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Abstract: This article focuses on the presentation of the forecasting possibilities of  bootstrap methods 

used to predict prices based on time series. The aim of the paper was to examine the quality of the 

forecasts made with the methods for silver futures contracts. In order to achieve the intended goal, ex-

-post and ex-ante errors for the forecasts prepared by applying bootstrap methods were analysed. The 

forecasts were calculated using the daily closing prices of the silver futures contracts for the period 

from 01/07/2020 to 27/03/2022 The analysis showed that the quality of forecasts for each of the 

presented methods is at a satisfactory level. Moreover, the forecasts calculated using the bootstrap 

methods were closer to the real performance of the silver futures contracts than the forecasts obtained 

using the ARMA model (1,1). In addition, it was shown that the forecasts made with the tapered block 

bootstrap method are less affected by forecast errors than the other analysed methods. 

Keywords: block bootstrap, price forecasting, silver futures contracts. 

1. Introduction  

In recent years, due to the Covid-19 pandemic, the tense geopolitical situation in the 

world, and the significant increase in the level of inflation in European countries and 

the USA, it has become common practice for investors to diversify their investment 

portfolio. One of the possibilities of diversification is to apply alternative markets, 

which include the market for precious metals. Metals such as gold, palladium, silver, 

and platinum are a very good protection against the risks associated with investments 

in the capital market. In addition, precious metals are also very often chosen by less 
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experienced investors because their value is easier to understand than the preservation 

of other more complex financial instruments. Moreover, precious metals are widely 

used in industry, which means that the demand for them is growing year by year. 

The analysis and modelling of precious metals prices is a significant and complex 

research problem due to the multiplicity of influencing factors. Empirical studies using 

econometric models, time series, and recently, artificial intelligence models have 

shown the existence and importance of a diverse range of data features in the precious 

metal price modelling. The dominant data features identified in the resources and 

mineral literature include autocorrelation, fractals, dependence structure, etc. (He, 

Chen, and Tso, 2017).  

Time series models are very often used to analyse and to forecast prices of the 

precious metals. In the existing literature, silver price forecasting uses mostly 

parametric methods such as Vector Autoregressive (VAR) or Autoregressive Moving 

Average (ARMA) models. One advantage of the VAR model is that it builds 

a prediction system, however it fails to consider the price volatility. An advantage of 

ARMA models is that they can predict future prices using only historical trading data, 

yet ARMA allows for modelling only linear relationships (Dudek, 2012; Li Wang, and  

Li, 2020). In addition to the parametric models, non-parametric models can also be 

applied for price forecasting. The advantage of non-parametric methods is that the 

models do not require assumptions regarding: (1) the marginal probability distributions 

of the variables, and (2) the spatial and temporal covariance structure of the variables. 

Non-parametric methods simply retain the empirical structure of the observed 

variables. More importantly, parametric methods require estimates of various model 

parameters which nonparametric methods can either minimise or avoid altogether 

(Vogel and Shallcross, 1996). One of the non-parametric methods that can be used in 

price forecasting include the moving block bootstrap models with its extensions. 

Since bootstrap methods are widely used in statistics, while studies on their 

application in forecasting precious metals prices are not often found, the purpose of 

this article was to analyse the quality of the forecasts made by bootstrapping methods 

for time series on the silver futures market. In order to achieve the set goal, the 

following research questions were asked: are the forecasts obtained with the use of 

bootstrap methods consistent with the actual price ratios in terms of ex-ante error? 

Which bootstrap models give better forecasts in terms of ex-post and ex-ante error? 

This article is divided into four parts. The first part contains an overview of the 

subject literature, the second part describes the analysed bootstrap methods, the third part 

contains the research results, and lastly, the fourth part concerns the discussion of the 

results. 

2. Literature review 

Parametric models, which include such models as AMRA, ARIMA, and SARIMA, 

compress all data from a given time series into a host of equations by dint of the course 
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of parameter fitting. With proper specification, such models are very good tools for the 

analysis and forecasting of time series (Cao, Sun,  and Li, 2021). 

