
Wydział Elektroniki
Katedra Systemów i Sieci Komputerowych

Politechnika Wrocławska

Classifier selection for imbalanced
data stream classification

Selekcja klasyfikatorów w zadaniu klasyfikacji
niezbalansowanych strumieni danych
Seria: PRE nr W04/2021/P-009

Paweł Zyblewski

Słowa kluczowe: Rozpoznawanie wzorców; uczenie in-
dukcyjne; klasyfikacja; zespół klasyfikatorów; selekcja
klasyfikatorów; przetwarzanie wstępne danych; dane
trudne; dane niezbalansowane; strumienie danych; dryf
koncepcji; uczenie aktywne.

Wrocław 04.2021





WROCLAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Classi�er seletion for imbalaned data

stream lassi�ation

by

Pawel Zyblewski

A thesis submitted in partial ful�llment for the

degree of Dotor of Philosophy

in the

Faulty of Eletronis

Department of Systems and Computer Networks

April 2021

http://pwr.edu.pl/)
pawel.zyblewski@pwr.edu.pl
Faculty Web Site URL Here (include http://)
http://www.kssk.pwr.edu.pl/?lang=en




With the sun in my hand

Gonna throw the sun

Way aross the land-

Cause I'm tired,

Tired as I an be

So Tired Blues by Langston Hughes
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Abstrat

The thesis fouses on the use of the Dynami Ensemble Seletion algorithms in onjun-

tion with data preproessing tehniques in the tasks of the stream and imbalaned data

lassi�ation. The aim was to present the natural ability of lassi�er seletion algorithms

to deal with data imbalane and to propose new, e�etive solutions to the rarely disussed

problem of highly imbalaned data stream lassi�ation. Based on these assumptions,

the following hypothesis was formulated

There exist suh methods employing data preproessing and lassi�er seletion

that an outperform state-of-the-art lassi�ers for di�ult data lassi�ation

tasks.

The hypothesis was substantiated by ahieving the following goals:

Goal 1 � Developing an ensemble seletion algorithm for imbalaned data

lassi�ation, as well as designing a dediated ombination rule.

This goal was met by developing three algorithms based on the lustering of models in

a one-dimensional spae of lassi�er diversity. To onstrut this lustering spae, the

H measure, informing about about the impat of individual lassi�ers on the ensemble

diversity, was proposed.

The Diversity Ensemble Pruning (dep) prunes the ensemble by seleting, from eah

luster, only the model with the highest ba value. The Two-step majority voting or-

ganization (tsmv) algorithm lassi�es imbalaned data using the two-step voting stru-

ture. The Random Sampling Multistage Organization (rsmo) algorithm, additionally

uses sampling with replaement to redue the number of similar models involved in the

deision-making proess.

Goal 2 � Proposing a novel distane-based Dynami Ensemble Seletion

method for imbalaned data lassi�ation.

This goal was met by proposing novel Dynami Classi�er Seletion algorithms for the

imbalaned data lassi�ation problem. Two methods were proposed, namely Dynami
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Abstrat 2

Ensemble Seletion using Eulidean distane (dese) and Dynami Ensemble Seletion

using Imbalane Ratio and Eulidean distane (desire), whih use the Eulidean dis-

tane and Imbalane Ratio in the training set to selet the most appropriate model for

the lassi�ation of eah new sample. dese performs the seletion based on loal ompe-

tenies and distane to lassi�ed neighbors, while desire additionally sales the obtained

weights by Imbalane Ratio of the problem.

Goal 3 � Developing a hunk-based ensemble algorithm, aimed spei�ally

for the task of highly imbalaned data stream lassi�ation.

This goal was ahieved by proposing the Minority Driven Ensemble (mde) algorithm.

This algorithm lassi�es highly imbalaned data streams using a deision rule exploiting

loal data harateristis to prefer the minority lass instanes.

Goal 4 � Designing a novel framework ombining Dynami Ensemble Sele-

tion and preproessing tehniques for imbalaned data stream lassi�ation.

This goal was ahieved by proposing two bath-based approahes, ombining Dynami

Classi�er Seletion algorithms and preproessing tehniques for the task of highly im-

balaned data stream lassi�ation. The Dynami Ensemble Seletion for Imbalaned

Stream Classi�ation (desis) method generates a single model on eah data hunk,

while the Dynami Ensemble Seletion for Imbalaned Stream Classi�ation approah

using Strati�ed Bagging (desis-sb) employs a strati�ed version of Bagging for the base

lassi�er generation.

Goal 5 � Proposing a strategy for learning from drifting data stream under

limited aess to labels senario.

This goal was ahieved by the introdution of the Budget Ative Labeling Strategy (bals)

algorithm. The proposed approah, in addition to the pool of objets seleted for label-

ing based on their distane to the deision boundary, also reeived a small number of

randomly seleted objets.

Goal 6 � Evaluating the behavior of the previously proposed data stream

lassi�ation framework, taking into aount the limitation in the label a-

ess.

This goal was ahieved by ombining the proposed desis-sb framework with the a-

tive learning method based on seleting patterns loated at a ertain distane from the

deision boundary.

Goal 7 � Conduting an experimental evaluation of the proposed methods in

omparison to state-of-the-art approahes.

Goal 8 � Developing a Python Mahine Learning library for di�ult data

stream analysis.



Abstrat 3

Goals 7 and 8 were ahieved by designing an experimental environment for imbalaned

data lassi�ation, as well as by reating the stream-learn

1

pakage for di�ult data

stream analysis, whih was used to ondut all experiments related to data stream las-

si�ation.

Keywords

Pattern reognition; indutive learning; lassi�ation; lassi�er ensemble; lassi�er se-

letion; di�ult data; imbalaned data; data stream; data preproessing; onept drift;

ative learning.
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Streszzenie

Rozprawa doktorska konentruje si� na wykorzystaniu algorytmów Dynamiznej Selekji

Zespoªu Klasy�katorów w poª¡zeniu z metodami przetwarzania wst�pnego w zadaniu

klasy�kaji statyznyh oraz strumieniowyh danyh niezbalansowanyh. Celem pray

byªo przedstawione naturalnej zdolno±i algorytmów selekji klasy�katorów do radzenia

sobie z niezbalansowaniem danyh oraz zaproponowanie nowyh, efektywnyh rozwi¡za«

rzadko poruszanego w literaturze problemu klasy�kaji wysoe niezbalansowanyh stru-

mieni danyh. W opariu o te zaªo»enia, w pray sformuªowa zostaªa hipoteza, zakªada-

j¡a, »e

Istniej¡ metody wykorzystuj¡e zarówno wst�pne przetwarzanie danyh, jak

i metody selekji klasy�katorów, które przewy»szaj¡ jako±¢ predykji znanyh

z literatury metod stosowanyh w klasy�kaji danyh trudnyh.

Hipoteza zostaªa uprawdopodobniona poprzez osi¡gni�ie poni»szyh elów:

Cel 1 � Opraowanie algorytmu selekji zespoªu klasy�katorów na potrzeby

klasy�kaji danyh niezbalansowanyh oraz zaprojektowanie dedykowanej reg-

uªy kombinaji.

Cel zostaª zrealizowany poprzez opraowanie trzeh algorytmów, opartyh na grupowaniu

modeli bazowyh w jednowymiarowej przestrzeni ró»norodno±i klasy�katorów. Pod-

staw� do utworzenia tej przestrzeni stanowiªa zaproponowana miara H, informuj¡a

o wpªywie poszzególnyh klasy�katorów na ró»norodno±¢ osi¡gan¡ przez aªy zespóª.

Algorytm Diversity Ensemble Pruning (dep) dokonuje grupowania modeli bazowyh

w przestrzeni ró»norodno±i, a nast�pnie oenia jako±¢ klasy�kaji poszzególnyh klasy-

�katorów w opariu o zbalansowan¡ dokªadno±¢. Do �nalnego zespoªu wybierany jest,

z ka»dego klastra, model o najwy»szej warto±i ba. Algorytm Two-step majority voting

organization (tsmv), zamiast redukowa¢ lizno±¢ zespoªu, dokonuje klasy�kaji danyh

niezbalansowanyh z wykorzystaniem struktury gªosowania dwuetapowego. W pier-

wszym etapie gªosowania, ka»dy klaster traktowany jest jako osobny zespóª klasy�ka-

torów, który niezale»nie podejmuje deyzj� w opariu o gªosowanie wi�kszo±iowe.
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Streszzenie 6

W drugim etapie, ponownie poprzez gªosowanie wi�kszo±iowe, kombinowane s¡ deyzje

uzyskane przez poszzególne klastry. Algorytm Random Sampling Multistage Organi-

zation (rsmo), b�d¡y mody�kaj¡ tsvm, wykorzystuje dodatkowo operaj� losowania

ze zwraaniem w elu zredukowanie lizby podobnyh klasy�katorów wykorzystywayh

w proesie podejmowania deyzji.

Cel 2 � Opraowanie algorytmuDynamiznej Selekji Klasy�katorów opartego

o miary dystansu, na potrzeby klasy�kaji danyh niezbalansowanyh.

Cel zostaª zrealizowany poprzez opraowanie dwóh algorytmów Dynamiznej Selekji

Klasy�katorów, które oeniaj¡ kompetenje modeli bazowyh w zale»no±i od deyzji

podj�tyh przez nie w odniesieniu do przypadków znajduj¡yh si� w lokalnym s¡siedztwie

klasy�kowanej instanji, jednoze±nie uwzgl�dniaj¡ odlegªo±¢ Euklidesow¡ do tyh przy-

padków. Dynami Ensemble Seletion using Eulidean distane (dese) wykorzystuje do

selekji wyª¡znie deyzje klasy�katorów oraz odlegªo±i, natomiast Dynami Ensemble

Seletion using Imbalane Ratio and Eulidean distane (desire) dodatkowo mody�kuje

otrzymane wagi w opariu o stopie« niezbalansowania klasy�kowanego problemu.

Cel 3 � Opraowanie opartego o przetwarzanie wsadowe algorytmu klasy-

�kaji wysoe niezbalansowanyh strumieni danyh.

Cel zostaª zrealizowany poprzez zaproponowanie algorytmu Minority Driven Ensem-

ble (mde). Algorytm ten dokonuje klasy�kaji wysoe niezbalansowanyh strumieni

danyh z u»yiem reguªy deyzyjnej, która wykorzystuje lokaln¡ harakterystyk� danyh

do preferowania klasy mniejszo±iowej.

Cel 4 � Zaprojektowanie metody ª¡z¡ej Dynamizn¡ Selekj¡ Klasy�ka-

torów oraz przetwarzanie wst�pne danyh, na potrzeby klasy�kaji niezbal-

ansowanyh danyh strumieniowyh.

Cel zostaª osi¡gni�ty poprzez zaproponowanie dwóh, opartyh o przetwarzanie wsad-

owe, podej±¢ do ª¡zenia algorytmów Dynamiznej Selekji Klasy�katorów oraz teh-

nik przetwarzania wst�pnego na potrzeby klasy�kaji wysoe niezbalansowanyh stru-

mieni danyh. Metoda Dynami Ensemble Seletion for Imbalaned Stream Classi�ation

(desis) generuje pojedynzy model na ka»dej nowej porji danyh, podzas gdy pode-

j±ie Dynami Ensemble Seletion for Imbalaned Stream Classi�ation using Strati�ed

Bagging (desis-sb) wykorzystuje do tego elu straty�kowan¡ wersj� Baggingu.

Cel 5 � Zaproponowanie strategii budowania modeli klasy�kaji w przypadku

strumieni danyh z ogranizonym dost�pem do etykiet.

Cel zostaª osi¡gni�ty poprzez zapoponowanie strategii odpytywania o etykiety, nazwanej

Budget Ative Labeling Strategy (bals). Algorytm ten ª¡zy w sobie losowe podej±-

ie do etykietyzaji z podej±iem wªa±iwym algorytmom uzenia aktywnego. Dzi�ki

temu opróz puli instanji wybranyh na podstawie ih odlegªo±i od graniy deyzyjnej,
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etykiety pozyskiwane s¡ równie» dla maªej lizby obiektów losowo wybranyh z aktualnej

porji danyh.

Cel 6 � Ewaluaja zaproponowanego wzesniej frameworku klasy�kaji stru-

mieni danyh, w przypadku ogranizonego dost�pu do etykiet.

Cel zostaª osi¡gni�ty poprzez poª¡zenie metody desis-sb z podej±iem do uzenia

aktywnego, opartym na przekazywaniu do etykietyzaji przypadków znajduj¡yh si�

w okre±lonej odªeglo±i od graniy deyzyjnej problemu.

Cel 7 � Przeprowadzenie ewaluaji eksperymentalnej, porównuj¡ej zapro-

ponowane algorytmy z podej±iami stanowi¡ymi state-of-the-art.

Cel 8 � Opraowanie biblioteki j�zyka Python, pozwalaj¡ej na analiz� trud-

nyh strumieni danyh.

Cele 7 i 8 zostaªy osi¡gni�te dzi�ki zaprojektowaniu oraz implementaji ±rodowiska

eksperymentalnego w j�zyku Python, które posªu»yªo do przeprowadzenia bada« zwi¡zan-

yh z klasy�kaj¡ danyh niezbalansowanyh. Dodatkowo, w trakie pray na rozpraw¡,

opraowana zostaªa biblioteka stream-learn

2

, pozwalaj¡a na przetwarzanie niezbalan-

sowanyh strumieni danyh z dryfem konepji. Biblioteka ta zostaªa wykorzystana do

przeprowadzenia wszystkih eksperymentów zwi¡zanyh z danymi strumieniowymi.

Sªowa kluzowe

Rozpoznawanie wzorów; uzenie indukyjne; klasy�kaja; zespóª klasy�katorów; se-

lekja klasy�katorów; przetwarzanie wst�pne danyh; dane trudne; dane niezbalansowane;

strumienie danyh; dryf konepji; uzenie aktywne.
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Chapter 1

Introdution

Nowadays, many pratial lassi�ation tasks require building a model from data on-

taining various serious di�ulties. These ompliations may be represented by hara-

teristis suh as a high number of problem lasses [6℄, data heterogeneity [186℄, the high

dimensionality of the problem [216℄, low or very high ardinality of the learning set, or

data inompleteness [247℄. Regardless of whih of these di�ulties ours in the ana-

lyzed data set, they an severely deteriorate the performane of the �nal model, and the

problem ontaining at least one of them an be desribed as the task of di�ult data

lassi�ation. In the following thesis, data di�ulty is de�ned mainly by the imbalaned

lass distributions [133℄ and streaming data [135℄.

The nature of imbalaned data and data stream

The primary problem with learning from imbalaned data is the ability of data with

skewed lass distribution to signi�antly deteriorate the performane of lassial learning

algorithms, as they assume a roughly equal number of samples in all onsidered problem

lasses [119℄. However, in many real-life tasks, samples from some lasses appear muh

more frequently than from others. In the ase of binary lassi�ation, these lasses

are alled majority and minority lasses, respetively. Therefore, when onfronted with

the problem of imbalaned data lassi�ation, the above-mentioned algorithms fail to

represent the data distributive harateristis and display a bias towards the majority

lass [133℄. At the same time, from the point of view of the lassi�ation task, it is the

minority lass that is usually more important.

The problem of data stream lassi�ation is interesting due to a potentially in�nite

amount of ontinuously arriving data, whih an appear at high speed and require a

quik response from the deision system. Data streams pose new hallenges for traditional

mahine learning algorithms, whih were designed with the lassi�ation of stati data in

11



Chapter 1. Introdution 12

mind and are not apable of adapting to the harateristis exhibited by the fast growing

amounts of data [135℄. The most distintive feature of a data stream is the phenomenon

alled onept drift, whih an hange the data distribution in the stream over time and

thus lead to deterioration of the lassi�ation model. Conept drift an be ategorized as

(i) virtual or real, depending on the in�uene of the hanges on the shape of the deision

boundary, (ii) sudden, gradual or inremental, depending on the dynamis of hanges,

and (iii) reurring or non-reurring, depending on the possibility of the reappearane of

previously observed onepts. Additional problems are memory and time onstraints due

to the potentially in�nite amount of data as well as potential limitations in the ability

to label all inoming samples.

The imbalaned data stream lassi�ation task [37℄, whih ombines both of the notions

desribed above, is very rarely represented in the literature. This is despite the fat

that real-life data streams often exhibit high and dynamially hanging lass imbalane.

When dealing with both imbalaned data and data stream lassi�ation, one of the

most promising diretions is the approah based on lassi�er ensemble [150℄. Ensemble

methods, due to their �exibility, allow for easy ombination with data preproessing

in the ase of learning from imbalaned data and for the ontinuous adaptation of the

lassi�er pool to deal with the onept drift ourrene. This approah refers to the

need, rooted in human nature, to obtain a few opinions before making a deision. That

is why the foundations of the need to generate relatively strong (better than random

guess) and diverse (making mistakes on di�erent instanes of the problem [151℄) models

an also be found in politial siene. It is also worth paying attention to the important

role of lassi�er seletion [59℄, both stati and dynami, whih allows for more e�etive

use of the loal knowledge of eah base model.

Ensemble learning roots

Everyday deision making is an essential part of everyone's life. We think about trivial

things. We deide what to eat for dinner, what to wear for work, or what book to read

after oming bak home. However, we also onsider hoies that have a muh greater

impat on our lives, suh as hoosing an eduation path, areer, or buying a house. In

many of these ases, we seek for a help in the opinion of an expert who has been gaining

experiene in a given �eld for years and � with given probability dependent to his or hers

lifespan � is able to reommend us the best possible hoie.

However, it is also worth onsidering an alternative that has long been onsidered by

politial siene, namely the Wisdom of Crowds - initiated by Condoret's jury theorem,

whih was �rst introdued by Marquis de Condoret in 1785 in an important work on



Chapter 1. Introdution 13

probability, Essay on the Appliation of Analysis to the Probability of Majority Deisions

[48℄, whih was originally published in Frenh

1

.

Condoret's theorem provides the theoretial basis for demoray, desribing the relative

likelihood of a group of people reahing the right solution to a problem by ombining

their knowledge (by voting) and trusting the majority's deision. The onlusion being,

that a majority of independent individuals who make orret deisions with a probability

greater than by random hoie are more likely to make the orret hoie than eah of

the individual separately [212℄. Unfortunately, the assumptions made by Condoret were

quite unrealisti and di�ult to ahieve in reality, however, there have also been some

generalizations of this theory that no longer possess these limitations [153℄.

A well-known and often-ited example of the e�etiveness of theWisdom of the Crowds is

the experiment arried out by the English statistiian Franis Galton during a ompeti-

tion organized at the Plymouth fair. The aim of the ompetition was to guess the weight

of the slaughtered and dressed ox, and the winner was the person whose proposal was

losest to the real value. In his work Vox Populi [87℄, published in 1907, Galton desribed

gathering 800 voting ards and � after getting rid of 13 unreadable ones � alulating the

median of the remaining 787 votes in order to represent the ombined wisdom of eah

partiipant. The result was a response of 1.207 pounds, whih di�ered only by 1% from

the true weight of 1.198 pounds. After the publiation of Vox Populi, one of the readers

started a disussion with Galton in whih he proposed using the average of the votes

instead of the median. It turned out that this approah led to a virtually perfet result,

di�ering from the true value by only one pound.

Surowieki, based on this phenomenon, onluded in his book The wisdom of rowds

[226℄ that instead of looking for experts in a given �eld � whih an often turn out to

be a highly ostly proess � one should rather approah the rowd that may know the

answer to the problem in question. He also referred to the show Who Wants to Be a

Millionaire in whih a player, if unsure about the question, an use one of the three

lifelines. Two of these aids are, respetively, a phone all to a friend previously seleted

by the ompetitor, who may be onsidered an expert, and a request for the opinion of a

random rowd loated in a TV studio. Aording to the data provided by Surowieki, the

experts answered orretly almost 65 perent of the time, while the audiene piked the

right answer 91 perent of the time. Even without knowing the level of expert knowledge

and the fat that these statistis do not relate to the same questions, there is a lear

similarity between this example and the researh onduted by Galton.

Based on this assumption as well as Condoret's riterion, the desired properties of a

deision-making system based on the group opinion of people an be listed [194℄:

1

Essai sur l'appliation de l'analyse à la probabilité des déisions rendues à la pluralité des voix
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� Diversity of opinion � eah member should possess di�erent information and have

a di�erent perspetive on the problem,

� Independene � eah member should make independent deision errors [236℄,

� Deentralization � eah member should draw onlusions based on their loal

knowledge,

� Aggregation � an approah to ombining individual deisions into a joint result

The ore of the ensemble learning approah and the reason for using it is perfetly

rendered in the quote from Marvin Minsky's book The Soiety of Mind [173℄ - "What

magial trik makes us intelligent? The trik is that there is no trik. The power of

intelligene stems from our vast diversity, not from any single, perfet priniple."

1.1 Motivation and hallenges

The following thesis aims to onnet two rarely ombined researh diretions, i.e., non-

stationary data stream lassi�ation and data analysis with skewed lass distributions.

Learning from non-stationary data streams remains the fous of intense researh beause

many real deision-making problems should proess on streaming data [135℄. Neverthe-

less, the deision-making algorithms should also take into onsideration the dispropor-

tions among the observations from di�erent lasses [133℄. Beause real data streams

may exhibit a high and hanging lass imbalane ratio, whih an further hinder the

lassi�ation task, then the high demand for this type of solution is evident.

A typial example of suh a ase is the tehnial diagnosis in whih the fault probability

inreases with utilization time, and it may be a result of material fatigue. Sometimes

the relationship between the minority and majority lasses hanges in a way that the

former minority beomes the majority lass. We may observe this phenomenon in tasks

related to soial media analysis, as the popularity of topis disussed on Twitter [223℄ or

environmental hazards detetion system, like oil spill detetion [146℄. Another real-life

example of imbalaned data streams is ontinuous medial sreening

2

for a ondition

being usually performed on a large population of people without the ondition, in order

to detet a small minority among them (e.g., hiv prevalene in the usa is a. 0.4%) or

the onversion rates of online ads, estimated to be a lie between 10−3
to 10−6

. Examples

an also be found in banking (fraud detetion, anti-money laundry, et.) or yberseurity

(e.g., spam �ltering, or intrusion detetion). It is also worth noting here that �nanial

2

T.Fawett, Learning from Imbalaned Classes, 25th August 2017,

https://svds.om/learning-imbalaned-lasses/

https://svds.com/learning-imbalanced-classes/
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or yberseurity institutions are trying to develop methods of protetion against these

violations. However, riminals hange their attak models to heat the seurity measures

developed, i.e., the nature of the deision model hanges - so we are dealing with the

phenomenon alled onept drift.

Based on the analysis of the literature, it an be seen that the imbalaned data stream

lassi�ation problem is poorly represented, what is more, most works do not address

the issue of the possibility of the onept drift appearing during the operation of the

lassi�ation model. There are also only a few works that distinguish the di�erenes

between the dynamially imbalaned data stream lassi�ation problem and a senario

where the prior knowledge about the entire data set is given [160℄. This is a result of the

additional problems resulting from the lak of knowledge about the lass distribution,

whih are notably present in the initial stages of the data stream lassi�ation [242℄.

The proposed solutions should, therefore, have high adaptability to hanging parameters

of the lassi�ation task, whih guarantees, among others, the approah based on lassi-

�er ensemble [135℄. On the other hand, suh methods should take into aount the loal

harateristis of data distributions and the disproportions among the lasses. There-

fore, the natural andidate seems to be an approah based on the Dynami Classi�er

Seletion (des). Due to the fat that the dynami lassi�er seletion is based only on

the loal neighborhood of query samples, tehniques of this type should not be biased in

relation to the majority lass. Despite this, only a few works attempt to employ these

methods to the problem of imbalaned data lassi�ation [198, 259℄.

1.2 Researh hypothesis, its aims and goals

This thesis aims to propose e�etive (regarding the quality of lassi�ation as well as

omputational e�ieny) algorithms for the task of lassifying highly imbalaned data

stream with onept drift ourrene. Additionally, it intends to meet the need to develop

new Classi�er Seletion algorithms dediated to the lassi�ation of data with the skewed

lass distribution. The researh hypothesis is as follows:

There exist suh methods employing data preproessing and lassi�er seletion

that an outperform state-of-the-art lassi�ers for di�ult data lassi�ation

tasks.
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Aims and goals

In order to on�rm the expressed hypothesis, the following goals have been formulated:

1. Developing an ensemble seletion algorithm for imbalaned data lassi�ation, as

well as designing a dediated ombination rule.

2. Proposing a novel distane-based Dynami Ensemble Seletion method for imbal-

aned data lassi�ation.

3. Developing a hunk-based ensemble algorithm, aimed spei�ally for the task of

highly imbalaned data stream lassi�ation.

4. Designing a novel framework ombining Dynami Ensemble Seletion and prepro-

essing tehniques for imbalaned data stream lassi�ation.

5. Proposing a strategy for learning from drifting data stream under limited aess to

labels senario.

6. Evaluating the behavior of the previously proposed data stream lassi�ation frame-

work, taking into aount the limitation in the label aess.

7. Conduting an experimental evaluation of the proposed methods in omparison to

state-of-the-art approahes.

8. Developing a Python Mahine Learning library for di�ult data stream analysis.

1.3 Thesis struture

Chapter 2 introdues seleted topis of pattern lassi�ation, with an emphasis on in-

dutive learning and lassi�ation task. Classi�er ensemble is disussed, inluding its

omponents, ensemble diversity, and the notion of lassi�er seletion. The problem of

di�ult data lassi�ation is preisely de�ned, with an emphasis on imbalaned data las-

si�ation, data stream lassi�ation, and limited aess to labels. The Python stream-

learn library for di�ult data stream analysis, whih was developed during the work

on this thesis, is also presented. Chapter 3 presents the ensemble algorithms proposals

using lassi�er seletion for imbalaned data lassi�ation. The �rst algorithm employs

diversity-based stati lassi�er seletion, the seond proposition ombines base models

using a multistage organization, and the third approah proposes Dynami Classi�er

Seletion based on Eulidean distane. Chapter 4 presents proposed algorithms for the

lassi�ation of unbalaned data streams. The ensemble algorithm employing a lassi-

�er seletion approah in order to fous on the minority lass detetion is presented,
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followed by a novel framework ombining dynami lassi�er seletion and data prepro-

essing. Chapter 5 deals with the problem of limited aess to labels when lassifying

data streams. First, an algorithm ombining ative learning and random labeling is

introdued. Then, the imbalaned data stream lassi�ation framework introdued in

Chapter 5 is extended with an ative learning module and evaluated under limited aess

to labels senario. Chapter 6 onludes the thesis and presents potential future researh

diretions.





Chapter 2

Seleted topis of pattern

reognition

This hapter aims to introdue the areas whih form the basis of the following thesis

and are neessary to properly explain the proposed ideas. First, the basis of pattern

reognition will be presented, inluding the formulation of the lassi�ation task, an

introdution to lassi�er ensemble, as well as the notion of diversity and the Classi�er

Seletion, with an emphasis on the Dynami Ensemble Setion. Then, the subjet of

di�ult data lassi�ation will be brie�y introdued, inluding data with a skewed lass

distribution, data stream lassi�ation, as well as senarios with limited aess to labels.

Finally, the approah to lassi�er evaluation for imbalaned and streaming data will be

disussed and the developed Python pakage for di�ult data stream analysis will be

presented.

2.1 Indutive learning

With the advent of personal omputers and the spread of wireless ommuniation, large

ompanies lost their monopoly on generating and storing data. Instead, data is now

generated by virtually all internet users in their typial day-to-day ativities.

The appearane of a large amount of data introdued problems that annot be solved

with a �xed algorithm ontaining a sequene of instrutions. In suh ases, we know

the input and we know what the output should be, but we do not know the proess

that leads to the transition from one to the other. It is di�ult espeially due to the

fat that the proess may be in�uened by fators hanging over time. However, we

an try to ompensate for this lak of knowledge with the amount of data we have and

19
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learn to distinguish between the examples desribed by the di�erent outputs after their

in-depth analysis. To sum up, we want the omputer to automatially �nd an algorithm

appropriate for the task at hand [200℄. Even if we are not able to ompletely identify

the transformation proess in this way, we an onstrut a useful approximation that,

while it does not explain everything, may be su�ient to properly identify some of the

patterns present in the data.

This �eld is known as mahine learning and uses statistial theory to build models a-

pable of drawing onlusions from known examples [5℄. The following thesis fouses,

among the di�erent learning methods, on indutive learning [174℄. In this approah, the

learner uses the available examples to generalize hypotheses for the problems in question.

Hene, indutive learning algorithms an at best ensure that the output hypothesis �ts

the onept with respet to the training data. The fundamental assumption of indutive

learning, formulated by Mithell [174℄, states that "Any hypothesis found to approximate

the target funtion well over a su�iently large set of training examples will also approxi-

mate the target funtion well over other unobserved examples." In the indutive learning,

two main types of tasks an be distinguished:

� Supervised learning, assuming a prior knowledge, whih identi�es samples from

the training set as members of prede�ned lasses in form of the labels [116℄. These

labels, typially provided by an expert, allow for learning dependenies between the

lass and data harateristis. Then, learned rules are generalized for the previously

unseen data. In the supervised learning, one an distinguish a lassi�ation task,

in whih the target label is a disrete value, and a regression task [5℄, in whih the

lass is represented by a ontinuous value.

� Unsupervised learning, whih assumes that labels annot be aessed. Therefore,

the obtained data is analyzed in order to understand its struture and relations

between the problem instanes. Unsupervised learning onsists of the (i) task of

density estimation, where e.g. with the use of lustering [199℄ the unlabeled objets

are grouped based on their similarity, and (ii) the task of dimensionality redution

[232℄, the methods of whih are used to extrat and selet features for the purposes

of lassi�ation and visualization [216℄.

Additionally, we an distinguish semi-supervised learning [175℄, in whih at the learning

stage the model reeives both labeled and unlabeled data. This senario is typial in

ases where labels are not readily available or have a high ost to obtain. In the speial

ase of semi-supervised learning, alled ative learning [207℄, the aim is to determine

whih of the unlabeled instanes, after asking an expert about their labels and adding

them to the training set, will be able to improve the system performane to the point of
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being omparable to the standard supervised learning senario. Another branh of semi-

supervised learning is self-labeling or self-learning [230℄. In suh approahes, a lassi�er

is trained using an initially small number of labeled samples, in order to lassify the

unlabeled instanes. The most on�dent preditions are added to the training set, whih

is then used to retrain the model.

This dissertation deals mainly with the notion of onept learning, whih is a type of

supervised learning. It involves using training examples to aquire general onepts,

whih desribe some subset of objets. Eah onept an be de�ned as a binary funtion

that divides samples into ones belonging and not belonging to the onept [254℄. Mithell

de�ned onept learning as "Inferring a boolean-valued funtion from training examples

of its input and output" [174℄.

2.2 Pattern lassi�ation task

As mentioned earlier, the following thesis will fous on supervised learning, and more

preisely, on the lassi�ation task. The purpose of the lassi�ation is to assign a given

objet to one of the lasses prede�ned in the form of labels, and the proess is arried

out based on the values of attributes haraterizing this objet. To formalize this task,

we have a feature spae denoted by X , where x ∈ X is the feature vetor representing

an objet. Assuming, that the feature vetor is d-dimensional

x =









x(1)

x(2)

. . .

x(d)









, and x ∈ X = X (1) × X (2) × . . . × X (d), (2.1)

where x(l) ∈ X (l)
.

