowe. To też wiele daje. 

  

Moi Przyjaciele z Nokii, z Liceum i spośród Ministrantów 

też wielokrotnie mnie motywowali i inspirowali, za to 

zawsze będę Im wdzięczny. Bez Was ta przygoda byłaby 

trudniejsza. 

  

Jednocześnie szczególnie podziękowania kieruję w 

stronę mojego Promotora, Profesora Henryka 

Maciejewskiego, który był wspaniałym Mentorem i, za 

Swoją cierpliwość i spokój, zasługuje na miano Złotego 

Człowieka! 

  

Dziękuję Wam wszystkim! 

 



Streszczenie 
 Uczenie maszynowe, a szczególnie sztuczne sieci neuronowe pozwoliły dokonać przełomu 
w analizie informacji. Obecnie są wykorzystywane we wspomaganiu decyzji nt. udzielania kredytu, 
jazdy autonomicznym samochodem, diagnostyce medycznej i wielu innych. Niestety, mimo ich 
zachwycającej skuteczności stanowią dla użytkowników czarną skrzynkę. Często jedynym 
wyznacznikiem jakość stworzonego modelu jest ocena poprawności udzielania odpowiedzi. W celu 
lepszego zrozumienia decyzji sieci neuronowych, a także ich ulepszenia, trzeba lepiej analizować 
generowane przez nie reprezentacje. 
 W poniższej pracy proponuję serię metod, które są odpowiedzią na zidentyfikowane braki 
w procedurach analizy i oceny reprezentacji generowanych przez Głębokie Konwolucyjne Sztuczne 
Sieci Neuronowe. 

Pierwsza grupa metod, to te wspomagające ocenę ocenianego modelu. Oprócz zwykłej 
skuteczności proponuję ocenę skupienia uwagi sieci, oraz wykrywaniu potencjalnych, ukrytych cech 
koniecznych, ale nie wystarczających do danej klasyfikacji. 

W pierwszej metodzie wprowadzam liczbę ocenę skupienia sieci na obiekcie. Pozwala ona 
wykryć sytuację, gdy model bierze pod uwagę tło, czyli kontekst, w którym obiekt się znajduje, 
a ignoruje sam podmiot klasyfikacji. W tym celu wyznaczamy obszar obiektu (tzw. ROI - Region of 
Interest), a następnie oceniamy stosunek ważności obszaru wewnątrz ROI do całej ilustracji. Jako 
ważność przyjmuje wartości z mapy ciepła uzyskanej za pomocą wybranej metody wizualizacji - także 
licznie opisane w tej pracy. Jeżeli uzyskana wartość średnia dla danej klasy jest zauważalnie niższa 
oznacza to, że klasyfikator w tym przypadku może się skupiać na kontekście, a nie na samym 
obiekcie. 

Druga metoda do automatycznej oceny modelu służy do wykrywania sytuacji, gdy tylko część 
obiektu jest czynnikiem decydującym o klasyfikacji. Podobnie jak pierwsza polega na wyznaczeniu 
ROI, a następnie obliczeniu stosunku pola o dużej ważności do pola całego ROI. Uzyskana wartość 
jest kolejną liczbową oceną poprawności działania utworzonego modelu i jej niska wartość dla 
poszczególnych klas oznacza klasy, które należy dogłębniej przeanalizować w celu wykrycia 
niepoprawnej generalizacji. 

W przypadku drugiej metody zwykłe techniki wizualizacji okazały się niewystarczające - były 
zbyt rozmyte by dostrzec skupienie sieci na cechach obiektu, zamiast całego obiektu. W tym celu 
opracowałem metodę Stopniowego Rozszerzania (Gradual Extrapolation - GE), która zamiast 
rozszerzać skokowo mapę ważności, uzyskaną w głębokiej warstwie sieci neuronowej, rozszerza się 
warstwa po warstwie. Dodatkowo po każdej ekstrapolacji uzyskana mapa jest mnożona przez 
średnie wartości aktywacji w danej warstwie. Ta procedura z pierwotnie rozmytych, niewyraźnych 
map, tworzy szczegółowe ilustracje, znacznie wyraźniej oddające kształty obiektu lub elementu, 
który zdominował klasyfikację. Ponadto metoda GE jest kompatybilna z niemal każdą techniką 
wizualizacji wykorzystywaną w literaturze. 

W celu udowodnienia skuteczności metody GE opracowałem i zarekomendowałem 
w kolejnej publikacji procedure oceny metod wizualizacji. Pozwala ona liczbowo porównać obecne 
jak i przyszłe metody, co ma pozwolić na lepszą ich systematykę. Test opiera się na trzech kryterach: 
wiarygodności, interpretowalności i aplikowalności.  

Wiarygodność jest obliczana jako współczynnik utraty poprawności klasyfikacji po usunięciu 
odpowiednio 1%, 2%, 5%, 10%, itd. najważniejszych pikseli wskazanych wg ocenianej metody. 
Im szybciej pewność klasyfikacji spada, tym bardziej precyzyjna jest wskazana metoda. 



Interpretowalności jest definiowana jako odpowiedź na pytanie: która metoda najbardziej 
zawęża informacje. Po porównaniu wejściowego obrazka z uzyskaną mapą ważności wycinamy 
piksele, które uzyskały ważność bliską zero. Im mniej pikseli pozostanie, tym wyżej w rankingu 
plasuje się analizowana metoda. 

Ostatnim czynnikiem jest aplikowalności, czyli sprawdzenia, czy daną metodę wizualizacji da 
się zastosować do wielu modeli w skończonym czasie, przy ograniczonych zasobach obliczeniowych. 
W celu analizy aplikuje się tę samą procedurę wielokrotnie dla różnych modeli, szczególnie tych 
dobrze opisanych w literaturze. Podczas przeprowadzania testu, oprócz stosowalności metody 
z danym modelem należy zwrócić uwagę na czas potrzebny do uzyskania wyniki oraz niezmienność 
wyniku między wykonaniami dla tego samego przypadku. Warto zwrócić uwagę, że ta część testu nie 
jest decydująca - istnieją przypadki, gdzie metoda sprawdzi się tylko dla konkretnego modelu, albo 
wynik metody może się różnić między wykonaniami (np. LIME). Nie dyskwalifikuje to metody, ale 
wymaga by adnotacja o tym znalazła się w opisie techniki. 

FIA-test (Faithfulness, Interpretability and Applicability) jest próba usystematyzowania prac 
dotyczących wyjaśnialnej sztucznej inteligencji, a zwłaszcza technik wizualizacji - generatorów map 
ważności.  

Ostatnią metodą zaproponowaną w dysertacji jest Mapowanie Głównych Składowych 
(Principal Image Sections Mapping - PRISM). Polega ona na zastosowania Analizy Głównych 
Składowych dla reprezentacji wygenerowanej przez dany model. Metodę należy wykonywać 
jednocześnie dla grup obrazów. Uzyskana macierz Głównych Komponentów może być wykorzystana 
na 2 sposoby. PIerwszy polega na przypisaniu trzem pierwszym komponentom kolorów czerwony, 
zielony i niebieski, co pozwala na wizualne porównanie najważniejszych cech występujących na 
danych obrazach. Dodatkowo, połączenie PRISMa z GE pozwala uzyskać ilustracje prezentujące 
rozmieszczenie cech wykrytych przez model na obrazach. Procedura ta jest doskonałym 
uzupełnieniem metody Explanation by Example, gdzie staramy się dobrać obrazy podobne do 
badanego i wyciągnięciu wniosków o przyczynie danej klasyfikacji. Z PRISMem wskazanie cech 
wspólnych jest znacznie łatwiejsze. 

Oryginalny wynik PRISMa może też posłużyć do masowej analizy wielu klas. Uzyskane 
Główny Składowe mogą zostać użyte jako dane wejściowe do dowolnej metody klasteryzacji. Po 
rozmieszczeniu poszczególnych obrazów w zadanej przestrzeni i utworzeniu klastrów można 
dostrzec nachodzące na siebie klastry. Takie obszary sugerują, iż wskazywane klasy posiadają 
podzbiór cech podobnych i potencjalnie mogą być błędnie sklasyfikowane przez badany model. 

Metody i procedury zaproponowane w poniższej pracy są uzupełnieniem obecnie 
wykorzystywanych technik. Dodaję nowe kryteria oceny jakości modelu, oraz pozwalają wykryć 
newralgiczne klasy, które wymagają szczególnej uwagi. Mam nadzieję, że choć część z nich trafi do 
standardowych narzędzi wykorzystywanych przez inżynierów sztucznych sieci neuronowych. 
  



Abstract 
 Machine learning and artificial neural networks have created an unprecedented 
breakthrough in data analysis. Nowadays they are used as decision reinforcements in loan decisions, 
autonomous cars driving, medicine and many more. Unfortunately they often are just a blackbox to 
their users. The main criteria for a model's acceptance is its accuracy in solving a given problem. 
In order to better understand their reasoning and thus improve performance a new trend arose: 
Explainable Artificial Intelligence. For Deep Convolutional Neural Network (DCNN) it focuses on 
studying and analyzing the representation generated by the model. 
 In this dissertation I am proposing several methods that are an answer to the gaps identified 
in interpretation and validation of representation generated by DCNNs. 
 The first group of methods aim to reinforce the model's evaluation. Apart from general 
accuracy of the classifying model I propose to evaluate its attention focus, whether it is in spurious 
correlation with context or focuses on the latent feature of the actual object. 
 The first approach I am introducing is a new quantitative metric of how much the model 
focuses on the object. It allows to identify circumstances where DCNN concentrates on the context 
of the object, instead of the classified item. We start by locating the Region of Interest(ROI) – 
a rectangular area around an interesting object. Next we generate a saliency map - using one of the 
techniques like GradCAM, also described in this paper. Finally we calculate the ratio of saliency 
inside ROI, divided by the sum of saliency in the entire image. If the obtained value, average for 
class, is significantly lower than other it may indicate that model is focusing on the context not at the 
object itself. 
 Second method to an automatic model’s evaluation is the case when the model takes into 
consideration only a small part of the entire object - like wheels for a car. Similar to the previous one 
we draw the ROI around interesting objects and obtain saliency values for the image. Finally we 
divide saliency inside the ROI by the area of the ROI. If the value is noticeably lower for a certain 
class it indicates a potential latent discriminative feature is present and may incur faulty 
classification in future by breaking the model's generalization. 
 For the second method there was no visualization technique sharp enough to see the shape 
of the network’s focus. For the case I have come up with a technique called Gradual Extrapolation 
(GE), which instead of directly resizing saliency from generated representation to the input image 
size, extrapolates layer by layer. Moreover after each extrapolation to the preceding layer we are 
multiplying the obtained matrix with average activation in the given layer. This procedure results in 
significantly sharper saliency maps from which we are usually able to recognize shapes of salient 
areas. Furthermore, the devised method is compatible with most of the other state-of-the-art 
visualization techniques. 
 In order to prove the value of the proposed GE method I have defined and recommended in 
another publication a set of tests for visualization techniques. It allows us to quantitatively compare 
any method that results in a saliency map image. It is based on three criteria: faithfulness, 
interpretability and applicability. 
 Faithfulness is calculated as a factor of accuracy drop after removal of 1%, 2%, 5%, 10% etc. 
of the most important pixels highlighted by the analyzed method. The faster the 
accuracy/confidence of classification drops, the more precise the method is. 
 Interpretability is defined as the answer to a question: which method reduces the amount of 
information the most. After comparison of the initial image with the saliency map we are removing 



pixels which had saliency below the chosen threshold. The less pixels are left, the more effective the 
analyzed method is. 

Final factor is the applicability, which means evaluation of whether a given method is 
applicable to the most of the state-of-the-art models in a finite time, with finite computing 
resources. To perform this test one has to perform several analyzed method on a set of different 
models. After that a time used for computation should be identified as well as the invariance of the 
result between tests for the same instance. Note that this test is not deterministic - there are 
methods that are applicable only to specific cases as well there are valuable methods that are 
slightly volatile, like LIME. Failure in the test does not disqualify the method but requires a clear 
statement of the method’s limitations. 

FIA-test (Faithfulness, Interpretability and Applicability) is an attempt to order works about 
visualization, mainly the techniques that result in a saliency map. 

The final method from this dissertation is a Principal Image Sections Mapping (PRISM). This 
technique relies on performing Principal Component Analysis on a layer that generates the final 
representation. This method should be executed for a batch of images. Obtained matrix of Principal 
Components (PC) can be utilized in two ways. First is to focus only on 3 (usually) first PCs and assign 
them colors, respectively: red, green and blue. This allows users to visually compare features present 
in an image identified by the model. Moreover, the combination of PRISM and GE results in 
illustrations that can be used even by a non-technical user to identify exclusive and inclusive 
features. This method is an excellent addendum to the Explanation by Example, where we try to find 
pictures similar to the analyzed ones and then make conclusions on the model's reasoning. With 
PRISM it is much simpler. 
 Additionally the PRISM’s original output may serve as an input for multiple class analysis for 
chosen clustering methods like Self Organizing Maps. After depicting each instance in a finite space 
and assigning them to a cluster we can identify overlapping clusters. These clusters indicate that 
respective classes have subset of similar features and thus can be misclassified. Similar to the two 
first methods: they require closer insight. 

Methods and procedures proposed in the paper are supplementary to the state-of-the-art 
techniques. I am adding new criteria to DCNNs evaluation as well as tools to identify classes that 
require deeper analysis in order to create more robust models. I hope that some of my findings will 
find a place in a regular DCNN practitioner's toolbox. 
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1 Introduction
Convolutional Neural Networks (CNNs) have enabled unprecedented breakthroughs in a

variety of computer vision tasks including image classification(Jeyakumar et al., 2020),

object detection(Wu et al., 2019; Pham, Pham and Dang, 2020), semantic

segmentation(Girshick et al., 2014), image captioning(Johnson and Karpathy, 2016) and

visual question answering(Gao et al., 2015). However, even with such unprecedented

advancements, the lack of full understanding regarding the decisions made by deep

learning models and absence of control over their internal processes act as major

setbacks in safety-critical decision-making processes, such as precision medicine or

autonomous cars. In response, efforts are being made to make deep learning

interpretable and controllable by humans.

Although the term Explainable artificial intelligence (XAI) emerged only recently, it is

quite an old topic. The earliest work on XAI can be found several decades ago, back to

the 1970s(Scott et al., 1977; Swartout, 1985), but at that time, Artificial Intelligence (AI)

and Machine learning (ML) were still in early development and the resources were very

limited(Campbell, Hoane and Hsu, 2002) therefore the answer: why model generated a

given representation was more a curiosity question.