In the literature, a lot of space is devoted to the precious metal price forecasting 

(including silver) parametric methods (Andersen, Bollerslev,  Diebold,  and Labys, 

2003; He et al., 2017; Xu, Huang, and Jiang, 2017). One of the most commonly used 

models is ARIMA, which has also become a benchmark when comparing the quality 

of forecasts made by other methods (He, Lu, Zou, and Lai, 2015). The research carried 

out by Dooley and Lenihan (2005) proved that the ARIMA model ensures a good 

quality of the forecasts, and is a model suitable for use in prognostic purposes. An 

additional advantage of this model is the ability to generate forecasts directly without 

using additional transformations of the source data (Li et al., 2020). Another model 

from the ARIMA family is the SARIMA model. This model takes into account the 

characteristics of the periodicity of time series and therefore it can capture the 

seasonality of the data (Milenković, Vadlenka,  Melichar,  Bojović, and Avramović, 

2018),  but in most cases, these kinds of models are unable to analyse the influence of 

randomness on the overall forecasting process and ultimate results.  

The ARMA model, similarly to the ARIMA model, is used to describe the 

expected value of stochastic processes as the sum of the unconditional expectation 

value independent of time. One of the differences between the ARMA model and the 

ARIMA model is the fact that ARMA models are used for stationary series, i.e. series 

with no trend or seasonality (constant expected value and variance) (Ganczarek- 

-Gamrot, 2014). 

Owing to the software development which has been taken place in recent years, 

non-parametric methods have started to gain more and more popularity in the price 

predictions. The support vector machine (SVM) is one of those popular among 

research non-parametric methods which are used in forecasting. This method gained 

popularity due to its mapping ability, capturing intrinsic traits of nonlinearity, and 

approximating arbitrary functions (Niu, Wang, Sun, and Li, 2016). Artificial neural 

network (ANN) models also began to be used in many fields for short-term forecasting 

thanks to their ability to capture internal non-linear features in the data (Qu, Li, Li,  

Ma, and Wang,  2019). Following further research, the ANN model was extended to 

the common multilayer perceptrons (MLP), propagation neural network (BPNN) and 

long short-term memory (LSTM) models (Smith and Demetsky, 1994; Xie et al., 

2014).  

In addition to the previously mentioned forecasting methods, bootstrap methods 

such as Moving Block Bootstrap [MBB], Stationary Bootstrap [SB], Tapered Block 

Bootstrap [TBB] and Circular Block Bootstrap [CBB]  are also gaining popularity in 

forecasting not only prices but other economic values as well (Awajan, Ismail,   and 

Alwadi, 2017; Parisi, Parisi, and Diaz, 2008). Alonso, Pena and Romo (2004) used the 

block bootstrap method to reduce model uncertainty and  to compare alternative 

methods in creating prediction intervals with standard approaches. Awajan, Ismail, and 

Wadi (2018) applied the bootstrap methods to forecast non-stationary and non-linear 
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time series. The researchers showed that combining the block bootstrap method with 

the Holt Winters method gives more accurate results than other tested models. 

The available  studies on server price analysis mostly concentrate on forecasting 

the rates of return and on the relationship between silver prices and commodities 

prices. Kasprzyk-Czelej (2018) showed that there is a long-term relationship between 

the prices of silver and crude oil, taking into account the exchange rate. Włodarczyk 

and Micuła (2020) showed that the FIAPARCH models satisfactorily capture the 

effects of silver price volatility, therefore this type of model is the most favoured 

predictive model. Dhiyanji and Sundaravadivu (2016) showed that the Particle Swarm 

Ottomanization (PSO) ARIMA model gives better results in forecasting silver and 

gold prices than using other tested models. Pierdzioch and Risse (2020) using random 

forests to forecast the prices of precious metals, including silver, showed that 

comparing one-dimensional and multi-dimensional forecast assessment criteria, multi-

-dimensional forecasts were more accurate than one-dimensional forecasts. 