Denoting the labels set ontaining prede�ned ategories asM = {1, 2 . . . ,M}, a lassi-

�ation algorithm in form of a funtion Ψ with domain X and odomain M assigns a

given objet to it's ategory during lassi�ation proess

Ψ : X →M. (2.2)

This deision is made by the lassi�er with the use of support funtions whih inform

about the hane of the objet belonging to eah lass
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F = {F1, F2, . . . , FM}. (2.3)

Usually, the lass of a given x is determined by the highest value of obtained support

funtion whih is equivalent to the maximum rule

Ψ(x) = argmax
k∈M

(Fk(x)). (2.4)

Probabilisti Approah

Due to the fat that the lassi�er's deision is made by applying the maximum rule on the

support funtion, the problem of unertainty of the objet's belonging to the lass arises.

Although any ontinuous lassi�er output an be used [67℄, the main disriminant of the

support funtion � assoiated with probabilisti models � is posterior probability [22℄.

The statistial deision theory is an e�etive approah to the unertainty management,

whih assumes that both the feature vetor x ∈ X and its lass label j ∈ M are de�ned

as observed values of random variables pair (X,J) [75, 254℄. The probability distribution

of these random variables is given by prior lass probabilities

pj = P (J = j), j ∈ M (2.5)

and lass-onditional probability density funtion of X

fj(x) = f(x|j), x ∈ X , j ∈ M. (2.6)

The main goal when designing a lassi�ation system should be to minimize the average

mislassi�ation ost, whih an be de�ned on the basis of so-alled loss funtion used

to measure the deision ost between the lasses

L :M×M→ X , (2.7)

where L(i, j) returns the loss assoiated with the wrong assignment of the objet from

lass j to lass i. This allows for formulating the riterion of lassi�ation task for the

optimal Bayes lassi�er

min

Ψ
Risk(Ψ) = Risk(Ψ∗), (2.8)

where

Risk(Ψ) = E[L(i, j)] =

∫

X

M
∑

j=1

L(Ψ(x), j)pjfj(x)dx. (2.9)
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The goal here is to minimize the Risk(Ψ∗), whih is de�ned as the average risk of the

lassi�er Ψ. This allows the so-alled onditional risk to be minimized

ri(x) = E
J|x

[L(i, j)] =
M
∑

j=1

L(i, j)pi(x). (2.10)

Whih in turn leads to the following deision rule for the optimal Bayes lassi�er

Ψ∗(x) = i if

M
∑

j=1

L(i, j)pj(x) = min

k∈M

M
∑

j=1

L(k, j)pj(x), (2.11)

where the posterior probability pj(x) an be alulated from the Bayes formula

pj(x) =
pjfj(x)

M
∑

k=1

pkfk(x)

. (2.12)

Considering the popular 0 − 1 loss funtion, whih is often used in the pratial tasks

due to the inability to assess the loss values

L(i, j) =

{

0 if i = j

1 if i 6= j
, (2.13)

the following deision rule aiming to minimize the mislassi�ation probability of the

optimal Bayes lassi�er Ψ∗
an be obtained

Ψ∗(x) = i if pi(x) = max

k∈M
pk(x). (2.14)

As the de�ned loss funtion is related to the lass with the highest posterior probability

and the onditional risk is de�ned as the probability of mislassifying a sample x, the

risk of mislassi�ation probability an be averaged

Risk(Ψ∗) = Perr(Ψ
∗) =

M
∑

j=1

pj

∫

Dj

fj(x)dx = 1−
∫

X

max

j∈M
pjfj(x)dx = 1− Pacc(Ψ

∗).

(2.15)

Over�tting

To build a lassi�ation model, the LS training set is used, whih groups the observations

from a given domain in the form of pairs

LS = {(x1, j1), (x2, j2), . . . , (xN , jN )}, (2.16)
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where xk denoted the feature vetor of the k-th learning pattern, jk is its orret label

and N is the ardinality of LS. Eah element in this set orresponds to a single instane

of a problem and its proper lass.

Two types of errors an be observed in the lassi�ation task

� The training error, whih is de�ned as the proportion of inorretly lassi�ed ob-

jets from the training set to its ardinality

PLS
err (Ψ) =

N
∑

k=1

[Ψ(xk) 6= jk]

|LS| . (2.17)

� The real error (also known as the generalization error), whih is de�ned as the

number of mislassi�ed objets drawn from the general population

Perr(Ψ) =

∫

X

P (Ψ(x) 6= i|x)f(x)dx. (2.18)

Over�tting is a phenomenon related to the loss of the lassi�er's ability to generalize

the aquired knowledge. This means that the model, instead of extrating knowledge

from a given data set, begins to remember individual instanes. In this ase, due to too

muh training omplexity or an insu�ient number of examples, the learner is not able

to orretly predit the labels of instanes that were not present in the training proess.

Due to this phenomenon, the lassi�ation auray on previously unseen data dereases,

while the auray on training data inreases onsistently.

In pratie, we an say that the lassi�er Ψ over�ts the learning data LS if there exists

another lassi�er Ψ‘ suh that

PVS
err (Ψ) > PVS

err (Ψ
′) and PLS

err (Ψ) < PLS
err (Ψ

′), (2.19)

where PVS
err is an error on the validation dataset (VS) whih ontains a set of examples

not presented during the training proedure [174℄. The lassi�er error an be broken

down into three omponents [125℄:

� Error, lower bounded by the error of the optimal Bayes lassi�er, that is spei�

to the problem and annot be eliminated.

� The error related to bias resulting from the assumptions made by the model based

on the training data.
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� The error related to variane related to training data.

Bias is de�ned by Mithell as "(. . . ) the set of assumptions that the learner uses to

predit outputs given inputs that it has not enountered.

1

", and mathematially it an be

desribed as the di�erene between the atual and expeted outputs. Variane, on the

other hand, determines how muh the model's preditions vary depending on the training

data used. In the ase of high bias, the assumptions are too simple and the model misses

the relevant relationships present in the data, whih results in under�tting. High vari-

ane auses the model to �t too losely to the training set, whih auses the previously

desribed over�tting phenomenon. No free lunh theorem [251℄, formulated by Wolpert,

tells us that there is no suh thing as one universal mahine learning algorithm that an

do best for all the problems enountered, as eah has its own domain of ompetene.

These ompetenies result from the learner's bias, whih, aording to the Ugly Duk-

ing theorem [75℄, is neessary to generalize knowledge and arry out the lassi�ation

proess. Therefore, we are dealing with a bias-variane dilemma [93℄, in whih, on the

one hand, assumptions are neessary to train the lassi�er - whih inreases the bias,

and on the other hand, reduing the bias inreases the demand for samples and thus

inreases the variane. Propositions for dealing with this problem inlude approahes

suh as omparative study of models using ross-validation, penalizing model omplexity

based on augmented error funtion [5℄, seleting models based on their omplexity [235℄

and trying to �nd the best model based on so-alled Minimum Desription Length (mdl)

[193℄.

Desription of seleted lassi�ers

Let's introdue the lassi�ation algorithms hosen from the �ve di�erent families, whih

will be used for experiments performed later in this thesis.

� Bayesian Classi�ers, family of probabilisti lassi�ers based on Bayes' theorem

[15℄. Common examples here are the Naïve Bayes lassi�er, whih simpli�es the

onditional probability by assuming strong independene between the problem's

features.

� Minimal Distane Classi�ers, where the most popular example is the k-Nearest

Neighbors (knn) algorithm [56℄. Here, the sample lassi�ation is performed by a

majority vote of its k nearest neighbors found in the learning set. The neighborhood

is determined based on the hosen distane metri, whih usually is the Eulidean

distane. knn is an example of a lazy learner, whih delays the generalization

proess until the predition phase [170℄.

1

Tom M. Mithell, Mahine learning, MGraw-Hill, New York, 1997.
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� Rule-Based Classi�ers, using the indiret learning approah, in whih the deision

tree is �rst trained and then onverted to rules easily interpretable for humans

[254℄:

� Classi�ation and Regression Deision Tree (art) [32℄, whih onstruts

binary deision tree and employs the Gini index as the impurity measure for

assigning features to the nodes.

� Hoe�ding Tree (ht) or Very Fast Deision Tree (vfdt) [73℄, whih proesses

eah sample in onstant time and memory. It uses Hoe�ding bounds [110℄ to

ensure, that the output obtained by the inremental learner is asymptotially

nearly idential to that of onventional model.

� Neural Networks, de�ned as strutures omposed of a number of arti�ial neu-

rons, whih interat with eah other on the basis of weights. MCulloh and Pitts

formulated the �rst model of simple arti�ial neuron apable of performing basi

logial operations [171℄, while Rosenblatt proposed the pereptron, whih was able

to perform lassi�ation based on the sum of the weighted inputs and ativation

funtion [195℄.

� Support Vetor Mahines (svm) [46℄, based on the onept introdued and then

expanded by Vapnik [233�235℄. They onsist of a set of binary supervised learning

methods, with a goal to form the hyperplane separating data points into two sets

by mapping them into a high-dimensional spae.

2.3 Classi�er ensemble

The following setion presents the onept of a lassi�er ensemble. The stages of base

model generation and ombination are disussed, while speial emphasis is plaed on the

optional stage of lassi�er seletion - espeially the Dynami Ensemble Seletion.

Components of Multiple Classi�er Systems

One of the most popular and still atively developed approah to lassi�ation is one

in whih, instead of using a single learner, we employ multiple lassi�ation models,

and then we ombine their deisions in order to obtain the �nal output. The aim here

is to take advantage of the strengths of eah ombined lassi�er and their domain of

ompetene. Deserathy and Sheela �rst applied this approah in 1979 [66℄ when they

ombined k-nn and a linear lassi�er, and sine then many studies have demonstrated

the e�etiveness of using multiple models instead of a single one [206℄. Suh an approah

is known as a lassi�er ensemble or a multiple lassi�er system (ms) [150℄ and its main
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omponents organized in the parallel topology [254℄, whih is by far the most ommon,

are depited in Figure 2.1.

Objet

Classi�er #1

Classi�er #2

.

.

.

Classi�er #n

Combination rule Deision

Figure 2.1: Parallel topology of a lassi�er ensemble.

A multiple lassi�er system onsists of three steps [33℄: i) Generation, ii) Seletion and

iii) Combination (also known as Fusion or Aggregation). It should be noted that the

seletion an be performed as a separate proess or in onjuntion with the ombination

blok. It is also entirely optional and not used by some of the ensemble algorithms.

The purpose of the generation stage is to train a pool of lassi�ers Π = {Ψ1,Ψ2, . . . ,Ψn},
where n is a number of base models. The two most important determinants of a good

lassi�er ensemble are that the base models are both diverse (as there is no reason to

ombine lassi�ers o�ering the same output [68℄) and aurate, whih in this ase means

that they perform better than the random lassi�er.

2.3.1 Ensemble diversity

As mentioned above, one of the determinants of a valuable lassi�er ensemble is the

high diversity of its base models, therefore the question of how to measure this diversity

arises. Aording to Kunheva [150℄, there are two styles of measuring the lassi�er pool

diversity:

� Pairwise diversity measures alulates diversity between eah pair of lassi�ers and

then average the results to obtain value for the entire ensemble. For a lassi�er

pool onsisting of n models there are

n(n−1)
2 values of pairwise diversity. Examples

of suh measures inlude Q-statisti [266℄, disagreement measure [108, 213℄ and

double-fault measure [95℄.
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� Non-pairwise measures take into aount all the learners in the pool and o�er a

single diversity value for the entire ensemble. Among these types of measures, we

an distinguish the entropy measure E [61℄ and Kohavi-Wolpert variane [125℄.

Diversity is one of the key fators for generating a valuable lassi�er ensemble, but the

main problem is how to measure it. Let us present the seleted diversity measures:

The entropy measure E [61℄ is de�ned as

E(Π) =
1

N

N
∑

j=1

(
1

n− [n/2]
)min{l(xj), n− l(xj)}, (2.20)

where N is the number of instanes, n stands for the number of base models in the

ensemble and l(xj) denotes the number of lassi�ers that orretly reognize xj . E

varies between 0 and 1, where 0 indiates no di�erene and 1 indiates the highest

possible diversity.

Kohavi-Wolpert variane [125℄ is de�ned as

KW (Π) =
1

Nn2

N
∑

j=1

l(xj)(n − l(xj)). (2.21)

The higher the value of KW, the more diverse the lassi�ers in the ensemble. Also, KW

di�ers from the averaged disagreement measure Disav by a oe�ient, i.e.,

KW (Π) =
n− 1

2n
Disav(Π), (2.22)

Measurement of interrater agreement k [80℄ [69℄

k(Π) = 1−
1

n

∑N
j=1 l(xj)(n− l(xj))
N(n− 1)p̄(1− p̄) , (2.23)

where p̄ is average individual lassi�ation auray

p̄ =
1

Nn

N
∑

j=1

n
∑

k=1

ij,k, (2.24)

where ij,k is an element of an N -dimensional binary vetor ik = [i1,k, . . . , iN,k]
T
repre-

senting the output of a lassi�er Ψk, suh that ij,k = 1, if Ψk reognizes xj orretly,

and 0 otherwise. Measurement of interrater agreement k varies between 1 and 0, where

1 indiates omplete agreement and 0 indiates the highest possible diversity.
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Table 2.1: A table of the relationship between a pair of lassi�ers.

Ψk orret (1) Ψk wrong (0)

Ψi orret (1) N11 N10

Ψi wrong (0) N01 N00

The averaged Q statistis [266℄ over all pairs of lassi�ers is given as

Qav(Π) =
2

n(n− 1)

n−1
∑

h=1

n
∑

k=h+1

Q(Ψh,Ψk), (2.25)

where

Q(Ψh,Ψk) =
N11N00 −N01N10

N11N00 +N01N10
, (2.26)

and Nab
is the number of elements xj for whih ij,h = a and ij,k = b. Relationship

between a pair of lassi�ers is denoted aording to Table 2.1. Q varies between −1 and
1. Classi�ers that reognize the same objets orretly will have positive values of Q,

and those whih ommit errors on di�erent objets will render Q negative.

The averaged disagreement measure [108℄ over all pairs of lassi�ers is given as

Disav(Π) =
2

n(n− 1)

n−1
∑

h=1

n
∑

k=h+1

Dis(Ψh,Ψk), (2.27)

where

Dis(Ψh,Ψk) =
N01 +N10

N11 +N10 +N01 +N00
. (2.28)

The averaged disagreement measure is the ratio between the number of observations on

whih one lassi�er is orret and the other is inorret to the total number of observa-

tions. Dis varies between 0 and 1, where 0 indiates no di�erene and 1 indiates the

highest possible diversity.

It should be noted, however, that despite the multitude of available measures, none

of them an be onsidered best suited to minimize the lassi�ation error. The only

reommendation an be made on the basis of the ease of interpretation of a given measure

[151℄.

Ensuring lassi�er diversity

Another problem that arises is how to ensure the diversity of the generated pool of

lassi�ers. Aording to the literature, this issue an be approahed in three di�erent

ways [96, 150℄:
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� Classi�ers an be trained on di�erent input data. This an be done by using di�er-

ent data partitions, e.g. through bootstrapping approahes suh as Bagging [30℄,

whih reates new training sets, based on the original one, for eah base model

through sampling with replaement. Another approah of this type is Boosting

[81, 83℄ whih in the ase of its most well known AdaBoost algorithm [82℄ gen-

erates subsequent training sets by inreasing the probability of drawing instanes

that have been inorretly lassi�ed. Walmsley et al. proposed a lassi�er pool

generation method based on Bagging, in whih the probability of instane sele-

tion during the resampling orresponds to the instane hardness [237℄. Online pool

generation method for generating loally aurate lassi�er pool in di�ult regions

of feature spae was proposed by Souza et al. [217℄. Jamalinia et al. proposed

the Ensemble-based Arti�ially Generated Training Samples (ebagts) algorithm,

whih manipulates training samples based on error-prone instanes and feature

spae regions [117℄. Hido et al. proposed the Roughly Balaned Bagging (rbb)

[106℄, extensively studied by Lango and Stefanowski [154℄, whih uses sampling to

balane the lass distribution aross all bootstraps for the imbalaned data lassi-

�ation task. The linear Modi�ation of the AdaBoost algorithm was proposed by

Burduk [44℄. Burduk and Bozejko modi�ed the Gentle AdaBoost algorithm [84℄ on

the basis of saled distane from the deision boundary [45℄.

The base models an also be trained using di�erent subsets of the problem fea-

tures. This approah to diversi�ation is known as Random Subspae [107, 108℄

(also alled Attribute Bagging [35℄ or Feature Bagging [157℄) and is used, among

others, by the Random Forrest algorithm to generate trees �tted on randomly

hosen attributes [31℄. Algorithms based on Random subspae are still quite pop-

ular and onstantly �nd their way into new appliations. Wang et al. proposed

the Deep Random Subspae Ensemble (drse), whih integrated Random Subspae

with deep learning methods [240℄. The Random Subspae based Ensemble Sparse

Representation (rs_esr) algorithm, whih introdued the feature resampling into

sparse representation model, was proposed by Gu et al. [97℄. Blaszzykowski and

Stefanowski proposed the Ordinal Consisteny Driven Feature Subspae Aggregat-

ing (oFeating), whih onstrut loal lassi�ers in hosen regions of the feature

spae [24℄. Blaser and Fryzlewiz improved the ensemble diversity by generating

eah base lassi�er using a randomly rotated feature spae [23℄. There are also ap-

proahes that train base lassi�ers on features derived from many di�erent feature

extration methods, whih have been suessfully used in the task of fae image

lassi�ation [12℄.

Another way is to selet lassi�ers from the generated pool, whih assumes that eah

of the base models is an expert in a ertain region of the feature spae. The seletion
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an be onduted either in a stati or dynami fashion. In the stati approah, the

models are seleted one during the training phase and the same ensemble/single

lassi�er is used to lassify all unknown examples [270℄. In the dynami approah, a

separate ensemble or a single model is seleted for eah unknown problem instane

[59℄. Suh approahes are one of the main topis of this thesis and will be desribed

in detail later.

� Classi�ers an also be trained to reognize only some of the problem lasses. In

this ase, the ombination method used should be able to reover the entire set

of labels before a �nal deision is made. These types of approahes are based on

the fat that any multilass problem an be broken down into a number of binary

problems [228℄ and propose di�erent methods to build a multilass lassi�er by

ombining two-lass models [71℄. Some of the well known binarization strategies

are:

� One-vs-One (ovo) [103℄, whih trains a binary lassi�er for eah pair of

lasses.

� One-vs-All (ova) [192℄, whih train a binary lassi�er for eah lass, onsid-

ering all remaining lasses as a majority one.

� One-Against-Higher-Order (oaho) [177℄, whih sorts the lasses in desending

order by the number of samples and iterates starting from the largest one. A

binary lassi�er is generated for the urrent lass and all remaining lasses

with less ardinality.

� All-and-One (a&o) [92℄, whih ombines ovo and ova.

� The Error Correting Output Codes (eo) [70℄, whih enodes eah lass

with a ode-word in order to obtain the distane between lasses.

� Finally, ensemble diversity an be ensured by reating a pool ontaining di�er-

ent lassi�ation models. This an be done, for example, by training di�erent

mahine learning algorithms (heterogeneous ensemble) on the same input data

[231℄. Another method may be to use a single lassi�ation algorithm (homoge-

neous ensemble), but di�erentiate it by modifying its parameters. An example of

suh an approah is the modi�ation of the initial weights of neural network [112℄.

Approahes ombining heterogeneous ensembles with data-level diversi�ation for

real-life appliations, suh as redit soring, are also gaining popularity [258℄.
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2.3.2 Combination rule

During the ombination stage, the answers obtained by eah of the base lassi�ers are

proessed, using the hosen ombination rule [122℄, in order to reah a �nal deision.

These rules take advantage of the fat, that the base lassi�ers outputs have a lear

interpretation and may be represented by lass labels, distanes or on�denes (proba-

bilities) [76℄. Usually, the ombination proess is be based on the lass labels returned

by the models or on their support funtions (Equation 2.3 on p. 22).

One of the most ommon approahes to ombination based on lass labels is voting. In

its simplest version, alled majority voting, the instane is assigned to the lass that was

most often indiated by the base models

Ψ(x) = argmax
i∈M

n
∑

k=1

[

Ψk(x) = i
]

, (2.29)

where [ ] denotes the Inverson's braket.

There is also weighted voting, whih introdues weight wk for eah of the k base lassi�ers

in suh a way that they may have di�erent in�uene on the �nal deision

Ψ(x) = argmax
i∈M

n
∑

k=1

[

Ψk(x) = i
]

wk. (2.30)

Another popular approah to the labels-based lassi�er ombination is known as Staked

Generalization ((Staking)) [250℄. Here, the ombination rule (also known as meta-

lassi�er or meta-level lassi�er) is trained based on the preditions made by base models.

In order to redue the possibility of the meta-lassi�er over�tting, the dataset used for

ombination rule training should be exluded from the dataset used for generating the

base lassi�ers. Usually, staking employs a heterogeneous lassi�er pool in order to

assure their diversity.

When the deision is made on the basis of the support funtions, a ommon approah is

to use the aggregation (also alled aumulation or the sum rule) of supports

Ψ(x) = i if Fi(x) = max
k∈M

Fk(k, x), (2.31)

where

Fl(x) =

n
∑

l=1

wlFl,i(x) and

n
∑

i=1

wl = 1, (2.32)

where Fl(x) denotes the support funtion for the ith lass of the lth lassi�er, and wl is

a lassi�er weight.
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These weights are usually stati [150℄, but their values may also hange depending on the

lassi�er and label [257℄ or be a funtion of feature vetor [202℄. Regardless of whether the

ombination is based on the labels or support funtions, there exists various possibilities

of weight assigning [255℄:

� Weights dependent on lassi�er � a traditional approah where eah the l-th las-

si�er is weighted by the value wl.

� Weights dependent on lassi�er and feature vetor � where weight wl(x) is assigned

to the l-th lassi�er and a given sample x.

� Weights dependent on lassi�er and lass number � where value wl,i is assigned as

weight to the l-th lassi�er and the i-th problem lass.

� Weights dependent on lassi�er, lass number, and feature vetor � where weight

wl,i(x) is assigned to the l-th lassi�en, a given sample x and the i− th lass.

Besides the sum rule or its weighted equivalent, base lassi�ers an be aggregated using

simple operators suh as [76℄:

� The produt rule, whih orresponds to the sum rule for small deviations in the

lassi�er outputs. Theoretially it performs well if the base models are independent,

whih unfortunately is an unrealisti assumption.

� The maximum rule, whih selets the lassi�er most on�dent in its own preditions

and an be interpreted as a kind of lassi�er seletion. This rule is very sensitive

to over�tting.

� The minimum rule, whih hooses the lassi�er with the least objetion to the

ertain lass.

� The median rule, whih is similar to the sum rule but may give more robust results.

Another approah worth mentioning is the Mixture of experts [114, 115℄, whih divides

the problem spae into a number of subspaes and trains an expert learner of eah of

them. This proess is managed using a gating funtion whih is trained together with

the experts and then used to dynamially ompute weights for base lassi�ers taking into

aount their loal ompetenies.

Alternative ombination proposal is a multiple-stage organization, whih was brie�y

mentioned by Ho et al. [109℄ and desribed in detail by Ruta and Gabrys [201℄, where

authors refer to suh systems as a multistage organization with majority voting (momv)
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sine the deision at eah level is given by majority voting. Initially, all outputs are

alloated to di�erent groups by permutation and majority voting is applied for eah group

produing single binary outputs, forming the next layer. In the next layers, exatly the

same way of grouping and ombining is applied with the only di�erene being that the

number of outputs in eah layer is redued to the number of groups formed previously.

This repetitive proess is ontinued until the �nal single deision is obtained.

2.3.3 Classi�er seletion

Classi�er seletion employs the overprodue-and-selet approah, in whih the models

used in the lassi�ation proess are seleted on the basis of their loal ompetenies.

There are two approahes to the seletion proess:

� Stati seletion, presented in Figure 2.2 a, in Figure in whih the seletion proess

of a lassi�er or an ensemble is performed during the training phase, based on the

seletion riterion estimated in the validation dataset. Then, this exat ensemble

is used in the generalization phase to predit the labels of all test samples. Clas-

si�er diversity and lassi�ation auray are among the most ommon seletion

riteria. Among the well-known algorithms implementing this approah, Classi�er

and Seletion proposed by Kunheva [148℄ an be distinguished. Another example

is the approah proposed by Jakowski et al. [113℄ alled Adaptive Splitting and

Seletion, whih uses an evolutionary algorithm to �nd the best partitioning of the

feature spae and mathes eah luster with the most �tting ensemble.

� Dynami seletion, depited in Figure 2.2 b, where the disriminant ability of las-

si�ers is assessed in the loal region of ompetene for eah unknown example

separately. Then, based on these ompetenies, the seletion is performed individ-

ually for lassifying eah of these samples. Sine the Dynami Classi�er Seletion

is one of the main topis of this thesis, it is desribed in more detail below.

Dynami Seletion methods an selet either a single model (Dynami Classi�er Seletion

- ds) or an ensemble of lassi�ers (Dynami Ensemble Seletion - des), with the latter

being reognized as a very promising diretion in ensemble learning [59℄. des selets the

best lassi�ers for eah test instane based on the notion of ompetene, whih is usually

estimated in the loal region of ompetene ontaining, e.g., the k -Nearest neighbors

of the given sample. This region is formed using the dynami seletion dataset (dsel)

omposed of labeled samples from either the training or validation set. This is based on

the assumption that eah of the base lassi�ers is an expert in a di�erent region of the

feature spae.
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(b) Dynami seletion

Figure 2.2: Stati and dynami lassi�er seletion proedure.

The lassi�ation of eah unknown sample by des involves three steps:

� De�nition of the region of ompetene; that is, how to de�ne the loal region

surrounding the unknown sample, in whih the ompetene level of the base models

is estimated. This loal region of ompetene is found in the dynami seletion

dataset (dsel), whih is usually part of the training set.

� De�ning the seletion riterion later used to assess the ompetene of the base

lassi�ers in the loal region of ompetene (e.g., auray or diversity).

� Determination of the seletion mehanism deiding whether we hoose a single

lassi�er or an ensemble.

Previous work related to the imbalaned data lassi�ation using lassi�er ensembles and

des involves various approahes. Ksieniewiz proposed an Undersampled Majority Class

Ensemble (ume) [140℄ employing di�erent ombination rules and pruning, based on a

k -fold division of the majority lass to divide a single imbalaned problem into many bal-

aned ones. Chen et al. [51℄ presented the Dynami Ensemble Seletion Deision-making

(desd) algorithm to selet the most appropriate lassi�ers using a weighting mehanism

to highlight the base models that are better suited for reognizing the minority lass. Roy

et al. ombined preproessing with dynami ensemble seletion to lassify both binary

and multilass stationary imbalaned datasets [198℄. Randomized Referene Classi�er,

whih produes supports for eah lass that are realizations of random variables with
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the beta distributions, was proposed by Woloszynski and Kurzynski [249℄. Lysiak et al.

[165℄ showed that employing diversity measures during the lassi�er seletion leads to

smaller ensembles but does not improve the lassi�ation auray. meta-des.Orale,

whih uses feature seletion and meta-learning over numerous datasets to improve the

seletion proess, was proposed by Cruz et al. [58℄. Oliveira et al. [183℄ desribed a two-

step ensemble forming using a pre-seletion mehanism. Zyblewski et al. [277℄ proposed

the Minority Driven Ensemble algorithm, whih employs a dynami lassi�er seletion

approah to exploit loal data harateristis for imbalaned data streams lassi�ation.

The proposal of ombining preproessing and Dynami Ensemble Seletion, whih is the

basis of researh arried out in this work, was presented by Zyblewski et al. [280℄. Pinagé

et al. proposed a onept drift detetion method based on dynami lassi�er seletion

[188℄.

We may also onsider the following des strategies based on orale information, whih

will be used later in onduted experiments:

� knora-eliminate (knora-e) [123℄, whih reates an ensemble onsisting only of

the loal orales, i.e., models that lassify orretly all data samples loated in the

loal region of ompetene. In the ase where no lassi�er is seleted, the size of

ompetene region is redued by removing the farthest neighbor and the searh for

orales is repeated,

� knora-union (knora-u) [123℄ makes the deision based on weighted voting, where

eah seleted lassi�er has a number of votes proportional to the number of orretly

predited samples in the loal region of ompetene.

� des-knn [214℄ ranks individual lassi�ers aording to their predition performane

and then the �xed number of the best lassi�ers are �rst seleted. The �nal ensem-

ble is formed based on the �xed number of the most diverse preseleted individuals.

� des-lustering [214℄ employs the k-Means to de�ne desl, then the most aurate

and diverse lassi�ers ale seleted for the ensemble.

Additionally, as the referene methods, two Dynami Classi�er Seletion algorithms will

be used:

� Modi�ed Classi�er Ranking (Rank) [203, 252℄ uses for lassi�ation suh an indi-

vidual lassi�er whih lassi�es orretly the highest number of onseutive samples

in the region of ompetene.

� Loal lassi�er auray (la) [252℄ selets for lassi�ation suh an individual

lassi�er whih orretly lassi�es the higher number of samples within the loal
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region, but onsidering only those examples where the lassi�er predited the same

lass as the one it gave for the test instane.

Ensemble pruning

Another onept, losely related to the lassi�er seletion, is known as ensemble pruning.

Let us �rst present the ensemble pruning taxonomy proposed in [270℄:

� Ranking-based pruning hooses a �xed number of the best ranked individual las-

si�ers aording to a given metri (as kappa statistis) [169℄.

� Optimization-based pruning solves the problem of hoosing individual lassi�ers

as an optimization task. Beause the number of base models is typially high,

therefore heuristi methods [202℄, evolutionary algorithms [272℄ or ross-validation

based tehniques [65℄ are usually used.

� Clustering-based pruning looks for groups of base lassi�ers, where individuals in

the same group behave similarly while di�erent groups have large diversity. Then,

from eah luster, the representative is seleted, whih is plaed in the �nal ensem-

ble.

As the following thesis partially deals with employing lustering-based lassi�er ensemble

pruning methods to improve the preditive performane of ombined lassi�ers then let

us brie�y present the main works related to this �eld. Clustering-based pruning onsists

of two steps. In the �rst one, base models are grouped into several lusters based on a

riterion, whih takes into onsideration their impat on the ensemble performane. For

this purpose, various lustering methods were used, suh as hierarhial agglomerative

lustering [96℄, deterministi annealing [10℄, k-Means lustering [85℄ [156℄ and spetral

lustering [267℄. Most of those methods employ some kind of diversity-based riteria.

Giainto et al. [96℄ estimated the probability that lassi�ers do not make oinident errors

in a separate validation set, while Lazarevi and Obradovi [156℄ used the Eulidean

distane in the training set. Kunheva proposed employing a pairwise diversity matrix

for hierarhial and spetral lustering methods [150℄.

In the seond step, a prototype base learner is seleted from eah luster. In [10℄ a new

model was trained for eah luster, based on lusters entroids. In [96℄ Giainto et al.

hosen the lassi�er, whih was the most distant to the rest of lusters. In [156℄ models

were iteratively removed from the least to the most aurate. The model with the highest

lassi�ation auray was hosen in [85℄.