In the last decades, AI and ML started to be used almost everywhere(Ferrucci et al.,

2013; Barredo Arrieta et al., 2020), due to drop in resource prices like computational

power and storage(Granter, Beck and Papke, 2017)). Due to the common presence of AI

a need for explanation of its reasoning has increased. Questions like: why is this

classified as a wolf? Why did this person not receive credit? Why is this person labeled as

a potential disease carrier?(Sparkes, 2015; Gunning et al., 2019)

Since the problem is vast and involves numerous fields of knowledge only a subset of the

problem has been researched in my thesis. I am focusing on the representations

generated by Deep Convolutional Neural Network(DCNN).
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1.1 The Structure of this Work
This work has been divided into several chapters. Firstly I am introducing the

motivations, so the gaps I have identified as a DCNN practitioner which I believe should

be answered immediately (chapter 1.2 Motivation). Secondly (chapter 1.3 Contribution) I

am briefly summarizing the contributions I have made towards solving identified

problems. Description of each contributions consists of:

● explaining which known problem it tries to address

● summary of experiments performed with method, specifying main pros and cons

● recommendation where it should be applied

● reference to the paper it has been published in.

In the next chapter - 2 State-of-the-art, I am familiarizing the reader with state-of-the-art

mandatory to better understand the whole paper. Since I am focusing on analysis of

representations generated by DCNNs I am describing other methods and procedures

that provide insight into model visualization. Beginning from the commonly known ones

like occlusion GradCAM or LIME, to less popular jak Excitation Backpropagation, SHAP or

Explanation by Example.

Subsequent chapter, 3 Proposed Methods and Procedures, is a theoretical description of

proposed methods and formulas. This chapter allows the reader to reproduce

procedures that are vital parts of my contributions.

After that comes the chapter with results from the research on each method - 4 Practical

Application of Proposed Methods. Each experiment describes models (often

state-of-the-art) used in the process and as results and discussion about the outcome.

With each research we can also find the setbacks of given methods or potentially open

problems to be solved in future.

Final chapter 5 Conclusions briefly summarizes all main contributions from the work and

contains conclusions for each procedure proposed during my research.

4



1.2 Motivation
In this chapter I would like to ground why research done under this dissertation is up to

date and important to DCNN applications.

1.2.1 Progress of DCNN

Image classification is a fundamental issue in computer vision which is a crucial part of

AI, that focuses on grouping images into predefined classes. The concept constitutes the

foundation for diverse tasks, including detection, localization, and segmentation(Rawat

and Wang, 2017). Meanwhile, image classification is relatively complex for automated

systems due to high in-class and viewpoint-dependent object variabilities. In this context,

autonomous people have to effectively classify objects from diverse viewpoints besides

differentiating them from similar objects or identifying them despite numerous

obstructions in a given frame. The traditional dual-stage approach that relied on feature

descriptors to solve the classification problem has become unreliable due to limited

accuracy (Rawat and Wang, 2017). Effective classification depended on designing a

reliable feature extraction stage.

In the recent past, machine learning (ML) algorithms have become increasingly popular

for evaluating relationships in data making decisions without explicit instructions. The

technological concept has enabled systems that emulate the human sensory responses,

such as speech and vision (Khan et al., 2020). The Deep Convolutional Neural Network

(CNN) is a promising Neural Network (NN) with exemplary performance in Computer

Vision and Image Processing. This Artificial NN has been highly popular in computer

vision tasks since 2012 when they delivered astonishing results during the ImageNet

Large Scale Visual Recognition Competition (ILSVRC) (Yamashita et al., 2018). The deep

learning architecture enthused by the natural visual perception mechanism of the living

creatures has exemplary performance in visual recognition, speech recognition, and

natural language processing . Thus, CNN is becoming increasingly popular in ML and

automation of receptive fields.

CNN presents an enhanced opportunity in building AI systems that require extensive

computer calculation power. However, computers are ineffective in solving problems

that require intuition and experience, such as considering traffic direction and obstacles,

understanding spoken words, and recognizing drawing in an image (Namatēvs, 2017). In

this regard, the problem requires massively parallel processing systems with complex

algorithms to attain considerable reliability, accuracy and efficiency. The NN learns

spatial hierarchies of features through the using underlying multiple building blocks in

different transactional layers (Yamashita et al., 2018).

CNN’s are a subset of ANNs, which employ general matrix multiplication in one of their

layers rather than convolution. The CNN architecture exhibits significant improvements

compared to previous methods of image classification. The distinctive trend in

advancement of CNNs entails deepening networks (Gu et al., 2018). For instance, ILSVRC

5
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developed in 2015 is 20 times deeper compared to AlexNet designed in 2012. Thus, CNN

entails a sophisticated interconnection grid of simple processing units and adjusting the

weights or grid parameters through the learning process to complete tasks or adapt to

the operational environment (Namatēvs, 2017). Unlike simple neural networks with one

or more hidden layers, CNNs have numerous layers, including realizing forms of

regularization, fully-connected layers, pooling, and convolution, which compactly

represent highly nonlinear and varying functions (Namatēvs, 2017).

CNN’s and deep architectures feature numerous neurons and several levels of latent

nonlinearity calculations. Thus, the enhancement of depth increases the complexity of

CNN, challenging optimization but easing overfitting, enhancing feature representations,

and improving approximation of the target function with increased nonlinearity (Gu et

al., 2018). The exploitation of multiple layers of nonlinear information processing greatly

enhances the performance of CNN in pattern analysis, classification, but also feature

extraction and transformation. Thus making it the preferred architecture in image

recognition, classification, and detection tasks (Rawat and Wang, 2017; Rosato et al.,

2021). Effective handling of small datasets and overfitting allows CNN use in diagnostic

radiology for augmenting performance and improving patient care (Yamashita et al.,

2018). In this regard, the growing prominence of CNN architecture in the deep learning

renaissance is powered by new graphical processing units (GPUs), larger data sets, and

better algorithms.

CNN’s have enabled unprecedented breakthroughs in a variety of computer vision tasks,

including image classification (He et al., 2016), object detection (Wu et al., 2019; Pham,

Pham and Dang, 2020), semantic segmentation (Girshick et al., 2014), image captioning

(Johnson and Karpathy, 2016), visual question answering (Gao et al., 2015), and natural

language processing (Hou et al., 2021).

1.2.2 Need for Explainability

However, even with such unprecedented advancements, the lack of complete

understanding regarding the decisions made by deep learning models and the absence

of control over their internal processes act as significant setbacks. These setbacks impact

mainly the safety-critical decision-making processes such as precision medicine,

autonomous cars, unsafe workforce behaviors, deterioration patterns, structural defects,

and latent risk factors (Hou et al., 2021). CNN’s involve millions of learnable parameters

to estimate, necessitating GPUs for model training (Yamashita et al., 2018). Nonetheless,

alternatives to CNNs might be unreliable, labor-intensive, time-consuming, or sometimes

risky to operate (Hou et al., 2021). In response, efforts are being made to make deep

learning interpretable and controllable by humans.

A range of explanation methods have been proposed in computer vision. Class Activation

Maps, Gradient based techniques, LIME, Scale-Invariant Feature Transform (SIFT) and

many more (in depth described in chapter 2.4 CNN Visualization Methods). The valuation
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of the techniques depends on multiple measurable factors, such as speed, complexity,

fidelity, contrastivity, usability, sparsity, sensitivity, size, multi-dimensionality, and

readability(Fong and Vedaldi, 2017; Pope et al., 2019; Jeyakumar et al., 2020). However,

many visualization methods suffer from several issues.

First concern regards to the size of the datasets used for training and validation. Model

ZOO models for Pytorch are being trained with ImageNet dataset and take into

consideration 1000 classes(Deng et al., 2009; Szandala, 2021b). Reliability investigation

of classification for all classes can be tedious or even impossible work to accomplish.

Therefore it is reasonable to search for a solution that can automatically identify the

ambiguous classes or at least significantly narrow down the list of potentially

troublesome classes.

Taking into consideration only the high accuracy of the classification model is an

insufficient indicator for network acceptance tests. There can be found in literature

examples where the network has learnt spurious correlations instead of the expected

object itself(Calude and Longo, 2017; Szyc, Walkowiak and Maciejewski, 2021). The most

famous one is the training of bi-classificator for husky dogs and wolves(Ribeiro, Singh

and Guestrin, 2016).

Fig. 1. Occluded image of a husky's face with only snow left is still classified as a wolf. Source: (Ribeiro,

Singh and Guestrin, 2016)

Despite the network achieving remarkable accuracy after closer insight (see fig. 1.) it has

been revealed that the main indicator for wolves was the snow as all wolves from the

training set were depicted in the snowy environment. Moreover, even being aware of

this setback, after retraining a model, this time, with wolves not only in the snowy

background we have hit a problem. This time network has learnt branches and bushes as

all our wolves were in the natural environment, unlike huskies, where the most were in
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the human-originated background, like houses (better described in chapter 4.1.1

Attention Focus Evaluation).

Each visualization comes with a computational burden due to the use of large datasets

for compelling real-time analysis. It is mandatory to evaluate whether given analysis can

be performed in a finite and rather short time period but also provide usable

information on a network's performance. In order to countermeasure these concerns a

quantitative comparison method of explainability has to be devised.

Many of the common visualization techniques lack feature targeted precision(fig. 2.),

thus might be unable to identify latent features in truth indicated given classification.

One such example can be classification of Samoyed dogs (described in chapter 4.1.2

Detecting Latent Features) where we noticed that this canine specimen, for the NN, is

virtually only a 3 properly placed dots on a white background, therefore transfer of such

dots to another object can potentially lead to misclassification of the example. Since

most of the currently known saliency maps methods generate blurred and indistinct

output there is a rising need for a solution that sharpens the outcome hence provides

more detailed insight into classified objects.

Fig. 2. Sample output of CNN representation visualization technique (GradCAM). We can see blurred

heatmap that translates to the importance of given image area for classification
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Fig. 3. Vague output from GradCAM for 2 specimens: coyote on the left and wolf on the right. In both cases

a face is highlighted yet images are correctly classified. We do not see the actual difference between

pictures

Another setback of commonly used methods is the lack of awareness whether

highlighted features are considered to be equal by the NN model. As seen in the picture

above both animals - coyote and timber wolf, are differentiated by their heads. But the

questions rise: are both heads the same to the network? If so, why are they correctly

classified as respective coyote and wolf? This proves the necessity for a tool for

feature-level characteristic highlighting tool.

To sum up, in this work I have tried to:

● identify classes that categorization is based on a spurious correlation in the given

image,

● detect examples where model is accidently trained to identify a latent feature,

that might not always be a sufficient indicator in real world application,

● automate or at least significantly reduce the amount of manual examination that

has to be performed during network validation,

● considerably improve the readability of outcome generated by the

state-of-the-art representations analysis methods,

● devise a method to quantitatively evaluate and compare representation-analysis

techniques,

● provide a technique to gain more insight into distinguishable features generated

by the representations.
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1.3 Contribution
In order to successfully train a Deep CNN (DCNN or DNN) to classify objects we need to

feed it with thousands of images depicting each object. For networks taking part in the

ImageNet contest(Zeiler and Fergus, 2014), where the dataset consists of over 14 million

pictures it is virtually impossible to analyze each class to detect potential issues. There is

also a vast multitude of potential issues like learning background(Xiao et al., 2020), a

feature unrelated to the actual object(Ribeiro, Singh and Guestrin, 2016) or only a small

element of the object that is mandatory, but not sufficient(Soleimani et al., 2018). In

order to answer these issues I have proposed several new techniques.

1.3.1 Automatic Spurious Correlations Detection

This first problem that a CNN practitioner may encounter might be the background

influence, like a camel always in a desert area, while a wolf mainly in snowy forest. For a

small scale dataset it is quite simple: we may apply saliency map generating technique

and arbitrarily evaluate whether the network's focus is in the background or in the

anticipated object area.

In order to respond to this issue an attention focus evaluating technique has been

proposed. We have introduced a procedure to obtain a metric of saliency fit to an object.

This gives us a percentage of how much the model focused on an object. When this

method has been applied to the entire dataset it could reveal classes whose

classification relies on details loosely coupled with the actual object. Noteworthy results

were:

● classification of snowboards (with custom network), where the network has learn

the sky over the mountains instead people

● characteristic web of black-gold garden spider instead of spider itself - for the

state-of-the-art model.

More research on the procedure is described in chapter: 4.1.1 Attention Focus

Evaluation.

However the method has one significant setback: it relies on ROI generation. Problem

appears when a certain class cannot be indicated by ROI, e.g. landscape pictures like

mountains, valles, lakesides. Deeper analyzed in chapter 4.1.1.3 Method’s Limitations.

1.3.2 Quantitative Comparison of CNN Visualization Techniques

In the literature we can find a multitude of CNN visualization methods (see chapter CNN

Visualization Methods). Some of them have specific pros and cons but most are focusing

on generating a saliency map to visualize which part of the picture contributed the most

to the obtained representation. A problem appears when we would like to introduce a

new method. If it is not a problem-specific technique but just another saliency map
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generator why do we need it? Why is it better? Or at least how does it compare to

already stated techniques?

A testing procedure has been designed FIAt to validate virtually any explanation

technique. It consists of evaluation of Faithfulness, Interpretability and Applicability

testing. The first criterion of an explanation is to reliably and comprehensively represent

the local decision structure of the analyzed model. To assess such a property of the

model, a proposed technique is “pixel flipping” (Samek et al., 2017). The pixel-flipping

procedure assesses whether removing the features highlighted by the explanation, as

the most relevant, decreases the network prediction abilities.

Interpretability is in our opinion the hardest to estimate, therefore we need to get back

to the root of the explanation methods concept. The aim is to reduce the information

from the original object and only retain the elements that play the highest role in

classification(Chen et al., 2018). Based on this consideration, a test is established that

computes the number of pixels of the original image remaining after its truncation only

in salient areas.

Faithfulness and interpretability do not completely determine the overall usefulness of

the explanation method. To characterize the usefulness, it is also necessary to determine

whether the explanation method can be applied in various models and situations, at

least to most state-of-the-art models, and whether the explanation can be obtained

quickly enough with finite computational resources. To measure applicability, the

proposed method is applied to several different models and their computational time is

measured.

I have used this method to compare Gradual Extrapolation (see chapter: 1.3.3 CNN

Visualization Technique Output Sharpening) with few state-of-the-art techniques. A

similar approach should be taken when introducing other, saliency based methods.