3. Characteristics of the silver market 

Silver has many uses and in terms of versatility is second only to crude oil. This 

material can be seen both as an industrial metal, which nowadays is gaining importance 

through increased investments in the green energy sector, the 5G network, and in 

electric cars, and as a tool to mimic the changes in the price of gold. Its investment 

application confirms the growing interest in silver bars and coins, as well as the fact 

that today there are many financial instruments based on silver, including ETFs, 

futures and CFDs. For investors, silver is also the equivalent of hard currency, in which 

it is better to keep funds than in cash which is eaten up by inflation. 

Currently, silver is not applied directly as a form of payment, but silver bullion 

coins and bars, which are purchased for investment purposes, are becoming 

commonplace. The total amount of silver in nature ranges from about 2.5 to 4 billion 

ounces  (1 ounce = 31.1 g), while investment gold is from less than 2 to about 3 billion 

ounces. Importantly, the share of investment silver in the global silver market in 

general amounts to only about 20% and is three times lower than the share of silver 

used in industrial products. 

 Due to the small size of the silver market, an outbreak of sudden panic or euphoria 

significantly affects the price of this raw material. The shock caused by the Covid-19 

pandemic caused silver to drop from about $18.5 to less than $12 in two weeks, i.e. by 

about 35%. After ‘hitting the hole’ in March, the situation changed dramatically. There 

was great enthusiasm among investors, which resulted from the strong response of 

governments and central banks to the crisis (interest rate cuts, aid programmes). Over 

the next five months, the price of silver rose to nearly $29, i.e. by 150%. Altogether 

this means that silver should be considered an investment with a relatively high risk 

and, at the same time, a high profit potential (Kowalczyk, 2021). 
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In 2022, the situation of silver is complicated. In the event of stagflation, its price 

may increase further, while the increase in interest rates that takes place in many 

countries around the world creates a strong supply pressure. Additionally, silver, as                           

a metal also used in industry, is strongly exposed to price fluctuations caused by the 

recession on the open market. 

4. Methodology 

In this section of the paper, the various steps for the implementation of the Moving 

Block Bootstrap, Stationary Bootstrap, Tapered Block Bootstrap and Circular Block 

Bootstrap methods are presented, detailed and described. Moreover, the methods of 

calculating the block lengths for each of the analysed bootstrap models are also 

presented. 

4.1. Moving block bootstrap 

The Moving Block Bootstrap (MMB) method is a tool which can be used for analysing 

time series was originally proposed by Künsch (1989). MMB can be applied for 

estimating parameters of an autoregressive model. The idea presented by Künsch 

results in the reverse sampling of complete blocks of length G of observations and 

inserting them together into the time series. The applicability of the moving block 

bootstrap method depends to a lesser extent on the time series model than in the case 

of the classic bootstrap method. It can be used for the analysis of time series with 

autocorrelation, and for the analysis of time series with periodic fluctuations (Kończak 

and Miłek, 2014). The Moving Block Bootstrap differs from a regular Bootstrap in 

that the data is resampled in contiguous blocks, rather than by individual values. This 

technique helps to preserve the autoregressive structure within the data (Elmore, 

Baldwin, and  Schultz, 2005). The main assumption of the methods used for time series 

is the stationarity of the series. In the MBB, data blocks of equal size are drawn from 

the series until the desired series length is achieved. For a series of lengthn, with block 

size of  l, n – l/=1 (overlapping) possible blocks exist (Bergmeir, Hyndman, and 

Benitez, 2016). 

The moving block bootstrap procedure contains four main steps in order to achieve 

an efficient resampling algorithm (Radovanov and Marcikić, 2017): 

1. Divide the time series into overlapping blocks with identical length l, where the 

first block contains a set of 𝑋1, … , 𝑋𝑙 elements, the second one 𝑋2, … , 𝑋𝑙+1 etc. 