The last issue is the hoie of the number of lusters. This ould be determined based on

the performane of the method on a validation set [85℄. In the ase of fuzzy lustering
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methods, indexes based on membership values and data set or statistial indexes an be

used to automatially selet the number of lusters [132℄.

2.4 Di�ult data lassi�ation

The following setion aims to disuss the notion of di�ult data lassi�ation, fousing on

the skewed lass distribution, data stream, and the ase of limited label aess, strongly

assoiated with ative learning. Dealing with these problems, espeially in ases of

their simultaneous ourrene, is the main fous of this dissertation. As mentioned

in the introdution, these three senarios are not the only de�nitions of di�ult data.

However, issues suh as data heterogeneity, high dimensionality, a high number of lasses,

data inompleteness, or low or very high ardinality of the learning set are not dealt with

in this thesis, therefore they are not overed in a longer desription.

2.4.1 Imbalaned data

Most of the lassi�ation algorithms assume that there are no signi�ant disproportions

among instanes from di�erent lasses. Nevertheless, in many pratial tasks, we may

observe that examples from one lass (so-alled majority lass) signi�antly outnumber

the objets from remaining lasses (minority lass). This disproportion, in the ase

of binary problems, is often represented by the Imbalane Ratio, whih desribes how

many majority lass samples are there per one minority lass sample. Most of the

traditional lassi�ers have a bias in favor of the majority lass. However, more often, the

minority lass is more interesting beause misidenti�ation of an instane belonging to

it is usually muh more expensive than assigning an instane from the majority lass to

the minority one. A good example is an undeteted fraud that would be more expensive

than the ost of additional analysis of a orret transation lassi�ed as a fraudless

transation. Suh a problem is known as imbalaned data lassi�ation [224, 245℄, where

an unequal number of instanes from the examined lasses plays a key role during the

lassi�er learning. Various approahes have been proposed in the literature to takle

this hallenging di�ulty embedded in the nature of data. Usually, the researhers are

fousing on maximizing the orret minority lass lassi�ation. At the same time, the

performane of the majority lass annot be negleted.

In the ase of imbalaned data lassi�ation, the disproportion between the di�erent

lasses is not the sole issue of learning di�ulties. One may easily ome up with an exam-

ple where the instane distributions from di�erent lasses are well-separated. Proposing

an e�ient lassi�er for suh a task is not a hallenge. Unfortunately, instanes from
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the minority lass often form lusters of an unknown struture that are sattered [178℄.

An additional ompliation omes from the fat that during learning, the number of

instanes from the minority lass may not be su�ient enough for the learning algorithm

to aquire the appropriate generalization level, whih in e�et an ause over�tting [54℄.

All those problems remain the fous of intense researh [43, 49, 147℄.

Methods for imbalaned data lassi�ation an be divided into three main groups, i.e.

data preproessing methods, inbuilt mehanisms and hybrid methods [163℄.

Data preproessing methods. This approah fouses on reduing the number of

objets in the majority lass (undersampling) or generating new objets of the minority

lass (oversampling). These mehanisms have the objetive of balaning the number of

instanes from onsidered lasses. For oversampling, new instanes are random opies of

existing ones (Random Oversampling [13℄), or they are generated in a guided manner.

The most popular method is Syntheti Minority Oversampling Tehnique (smote) [49℄

algorithm, whih reates new instanes based on existing ones by slightly modifying

the values of their attributes. As a result, new arti�ial examples that are ompatible

with the minority lass distribution are generated. Other oversampling methods are

adasyn [104℄, that also takes into onsideration the objet di�ulties, or ramoboost

[52℄. Unfortunately, methods like smote may lead to hanges in the harateristi of

the minority lass. Consequently, it may result in the lassi�er over�tting. Several

modi�ations of smote have been proposed that are able to identify the instanes to

be opied in a more intelligent fashion suh as Borderlinesmote [100℄. It generates new

instanes from the minority lass lose to the deision border. Safe-Level smote [43℄ and

ln-smote [167℄ redue the probability of generating syntheti instanes of the minority

lass in areas where the predominant objets are that of the majority lass. smv-smote

employs svm lassi�er in order to generate new examples onsidering it;s support vetors

[182℄. Among other propositions are: rbo [130℄ and r that enfore instanes from

the majority-lass to be reloated from the areas where the minority-lass instanes are

present [131℄.

Methods of undersampling are built around the idea of randomly removing the instanes

from the majority-lass or removing them in suh a way that the quality of the lassi�er is

not disrupted. The most basi method, Random Undersampling (rus) [13℄, ahieves the

lass balane by random elimination of the majority lass intanes. Condensed Nearest

Neighbors (nn) [102℄ removes the majority lass samples that are lose to the deision

boundary using 1-nn rule. Edited Nearest Neighbors (enn) [248℄ omputes three nearest

neighbors of eah instane and a given sample is removed if it belongs to the majority

lass and is misslassi�ed by its three neighbors. Neighborhood Cleaning Rule (nl) [155℄

removes samples, for whih labels obtained based on enn rule for three and �ve neighbors
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are di�erent. Tomek's modi�ation of Condensed Nearest Neighbor (tl) [229℄ performs

guided undersampling using two Tomek Links, dediated for majority and minority lass.

One Sided Seletion (oss) [147℄ detets Tomek Link using 1-nn and then removes all

majority samples embedded in it. Undersampling Based on Clustering (sb) [263℄ divides

data into lusters and then, based on the Imbalane Ratio, removes samples from the

majority lass lusters.

Inbuilt mehanisms. In this approah, existing lassi�ation algorithms are adapted

for imbalaned problems ensuring balaned auray for instanes from both lasses.

Two of the most popular areas of researh of these methods are using one-lass lassi-

�ation [118℄, usually known as learning without ounterexamples. They aim to learn

the minority lass deision areas, and beause of the frequently assumed regular, losed

shape of the deision borders is adequate to the lusters reated by minority lasses [137℄.

The disproportion between the number of instanes in lasses is then omitted. Another

approah is the (ost-sensitive) lassi�ation, where the algorithm takes into aount the

asymmetrial loss funtion that assigns a higher ost to mislassi�ation of an instane

from a minority lass [105, 163, 271℄. Unfortunately, suh methods an ause a reverse

bias towards the minority lass. There also exists a ost-sensitive approah to lassi�er

seletion. However, the algorithms proposed so far are based almost solely on stati

ensembles suh as ost-sensitive trees ensemble [138℄, ensemble methods based on ro

spae [16, 74℄, or ost-sensitive Boosting [225℄. There is a lear lak of Dynami En-

semble Seletion methods taking into aount the di�erent osts of problem lasses.

Therefore, the proposal of suh methods might present another interesting hallenge.

Worth noting are methods based on ensemble lassi�ation [253℄, like smoteBoost [50℄

and AdaBoost.n [241℄ or Multi-objetive Geneti Programming Ensemble [17℄.

Hybrid methods. They ombine the advantages of methods using data preproessing

with the lassi�ation methods as well ass di�erent approahes to data preproessing.

The most popular ategory is the hybridization of undersampling and oversampling with

ensemble lassi�ers [86℄. This approah allows the data to be independently proessed

for eah of the base models. Batista et al. proposed two hybrid methods based on

the smote oversampling algorithm [13℄. smote-enn ombines smote with Condensed

Nearest Neighbor, whih is used to �lter noisy items and remove samples from both

lasses before applying the oversampling algorithm. smote-tl uses smote to gener-

ate syntheti minority lass instanes and then detets and removes samples omposing

Tomek Links. Stefanowski and Wilk proposed the Seletive Preproessing of Imbalaned

Data (spider) [220℄, whih ombines loal minority lass oversampling with �ltering of

di�ult samples from the majority lass. Napierala et al. then extended this idea and

introdued the spider2 algorithm [180℄, whih detets noisy samples from both minor-

ity and majority lass. Majority noisy samples are then relabeled or removed, while
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the minority noise samples are repliated. Adaptive Oversampling Tehnique Based on

Data Density (asmobd), whih ombines oversampling with self-labeling based on

the instane di�ulty, was proposed by Wang et al. [244℄. Yang et al. introdued a hy-

brid optimal ensemble lassi�er framework ombining density-based undersampling with

multi-objetive optimization algorithm [261℄. Zhaot et al. presented the Weighted Hy-

brid Boosting (WHMBoost) algorithm onsisting of two base lassi�ers and two weighted

data preproessing methods

Metris

The evaluation riterion plays an extremely important role in the proess of evaluating

the performane of the pattern reognition algorithm. This thesis fouses on the binary

lassi�ation task, for whih all metris are based on the onfusion matrix shown in Table

2.2.

Table 2.2: The onfusion matrix for binary lassi�ation.

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Traditionally, the auray sore is used to assess the performane of lassi�ation algo-

rithms. Unfortunately, in the ase of imbalaned data lassi�ation, it is not adequate

and informative, as it does not distinguish orretly lassi�ed objets of the majority

(negative) and minority (positive) lass. Therefore, if the minority lass we are inter-

ested in onstitutes, for example, 3% of all instanes in a given problem, assigning all of

them to the majority lass will result in an auray sore of 97% [166℄.

accuracy(Ψ,VS) = TP + TN

TP + FN + FP + TN
(2.33)

Therefore, the evaluation in the ase of imbalaned data must be arried out using

dediated metris that take into aount the lass distribution. Among these metris,

we an distinguish three base metris, as well as multiple aggregated metris:

Reall (also known as sensitivity or tpr) [190℄, whih represents the lassi�er's ability to

reognize minority (positive) lass objets. It tells us what perentage of minority lass

instanes were deteted.

recall(Ψ,VS) = TP

TP + FN
(2.34)
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Miss rate (also known as fnr) [190℄, whih is the inverse of reall and tells what per-

entage of objets belonging to the minority lass has not been reognized.

miss rate(Ψ,VS) = FN

FN + TP
(2.35)

Spei�ity (also knows as tnr) [190℄, whih is equivalent to reall for the majority (neg-

ative) lass. In the ase of problems with the dynamially hanging prior lass proba-

bilities (inluding swapping the majority and minority lass), an exhange of the reall

and spei�ity values an be observed.

specificity(Ψ,VS) = TN

TN + FP
(2.36)

Fallout (also known as fpr) [190℄, whih is the inverse of spei�ity and informs about

the perentage of majority lass objets lassi�ed as belonging to the minority lass.

fallout(Ψ,VS) = FP

FP + TN
(2.37)

Preision (also known as positive preditive value) [190℄, informing about the model's

ability to orretly detet minority lass objets. Indiates how many of the objets

assigned by the model to the positive lass atually belongs to said lass.

precision(Ψ,VS) = TP

TP + FP
(2.38)

Balaned auray sore (ba) [34, 120℄, de�ned for multi-lass problems as the average

of reall alulated on eah lass. For binary problems, it is the average of reall and

spei�ity.

BAC(Ψ,VS) = Recall + Specificity

2
(2.39)

Geometri mean sore [11, 147℄, known in two versions. By far the most popular is

de�ned as the square root of the produt of reall and spei�ity (Gmeans). However,

there is also an alternative de�nition where spei�ity is replaed by preision (Gmean).

Gmeans =
√

Recall ∗ Specificity (2.40)

Gmean =
√
Recall ∗ Precision (2.41)

Fβ score [9℄, whih is interpreted as the weighted harmoni mean of reall and preision.

Thanks to this, it takes into aount both of these base metris, while punishing extremely

low values of either of them. The β parameter expresses how many times reall is more
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important than preision and an be tuned, resulting in di�erent trade-o�s between

both metris. Using this metri ould be dangerous if the parameter is not set properly.

Brzezinski et al. [41℄ show, that unsuitable β value may resulting in favoring the majority

lass. Fβ score is also ritiized due to asymmetri response to the dynamially hanging

Imbalane Ratio and being more suseptible to simple oversampling [36℄.

Fβ = (1 + β2) ∗ Precision ∗Recall
(β2 ∗ Precision) +Recall

(2.42)

F1 score [205℄ an be interpreted as Fβ score, where the β value is 1. It is de�ned as the

harmoni mean of reall and preision.

F1 score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.43)

Another way to evaluate to lassi�ers performane is to use two graphial-based metris

[29℄, namely Reeiver Operating Charateristis (ro) urve and the orresponding area

under the ro urve (au) [227℄. The ro urve allows the visualization of trade-

o� between the fpr (x axis) and tpr (y axis) for given value of threshold used for

labeling a sample as belonging to the positive lass. The point (0, 1) represents a perfet

lassi�er, the point (0, 0) is a lassi�er that predits all samples as negative, (1, 1) is

the lassi�er that labels all samples as belonging to the positive lass, and the point

(1, 0) is the lassi�er whih is always inorret. The ro urve has been widely used

in the ase, where the lassi�ation ost is hard to obtain. au allows the models

omparison or general evaluation of a single lassi�er, averaged over di�erent parameter

values [78℄. Nevertheless, Hand deemed au as fundamentally inoherent and proposed

the alternative measure [101℄.

Stati imbalaned data sets

Chapter 3 of this dissertation fouses on the lassi�ation of stati imbalaned data.

Table 2.3 presents the harateristis of 41 datasets seleted from the KEEL [4℄ repository.

All datasets have a high imbalane ratio of at least 9 and ontain binary problems that

were generated through various ombinations of lass merging.

Experimental protool

In this thesis, all experiments on stati data sets will be onduted aording to the

k-fold ross-validation evaluation protool [124℄. In this approah, a dataset is randomly

divided into k mutually exlusive folds of equal size. Then, k−1 folds are used for training
the algorithms and the remaining one for evaluation. This proedure is repeated until
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Table 2.3: Imbalaned datasets harateristis.

Dataset #i #f ir Dataset #i #f ir

eoli-0-1_vs_2-3-5 244 7 9 glass2 214 9 12

eoli-0-1_vs_5 240 6 11 glass4 214 9 15

eoli-0-1-3-7_vs_2-6 281 7 39 glass5 214 9 23

eoli-0-1-4-6_vs_5 280 6 13 led7digit-0-2-4-5-6-7-8-9_vs_1 443 7 11

eoli-0-1-4-7_vs_2-3-5-6 336 7 11 page-bloks-1-3_vs_4 472 10 16

eoli-0-1-4-7_vs_5-6 332 6 12 shuttle-0-vs-4 1829 9 14

eoli-0-2-3-4_vs_5 202 7 9 shuttle-2-vs-4 129 9 20

eoli-0-2-6-7_vs_3-5 224 7 9 vowel0 988 13 10

eoli-0-3-4_vs_5 200 7 9 yeast-0-2-5-6_vs_3-7-8-9 1004 8 9

eoli-0-3-4-6_vs_5 205 7 9 yeast-0-2-5-7-9_vs_3-6-8 1004 8 9

eoli-0-3-4-7_vs_5-6 257 7 9 yeast-0-3-5-9_vs_7-8 506 8 9

eoli-0-4-6_vs_5 203 6 9 yeast-0-5-6-7-9_vs_4 528 8 9

eoli-0-6-7_vs_3-5 222 7 9 yeast-1_vs_7 459 7 14

eoli-0-6-7_vs_5 220 6 10 yeast-1-2-8-9_vs_7 947 8 31

eoli4 336 7 16 yeast-1-4-5-8_vs_7 693 8 22

glass-0-1-4-6_vs_2 205 9 11 yeast-2_vs_4 514 8 9

glass-0-1-5_vs_2 172 9 9 yeast-2_vs_8 482 8 23

glass-0-1-6_vs_2 192 9 10 yeast4 1484 8 28

glass-0-1-6_vs_5 184 9 19 yeast5 1484 8 33

glass-0-4_vs_5 92 9 9 yeast6 1484 8 41

glass-0-6_vs_5 108 9 11

the hosen metri is estimated based on all available folds, i.e., k times. The �nal metri

values is alulated as the average of k metri estimations. The whole proess an also be

repeated a set number of times, resulting in repeated ross-validation protool. The value

of the parameter k usually depends on the dataset size, i.e., the more problem samples,

the smaller the k. Reommended values are k = 10 or k = 5. As the random splitting

may lead to so-alled dataset shift, in whih the folds obtained are not representative

of the original dataset, the protools based on strati�ed sampling have been proposed

[176℄. One suh approah is the standard strati�ed ross-validation whih maintains in

eah fold the original lass distributions and will be used in the following thesis.

The use of ross-validation allows, apart from desensitizing to the random fator, for

performing the null hypothesis statistial tests [215℄. Suh tests enable answering the

question, whether the obtained performane di�erene is statistially signi�ant. Stapor

et al. desribe three senarios, in whih the statistial tests an be applied [219℄:

� Two lassi�ers � one dataset,

� Two lassi�ers � multiple datasets,
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� Multiple lassi�ers � multiple datasets.

For the omparison of two lassi�ers on one dataset, when using the repeated ross-

validation protool, the most popular are the lassial t test and the orreted t test

[27℄. When omparing two lassi�er on multiple datasets, the Wiloxon signed-rank

test is widely reommended [111℄. For the omparison of multiple lassi�ers on multiple

datasets, the reommended methodology is to �rst use the omnibus test in order to hek

if any model di�ers from other. The most popular omnibus test is the Friedman non-

parametri test [111℄. In the seond step, if the null hypothesis of the omnibus test is

rejeted, the post-ho analysis with multiple hypothesis testing is performed, whih for

Friedman test in based on the means ranks.

2.4.2 Data stream

The main harateristi of the data stream lassi�ation [135℄ is the possibility of the

large amount of data appearing sequentially, reating endless data stream over whih the

observer has no in�uene when it omes to the order at whih instanes arrive. Moreover,

a lassi�er has to be ready at all times to make a deision. When designing e�etive

lassi�er for data streams, we have to onsider a few important issues:

� Possibility of hanges in data distribution (onept drift),

� Frequent need for quik lassifying of inoming samples,

� Delay or impossibility of data labeling,

� Limited resoures as memory, storage, and omputational power.

For the purposes of the following thesis, the data stream is de�ned as a set of data hunks

DSk with �xed-size N , where k is the hunk index. and Ψk denotes the lassi�er trained

based on the kth hunk.

Beause not all objets an be stored in memory, it is widely aepted that eah instane

may be proessed at most one time, and it is not remembered. Therefore its re-evaluation

ould be impossible. Usually, information about instanes is replaed by statistis. Fi-

nally, we may be faed with non-stationary data streams, i.e., where parameters of the

lassi�ation model (harateristis of probabilisti distributions) may hange, foring

the lassi�ation model to adapt to upoming hanges. This phenomenon is alled on-

ept drift and its nature an vary due to both the harater and the rapidity. It fores the

implementation of mehanisms enabling adapting to the urrent lass imbalane status
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or onept drift detetors that providing a drift ours enfores the model to be rebuilt.

From the lassi�ation point of view, we an distinguish two types of suh an event:

(i) the real onept drift that an strongly a�et the shape of the deision boundary;

and (ii) the virtual drift that does not a�et the deision rule. Another drift taxonomy

depends on the drift impetuosity:

� slow hanges, i.e., inremental drift.

� abrupt hanges, i.e., inremental drift.

It is di�ult to assign a gradual drift in this taxonomy. On the one hand, it an be

onsidered as a slow-moving hange, but on the other hand, it an be seen as an abrupt

hange related to lass overlapping.

Additionally, we an onsider a reourring onept drift. It may our in ases of,

e.g., seasonal phenomena as weather predition or lient preferenes of lothes or sports

stores. It is worth emphasizing that the presene of a onept drift an lead to serious

deterioration of the lassi�er's auray. Therefore, developing e�ient methods that are

able to deal with this type of hange in the data stream is nowadays the fous of intense

researh.

Kunheva analyzed various approahes to streaming data lassi�ation employing las-

si�er ensemble tehniques in [149℄. Based on this analysis, the following strategies an

be distinguished:

� Dynami ombiners, where the lassi�er ensemble hanges the rule by whih trained

in advane base models are ombined (e.g., hanging weights for weighted voting)

[161℄,

� Updating training data, where base lassi�ers are updated in an online manner us-

ing inoming training instanes, (e.g., in online bagging [185℄ or leveraging bagging

[20℄),

� Updating base lassi�ers [126℄,

� Updating the lassi�er ensemble line-up, where, e.g., the oldest or worst performing

lassi�er is replaed by a new one, trained on the most reent data [256℄.

Based on the approah to data proessing, lassi�ers dediated to the data stream lassi-

�ation task an be ategorized into hunk/bath-based or online methods. Bath-based

methods proess the stream in hunks, whih ontain a �xed number of samples. This

allows iterating several times of samples in eah hunk to generate base lassi�ers. Online
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learning methods proess eah sample individually after its arrival, whih is an approah

dediated for senarios with strit memory and time onstraints [135℄.

Despite the large number of methods proposed, the lassi�er ensemble remains the fous

of intense researh and is one of the more promising diretions of the data stream analysis,

both stationary and non-stationary. Still, onstruting a well-performing ensemble of

lassi�ers is strongly related to the method of ensuring high diversity of the lassi�er

pool and employed ombination method [253℄.

One the most well reognized ensemble approahes to stationary data stream lassi�a-

tion is the Learn++ algorithm proposed by Polikar et al. [189℄. Learn++ trains a neural

network model on eah inoming hunk and adds it to the pool, whih is ombined using

majority voting. All models are retained in the pool. Zhao et al. proposed Bagging++

[269℄ as an improvement for Learn++. This approah employs Bagging to generate new

models from eah data hunk, using four di�erent learning algorithms. Minku et al.

introdued the Growling Negative Correlation Learning Growling nl [172℄ algorithm,

aimed at o-training a lassi�er ensemble omposed of diverse and aurate neural net-

works.

Online ensembles for stationary data stream lassi�ation inlude Online Bagging ob,

proposed by Oza [184℄, whih uses the Poisson(λ = 1) distribution to update eah base

lassi�er with the appearane of a new instane. Bifet et al. two algorithms modifying

ob, namely Adaptive-Size Hoe�ding Trees (asht) [21℄ and Leveraging Bagging (LevBag)

[20℄. Both of those methods aimed at randomizing the lassi�ers' input and ouput. asht

does that by generating deision trees of di�erent sizes, while LevBag allows speifying

the value of λ parameter during resampling and employs output detetion odes. Another

approah proposed by Oza is the Online Boosting (OzaBoost) [184℄. Here, a �xed-size

ensemble is maintained and the lassi�ers are sequentially updated using eah inoming.

The weights of mislassi�ed instanes are inreased in order to emphasize them when

updating models. Gama proposed Hoe�ding Option Trees (hot) ensemble [88℄, whih

allows updating a set of option nodes instead of a single leaf.

One of the most well known example of bath-based lassi�er ensemble algorithm for

the non-stationary data stream lassi�ation task is the Streaming Ensemble Algorithm

(sea) [221℄ proposed by Street and Kim, whih trains a new base model on eah inoming

data hunk and adds it to the lassi�er pool but removes the worst model if the pool size

is exeeded. Wang et al. introdued the Auray Weighted Ensemble (awe algorithm

[239℄, whih is a standard ensemble bath proessing method based on mean square

error alulations. Brzezinski and Stefanowski proposed the extension od awe, namely

the Auray Updated Ensemble (aue) algorithm [38℄ allowing for updating the member

lassi�ers. The Weighted Aging Ensemble (wae) [256℄, modifying awe by hanging
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the weights alulation and lassi�er seletion methods, was proposed by Wozniak et al.

Elwell and Polikar Learn++ for non-stationary environments Learn++.nse [77℄, inspired

by Learn++, sets the weights of training samples from eah hunk based on the error

obtained when lassifying it.

Regarding online ensemble methods for non-stationary data stream lassi�atio, one of

the popular approahes is the Dynami Weighted Majority (dwm) proposed by Kolter

and Maloof [127℄. In dwm, eah base lassi�er has a weight, whih is redued eah time

a wrong predition is made. Brzezinski and Stefanowski introdued the inremental

version of aue, namely Online Auray Updated Ensemble (oaue) [39℄, whih employs

the new ost-e�etive funtion for lassi�er weighting. Yoshida et al. proposed the wwh

algorithm [264℄, whih ombines an adaptive ensemble with instane seletion based on

overlapping windows. The Sparse Online Classi�ation (so) framework from Wag et al.

[238℄ uses sparse online learning algorithms for online drifting data stream lassi�ation.

Data stream lassi�er evaluation

As previously mentioned, ross-validation is the most ommonly used evaluation ap-

proah in learning from stati data. However, in the ase of learning from the data

stream, this method annot be used due to, among other fators, omputational lim-

itations due to potentially huge amounts of data, as well as possible onept drift or

dynami imbalane ourrene [135℄.

Conerning bath data stream analysis, whih is one of the main topis of interest in the

following thesis, two approahes are often employed:

� Test-Then-Train [88℄, shown in Figure 2.3 a. Eah individual hunk is �rst used to

test the urrent lassi�ation model and then to update it. The �rst data hunk in

a data stream is used to initialize the lassi�ation model, skipping the predition

step.

� Prequential [89℄ (Figure 2.3 b), whih in the bath-based version relies on the

forgetting mehanism in the form of a sliding window, rather than on separate

data hunks. After eah predition and update step, the window moves by a

�xed number of instanes, keeping some of those previously seen. This makes

the approah more sensitive to hanges ourring in the stream. However, it is

assoiated with an inrease in the omputational ost. An example of an evaluation

based on this tehnique an be the prequential au proposed by Brzezi«ski and

Stefanowski for imbalaned data stream lassi�ation [40℄.
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Figure 2.3: Data stream evaluation shemes.

There also exist other approahes for omparing data stream lassi�ation methods. An

example are metris for assessing the behavior of lassi�ation methods during a onept

drift ourrene, proposed by Shaker and Hüllermeier [210℄, namely the restoration time

and the maximum performane loss. Let's denote two stationary streams generated

aording to distributions PA and PB as DSA and DSB. The drifting data stream

generated by random sampling of DSA and DSB is de�ned as DSC .

Restoration time informs about the length of the algorithm's reovery phase after the

onept drift ourrene, and is de�ned as

t2 − t1
T

∈ [0, 1], (2.44)

where t1 is the time at whih the learning urve DSC drops below 95% of the performane

urve DSA, t2 is the time at whih the learning urve DSC reovers up to 95% of the

performane urve DSB , and T denotes the length of the entire data stream.

The maximum performane loss measures the maximal derease in the method perfor-

mane in the event of onept drift. In lassi�ation task, it ompares DSC with the

pointwise minimum

DS(t) = min{DSA(t),DSB(t)} (2.45)
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as a baseline and omputes the maximum performane loss as ompared to this baseline

max

t∈T

DS(t)−DSC(t)
DS(t)

. (2.46)

Another problem in the ase of data stream lassi�ation is the method of arrying out

the statistial analysis of the obtained results. So far, there have been few solution

proposals for this issue [18℄. One suh approah is to perform standard statistial tests

using metri values averaged over the entire length of the data stream - whih requires

the use of syntheti streams to generate a repliation of the said stream with the same

harateristis but a di�erent random seed. This approah, however, tries to transform a

dynami problem into a stati one and does not take into aount the hanges ourring

during the entire length of the evaluation proess. This approah is also not appliable to

real data streams. Another method is to use a sliding window or separate data hunks.

However, due to a large number of degrees of freedom, the results are almost always

statistially independent of eah other. For this reason, there is urrently no de�ned

approah to performing statistial tests on single data streams.

2.4.3 Imbalaned data stream

Despite the fat that real-life data streams may often display a high degree of imbalane,

there is still a sarity of artiles trying to ombine both non-stationary data stream

and imbalaned data lassi�ation tasks [37℄. Additionally, it is often overlooked that

imbalaned data streams may be haraterized by the dynami hanges in the Imbalane

Ratio, whih may be regarded as the equivalent of onept drift phenomenon for prior

lass probabilities. The analysis of literature in the �eld of non-stationary data stream

shows that the vast majority of works deal with problems of hanges in the posterior

probability, relatively rarely addressing the topi of imbalaned streams, and in parti-

ular, dynamially imbalaned streams, i.e. those haraterized by hanges in the prior

probability [243℄.

Existing methods for mining imbalaned data streams, same as for balaned ones, work

in two distintive modes, i.e., the data is arriving in hunks and data windows are given

for proessing or the data is proessed online. Work by Gao et al. [90℄ is worth highlight-

ing as a tehnique based on the notion of lassi�er ensemble, where eah of the individual

learners is generated using instanes from the majority lass in the onseutive data win-

dows as well as on the already aumulated minority lass instanes. In [246℄, authors

propose an ensemble approah, where before learning on eah upoming data windows

undersampling is performed based on the k-Means algorithm. Chen et al. [53℄ follow the

same tehnique and desribe a family of algorithms sera, musera and rea, whih add
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seleted from the appearing minority lass objets to the urrently proessed data win-

dow. In [160℄, authors disuss a method for alulating the weights of lassi�ers learned

on data windows and using ombination rule based on weighted voting. In [72℄ authors

propose a modi�ation of the Learn++ algorithm for imbalaned data (Learn++.nie

and Learn++.ds). Both methods, while ahieving good reognition ability, require

signi�ant omputational resoures. An interesting approah, also employing lassi�er

ensembles, in whih the Imbalane Ratio dynamially hanges were proposed by Sun

et al. [223℄. The seond group of methods are based on inremental (online) learning

mode. Nguyen et al. desribed an approah based on Random Oversampling [181℄, while

in [245℄, authors propose an interesting method alled Sampling-based Online Bagging,

employing both undersampling and oversampling. The deision on whih model to use

at the given time is made based on the outputs of both imbalane ratio detetor and drift

detetor. Worth mentioning is also the work on the rlsap by Ghazikhani et al. [94℄,

and wos-el algorithm by Zong et al. [275℄. The aim of these methods is to set the

pereptron weights in a way preferring the minority lass.

Real data streams

Unfortunately, when it omes to the task of lassifying imbalaned data streams with

onept drift, there are many limitations in aessing the real data. There are some works

that present an overview of the databases available for this type of problem [47, 63, 164℄.

Alas, after disussion with some of the authors of these artiles and thoroughly heking

the data streams they listed, the use of provided data streams for this partiular problem

turned out to be di�ult.

That was due to various fators, suh as:

� The problem turned out to be too simple,

� The stream ontained instanes appearing sequentially in lasses,

� The data stream did not have notieable or de�nable onept drifts,

� The data did not have an appropriate imbalane ratio.

Some of these problems ould be addressed by modifying the atual data stream (e.g., by

reshu�ing or injeting drift). However, this approah was not used, as suh a solution

would destroy the atual data struture and would amount to researhing arti�ially

generated data. Due to the low availability of data that would allow reliable veri�ation

of the proposed algorithms in terms of their behavior when lassifying imbalaned data
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streams with onept drift, based on preliminary study, �ve benhmark streams were se-

leted. All streams were binarized arti�ially (by ombining lasses). Both ovtypeNorm-

1-2vsAll and poker-lsn-1-2vsAll [47℄ do not have a de�nable type of drift. Also, in order

to make them usable during experiments, the longest possible setion intervals were se-

leted from both streams. This was done in order to guarantee the appearane of samples

from both lasses in eah hunk ontaining 1000 instanes. In the ase of INSECTS data

[218℄, the streams have distint - prede�ned - types of onept drift. However, to make

things more di�ult, a tool inluded in the data stream mining framework MOA [19℄

was used to establish the minority lass size in eah of these three problems at 5%.

The harateristis of seleted real data streams are presented in Table 2.4.