It is mandatory for an AI researcher to analyze his or her model, to provide explainability

for its decision. Despite a wide range of methods and techniques that mainly generate a

saliency map, new procedures are being introduced. FIA-test is a method to

quantitatively compare them and choose the most appropriate.

1.3.3 CNN Visualization Technique Output Sharpening

Not only background can be a spurious correlation. Potentially a small element of the

object could be treated as a conclusive feature that determines given class, e.g. black

widow’s red hourglass pictured on an elephant could misguide the model. In order to

detect this fact on a dataset we needed a new technique that focuses on an object’s

features in more detail.

CAMs can efficiently demonstrate the discriminative features of the input image;

however, the resulting saliency map is quite fuzzy thus potentially making them useless

for this problem.
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Therefore, a simple yet efficient method is proposed that reduces the coarseness of the

obtained heatmaps(Szandala, 2021a). Using a weighted mask multiplication technique,

the sharpness of the features shown in the heatmap is improved herein. The proposed

method enhances virtually any CAM technique to generate highly narrowed saliency

maps; this method has been called Gradual Extrapolation and the sample result can be

seen in figure 4.

Fig. 4. Contrastive Excitation Backpropagation (mid column) enhanced with Gradual Extrapolation provides

visible improvement in sharpness (last column)

With the aforementioned evaluation procedure (FIAt) I have proven the usability of the

technique. Experiment has been described in depth in chapter 4.2.1 CNN Visualization

Performance Evaluation - FIAt. Firstly, in the fidelity test, I was able to demonstrate that

the method does not decrease original method localisation accuracy, but may even

increase under certain circumstances.

Secondly, I have proven that GE enhancement is reducing the amount of information (in

the form of highlighted pixels) displayed in the result of application. Also the reduction

does not impact the interpretability of the outcome.
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And finally I have applied the GE to a multitude of state-of-the-art networks in a finite

time, therefore confirming that GE is easily applicable to most of the models and does

not significantly impact the time of obtaining a saliency map.

This method is another tool in CNN practitioner's toolbox to analyze and improve his

model. With GE we are able to have a closer look into the truly important features found

by the network and thus adjust training procedures if the findings are not satisfying.

1.3.4 Automatic Latent Features Detection

The network may learn only a small trait if an object instead it as a whole. Unfortunately,

sometimes the indicator might be an unrelated object(Lapuschkin et al., 2019; Szandała
and Maciejewski, 2021) or even a specific color(Szyc, 2020), but this paper aims to

evaluate detect factors that are indeed important to the classification but should not be

the sole clue for it. In example a factor determining black widow could be its

characteristic red hourglass. Therefore any other object with it would be classified as a

black widow spider. Yet these defects are recognizable merely by manual examination

using Gradual Extrapolation (chapter: 1.3.3 CNN Visualization Technique Output

Sharpening). While for several classes it is achievable, for a wider range of types it can be

challenging.

In this paper we aim to provide a solution to detect and thus avert learning partial

correlations.

We have illustrated the usability of this method during several experiments(more details

in chapter 4.1.2 Detecting Latent Features). In the first part we have correctly indicated a

class - wheeled vehicle, where the discriminative feature was a wheel. In other words:

any object with a wheel was considered to be a vehicle. This hypothesis has been proven

by performing an adversarial attack with a cassino roulette, which, as expected, has been

classified as a vehicle.

In the next phase we used a state-of-the-art network from Pytorch’s Model ZOO and

applied our method to evaluate results. It has identified a few suspicious classes, where

the most noteworthy is the Samoyed class. According to our assumption: 3 black stains

in a triangle manner on a white background is a Samoyed class. This hypothesis has been

proven by another adversarial attack where we were thresholding a Samoyed picture

until only eyes and tip of the nose left, which has been still labeled as Samoyed by the

model.
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Fig. 5. Samoyed example where only a small part of ROI (violet rectangle) is an actual object. In other
words we can assume only eyes and muzzle are significant to classification

Apart from this one we have also identified 3 false positives classes(e.g. can be seen in

figure 6), which were highlighted by our methods but in the end were just corner cases

(see chapters: 4.1.2.4 Method’s Limitations: Landscape Areas and 4.1.2.5 Method’s

Limitation: Hardly Descritable Objects).

To sum up: previously mentioned contribution - the Spurious Correlation Detection

(chapter: 1.3.1 Automatic Spurious Correlations Detection) focuses on identifying classes

where context plays a joyr role. Latent Features Detection is about investigation of the

object itself - whether the classifier takes into consideration the object as a whole or

only a singular element of this.
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Fig. 6. Violet rectangle represents ROI for snake, but actual snake identified by Gradual Extrapolated
GradCAM is mostly hidden inside hand therefore giving false positive of only a small part of the ROI being
an actual object

1.3.5 Discriminative Features Identification Technique

Most representation attribution methods are based on backpropagation of the

network’s activations from the output back to the input. They are usually a

modification of the backpropagation algorithm and, for computer vision models, take

the form of a saliency map that highlights the decisive  regions on the input image.

We have introduced a new method that relies on Principal Component Analysis of

features detected by neural network models and interpolates them on the initial image.

We call it the Principal Image Sections Mapping (PRISM). The result of the formula is an

RGB colored image mask that assigns one color to each feature identified by the model.

Moreover the same color will be used to highlight the same feature across all pictures

processed in the same batch, of course only if it is present in other samples. This allows

exposure of a comparative set of features between images processed in the same batch,

and thus facilitates the Explanation by Example technique(Jeyakumar et al., 2020).

During the research we are looking for a tool to examine whether two canine muzzles,

e.g. coyote’s and wolf’s are considered to be the same by CNN’s representation layer.

However even the smallest networks have hundreds parameters in the representation

layer, thus a procedure for reducing dimensionali was sought. The choice was Principal

Component Analysis, which translates the network’s final layer into a list of

significance-ordered feature vectors. Moreover, processing several images at once gives
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output with the same features (paws, muzzles, keys, trees, etc.) being described by the

same vectors.

While this output can be used for class clusterization as seen as an example in fig. 7. -

thus providing insight into which classes are having resembling features, we can proceed

to depicting the single image analysis in a human-comprehensive way, but truncating out

the result to the most principal vectors.

Fig. 7. Early example of clustering of 9 pictures using a Self-Organizing Map. Same classes are localized
nearby. Also visible is that canines are closer to the left axis while other specimens like black widows or
elephants are clearly separated from them.

The 3 first vectors can be assigned respectively red, green and blue thus providing a

colored map of features identified by the model. These checkered output can be divided

into inclusive and exclusive features as seen in figure 8. Furthermore, combination of this

method with Gradual Extrapolation (chapter: 1.2.3 CNN Visualization Technique Output

Sharpening) results in an image portraying each feature of a classified object in a

different color. So processed results can be further used for identification of inclusive

and exclusive features between images in a very high resolution, compared to other

saliency maps like GradCAM or Excitation Backpropagation.
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Fig. 8. Display of Principal Image Sections Mapping with split to inclusive (second row) and exclusive (third

row) features for coyote (left) and timber wolf (right)

PRISM can be used both for better human-interpretation of representations generated

by DCNNs and for automation of identification of ambiguous classes features. With
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human-interpretable usage of PRISM we can utilize results from technique Explanation

by Example and depict inclusive and/or exclusive features identified by the model evn to

a non-scientific viewer. On the other hand: taking PRISM output into clusterization we

are able to identify potentially indistinct classes and thus adjust the training to avoid

possible vulnerabilities in real-world application of the model.

1.3.6 Publicly Available Code

Some of the works have been coded in Python and made publicly available as GitHub

repositories.

● TorchPRISM - module implementing PRISM method using Python and PyTorch

framework:

https://github.com/szandala/TorchPRISM

State on 6th June 2022: 12 Stargazers

● Gradual Extrapolation - sample implementation of Gradual Extrapolation meth

using Python and PyTorch framework:

https://github.com/szandala/gradual-extrapolation

State on 6th June 2022: 5 Stargazers
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2 State-of-the-art

2.1 Convolutional Neural Networks
CNN is a neural network that exploits spatial or temporal data correlation. The model

entails weight sharing, multi-tasking, automatic feature extraction, and hierarchical

learning(Guo et al., 2016; Abbas, Ibrahim and Jaffar, 2019; Khan et al., 2020). The

underlying topology has multiple learning stages comprising a combination of nonlinear

processing units, convolutional layers, subsampling layers, and input scanners at the

start, as illustrated in Figure 2. The model involves a feedforward multilayered

hierarchical network with several layers depending on the bank of convolutional kernels

to multiple transformations(LeCun, Kavukcuoglu and Farabet, 2010). The convolution

process is crucial for extracting valuable features from correlated data points on an

image(Rawat and Wang, 2017). Meanwhile, the activation function of the nonlinear

processing unit assumes the convolutional kernels’ output as input for embedding

nonlinearity in the feature space and learning abstractions. The activation function

produces diverse activation patterns used for different responses, including learning

diverse semantics found on an image (Rawat and Wang, 2017; Szandała, 2020a). The

output of the nonlinear processing unit is parsed to subsampling for result summarizing

and developing input invariant to geometrical distortions(LeCun, Kavukcuoglu and

Farabet, 2010). In the meantime, automatic feature extraction ability ingrained in CNN

eliminates the need for a distinct feature extractor (Najafabadi et al., 2015). Hence, the

model can exhaustively learn representation from raw pixels.

Fig. 9. A conceptual diagram for CNN. Image is being processed by multiple convolutional and pooling

layers until a simplified representation is generated. The obtained representation, that goes into fully

connected layers, is the main focus of my research. Source: (Shahid and Channappayya, 2021)

The grid pattern embedded in CNN allows learning of spatial hierarchies of features

using up and down patterns. The mathematical construct has three layers, where
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convolution and pooling layers are responsible for feature extraction, while the fully

connected layer performs classification by mapping the extracted features into

output(Yamashita et al., 2018). Figure 3 illustrates that the stack of mathematical

operations in the convolution layer completes the linear operation. This layer stores pixel

values in a two-dimensional grid in the kernel, a small grid of parameters while a loss

function in forwarding propagation on learnable parameters and training dataset

compute model’s performance under different kernels and weights(Yamashita et al.,

2018). In this context, CNN is highly reliable for image processing due to applying an

optimizable feature extractor to all image positions. The kernel optimization parameters

constitute training aimed at constraining variances between outputs and ground truth

labels(Yamashita et al., 2018). Effective training involves different optimization

algorithms, including backpropagation and gradient descent.

Figure 10. The training process of a CNN. In order to train a classification network we have to process

through it hundreds, thousands or even millions of images and propage loss (difference between expected

and received output) back to adjust weights in each hidden layer. Source: (Liu et al., 2015)

Gradient backpropagation is a popular and effective network optimization algorithm. The

technique involves computing the gradient of the model’s loss with respect to the

weights. The gradient is a vector that contains a value for each weight, reflecting how

much a slight change in that weight will affect the output, essentially describing which

weights are most important for the loss.

This single step through the network gives important values for each pixel, which is

displayed in a heatmap. The enhancement of the method to a guided backpropagation

blocks the backward flow of gradients from neurons whenever the output is negative,

leaving only those gradients that result in increased output, which ultimately results in a
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less noisy interpretation. Since it only requires one pass through the network and

produces a cleaner output, especially around the object’s edges, it became the preferred

technique over occlusion, which is relatively slow and resource-intensive. However, the

gradient backpropagation has a major issue in that it does not work well when there is

more than one class of object present in the image.

To solve this issue, novel Class Activation Maps and their enhancements (Zhou et al.,

2016; Selvaraju et al., 2017; Chattopadhay et al., 2018) are introduced. Here the authors

found that the quality of interpretations improved when the gradients were taken at

each filter of the last convolutional layer instead of at the class score. The results yield

faster than occlusion and better than gradient backpropagation as it is targeted,

therefore highlighting the most significant areas.
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2.2 CNN Development History
CNN is a deep learning architecture inspired by the visual perception of living creatures.

In 1959, Hubel and Wiesel in 1959 found that visual cortex cells of animals are receptive

to light(Hubel and Wiesel, 1968). Subsequently, Kunihiko Fukushima used the findings in

1980 to propose a neocognitron, which became a CNN predecessor (Fukushima and

Miyake, 1982). Meanwhile, LeCun and colleagues published the modern framework in

1990 (LeCun et al., 1990). The LeNet-5 model was a multi-layer artificial neural network

that could effectively classify handwritten digits after training with the backpropagation

algorithm (Gu et al., 2018). LeNet-5 obtained original image representations, envisioning

recognition of visual patterns from raw pixels with little-to-none preprocessing.

Meanwhile, the evolution of the model to the shift-invariant artificial neural network

(SIANN) enhanced character recognition from images, but limited computing power and

the absence of extensive training data challenged its effectiveness (Gu et al., 2018). As a

result, SIANN was ineffective for complex problems, such as video classification and

large-scale images.

The Hubel and Wiesel model designed several brain functions, particularly the primary

visual cortex (PVC). Goodfellow and colleagues posit that integrating PVC function in a

convolutional network entails defining features in 2D maps to reflect the 2D structure

(Goodfellow, Bengio and Courville, 2017). The design of convolutional network units

should copy PVC simple cells by having a small and spatially localized receptive field

(Namatēvs, 2017). Additionally, PVC has numerous complex cells that respond to

features, which inspire the pooling of CNNs. In this context, neocognitron was the first

artificial NN to incorporate all the neurophysiological models of PVC by articulating

alternating downsampling and convolutional layers. The neocognitron architecture was a

feedforward, supervised, and gradient-based deep learning network. Meanwhile, the

backpropagation network of 1986 allowed the training of a NN with one or two hidden

layers (Namatēvs, 2017). Backpropagation algorithms foster learning by enabling CNNs

to change weights according to the target(Liu et al., 2017; Khan et al., 2020). The current

deep learning renaissance emerged in 2006 when an NN outperformed the radial basis

function (RBF) kernel on the MNIST benchmark. Thus, the advancement of deep CNNs

(DCNNs) is attracting intense interest in classification tasks, chiefly after ILSVRC classified

approximately 1.2 million images into 1000 classes(Rawat and Wang, 2017).

Subsequently, GPUs implementation of feedforward neural networks (FNNs),

field-programmable gate arrays (FPGA), and digital signal processing (DSP) are popular

computational resources for training during the execution of the eccentric patterns of

DCNNs (Namatēvs, 2017). Meanwhile, DCNN functions similar to the neocortex in the

human brain, dynamically learning features from the raw data (Yamashita et al., 2018).