2. Perform the resampling procedure within defined overlapping blocks and align 

resampled blocks in one bootstrap sample: 𝑋1
∗, … , 𝑋𝑛

∗ . 
3. Estimate the statistics of interest by using the constructed bootstrap sample: 

𝑇𝑛
∗ =  𝑇𝑛(𝑋1

∗, … , 𝑋𝑛
∗). 
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4. Perform steps 2 and 3 B times to achieve a bootstrap probability distribution of 

forming the test statistic using indicator function:  𝐺𝑛(𝑡, 𝐹𝑛) = 𝑃∗(𝑇𝑛
∗ ≤ 𝑡) =

1

𝐵
∑ 𝐼(𝑇𝑁.𝑏

∗ ≤ 𝑡).𝐵
𝑏=1  

4.2. Stationary bootstrap 

Similar to the moving block bootstrap resampling method, the stationary bootstrap 

technique involves resampling the original data to form a pseudo-time series from 

which the statistic or quantity of interest may be recalculated. This means that the 

resampling procedure is repeated to build an approximation to the sampling 

distribution of the statistic. Unlike the MMB, a stationary bootstrap does not have 

a fixed number of observations in each block. The resampling method uses blocks of 

random length, which follow a geometric distribution. Therefore the pseudo-time 

series generated by stationary bootstrap methods are stationary time series. That is 

conditional on the original data 𝑋1, … , 𝑋𝑙, a pseudo-series 𝑋1
∗, … , 𝑋𝑛

∗  are created by an 

appropriate resampling scheme that is stationary. Hence this procedure attempts to 

mimic the original mode by retaining the stationarity property of the given time series 

in the resampled pseudo time series (Henriette de Koster, 1999; Politis and Romano, 

1994).  

Generated bootstrapped data sets are indexed by B. To create a stationary 

bootstrapped data set one starts with randomly selecting observation 𝑋1 as the first 

observation in the bootstrap data sets 𝑋𝑖
𝐵. The next observation 𝑋2

𝐵 is generated by 

placing 𝑋𝑖+1
𝐵  after 𝑋1

𝐵 in the bootstrapped dataset with probability 1–p, where p is 

small. With probability p, 𝑋2
𝐵 will be a new randomly selected observation 𝑋𝑖. 𝑋3

𝐵 is 

calculated in the same way. The expected order of the observation is in the same order 

as in the original data set presented as 1–p (Armstrong, 2013; Jorsten, 2007). 

Stationarity for the bootstrapped time series involves grouping the data around in 

a way that if 𝑋𝑛 is selected as an observation, with the probability 1–p, the next 

observation in the pseudo-time series is 𝑋1. 

4.3. Tapered Block Bootstrap 

For variance estimation in the smooth function model moving block bootstrap and its 

variants presents the same convergence rate of the mean squared error (MSE), but with 

a different constant in the leading term of the bias and variance expansions. In the 

attempt to reduce the bias and mean squared error, Carlstein et al. (1998) presented the 

matched block bootstrap whereas Paparoditis and Politis (2001) proposed the tapered 

block bootstrap (TBB). The TBB involves first tapering each overlapping block of the 

series, then a resampling of those tapered blocks. The new method offered a superior 

convergence rate in the bias and MSE in comparison with MBB. The data tapering of 

the block used in the TBB is designed to decrease the bootstrap bias, and as a result, 
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has an increased accuracy of estimation of sampling characteristics for linear and 

approximately linear statistics. 

The tapered block bootstrap algorithm is defined as follows (Paparoditis and 

Politis, 2001): 

1. First choose a positive integer B less than N, and let 𝑖0, 𝑖1, … , 𝑖𝑘−1 be drawn 

independently and identically distributed with distribution uniform on the set 

(1,2, … , Q) where Q = N – B +1, in this moment of the algorithm k = N/B is taken. 

2. For m = 0,1, …, k – 1 let 𝑌𝑚𝐵
∗ = 𝑤𝐵(𝑗)

𝐵
1
2

|𝑤𝐵|2
𝑌𝑖𝑚=𝑗−1, where j = (1, 2, …, B), 

a bootstrap pseudo-series 𝑌1
∗, 𝑌2

∗, … , 𝑌𝑙
∗ where l = kB needs to be constructed. The 

procedure defines a probability measure, conditional on data 𝑋1, … , 𝑋𝑁, that will 

be denoted by 𝑝𝑟∗; expectation and variance with respect to 𝑝𝑟∗ are denoted  

by 𝐸∗ and 𝑣𝑎𝑟∗ respectively. 