Table 2.4: Real data streams harateristis.

Data stream #Samples #Features ir

ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalaned_norm 300 000 33 19

INSECTS-gradual_imbalaned_norm 100 000 33 19

INSECTS-inremental_imbalaned_norm 380 000 33 19

Syntheti data streams

Based on the above-mentioned onlusions, it was onsidered neessary to use syntheti

data stream generators to evaluate the methods proposed in the thesis. Thanks to this,

the behavior of algorithms under stritly de�ned onditions an be tested. The variety of

streams an be ensured by generating a number of repliations, based on the determined

random seeds, for eah ombination of parameters suh as: (i) the Imbalane Ratio, (ii)

the level of label noise, de�ning the global perentage of inorret labels ourrene, and

(iii) the type of onept drift.

One of the ommonly used generators are those available in the MOA data stream mining

framework [19℄. Aside from the above-mentioned parameters, these streams di�er in the

generator used and the number of attributes. The following generators are important in

the ontext of the following dissertation: (i) Agrawal - sudden and gradual onept drift,

9 attributes, (ii) Hyperplane - inremental onept drift, 10 attributes.

The vast majority of researh presented in the following thesis has been arried out on

syntheti data streams generated using stream-learn pakage for di�ult data stream

bath analysis [141℄, developed in ollaboration with Dr Paweª Ksieniewiz.
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2.4.4 Partially labeled data

Another ritial problem enountered during streaming data analysis is aess to the

orret label for inoming objets. Many of the methods desribed in the literature

ignore this topi, assuming that labels are always available. They ignore the fat that

even if the labels for the inoming objets an be obtained, samples an arrive fast

enough, that labeling all of them will be impossible. The ost of labeling should be also

taken into onsideration. Sometimes this ost is negligible, e.g., in the ase of weather

foreasting (a label an be obtained with a delay, but the ost is only related to the

observation and imputing it into the system). However, in most ases, suh as medial

diagnostis, labels are the result of human experts' e�ort, so labeling involves the ost

of their work. Given the above, the assumption that labels an be obtained for free is

unrealisti and limits the possibility of using many methods in real-life deision problems

[1℄.

The following thesis deals partially with minimizing the neessary ost of data labeling

using the so-alled ative learning approah [207℄. It onentrates on hoosing the inter-

esting unlabeled objets, whih are then passed as queries to be labeled by the expert.

There three main ative learning senarios that have been onsidered in the literature:

� Membership Query Synthesis [7℄ � In this senario, the learner an request labels for

any unlabeled samples, but typially the queries relate to the instanes synthesized

by the learner. The labeling of the generated instanes an be problemati if the

annotator is a human expert. For example, in image lassi�ation, the generated

instanes may not ontain meaningful objets [14℄. However, this senario shows

promising results when the labels are not derived from a human annotator but are,

for example, the result of experimentation [121℄.

� Stream-Based Seletive Sampling [8, 55℄ � The assumption of this senario is that

obtaining an unlabeled sample is inexpensive (or basially free). Beause of that,

an instane an be �rst samples from the distribution, and then the learner an

deide whether it wants to query an expert about its label. Samples are evaluated

based on various query strategies [64℄, like e.g., unertainty sampling [158℄, Query-

By-Committee (qb) [209℄, or Expeted Gradient Length (egl) [208℄.

� Pool-Based Sampling [158℄ � This senario is motivated by the fat, that for many

real-world tasks, a large olletions of unlabeled samples an be gathered simulta-

neously. In ontrast to the stream-based seletive sampling, query deisions are not

made individually in a sequential manner, but the olletion of samples is evaluated

and ranked before seleting the best query.
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The use of ative learning for streaming data proessing has been notied, among others

[152, 274℄, however it is still not widely used. Hene, it is worth noting the work of

Bouguelia et al. [28℄, who proposed a new ative learning query strategy based on in-

stane weighting. Ksieniewiz et al. [145℄ used query by example based on the values of

the support funtion to improve neural network's predition. [136℄ proposed employing

di�erent (query by ommittee) to lassify non-stationary data stream. It is also worth

mentioning the work [211℄, where the authors build a lassi�ers ensemble employing both

the ative learning approah as well as random labeling. Yu et al. proposed the extreme

learning mahine based solution, alled Ative Online-Weighted Extreme Learning Ma-

hine aow-elm [265℄. A hybrid labeling strategy based on unertainty sampling and

lass distribution was proposed for the imbalaned data stream lassi�ation by Zhang

et al. [268℄.

Another approah aiming to deal with the problem of limited aess to labels is known

as self-labeling [273℄. The goal of these tehniques is to enlarge the original learning

set (or obtain several extended learning sets) by adding unlabeled samples with the

most on�dent preditions.vIn the literature, Self labeling is usually divided into (i) self-

training [159, 262℄, where lassi�er is trained using small initial pool of labeled samples

and then retrained using learning set extended by its most on�dent preditions, and (ii)

o-training [2, 25℄, whih assumes that the feature spae an be split into two independent

sets alled views. Then one lassi�er is trained on eah view and they teah eah other

the most on�dent preditions. Triguero et al. de�ned the main properties of self-labeled

tehniques [230℄:

� Addition mehanism, whih de�nes whether an enlarged labeled set is obtained

inrementally, in bath mode, or by amending.

� Single-lassi�er versus multi-lassi�er, whih spei�es how many lassi�er are used

during the enlarging proess.

� Single-learning versus multi-learning, whih de�nes whether the used lassi�ers are

heterogeneous of homogeneous.

� Single-view versus multi-view, whih spei�es how the feature spae is onsidered

by the self-labeled algorithm.

The example of employing self-labeling in the data stream lassi�ation task might be

the Sa�olding Type-2 Classi�er proposed by Pratama et al.[191℄ and (ST2Class) based

on Fuzzy Neural Network. Koryki et al. augmented the ative learning module using

self-labeling in order to improve data stream lassi�ation under very small instane

budget [129℄.
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2.5 Stream-learn library for di�ult data stream bath anal-

ysis

The stream-learn is a Python module, implementing the sikit-learn api [187℄, intended

for a bath-oriented data stream proessing. It implements a data stream generator,

based on the Madelon [99℄ model used to generate stati data in sikit-learn and al-

lows the development of both stationary and dynami data streams, ontaining both

onept and prior lass probabilities drifts. It is supplemented with exemplary, simple

stream lassi�ers (Aumulated Samples Classi�er and Sample Weighted Meta Estima-

tor), whih may be used as the boilerplate for the users' solutions, and state-of-art

lassi�er ensembles (sea (Streaming Ensemble Algorithm) [221℄, OnlineBagging [184℄,

oob (Oversampling-Based Online Bagging) [243℄, uob (Undersampling-Based Online

Bagging) [243℄, awe (Auray Weighted Ensemble) [239℄, aue (Auray Updated En-

semble) [38℄ and wae (Weighted Aging Ensemble) [256℄). The pakage also implements

evaluation metris that are more omputationally e�etive than those available in sikit-

learn and imbalaned-learn. The element wrapping-up the pakage and allowing for

onduting experiments is a pair of evaluators: Test-Then-Train [88℄ and Prequential

[89℄, in their bath variants.

Software Arhiteture

The stream-learn pakage is organised in �ve modules, responsible for (i) data streams,

(ii) evaluation methods, (iii) lassi�ation algorithms, (iv) lassi�er ensembles and (v)

evaluation metris. A general diagram of the projet arhiteture is shown in Figure 2.4.
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Figure 2.4: Overall shema of the software arhiteture.
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The streams module ontains the arff �le parser lass, whih is the standard format for

serialising both real data streams and those generated, for example, by the moa software,

as well as the StreamGenerator lass responsible for generating syntheti data streams.

A more detailed desription of the module an be found in Setion 3.

The evaluators module ontains lasses responsible for two main predition measures es-

timation tehniques on data streams, namely Test-Then-Train and Prequential, in their

bath-based versions. The former one is based on separate windows known as data

hunks, while the latter uses a sliding window as a forgetting mehanism. Both teh-

niques, in eah step, reevaluate existing lassi�ers.

Estimators an be found in the lassi�ers and ensembles modules, whih ontain the

lassi�ers adapted for stream lassi�ation and state-of-art lassi�er ensembles that an

be used with implemented estimators.

The module metris implements a variety of evaluation measures for unbalaned binary

lassi�ation [42℄. The deision to reate a new implementation was made due to the

low omputational e�ieny of the metris inluded in existing pakages. The module

inludes reall [190℄, preision [190℄, Fβ sore [9℄, F1 sore [205℄, ba [34, 120℄, Gmeans,

and Gmean [11, 147℄.

Data stream generation A key element of the stream-learn pakage is a generator

that allows a repliable (aording to the given seed) lassi�ation dataset to be re-

ated with a lass distribution that hanges over the ourse of a data stream, with basi

onepts built on a standard lass distribution for the sikit-learn pakage from the

make_lassi�ation() funtion. These types of distributions attempt to reprodue the

rules for generating the Madelon set [99℄. The StreamGenerator is apable of generating

any variant of the stream known in the general taxonomy of streams.

Stationary Stream The simplest types of data streams are stationary streams. They

ontain a basi onept that is stati for the entire ourse of proessing. The hunks

di�er from eah other in terms of the patterns they ontain, but the deision boundaries

of the models built on them should not di�er statistially. This type of stream an be

generated with a lean generator all with no additional parameters. Suh a stream

is shown in Figure 2.5, whih ontains the set of satter plots for a two-dimensional

stationary stream with the binary problem.

What is important, ontrary to a typial all to make_lassi�ation(), the n_samples

parameter, determining the number of patterns in the set, is not spei�ed here, but

instead, two new attributes of a data stream are provided:
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Figure 2.5: Satter plots of seleted hunks from a stationary data stream.

� n_hunks � to determine the number of hunks in a data stream.

� hunk_size � to determine the number of patterns in eah data hunk.

In addition, data streams may ontain noise, whih is not onsidered onept drift but

presents an additional hallenge during stream analysis and against whih lassi�ers

should be robust. The StreamGenerator lass implements noise by inverting the lass

labels of a ertain perentage of the inoming instanes in the data stream. This per-

entage an be de�ned by an y_�ip parameter, as in the standard sikit-learn dataset

generation all. If a single �oat is spei�ed as the parameter value, the perentage of

noise refers to ombined instanes from all lasses. On the other hand, if a tuple of �oats

is spei�ed, the noise is done separately within eah lass using the spei�ed perentages.

Data streams ontaining onept drift The most ommonly studied property of data

streams is their variability over time. The phenomenon of onept drift is responsible for

this. The stream-learn pakage attempts to address the need to synthesize all the basi

variants of this phenomenon (i.e., sudden, gradual, and inremental drifts).

Sudden (Abrupt) drift

This type of drift ours when the onept from whih the stream is generated is sud-

denly replaed by another. The onept probabilities used by the StreamGenerator lass

are reated based on a sigmoid funtion generated with the onept_sigmoid_spaing

parameter, whih determines the shape of the funtion and the suddenness of the onept

hange. The higher the value, the more sudden the shift. Here, this parameter takes the

default value of 999, whih allows for the generation of a sigmoid funtion that simulates

an abrupt hange in the data stream. An illustration of sudden drift is shown in Figure

5.1.

Gradual drift

Unlike sudden drifts, gradual drifts are assoiated with a slower rate of hange that an

be deteted by observing the data stream for a longer period of time. This type of

drift refers to the transition phase in whih the probability of obtaining instanes of the

�rst onept dereases, while the probability of obtaining instanes of the next onept

inreases. The StreamGenerator lass simulates gradual drift by omparing the onept
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probabilities with the generated random noise and seleting whih onept is ative at a

given time depending on the result. An illustration of gradual drift is shown in Figure

5.2.

Inremental (gradual) drift

inremental drift ours when a series of barely pereptible hanges in the onept used

to generate the data stream our, unlike gradual drift where samples from di�erent

onepts are mixed without hanging. For this reason, drift an only be deteted after

some time. The severity of the hanges, and thus the speed of transition from one onept

to another, is desribed by the parameter onept_sigmoid_spaing, as in the previous

example. An illustration of inremental drift is shown in Figure 5.3.
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(a) Data stream with sudden drift.
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(b) Data stream with gradual drift.
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() Data stream with inremental drift.

Figure 2.6: Changes in lass distribution under eah type of onept drift.

Reurrent drift

The yli repetition of lass distributions is an entirely di�erent property of onept

drifts. If after another drift, the onept earlier present in the stream returns, we are

dealing with a reurrent drift. We an get this kind of data stream by setting the reurring

�ag in the generator. Illustration of the reurrent drift is presented in Figure 2.7a.

Non-reurring drift

The default mode of onseutive onept ourrenes is a non-reurring drift, where
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in eah onept drift an entirely di�erent new, previously unseen lass distribution is

synthesised. Illustration of the non-reurring drift is presented in Figure 2.7b.
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(a) Data stream with reurring drift.
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(b) Data stream with non-reurring drift.

Figure 2.7: Changes in lass distribution under reurring and non-reurring onept drift.

Class imbalane

Another area of data stream properties, di�erent from a onept drift phenomenon, is

the prior probability of problem lasses. By default, a balaned stream is generated, i.e.

one in whih patterns of all lasses are present in a similar number.

Stationary imbalaned stream The primary type of problem in whih we are dealing

with disturbed lass distribution is a stationary imbalaned stream, where the lasses

maintain a predetermined proportion in eah hunk of a data stream. To aquire this

type of a stream, one should pass the list to the weights parameter of the generator (i)

onsisting of as many elements as the lasses in the problem and (ii) adding up to one.

Illustration of the stationary imbalaned stream is presented in Figure 2.8a.

Dynamially imbalaned stream A less ommon type of imbalaned data, impossible

to obtain in stati datasets, is data imbalaned dynamially. In this ase, the lass

distribution is not onstant throughout a stream, but hanges over time, similar to

hanging the onept presene in gradual streams. A tuple of three numeri values is

passed to the weights parameter of the generator to get this type of a data stream:

� the number of yles of distribution hanges.

� onept_sigmoid_spaing parameter, deiding about the dynamis of hanges on

the same priniple as in gradual and inremental drifts.

� a range within whih osillation is to take plae.



Chapter 2. Seleted topis of pattern reognition 60

Illustration of the dynamially imbalaned stream is presented in the Figure 2.8b.
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(a) Statially imbalaned data stream.
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(b) Dynamially imbalaned data stream.
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() Dynamially Imbalaned Stream with Conept Osillation (diso).

Figure 2.8: Changes in lass distribution under dynamially hanging prior lass probabilities (a,b)

and onept drift paired with dynami imbalane ().

Mixing drift properties When generating data streams, we do not have to limit our-

selves to just one modi�ation of their properties. One may easily prepare a stream with

many drifts, any dynamis of hanges, a seleted type of drift and a diverse, dynami im-

balaned ratio. The last example of a data stream is suh a proposition, namely, diso

(Dynamially Imbalaned Stream with Conept Osillation). Illustration of the diso

stream is presented in Figure 2.8.

Impat The artiles onduted so far using stream-learn pakage deal with appliation

of preproessing in the inremental imbalaned data stream lassi�ation methods [98℄,

ative learning tehniques [145℄ and exploring the possibilities of employing the Dynami

Ensemble Seletion [277, 280, 284℄. Thanks to the preise, repliable and user-friendly

stream generation proedure, it also allows for a broad spetrum of drift detetion anal-

yses, depending not only on types of drifts but also on the dynamis of their hanges.

Finally, it also implements online bagging methods (uob, oob), whih, to the knowledge

of the authors, have not yet had open and stable implementation. Additionally, thanks to

the implementation of the arff �les parser, the stream-learn allows for onvenient work

with real data streams, whih may help to solve atual problems in real-life senarios.



Chapter 3

Algorithms for imbalaned data

lassi�ation

In this hapter, methods dediated to the task of di�ult stationary data lassi�ation

will be presented. Ensemble methods remain one of the leading approahes in the di�ult

data lassi�ation problem. Therefore, there is a need to introdue new lassi�er seletion

methods, as well as new approahes to lassi�er ombination.

First, three methods fousing on lustering-based ensemble pruning are presented. These

types of approahes look for the group of similar lassi�ers whih are replaed by their

representatives. A novel pruning riterion, based on well-known diversity measures, is

proposed. The �rst method selets the model with the best preditive performane

from eah luster to form the �nal ensemble, the seond one employs the multistage

organization, where instead of removing the lassi�ers from the ensemble eah lassi�er

luster makes the deision independently, while the third proposition ombines multistage

organization and sampling with replaement. Next, two methods, using the similarity

(distane) to the referene instanes and lass imbalane ratio to selet the most on�dent

lassi�er for a given observation are presented. Both approahes ome in two modes,

�rst one based on the k -Nearest Orales (knora) and the seond one also onsidering

lassi�er mistakes.

61
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3.1 Diversity Ensemble Pruning

This setion proposes the Diversity Ensemble Pruning (dep) algorithm. Clustering-based

ensemble pruning methods, despite possessing a separate taxonomy, are strongly related

to the notion of stati lassi�er seletion. The main novelty of the presented approah is

the lustering riterion based on the in�uene of individual base lassi�ers on the entire

ensemble diversity. Thanks to this, it is possible to group the base models in a one-

dimensional diversity spae. This algorithm, originally proposed by the author of the

following thesis to deal with balaned problems [283℄, has been experimentally evaluated

for the imbalaned data lassi�ation task. The goal here is to test whether lassi�er

seletion methods, whih employ diversity measures in order to �nd the most ompetent

models in a given region of the feature spae, an improve the ensemble's ability to detet

minority lass instanes without the use of data preproessing tehniques.

Clustering riterion

Here, the measure used for reating the spae for the lustering-based pruning is pro-

posed. As the non-pairwise and averaged pairwise diversity measures onsider all the

base models together and alulate one value for the entire ensemble, thus they ould

not be used for pruning, beause they do not present an impat of a partiular base las-

si�er on the ensemble diversity. Therefore a novel measure H as the lustering riterion

is proposed, whih is the di�erene between the value of diversity measure for the whole

ensemble Π and the value of diversity for the ensemble without a given lassi�er Ψi [283℄.

H(Ψi) = Div(Π) −Div(Π−Ψi). (3.1)

Thanks to this proposition the impat of eah base learner on the ensemble diversity is

presented in a one-dimensional spae, shown in Fig. 3.1.

Diversity based one-dimensional lustering spae and luster pruning

The hosen lustering algorithm is applied to the obtained lustering spae. The pruned

ensemble onsists of the base models with the highest balaned auray sore seleted

from eah luster. Then, the �nal deision is made based on support aumulation of

seleted prototype lassi�ers using the sum rule [76℄ shown in Equation 2.31 on p. 32.

The k-means lustering algorithm [162, 168℄ has been employed to �nd a set number

of lusters in the lustering spae onstruted by the proposed H measure. From eah

group a representative lassi�er with the highest preditive performane has been hosen.

The goal is to onstrut an ensemble ontaining strong, yet diverse base models, as these

two harateristis are distinguishing features of a well-performing lassi�er ensemble.

Pseudoode for the proposed method is presented in Algorithm 1.
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Figure 3.1: Histograms and density estimation plots for H measure based on eah ensemble diversity

metri alulated on the glass2 dataset.

Algorithm 1 Pseudoode of the proposed dep algorithm

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � lassi�er pool,

c � number of lusters,

LS � learning set,

Symbols:

H � set of H measure values for eah base lassi�er,

C � set of lusters,

S � set of evaluation metri values for eah base lassi�er,

Output:

ΠS � pool of seleted lassi�ers.

1: H ← ∅,ΠS ← ∅,S ← ∅

2: for eah Ψi in Π do

3: H ← Hi = div(Π,LS)− div((Π−Ψi),LS)
4: S ← bai = evaluate(Ψi,LS)
5: end for

6: C = k-Means(H, c)
7: for eah luster Cj in C do
8: ΠS ← selet(Π, Cj ,S)
9: end for

The desription of the funtions used in the pseudoode is as follows:

� div() � alulates the ensemble diversity of a given lassi�er pool Π based on the

provided learning set LS.

� evaluate() � alulates the balane auray sore on learning set LS for eah

base lassi�er Ψi in order to use it later in the seletion proess.
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� k-Means() � arries out the lustering proess of a given one-dimensional diversity

spae H into c lusters using the k-means algorithm. Returns information about

the luster eah base lassi�er belongs to.

� selet() � from eah luster Cj selets a prototype lassi�er with the highest

balaned auray sore to be a part of the new lassi�er pool ΠS .

Computational and memory omplexity analysis

The proposed method inludes the stage of determining the H measure value of eah base

lassi�er, the lustering of models in the diversity spae and the seletion of prototype

lassi�ers.

In order to obtain the H measure value for eah base lassi�er, �rst, the ensemble

diversity must be alulated. The omplexity of this proess is O(n) or O(n2), where

n is the number of base lassi�ers, depending on whether the non-pairwise or pairwise

measure is used. Then, the H measure alulation proess has the omplexity of O(n).

The k-means algorithm was used for lustering in diversity spae. Therefore, the om-

plexity of lustering is O(ncde), where c is the number of lusters, d is the number of

data dimensions, and e desribes the number of iterations/epohs of the algorithm [26℄.

As the lustering spae is one-dimensional, omplexity is redued to O(nce).

3.1.1 Experimental evaluation

This subsetion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Researh questions

The onduted researh aims to answer two main questions:

Q1. Is the stati lassi�er seletion able to improve the results obtained by ombining

the entire lassi�er pool for the task of imbalaned data lassi�ation?

Q2. Can the use of stati lassi�er seletion in the problem of imbalaned data lassi�-

ation result in performane omparable with the use of preproessing tehniques?

Goals of the experiments

Experiment 1 � Parametrization

The aim of the �rst experiment is to determine the number of lusters for whih the
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methods based on eah of the measures of diversity and the base lassi�er performs

best. Parameterization is arried out on the basis of the balaned auray sore, and

the best pairs of the diversity measure and the number of lusters are used in the next

experiments.

Experiment 2 � Comparison with standard ombination

The aim of the seond experiment is to ompare the previously seleted methods with

a ombination of the entire lassi�er pool. Support aumulation and majority voting of

all 50 base models were used as referene methods. The best of the proposed methods

is then used in Experiment 3.

Experiment 3 � Comparison with preproessing tehniques

In the third experiment, the method seleted in Experiment 2 is ompared with the

ombination of the whole lassi�er pool generated using preproessing methods. Pre-

proessing is performed separately for eah of the bootstraps generated by Strati�ed

Bagging.

Experimental set-up

The researh was arried out on 41 imbalaned datasets presented in Table 2.3 on p. 44.

However, it should be noted that the experiments ould only be arried out on those

datasets for whih the k-means lustering algorithm was able to �nd the desired number

of lusters (from 2 to 7) for a set lassi�ation algorithm and diversity measure.

The evaluation of the proposed methods is based on six metris widely used in the ase

of imbalaned lassi�ation problems. Three popular lassi�ation algorithms were used

as base models, ensemble diversity was alulated using �ve di�erent measures, and

four preproessing tehniques were used as referene methods. Detailed information is

presented below:

� Evaluation measures � balaned auray sore (ba), Gmeans, F1 score, preision,

reall, and spei�ity,

� Classi�ation algorithms �Gaussian Naïve Bayes lassi�er (gnb), k-Nearest Neigh-

bors lassi�er (knn), and Classi�ation and Regression Tree (art),

� Ensemble diversity measures � The entropy measure E, Kohavi-Wolpert variane

(KW ), measurement of interrater agreement k, the averaged Q statistis (Qav),

and the averaged disagreement measure (Disav),
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� Referene methods:

� Strati�ed Bagging without preproessing � Majority Voting (mv), Support

Aumulation (sa),

� Strati�ed Bagging paired with preproessing (sa only) � Random Oversam-

pling (ros), smote, svm-smote (svm) and Borderline-smote (b2).

The �xed size of the lassi�er pool was set to 50 base models, generated using a strat-

i�ed version of Bagging [30℄. This Bagging generates eah bootstrap sampling with

replaement majority and minority lasses separately while maintaining the original im-

balane ratio. The size of eah bootstrap is set to half the size of the original training

set. The proposed approahes were evaluated on the basis of 5 times repeated 2-fold

ross-validation. The ensemble's deision is based on support aumulation. Statistial

analysis of the obtained results was performed using the Wiloxon global rank test [62℄.

All experiments have been implemented in Python programming language and an be

repeated using the ode on Github

1

.

Experiment 1 � Parametrization

Table 3.1 presents the results of the luster number parametrization for eah lassi�er

diversity measure in relation to the type of base lassi�er. The digit after l denotes the

set number of lusters. The numbers under the average rank of eah method indiate,

whih algorithms were statistially signi�antly worse than the one in question.

In the ase of gnb, there is a lear tendeny for methods using 2 or 3 lusters to ahieve

the best results, regardless of the diversity measure used. The knn lassi�er performs

best when k-means divides lustering spae into two groups. A more interesting situation

an be observed in the ase of the art lassi�er, whih performs best in the ase of an

odd number of lusters, with an emphasis on 3 and 5 groups.

Based on the results obtained and the statistial tests onduted, the following pairs of

the measure of diversity and number of lusters were seleted for the next experiment:

� gnb � E: 2, k: 2, KW : 2, Disav: 2, Qav : 3,

� knn � E: 2, k: 2, KW : 2, Disav : 2, Qav: 4,

� art � E: 5, k: 3, KW : 3, Disav: 3, Qav : 5.

Experiment 2 � Comparison with standard ombination

Figure 3.2 shows radar plots with the average ranks ahieved by eah method on all

evaluation metris.

1

https://github.om/w4k2/is21-ensemble-pruning

https://github.com/w4k2/iccs21-ensemble-pruning
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Table 3.1: Results of Wiloxon statistial test on global ranks for eah measure of diversity and number

of lusters. Calulated based on ba. The higher the average rank value, the better.

GNB

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 4.696 4.089 3.804 2.679 3.179 2.554

3, 4, 5, 6 4, 5, 6 4, 6 � � �

k 4.679 4.018 3.446 3.036 3.000 2.821

3, 4, 5, 6 4, 5, 6 � � � �

KW 4.679 4.018 3.464 3.054 2.946 2.839

3, 4, 5, 6 4, 5, 6 � � � �

Disav 4.679 4.018 3.464 3.054 2.946 2.839

3, 4, 5, 6 4, 5, 6 � � � �

Qav 4.089 4.339 3.286 3.375 3.125 2.786

5, 6 3, 4, 5, 6 � � � �

kNN

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 4.054 3.893 3.286 3.482 3.250 3.036

6 6 � � � �

k 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

KW 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

Disav 4.268 3.607 2.857 3.679 3.000 3.589

3, 5 � � � � �

Qav 3.339 3.393 3.929 3.839 3.179 3.321

� � � � � �

CART

(1)

DEP-CL2

(2)

DEP-CL3

(3)

DEP-CL4

(4)

DEP-CL5

(5)

DEP-CL6

(6)

DEP-CL7

E 2.103 4.241 3.172 4.310 3.034 4.138

� 1, 3, 5 1 1, 3, 5 1 1, 3, 5

k 2.276 4.138 3.138 3.983 3.638 3.828

� 1, 3 1 1, 3 1 1

KW 2.276 4.155 3.172 4.017 3.672 3.707

� 1, 3 1 1, 3 1 1

Disav 2.276 4.155 3.172 4.052 3.672 3.672

� 1, 3 1 1, 3 1 1

Qav 1.948 4.448 3.069 4.672 3.328 3.534

� 1, 3, 5, 6 1 1, 3, 5, 6 1 1

For the gaussian naïve bayes lassi�er, the advantage of the proposed methods over the

ombination of the entire available lassi�er pool an be observed. The only exeption is

reall, where dep-e2 is omparable to the referene methods, while the other proposed

approahes display a slightly lower average rank value.

These observations are on�rmed by Table 3.2. It presents the results of the performed

statistial analysis, on the basis of whih it an be onluded that the proposed methods

ahieve statistially signi�antly better average ranks than the ombination of the entire

lassi�er pool for eah of the metris, exept reall, where no statistially signi�ant

di�erenes were reported. Worth noting is also the idential performane of methods

based on measures k, KW , and Disav.

In the ase of the knn lassi�er, the ahieved results again speak in favor of the proposed

methods. Preision ahieved by support aumulation of the entire pool of lassi�ers

is omparable to that ahieved by the ensemble pruning algorithms. However, the ad-

vantage obtained in terms of reall while maintaining similar preision proves that the
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Figure 3.2: Visualization of the mean ranks ahieved by eah method.

proposed methods are oriented towards reognizing the minority lass. This is espeially

visible in the ase of measures k, KW and Disav, whih again show exatly the same

performane.

The results of the statistial analysis for knn lassi�er are also slightly more interest-

ing. There is a statistially signi�ant advantage of the proposed solutions over the

ombination of the entire pool in the ase of ba, Gmeans and reall (at the expense of

spei�ity). When it omes to F1 score, the ensemble pruning algorithms are statistially
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Table 3.2: Results of Wiloxon statistial test on global ranks for proposed methods in omparison to

the ombination of the whole lassi�er pool. The higher the average rank value, the better.

GNB

(1)

MV

(2)

SACC

(3)

DEP-E2

(4)

DEP-k2

(5)

DEP-KW2

(6)

DEP-DIS2

(7)

DEP-Q3

ba 1.839 2.018 5.125 4.911 4.911 4.911 4.286

� � 1, 2 1, 2 1, 2 1, 2 1, 2

Gmeans 1.696 2.196 4.661 5.054 5.054 5.054 4.286

� 1 1, 2 1, 2 1, 2 1, 2 1, 2

F1 sore 2.196 2.625 4.804 4.589 4.589 4.589 4.607

� � 1, 2 1, 2 1, 2 1, 2 1, 2

preision 2.607 3.000 4.518 4.446 4.446 4.446 4.536

� � 1, 2 1, 2 1, 2 1, 2 1, 2

reall 4.393 4.304 4.143 3.839 3.839 3.839 3.643

� � � � � � �

spei�ity 2.429 3.000 4.589 4.643 4.643 4.643 4.054

� 1 1, 2 1, 2 1, 2 1, 2 1, 2

kNN

(1)

MV

(2)

SACC

(3)

DEP-E2

(4)

DEP-k2

(5)

DEP-KW2

(6)

DEP-DIS2

(7)

DEP-Q4

ba 2.393 2.696 4.446 4.732 4.732 4.732 4.268

� � 1, 2 1, 2 1, 2 1, 2 1, 2

Gmeans 2.607 2.839 4.571 4.732 4.732 4.732 3.786

� � 1, 2 1, 2 1, 2 1, 2 1, 2

F1 sore 3.143 3.482 4.286 4.268 4.268 4.268 4.286

� � 1 1 1 1 1

preision 3.696 4.375 4.214 3.768 3.768 3.768 4.411

� � � � � � �

reall 2.250 2.411 4.732 4.964 4.964 4.964 3.714

� � 1, 2, 7 1, 2, 7 1, 2, 7 1, 2, 7 1, 2

spei�ity 4.750 5.036 3.589 3.214 3.214 3.214 4.982

4, 5, 6 3, 4, 5, 6 � � � � 3, 4, 5, 6

CART

(1)

MV

(2)

SACC

(3)

DEP-E5

(4)

DEP-k3

(5)

DEP-KW3

(6)

DEP-DIS3

(7)

DEP-Q5

ba 2.586 2.586 4.448 4.259 4.259 4.259 5.603

� � 1, 2 1, 2 1, 2 1, 2 all

Gmeans 2.224 2.224 4.362 4.569 4.569 4.569 5.483

� � 1, 2 1, 2 1, 2 1, 2 all

F1 sore 2.500 2.500 4.328 4.328 4.328 4.328 5.690

� � 1, 2 1, 2 1, 2 1, 2 all

preision 3.569 3.569 4.207 3.759 3.759 3.759 5.379

� � � � � � all

reall 2.603 2.603 4.448 4.483 4.483 4.483 4.897

� � 1, 2 1, 2 1, 2 1, 2 1, 2

spei�ity 3.879 3.879 3.810 3.552 3.552 3.552 5.776

� � � � � � all

signi�antly better than majority voting, but the result obtained by them is omparable

to support aumulation.