The hierarchical feature extraction ability ensures DCNNs have access to low, mid, and

high-level features. In this context, high-level features are abstract topographies

obtained from combining low- and mid-level features.
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2.3 Common CNN Modifications to Improve Performance
CNN architectures involve numerous variants with similar basic components. For

instance, the popular LeNet-5 entails the convolutional layer has several convolution

kernels for mapping and learning feature representations; pooling layer placed between

two convolutional layers that deliver shift-invariance by reducing the resolution of the

feature maps and fully-connected layers for performing high-level reasoning, which can

be replaced by 1 × 1 convolution layer(Gu et al., 2018). Meanwhile, CNN’s are open to

different types of improvements across the layers (Szandała, 2021). The generalized

linear model (GLM) constitutes a convolution filter that initiates abstraction when latent

concepts are linearly separable. In this regard, CNN may embrace tiled convolution to

learn rotationally and scale-invariant features when weight-sharing mechanisms

drastically decrease parameters (Gu et al., 2018). Meanwhile, transposed convolution

associates a single activation with multiple output activations to articulate

super-resolution (Dong et al., 2016), visual question answering (Das et al., 2017),

semantic segmentation (Noh, Hong and Han, 2015; Pham, Pham and Dang, 2020),

localization(Zhou et al., 2016), recognition (Zhang, Lee and Lee, 2016), and

visualization(Zeiler and Fergus, 2014). The improvement of the convolution layer may

also entail dilated convolution, network in network, and inception module.

Pooling is a crucial concept in CNN that reduces the computational burden by decreasing

connections between convolutional layers. The critical improvements in the layer entail

Lp pooling that guarantees better generalization than max-pooling (Gu et al., 2018).

Mixed pooling combines max pooling and average pooling to address the overfitting

problems. Stochastic pooling is a dropout-inspired pooling method that randomly picks

the activations using multinomial distribution to promote the utilization of non-maximal

activations of feature maps (Zeiler and Fergus, 2013). Meanwhile, spectral pooling

enhances the pooling layer by cropping the input representation in the frequency

domain to reduce dimensionality. Spatial pyramid pooling produces a fixed-length

representation regardless of the input sizes, while multi-scale orderless pooling

enhances the invariance of CNNs and preserves the discriminative power (Gu et al.,

2018).

The use of a suitable activation function enhances CNN performance. In this regard,

tasks are embracing different activation functions to achieve varying performance.

Rectified linear unit (ReLU) is a popular non-saturated activation function and piecewise

linear function that preserves the positive part while truncating the negative aspect to

zero (Nair and Hinton, 2010). The simple max() operation allows a network to swiftly

obtain sparse representations, inducing sparsity in the hidden units. Thus, ReLU is

efficient for training deep networks without pre-training but the discontinuity at 0

challenges the performance of backpropagation. The problem is solved using Leaky ReLU

that compresses the negative part rather than mapping it to a constant zero, allowing a

small and non-zero gradient when the unit is not active. The Parametric Rectified Linear
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Unit (PReLU), rather than compressing negative parts, adaptively learns the parameters

of the rectifiers to improve accuracy while Randomized Leaky Rectified Linear Unit

samples the parameters of negative aspects from a uniform distribution in training

before fixing them during testing. Meanwhile, other popular activation functions with

higher classification accuracies include Exponential Linear Unit and Maxout(Szandała,

2021).

The accuracy of specific CNN tasks relies on the selection of an appropriate loss function.

In this context, hinge loss trains classifiers with a large margin, such as Support Vector

Machine (SVM). In contrast, Softmax loss combines multinomial logistic loss and softmax

that turns predictions into non-negative values and normalizes them to obtain a

probability distribution over classes (Tang, 2013). Contrastive loss is prevalent for

training Siamese networks that entail a weakly supervised scheme for learning a

similarity measure from pairs of matching or non-matching data instances (Bromley et

al., 1993; Chopra, Hadsell and LeCun, 2005). Meanwhile, Triplet loss considers three

instances per loss function: negative, positive, and anchor instances (Schroff,

Kalenichenko and Philbin, 2015). Kullback-Leibler Divergence (KLD) is a common

non-symmetric measure of information loss in the objective function of various

autoencoders (AEs) (Mehta and Majumdar, 2017), including sparse AE (Lee et al., 2007),

denoising AE (Vincent et al., 2008) and variational AE (VAE) (Kingma and Welling, 2013).

The method, when placed symmetrically, becomes Jensen-Shannon Divergence, which is

highly effective for the Generative Adversarial Networks.

DCNNs significantly suffer from the overfitting problem that is effectively managed

through regularization. This approach modifies the objective function through additional

terms that castigate the model complexity. In this context, the lp-norm regularization

function is a weight decay that enhances optimizations and attractiveness by exploiting

the sparsity effect of the weights. In contrast, Tikhonov regularization is popular for

rewarding invariance to noise in the inputs (Bertero, De Mol and Viano, 1980).

Meanwhile, dropout is highly effective for overfitting when applied to the fully

connected layers (Hinton et al., 2012). The method prevents a network from depending

on any combination of neurons, leading to enhanced accuracy even without specific

information. The efficiency of dropout is enhanced by DropConnect that randomly sets

the weight matrix to zero rather than the outputs of neurons to zero. In this regard,

optimizing CNNs can further be enhanced through data augmentation, weight

initialization, stochastic gradient descent, shortcut connections, and batch normalization

(Szandała, 2021).
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2.4 CNN Visualization Methods
The deep networks are prevalent in computer vision but suffer from a critical challenge

due to the failure to provide visual output. In this context, it is almost impossible to

identify the part with crucial influence on the output despite improving different layers

and techniques. As a result, the demand for explaining or visualizing the decision-making

process in networks is increasing (Das et al., 2017; Selvaraju et al., 2017; Szandala,

2021a). The popular methods have been evolving from occlusion, gradient

backpropagation, original CAM to Grad-CAM. Also model-agnostic methods has been

proposed like LIME, LRP or SHAP. Meanwhile, Grad-CAM has several derivatives,

including Grad-CAM++, full Grad-CAM, and Excitation Backpropagation. All the

techniques, excluding occlusion and gradient backpropagation, generate a heatmap or a

stain that marks the most significant area. However, the computation only involves a

single chosen convolutional layer to mean that the reliability of a given saliency map

increases with depth (Szandala, 2021a). Thus, extrapolation is essential for visualizing

the obtained map on a referenced image. Nonetheless, output tends to be a low

resolution because the deepest layers have the most miniature convolutional masks.

2.4.1 Occlusion

Fig. 11. Generated the occlusion sensitivity map from the image of cat and dog (above) based on logit

scores. The red and blue regions indicate a relative increase and decrease from non-occluded scores

respectively: the blue regions are vital! Source: (Springenberg et al., 2014)
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The most straightforward method for determining a model's attention focus is the

occlusion. We hide a small part of the image and study the output. The more it has

changed from the original, the more significant the given area was. The most notable

setback is the speed of this method. We have to analyze the image multiple times, once

for each occluded region. The second limitation is that it does not take into account

interdependencies between regions. The most notable application of occlusion has been

done by Sameer Singh and his team during implementation of husky vs wolves

distinguishing model(Ribeiro, Singh and Guestrin, 2016). Method has pointed to the

researchers that the network is learning the presence of snow in pictures with wolves

and lack of snow in images with huskies. However, without processing the occluded

image dozens or even hundreds of times, occlusion is useless, therefore more

sophisticated methods have been proposed.

2.4.2 Deconvnet

Fig. 12. Application of deconvolution network. It due to coarseness of output it provides a useable output

only for backgroundless images

Another, simple in concept, method is performing deconvolution on a network(Zeiler

and Fergus, 2014). The deconv operation is defined as the inverse of the convolution

operation, i.e. change the input data from a 2×2 matrix into an output matrix with the
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shape 3×3 in our example. The deconv operation does not guarantee that we will have

the same values in the output as the original matrix.

Fig. 13. Convolution and deconvolution procedure

To visualize a convolution network, a deconvolution network (deconvnet) (Yu et al.,

2016) is attached to each of its layers, providing a continuous path back to image pixels.

To start, an input image is presented to the convnet and features are computed

throughout the layers. To examine a given convnet activation, we set all other activations

in the layer to zero and pass the feature maps as input to the attached deconvnet layer.

Then we successively unpool, rectify and finally filter to reconstruct the activity in the

layer beneath that gave rise to the chosen activation. This is then repeated until input

pixel space is reached.
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2.4.3 Gradient Backpropagation

The next group of noteworthy methods rely on gradient backpropagation. Here we

compute the gradient of the model’s loss with respect to the weights. The gradient is a

vector that contains a value for each weight, reflecting how much a small change in that

weight will affect the output, essentially telling us which weights are most important for

the loss.

Fig. 14. Gradient backpropagation for two pictures. Very poor readability as we can only guess objects the

network has focused on

This single step through the network gives us an importance value for each pixel, which

we display in the form of a heatmap. The enhancement of the method, guided

backpropagation, blocks the backward flow of gradients from neurons whenever the

output is negative, leaving only those gradients that result in increased output, which

ultimately results in a less noisy interpretation. Since it only requires one pass through

the network and produces a cleaner output, especially around the edges of the object, it

became preferred over occlusion.
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Fig. 15. Guided backpropagation output - a visible improvement over Gradient Backpropagation as we can

clearly recognize shapes. Unfortunately lack of discrimination between Border collie and husky

However, a major issue with gradient backpropagation is that it does not work well when

there is more than one class of object present in the image.

2.4.4 Class Activation Maps and Derivatives

The original CAM approach modifies the training model to enhance the visualization of

the decision-making process in CNNs. Chattopadhay (Chattopadhay et al., 2018) notes

that the technique discards all fully connected layers at the top of a network before

introducing a global average pooling (GAP) layer that is succeeded by a single fully

connected layer. Using a convolution layer with network architecture similar to

GoogLeNet or ImageNet allows GAP on the convolutional feature maps and utilization of

features on the fully-connected layer to generate the desired output. The simplified

connectivity structure produces a stain of important regions by projecting weights of the

output layer onto the convolutional feature maps (Zhou et al., 2016). The modification

generates a streamlined architecture, enabling CAM to produce a heatmap for all the

output classes. The original CAM approach sums the last convolutional layer activations

by rescaling weights of the newly introduced fully connected layer associated with the

selected class (Szandala, 2021a). Nonetheless, CAM requires a GAP layer in architecture,

and it is only effective for visualizing the final layer heatmap.
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When we see the heatmaps of different layers we see that different parts of the image

are being activated. This is because earlier layers have filters which are looking at various

parts of the image. But the class prediction largely depends on the activations of the

layers just before prediction and hence, visualizing heatmaps of the layer just before fully

connected layer answers which portion of the input image led to a particular

classification.

In order to obtain Grad-CAM (eq. 1) of width u and height v for any class c, we first

compute the gradient of the score for class c, yc (before the softmax), with respect to

feature map activations Ak of a convolutional layer, i.e. ∂yc / ∂Ak . These gradients flowing

back are global-average-pooled over the width and height dimensions (indexed by i and j

respectively) to obtain the neuron importance weights αc
k.

(1)α
𝑘
𝑐 = 1

𝑍
𝑖

∑
𝑗

∑ ∂𝑦𝑐

∂𝐴
𝑖𝑗
𝑘

Where yc is defined as (eq. 2):

(2)𝑦𝑐 =
𝑘
∑ 𝑤

𝑘
𝑐 1

𝑍
𝑖

∑
𝑗

∑ 𝐴
𝑖𝑗
𝑘

Fig. 16. Grad-CAM output for 2 images. We gain discrimination between husky and

Border collie at the loss of sharpness in the output
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The gradient weighted CAM (Grad-CAM) addresses the limitation of CAM on network

architecture. The technique delivers an improved localization effect on salient features

by eliminating GAP restrictions and visualizing any layer in network heatmaps [62]. Zhou,

Selvaraju et al. (Zhou et al., 2016; Selvaraju et al., 2017) posits that Grad-CAM

generalizes CAM to any deep neural network architecture, allowing utilization in

networks of diverse ranges while eliminating the need to modify network architectures.

Meanwhile, Grad-CAM is similar to CAM in that it generates heatmaps by summing

output channels’ weighted average using the weights of the fully connected layer

associated with the output class. However, Matcha (Matcha et al., 2020) notes that the

technique has a distinct approach of generating weights that involves computing the

gradient of the output class value associated with each channel in the feature map of a

given layer. The results are a gradient channel map that represents the corresponding

channel’s gradient in a feature map. The subsequent process in GAP of gradient channel

map to obtain critical weights of each channel in the feature map, which functions as the

heatmap. Nonetheless, Grad-CAM does not identify all the class instances if an image

has more than one instance of a single class present (Chattopadhay et al., 2018).

Grad-CAM++ solves the limitation of Grad-CAM by only considering the positive values

and ignoring negative values when calculating the GAP of the gradient channel map. The

technique provides enhanced visual explanations of CNN model predictions due to

improved object localization and explains multiple object instances in a single image

[64]. The guided backpropagation in Grad-CAM++ allows disregarding of the negative

gradients while enabling the utilization of a ReLU on top of each value of the gradient

channel map output (Chattopadhay et al., 2018). Meanwhile, positive gradients only

allow the identification of pixels with a positive impact on the class output. In this

context, considering negative values neutralizes some positive values in the gradient

channel, leading to the loss of valuable information. Thus, Grad-CAM++ calculates

higher-order derivatives to improve the localization accuracy of Grad-CAM, chiefly when

an image has several occurrences of the same objects (Szandala, 2021a). In another

improvement instance, Smooth GradCAM++ embraces a smooth gradient function that

smoothens the gradients obtained using Grad-CAM++, leading to sharpened heatmaps

(Smilkov et al., 2017; Pan et al., 2020). However, the technique creates multiple noisy

versions of the same input image due to image augmentation.
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Fig. 17. Contrastive Excitation Backpropagation. An improvement over Grad-CAM with notably better focus

localisation and partial shapes restoration

The excitation backpropagation proposes a unique approach in explaining the

decision-making process in CNNs. The intuitively simple technique provides empirically

effective explanations, which entails passing top-down signals downwards in the

network hierarchy through a probabilistic Winner-Take-All process (Zhang et al., 2018).