3. Finally, construct the bootstrap sample mean �̅�𝑙
∗ = 𝑙−1 ∑ 𝑌𝑖

∗𝑙
𝑖=1 . 

The estimator appears natural under the general regression model, but its superior 

bias properties can collapse outside of the sample mean. The problem lies in matching 

TBB innovations errors (∈𝑖
∗) to regression 𝑥𝑖,𝑛, which inherently assigns all 

regressions of form 𝑥𝑖(𝑖−1)𝐵+𝑗 to taper weight 𝑤𝐵(𝑗), 𝑗 = 1, … , 𝐵, 𝑖 ≥ 1. This kind of 

issue does not arise with either constant regressor 𝑥𝑖,𝑛 = 1, or constant 

weights 𝑤𝐵(𝑗) = 1. When the sequence of regressors varies and the weights are non-

-constant as for a smooth taper, the TBB can be asymptotically biased and inconsistent. 

This can be solved using a modified version of TBB (Nordman and Lahiri, 2012). 

4.4. Circular Block Bootstrap 

The Circular Block Bootstrap (CBB) presented by Politis and Romano in 1992 is 

a modification of the moving block bootstrap. The general idea of this method is to 

wrap data on the circle, which reduces the edge effect (Dudek, 2015). 

For I > n, we define 𝑋1 =  𝑋𝑖𝑁 , where 𝑖𝑛 = 𝑖(𝑚𝑜𝑑𝑁) and 𝑋0 = 𝑋𝑁. The CBB 

method resamples overlapping and periodically extends the block of length l. It is 

worth noting that each 𝑋𝑖 appears exactly l times in the collection of blocks, and since 

the CBB resamples the blocks from this collection with equal probability, each of the 

original observations 𝑋1, … , 𝑋𝑁 received equal weight under the CBB. For CBB, the 

same as for MBB, k  blocks of length l are selected and organised in a sequence of 

observations 𝑋1
∗, … , 𝑋𝑁

∗  (Cordeiro and Neves, 2006). 

The main idea of CBB is closely associated with the definition of the circular 

autocovariance sequence of time series models. The circular block resampling 

bootstrap amounts to resampling whole arcs of the circularly defined observations, and 

is  presented below. 

Define block 𝐵𝑗, that is 𝐵𝑖 = (𝑋1, … , 𝑋𝑖+𝑏−1). For any integer b, there are N such 

𝐵𝑗, j = 1, …, N. Sampling with replacement from the set {𝐵1, … , 𝐵𝑁}, defines 
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a probability measure 𝑝∗. If k is an integer such that kb ~N, then letting    𝜀1, … , 𝜀𝑘 be 

drawn i.i.d. from 𝑝∗, it is seen that each 𝜀𝑖 is a block of b observations (𝜀𝑖,1, … , 𝜀𝑖,𝑏). 

If all l = kb of the 𝜀𝑖,𝑗’s are concatenated in one long vector denoted by 𝑌1 , … , 𝑌𝑙 , then 

the CBB estimate of the variance of √𝑁�̅�𝑁is the variance of √𝑙�̅�𝑙 under 𝑝∗ (Dudek, 

2016). 

The CBB construction is an integral part of a related resampling method in which 

blocks of random size are resampled. It can also be immediately applied to 

bootstrapping general linear and nonlinear statistics (Politis and Romano, 1991). 

4.5. Optimal block size 

Bootstrapping time series data often involves the use of blocks. As is known from  

different studies on the issue (Lahiri, 2003), the accuracy of block bootstrap estimators 

critically depends on the block size. As far as time series data are concerned, the 

optimal block size is based on the blocking mechanism (for instance overlapping/non-

-overlapping) and the covariance structure of the process (Nordman and Lahir, 2007). 

In this paper, the approach presented by Politis and White (2006)  with its 

correction proposed by Patton et al. (2009) was used to obtain the correct length 

of bootstrap block. The methodology presented by the researchers based on the notion 

of spectral estimation via the flat-top lag windows of Politis and Romano (1994) and 

is described below. 