Partiularly promising results an be observed when using art as the base lassi�er.

In this ase, the measure of diversity Qav performs best. Based on the statistial anal-

ysis presented in Table 3.2, it ahieves statistially signi�antly better results than the

ombination of the entire lassi�er pool, as well as the pruning algorithms using other

measures of diversity for the lustering spae onstrution. This is true for every metri

exept reall.

Based on the results of the statistial analysis, the gnb dep-e2, knn dep-dis2, and art

dep-q5 methods were seleted for the next experiment. These approahes displayed the

highest average ranks as well as a good ability to reognize the minority lass.
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Experiment 3 � Comparison with preproessing tehniques

Figure 3.3 shows the results of omparing the methods seleted in Experiment 2 with

the approahes employing preproessing tehniques.
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Figure 3.3: Visualization of the mean ranks ahieved by eah method.

When the base lassi�ers are gnb and knn, it an be notied that, despite ahieving

average rank values for eah of the metris, the proposed methods are never statistially

signi�antly worse than the referene approahes using preproessing (Table 3.3). Ad-

ditionally, gnb dep-e2 shows statistially higher preision than that ahieved by using
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Table 3.3: Results of Wiloxon statistial test on global ranks for the seleted methods in omparison

to the preproessing tehniques. The higher the average rank value, the better.

GNB

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-E2

ba 3.125 3.232 3.286 2.286 3.071

4 4 4 � �

Gmeans 3.089 3.286 3.268 2.321 3.036

4 4 4 � �

F1 sore 2.768 3.429 2.625 2.750 3.429

� 3 � � �

preision 2.518 3.446 2.446 3.161 3.429

� 1, 3 � � 1, 3

reall 3.982 2.500 3.464 2.429 2.625

2, 4, 5 � 2, 4 � �

spei�ity 2.054 3.768 2.607 3.250 3.321

� 1, 3 � 1 1

kNN

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-DIS2

ba 2.946 3.268 3.321 2.786 2.679

� � � � �

Gmeans 2.911 3.304 3.268 2.911 2.607

� � � � �

F1 sore 3.304 3.018 3.482 2.232 2.964

4 4 4 � �

preision 3.446 2.839 3.232 2.054 3.429

2, 4 4 4 � 4

reall 2.446 3.411 3.000 3.536 2.607

� 1 1 1 �

spei�ity 3.857 2.589 3.089 1.357 4.107

2, 3, 4 4 2, 4 � all

CART

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

DEP-Q5

ba 2.052 2.672 3.276 3.793 3.207

� � 1, 2 1, 2 1

Gmeans 1.897 2.655 3.172 4.000 3.276

� 1 1 1, 2, 3 1

F1 sore 2.448 2.759 3.379 2.828 3.586

� � 1, 2 � 1, 4

preision 3.034 2.897 3.328 2.207 3.534

4 4 4 � 4

reall 1.948 2.603 3.190 4.207 3.052

� 1 1, 2 all �

spei�ity 3.966 3.138 3.103 1.483 3.310

2, 3, 4 4 4 � 4

Random Oversampling and svm-smote, and knn dep-dis2 ahieves better preision

than the ensemble using Borderline-smote for data preproessing.

The ensemble pruning methods seem to perform better when using the art deision

tree as the base lassi�er. Again, none of the referene methods ahieved statistially

signi�antly better average ranks than the proposed approah. At the same time, how-

ever, art dep-q5 ahieves a statistially signi�antly better rank value than ros for

ba, Gmeans and F1 score. This method is also statistially signi�antly better than

Borderline-smote in terms of F1 score and spei�ity.

Observations

Based on the results of Experiment 1, it an be onluded that the lassi�er pool gen-

eration using Strati�ed Bagging probably does not allow for ahieving a high ensemble
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diversity in the ase of gnb and knn base lassi�ers. This is indiated by the fat that

the methods using these lassi�ers perform best when the lustering spae is divided into

just two groups. Deision trees, whih show a greater tendeny to obtain diverse base

models, do muh better in this respet. It is also worth noting that in the ase of art,

due to no tree depth limitation, the results of the majority vote were in line with the

aumulation of support.

Regardless of the base lassi�er used, the results obtained with the use of the measures

of diversity k, KW , and Disav were exatly the same. On this basis, it an be onluded

that the diversity spaes generated on their basis oinide. An example of this an be seen

in the example shown in Figure 3.1, where all three spaes have the same distribution

density (where the spae based on measurement of interrater agreement k is a mirror

image of the spaes based on KW and Disav).

Experiment 2 proved that by a skillful seletion of a small group of lassi�ers, in the

imbalaned data lassi�ation problem, it is possible to ahieve a better performane

than that ahieved by ombining the deisions of the entire lassi�er pool.

Experiment 3 was able to on�rm that thanks to employing the lassi�er seletion meth-

ods to the problem of imbalaned data lassi�ation, it is possible to obtain results sta-

tistially not worse (and sometimes statistially signi�antly better) than those ahieved

by the ensembles using preproessing tehniques.

Although, in the ase of deision trees, onduted statistial tests indiate that the most

suitable diversity measure for the problems onsidered during experimentation may be

the averaged Q statistis, it an not de�nitively be onsidered the best. As stated in [151℄,

after studying various diversity measures, there is no de�nitive onnetion between the

measures and the performane improvement. Nonetheless Qav was reommended only

based on ease of interpretation and alulation.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Is the stati lassi�er seletion able to improve the results obtained by ombining

the entire lassi�er pool for the task of imbalaned data lassi�ation?

A1. The onduted experiments have shown that the use of a stati lassi�er sele-

tion, based on ensemble diversity, is able to statistially signi�antly improve the

ensemble performane in the task of the imbalaned data lassi�ation.

Q2. Can the use of stati lassi�er seletion in the problem of imbalaned data lassi�-

ation result in performane omparable with the use of preproessing tehniques?
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A2. The obtained results on�rmed that lassi�er seletion algorithms may show sta-

tistial dependeny to the approahes using preproessing tehniques in the task

of imbalaned data lassi�ation.

3.2 Clustering-based multistage organization

The following setion introdues two proposals for the extension of the multistage ma-

jority voting organization (momv) originally proposed by Ruta and Gabry± [201℄ and

desribed in more detail in Chapter 2. Both approahes are strongly based on the las-

si�er lustering in one-dimensional diversity spae, whih was introdued in Setion 3.1

and follow the same proedure of alulating the H measure (Equation 3.1). Although

the multistage organization is not the main subjet of the thesis, it was onsidered an

interesting omplement to the proposed dep algorithm.

Two-step majority voting organization (tsmv)

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7
lassifiers

H1 H2 H3 H4 H5 H6 H7 m measure

lustering

1 1 1 0 1 0 0 1

1 1 0 2

1 deision

Figure 3.4: Example of a two-step majority voting organization with 9 lassi�ers divided into 3 lusters.

Layer 2 is the result of majority voting of eah luster and the �nal deision is made by the seond majority

voting.

The �rst proposed method, alled Two-step Majority Voting Organization (tsmv), is a

modi�ation of the momv struture desribed in [201℄. Instead of alloating outputs to

di�erent groups by permutation, the base models in eah luster are treated as a separate

ensemble ombined by majority voting. The alulation of H measure as well as laster-

izaton proess are onduted in the same fashion as in the pde. As the remainder, the

proedure is desribed in Algorithm 2. Then, preditions from all lusters are olleted
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and the majority voting rule is applied for the seond time, in order to obtain a �nal

deision. This proess is depited in Figure 3.4 and the pseudoode for the predition

proess of tsmv is presented in Algorithm 3.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7
lassifiers

H1 H2 H3 H4 H5 H6 H7 m measure
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Figure 3.5: Example of two-step majority voting organization with 9 lassi�ers divided into 3 lusters,

using sampling with replaement. The number of groups and lassi�ers in eah group in the �rst layer

is equal to the number of lusters found. Layer 2 and the �nal deision are also made aording to the

majority voting.

Algorithm 2 Pseudoode of the lustering proess for tsmv and rsmo methods

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � lassi�er pool,

c � number of lusters,

LS � training set,

Symbols:

H � set of H measure values for eah base lassi�er,

Output:

C = {C1, C2, . . . , Cc} � set of lusters.

1: H ← ∅

2: for eah Ψi in Π do

3: H ← Hi = div(Π,LS)− div((Π−Ψi),LS)
4: end for

5: C = k-Means(H, c)

The seond proposed method, alled Random Sampling Multistage Organization (rsmo),

is a modi�ation pf tsmv introduing sampling with replaement before the �rst voting

step. This approah is based on the assumption that lassi�ers belonging to the same

luster make similar deisions, so they don't have to be all used during the the lassi�-

ation proess. In rsmo, the �rst layer of voting is onstruted by generating a number
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Algorithm 3 Predition pseudoode of the tsmv

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � lassi�er pool,

C = {C1, C2, . . . , Cc} � set of lusters.

T S � testing set,

Symbols:

V � set of majority voting results.

Output:

Decision � lassi�ation results.

1: for eah luster Cj in C do
2: ΠCj = {∀i ∈ Cj,Ψi}
3: V ← majorityVoting(ΠCj ,T S) ⊲ First voting
4: end for

5: Decision = mode(V) ⊲ Seond voting

of groups equal to the number of lusters c. Eah group ontains one lassi�er sampled

from eah of the lusters found. Example of random sampling multistage organization

is shown in Figure 3.5 and the pseudoode for its predition proess is presented in

Algorithm 3.

Algorithm 4 Predition pseudoode of the rsmo

Input:

Π = {Ψ1,Ψ2, . . . ,Ψn} � lassi�er pool,

C = {C1, C2, . . . , Cc} � set of lusters.

T S � testing set,

c � number of lusters,

Symbols:

V � set of majority voting results.

Output:

Decision � lassi�ation results.

1: for eah luster Cj in C do
2: for k in range(c) do
3: ΠCj

← sampling(Π, Ck) ⊲ Sampling with replaement

4: end for

5: V ← majorityVoting(ΠCj
,T S) ⊲ First voting

6: end for

7: Decision = mode(V) ⊲ Seond voting

The following funtions are used in the presented pseudoodes:

� div() � alulates the ensemble diversity of a given lassi�er pool Π based on the

provided learning set LS.
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� k-Means() � arries out the lustering proess of a given one-dimensional diversity

spae H into c lusters using the k-means algorithm. Returns information about

the luster eah base lassi�er belongs to.

� majorityVoting() � uses all lassi�ers belonging to a given pool ΠCj to lassify

the instanes in the testing set T S using majority voting.

� mode() � returns the modal (most ommon) value in a set V.

� sampling() � selet, using sampling with replaement, a single lassi�er Ψi from a

given luster.

Computational and memory omplexity analysis

Similar to the pde methods proposed in Setion 3.1, tsmv and rsmo inlude the stage

of the H measure alulation as well as lustering of base models in the prepared spae.

The omputational omplexity of diversity alulation is again O(n) or O(n2), where

n is the number of base lassi�ers, depending on whether the non-pairwise or pairwise

measure is used. The omplexity of H measure alulation proess is O(n).

The omplexity of the k-means lustering algorithm is O(ncde), where c is the number of

lusters, d is the number of data dimensions, and e desribes the number of iterations/e-

pohs [26℄. Complexity is redued to O(nce), as the lustering spae is one-dimensional.

During the predition step, tsmv �rst performs majority voting for eah lassi�er pool

ΠCi
with omplexity O(nCi

+ | M |), where nCi
denotes number of base models in pool

ΠCi
and |M | denotes the number of lasses. In the ase of binary lassi�ation |M | an

be omitted, resulting in O(nCi
) omplexity. Then, the mode operation with omplexity

O(c) is used to obtain the �nal deision.

For rsmo, sampling with replaement is performed for eah luster Ci with omplexity

O(| Ci |), where | Ci | is a ardinality of luster Ci. Then, for eah lassi�er pool ΠCi
,

majority voting is arried out with omplexity O(c+ | M |). Finally, Mode operation

with omplexity O(c) is again employed to obtain predition.

3.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Researh questions

The onduted researh aims to answer the following main questions:



Chapter 3. Algorithms for imbalaned data lassi�ation 77

Q1. Can the use of a lustering-based two-stage majority voting struture improve the

performane of the imbalaned data lassi�ation?

Q2. Can the introdution of sampling with replaement before the �rst voting stage

allow to inrease the generalization ability of the momv struture?

Q3. Can the proposed multistage majority voting organization ompete with methods

employing preproessing tehniques?

Goals of the experiments

Experiment 1 � Comparison with standard ombination

The aim of the �rst experiment is to hek how the proposed two-step majority voting

methods ompare to a simple, one-step, ombination of a lassi�er pool.

Experiment 2 � Comparison with preproessing tehniques

In the seond experiment, the methods seleted in Experiment 1 will be ompared with

preproessing-based referene methods.

Experimental set-up

The researh was arried out on 41 imbalaned datasets presented in Table 2.3 on p. 44.

Sine the tsmv and rsmo algorithms are based on the same lustering approah as pde,

again the experiments ould only be arried out on those datasets for whih the k-means

lustering was able to �nd the set number of lusters (ranged from 2 to 7) for a set pair

of diversity measure and lassi�ation algorithm.

Sine the evaluated methods are strongly based on the one-dimensional diversity spae

introdued in Setion 3.1, the experimental set-up is almost idential to that desribed

for pde algorithm. However, taking into aount the fat that multistage majority voting

organization is not the main interest of this thesis, but only an extension of the previously

studied method, the experimental evaluation was redued to two base lassi�ers. Details

on used set-up are listed below:

� Evaluation measures � balaned auray sore (ba), Gmeans, F1 score, preision,

reall, and spei�ity,

� Classi�ation algorithms �Gaussian Naïve Bayes lassi�er (gnb) and Classi�ation

and Regression Tree (art),

� Ensemble diversity measures � The entropy measure E, Kohavi-Wolpert variane

(KW ), measurement of interrater agreement k, the averaged Q statistis (Qav),

and the averaged disagreement measure (Disav),
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� Referene methods:

� Strati�ed Bagging without preproessing � Majority Voting (mv), Support

Aumulation (sa),

� Strati�ed Bagging paired with preproessing (sa only) � Random Oversam-

pling (ros), smote, svm-smote (svm) and Borderline-smote (b2).

The �xed size of the lassi�er pool was set to 50 base models, generated using a strat-

i�ed version of Bagging [30℄. This Bagging generates eah bootstrap sampling with

replaement majority and minority lasses separately while maintaining the original im-

balane ratio. The size of eah bootstrap is set to half the size of the original training

set. The proposed approahes were evaluated on the basis of 5 times repeated 2-fold

ross-validation. The ensemble's deision is based on support aumulation. Statistial

analysis of the obtained results was performed using the Wiloxon global rank test [62℄.

The luster numbers for eah diversity measure were seleted in the preliminary researh:

� tsmv gnb � E: 4, k: 4, KW : 4, Disav: 4, Qav: 6,

� rsmo gnb � E: 6, k: 6, KW : 6, Disav: 4, Qav: 5,

� tsmv art � E: 5, k: 5, KW : 5, Disav: 5, Qav: 5,

� rsmo art � E: 7, k: 7, KW : 7, Disav: 7, Qav: 3.

All experiments have been implemented in Python programming language and an be

repeated using the ode on Github

2

.

Experiment 1 � Comparison with standard ombination

Figure 3.6 and Table 3.4 show the results of using two-step mojority voting organization,

both without (tsmv) and with sampling (rsmo), ompared to the referene methods

for gnb lassi�er. In the ase of tmsv, the results are statistially signi�antly better

than those of the standard ombination for all metris exept reall. Unfortunately, the

ability of the proposed methods to detet the minority lass turned out to be statistially

signi�antly worse than that of the referene methods. Noteworthy are the partiularly

poor results of the method based on the Qav diversity measure.

The results are di�erent when sampling with replaement is introdued to the two-step

majority voting. The most signi�ant hange ours for the approah using the Qav

diversity measure, whih from the worst has beome the most balaned for eah of

2

https://github.om/w4k2/is21-ensemble-pruning

https://github.com/w4k2/iccs21-ensemble-pruning
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the evaluation metris. The most important thing is that it has beome statistially

omparable with the referene methods in terms of the ability to reognize the minority

lass.

As in the ase of gnb, when the art deision tree is used as the base lassi�er, the

most interesting relationships are represented by the methods based on the averaged

Q statistis. Both Figure 3.7 and Table 3.5 show that even without sampling with

replaement, the Qav-based method shows the greatest potential in terms of mean ranks.

It is, as the only of the proposed approahes, statistially signi�antly better in terms of

ba than the referene ensemble methods. Additionally, it is statistially signi�antly

the best when it omes to F1 sore, preision and spei�ity. At the same time, its

average rank values in terms of Gmeans and reall are statistially omparable to all

other methods.

However, the introdution of sampling with replaement auses that the rsmo approah

using Qav for the lustering spae de�nition to beome statistially signi�antly better

than most of the other methods � tsmv, mv and sa � in terms of Gmeans and recall.

On the basis of the obtained results, the following methods were seleted for Experiment

2:

� gnb � tsmv-dis4 and rsmo-q5,

� art � tsmv-q4 and rsmo-q3.
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Figure 3.6: Average rank values for eah of the tested methods regarding gnb.
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Table 3.4: Results of Wiloxon statistial test on global ranks for proposed methods in omparison to

the ombination of the whole lassi�er pool regarding gnb lassi�er. The higher the average rank value,

the better.

TSMV GNB

(1)

MV

(2)

SACC

(3)

E4

(4)

k4

(5)

KW4

(6)

DIS4

(7)

Q6

ba 2.607 2.875 4.339 4.946 4.946 4.946 3.339

− − 1,2 1,2,7 1,2,7 1,2,7 −

Gmeans 2.304 2.768 4.571 5.071 5.071 5.071 3.143

− 1 1,2,7 1,2,7 1,2,7 1,2,7 −

F1 sore 2.018 2.518 4.286 5.036 5.036 5.036 4.071

− 1 1,2 1,2 1,2 1,2 1,2

precision 1.714 2.214 4.143 5.089 5.089 5.089 4.661

− 1 1,2 1,2,3 1,2,3 1,2,3 1,2

recall 5.250 5.107 4.018 3.625 3.625 3.625 2.750

3,4,5,6,7 3,4,5,6,7 7 7 7 7 −

specificity 1.357 1.929 4.125 5.196 5.196 5.196 5.000

− 1 1,2 1,2,3 1,2,3 1,2,3 1,2

RSMO GNB

(1)

MV

(2)

SACC

(3)

E6

(4)

k6

(5)

KW6

(6)

DIS4

(7)

Q5

ba 2.750 3.232 4.339 4.446 4.304 4.518 4.411

� � 1, 2 1, 2 1, 2 1 1, 2

Gmeans 2.518 3.071 4.250 4.714 4.393 4.875 4.179

� � 1, 2 1, 2 1, 2 1, 2 1, 2

F1 sore 2.268 2.643 4.500 4.714 4.196 5.125 4.554

� � 1, 2 1, 2 1, 2 1, 2, 5 1, 2

precision 1.929 2.357 4.286 4.768 4.482 5.786 4.393

� � 1, 2 1, 2 1, 2 all 1, 2

recall 5.286 5.179 3.839 3.518 3.107 2.339 4.732

3, 4, 5, 6 3, 4, 5, 6 5, 6 6 6 � 3, 4, 5, 6

specificity 1.607 2.179 4.196 4.929 4.607 6.500 3.982

� 1 1, 2 1, 2, 3, 7 1, 2 all 1, 2
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Figure 3.7: Average rank values for eah of the tested methods regarding art.
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Table 3.5: Results of Wiloxon statistial test on global ranks for proposed methods in omparison to

the ombination of the whole lassi�er pool regarding art lassi�er. The higher the average rank value,

the better.

TSMV CART

(1)

MV

(2)

SACC

(3)

E5

(4)

k5

(5)

KW5

(6)

DIS5

(7)

Q5

ba 3.552 3.552 4.017 4.103 4.052 4.052 4.672

� � � � � � 1, 2

Gmeans 3.517 3.517 4.086 4.155 4.103 4.103 4.517

� � � � � � �

F1 sore 3.276 3.276 4.293 3.966 3.914 3.914 5.362

� � � � � � all

precision 3.000 3.000 4.397 3.914 3.862 3.862 5.966

� � 1, 2 1, 2 1, 2 1, 2 all

recall 4.224 4.224 3.862 3.983 3.983 3.983 3.741

� � � � � � �

specificity 2.793 2.793 4.069 4.190 4.138 4.138 5.879

� � 1, 2 1, 2 1, 2 1, 2 all

RSMO CART

(1)

MV

(2)

SACC

(3)

E7

(4)

k7

(5)

KW7

(6)

DIS7

(7)

Q3

ba 3.569 3.569 3.638 3.603 4.500 3.983 5.138

� � � � 1, 2 � 1, 2, 3, 4, 6

Gmeans 3.483 3.483 3.707 3.672 4.569 4.052 5.034

� � � � 1, 2 � 1, 2, 3, 4, 6

F1 sore 3.655 3.655 3.293 3.776 4.362 3.845 5.414

� � � � 3 � all

precision 3.741 3.741 3.379 3.862 4.086 3.914 5.276

� � � � � � all

recall 3.448 3.448 3.621 3.759 4.466 4.328 4.931

� � � � 1, 2 � 1, 2, 3, 4

specificity 3.828 3.828 3.707 3.724 3.879 3.828 5.207

� � � � � � all

Experiment 2 � Comparison with preproessing tehniques

The results of the statistial analysis for the omparison of the tsmv and rsmo with

the preproessing-based approahes are presented in Tables 3.6 and 3.7. Worth noting

is the great similarity of both the average rank values and the statistial relationships

displayed in omparison with the referene methods by the both algorithms. The average

rank values for eah of the metris are shown in Figures 3.8 and 3.9.

When the base lassi�er is gnb, the proposed methods ahieve results omparable to

Borderline-smote, however, they are statistially signi�antly worse in terms of reall

than Random Oversampling and svm-smote. When the art deision tree is used as

base model for tsmv and rsmo, the the ahieved results are statistially signi�antly

better in terms of preision than the referene methods. However, the proposed methods

are statistially signi�antly inferior to Bordeline-smote in terms of both Gmeans and

reall.



Chapter 3. Algorithms for imbalaned data lassi�ation 82

BAC

G-mean
F1

Precision

Recall

Sp
ec
if
ic
it
y

0

1

2

3

4

5

6

7

TSMV GNB

ROS
SMOTE

SVM
B2

TSMV-DIS4

BAC
G-mean

F1

Precision

Recall

Sp
ec
if
ic
it
y

0

1

2

3

4

5

6

7

RSMO GNB

ROS
SMOTE

SVM
B2

RSMO-Q5

Figure 3.8: Average rank values for eah of the tested methods regarding gnb.

Table 3.6: Results of Wiloxon statistial test on global ranks for the seleted methods in omparison

to the preproessing tehniques. The higher the average rank value, the better.

GNB

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

TSMV-DIS4

ba 3.196 3.304 3.357 2.357 2.786

4 4 4 − −

Gmeans 3.161 3.321 3.304 2.393 2.821

4 4 4 − −

F1 sore 2.768 3.464 2.625 2.893 3.250

− 3 − − −

precision 2.518 3.375 2.518 3.232 3.357

− 1,3 − − −

recall 4.036 2.589 3.500 2.464 2.411

2,4,5 − 2,4,5 − −

specificity 2.018 3.732 2.643 3.250 3.357

− 1,3 − 1 1

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

RSMO-Q5

ba 3.196 3.268 3.321 2.357 2.857

4 4 4 � �

Gmeans 3.196 3.321 3.268 2.429 2.786

4 4 4 � �

F1 sore 2.839 3.500 2.661 2.893 3.107

� 3 � � �

precision 2.518 3.411 2.518 3.232 3.321

� 1, 3 � � �

recall 4.071 2.482 3.464 2.393 2.589

all � 2, 4, 5 � �

specificity 2.054 3.804 2.714 3.357 3.071

� 1, 3 � 1 �
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Figure 3.9: Average rank values for eah of the tested methods regarding art.

Table 3.7: Results of Wiloxon statistial test on global ranks for the seleted methods in omparison

to the preproessing tehniques. The higher the average rank value, the better.

CART

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

TSMV-Q5

ba 2.155 2.776 3.448 3.828 2.793

� 1 1, 2 1, 2 �

Gmeans 1.966 2.759 3.345 4.069 2.862

� 1 1 all �

F1 sore 2.517 2.828 3.517 2.897 3.241

� � 1, 2 � �

precision 3.034 2.897 3.379 2.138 3.552

4 4 4 � 4

recall 2.000 2.707 3.345 4.276 2.672

� 1 1, 2 all �

specificity 3.931 3.103 3.069 1.483 3.414

2, 3, 4 4 4 � 4

(1)

ROS

(2)

SMOTE

(3)

SVM

(4)

B2

(5)

RSMO-Q3

ba 2.086 2.707 3.310 3.828 3.069

� � 1, 2 1, 2 �

Gmeans 1.966 2.724 3.310 4.000 3.000

� 1 1 1, 2, 3 �

F1 sore 2.552 2.828 3.483 2.862 3.276

� � 1, 2 � �

precision 3.069 2.931 3.414 2.224 3.362

4 4 4 � 4

recall 2.017 2.672 3.293 4.207 2.810

� 1 1, 2 all �

specificity 4.069 3.207 3.241 1.517 2.966

all 4 4 � 4
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Observations

From the obtained results, it an be onluded that the use of the multistage majority

voting organization may allow, in the ase of imbalaned data lassi�ation task, to

improve the ensemble performane when ompared to the traditional ombination of the

lassi�er pool. This is due to the division of lassi�ers into lusters ontaining models

that make similar errors on problem instanes. Thanks to this, after the �rst voting

level, the preditions re�eting the expert knowledge of the base models in eah of the

reognized feature spae regions are obtained.

The introdution of sampling with replaement in order to further diversify the ensembles

during the �rst voting stage while reduing the number of models making similar deisions

allows for the improvement of the ahieved results. This method an be regarded as

related to the stati seletion of lassi�ers. Both in the ase of gnb and art, it led

to an inrease in the ability of the proposed methods to detet minority lass, whih is

partiularly visible in the ase of algorithms based on the averaged Q statistis.

Compared to lassi�er ensembles employing preproessing tehniques, the proposed meth-

ods are haraterized by a lower ability to detet the minority lass. It is worth noting,

however, that only in a few ases these di�erenes were statistially signi�ant.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Can the use of a lustering-based multistage majority voting organization improve

the performane of the imbalaned data lassi�ation?

A1. The onduted experiments on�rmed that the use of methods based on a multi-

stage majority voting organization may lead to the improvement of the ensemble

methods performane in the imbalaned data lassi�ation task.

Q2. Can the introdution of sampling with replaement before the �rst voting stage of

tsmv allow to inrease the ability to detet minority lass?

A2. The obtained results on�rmed that the addition of sampling with replaement to

the the tsmv algorithm (rsmo) allows to improve the detetion ability of minority

lass objets.

Q3. Can the proposed algorithms ompete with methods employing preproessing teh-

niques?

A3. The results of the onduted researh on�rmed that in most ases the proposed

tsmv and rsmo algorithms are not statistially signi�antly worse than ensemble

methods using preproessing tehniques.
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3.3 Distane-Based Dynami Classi�er Seletion

This setion proposes two dynami lassi�er seletion algorithms for the imbalaned

data lassi�ation task. These are respetively the Dynami Ensemble Seletion using

Eulidean distane (dese) and the Dynami Ensemble Seletion using Imbalane Ratio

and Eulidean distane (desire). The introdution of these methods is motivated by the

� indiated in the literature � shortage of dynami lassi�er seletion approahes dedi-

ated to the task of unbalaned data lassi�ation [59℄. Imbalaned learning ontinues

to be an important problem in pattern reognition, espeially in the ase of real-world

data. As the methods of dynami seletion of lassi�ers perform a loal lassi�ation �

based on the loal area of ompetene often de�ned as the nearest neighborhood of the

lassi�ed instane � they may allow reduing the bias in relation to the majority lass.

Nevertheless, there are urrently very few des algorithms dediated for the problem of

imbalaned data lassi�ation.

The generation of the lassi�er pool is based on the Bagging approah [30℄, and more

spei�ally on the Strati�ed Bagging, in whih the samples are drawn with replaement

from the minority and majority lass separately in suh a way that eah bootstrap

maintains the original training set lass proportion. This is neessary due to the high

imbalane, whih in the ase of standard Bagging an lead to the generation of training

sets ontaining only the majority lass.

Both proposed methods are derived in part from algorithms based on loal orales,

and more spei�ally on knora-u [123℄, whih gives base lassi�ers weights based on

the number of orretly lassi�ed instanes in the loal region of ompetene and then

ombines them by weighted majority voting. The omputational ost in this type of

method is mainly related to the size of the lassi�er pool and the DSEL size, as the

k-Nearest Neighbors tehnique is used to de�ne loal ompetene regions, whih an

be ostly for large datasets. Instead of voting, dese and desire are based on support

funtions and they alulate weights for eah lassi�er for both the minority and majority

lasses separately. These weights are alulated on the basis of the Eulidean distane (L2

norm) between the lassi�ed sample and its neighbors in the loal region of ompetene.

The literature indiates, with respet to the ommonly used Lk norms, the potential

usefulness of norms with the lower k value for problems with high dimensionality [3℄.

Examples of suh metris are the Manhattan distane (L1 norm) or a frational distanes,

in whih ase k may be less than 1. However, due to the relatively small dimensionality of

the hosen datasets as well as popularity and frequent use in distane-based algorithms,

the Eulidean distane was hosen as the base distane metri for the dese and desire.
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Proposed methods ome in two variants: Positive (denoted as p), where weights are

modi�ed only in the ase of orret lassi�ation, and Positive&Negative (denoted as

pn), where, in addition to orret deisions, weights are also a�eted by inorret ones.

The exat way of weights alulation is presented in Algorithm 5.

Algorithm 5 dese and desire weight alulation methods

Input:

Π � lassi�er pool,

T S � testing set,

DSEL � Dynami Seletion Dataset,

k � number of nearest neighbors,

min,maj � respetively the perentage of minority and majority lasses in the train-

ing set,

W ← ∅ � empty weights array of shape (n, n, 2).
Symbols:

LRCi � nearest neighborhood of sample xi,
TP,FN � true positive and false negative,

n � number of base lassi�ers,

Output:

W � weights array of shape (n, n, 2).