Excitation Backprop efficiently calculates the winning probability of each neuron by

integrating bottom-up and top-down information. Meanwhile, the technique generates

interpretable attention maps at intermediate convolutional layers, preventing a

complete backward sweep (Zhang et al., 2018). Thus, excitation backpropagation

leverages enhanced information available in a network and produces soft attention maps

that effectively capture elusive differences between top-down signals. Nonetheless, the

method ignores the nonlinearities in the network backward pass and generates

heatmaps that preserve the evidence for or against a network class predicted (Szandala,

2021a). In this context, the excitation backpropagation delivers a visually sharp

contrastive variant by subtracting evidence against a certain class from the evidence for

that class. Although the approach guarantees a higher visualization accuracy than

different CAMs, it only highlights critical regions rather than the object itself.
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2.4.5 Guided Grad-CAM - Example of Combination of Methods

Fig. 18. Guided Grad-CAM, a combination of Grad-CAM and Guided Backpropagation which results in a

recognizable objects that were significant for classification

Guided Grad-CAM, a combination of two previously described techniques where we

multiply output from Guided Backpropagation (provides visible shapes of the objects)

with output from Grad-CAM (provides saliency of given area for classification). A good

example for effectiveness of combinations of two separate approaches.

2.4.6 Saliency Maps Summary

Saliency methods elucidate the predictions obtained using DCNN and create post-hoc

explanations of image classifier outputs. However, the approaches are unreliable for

insensitive explanations of the object shape, which sometimes contributes to the factual

factor of a model prediction (Kindermans et al., 2019). In this regard, saliency methods

aim at inferring insights of a learned function by the model when ranking the

explanatory power of constituent inputs. The approaches focus on computing the area in

the deep layer of the network, meaning that projecting the deep map to the original

image considerably reduces accuracy and omits essential traits of the classification
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reasoning (Szandala, 2021a). Saliency methods estimate the relevance of each pixel

using the classification output score, which is displayed as a saliency map with highlights

of essential pixels (Szandała, 2020b; Tomsett et al., 2020). Nonetheless, the methods do

not correctly attribute a constant vector shift applied to the input. From this perspective,

different techniques used in explaining visualization in CNNs are sometimes dedicated to

limited application constituting distinct pros and cons.

2.4.7 Layer-wise Relevance Propagation

Geirhos et al. (Geirhos et al., 2020)mention that the development of deep neural

networks has prompted interest in interpreting deep neural networks forecasts in

medicine. Layer-wise relevance propagation (LRP) is one of the outcomes. LRP is a

technique for calculating scores for image pixels and image sections, which indicate the

effect of each image segment on the classifier's estimate for a single trial image(Karim et

al., 2020). A profound neural system is a feed-forward chart of essential computational

neurons performing a single task. The interconnection of many of these simple

components and the accessibility of an effective method for learning the model gives a

deep network its complexity (error backpropagation) (Seibold, Hilsmann and Eisert,

2021). In a feed-forward pass, the productivity of a deep neural network is derived by

assessing these neurons. Ideally, LRP is a decomposition method that creates a relevant

heatmap that meets the intended conservation property when applied in a backward

pass.

Bohle et al. (Böhle et al., 2019) propose employing LRP to show CNN choices for

Alzheimer's disease based on MRI facts in this context. Abnormal cell death is a mark of

Alzheimer's disease, particularly in the medial temporal lobe. LRP creates a heatmap in

the input space, similar to other visualization approaches, displaying the value or

significance of each pixel leading to the last classification consequence. The LRP

approach can directly highlight favorable additions to the input space's system

organization. LRP appears to offer a lot of promise to aid physicians in understanding

neural network choices for detecting Alzheimer's disease and maybe other conditions

based on structural MRI data.
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Fig. 19. LRP output for different values of beta parameter. Source: (Böhle et al., 2019)

It is also worth noting that by propagating the forecast backwards through the model

using various rules, LRP can explain SOTA predictions in terms of its input attributes.

These can be implemented efficiently and modularly, and even complex models can have

high-quality explanations because of parameter adjustment. Furthermore, LRP may be

generalized beyond DNNs to other model types via Neuralization-Propagation (NEON),

broadening its use to many different cases that demand explainable machine learning

solutions (Montavon et al., 2022). However, there are a number of considerations

against using LRP. For example, there is limited empirical evidence and no comparison to

other SOTA approaches. In addition, numerous LRP regulations were left out, for reasons

that are unclear. Above all, human evaluation of explanation quality is still required,

which can be time-consuming and error-prone. Worse, there are no defined evaluation

standards; instead, only integrity and understandability are used, which are both biased.

2.4.8 LIME -  Local Interpretable Model-agnostic Explanations

Trust is essential when acting on a projection or selecting whether or not to deploy a

new model(Nagendran et al., 2020). Such knowledge also helps to provide perceptions

into the framework, which can help to turn an undependable prediction model into a

reliable one. Ribeiro et al. (Ribeiro, Singh and Guestrin, 2016) state that LIME is a unique

clarification system that studies an interpretable model around the forecast to explain

any classifier's guesses in an interpretable and authentic version. Simply said, LIME is a

method that can accurately describe any classifier or regressor's predictions by

approximating them locally with an interpretable model(Lundberg et al., 2020).
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The abbreviation of LIME itself should give you an intuition about the core idea behind it.

LIME is:

● Model agnostic which means that LIME is able to explain any black-box classifier

you can think of.

● Interpretable, which means that LIME provides you a solution to understand why

your model behaves the way it does.

● Local, which means that LIME tries to find the explanation of your black-box

model by approximating the local linear behavior of your model.

Fig. 20. Sample feature space of bi-classifier (left) where red star locates the object. LIME tries to create a

linear classifier(right) to perform explanations

Let’s say you have a feature space with non-linear boundaries as shown in the left image

above. The data points residing inside the black curve will be classified as A and

otherwise, will be classified as B. Now we want to predict the class of a data point

denoted by the red star in the above image. Instead of looking at the global behavior

(left image), LIME will go into the vicinity area of the red star point such that it becomes

very local that a linear classifier could explain your model’s prediction (right image).

Procedure is as follows:

1. The first step that LIME would do is to create several artificial data points that are

close to the data denoted by the red star. Note if our input data is an image, LIME

will generate several samples that are similar with our input image by turning on

and off some of the super-pixels of the image.

2. Next, LIME will predict the class of each of the artificial data points that has been

generated using our trained model.

3. The third step is to calculate the weight of each artificial data to measure its

importance. To do this, first the cosine distance metric is usually applied to

calculate how far the distance of each artificial data point with respect to our

original input data. Next, the distance will be mapped into a value between zero

to one with a kernel function. The closer the distance, the closer the mapped
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value to one, and hence, the bigger the weight. The bigger the weight, the bigger

the importance of a certain artificial data point.

4. The last step is fitting a linear regression model using the weighted artificial data

points. After this step, we should get the fitted coefficient of each feature, just

like the usual linear regression analysis. Now if we sort the coefficient, the

features that have larger coefficients are the ones that play a big role in

determining the prediction of our black-box machine learning model.

LIME may be used to create a classifier structure that categorizes tabular statistics,

pictures, or transcripts. Surprisingly, the abbreviation LIME might provide insight into the

basic concept. LIME is model agnostic, which means it can elucidate any black-box

classifier and is model-independent. LIME is also interpretable and local, which means it

can help you figure out why a model performs the way it does and find an explanation

for a black-box framework by approximating its local linear behavior respectively.

Furthermore, LIME explains an estimate that even non-experts may use feature

engineering to associate and advance an unreliable framework. According to Ferrando

Piera and Urbano (Ferrando and Lorenzo-Seva, 2017), a good model explainer should

have many desirable characteristics. It should, for starters, offer a qualitative

comprehension of the relationship amid the input features and the feedback. In other

words, it ought to be easy to understand. Second, unless an explanation contains a

thorough description of the model itself, it may not be able to be completely

accurate(Deramgozin et al., 2021). It must, however, be at least locally realistic, i.e., it

ought to replicate the representation's behavior in the area of the occurrence being

projected. Moreover, the explainer should explain any model without making

assumptions about it. Besides, the interpreter should give the user a representative set

to present to have a general understanding of the concept. LIME uses a representation

that people can understand regardless of the model's essential features; thus, the

feature is an interpretable representation (Zhang et al., 2019). The sort of data that

people are working with will determine how interpretable a representation is. In a

nutshell, LIME tries to relate a model's prediction to human-understandable attributes.

LIME is not free from setbacks. When employing this approach, one of the most serious

concerns is LIME instability. Simply put, if one runs LIME on a single individual and

repeats the procedure numerous times with the same parameters and settings, they can

get completely different results. The generating process of LIME causes it to be unstable.

Each call to LIME generates a new dataset because the points are produced at random

(Visani, Bagli and Chesani, 2020). Individuals may end up with different models for

different LIME calls since the dataset is utilized to train the LIME Linear Model. Instability

is detrimental to LIME because it contributes to a lack of confidence. Experts have

debated whether or not the Generation Step should be eliminated because it is the

source of Instability. However, there may be numerous locations with very few training
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points as a result of this, and the linear approximation will be quite rough in those areas.

Ideally, the sampling stage goes a long way toward ensuring that the ML function is

well-covered, as more points increase the model's accuracy.

Sample failure of LIME can be seen below(Visani et al., 2022). Author’s used LIME to

explain machine decisions on loan rejection. Three times the same decision has been

analyzed and this is the model’s motivation explanation according to LIME.

Fig. 21. results for LIME’s explanation of loan decisions made by the ML model. Source: (Visani et al., 2022)
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2.4.9 SHAP -  SHapley Additive exPlanations

In numerous instances, comprehending why an approach produces a detailed prediction

is as significant as the exactness of the forecast. However, complex frameworks that even

professionals labor to read, such as deep learning models, often attain the maximum

precision for massive up-to-date data, generating a strain between precision and

interpretability. Therefore, numerous approaches for supporting users in reading the

estimates of difficult models have recently been offered (Biran and Cotton, 2017).

However, it is occasionally uncertain how these approaches are linked and when one

method is favored to another. Lundberg and Lee (Lundberg and Lee, 2017) suggest SHAP

- SHapley Additive exPlanations, a combined paradigm for inferring guesses, to overcome

this problem. For each prediction, SHAP assigns an essential value to each feature (Parsa

et al., 2020; Slack et al., 2020). Its novel features include discovering a new session of

additive feature significance actions and hypothetical studies signifying that this class has

a sole answer with a set of favorite attributes. The novel course combines six existing

approaches, which is remarkable as four of the class's most current approaches lack the

projected needed abilities (Lundberg and Lee, 2017). Laconically, SHAP value estimate

approaches are better matched with human intuition as judged by user studies and more

effectively differentiate between model output classes than several existing methods.

There are a variety of approaches that can be used to improve model interpretability.

One of the most common ways of expressing the model and understanding how your

data's properties relate to the outputs is to utilize SHAP Values. A mechanism drawn

from coalitional game theory allows the "payout" to be distributed fairly across the

features. SHAP Values have the distinct advantage of providing both global and local

interpretability (Lundberg et al., 2020). Image classification tasks, for example, can be

explained by the scores assigned to each pixel on a predicted image, which show how

much that pixel helps to classify that image into a specific category. In addition, tabular

data can represent a large amount of information. According to Fidel (Fidel, Bitton and

Shabtai, 2020), SHAP Deep Explainer can tell which input feature contributes to the

model output and the magnitude in a picture of connected neural networks. The

summary map in the SHAP global interpretation program displays the most relevant

elements and their level of influence on the model. It is an all-encompassing

interpretation.

Both SHapley Additive exPlanations (SHAP) and LIME are additive and model-agnostic

approaches for explaining individual predictions. According to Aas et al. (Aas, Jullum and

Løland, 2021), SHAP seeks to explain model prediction for a given input by computing

each feature's contribution to the prediction. SHAP achieves this goal by employing

Shapley Values, which are derived from game theory. Shapley Values are a method of

rewarding game players depending on their contribution to the overall profit. The

concept has been transferred to SHAP as a technique of determining which of the
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attributes contributes the most to the model's final forecast. It is defined as the feature

value's average marginal contribution over all feasible coalitions. Each attribute is

assigned a value of 0 or 1, indicating if it is present in the coalition. In the end a function

is used to map these vectors to the feature space; for images, the function fills in gray

super-pixels with a vector value of 0.

2.4.10 Explanation by Example

The limitation of different methods encouraged enhanced evaluation of the method

Explanation by Examples. Chen and colleagues (Chen et al., 2018) in 2019 introduced the

prototypical part network that dissects an image by finding prototypical parts and

combines the prototypical evidence to formulate a final classification. The

explanation-by-example is the preferred explanation style across applications spanning

image, text, audio, and sensory domains by the average non-technical end-users

(Jeyakumar et al., 2020). The technique is not effectively grounded to make deterministic

conclusions but provides an obvious choice to non-technical consumers for pointing to a

set of images in a training set with a similar response to the examined one. Thus, nearest

training examples present users with an opportunity to match features across similarly

mapped ground-truth examples and test input.

The mapping of the explanation domain to visual domains is relatively straightforward in

explanation-by-example frameworks because they generate several examples as an

explanation. Jeyakumar et al. (Jeyakumar et al., 2020) indicate that visualization of

generated examples is similar to the visualization of data instances. In this regard, the

researchers utilized ExMatchina, an open-source implementation of

Explanation-by-Example, to access the nearest matching data samples for representative

examples by comparing feature activations found in the last convolutional layer.

Subsequently, explanation-by-example generates identical examples to the test input,

whereby image and audio domains repeatedly offer nearest training examples that are

intuitive and semantically similar to the mapping of training data, associated labels, and

model inference (Jeyakumar et al., 2020). The technique only requires configuring

parameters in the model layer to generate explanations rather than fine-grained

hyperparameters tuning. However, the efficiency of the Explanation-by-Example

significantly relies on the quality of the training data, while lack of similar examples leads

to subpar explanations. The method also increases the risk of exposing personally

identifiable information, mainly when operating on sensitive training data.

Nonetheless, Explanation by Example was the motivation to create PRISM (see chapter

3.4 Principal Image Sections Mapping) and merge it with GE. This idea enhances

Explanation by Example by highlighting inclusive and exclusive features in the form

understandable by the human reader.
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2.5 CNN Models Training Modification Based on Explainability
Object recognition models are usually trained to minimize loss on a given dataset, and

evaluated by the accuracy they achieve on the corresponding test set classification. In

this paradigm, model performance can be improved by incorporating any generalizing

correlation between images and their labels into decision-making. However, the actual

model reliability and robustness depend on the specific set of correlations that is used,

and on how those correlations are combined. Indeed, outside of the training

distribution, model predictions can deviate wildly from human expectations either due

to relying on correlations that humans do not perceive(Jacobsen et al., 2018; Jetley, Lord

and Torr, 2018), or due to overusing correlations, such as texture(Geirhos et al., 2018),

color(Szyc, 2020), background(Ribeiro, Singh and Guestrin, 2016; Xiao et al., 2020), that

humans do use. Characterizing the correlations that models depend on thus has

important implications for understanding model behavior, in general.