1. Identify the smallest integer, for instance �̂�, which is chosen as the first value 

where k consecutive autocorrelations of x are all inside a conservative bond of 

±2√𝑙𝑜𝑔10(𝑛)/𝑛 where n is the sample size. The maximum value of �̂� is set to                    

|√𝑛 + 𝑘𝑛| where 𝑘𝑛 = max (5, 𝑙𝑜𝑔10(𝑛)). 

2. Then calculate the following statistics: 

 𝐺 = ∑ 𝜆 (
𝑘

𝑚
) |𝑘|�̂�(𝑘),𝑚

𝑘=−𝑚     (1) 

 𝑑𝑖 𝑆𝐵 = 2(𝜕2)2, (2) 

 𝑑𝑖 𝐶𝐵 =
3

4
(𝜕2)2,  (3) 

 𝜕2 = ∑ 𝜆𝑚
𝑘=−𝑚 (

𝑘

𝑚
) �̂�(𝑘), (4) 

where 𝜆 = min (1,2(1 − |𝑥|)) and  �̂�(𝑖) = 𝑛−1 ∑ (𝑥𝑘 − �̅�)𝑛
𝑘=𝑖+1 (𝑥𝑘−𝑖 − �̅�).  

3. The final step is to estimate the optimal (expected) block size �̂�𝑜𝑝𝑡,𝑆𝐵 for tapered 

block bootstrap and the optimal block size �̂�𝑜𝑝𝑡,𝐶𝐵 for the circular and moving 

block bootstrap as follows: 
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 �̂�𝑜𝑝𝑡,𝑆𝐵 = (
2�̂�2

𝑑𝑖 𝑆𝐵
)

1

3, (5) 

 �̂�𝑜𝑝𝑡,𝐶𝐵 = (
2𝐺2

𝑑𝑖 𝐶𝐵
)

1

3.  (6) 

5. Research procedure and results 

In order to check the quality of the forecast offered  by the techniques described in the 

previous part of the article, daily silver closing prices of forward contracts 

(USD/ounce) for the period from 01.07.2020 to 27.03.2022 (541 observations) were 

used. The sort of data was chosen because the forward contracts are widely applied by 

investors and are a good benchmark of their behaviour on the market. In addition, 

silver was selected for analysis because the metal can be strongly depend on various 

global events, such as the Covid-19 pandemic or increased inflation. It is useful for 

interested parties to get to know how the examined models deal with this kind of time 

series. In applying Python programming language, simulations for each examined 

bootstrap methods were prepared. The applied procedure  was described as follows: 

1. The first step was to calculate the optimal block of length for each bootstrap sample 

based on the provided silver price. In order to prepare the optimal blocks the 

approach described by Politis and White was used. For MMB and SB the optimal 

block length was set as 35, and for TBB and CBB as 40. 

2. Available in Python arch. bootstrap library, 10 000 simulations of bootstrap 

pseudo-time series for Moving Block Bootstrap, Stationary Bootstrap, Tapered 

Block Bootstrap and Circular Block Bootstrap were created. 

3. For each bootstrap pseudo time series, the best ARIMA/ARMA (depends on the 

pseudo time series stationarity) model was estimated and used for preparing the 

forecasts for the next four days. 

4. For the obtained forecasts, forecast errors were calculated. 

5. The forecasts performed by bootstrap methods were compared with the forecast 

calculated by the best fitted to the data ARMA model. 

Table 1 presents the forecast performed with each of the bootstrap techniques, 

together with their standard error and percentage of standard error in the forecast 

(calculated as standard error/forecast). 

The forecasts calculated by the tapered block bootstrap were characterised by the 

lowest standard error and the percentage of standard error in the forecast. The next 

method in terms of low error was the moving block bootstrap. Forecast  standard errors 

for the stationary bootstrap and the circular block bootstrap were worse than the first 

two methods. It is worth noting that for the analysed period, the PSEF was lower than 

5% also in the last forecasted period for all the block bootstrap techniques. This means 

that the predicted silver prices were of good quality.  