1: for eah sample xi in T S do
2: LRCi ← the k nearest neighbors of xi in DSEL
3: for eah Classi�er Ψj in Π do

4: Predict← predit(LRCi,Ψj)
5: for eah neighbor in LRCi do

6: if Predict[neighbor] = TP then

7: W [j, i, 0]+ =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗min for desire

8: else if Predict[neighbor] = TP then

9: W [j, i, 1]+ =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗maj for desire

10: else if Predict[neighbor] = FN then

11: W [j, i, 1]− =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗min for desire

12: else if Predict[neighbor] = FN then

13: W [j, i, 0]− =
{ ‖xi−neighbor‖ for dese
‖xi−neighbor‖∗maj for desire

14: end for

15: end for

16: end for

Positive

Positive&Negative

For eah instane, the proposed algorithms perform the following steps:

� In step 2, the k-Nearest Neighbors of a given instane xi are found in DSEL, whih
form the loal region of ompetene LRCi.

� In step 4, eah lassi�er Ψj from the pool lassi�es all samples belonging to LRCi.

� In steps 5-13, the lassi�er weights are modi�ed separately for the minority and

majority lass, starting from the value of 0. The Positive&Negative variant uses
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all four onditions, while the Positive variant is based only on the onditions in

lines 6 and 8. In the ase of dese, the modi�ations are based on the Eulidean

distane between the lassi�ed sample and its neighbor from the loal ompetene

region, and in the ase of desire, the Eulidean distane is additionally saled by

a perentage of the minority or majority lass in suh a way that more emphasis

is plaed on the minority lass.

Finally, the weights obtained from dese or desire are normalized to the [0, 1] range and

multiplied by the ensemble support matrix. The ombination is arried out aording to

the maximum rule [76℄, whih hooses the lassi�er that is most on�dent of itself. This

ombination rule, despite its potentially sound grounds, is rarely used in pratie due to

its high sensitivity to over�tting. Using the most on�dent lassi�er may mean hoos-

ing an over-trained model whose generalization ability has been signi�antly impaired.

However, if the dimensionality of the analyzed problem is relatively low, the possibility

of over�tting is aordingly redued. This is due to the potentially lower number of noisy

features and low sparsity of the feature spae.

Computational and memory omplexity analysis

The proposed method for eah sample xi ∈ T S �nds its loal neighborhood in DSEL
using the k-Nearest Neighbors algorithm. Eah distane omputation has the omplexity

of O(d), where d is the problem's dimensionality. Distane is alulated from xi to

eah instane in DSEL whih results in O(d | DSEL |) runtime, where | DSEL | is a
ardinality of DSEL. Then, knn selets k neighbors for eah sample in DSEL, whih
requires O(| DSEL). This, in total, results in the omputation omplexity of O(d |
DSEL | +k | DSEL |)).

Next, eah lassi�er Ψj ∈ Π labels k neighbors of xi and based on the lassi�ation

results uses the alulated distane to establish the weight for a given lassi�er. This

step has the omputational omplexity of O(nk).

3.3.1 Experimental evaluation

This subsetion presents the motivation, goals and set-up of the performed experiments,

as well as their results.
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Researh questions

The experiments were designed to answer the following questions:

Q1. Does taking into aount the Eulidean distane to a given neighbor of a lassi�ed

sample in the proess of loal ompeteny estimation allow the algorithm to deal

with the imbalaned data lassi�ation problem?

Q2. Does the introdution of the weighting of the Eulidean distane using the imbal-

ane ratio in suh a way as to put more emphasis on the minority lass lead to an

inrease in the algorithm's ability to detet a given lass?

Goals of the experiments

Experiment 1 � Eulidean distane-based approah

The main goal of the �rst experiments was to ompare the performane of proposed

dynami seletion methods, weighted based on Eulidean distane, with the state-of-art

ensemble methods paired with preproessing.

Experiment 2 � Saled Eulidean distane-based approah

The aim of the seond experiment was to hek how the previously proposed method

would behave after taking into aount during weights alulation proess the di�erene

between the majority and minority lasses.

Experimental set-up

The experiments were arried out on 41 imbalaned datasets presented in Table 2.3 on

p. 44. The evaluation of the proposed methods is based on �ve metris widely used in

the ase of imbalaned lassi�ation problems. Three popular lassi�ation algorithms

were used as base models, and Random Oversampling was employed to investigate the

impat of simple data preproessing on the proposed ensemble methods. Classi�er pools

of four di�erent sizes were generated using Strati�ed Bagging. As a referene method, a

single lassi�er, as well as Strati�ed Bagging (sb) and dynami seletion in the form of

the knora-u algorithm were seleted. This hoie is aimed at omparing the proposed

methods with a ombination of the entire lassi�er pool, as well as with the state-of-

the-art dynami seletion method in the task of imbalaned data lassi�ation. Both

proposed and referene methods our in versions with preproessing (in the form of

Random Oversampling) and without it, the use of oversampling is denoted by the letter

o added to the method's aronym. Detailed information is presented below:

� Evaluation measures � balaned auray sore (ba), Gmeans, F1 score, preision,

and reall,
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� Classi�ation algorithms �Gaussian Naïve Bayes lassi�er (gnb), k-Nearest Neigh-

bors lassi�er (knn), and Classi�ation and Regression Tree (art),

� Data preproessing � Random Oversampling (ros).

� Classi�er pool size � onseutively 5, 15, 30 and 50 base models,

� Referene methods � a single model (gnb\art\knn), Strati�ed Bagging (sb),

Strati�ed Bagging with ros (sbo), knora-u, and knora-u with ros (knora-

uo).

The evaluation was arried out using 10 times repeated 5-fold ross-validation. Due to

the small number of instanes in the datasets, DSEL is de�ned as the entire training

set. All experiments have been implemented in Python and an be repliated using the

ode available on Github

3

.

The radar diagrams show the average global ranks ahieved by eah of the tested algo-

rithms in terms of eah of the 5 evaluation metris, while the tables show the results

of the Wiloxon rank-sum (p = 0.05) statistial test for a pool size of 5 base lassi�ers.

The numbers under the average rank of eah method indiate the algorithms whih are

statistially signi�antly worse than the one in question.

Experiment 1 � Eulidean distane-based approah

Figure 3.10 shows how the average ranks for dese and the referene methods hange

with respet to di�erent metris as a funtion of ensemble size. The proposed methods

(in partiular dese-po) for 5 base models ahieve higher ranks with respet to eah

metri with an exeption of reall. While the single lassi�er and bagging prefer reall,

dese-po and dese-p preision. As the number of base lassi�ers inreases, ba and

Gmeans-based rankings deteriorate to knora-u levels, while F1 sore remains high due

to high preision.

Table 3.8 presents the results of the statistial analysis, whih shows that the dese-po

method performs statistially signi�antly better than all referene methods with respet

to every metri exept reall.

When the base lassi�er is art, as seen in Figure 3.11, for the smallest pool, dese-p

(both without and with oversampling) ranks higher than the referene methods with

respet to eah of the �ve metris. As the number of base models inreases, knora-

uo and sbo stand out with respet to preision, dese-po performs better with respet

3

https://github.om/w4k2/is20-desire

https://github.com/w4k2/iccs20-desire
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to other metris, and dese-pno ahieves the highest average ranks in terms of ba,

Gmeans and reall despite the low F1 sore and preision. Table 3.9 on�rms that for

the �ve basi lassi�ers, dese-po is statistially signi�antly better than all referene

methods, while dese-pno performs statistially signi�antly better than dese-po with

respet to reall, Gmeans and ba.

Figure 3.12 and table 3.10 show that the proposed methods using oversampling are not

statistially di�erent from the referene methods, exept for a single lassi�er that exels

in preision, but at the same time ahieves the worst mean ranks based on the remaining

metris. Together with the inrease in the number of base lassi�ers, knora-u and sbo

ahieve higher mean ranks than dese-po and dese-pno.
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Figure 3.10: Mean ranks for gnb lassi�er.
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Table 3.8: Statistial tests on mean ranks for gnb with pool size = 5. The higher the average rank

value, the better.

(1)

gnb

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 sore 2.146 2.085 3.500 5.549 5.963 4.159 4.598

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3

preision 1.829 1.756 3.220 6.256 5.866 4.720 4.354

− − 1,2 all 1,2,3,6,7 1,2,3 1,2,3

reall 4.207 5.159 4.902 2.134 3.744 3.329 4.524

4 4,5,6 4,5,6 − 4 4 4,5,6

Gmeans 2.341 2.695 4.183 4.695 5.890 3.622 4.573

− − 1,2 1,2,6 all 1 1,2,6

ba 2.317 2.634 3.963 4.720 5.976 3.671 4.720

− − 1,2 1,2,6 all 1,2 1,2,6
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Figure 3.11: Mean ranks for art lassi�er.
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Table 3.9: Statistial tests on mean ranks for art with pool size = 5. The higher the average rank

value, the better.

(1)

art

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 sore 2.683 2.841 2.988 5.329 5.561 4.256 4.341

− − − 1,2,3,6,7 1,2,3,6,7 1,2,3 1,2,3

preision 2.634 3.976 4.195 5.695 5.134 3.195 3.171

− 1 1,6,7 all 1,2,3,6,7 − −

reall 3.293 2.622 2.695 3.890 4.463 5.366 5.671

2,3 − − 2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5

Gmeans 3.098 2.671 2.817 4.061 4.634 5.232 5.488

− − − 2,3 1,2,3,4 1,2,3,4 1,2,3,4,5

ba 3.098 2.585 2.732 4.280 4.829 5.085 5.390

− − − 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4,5
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Figure 3.12: Mean ranks for knn lassi�er.
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Table 3.10: Statistial tests on mean ranks for knn with pool size = 5. The higher the average rank

value, the better.

(1)

knn

(2)

sbo

(3)

knora-uo

(4)

dese-p

(5)

dese-po

(6)

dese-pn

(7)

dese-pno

F1 sore 3.585 4.305 3.476 4.549 4.390 3.744 3.951

− 3 − 1,6 − − −

preision 5.317 3.963 3.049 4.976 3.659 3.878 3.159

3,5,6,7 3,7 − 2,3,5,6,7 − 7 −

reall 1.427 5.232 5.366 2.463 4.939 3.305 5.268

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Gmeans 1.537 5.061 4.866 2.720 5.110 3.427 5.280

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

ba 1.659 5.012 4.841 2.780 5.024 3.415 5.268

− 1,4,6 1,4,6 1 1,4,6 1,4 1,4,6

Experiment 2 � Saled Eulidean distane-based approah

The results in Figures 3.13�3.15 and Tables 3.11�3.13 show the average ranks for the

proposed desire method, whih alulates weights based on the Eulidean distanes

saled by the perentages of the minority and majority lasses in the training set.

In the ase of gnb as the base model (Figure 3.13), the desire-po method ahieves the

best results ompared to referene methods in terms of mean ranks based on F1 sore,

preision, Gmeans and ba. When the ensemble size inreases, the proposed method is

equal to knora-uo in terms of ba and Gmeans but retains the advantage in terms

of F1 sore and preision. Moreover, the more base lassi�ers used, the smaller the

di�erenes between desire with preproessing and the version without preproessing.

Table 3.11 presents the results of the statistial analysis, whih shows that desire-po

is statistially better than all referene methods when the number of base lassi�ers is

small.

Figure 3.14 shows that for a small lassi�er pool, desire-po ahieves higher ranks than

referene methods in terms of eah evaluation metri, and as the lassi�er number in-

reases, it loses signi�antly in preision ompared to sbo and knora-uo. desire-pno

has a high reall, whih unfortunately is re�eted by the lowest preision and F1 sore.

Table 3.12 shows that for 5 base lassi�ers, desire- both with and without prepro-

essing is statistially signi�antly better than referene methods in terms of all metris

exept one, Gmeans in the ase desire-p and reall for desire-po.

When the base lassi�er is knn (Figure 3.15), as in the ase of dese, desire-po is not

statistially worse than sbo and knora-uo (Table 3.13) and as the number of lassi�ers

in the pool inreases, the average global ranks signi�antly deteriorate ompared to

referene methods.
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Figure 3.13: Mean ranks for gnb lassi�er.

Table 3.11: Statistial tests on mean ranks for gnb with pool size = 5. The higher the average rank

value, the better.

(1)

gnb

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 sore 2.341 2.280 4.159 5.634 6.098 3.878 3.610

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2 1,2

preision 2.244 2.098 3.902 6.341 6.098 3.976 3.341

− − 1,2 1,2,3,6,7 1,2,3,6,7 1,2,7 1,2

reall 4.037 4.890 4.427 1.939 3.305 4.183 5.220

4 4,5 4,5 − 4 4,5 1,3,4,5,6

Gmeans 2.341 2.793 4.622 4.829 5.976 3.610 3.829

− − 1,2,6 1,2,6,7 all 1 1,2

ba 2.341 2.634 4.427 4.829 6.061 3.610 4.098

− − 1,2,6 1,2,6 all 1,2 1,2
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Figure 3.14: Mean ranks for art lassi�er.

Table 3.12: Statistial tests on mean ranks for art with pool size = 5. The higher the average rank

value, the better.

(1)

art

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 sore 3.415 3.768 3.915 5.622 5.768 2.524 2.988

6 6 6,7 1,2,3,6,7 1,2,3,6,7 − −

preision 3.683 4.659 4.878 5.793 5.256 1.793 1.939

6,7 1,6,7 1,6,7 all 1,6,7 − −

reall 3.146 2.488 2.561 3.793 4.110 5.817 6.085

2,3 − − 2,3 1,2,3 1,2,3,4,5 1,2,3,4,5

Gmeans 3.049 2.598 2.744 4.280 4.817 5.183 5.329

− − − 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4

ba 3.073 2.537 2.683 4.744 5.110 4.695 5.159

− − − 1,2,3 1,2,3 1,2,3 1,2,3
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Figure 3.15: Mean ranks for knn lassi�er.

Table 3.13: Statistial tests on mean ranks for knn with pool size = 5. The higher the average rank

value, the better.

(1)

knn

(2)

sbo

(3)

knora-uo

(4)

desire-p

(5)

desire-po

(6)

desire-pn

(7)

desire-pno

F1 sore 3.902 4.963 4.134 4.780 4.878 2.878 2.463

6,7 1,3,6,7 6,7 6,7 6,7 − −

preision 5.354 4.695 3.854 5.207 4.293 2.732 1.866

5,6,7 3,6,7 6,7 3,5,6,7 6,7 7 −

reall 1.354 4.695 4.841 2.341 4.146 4.500 6.122

− 1,4 1,4 1 1,4 1,4 all

Gmeans 1.451 4.866 4.500 2.683 4.610 4.524 5.366

− 1,4 1,4 1 1,4 1,4 1,3,4,5,6

ba 1.561 4.841 4.573 2.768 4.744 4.354 5.159

− 1,4 1,4 1 1,4 1,4 1,4,6
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Observations

The results presented on�rm that dynami seletion methods spei�ally adapted for

lassifying imbalaned data an ahieve statistially better results than ensemble methods

oupled with preproessing, espeially when the pool of base lassi�ers is relatively small.

This may be beause Bagging has not yet stabilized while the proposed method selets

the best single lassi�er. The Positive approah, in whih the weights of the models were

hanged only when the instanes belonging to the loal ompetene region were orretly

lassi�ed, proved to be more balaned with respet to all 5 evaluation measures. This

ould indiate exessive weight penalties for mislassi�ation in the Positive&Negative

approah. When knn is used as the baseline lassi�er, the proposed methods performed

statistially similar to knora-u for a small pool, and they ranked statistially worse

ompared to the referene methods for a larger number of lassi�ers. This is probably

due to the method used to ompute the support in the knn, whih is not suitable for the

algorithms proposed in this work. For gnb and art, dese-p and desire-p ahieved

results that are statistially better or similar to the referene methods, often without the

use of preproessing, sine it has a built-in mehanism to handle the imbalane.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Does taking into aount the Eulidean distane to a given neighbor of a lassi�ed

sample in the proess of loal ompeteny estimation allow the proposed algorithm

to deal with the imbalaned data lassi�ation problem?

A1. The obtained results on�rmed that taking into aount the Eulidean distane to a

given neighbor of a lassi�ed sample in the proess of loal ompeteny estimation

may allow the proposed algorithm to deal with the imbalaned data lassi�ation

problem.

Q2. Does the introdution of the weighting of the Eulidean distane using the imbal-

ane ratio in suh a way as to put more emphasis on the minority lass lead to an

inrease in the algorithm's ability to detet a given lass?

A2. The onduted experiments on�rmed that, in the ase of All variant, the intro-

dution of the weighting based on imbalane ratio may lead to an inrease in the

algorithm's ability to detet a minority lass instanes.





Chapter 4

Algorithms for imbalaned data

stream lassi�ation

This hapter is fousing on ombining two of the important researh topis assoiated

with data analysis, i.e., data stream lassi�ation as well as data analysis with imbalaned

lass distributions. It introdues new algorithms designed spei�ally for these kinds of

tasks, employing methods of Dynami Ensemble Seletion. Simultaneously introduing

new ways to use des algorithms in the imbalaned data stream lassi�ation.

First, the novel highly imbalaned data stream lassi�ation method, employing a las-

si�er seletion approah in order to fous on the detetion of the minority lass, whih

an update its model when new data arrives is proposed.

Next, two novel frameworks employing integrating data preproessing and dynami en-

semble seletion methods for imbalaned data stream lassi�ation are introdued. In

the �rst ase, single pattern reognition models are used as base lassi�ers, while the

seond approah employs Strati�ed Bagging for base lassi�er generation.

99
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4.1 Minority Driven Ensemble

In this setion, the algorithm Minority Driven Ensemble (mde) is proposed to address

the problem of lassifying highly imbalaned data streams with onept drift. The pro-

posed mde method was intended to �ll the gap in algorithms for lassifying imbalaned

data streams that was hinted at in Chapter 1. Many real-world data streams have high

Imbalane Ratio , and existing methods dediated to this problem often have high om-

putational omplexity. Therefore, the assumption in the design of mde was to ahieve

relatively low omputational omplexity by using a simple approah to building and

maintaining an ensemble of lassi�ers and the absene of data preproessing tehniques

in the form of undersampling or oversampling. The ensemble onstrution in mde is

based on the sea algorithm, and the predition proess uses a novel ombination rule

based on the notion of lassi�er seletion. Therefore, the proposed method �ts the ap-

proahes from the inbuilt mehanism group.

Ensemble onstrution

The proposed algorithm does not detet a onept drift ourrene, but instead employs

a mehanism allowing it to onstrut self-adapting lassi�er ensemble. For eah data

stream hunk DSk, the k-Nearest Neighbors lassi�er is trained based on the data de-

voided of outliers aording to 5-neighbor taxonomy [179℄ (i.e., samples from minority

lass for whih �ve nearest neighbors are majority lass examples).

If the �xed ensemble size nmax is exeeded, the worst rated individual lassi�er aording

to the Balaned Auray Sore (ba) is removed from the lassi�er pool Π. Additionally,

at eah step all models with ba are lower than 0.5 + α, where α is the algorithm's

parameter responsible for the outdated models removing rate, are removed from Π. The

pseudoode of the presented method is shown in Algorithm 6. The desription of the

funtions used in the training phase pseudoode is as follows:

� removeOutliers() � removes the outliers from the urrent data hunk DSk
aording to 5-neighbor taxonomy.

� train() � builds new lassi�er Ψk on the urrent data hunk DSk.

� evaluate() � alulates the balane auray sore on urrent data hunk DSk
for eah base lassi�er Ψi ∈ Π in order to use it later in the pruning proess.

� pruneThreshold() � removes from pool Π all models with ba lower than α.

� pruneWorst() � removes from pool Π the model with the lowest ba.
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Algorithm 6 Training phase of the mde algorithm

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

nmax � maximal number of base models,

α � outdated models removing rate,

Symbols:

Π � lassi�er pool,

Sk � set of evaluation metri values for eah base lassi�er,

1: Π← ∅

2: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: Sk ← ∅

4: if k == 0 then
5: DSk ← removeOutliers(DSk)
6: Ψk ← train(DSk)
7: Π← Ψk

8: else

9: Sk = evaluate(Π,DSk)
10: if | Π |> 1 then
11: Π← pruneThreshold(Π,Sk, α)
12: if | Π |> nmax − 1 then
13: Π← pruneWorst(Π,Sk)
14: DSk ← removeOutliers(DSk)
15: Ψk ← train(DSk)
16: Π← Ψk

17: end for

Predition

During the predition proess if at least one individual lassi�er returns a non-zero sup-

port for minority lass � i.e., among k nearest neighbors, at least one belongs to minority

lass � then the instane is lassi�ed as the minority lass example.

The onept of the proposed ombination rule is presented in Figure 4.1. The �rst three

subplots present the deision border implementing the priniple of minimum support

for three subsequent proessed data hunks during subtle hanges in the minority lass

distribution. The last subplot (on the right) shows the illustration of the mentioned

above ombination rule.



Chapter 4. Algorithms for di�ult data stream lassi�ation 102

Algorithm 7 Predition phase of the mde algorithm

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Π = {Ψ1,Ψ2, . . . ,Ψn} � lassi�er pool,

Output:

Decision � lassi�ation results.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: esmk = ensembleSupportMatrix(Π,DSk)
3: msk = majoritySupport(esmk)

4: mmsk = minMajoritySupport(msk)

5: Decision = int(mmsk) ⊲ If support is less than 100% then 0, otherwise 1

6: end for

The desription of the funtions used in the predition phase pseudoode is as follows:

� ensembleSupportMatrix() � returns an array of shape (‖Π‖, N, 2) ontaining
base lassi�ers' supports for eah of N samples in a given da hunk DSk,

� majoritySupport() � returns only the majority lass support from esmk,

� minMajoritySupport() � returns the minimum of msk,

� int() � return an integer objet onstruted from given values of minimal majority

support mmsk.

Figure 4.1: Binary predition as non-zero support for a minority lass (three on the top) and a maxi-

mum from the pool (on the bottom).
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Computational and memory omplexity analysis

Both the removal of outliers and the lassi�ation proess are performed using the k-

Nearest Neighbors based on the Eulidean distane. Eah distane omputation has the

omplexity of O(d), where d is the problem's dimensionality. Distane is alulated from

eah lassi�ed instane in DSk to all samples used to train a given knn lassi�er Ψj ,

whih results in O(dN) runtime, where N is a ardinality of eah data hunk. Then,

knn selets k neighbors for eah sample in DSk, whih requires O(kN). This, in total,

results in the omputation omplexity of O(dN + kN).

During the predition proess, for eah of N problem instanes in a given data hunk

DSk, mde alulates the minimal majority support in order to �nd a model with a non-

zero support for minority lass. This operation is a modi�ation of support aumulation

ombination rule and has a omputational omplexity of O(n).

4.1.1 Experimental evaluation

This subsetion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Researh questions

The experiments were designed to answer the following questions:

Q1. Can the use of the proposed strategy based on non-zero support for a minority

lass lead to better results in the ase of highly imbalaned data stream than those

obtained by lassial Dynami Ensemble Seletion algorithms?

Q2. Is the proposed method, based largely on the neighborhood de�ned by the knn

lassi�er, resistant to label noise and onept drift ourrene?

Goals of the experiments

Experiment 1 � Hyperparameters optimization

The main goal of the �rst experiment was to tune the two hyperparameters of mde:

� nmax � ensemble size,

� α � pruning parameter responsible for the outdated models removing rate.

Both mean ba values and statistial dependene for multiple values of these two pa-

rameters were reported.
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Experiment 2 � Comparative analysis of lassi�er seletion methods

During the seond experiment, the performane of mde was ompared to the four ref-

erene Dynami Seletion (ds) tehniques implemented in DESlib [57℄. The omparison

was made in terms of Imbalane Ratio value, onept drift type and the level of label

noise.

Experimental set-up

The experiments were arried out based on 96 diverse data streams generated using the

stream-learn [141℄ pakage. Eah of the streams ontains the total of 100 000 instanes,

divided into 200 hunks of 500 objets desribed by 8 features, and ontains 5 onept

drifts. The variety of generated data streams was obtained by generating 3 repliation

of eah ombination of the following parameters:

� the imbalane ratio � suessively 10, 20, 30 and 40% of the minority lass,

� the level of label noise � suessively 0, 10, 20 and 30%,

� the type of onept drift � gradual or sudden.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real

data streams desribed in Table 4.1.

Table 4.1: Real data streams harateristis.

Data stream #Samples #Features ir

ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalaned_norm 300 000 33 19

INSECTS-gradual_imbalaned_norm 100 000 33 19

INSECTS-inremental_imbalaned_norm 380 000 33 19

The evaluation of mde is based on six metris widely used in the ase of imbalaned las-

si�ation problems. As a referene methods, two Dynami Ensemble Seletion and two

Dynami Classi�er Seletion algorithms were seleted. The number of nearest neighbors

k used to de�ne the loal area of ompetene for Dynami Seletion methods was set at

7. This hoie is aimed at omparing the proposed mde methods with the state-of-the-

art Dynami Seletion approahes in the task of imbalaned data stream lassi�ation.

Detailed set-up is presented below:

� Evaluation measures � balaned auray sore (ba), Gmeans, F1 score, preision,

reall, and spei�ity,
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� Referene methods:

� des � knora-Eliminate (knora-e) and knora-Union (knora-u),

� ds �Modi�ed Classi�er Ranking (Rank) and Loal lassi�er auray ( la).

The evaluation was arried out using Test-Then-Train protool. The dynami seletion

dataset (DSEL) for the ds methods was de�ned as the previous data hunk with the

Random Oversampling performed on it. Conduted experiments as well as the mde

algorithm were implemented in Python programming language and may be repeated

aording to soure ode published on Github

1

.

Experiment 1 � Hyperparameters optimization

The following experiment was performed on the data stream with an Imbalane Ratio of

1 : 9 and 1% global label noise. Sudden and gradual onept drifts were tested separately.

The results of hyperparameter optimization are shown in Figure 4.2, whih shows the

relationship between the parameter α (X-axis) and the ensemble size (Y-axis). Eah

value orresponds to the mean ba obtained from mde for given values of nmax and

α. The olors orrespond to the statistial dependenies between the mean ba values,

aording to the Wiloxon rank-sum test.
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Figure 4.2: Optimization of mde hyperparameters for sudden and gradual onept drift in relation to

the Balaned Auray Sore.

Inreasing the size of the ensemble initially stabilizes the ba, but over time degrades

the ability of the ensemble to respond to the onept drift. Inreasing the removal rate α

parameter initially ompensates for the degradation of the onept drift response time,

but at the same time negatively a�ets the ba value.

The nmax = 3 and the α = 0.05 were hosen for further experiments.

1

https://github.om/w4k2/lassifier-seletion

https://github.com/w4k2/classifier-selection
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Experiment 2 � Comparative analysis of lassi�er seletion methods

Figure 4.3 shows the in�uene of random over-sampling on referene methods perfor-

mane on data streams with high Imbalane Ratio (1 : 9). The use of oversampling

equates the performane of all tested ds methods.
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Figure 4.3: Referene methods performane with (left) and without oversampling (right).

Figure 4.4 shows how the performane of the methods depends on the Imbalane Ratio.

The proposed mde is very e�etive for highly imbalaned data streams (10%, 20% of

minority lass samples). Inreasing the perentage of minority lass to 30% redues

the di�erenes between mde and the referene methods. In the ases of low imbalane

data (40% of minority lass), mde performs worse than the referene Dynami Seletion

methods.
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Figure 4.4: In�uene of imbalane sale on the quality of lassi�ation.

The aim of the experiment is to demonstrate the ability of the proposed method to

lassify highly imbalaned data, so all further results are presented for streams with a
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perentage of a minority lass not greater than 20%.

Figure 4.5 presents the relation between the lassi�ation quality and the type of onept

drift. The type of the onept drift does not a�et the relation between the analyzed

lassi�ation methods. In either ase mde outperforms the benhmark lassi�ers.
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Figure 4.5: In�uene of onept drift type on the quality of lassi�ation.

Figure 4.6 shows the relation between the performanes of the individual methods and the

label noise ratio. The inrease of noise has a negative e�et on the overall generalization

ability.
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Figure 4.6: In�uene of label noise on the quality of lassi�ation.

The statistial analysis of the experimental evaluation is presented in Table 4.2. It

on�rms that mde performs better than the benhmark lassi�er seletion methods in

most ases. Only for slightly imbalaned data, i.e., when Imbalane Ratio is small

(30% of minority examples), mde is not statistially signi�antly better than knorau

and knorae. For nearly balaned data streams (40% of minority examples), rank,

knorau, and knorae are better than mde.
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Table 4.2: Presentation of statistial dependeny of methods in all analyzed ontexts. Bold points the

highest ba value for a given ontext.

value mde k-e k-u rank la

Minority lass perentage

10% 0.697 0.632 0.637 0.631 0.634

20% 0.780 0.738 0.741 0.736 0.735

30% 0.796 0.794 0.794 0.792 0.786

40% 0.788 0.821 0.821 0.820 0.811

Drift types

inremental 0.731 0.675 0.680 0.675 0.674

sudden 0.747 0.694 0.698 0.693 0.694

Label noise

0% 0.851 0.770 0.776 0.769 0.773

10% 0.753 0.700 0.704 0.699 0.699

20% 0.701 0.656 0.659 0.655 0.654

30% 0.651 0.614 0.617 0.613 0.611

Additionally, Figure 4.7 shows the results ahieved by mde in omparison with referene

methods for the task of the real imbalaned data stream lassi�ation. Radar harts

show the averaged values of the evaluation metris ahieved by eah method, while the

runs depit balaned auray values over the entire length of the data stream.

It is worth noting that in the ase of the ovtypeNorm stream, whih is haraterized

by the lowest Imbalane Ratio among all real data streams, mde ahieves the results at

the level of the referene methods and, additionally, does not display a visible derease

presented by the referene methods at the end of the presented run. There is also a

derease in the preision value at the expense of a slight inrease in reall, whih indiates

that the method prefers the minority lass.

In the ase of a poker stream, where the Imbalane Ratio is higher, the potential of the

proposed method an be seen. Despite the preision value at the level of the referene

methods, the mde presents a muh better ability to detet minority lass at the ost

of a derease in spei�ity. Additionally, the presented method ahieves a muh higher

Gmeans value, and a slightly better F1 sore, and Balaned Auray Sore. The pre-

sented run shows that mde, in the ase of poker stream, an ahieve up to 80% Balaned

Auray Sore.
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Figure 4.7: Results of the MDE omparison with referene methods for real data streams.

The results ahieved on the INSECTS streams, whih display the highest imbalane, are

also interesting. In the ase of the stream with gradual onept drift, it an be seen that
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the proposed method ahieves signi�antly higher results in terms of ba, Gmeans, F1

sore, and reall, with the spei�ity value equal to the referene methods. All this is

ahieved at the ost of a slight derease in preision. The presented run shows that mde

maintains a high value of Balaned Auray Sore along the entire length of the stream.

The potential of the method is visible espeially in the results obtained on INSECTS

streams ontaining sudden and inremental onept drift. Despite their di�ulty and

the fat that the referene methods ahieve results lose to the random lassi�er, mde

is able to break out of this minimum at times, showing its potential to deal with even

extremely di�ult problems.