Previously described methods for visualization are designed to explain specified cases,

thus are hardly usable for evaluation of models taught on hundreds or thousands of

images. The first problem that comes to our mind is the influence of background. In

order to identify this bias Xiao et al. (Xiao et al., 2020) proposed a special pre-fabrication

of test dataset, that cuts out actual objects from the base picture thus generating 2

images: only background and only object. If the model classifies correctly the sole

objects, then it has learnt the correct features. On the other hand, if the model does not

identify only the background as the original object, we may conclude that the network is

not biased towards the background.
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3 Proposed Methods and Procedures
During the last few years I have designed and described several novel methods that

could help CNN practitioners in explaining and evaluating their models.

3.1 Attention Focus Evaluation
The proposed method is based on three simple concepts. The first is to determine what

the network should consider as a discriminative feature. Secondly, we have to go

through and discover what the network is actually learning. And finally, we need to

evaluate how much of the learned correlations are tied to the expected area of the

image.

The first phase is the generation of the Regions-of-Interest (ROI). For this purpose, we

can employ an expert that will manually indicate ROI, but in this work we used the

Detectron2 framework(Wu et al., 2019). It is Facebook AIResearch’s next-generation

software system that uses state-of-the-art object detection algorithms. It is also a

common practice to use a base model pre-trained on a large image set, such as

ImageNet(Deng et al., 2009), as the feature extractor part of the network. Detectron2

framework allows us to obtain coordinates of two points that mark the top left and

bottom right of the ROI. For the purpose of this research, we did not pay attention to

which class object has been recognized.

Fig. 22. Detectron2 processed image with highlighted 3 regions of interests

Detectron2 produces images with highlighted ROIs (see fig. 1) and returns a tuple for

each image that contains 4 coordinates: x and y for the top left corner and x and y for the

bottom right corner of the ROI.

Saliency map generation is the subsequent stage, although it can be performed in

parallel to ROIs generation if we have sufficient computing power. For this purpose we

have used the popular GradCAM method(Chattopadhay et al., 2018). To obtain the

class-discriminative localization map, Grad-CAM computes the gradient of yc (score for
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class c) with respect to feature maps A of a convolutional layer. These gradients flowing

back are global-average-pooled to obtain the importance weights for pixel k with respect

to class c: αc
k (eq. 3).

(3)α
𝑘
𝑐 = 1

𝑍
𝑖

∑
𝑗

∑ ∂𝑦𝑐

∂𝐴
𝑖𝑗
𝑘

The importance weights create a saliency map as a matrix of values between 0.0 to 1.0

which corresponds to the importance of a particular pixel. Graphical representation of

this map is a picture with colors from blue (lowest importance) to red (highest

importance).

The final step is to compute how many classification-important pixels are inside ROI in

relation to all important pixels in the image (eq. 4). In the proposed method we sum

values of saliency map inside ROI and divide them by the sum of values over the entire

map. If there are more ROIs detected, we calculate the ratio for each separately and in

the end choose the highest value.

(4)𝑚
𝑓𝑖𝑡

= 𝑥,𝑦

𝑟𝑜𝑖

∑ α
𝑘
𝑐

𝑥,𝑦

𝑖𝑚𝑎𝑔𝑒

∑ α
𝑘
𝑐

This proportion gives us fit measurement. The higher value we obtain for a given class,

the higher confidence that the network has learned the object, not the background.
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3.2 Gradual Extrapolation
Gradual extrapolation is based on a simple concept. Visualization techniques generate a

saliency map at the last layer, therefore it has the size of the last layer: 7x7 (VGG-16)

which is much less than the input: 224x224. Normally the map is extrapolated to the

initial size thus being fuzzy due to approximation during resizing. In GE the saliency maps

are expanded layer by layer and multiplied by the matrix representing the weights of the

contributions from the given layer. In other words: we have the small map, 7x7, we size it

to match the pre-last layer: 14x14 and then we augment the cells by original outputs

from the 14x14 layer. We repeat this procedure until the original size is achieved.

Here (eq. 5), the selection of the contribution matrix is important. A simple matrix of

mean values (m) is selected, and all masks of the given layer are summed with respect to

the channels. For instance, assume that there are C channels, each with a mask of height

h and width w. Then, one matrix of dimensions h × w is obtained as follows:

(5)∀
𝑖

∈ ℎ,  ∀
𝑗

∈ 𝑤 :  𝑚
𝑖𝑗

= 𝑐=1

𝐶

∑ 𝑥
𝑐𝑖𝑗

𝐶

This process is repeated for each MaxPool layer until the input dimensions are restored.

The concept is superficially represented in figure 23.

In other words, for each preceding layer, a matrix of importance values is determined.

Therefore, simply the mean values of the single cells across all channels in the selected

layer are selected. However, this unsophisticated approach can be improved and refined

with more advanced techniques.
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Fig. 23. Schematic concept of gradual extrapolation. Section a) and b) represents a gradual

extrapolation transition from an image × 8. Section c) shows the concept of transition between image and

its restoration using gradual extrapolation

To elucidate this process, the contribution matrix is divided by its maximal value, which

restricts the possible values within the unit interval range. As the method can be applied

to a model of any depth, restricting the values to 0 and 1 also prevents method overflow.
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3.3 Latent Features Detection
This method is a combination of Attention Focus Evaluation and Gradual

Extrapolation(GE). In short: we use GE to narrow down the saliency map to the smallest

significant area, which gives us a potential part of the entire object that serves as the

main discriminator of a given class.

This method also consists of three steps. The first is to determine what the network

should consider as a discriminative feature according to our (expert’s) best knowledge.

Secondly, we have to process the image through the model and discover what the

network is actually using for classification and narrow it down as much as possible . And

finally, we need to evaluate how much of the actually contributed area takes the

expected area of the image.

ROI identification is done as well using Detectron2.

Secondly we process the images with GradCAM thus obtaining virtually the same result

as previously, but this time we enhance the saliency map with GE. Gradual Extrapolation

is based on a concept that the map is expanded to the size of the preceding layer and

then multiplied by the matrix representing the weights of the contributions from the

given layer. Thus the obtained output is an object shaped form that can be considered

the most significant part of the image, for a given class.

The final step is to compute the ratio of how many classification-important pixels are

inside ROI in relation to all pixels in the ROI. In the proposed method we count the

number of active pixels (above 0.1) inside ROI and divide them by the sum of values over

the entire ROI (eq. 6). If there are more ROIs detected we calculate the ratio for each

separately and in the end choose the lowest value.

(6)𝑚
𝐷𝐹𝑅

= 𝑥,𝑦

𝑟𝑜𝑖

∑ 1⇒ 𝑝
𝑥,𝑦

 > 0.1

𝑥,𝑦

𝑟𝑜𝑖

∑ 1

Threshold for omitting values below 0.1 has been arbitrarily chosen in order to filter out

potential noise in saliency. Our empirical studies proved its effectiveness. This proportion

gives us significant area measurement. The higher value we obtain for a given class, the

higher confidence that the network has learned the entire object, not the latent feature.

If the ROI has not been specified on the image, the entire picture was taken into

consideration.
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3.4 Principal Image Sections Mapping
We proposed a method that relies on a simple concept: if we look at the final

convolutional layer, the Deep Convolutional Neural Networks are only complex

representation generators, therefore our focus should be on explaining: what

contributed to the given representation vector the most. Here comes Principal

Component Analysis, which allows us to reorganize this map into significance-sorted

vectors, which could be consequently analyzed further.

Fig. 24. Procedure of PRISM formula: first we convert maps produced in the chosen layer into vectors. In

this case from 512 maps of size 7x7 into 512 vectors of length 49. On this 512x49 matrix we perform PCA

PRISM has been designed around this idea. It computes the PCA for the last

convolutional layer and truncates the results after the third Principal Component thus

receiving an RGB map of features as seen in picture 1.

Fig. 25. While having the matrix of principal components we can remove all components beyond third one,

restore each one to the original shape (1x49 into 7x7) and finally assign a base color to each one

Assume 𝔸 is a set of outputs from each convolutional layer in a network. We choose a

single output, preferably from the final layer, but there is no obstacle to study any other

layer. It has a shape of :𝑛 × 𝑐 × ℎ × 𝑤
n - number of images in a batch

c - number of channels in layer

h,w - height and width of each mask in this layer.

𝑣 - multiplication of n*h*w.

Instead of straightforward PCA for dimensionality reduction, we use Singular Value

Decomposition (SVD) for obtaining Principal Components vectors. Since SVD is applicable
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only to two dimensional data, we have to reshape the original four dimensional batch

into the two dimensional matrix (A’) and then center it by subtracting the mean. (eq 6

and 7).

(6)𝐴
|𝔸|
𝑛×𝑐×ℎ×𝑤 →𝑟𝑒𝑠ℎ𝑎𝑝𝑒 → 𝐴

|𝔸|
𝑣 × 𝑐 = 𝐴'

(7)𝐴'' =  𝐴' −  𝑚𝑒𝑎𝑛(𝐴')

Now we can compute the SVD and then the PCA outcome (eq. 8). Last step is to reshape

the obtained matrix back to its original four-dimensional form (eq. 9).

(8)𝑈 × 𝑆 × 𝑉𝑇 =  𝑠𝑣𝑑(𝐴'')
(9)𝐴

𝑃𝐶𝐴
=  𝑈 × 𝑆

Fig. 26. Raw output from PRISM marks each cell from the processed layer with respective color according

to PCA value. Similar colors on both images indicated same filters activation in the network thus we can

conclude they are the same feature according to the examined model
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This procedure results in a checkered representation of the processed images (fig. 3.).

This Could be further processed using Gradual Extrapolation producing a

human-recognizable picture with colored features found by the network as seen on

figure 27.

Fig. 27. Images from figure before but with applied Gradual Extrapolation to attach colors to a
human-recognizable elements in the image

49



4 Practical Application of Proposed Methods

4.1 Semi-Automatic Model Evaluation
With the proposed procedure we have performed several experiments. Two to prove its

effectiveness in detecting background skewed classes and one to generate an adversarial

attack on the model using knowledge obtained from research.

4.1.1  Attention Focus Evaluation

This research has been presented during the ICCS 2021 conference and published in a

paper entitled Automated Method for Evaluating Neural Network’s Attention

Focus(Szandała and Maciejewski, 2021).

4.1.1.1 Small-scale Evaluation for ImageNet-9

Here we have utilized transfer learning of ResNet50(Schott et al., 2018) and expect it to

recognize 9 subjectively chosen classes. The subset ImageNet-9 consists of classes: bird,

camel, dog, fish, insect, musical_instrument, ship, snowboard, wheeled_vehicle.

Each class is often associated with certain environments like camel-desert, insect-plants,

ship-water, snowboard-mountains, etc. Each class has been represented by

approximately 500 images. It appears that transfer learning is quite an efficient method

since 8 object types were recognized correctly as the actual object. Only one class, the

snowboard, took our attention. It appears that the presence of the sky implicated this

recognition.

Using the CAM-in-ROI method we have noticed that only 28% of significant pixels were

inside the ROI's rectangle, while for e.g. camels this value oscillated around 74%.

Table 1. ROI-fitting value and percentage of correctly classified images over ImageNet-9.. Note that images where ROI
has been not found were excluded

Class Average fitting Model accuracy

bird 77.75 % 88.25 %

camel 74.20 % 22.70 %

dog 85.28 % 96.18 %

fish 67.87 % 62.82 %

insect 66.31 % 77.10 %

musical_instrument 59.26 % 81.80 %

ship 68.19 % 88.08 %

snowboard 28.01 % 82.28 %

wheeled_vehicle 83.77 % 94.26 %
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Table 1 shows average importance, according to GradCAM, found inside ROI. The most

outstanding is the snowboard class where less than one-third of saliency fits inside

indicated ROI. Human conducted scrutiny revealed that for this certain class a top area

associated with the sky is signal classification as the snowboard (fig. 28).

It is worth noticing that despite a low fitting ratio for the snowboard, the model’s

classification accuracy does not differ significantly from other classes. This leads to a

conclusion that incorrect correlation may be undetectable by standard means.

Fig. 28. Images classified as snowboard and their respective saliency maps with ROIs

This proof of concept demonstrated the practicality of the proposed method on a small

subset, where human validation could be done. The method has correctly identified the

snowboard classification as defective and other correlations as satisfactory.

4.1.1.2 Full-scale Evaluation on Entire ImageNet

Xiao et al. stated that state-of-the-art pretrained networks appear to be immune to

background skewed learning(Xiao et al., 2020). We have decided to scrutinize this

statement by applying CAM-in-ROI measurement to the samples of all classes found in

the ImageNet dataset and their classification using VGG architecture. We have prepared

a batch of approximately 50 images of each class listed in the ImageNet set. Chosen

results are displayed in table 2.
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Table 2. ROI-fitting value over full ImageNet. Only selected classes were displayed

Class Average fitting

Japanese_spaniel 96.73%

Persian_cat 93.04%

black_and_gold_garden_spider 11.08%

valley 7.75%

lakeside 7.50%

seashore 2.46%

bell_cote 1.53%

alp 1.12%

breakwater 0.68%

mosque 0.25%

rapeseed 0.00%

4.1.1.3 Method’s Limitations

Some of the classes, like seashore, alp or lakeside can be considered object-less, since

Detectron2 hardly ever recognized any object in the picture. Or there could have been

highlighted an object that has only subsidiary importance. As we may see on the fig. 29:

ROI targets a person, while the network focuses, correctly, on the surroundings and

classifies the image as a valley. Furthermore, some objects like bell cote are not known

to the Detectron2. These issues caused many false positives in our results, although

these may be overcome by applying different, more compelling ROI detecting tools.

Fig. 29. An image classified correctly as a valley, despite the person detected in the foreground. Note that a
tiny saliency region is included inside ROI thus giving as non-zero fitting measure
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Further we must acknowledge one more setback: our technique will turn out ineffective

for detecting incorrect perception of the object. Namely, like the aforementioned

association of the cab object with yellow(Geirhos et al., 2018).

4.1.1.4 Generating Adversarial Attack Based on Method Findings

Nonetheless, our method has greatly limited the number of classes that require a closer

look. Therefore we had to manually inspect only the lowest fitting classes. By reviewing

images from the lowest fits we can highlight one distinctive class:

black_and_gold_garden_spider. The black-and-gold-garden-spider often appears on the

spider web background. While ROI indicates the insect quite well, the saliency map

marks the spider web as the most significant area on the image, therefore resulting in

only 11% average fitting. This leads us to the conclusion that the network assigns the

label black_and_gold_garden_spider to an image that displays an object on a spider’s

web background.