Table 2 shows the actual realisations of the price of silver from 28.03.2022 to 

31.03.2022, and Table 3 presents forecasts compared with forecast error and per-

centage forecast error. 
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Table 1. Forecast with their errors for moving block bootstrap, stationary bootstrap,  

tapered block bootstrap and circular block bootstrap 

Day 
MBB SB TBB CBB 

FRC SE PSEF FRC SE PSEF FRC SE PSEF FRC SE PSEF 

28.03 25.16 0.68 2.70% 25.12 0.75 2.98% 25.18 0.55 2.18% 25.24 0.73 2.88% 

29.03 25.17 0.90 3.59% 25.07 0.99 3.94% 25.17 0.75 2.98% 25.23 0.97 3.84% 

30.03 25.14 1.06 4.21% 25.04 1.16 4.62% 25.17 0.89 3.55% 25.20 1.14 4.51% 

31.03 25.14 1.17 4.67% 25.00 1.24 4.97% 25.17 1.01 3.99% 25.19 1.24 4.94% 

* FRC – Forecast (in USD), SE – Standard error, PSEF – percentage of standard error in the 

forecast. 

Source: own work. 

Table 2. The actual realisations of the sales prices of silver from 28.03.2022 to 31.03.2022 

Day Price (in USD) Daily logarithmic rate of return 

28.03.2022 25.20 –1.87% 

29.03.2022 24.74 –1.84% 

30.03.2022 25.11 1.51% 

31.03.2022 25.13 0.08% 

Source: own work. 

Table 3.  The ex post errors calculated by block bootstraps methods 

Day 
MBB SBB TBB CBB 

FE PFE FE PFE FE PFE FE PFE 

28.03.2022 –0.04 0.15% –0.07 –0.30% –0.02 –0.08% 0.04 0.17% 

29.03.2022 0.43 –1.74% 0.35 1.42% 0.44 1.77% 0.49 1.98% 

30.03.2022 0.03 –0.11% –0.07 –0.30% 0.06 0.23% 0.09 0.35% 

31.03.2022 0.01 –0.02% –0.14 –0.54% 0.04 0.14% 0.05 0.21% 

* E – forecast error, PFE – percentage forecast error. 

Source: own work. 

The percentage error for each forecast was below 2%. The best results in terms of 

error were achieved by TBB and MBB. The results are similar to the checks from 

Table 1. The highest error was obtained for the second forecast period (29.03.2022),  

because the real silver price  went down about 1.9% on that day. All the tested models 

have very low ex post forecast error rates. Such results confirm the good quality of 

predictions of the analysed block bootstrap tools. 

The next step of the analysis was to estimate the best parametric time series model 

and to compare its results with the bootstrap forecasts. As p-value of ADF test was 
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0.003, it was assumed that the silver price time series is stationary, therefore the 

ARMA model was estimated for the given server price time series. The ARMA(1,1) 

model was selected as the best fitted model for the given times series. The forecasts 

calculated by the model with their errors are presented in Table 4. 

Table 4.  The forecasts with their ex-post errors calculated by the ARMA(1,1) model 

Day 
ARMA(1,1) 

FRC FE PFE 

28.03.2022 25.65 0.46 1.81% 

29.03.2022 25.64 0.90 3.65% 

30.03.2022 25.63 0.51 2.04% 

31.03.2022 25.61 0.48 1.91% 

* FRC – forecast (in USD), FE – forecast error, PFR – percentage forecast error. 

Source: own studies. 

Looking at Table 4, it could be observed that the ex-post errors are higher than for 

the bootstrap methods. Additionally, for the ARMA model, the most significant error 

occurred for the second period of the forecast. It can be assumed that for the given 

period the bootstrap methods showed a better quality of forecast than the best estimated 

ARMA model.  

Figure 1 presents the forecast performed by the tested methods (data from 

20.03.2022 to 31.03.2022). 