Observations

Based on the onduted experiments, it an be assert that, espeially for highly imbal-

aned data streams, mde is statistially signi�antly better that state-of-the-art lassi�er

seletion methods. Additionally, mde is quite robust to label noise and does not allow

for signi�ant deterioration of its lassi�ation performane in the ase of onept drift

appearane. It is also worth noting that the behavior displayed by mde on syntheti

streams was on�rmed in experiments using real data streams. In their ase, mde also

showed the potential to deal with highly imbalaned problems. Interestingly, in the ase

of the ovtypeNorm stream, the generalizing ability of the proposed method did not seem

to deteriorate, as in the ase of syntheti streams with a lower Imbalane Ratio.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Can the use of the proposed strategy based on non-zero support for a minority

lass lead to better results in the ase of highly imbalaned data stream than those

obtained by lassial Dynami Ensemble Seletion algorithms?

A1. The obtained results on�rmed that the mde algorithm may outperform the state-

of-the-art Dynami Seletion methods in the task of highly imbalaned data stream

lassi�ation.

Q2. Is the proposed method, based largely on the neighborhood de�ned by the knn

lassi�er, resistant to label noise and onept drift ourrene?

A2. The onduted experiments on�rmed the resistane of the mde to both global

label noise and onept drift ourrene.
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4.2 Dynami Ensemble Seletion for Imbalaned Stream

Classi�ation

This setion introdues the Dynami Ensemble Seletion for Imbalaned Stream Clas-

si�ation (desis) framework for the task of drifting imbalaned data stream lassi-

�ation. The ensemble's onstrution is based on the Streaming Ensemble Algorithm

(sea) onept [221℄, with an additional threshold-based pruning, and various oversam-

pling tehniques are used to deal with lass imbalane. The motivation for this proposal

was, among others, the shortage of methods dediated to the imbalaned data stream

lassi�ation stream, presented in Chapter 1. An additional goal was to propose a novel

use of Dynami Ensemble Seletion in ombination with preproessing for imbalaned

lassi�ation, whih so far has been onsidered in the literature rarely and only for stati

data [198℄. By using Dynami Seletion, taking into aount the loal ompetenies of

the base lassi�ers, desis has a hane to deal not only with imbalane but also with

the onept drift phenomenon, even without the use of preproessing tehniques.

desis framework

Eah based model Ψk learns from the LSk training set whih is obtained by prepro-

essing DSk. DSELk denotes dynami seletion dataset for the kth data hunk and it

is onsidered as previously preproessed DSk−1. Eah new trained lassi�er (one per

eah data hunk) is added to the ensemble until the maximum ensemble size nmax is

ahieved. Then if new model is added, eah lassi�er in the ensemble is evaluated (a-

ording to ba) and the worst one is removed. Additionally, at eah step, all models

whih ba sores are lower than a given threshold α are removed from the ensemble.

Pruning proess is performed before adding kth lassi�er to the pool. The onept be-

hind the proposed framework is presented in Figure 4.8 and the pseudoodes for training

and predition phase is shown in Algorithms 8 and 9.

In the pseudoodes, the following funtions were used:

� preproess() � generates the learning set LSk by applying the hosen prepro-

essing method to the kth data hunk,

� train() � builds a new base lassi�er Ψk on the learning set LSk generated by

applying preproessing to the kth data hunk,

� evaluate() � alulates the balane auray sore on urrent data hunk DSk
for eah base lassi�er Ψi ∈ Π in order to use it later in the pruning proess.

� pruneThreshold() � removes from pool Π all models with ba lower than α,
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Figure 4.8: The framework for training base lassi�ers and to prepare a dsel for dynami seletion

proess. Here, LSk is the learning set produed by preproessing data hunk DSk and Ψk is the base

lassi�er trained on the kth data hunk. Π denotes the lassi�er pool.

� pruneWorst() � � removes the worst-performing base lassi�er from the pool Π

if the �xed maximum lassi�er pool size (nmax) is exeeded after adding a new

model,

� predit() � uses a given lassi�er pool (or list of ensembles in ase of dynami

seletion) to lassify eah instane in given data hunk,

� dynamiSeletion() � uses a given dynami ensemble seletion method to gen-

erate a list of ensembles for lassifying eah test instane. In this work Dynami

Ensemble Seletion an be performed on two levels - bagging lassi�er level or base

estimators level.

In the beginning the lassi�er pool Π is empty. The �rst lassi�er Ψ0 is generated using

the preproessed zero hunk (Algorithm 8 steps 4, 5 and 6). When the �rst data hunk

arrives, the Ψ0 is used to lassify it. Then, the learning set LS1 is stored as the DSEL for

the Dynami Ensemble Seletion proess performed when next hunk arrives (Algorithm

9 step 5 and 6). LS1 is also used to train seond base model (Algorithm 8 steps 4, 5 and

6). Then, with the arrival of eah hunk, the following steps are performed:
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Algorithm 8 Training phase of the desis framework

Input:

Stream � data stream,

nmax � maximum �xed size of the lassi�er pool,

α � pruning threshold,

Symbols:

Sk � set of evaluation metri values for eah base lassi�er,

DSk � data hunk,

Ψk � bagging lassi�er,

Π � bagging lassi�ers pool.

1: Π← ∅

2: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: if k <= 1 then ⊲ First data hunk.

4: LSk = preproess(DSk)
5: Ψk ← train(LSk) ⊲ Bagging lassi�er generation

6: Π← Ψk ⊲ Adding bagging lassi�er to the pool

7: else ⊲ Third and all subsequent data hunks.

8: Sk = evaluate(Π,DSk)
9: if | Π |> 1 then ⊲ Removing worst lassi�er if nmax is exeeded.

10: Π← pruneThreshold(Π,Sk, α)
11: if | Π |> nmax − 1 then ⊲ Removing worst lassi�er if nmax is exeeded.

12: Π← pruneWorst(Π,Sk)
13: LSk = preproess(DSk)
14: Ψk ← train(DSk)
15: Π← Ψk

16: end for

Algorithm 9 Predition phase of the desis frameworks

Input:

Stream � data stream,

Π � pool of bagging lassi�ers.

Symbols:

DSk � data hunk,

ΠDk
� lassi�er ensemble seleted using dynami seletion,

DSELk � dynami ensemble seletion dataset for the kth data hunk.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then ⊲ First data hunk

3: Pass ⊲ No predition

4: else if k == 1 then ⊲ Seond data hunk

5: Decision← predit(DSk,Π) ⊲ Predition using the whole pool

6: DSELk+1 ← preproess(DSk) ⊲ Storing DSEL for next step

7: else ⊲ Third and all subsequent data hunks

8: ΠDk
← dynamiSeletion(Π,DSELk,DSk) ⊲ Dynami seletion

9: Decision← predit(DSk,ΠDk
) ⊲ Predition using seleted pool

10: DSELk+1 ← preproess(DSk)
11: end for
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1. Previously stored learning set is used as DSEL for the dynami seletion proess

to reate the list of ensembles for lassifying eah instane in DSk (Algorithm 9

step 8).

2. The ensembles seleted by the hosen des method are used to lassify all instanes

int he urrent data hunk (Algorithm 9 step 9).

3. The urrent data hunk DSk is preproessed and stored as DSEL for the next

Dynami Ensemble Seletion proess (Algorithm 9 step 10).

4. All base models in lassi�er pool Π are evaluated based on ba in order to use this

information for ensemble pruning (Algorithm 8 step 8).

5. All base lassi�ers with ba lower than a given threshold α are removed the the

ensemble (Algorithm 8 steps 9 and 10).

6. The worst performing lassi�ers is removed from the ensemble is the maximal pool

size nmax is exeeded (Algorithm 8 steps 11 and 12).

7. Using preproessing, the learning set LSk is generated, on the basis of whih a new

lassi�er is build and then added to the pool Π (Algorithm 8 steps 13, 14 and 15).

Computational and memory omplexity analysis

Beause the assumption of limited resoures is ruial for the data stream proessing,

then let us estimate the omputational omplexity of the proposed framework. The

proposed hunk-based framework for the imbalaned data stream lassi�ation is based

on the methods of dynami lassi�er seletion as well as on preproessing tehniques

(both oversampling and undersampling). For this reason, the key fators a�eting the

omputational omplexity of the presented approahes are, respetively, the number of

models in the lassi�er pool for dynami seletion methods and the number of problem

instanes in a single data hunk in the ase of preproessing tehniques.

Based on preliminary observations, it was established that the Dynami Ensemble Se-

letion methods (both knora-u and knora-e) have a linear time omplexity of O(n)

depending on the number of base lassi�ers in the pool. The preproessing tehniques

used in the work have, respetively, the logarithmi omplexity of O(log n) (ros and

rus), the quadrati omplexity of O(n2) (Borderline2-smote) [260℄, and the omplexity

of O(n log n) (nn). smote has the omputational omplexity of O(n log2 n) [260℄.

Additionally des-knn performs alulation of pairwise disagreement measure (O(n2)),

and des-l employs the k-means lustering algorithm. The k-means omputational
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omplexity is O(ncde), where c is the number of lusters, d is the number of data di-

mensions, and e desribes the number of iterations/epohs [26℄. Complexity is redued

to O(nce), as the lustering spae is one-dimensional.

Beause a �xed size of the data hunk N is always set, the omplexity of the proposed

algorithms depends only on the number of lassi�ers from whih the seletion is made

(denoted as | Π |).

4.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Researh questions

The experiments were designed to answer the following questions:

Q1. Can the use of Dynami Seletion, taking into aount the loal ompetenies of the

base lassi�ers, improve the ensemble's performane in the ase of the imbalaned

data stream with onept drift?

Q2. Can ombining des with data preproessing improve the ensemble's performane

in the ase of the imbalaned data stream with onept drift?

Q3. Whih des methods and preproessing tehniques are best suited for the lassi�-

ation of a data stream with a given onept drift type and Imbalane Ratio?

Goals of the experiments

Experiment 1 � Imbalane Ratio impat

The aim of the �rst experiment is to test how dseis, with di�erent ombinations of

Dynami Ensemble Seletion methods and preproessing tehniques, behaves when las-

sifying data streams with various Imbalane Ratios.

Experiment 2 � Conept drift type impat

The aim of the �rst experiment is to evaluate how dseis, with di�erent ombinations

of Dynami Ensemble Seletion methods and preproessing tehniques, behaves when

lassifying data streams with various types of onept drift.

Experimental set-up

The proposed framework was evaluated using 72 arti�ially generated data streams.

Eah stream is omposed of one hundred thousand instanes divided into 200 hunks of
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500 objets desribed by 8 features, and ontains 5 onept drifts. The base onepts

were generated using the stream-learn pakage. The variety of streams was ensured by

generating 3 repliations with di�erent random seed for eah ombination of the following

parameters:

� the imbalane ratio � suessively 10, 20, 30 and 40% of the minority lass.

� the level of label noise � suessively 0, 10 and 20%.

� the type of onept drift � sudden or inremental.

As the experimental protool, the Test-Than-Train framework [135℄ was used, i.e., every

lassi�ation model is trained on a reent data hunk, but it is evaluated on the basis of

the following one. Evaluation of the desis was based on metris typial for imbalaned

data lassi�ation problem. The value of pruning threshold α was set to .55, i.e., all

base lassi�ers whih ba lower than .55 were removed from ensemble. This value was

hosen in order to leave in the lassi�er pool only the models that performed slightly

better than the random lassi�er. The maximum size of the lassi�er pool nmax was set

to 20. Neighborhood size for Dynami Ensemble Seletion methods was k = 7. Set-up

details are listed below:

� Evaluation measures � Balaned Auray Sore (ba) and Geometri mean sore

(Gmeans),

� Base lassi�er � Classi�ation and Regression Tree (art),

� Dynami Seletion Methods � knora-Eliminate (knora-e), knora-Union (knora-

u), des-knn, des-Clustering (des-l),

� Data preproessing tehniques � smote, svm-smote, Bordeline-smote in two

variants (b1-smote & b2-smote), Safe-level smote (sl-smote), and adasyn,

� Referene method � desis without des and preproessing, leaving a lassi�er pool

ombined using support aumulation (sa).

Experiments were implemented in Python programming language and may be repeated

aording to soure ode published on Github

2

.

2

https://github.om/w4k2/ECML19-IoT-DES-prepro

https://github.com/w4k2/ECML19-IoT-DES-preproc
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Experiment 1 � Imbalane Ratio impat

The results of Experiment 1 aording to ba (a) and Gmeans (b) for di�erent ir values

are presented in Tables 4.3 and 4.4 and in Figures 4.9-4.12. Bold indiates the statistially

signi�ant best ombination method, while brakets indiate the statistially signi�ant

best preproessing algorithm for a given ombination strategy. Small numbers below the

results indiate the indies of methods that are statistially signi�antly outperformed by

the onsidered ombination strategy (best in row), while small letters represent prepro-

essing methods that are statistially signi�antly outperformed by the onsidered one

(best in olumn). Statistial analysis was performed using the Wiloxon Signed Rank

Test (p ≤ .05). The radar harts show how eah data preproessing tehnique a�eted

the performane of a partiular Dynami Ensemble Seletion method, and are followed

by the lassi�ation results for the best performing Dynami Seletion methods in on-

juntion with the most e�etive data preproessing tehniques. The methods presented

were seleted based on statistial evaluation and are ompared with the support au-

mulation of the entire lassi�er pool and with the results obtained using only Dynami

Ensemble Seletion or preproessing.
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Figure 4.9: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for imbalane ratio 1 : 9.
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Table 4.3: Results of the Wiloxon Signed Rank Test for various Imbalane Ratios in relation to ba.

1:9 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.650 0.717 0.729 0.743 0.725

� 1 1,2,5 All 1,2

g � � f �

SMOTE (b) 0.664 0.741 0.768 0.762 0.754

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f a,f,g a,d,f,g

SVM-SMOTE (c) 0.677 [0.751℄ 0.771 [0.770℄ [0.762℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.657 0.741 0.763 0.762 0.750

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,f,g a,f

B2-SMOTE (e) [0.681℄ 0.738 [0.772℄ 0.763 0.755

� 1 All 1,2,5 1,2

All a,f All a,b,f,g a,b,d,f,g

SL-SMOTE (f ) 0.651 0.718 0.740 0.741 0.728

� 1 1,2,5 1,2,5 1,2

g � a � a

ADASYN (g) 0.649 0.738 0.768 0.758 0.752

� 1 All 1,2,5 1,2

� a,f a,d,f a,f a,d,f

2:8 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.744 0.779 0.809 0.814 0.800

� 1 1,2,5 all 1,2

� f � f �

SMOTE (b) 0.757 0.793 0.829 0.820 0.815

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,f a,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.771 [0.801℄ [0.833℄ [0.826℄ [0.820℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.754 0.793 0.829 0.820 0.813

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,b,e,f,g a,e,f

B2-SMOTE (e) [0.773℄ 0.782 0.830 0.814 0.811

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g f a,f

SL-SMOTE (f ) 0.747 0.776 0.819 0.805 0.800

� 1 All 1,2,5 1,2

a,g � a � a

ADASYN (g) 0.744 0.788 0.830 0.814 0.813

� 1 All 1,2 1,2

� a,e,f a,b,d,f f a,e,f

3:7 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.800 0.806 0.846 0.844 0.834

� 1 All 1,2,5 1,2

� e,f � e,f,g f

SMOTE (b) 0.806 0.815 0.856 0.846 0.841

� 1 All 1,2,5 1,2

a,f,g a,d,e,f,g a,f a,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.816 [0.819℄ [0.858℄ [0.847℄ [0.843℄

� � All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.808 0.813 0.856 0.844 0.839

� 1 All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.819℄ 0.800 0.855 0.836 0.835

2 � All 1,2 1,2

All � a,f f a,f

SL-SMOTE (f ) 0.802 0.801 0.850 0.833 0.831

2 � All 1,2,5 1,2

a,g � a � �

ADASYN (g) 0.800 0.809 0.856 0.838 0.839

� 1 All 1,2 1,2,4

� a,e,f a,b,e,f e,f a,e,f

4:6 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.827 0.819 0.864 [0.857℄ 0.851

2 � All 1,2,5 1,2

� e,f,g � All e,f

SMOTE (b) 0.828 0.823 0.867 0.856 0.853

2 � All 1,2,5 1,2

a,f,g a,d,e,f,g a,f c,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.834 [0.823℄ [0.868℄ 0.856 [0.853℄

2 � All 1,2,5 1,2

a,b,d,f,g All All d,e,f,g All

B1-SMOTE (d) 0.832 0.821 0.867 0.854 0.852

2 � All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.836℄ 0.811 0.866 0.848 0.848

2 � All 1,2 1,2

All � a,f � f

SL-SMOTE (f ) 0.827 0.815 0.864 0.849 0.847

2 � All 1,2,5 1,2

� e � e �

ADASYN (g) 0.827 0.818 0.868 0.852 0.852

2 � All 1,2 1,2

� e,f a,b,e,f e,f a,e,f
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Table 4.4: Results of the Wiloxon Signed Rank Test for various Imbalane Ratios in relation to

Gmeans.

1:9 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.544 0.683 0.676 0.705 0.679

� 1,3,5 1 All 1,3

g � � � �

SMOTE (b) 0.569 0.729 0.742 0.748 0.733

� 1 1,2,5 All 1,2

a,d,f,g a,d,f a,d,f a,d,f a,d,f

SVM-SMOTE (c) 0.591 [0.735℄ 0.742 [0.752℄ 0.738

� 1 1,2,5 All 1,2

a,b,d,f,g All a,d,f a,b,d,f,g a,b,d,f,g

B1-SMOTE (d) 0.555 0.724 0.734 0.744 0.726

� 1 1,2,5 All 1,2

a,f,g a,f a,f a,f a,f

B2-SMOTE (e) [0.598℄ 0.729 [0.751℄ [0.752℄ [0.740℄

� 1 1,2,5 1,2,5 1,2

All a,d,f All a,b,d,f,g All

SL-SMOTE (f ) 0.544 0.702 0.705 0.723 0.702

� 1 1,2,5 All 1

g a a a a

ADASYN (g) 0.542 0.729 0.745 0.748 0.734

� 1 1,2,5 All 1,2

� a,d,f a,b,c,d,f a,d,f a,d,f

2:8 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.704 0.768 0.792 0.803 0.783

� 1 1,2,5 All 1,2

� � � f �

SMOTE (b) 0.724 0.789 0.820 0.816 0.807

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,f a,e,f,g a,d,f

SVM-SMOTE (c) 0.744 [0.797℄ [0.825℄ [0.822℄ [0.813℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.719 0.789 0.821 0.817 0.805

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,b,f a,b,e,f,g a,f

B2-SMOTE (e) [0.746℄ 0.780 [0.825℄ 0.812 0.806

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g a,f a,d,f

SL-SMOTE (f ) 0.708 0.772 0.809 0.802 0.792

� 1 All 1,2,5 1,2

a,g a a � a

ADASYN (g) 0.704 0.786 0.822 0.811 0.807

� 1 All 1,2,5 1,2

� a,e,f a,b,d,f a,f a,d,f

3:7 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.786 0.803 0.840 0.841 0.828

� 1 1,2,5 All 1,2

� e,f � e,f,g �

SMOTE (b) 0.794 0.814 0.852 0.844 0.838

� 1 All 1,2,5 1,2

a,f,g a,d,e,f,g a,f a,d,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.807 [0.817℄ [0.855℄ [0.846℄ [0.841℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.797 0.811 0.853 0.843 0.836

� 1 All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,f a,e,f,g a,e,f

B2-SMOTE (e) [0.810℄ 0.799 0.853 0.835 0.833

2 � All 1,2,5 1,2

All � a,b,f f a,f

SL-SMOTE (f ) 0.790 0.799 0.847 0.831 0.828

� 1 All 1,2,5 1,2

a,g � a � �

ADASYN (g) 0.786 0.808 0.853 0.837 0.836

� 1 All 1,2 1,2

� a,e,f a,b,f e,f a,e,f

4:6 IR

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.822 0.818 0.862 [0.856℄ 0.849

2 � All 1,2,5 1,2

� e,f � All e,f

SMOTE (b) 0.824 0.822 0.865 0.855 0.851

2 � All 1,2,5 1,2

a,f,g a,d,e,f,g a,f c,d,e,f,g a,d,e,f

SVM-SMOTE (c) 0.831 [0.823℄ [0.867℄ 0.854 [0.852℄

2 � All 1,2,5 1,2

a,b,d,f,g All All d,e,f,g All

B1-SMOTE (d) 0.828 0.820 0.866 0.853 0.850

2 � All 1,2,5 1,2

a,b,f,g a,e,f,g a,b,e,f e,f,g a,e,f

B2-SMOTE (e) [0.833℄ 0.810 0.865 0.847 0.847

2 � All 1,2 1,2,4

All � a,f � f

SL-SMOTE (f ) 0.822 0.814 0.863 0.848 0.845

2 � All 1,2,5 1,2

� e a e �

ADASYN (g) 0.822 0.817 0.866 0.851 0.850

2 � All 1,2 1,2

� e,f a,b,e,f e,f a,e,f
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Figure 4.10: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for imbalane ratio 2 : 8.

Based on the statistial analysis we an see that for the 1 : 9 imbalane ratio, aording

to ba, des-knn was the best performing method without the use of any preproessing.

In ases where des was oupled with preproessing methods, knora-u performed best

exept for the use of sl-smote, where it was not statistially better than des-knn.

Aording to Gmeans for 1 : 9 ir des-knn was statistially the best dynami ensemble

seletion method. For the Borderline2-smote preproessing method, both des-knn and

knora-u performed statistially similar. The best preproessing methods were svm-

smote and Borderline2-smote.

For the 2 : 8 ir, both in terms of ba and Gmeans, knora-u performed best when

paired with any preproessing method. If no data preproessing was used, des-knn

performed statistially signi�antly best. As for the preproessing methods, in most

ases svm-smote was statistially signi�ant, Borderline2-smote performed best for

Support Aumulation of the whole lassi�er pool.

For the 3 : 7 imbalane ratio, knora-u again proved to be the statistially signi�antly

best Dynami Ensemble Seletion method. The only exeption (aording to Gmeans)
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Figure 4.11: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for imbalane ratio 3 : 7.

was the ase where no preproessing was used, then des-knn works best. By both

measures, the best data preproessing method for des was svm-smote. Borderline2-

smote again performed the best for support aumulation.

In the ase of 4 : 6, ir was the statistially signi�antly best knora-u method in

eah ase aording to both ba and Gmeans. Borderline2-smote worked best for

support aumulation and in the remaining ases svm-smote was statistially the best

preproessing method.

Experiment 2 � Conept drift type impat

Evaluation of the desis in the ase of di�erent onept drift types (sudden or inre-

mental) foused on the streams with high imbalane ratios (i.e., 1 : 9 and 2 : 8), typial

for the real-life deision tasks. The omparison is shown in Figure 4.13 and 4.14. The

results of statistial analysis onduted in Experiment 2 is presented in Tables 4.5 and

4.6. Bold indiates the statistially signi�antly best ombination method, while brakets

are used to denote the statistially signi�antly best preproessing algorithm for a given



Chapter 4. Algorithms for di�ult data stream lassi�ation 122

Naive

KNORA-E

KN
OR
A-
UDES-KNN

DE
S-
CL
us
te
ri
ng

0.5

0.6

0.7

0.8

0.9

1.0

40% of minority class - BAC

None
SMOTE

SVM-SMOTE
B1-SMOTE

B2-SMOTE
SL-SMOTE

ADASYN

Naive
KNORA-E

KN
OR
A-
UDES-KNN

DE
S-
CL
us
te
ri
ng

0.5

0.6

0.7

0.8

0.9

1.0

40% of minority class - G-mean

None
SMOTE

SVM-SMOTE
B1-SMOTE

B2-SMOTE
SL-SMOTE

ADASYN

0 25 50 75 100 125 150 175 200
chunks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
al
an

ce
d 
ac
cu

ra
cy

Naive-None
0.827
KNORAU-None
0.864

KNN-None
0.857
Naive-SVM
0.834

KNORAU-SVM
0.868
KNN-SVM
0.856

Naive-B2
0.836
KNORAU-B2
0.866

KNN-B2
0.848

0 25 50 75 100 125 150 175 200
chunks

0.4

0.5

0.6

0.7

0.8

0.9

1.0
G
-m

ea
n

Naive-None
0.822
KNORAU-None
0.862

KNN-None
0.856
Naive-SVM
0.831

KNORAU-SVM
0.867
KNN-SVM
0.854

Naive-B2
0.833
KNORAU-B2
0.865

KNN-B2
0.847

Figure 4.12: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for imbalane ratio 4 : 6.

ombination strategy. Small numbers under the results indiate the indexes of methods

that are statistially signi�antly outperformed by the onsidered ombination strategy

(best in row), while small letters stand for preproessing methods that are statistially

signi�antly outperformed by the onsidered one (best in olumn). Statistial analysis

was onduted using the Wiloxon Signed Rank Test (p ≤ .05).

For sudden drift, in terms of both measures, des-knn was statistially the best with-

out the use of any preproessing method and knora-u was statistially leading when

paired with every oversampling method. Borderline2-smote was the best for support

aumulation and for knora-u aording to Gmeans, for the rest of Dynami Ensemble

Seletion methods svm-smote performed the best.

Finally, for inremental drift, aording to ba, des-knn performed statistially sig-

ni�antly best without the use of preproessing and for the sl-smote while knora-u

was the best for other oversampling tehniques. svm-smote was the best preproessing

method for knora-e, des-knn and des-Clustering and Borderline2-smote performed

the best oupled with support aumulation and knora-u. Aording to Gmeans,
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Figure 4.13: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for sudden drift.

knora-u was statistially leading desmethod for Borderline2-smote and adasyn while

des-knn was statistially signi�ant for all other preproessing tehniques. svm-smote

worked best with knora-e and des-knn, Borderline2-smote proved to be statistially

signi�ant for support aumulation, knora-u and des-Clustering.

Observations

n general, the order of the approahes presented in terms of performane, beginning with

the worst, is as follows: (i) support aumulation without using preproessing methods,

(ii) support aumulation ombined with preproessing, (iii) dynami ensemble seletion

methods without preproessing, (iv) des methods oupled with preproessing methods.

The lower the imbalane ratio, the smaller the di�erenes between the approahes, but

the order is maintained. The onduted experiments showed that the best performing

des method among the onsidered strategies aross all tested imbalane ratios is the

knora-u, whih uses the weighted voting sheme. Sine the knora-Union method

selets all the base models that are able to orretly lassify at least one instane in
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Figure 4.14: Comparison of di�erent sampling approahes for di�erent lassi�er ensembles with respet

to performane measures (ba and Gmeans) for inremental drift.

the loal ompetene region and then ombines them based on the weighted voting,

where the number of votes equals the number of orretly deteted samples, it allows

us to selet both an aurate and a diverse ensemble. Sine these two properties are

the determinants of a good lassi�er ensemble model, they may be the reason for high

results of this Dynami Ensemble Seletion method. Worth mentioning is also the des-

knn, whih is doing well for high imbalane ratios, espeially for the 10% of minority

lass and for inremental drift in terms of Gmeans. des-knn performs the best for

high ir (10 and 20% of minority lass) in ase of not using any preproessing method.

The worst performing des method, for low ir (30 and 40%) worse even than support

aumulation, was knora-e. This may be due to the fat, that the loal orales are

found only for ompetene regions with a signi�antly redued size, whih negatively

a�ets the performane.

Based on the results ahieved by des-knn and des-Clustering methods it may suspeted

that the k-Nearest Neighbors tehnique is better suited for de�ning the loal region of

ompetene in ase of imbalaned data streams than the lustering tehnique. Despite
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Table 4.5: Results of the Wiloxon Signed Rank Test for various types of onept drift in relation to

ba.

Sudden drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.717 0.756 0.780 0.784 0.774

� 1 1,2,5 All 1,2
g f � f �

SMOTE (b) 0.732 0.771 0.803 0.793 0.790

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f,g a,e,f,g a,d,e,f,g

SVM-SMOTE (c) 0.746 [0.780℄ [0.807℄ [0.800℄ [0.797℄

� 1 All 1,2,5 1,2

a,b,d,f,g All All All All

B1-SMOTE (d) 0.727 0.771 0.801 0.794 0.788

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,e,f,g a,e,f,g

B2-SMOTE (e) [0.749℄ 0.763 0.805 0.789 0.786

� 1 All 1,2,5 1,2

All a,f a,b,d,f,g a,f,g a,f

SL-SMOTE (f ) 0.721 0.753 0.792 0.776 0.773

� 1 All 1,2,5 1,2
a,g � a � �

ADASYN (g) 0.716 0.767 0.802 0.788 0.787

� 1 All 1,2 1,2
� a,e,f a,d,f a,f a,f

Inremetal drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.677 0.741 0.757 0.773 0.751

� 1 1,2,5 All 1,2
� � � f �

SMOTE (b) 0.689 0.762 0.793 0.788 0.778

� 1 All 1,2,5 1,2

a,d,f,g a,e,f,g a,d,f a,f,g a,d,f

SVM-SMOTE (c) 0.703 [0.771℄ 0.796 [0.796℄ [0.785℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.684 0.762 0.791 0.789 0.775

� 1 All 1,2,5 1,2

a,f,g a,e,f,g a,f a,e,f,g a,f

B2-SMOTE (e) [0.704℄ 0.757 [0.797℄ 0.789 0.780

� 1 All 1,2,5 1,2

All a,f All a,f,g a,b,d,f,g

SL-SMOTE (f ) 0.677 0.741 0.767 0.770 0.756

� 1 1,2,5 All 1,2
g � a � a

ADASYN (g) 0.676 0.759 0.795 0.784 0.778

� 1 All 1,2,5 1,2
� a,e,f a,b,d,f a,f a,d,f

Table 4.6: Results of the Wiloxon Signed Rank Test for various types of onept drift in relation to

Gmeans.

Sudden drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.657 0.735 0.750 0.762 0.748

� 1 1,2,5 All 1,2

g � � � �

SMOTE (b) 0.679 0.764 0.787 0.784 0.777

� 1 All 1,2,5 1,2

a,d,f,g a,d,e,f,g a,d,f a,d,e,f,g a,d,f

SVM-SMOTE (c) 0.700 [0.771℄ 0.790 [0.789℄ [0.783℄

� 1 All 1,2,5 1,2

a,b,d,f,g All a,b,d,f,g All All

B1-SMOTE (d) 0.672 0.761 0.783 0.783 0.773

� 1 All 1,2,5 1,2

a,f,g a,e,f a,f a,f,g a,f

B2-SMOTE (e) [0.706℄ 0.758 [0.793℄ 0.783 0.778

� 1 All 1,2,5 1,2

All a,f All a,d,f,g a,d,f,g

SL-SMOTE (f ) 0.662 0.745 0.775 0.767 0.761

� 1 All 1,2,5 1,2

a,g a a a a

ADASYN (g) 0.656 0.761 0.788 0.781 0.776

� 1 All 1,2,5 1,2
� a,e,f a,b,d,f a,f a,d,f

Inremetal drift

(1)

SACC

(2)

KNORA-E

(3)

KNORA-U

(4)

DES-kNN

(5)

DES-Cl

None (a) 0.592 0.717 0.718 0.746 0.714

� 1 1,2,5 All 1
� � � � �

SMOTE (b) 0.613 0.754 0.775 0.780 0.763

� 1 1,2,5 All 1,2

a,d,f,g a,d,e,f,g a,d,f a,d,f,g a,d,f

SVM-SMOTE (c) 0.635 [0.761℄ 0.777 [0.784℄ [0.768℄

� 1 1,2,5 All 1,2

a,b,d,f,g All a,b,d,f All a,b,d,f,g

B1-SMOTE (d) 0.602 0.752 0.772 0.778 0.758

� 1 1,2,5 All 1,2

a,f,g a,e,f a,f a,f a,f

B2-SMOTE (e) [0.638℄ 0.751 [0.783℄ 0.782 [0.769℄

� 1 All 1,2,5 1,2

All a,f All a,b,d,f,g a,b,d,f,g

SL-SMOTE (f ) 0.591 0.729 0.739 0.757 0.733

� 1 1,2,5 All 1,2
� a a a a

ADASYN (g) 0.590 0.753 0.779 0.779 0.766

� 1 All 1,2,5 1,2
� a,e,f a,b,c,d,f a,f a,b,d,f



Chapter 4. Algorithms for di�ult data stream lassi�ation 126

the higher omputational ost, knn allows for more preise estimation of the region of

ompetene whih leads to more possible ensemble on�gurations for lassifying new

instanes.