Enhanced with knowledge about background influence on a certain class we can forge

an image that has a spider's web in the background and something else in the

foreground. We have downloaded a web image as well as a deer’s head and merged

them into one picture. Before the fusion, each picture was separately correctly classified:

web as web and deer as a hartebeest (fig. 30). The blended image, as expected, has been

classified as black-and-gold-garden-spider.

Fig. 30. Source images of spider’s web and a deer’s head that, according to results from 3rd experiment,
should result in classification as black_and_gold_garden_spider

By knowing the flaws in the network's reasoning, we were able to conduct an adversarial

attack on it. Its success ultimately proves the potency of the proposed method.
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4.1.1.5 Summary

Name Automatic Network’s Attention Focus
Evaluation

Method’s application

Apart from testing accuracy, when evaluating a model, we should also test whether
the model is learning the actual object, not the context of the object.

Procedure

1. Train the model as usual
2. Perform ROI indication on each image from validating set
3. Obtain saliency map for each image
4. Measure ration of saliency inside ROI to saliency over entire image
5. Calculate average for each class
6. Manually inspect classes with lowest average ratio value
7. If any class appears to clearly learn background instead object - adjust training

Benefits Limitations

● Complementary evaluation for
accuracy/error rate

● Identifies classes in case which
model is learning context instead
object

● ROIs generator might not know all
objects known to the evaluated
model

● Requires a lot of additional
computation to generate ROIs and
saliency maps for each image
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4.1.2 Detecting Latent Features

Unlike the previous approach this time we assume that the network is classifying

correctly and the discriminative element is the actual object. However in this case we

would like to evaluate whether the object as a whole has contributed or only a part of it.

4.1.2.1 Small-scale Evaluation on ImageNet-9

For this research we used transfer learning with the VGG-16 model which was targeted

to solely 9 classes. The subset ImageNet-9 consists of classes: bird, camel, dog, fish,

insect, musical_instrument, ship, snowboard, wheeled_vehicle. Each chosen class is

often associated with their respective environments like camel-desert, insect-plants,

ship-water, snowboard-mountains, etc. Each class has been represented in a training

dataset with 500 images. Transfer learning is an efficient method since almost all object

types were recognized correctly as the actual object.

Table 3. ROI active area value and percentage of correctly classified images over ImageNet-9

Class Average fitting Model accuracy

bird 37.8 % 91.00 %

camel 19.9 % 72.72 %

dog 30.5 % 90.44 %

fish 50.3 % 92.71 %

insect 31.8 % 82.11 %

musical_instrument 27.7 % 84.77 %

ship 51.5 % 89.48 %

snowboard 57.1 % 79.27 %

wheeled_vehicle 13.4 % 91.19 %

Table 3, second column shows average activity, according to GE GradCAM, found inside

ROI. The most outstanding is the wheeled_vehicle where less than one-seventh of ROI is

considered significant for the classification. Taking individual look into wheeled_vehicle

dataset we notice that indeed the model focuses on the wheels, less on the vehicle as a

whole.
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Fig. 31. Analysis of transfer learned model on wheeled_vehicle class. It show classifier’s focus on the
wheels

4.1.2.2 Adversarial Attack Using Findings from ImageNet-9 Experiment

Enhanced with this knowledge we could find an image depicting a wheel-like object as

seen in figure 32 and expect it to be classified as a wheeled vehicle. The choice was a

roulette image which has been tagged as expected with 88% certainty.

Fig. 32. Using network to classify this image resulted in labeling it as wheeled_vehicle due to roulette’s
wheel presence

4.1.2.3 Full-scale Evaluation on the Entire ImageNet

After confirming that method works on a subset we could proceed to the state-of-the-art

model, VGG-16 with all 1000 ImageNet classes. Each was represented by approximately

50 images. The application of the method has been presented in a table below.
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Table 4. Sorted by ROI activity results from ImageNet, using VGG-16. Note that only arbitrary chosen
classes were displayed for readability

Class Mean active
area

lakeside 61.0 %

diamondback 59.5 %

seashore 56.5 %

tick 46.1 %

…
ringneck_snake 15.4 %

Samoyed 15.1 %

nect_brace 14.6 %

shoji 13.1 %

With a closer look we have generalized conclusions and divided them into 4 cases.

4.1.2.4 Method’s Limitations: Landscape Areas

The first result that caught our attention is the lakeside class. Very high influential value

originates from method’s rule: if there are no ROIs in the picture, we consider the image

as a one, big ROI. This decision resulted in very high mean value as landscapes provide

an evenly spread saliency map, even with Gradual Extrapolation application.

Fig. 33. Network saliency distribution for a lakeside image

4.1.2.5 Method’s Limitation: Hardly Descritable Objects

Lowest score has been achieved by shoji, the Japanese paper/wooden doors.

Surprisingly the network correctly aligns attention with the doors that the problem is in

the ROI detector. This type of door is hard to define therefore ROI-marking is unable to

indicate them. Moreover, they are often depicted inside a house, which is full of other,

known to ROI-generating tool, objects. These issues result in false positive score as
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unimportant items are marked with ROI, while the network correctly focus on a doors as

seen in a picture below.

Fig. 34. Sample output from applying proposed method to shoji, where we can notice that ROI focused on
a foregrounds while the actual object was in the background

4.1.2.6 Generating Adversarial Attack Based on Method’s Findings

Most of the animals were located high when sorted by mean activity area, surprisingly

only the Samoyed distinguished from this pattern. After inspection of results for this

class we deduced that Samoyed has 3 black stains on a white area: one for nose, two for

eyes.

Fig. 35. Sample output from applying proposed method to two Samoyed class representatives. We can see
the saliency is skewed into eyes and nose

This revelation suggests that we could assemble a Samoyed specimen by painting 3 black

dots on a white background. Unfortunately the manual approach was insufficient -
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perhaps one can be generated using GAN , therefore we decided to threshold the

Samoyed picture and trim it as much as possible.

Fig. 36. Successful pruning of colors and features (like ears or fur) to keep Samoyed classification

The confidence drops significantly, however even the 3 dots are still classified as a

Samoyed. Another interesting observation is the middle picture in the top row. It depicts

the same Samoyed’s muzzle as the left one, but after conversion to black and white color

palette its confidence score is higher than the original image.
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4.1.2.7 Summary

Name Automatic Detection of Latent Features

Method’s application

Apart from testing accuracy, when evaluating a model, we should also test whether
the model is learning the entire object instead of only part of it.

Procedure

8. Train the model as usual
9. Perform ROI indication on each image from validating set
10. Obtain saliency map enhanced with GE for each image
11. Measure ratio of saliency inside ROI to ROI’s size for each image
12. Calculate average for each class
13. Manually inspect classes with lowest average ratio value
14. If any class appears to learn only part of the object - adjust training

Benefits Limitations

● Complementary evaluation for
accuracy/error rate

● Identifies classes in case which
model is learning only part of the
object, instead entire object

● ROIs generator might not know all
objects known to the evaluated
model, e.g. landscapes

● ROIs are usually rectangular. Some
objects have irregular shapes (e.g.
snake) which results in a false
positive

● Requires a lot of additional
computation to generate ROIs and
saliency maps for each image

60



4.2 Closer Insight into Models’ Decision Process
Thus far we have focused on an entire dataset analysis, but for two reasons we should

have tools for more detailed inspection of the certain examples. First, to generate

conclusions applied to the entire class. Secondly, the trend is to have much smaller, but

significantly better suited datasets to train networks in order to reduce training

computation costs. Two methods: Gradual Extrapolation and Principal Image Sections

Mapping contribute to this pattern as they allow for deeper insight into particular image

classification.

4.2.1 CNN Visualization Performance Evaluation - FIAt

From one of the previous experiments we see that GE can successfully be applied to a

practical problem, but here I would like to prove its value by introducing a set of tests

that can be used to evaluate virtually any visualization method. The set of tests can be

abbreviated into FIAt: faithfulness, interpretability and applicability tests. These tests

were described in the paper Enhancing Deep Neural Network Saliency Visualizations

with Gradual Extrapolation published in IEEE Access.

4.2.1.1 Faithfulness

First the faithfulness, we would like to assess whether our method is trustworthy. In

other words: we check if the outcome of the method gives results as expected. For

measuring visualization methods we could utilize pixel-flipping(Samek et al., 2017). The

pixel-flipping procedure assesses whether removing the features highlighted by the

explanation, as the most relevant, decreases the network prediction abilities.

Pixel flipping goes from the most to the least salient input features, removing them one

by one and monitoring the change of the neural network output. The series of recorded

decaying prediction scores can be plotted, where the faster the curve decreases, the

more faithful the explanation method with respect to the neural network’s decision. The

pixel-flipping curve can be computed for a single example or averaged over an entire

data set to achieve a global estimate of the faithfulness of an explanation procedure

under study.

For this assessment, random 1000 images are selected from the ImageNet dataset and

classified using VGG-16, yielding a 1.00 confidence score (based on the Softmax formula

over the network). In Figure 6, Gradual Extrapolation offers noticeable improvements

over conventional Grad-CAM and a minor improvement over similar Excitation

Backpropagation.
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Fig. 37. Results of pixel-flipping impact on model’s classification accuracy

4.2.1.2 Interpretability

Next we should evaluate interpretability. In the case of visualization technique

interpretability can be defined as how much of original data reduction can be achieved

using a given method, but still retaining the significant information. Based on this

assumption we designed a test that counts how many pictures are left as very important

compared to the original image.

Again we compare GE-enhanced methods with their vanilla counterparts.

Table 5. Significant regions and their sizes (in pixels) based on vanilla Grad-CAM(1st col.), Grad-CAM using
Gradual Extrapolated (2nd col.), Contrastive Excitation Backpropagation(3rd col.) and Gradual Extrapolated
version(last col.)

Significant pixels: 4713 Significant pixels: 3178 Significant pixels: 5557 Significant pixels: 3259
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Significant pixels: 16576 Significant pixels: 1406 Significant pixels: 8162 Significant pixels: 1341

Significant pixels: 9528 Significant pixels: 10039 Significant pixels: 4749 Significant pixels: 8835

Significant pixels: 29527 Significant pixels: 4452 Significant pixels: 9994 Significant pixels: 3983

Significant pixels: 22673 Significant pixels: 5178 Significant pixels: 11855 Significant pixels: 7883

Generally, we see a firm decline in the size of salient areas between the conventional

methods and their enhanced versions. The only exception is one of the black widows

images - in the third row. The number of important pixels is higher in the enhanced

63



versions. However, the enhanced version is more focused on an animal unlike vanilla

one, which includes a lot of background.

4.2.1.3 Applicability

Last evaluation, applicability, is about utility of the method. Whether it is applicable to

more cases than only one, specific, that the method originates from. From the state of

the art we know that both GradCAM and Contrastive Excitation Backpropagation are

applicable for most or all convolutional neural networks. Question arises whether their

GE version applies as well, since it relies on the models architecture.

Fig. 38. Gradual contrastive excitation Backpropagation results of several models

This final test shows that Gradual Extrapolation is applicable to a wide variety of models.

The following sample networks are used:

● VGG-11 (Simonyan and Zisserman, 2014)

● VGG-16 (Alippi, Disabato and Roveri, 2018)
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● ResNet50 (He et al., 2016)

● DenseNet-161 (Huang et al., 2017)

● MobileNet-V2 (Sandler et al., 2018)

Fig. 39. Gradual Extrapolation time obtaining time in second for several models. Average for 30 executions

To measure applicability, the proposed method is applied to several different models and

their computational time is measured. The results related to the computational time are

shown in figure 39. The difference between the conventional method and the enhanced

version is negligible, which is less than 10%. Note that because Gradual Extrapolation

depends on an output from the original method its computation period would never be

shorter than the original procedure.

65

https://paperpile.com/c/3ec4aa/AHtLv
https://paperpile.com/c/3ec4aa/O4zc
https://paperpile.com/c/3ec4aa/wjEN


4.2.1.4 Summary FIA-t

Name Faithfulness, Interpretability and
Applicability test

Method’s application

Comparison of methods that are generating saliency map for the classified images

Procedure

1. Choose methods to comparison - preferably include at least one
state-of-the-art technique

2. Identify the most salient pixels according to each method. Start gradually
removing them from the image and perform classification

3. Note network's confidence after each series of truncation
4. The more significant drop in accuracy, the truly more important the removed

pixels were
5. Agree on threshold of saliency (between 0 and 1) and remove all pictures from

entry image that are below this number
6. Calculate amount of pixels left. The less are left the more precise the method is
7. Apply the method to several state-of-the-art models. If the result is useable

and obtainable in a finite time the method is considered applicable across
multiple models

Benefits Limitations

● Quantitative comparison of saliency
map generating techniques

● Consists of strict rules of
comparison

● Focuses only on comparison of
saliency map generating techniques

● Does not answer the question
whether the method is meaningful
for the XAI subject
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4.2.1.5 Summary Gradual Extrapolation

Name Gradual Extrapolation

Method’s application

Method to sharpen the output generated by saliency map generating techniques

Procedure

8. Train the model as usual
9. Set “traps” at the output of each MaxPool layer to collect activations for given

layer
10. Obtain saliency map for last layer
11. Expand saliency map to the size of preceding layer
12. Multiply expanded map by the averages output from preceding layer
13. Scale result to [0,1] to avoid extremely low or high values
14. Repeat steps 4-6 until reaching initial layer/size

Benefits Limitations

● Highlights shapes of the salient
object

● Significantly reduces the amount of
area marked as salient for given
image

● May sometimes improve
localisation of salient object

● Applicable to all methods that are
generating saliency map or similar
result

● Is as good as the base method. If
base method points wrong are GE
will not fix that

● Output might be blurred when
applied to models that have e.g.
recurrent or parallel architecture
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4.2.2 Feature Scoped Classification Analysis - PRISM method

This subchapter originates from the paper PRISM: Principal Image Sections Mapping

published as part proceedings of ICCS 2022 (Szandala and Maciejewski, 2022). In order

to prove usability of this method we have performed and analyzed 3 experiments

4.2.2.1 Using PRISM Output to Identify Discriminative features

The first experiment was meant to use PRISM to find and make human-identifiable

features that distinguish 2 potentially similar classes. We have started from coyotes and

timber-wolves. We have compared these two classes and prepared an example that

proves the differentiating features can be identified using PRISM.