 

 
 
Fig. 1. Forecasts estimated by the tested methods  

Source: own studies. 
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When analysing Figure 1, it can be noted that the methods forecasted very similar 

prices of the silver future contracts. The lines for the forecasts prepared by CBB, MBB 

and TBB simulations almost coincide; the only larger deviation in the forecast values 

in the figure can be observed for the SB method. 

6. Conclusion 

This article applied the bootstrap techniques to forecast silver futures prices. The 

obtained results show that the quality of ex-ante and ex-post forecasts errors is at the 

appropriate level (<5.0%), and the forecasts received using the analysed techniques 

can be used to predict the prices on the silver futures market. The least biased forecast 

among the analysed bootstrap methods for time series, was the tapered block bootstrap 

method, for which prediction errors ranged from 2.18% to 3.99%, the worst method 

was the circular block bootstrap method with forecast errors at the level of 2.88% to 

4.49%. In addition, comparing the forecasts predicted by the ARMA model with the 

bootstrap forecasts and the actual price relations in the forecasted periods, it could be 

noted that each block bootstrap method forecasted the silver futures contract price 

closer to the actual execution than the ARMA model. 

By analysing the above results, it can be concluded that the goal set in the article, 

concerning the quality analysis of forecasts obtained with the use of bootstrap methods, 

has been achieved. The questions asked in the introduction were also answered. The 

quality of the forecasts predicted by the bootstrap methods are consistent with the 

actual performance of silver futures contracts in terms of the size of the ex-ante error. 

Moreover, the tapered block bootstrap method turned out to be the best model in the 

analysed period in terms of the burden of ex-post and ex-ante errors.  

The results confirmed that bootstrap techniques are helpful in the process of 

forecasting the prices of silver futures. However, one should bear in mind some 

limitations in the use of these methods. As with all resampling methods, the bootstrap 

methods are very computer-time consuming. In addition a bootstrap trace, unlike 

a trace from a parametric time series model, is limited to the original historic 

observations. The bootstrap method will never generate an observation either larger or 

smaller than the maximum or minimum historical observation.  

Not only the methods but also the time series applied during the research has 

limitations. It should be remembered that in the analysed period there were many 

factors affecting the prices of not only silver, but also other raw materials on the global 

market. Events such as the Covid-19 epidemic in 2020, followed by an increase in 

inflation and the war in Ukraine in 2022 had a significant impact on the changes in the 

price of silver on the market. This kind of limitation can be omitted in the next studies, 

using new time series created by adding to the current period additional nes. 

Despite the presented drawbacks, further research on the use of block bootstrap 

methods should be carried out. For this purpose, it is possible to use another longer / 
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shorter time series. Additionally, a different approach to counting the number of items 

in the block bootstrap sample can be used and compared with the results from this article. 
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WYKORZYSTANIE METOD BLOCK BOOTSTRAP  

W PROGNOZOWANIU CEN SREBRA 

Streszczenie: W artykule skupiono się na zaprezentowaniu możliwości prognostycznych czterech 

metod bootstrapowych wykorzystywanych do prognozowania cen na podstawie szeregów czasowych. 

Celem pracy jest przeanalizowanie jakości prognoz stawianych przez prezentowane w artykule metody 

dla kontraktów terminowych na srebro. Aby go osiągnąć, przeanalizowano  błędy prognoz ex post oraz 

ex ante dla prognoz postawionych przy wykorzystaniu metod bootstrapowych. Prognozy zostały 

obliczone przy wykorzystaniu dziennych cen zamknięcia kontraktów terminowych na srebro z okresu 

od 1 lipca 2020 r. do 27 marca 2022 r. Analiza wykazała, że jakość prognoz każdej z prezentowanych 

metod jest na zadowalającym poziomie, a ponadto prognozy obliczone przy użyciu metod 

bootstrapowych są bliższe rzeczywistym realizacjom cen kontraktów terminowych na srebro niż 

prognozy otrzymane przy wykorzystaniu modelu ARMA(1,1). Ponadto wykazano, że prognozy 

stawiane metodą tapered block bootstrap są najmniej obciążone błędem prognoz. 

Słowa kluczowe: block bootstrap, prognozowanie cen, kontrakty terminowe na srebro. 
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