Fig. 40. PRISM output for coyote and its zoomed face as well wolf and its zoomed head

In figure 40 we see PRISM results for 4 pictures. First we started with full bodies of the

animals (columns 2nd and 4th). Pawns, tail and back appear to be the similar feature

vectors indicated by the same colors, but the difference appears to be in the animal's

heads. Therefore we scoped at them by clipping the original images. Again features

identified by PRISM seem mostly equal, but the differences now can be found in the eyes

and ears areas.

68

https://paperpile.com/c/3ec4aa/pfR0


Fig. 41. PRISM output for coyote’s and wolf’s top parts of the heads and finally eyes

Figure 41. depicts further clipping. First we clip to the top parts of the heads - eyes and

ears. This displays similar colors in regards to ears, but different in eyes area, so we

perform the final clipping. This leads us to the conclusion that the feature which

contributes the most to the distinction between the timber wolf and the coyote lies in

their eyes.

In order to confirm our assumption we have merged coyote eyes into the wolf and other

way around. As we see on figure 42. the classification changed significantly. Although the

most probable class is still a respective animal, the second guess is the one that we tried

to induce. Also note that confidence dropped significantly in favor of the second class.

Perhaps better results could be achieved with more sophisticated blending instead of

simple copy-paste.

Fig. 42. Classification confidence after swapping eyes between two animals

Of course a question comes, whether basic GradCAM could lead us with a similar

deduction path? We have processed the original images and generated GradCAM output
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for them. As seen in figure 43. the outcome is not easily interpretable, therefore it would

be significantly harder to generate a similar so focused adversarial attack.

Fig. 43. GradCAM output for original image of coyote and wolf

4.2.2.2 Classes Clustering with PRISM’s Output

Despite that PRISM shines while processing several images at once, mostly in

conjunction with GE, we believe it may also work as an indicator for ambivalent classes if

combined with clustering technique, e.g. Self-Organizing Maps (SOM). In picture 44. we

have presented a first draft of PRISM’s clustering utility. We have taken 5 canine classes

(color from cluster map in bracket):

● coyote (orange)

● gray fox (red)

● timber wolf (green)

● samoyed (purple)

● border collie (blue)
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Fig. 44. SOM clustering outcome for 5 arbitrary chosen classes whose representation were generated by
the PRISM

Instead of drawing their PRISM-generated representation we have used them as feature

vectors for SOM clustering. Note that PRISM is generating real domain values for

coloring, therefore we had to quantize the colors to reduce the amount to a finite

number of possible tints.

From figure 44 we can conclude that coyotes(orange) could be easily confused with

timber wolves(green) and gray foxes(red). On the other hand the Samoyed and Border

collie specimens (purple and blue respectively) are clearly distinguishable from the rest.
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Table 6. Confusion matrix for images clustered using PRISM.

Predicted class

coyote gray fox timber wolf samoyed
border

collie

coyote 25 2 3

gray fox 1 22 3

timber wolf 1 1 10

samoyed 19 1

border collie 1 1 11

Having the clustered output we have also prepared the confusion matrix. In the matrix

we can clearly see that 2 superclusters have been reproduced: one for coyote, gray fox

and timber wolf; second for samoyeds and border collies. It proves that PRISM has

successfully predicted possible confusions between classes. Timber wolves can be easily

confused with coyotes and foxes and Samoyeds and Border collies are clearly separated

from wild specimens.

4.2.2.3 Applicability to Different Models

PRISM, by its design, is applicable to any model that generates representations. However

it shines when combined with GE, therefore we have validated this combination for 9

models found in the Model ZOO. We have tested GE PRISM with:

● AlexNet (Simonyan and Zisserman, 2014)

● GoogleNet (Szegedy et al., 2015)

● ResNet-18 (He et al., 2016)

● ResNet-50 (He et al., 2016)

● ResNet-101 (He et al., 2016)

● SqueezeNet (Iandola et al., 2016)

● VGG-11 (Simonyan and Zisserman, 2014)

● VGG-16 (Alippi, Disabato and Roveri, 2018)

● VGG-19 (Simonyan and Zisserman, 2014)
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Table 7. PRISM output for multiple state-of-the-art models

Original Input

AlexNet

GoogleNet

ResNet-18
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ResNet-50

ResNet-101

SqueezeNet

VGG-11
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VGG-16

VGG-19

Results show that GE PRISM is applicable to all state-of-the-art models. Only minor

concerns appear when considering the output from ResNet-18 and 50, which looks

highly messy compared to others. Surprisingly ResNet-101’s output seems more

organized and more readable than its “simpler siblings”. Probably a tuning in the

procedure is required for this particular model family.

4.2.2.4 Immunity to Image Rotations

PRISM is also immune to the picture modifications as long as the model still generates

correct representation. In the figure we see that wolves, which are recognizable after

rotations, are maintaining the same set of features according to the model. While the

identified features are the same - so behaves as expected, the combination of PRISM and

GE for the first picture highlights the lower confidence of the model. The more uncertain

the network is, the less explicit the output is.

75



Fig. 45. PRISM immunity for rotation of pictures. As long as model still recognizes correct features the

PRISM will highlight them accordingly

4.2.2.5 As a method to Monitor Training Process

With PRISM we can have an insight into untrained models. We have performed

classification of 4 images with untrained VGG-16. The result (fig. 46) seems fuzzy but we

can see that the untrained network is providing a readable output for each image. This

means that we might be able to use PRIM to track and better see the training process of

the model. Tho this approach requires further research.
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Fig. 46. PRISM output for an untrained model. The color palette seems to be evenly distributed and

resembles a full spectrum of colors

4.2.2.6 Example that PRISM Lacks Built-in Saliency Indicators

It is mandatory to not consider PRISM as a replacement to commonly known

visualization techniques like GradCAM or Excitation Backpropagation. Please see the

image below - figure 47.
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Fig. 47. PRISM output displaying detecting fungus features – a minor issue concerning the proposed
method

PRISM is not a saliency indicator. In case of an image displaying 2 or more entirely

different classes it will still highlight all detected features as seen in figure 47. Left image

depicts a dog alongside a mushroom. Lack of saliency factor may suggest that both dog

and mushroom are equally important for the network, still if we look at the classification

scores we see that model mentions only canine classes to be identified on this image.

The countermeasure for this could be blending a saliency method into PRISM’s output

which makes PRISM a complementary method to aforementioned saliency maps

generators.
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4.2.2.7 Summary

Name Principal Image Sections Mapping

Method’s application

Identification of inclusive and exclusive images in a single batch of images.

Procedure

1. Perform classification as usual, but save output from the final layer (all layers if
You aim to combine with GE)

2. Transform final layer’s output into 2 dimensional matrix
3. Calculate PCA for obtained matrix
4. Recreate original shape using Principal Components matrix
5. If You wish to get human readable output: truncate chosen channels (usually 3

first) and assign them colors: red, green, blue
6. You can also apply Gradual Extrapolation
7. Else use data from point 4. as input feature vectors to clustering method
8. Depict clustered images using e.g. Self-Organizing Maps

Benefits Limitations

● Supplementary method for saliency
maps techniques - highlights
different features with different
colors

● Supplementary method for method
Explanation by Example to highlight
inclusive and exclusive features

● Method for comparing large scale
datasets and their analysis with
clustering - shows potentially
ambiguous classes

● Does not highlight saliency of found
features, only their presence

● When using for human
interpretation virtually limited to
only Principal Components

● Proposed clustering, using SOMs
may always slightly return different
results due to SOM’s randomness
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5 Conclusions
The goal of this dissertation was to study state-of-the-art CNN representation generating

techniques, their visualization, as well identify the gaps and propose

improvements/alternatives where possible.

The first identified problem was the coarseness of the output heatmaps. Saliency maps

generated via GradCAM, Excitation Backpropagation etc. were mainly stains that only

indicated the area where discriminative features are present. There was no well

grounded method for deeper insight into the importance of specific parts of the object.

Solution here was the Gradual Extrapolation which uses sequential and weighted

resizing of originally obtained heatmaps to narrow the approximative area into a

shaped object.

Even having the new method that appears to be an improvement over state-of-the-art

there is demand to prove its effectiveness and usability. Therefore a group of tests has

been devised. They test:

● faithfulness, defined as reliably and ability to comprehensively represent

the local decision structure of the analyzed model. To assess such a

property of the model, a proposed technique is “pixel flipping”. The

pixel-flipping procedure assesses whether removing the features highlighted

by the explanation, as the most relevant, decreases the network prediction

abilities.

● interpretability, which is an ability to reduce the information from the

original object and only retain the elements that play the highest role in

classification. Based on this consideration, a test is established that computes

the number of pixels of the original image remaining after its truncation only

in salient areas.

● applicability, which is the check to determine whether the explanation

method can be implemented in various models, at least to most

state-of-the-art models, and whether the explanation can be obtained quickly

enough with finite computational resources. To measure applicability, the

proposed method is applied to several different models and their

computational  time  is measured.

Proposed method can work as a quantitative, strict comparison and approval

procedure for both old and new saliency map generating techniques.

Two next accomplishments were tied to demand for procedures for evaluation of large

datasets trained models. First one, detecting spurious correlations, was addressed with

evaluation of Network Attention Focus. We have indicated a Region-of-Interest area
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where the classified object has been present and computed a fit metric, defined as ratio

of saliency inside the ROI to saliency in the entire image. This procedure, applied to all

validating images, indicated classes where researchers can expect significant impact of

the context to the classification, instead of object-focuses reasoning.

This method allowed us to perform adversarial attacks by extracting one object from its

natural context and pasting it into another context, thus cheating the network.

Proposed method allows researchers to identify classes prone to focusing on the

context during classification instead of the actual object. Due to the semi-automation

form it is applicable to even the  extremely large training datasets.

Second automation related success is the automatic detection of latent features using

ROI and Gradual Extrapolation enhanced GradCAM. Same as previously we employ

Detectron2 tool to draw the Regions-of-Interest around potential objects. Next, we

analyze the pictures using GE GradCAM and compute the metric: salient pixels inside

ROI, divided by all pixels in ROI. This formula answers: how big part of the object actually

plays a significant role in the classification. The low average for all images with given

class in a validating set should trigger a deeper insight into given class. We have

confirmed that some of the objects are classified only with a latent feature of the object

instead of it as a whole - even for models from an official model ZOO repository.

Proposed method is another complementary (to accuracy/error rate metric) technique

to evaluate obtained AI models. Despite two identified limitations it correctly indicates

classes where trained models might be focused only on a subset of an object, instead

of the entire object.

The final project answers the problem of features differentiation. While taking a look

onto saliency maps for coyote and the wolf we see that in both cases the head was

mainly highlighted. Therefore to answer the question whether both heads are literally

the same for the network a Principal Image Sections Mapping (PRISM) has been

introduced.

It takes the output of given layer, like saliency methods:preferable the last one, performs

the Principal Components Analysis and thus obtained a ranked list of vectors that might

be used for features discrimination and comparison. Moreover, all but the three most

principal components can be removed giving us three unrelated vectors which we can

assign a color: red, green and blue. That procedure results in a colorful map of the most

discriminative features.

This method can now go two ways: automatic clustering or human interpretable

features. First the clustering. Since we have representations converted to a subset of

vectors that represent the RGB colors, we can use Self-Organizing maps to place each
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image in a 2 dimensional map. Thus, with a sufficient amount of images, we obtain a

map of clusters and see potentially ambiguous classes. Equipped with this knowledge,

the researcher should have a closer look into given classes to ensure their differentiation

by the trained model.

On the other hand we can take a closer look into specific instances of the datasets. While

applying Gradual Extrapolation to the checkered PRISM result we obtain an illustration of

distinguishable features seen by the network. With that approach we can see inclusive

and exclusive features according to our model and enhance the training procedure

accordingly.

Fig. 48. Result of combining PRISM with GE. We can clearly see the coyote (first picture) differs from others

by a part of its head. All wolves have a specific feature marked with light-blue stain on the muzzles

PRISM method enhances model’s evaluation in two ways. First (automation) it can

indicate classes that often come with similar features during classification and

therefore are prone to misclassification between them. On the other hand PRISM

allows a closer insight into inclusive and exclusive features identified by the evaluated

model thus increasing the reasoning behind certain DCNN's classification.

Nonetheless, few aspects require more investigation: like taking into consideration more

than 3 Principal Components or combining PRISM with saliency map methods to be able

to rank identified features.
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In the future I believe that several limitations of proposed methods should be addressed.

Starting from the automatic evaluation techniques: we rely on rectangular ROI which

might be modified into a more fitting shape. Moreover, instances where ROI does not

know objects - currently we are virtually ignoring them. Perhaps a more sophisticated

procedure could be devised.

On the other hand, the FIA-test has significant limitations about its portability. First it is

designated only to picture-classification problems. There are other problems like

text-classification, genomics, etc. While the idea of evaluating faithfulness,

interpretability and applicability is applicable to them as well, the adjusted exact tests

should be defined.

The most unknown is around PRISM. First one is the sticking to only 3 first Principal

Components, which might not always be enough - it is possible that a more sophisticated

procedure to choose PCs is required. Moreover, even left with 3 channels we are

receiving different colors for each analyzed batch of images. Perhaps there is a possibility

to fixate eigenvectors so that findings from one batch can be extrapolated to another

set. Finally the clustering part is currently in the state of Proof of Concept. While it gave

satisfying results thus far, it may be further enhanced to provide more detailed answers

on overlapping classes. Perhaps the fuzzy sets could be used in this place? Nevertheless

it requires more research which I am willing to perform in the future.

Since the naming Principal Image Sections Mapping with abbreviation PRISM I have

identified several other entities with that name like:

● Prism - data analysis tool

● PRISM (Proteomic Investigation Strategy for Mammals)

● PRISM (Projects Integrating Sustainable Methods)

This may enforce the change of the name but as for today it serves its purpose well.

Overall contribution to the subject can be divided between reviewing state of the art,

identification of gaps and proposing solutions to them. Finally a set of tests has been

provided to quantitatively compare and evaluate interpretation techniques applicable to

convolutional neural networks.

The main goal of this work is to convince AI practitioners to include more tools in their

pursuit for better models. Not only accuracy/error rate matters. The newly introduced

semi-automatic tests are recommended to detect if the model focuses on the object’s

context or an element of the object. On the other hand: Gradual Extrapolation and

PRISM aim to provide deeper insight into the model’s representation reasoning. Finally

PRISM’s clustering peculiarity is another semi-automation tool to examine a model's

robustness. I sincerely recommend including at least some of my contribution into the

standard AI researcher’s toolkit.
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