On the other hand, svm-smote and Borderline2-smote have proven to be the preferred

preproessing strategies for the used dynami ensemble seletion methods. The ombi-

nation of knora-u or des-knn with one of those preproessing methods always leads

to the best lassi�ation performane.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Can the use of Dynami Seletion, taking into aount the loal ompetenies of the

base lassi�ers, improve the ensemble's performane in the ase of the imbalaned

data stream with onept drift?

A1. The obtained results and statistial analysis on�rmed, that the use of Dynami

Seletion may improve the ensemble's performane when dealing with the drifting

imbalaned data stream lassi�ation task.

Q2. Can ombining des with data preproessing improve the ensemble's performane

in the ase of the imbalaned data stream with onept drift?

A2. The onduted experiments on�rmed, that ombining des with preproessing

improves desis performane when ompared to the methods employing only one

of these onepts.

Q3. Whih des methods and preproessing tehniques are best suited for the lassi�-

ation of a data stream with a given onept drift type and Imbalane Ratio?

A3. The results obtained showed that regardless of the Imbalane Ratio and the type of

onept drift, the statistially signi�antly best performing des method was almost

always knora-u. The only exeptions were ir of 1 : 9 and inremental onept

drift, where in terms of Gmeans, des-knn performed best. The best preproessing

tehniques, regardless of the Imbalane Ratio and the type of onept drift, turned

out to be svm-smote or b2-smote.
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4.3 des and Strati�ed Bagging for Imbalaned Stream Clas-

si�ation

This setion proposes an extension of the previously introdued desis framework with

the generation of base lassi�ers using strati�ed bagging. This idea alludes to the artile

in whih Roy et al. proposed a ombination of des and preproessing for the lassi�ation

of stati imbalaned data [198℄. Here, however, due to the promising results ahieved

by dseis, it was deided to use a bootstrapping approah to lassify highly imbalaned

data streams with onept drift ourrene. The motivation to use Strati�ed Bagging

to generate a lassi�er pool was the potential possibility of obtaining a more diverse

pool of base models, whih may inrease the hanes of Dynami Ensemble Seletion

methods to �nd experts in loal regions of the feature spae. This led to the proposition

of a framework alled Dynami Ensemble Seletion for Imbalaned Stream Classi�ation

using Strati�ed Bagging (desis-sb).

desis-sb framework

Here, the previously proposed desis framework is ombined with the Strati�ed Bagging.

This is to allow the generation of lassi�er ensemble based on eah individual highly im-

balaned data hunk. The use of bootstrapping in the proess of lassi�er pool generation

enables Dynami Ensemble Seletion on two levels: (i) bagging lassi�ers level and (ii)

all base lassi�ers level.

Eah bagging lassi�er Ψk onsists of n base estimators. Let ψi
k denote the ith base

model forming the kth bagging lassi�er. Eah base lassi�er ψi
k is build using the

LSik learning set whih is produed by preproessing the ith strati�ed bootstrap SBik
from DSk. Details are provided in the stratifiedBagging(DSk) method desription.

dselk stands for the dynami seletion dataset for the kth data whih in this ase in

the previously preproessed data hunk DSk−1. One bagging lassi�er Ψk is generated

based on eah inoming data hunk DSk and added to the bagging lassi�er pool Π.

As the proposed framework is based on the Streaming Ensemble Algorithm (sea) [221℄,

when the maximum bagging lassi�ers pool size (nmax) is exeeded after adding a new

model, the worst one, aording to the balaned auray metri, will be removed from

the pool. The desis-sb framework is presented in Figure 4.15 and the pseudoode is

shown separately for the training and predition phase in Algorithms 10 and 11.

Let us shortly desribe the methods used in pseudoode:

� preproess() � applies the hosen preproessing tehnique to the provided data,
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Figure 4.15: The framework for generating the lassi�er pool and preparing dsel for the dynami

seletion proess. The red arrows follow the training phase (Algorithm 10), while the orange arrows

depit the predition phase (Algorithm 11).

� stratifiedBagging() � generates the bagging lassi�er for kth data hunk. Eah

bootstrap is generated by sampling with replaement both minority and majority

lasses separately in suh a way that preserves the number of instanes of both

lasses in the original data hunk. The �nal deision of Ψk is made based on the

aggregation of the support funtions of n individual lassi�ers aording to the sum

rule [76℄. When oupled with preproessing tehniques, preproess() method is

alled on eah bootstrap aording to Figure 4.15,

� predit() � uses a given lassi�er pool (or list of ensembles in ase of dynami

seletion) to lassify eah instane in given data hunk,

� dynamiSeletion() � uses a given dynami ensemble seletion method to gen-

erate a list of ensembles for lassifying eah test instane. In this work des an be

performed on two levels - bagging lassi�er level or base estimators level,

� pruneWorst() � removes the worst-performing base lassi�er from the pool if the

maximum bagging lassi�er pool size (nmax) is exeeded after adding a new model.
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Algorithm 10 Training phase of the desis-sb framework

Input:

Stream � data stream,

nmax � maximum �xed size of the bagging lassi�er pool,

Symbols:

Sk � set of evaluation metri values for eah base lassi�er,

DSk � data hunk,

Ψk � bagging lassi�er,

Π � bagging lassi�ers pool.

1: Π← ∅

2: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

3: if k <= 1 then ⊲ First data hunk.

4: Ψk ← stratifiedBagging(DSk) ⊲ Bagging lassi�er generation

5: Π← Ψk ⊲ Adding bagging lassi�er to the pool

6: else ⊲ Third and all subsequent data hunks.

7: Sk = evaluate(Π,DSk)
8: if | Π |> nmax − 1 then ⊲ Removing worst lassi�er if nmax is exeeded.

9: Π← pruneWorst(Π,Sk)
10: Ψk ← stratifiedBagging(DSk)
11: Π← Ψk

12: end for

Algorithm 11 Predition phase of the desis-sb frameworks

Input:

Stream � data stream,

Π � pool of bagging lassi�ers.

Symbols:

DSk � data hunk,

ΠDk
� lassi�er ensemble seleted using dynami seletion,

DSELk � dynami ensemble seletion dataset for the kth data hunk.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then ⊲ First data hunk

3: Pass ⊲ No predition

4: else if k == 1 then ⊲ Seond data hunk

5: Decision← predit(DSk,Π) ⊲ Predition using the whole pool

6: DSELk+1 ← preproess(DSk) ⊲ Storing DSEL for next step

7: else ⊲ Third and all subsequent data hunks

8: ΠDk
← dynamiSeletion(Π,DSELk,DSk) ⊲ Dynami seletion

9: Decision← predit(DSk,ΠDk
) ⊲ Predition using seleted pool

10: DSELk+1 ← preproess(DSk)
11: end for

The step by step desription is as follows. At the start. the lassi�er pool Π is empty

and the �rst bagging lassi�er (Ψ0) is generated using StratifiedBagging() method

on the �rst data hunk (Algorithm 10 steps 4 and 5). When the seond hunk arrives,

it is lassi�ed using the predit() funtion (Algorithm 11 step 5) and then used to
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generate a new bagging model Ψk, whih is added to the ensemble (Algorithm 10 steps

4 and 5). DS1 is preproessed using preproess() method and stored as the dsel for

the dynami seletion proess in the future (Algorithm 11 step 6). Then, with the arrival

of eah new data hunk, following steps are performed:

� In Algorithm 11 step 8, previously stored dsel is used in the dynami seletion

proess for eah instane in DSk (DynamiSeletion() method),

� In Algorithm 11 step 9, the list of ensembles seleted by des method is used to

lassify all the instanes in the urrent data hunk,

� In Algorithm 10 steps 8 and 9, the PruneWorstClassifier() method is used to

prune the lassi�er pool if the �xed size nmax is exeeded,

� In Algorithm 10 steps 10 and 11 a new bagging lassi�er Ψk is generated using kth

data hunk and added to the pool Π,

� Finally, in Algorithm 11 step 10, the urrent data hunk DSk is preproessed and

stored in order to use it as dsel in the next iteration.

Computational and memory omplexity analysis

The omputationl omplexity of desis-sb framework is largely adequate to the om-

plexity of desis, as it is also based on the methods of Dynami Ensemble Seletion

as well as on preproessing tehniques (both oversampling and undersampling). The

key fators a�eting the omputational omplexity of the presented approahes are, re-

spetively, the number of models in the lassi�er pool for Dynami Seletion algorithms

and the number of problem instanes in a single data hunk in the ase of preproessing

tehniques.

Based on preliminary observations, it was established that the des methods (both

knora-u and knora-e) have a linear time omplexity of O(n) depending on the num-

ber of base lassi�ers in the pool. The preproessing tehniques used in the work have,

respetively, the logarithmi omplexity of O(log n) (ros and rus), the quadrati om-

plexity of O(n2) (Borderline2-smote) [260℄, and the omplexity of O(n log n) (nn).

Strati�ed Bagging performs sampling with replaement for eah lass with omputational

omplexity of O(| i | n), where | i | is the ardinality of the ith lass and n denotes the

number of bootstraps (number of base models in bagging lassi�er) [79℄.

Beause a �xed size of the data hunk N is always set, the omplexity of the proposed

algorithms depends only on the number of lassi�ers from whih the seletion is made

(denoted as | Π |). Methods that perform dynami seletion at the level of base lassi�ers
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have a linearly higher omputational omplexity than those that do it at the level of

bagging lassi�ers.

4.3.1 Experimental evaluation

Here, the experimental set-up plan for the dseis-sb-SB framework will be presented

along with the motivation, objetives of the individual experiments, and the results

obtained.

Researh questions

The experiments were designed to answer the following questions:

Q1. Whih Dynami Ensemble Seletion methods perform best while dealing with the

onept drift ourrene?

Q2. Does performing Dynami Ensemble Seletion at the level of all generated base

models (inluding those forming individual bagging lassi�ers) allow dseis-sb to

ahieve better performane when ompared to Dynami Seletion performed only

at the level of bagging lassi�ers?

Q3. Can methods ombining data preproessing and Dynami Ensemble Seletion out-

perform state-of-the-art bath-based and online lassi�ers for di�ult data stream

lassi�ation task?

Goals of the experiments

Experiment 1 � Dynami seletion level

The main purpose of the �rst experiment is, due to a large number of methods, the

pre-seletion of further used dynami ensemble seletion approahes. Dynami seletion

without the use of preproessing tehniques is evaluated for the potential to lassify

highly imbalaned data. Based on the results obtained from this shortened experiment

in whih the results are presented only for the highest tested Imbalane Ratio and stream-

learn generated data streams, a pool of lassi�ers will be seleted, on whih des methods

will be used later for a given type of base lassi�er (i.e., bagging level or the level of all

base lassi�ers present in the pool).

Experiment 2 � Pairing des with preproessing tehniques

The seond experiment aims to examine how two previously hosen des methods perform

based on the preproessing tehnique with whih they were paired ompared to using

solely dynami seletion. We divided the experiment into two parts, i.e., oversampling
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and undersampling. After analyzing the results obtained, one preproessing method will

be seleted from both groups, whih then will be used in subsequent experiments. Again,

this is a shortened experiment in whih the results only for 3% of the minority lass and

stream generated using the stream-learn pakage are presented.

Additionally, the behavior of eah approah during the sudden onept drift ourrene

was analyzed. using the restoration time and maximum performane loss metris.

Experiment 3 � Comparison with state-of-the-art

In the third experiment, two previously seleted dynami seletion methods and two

preproessing tehniques are ompared with state-of-the-art online data stream lassi�-

ation approahes based on the notion of o�ine Bagging, as well as with the hunk-based

stream lassi�ation methods. Beause online methods require a base lassi�er apable

of inremental learning, a omparison was possible only for Gaussian Naïve Bayes and

Hoe�ding Tree lassi�ers.

In the ase of this experiment, arti�ially generated data streams from both stream-learn

and moa were used and full results for three imbalane ratios and three types of onept

drift are presented. Results for 10 and 20% of the minority lass an be found on GitHub.

Due to the high omputational omplexity of Hoe�ding Trees, they were tested only for

real data streams.

Experimental set-up

To evaluate the proposed framework 90 arti�ially data streams were generated with

various harateristis using stream-learn Python library [141℄. Eah data stream is

omposed of �fty thousand instanes (200 hunks, 250 instanes eah) desribed by 8

informative features, and ontains a single onept drift (in the 100th data hunk). The

variety of streams was ensured by generating two streams, based on the determined seeds,

for eah ombination of the following parameters:

� the imbalane ratio � suessively 3, 5, 10, 15 and 20% of the minority lass.

� the level of label noise � suessively 1, 3 and 5%.

� the type of onept drift � sudden, gradual, or inremental.

The remaining 45 data streams were generated using the moa data stream mining frame-

work [19℄. While retaining the parameters mentioned above, these streams di�er in the

generator used and the number of attributes:
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� the generator used � Agrawal (sudden and gradual onept drift) and Hyperplane

(inremental onept drift).

� the number of attributes � 9 for the Agrawal generator and 10 for Hyperplane

generator.

Additionally, this paper presents the results of experiments arried out on real data

streams presented in Table 4.7.

Table 4.7: Real data streams harateristis.

Data stream #Samples #Features ir

ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalaned_norm 300 000 33 19

INSECTS-gradual_imbalaned_norm 100 000 33 19

INSECTS-inremental_imbalaned_norm 380 000 33 19

Evaluation of the proposed framework was based on six metris dediated for imbalaned

data lassi�ation problems. The experimental protool Test-Then-Train [135℄ was used,

i.e., the lassi�ation model is trained on a urrent data hunk and it is evaluated based on

the following one. As the base estimators, four di�erent lassi�ation models aording to

the sikit-learn implementation [187℄ were used. In the researh on ensemble methods,

large pools of lassi�ers, suh as 100 [60℄ or even 1000 [204℄ base models, are usually

onsidered. However, the interesting experiments regarding the predition of the best

lassi�er pool size for Dynami Seletion methods suggested that pools ontaining an

average of 20 lassi�ers might perform best [196, 197℄. Therefore, in order to improve

the performane of dseis-sb and to redue its omputational omplexity, the maximum

size of the bagging lassi�er pool was set to nmax = 5 and eah bagging lassi�er onsisted

of n = 10 base models. Bath-based referene methods use 5 bagging lassi�ers, eah

of whih onsists of 10 base models, while online referene methods maintain ensembles

onsisting of 20 base lassi�ers. Experiments were implemented in Python programming

language and may be repeated aording to soure ode published on GitHub

3

.

� Evaluation metris � Balaned Auray Sore (ba), Gmeans, F1 score, preision,

reall, and spei�ity,

� Classi�ation algorithms � Gaussian Naïve Bayes (gnb), Hoe�ding Tree (ht), k-

Nearest Neighbors lassi�er (knn) and Support Vetor Mahine (svm),

3

https://github.om/w4k2/if-des-imb-stream

https://github.com/w4k2/if-des-imb-stream
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� Referene methods

� Online Bagging (ob) [184℄, whih updates eah base lassi�er in the pool with

the appearane of a new instane using the Poisson(λ = 1) distribution.

� Oversampling-Based Online Bagging (oob) and Undersampling-Based Online

Bagging (uob) [243℄, whih integrate resampling into the Online Bagging algo-

rithm. This was ahieved by making the λ value dependent on the proportion

between lasses.

� Learn++.nie (Nonstationary and Imbalaned Environments) and Learn ++.ds

(Conept Drift with smote) [72℄, whih extend the Learn++.nse (Non-Stationary

Environments) algorithm.

� Reursive Ensemble Approah (rea) [53℄, whih inorporates part of previous

minority lass samples into the urrent data hunk and ombines base models

in a dynamially weighted manner.

� Over/UnderSampling Ensemble (ouse) [91℄, whih uses minority lass in-

stanes from all previously seen data hunks and a subset of majority lass

present in the most reent hunk to generate new ensemble.

� km [246℄, an ensemble-based approah, whih performs, on eah arriving

data hunk, undersampling based on the k-Means lustering algorithm.

In total, based on the proposed framework, �fteen methods for the lassi�ation of im-

balaned data streams have been distinguished in this paper. These methods di�er in the

applied preproessing tehniques and the dynami seletion methods used. We hose two

dynami ensemble seletion methods and two preproessing tehniques for experiments:

� Dynami ensemble seletion methods � knora-e and knora-u were seleted due

to the relatively low omplexity ompared to e.g. des-knn, whih may not be

suited for data stream environment due to ostly ensemble diversity alulation.

� Preproessing tehniques

� Oversampling � Random Oversampling and Borderline2-smote seleted, based

on experiments arried out for desis, as the best performing among several

smote variants when paired with des for imbalaned data stream lassi�a-

tion.

� Undersampling � Random Undersampling and Condensed Nearest Neighbour.

In addition, the ases of no preproessing applied and lassi support aumulation of

the lassi�er pool instead of Dynami Seletion are onsidered. The Dynami Ensemble
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Seletion is performed in two variants � on the bagging lassi�ers level or the level of all

base models (inluding those making up eah bagging lassi�er). The variant of Dynami

Seletion is denoted by the number after the name of des method, 1 being bagging

lassi�ers and 2 being all base estimators. The neighborhood size for des methods is

k = 7, as it is the most ommonly suggested value for the loal region of ompetene

[59℄.

Also, to redue the amount of information, only the most interesting results are presented,

and to failitate onluding, results for two of the four base lassi�ers are omitted, namely

gnb and knn, in Experiments 1 and 2. gnb ahieved results remarkably lose to ht,

and knn showed behavior quite similar to gnb and ht.

Some of the observations regarding the results obtained by the omitted models are pre-

sented in the Observations subsetion. Runs smoothed using Gaussian �lter (σ = 3)

are presented for the Gmeans, as it best re�ets the relationships between the methods'

performane.

Experiment 1 � Dynami seletion level

Figure 4.16 shows the results for the use of seleted Dynami Ensemble Seletion methods

at bagging lassi�ers level and base lassi�ers level, when Hoe�ding Tree (Figure 4.16a)

and Support Vetor Mahine (Figure 4.16b) were used as base models. In ase of ht,

radar diagrams show slight di�erenes in terms of eah metri when ompared to the

basi sea as data streams with a high Imbalane Ratio are analyzed without using any

preproessing tehniques. Despite this, knorae2 has an advantage in terms of Gmeans,

F1 sore and ba.

More signi�ant di�erenes are visible in the presented runs, in whih signi�antly better

response to the onept drift when the knorae method is used (both at the level of

bagging and base models) an be observed. This may be beause this algorithm an

selet base lassi�ers that are loal orales in a given fragment of the feature spae,

whih in the event of a onept hange allows us to keep only the models already trained

on the given onept.

In the ase of the svm lassi�er (Figure 4.16b), the use of des at the base estimators level

leads to a signi�ant deterioration of the results obtained in terms of eah metri exept

for spei�ity. This may be due to a large number of poorly di�erentiated lassi�ers in the

pool. The seletion methods used at the bagging lassi�ers level, espeially knorau1,

perform similar to sea.
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Figure 4.16: Experiment 1 results for Hoe�ding Tree and Support Vetor Mahine lassi�ers.

Based on the results obtained, the following methods of Dynami Ensemble Seletion

were seleted for further experiments:

� ht - knorau and knorae on the base lassi�ers level (knorau2, knorae2).

� smv -knorau and knorae on the bagging lassi�ers level (knorau1, knorae1).

Experiment 2 � Pairing des with preproessing tehniques

The following are the results of ombining seleted methods of Dynami Ensemble Se-

letion with preproessing tehniques. The experiment was divided into parts related to

oversampling and undersampling.
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Figure 4.17: Experiment 2.1 results for Hoe�ding Tree and Support Vetor Mahine lassi�ers.

Table 4.8: Gmeans-based performane metris regarding sudden drift for Experiment 2.1.

Performane metri non-u ros-u b2-u non-e ros-e b2-e

ht

performane loss 0.851 0.481 0.473 0.720 0.571 0.516

restoration time 0.023 0.012 0.013 0.017 0.010 0.009

svm

performane loss 0.667 0.167 1.000 0.833 0.167 1.000

restoration time 0.012 0.008 0.010 0.008 0.007 0.010

Figure 4.17 shows the results of the ombination of des and preproessing tehniques in

ases where ht or svm was used as the base lassi�er. For ht the use of preproessing

leads to an inrease in the reall at the expense of preision and an inrease in balaned

auray andGmeans. On the presented runs, it an be seen that the use of preproessing



Chapter 4. Algorithms for di�ult data stream lassi�ation 138

in onjuntion with des allows for muh smaller losses in Gmeans at the time of the

onept drift. This is partiularly visible in the ase of the Random Oversampling oupled

with knorau2. Here, ros proved to be a better oversampling method.

When svm was employed as the base lassi�er (Figure 4.17b), the use of ros aused the

deterioration of all metris exept spei�ity, beause dupliate instanes ause a stronger

shift in the deision boundary. The use of b2-smote leads to a signi�ant redution in

preision and a slight derease in the F1 sore, while the other metris are omparable

to pure Dynami Seletion.

Table 4.8 ontains performane loss and restoration time values in terms of Gmeans av-

eraged over all runs, referring to sudden onept drift. In the ase of ht, methods paired

with Borderline2-smote generally ahieve the smallest performane loss and restoration

time values. This may be due to the generation of arti�ial minority samples near the

deision boundary. In the ase of svm lassier, des (aording to the presented metris)

performs best when ombined with ros.

It should be noted that better performane in terms of performane loss and restoration

time does not neessarily mean better lassi�ation performane. This an be observed

espeially in the ase of svm.

Undersampling

Table 4.9: Gmeans-based performane metris regarding sudden drift for Experiment 2.2.

Performane metri non-u rus-u nn-u non-e rus-e nn-e

ht

performane loss 0.851 0.578 0.663 0.720 0.466 0.598

restoration time 0.023 0.017 0.021 0.017 0.008 0.009

svm

performane loss 0.667 0.833 0.500 0.833 0.924 0.500

restoration time 0.012 0.012 0.010 0.008 0.010 0.008

Figure 4.18 shows the results regarding the use of undersampling in ombination with

Dynami Ensemble Seletion for ht and svm base lassi�ers. As an be seen, for Ho-

e�ding Trees, the use of both Random Undersampling and Condensed Nearest Neighbor

leads to a notieable improvement in reall, balaned auray and Gmeans, while redu-

ing preision. In addition, rus also leads to deterioration of F1 sore and spei�ity. As

in the ase of oversampling tehniques, the pro�t from undersampling is best seen at the

moment of the onept drift ourrene, where only a slight derease in Gmeans an be

observed. Despite the advantage of rus in terms of this metri, a better undersampling
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Figure 4.18: Experiment 2.2 results for Hoe�ding Tree and Support Vetor Mahine lassi�ers.

method for ht lassi�er was nn, as it led to balaned results in terms of eah of the

evaluation metris.

For svm (Figure 4.18 b), employing rus leads to better results, while the use of nn

pratially does not ause di�erene when ompared to the methods without preproess-

ing. This is due to the internal design of this undersampling method, whih does not

hange the deision boundary.

Table 4.9 presents the performane loss and restoration time values for undersampling

methods. In the ase of ht, rus ahieves the best values of these metris. In the ase of

svm lassi�er, nn allowed des tehniques to ahieve the lowest performane loss and

restoration time, but simultaneously, it led to the worst lassi�ation performane.

Based on the results obtained for the ht lassi�ers, Random Oversampling and Con-

densed Nearest Neighbor were seleted as the preproessing methods for Experiment 3.
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Same for Gaussian Naïve Bayes, for whih the results were omitted due to the high

similarity to the Hoe�ding Tree.

Experiment 3 � Comparison with state-of-the-art

Online referene methods
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Figure 4.19: Results of the experiment regarding online referene methods for various imbalane ratios.
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Figure 4.20: Results of the experiment regarding online referene methods for various onept drift

types.

Figure 4.19 shows a omparison of a ombination of previously seleted dynami se-

letion methods and preproessing tehniques with state-of-the-art online bagging-based

methods. As these methods need base models apable of updating inrementally, this

experiment was performed only for Gaussian Naïve Bayes and Hoe�ding Tree.

Gaussian Naïve Bayes (Figure 4.19 a) is not suitable for online methods in the ase of

onept drift as Gmeans signi�antly dereases, beause the lassi�er still remembers
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the old onept. Online Bagging is not able to rebuild after drift ourrene, while oob

and uob note a lower deline and are slowly reovers thanks to built-in oversampling and

undersampling methods. When it omes to the ombination of des and preproessing,

the relationships between the methods persist, but derease with the Imbalane Ratio.

uob rises faster than oob at 3 and 5% of the minority lass, but when the Imbalane

Ratio is lower both methods onverge.

In the ase of ht (Figure 4.19 b), it an be seen that the use of trees in online methods

leads to a muh smaller derease in the Gmeans value at the moment of onept drift

and leads to faster reovery. This is due to the onstrution of the Hoe�ding Tree

reognition model. oob and uob ahieve better results than methods ombining des and

preproessing in terms of balaned auray, Gmeans and reall. In addition, uob leads

when it omes to F1 sore and preision, oob ahieves worse F1 sore and spei�ity.

As in the ase of gnb, when the Imbalane Ratio dereases, the results ahieved by

individual methods begin to onverge. The ob improvement is partiularly notieable.

Figure 4.20 shows a omparison of seleted bath methods with online methods in terms

of onept drift type. It an be seen that the relationships shown in Figure 4.19 are also

true in this ase. It is noteworthy that although in the ase of using Hoe�ding Tree as

the base lassi�er oob and uob perform omparably or better than the proposed bath

methods, they note a more signi�ant derease in Gmeans and a slower reovery after

sudden onept drift. Therefore, it an by assumed that in the ase of a large number of

sudden drifts ourring in the data stream, the use of bath methods based on Hoe�ding

Trees may prove more pro�table than online methods.

Figures 4.21 and 4.22 show the results of the omparison of the proposed methods with

online state-of-the-art approahes for two seleted real data streams, on whih the re-

lationships similar to those ourring in the ase of syntheti data an be observed.

When the base lassi�er is gnb, online bagging-based methods note a signi�ant derease

when the onept drift ours, whih is not notieable when using the ht lassi�er. We

also see that in the poker-lsn-1-2vsAll stream, whih is muh more di�ult than the

ovtypeNorm-1-2vsAll stream due to a large number of onept drifts, online methods

employing deision trees perform better than bath methods. Similar dependenies an

be observed for the three di�ult streams from the INSECTS set presented in Figure

4.23. In the ase of gnb, the proposed dseis-sb framework performs better than on-

line referene methods. When the base lassi�er is Hoe�ding Tree, the referene methods

turn out to be better than dseis-sb in the ase of sudden and gradual onept drift.

For the inremental onept drift, the results of the proposed method are omparable

with those of the referene methods.
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Figure 4.21: Results of the experiment regarding online referene methods for ovtypeNorm-1-2vsAll.

It is worth noting that, while bath methods using gnb and ht ahieved very similar

results in the ase of syntheti streams, this is no longer the ase with real data. It

an be seen that methods employing ht as the base lassi�er note a larger derease in

preditive ability as the onept drift ours. This may be due to trees being over�tted

beause of the greater number of instanes in eah data hunk (1000 instanes for real

streams and 250 for syntheti streams).

Chunk-based referene methods

Figure 4.24 shows the results of the omparison of the proposed methods with referene

state-of-the-art hunk-based approahes. As the base lassi�er, Gaussian Naïve Bayes

was employed, as in its ase, the use of a bath framework based on preproessing and

dynami lassi�er seletion is more justi�ed than in the ase of Hoe�ding Trees (as shown

in Figures 4.19 and 4.20).
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Figure 4.22: Results of the experiment regarding online referene methods for poker-lsn-1-2vsAll.

In eah ase, both for di�erent Imbalane Ratio values and for di�erent types of onept

drift, the rea method performs by far the worst, obtaining the lowest values of reported

metris (exept spei�ity), and also has the most signi�ant derease at the time of

onept drift ourene, from whih it rises very slowly.

The ouse approah is the best in the ase of the highest tested Imbalane Ratio (3%

of minority lass) and is distinguished by a high reall that is ahieved at the ost of

low spei�ity and preision. Although it displays the apaity to ope with the onept

drift ourrene, ouse performs worse as the Imbalane Ratio dereases.

Among the referene methods that an be ompared with the approahes proposed in

this work are Learn++.nie, Learn++.ds and km. Regardless of the Imbalane Ratio

and type of drift, they exhibit behavior omparable to the proposed framework. This is

espeially true for Learn++.ds, whih performs partiularly well for the highest Imbal-

ane Ratio studied in this experiment, in whih in terms of Gmeans it beats all proposed
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Figure 4.23: Results of the experiment regarding hunk-based referene methods for the Gaussian Naïve

Bayes lassi�er.

methods exept ros-knorau2, while noting a low preision value and thus F1 sore. It is

worth noting that with the dereasing Imbalane Ratio, Learn++.nie and Learn++.ds

appear to deteriorate ompared to methods ombining des and preproessing tehniques.

The km method behaves similarly to Learn++.ds, but ahieves lower spei�ity and

higher reall. It performs partiularly well in terms of Gmeans and ba in the ase
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Figure 4.24: Results of the experiment regarding hunk-based referene methods for the Gaussian Naïve

Bayes lassi�er.

of the inremental drift ourrene in the data stream, where it ahieves metri values

omparable with the best of the proposed methods (i.e. ros-knorau2). At the same

time, however, it displays lower F1 sores than approahes employing Dynami Classi�er

Seletion.

Figures 4.25, 4.26 and 4.27 show results omparing the performane of the proposed

methods with state-of-the-art bath-based approahes for real data streams. The results
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Figure 4.25: Results of the experiment regarding hunk-based referene methods for ovtypeNorm-1-

2vsAll.

obtained oinide with the observations drawn on the basis of experiments arried out

on syntheti data streams. The proposed approahes ombining preproessing and des

ahieve better results than omparative methods and are more stable. Again, the use

of ht lassi�er for bath methods at hunk size 1000 size leads, espeially in the ase of

more di�ult data sets, to deterioration of lassi�ation quality and stronger reations

to the ourrene of onept drift.

Observations

Based on the onduted experiments, it an be seen that the results for the methods

of bath data stream proessing were almost idential for arti�ially generated streams

when the base lassi�ers were Gaussian Naïve Bayes and Hoe�ding Tree, and eah hunk

ontained 250 samples. The di�erene between these two base lassi�ers an bee observed
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Figure 4.26: Results of the experiment regarding hunk-based referene methods for poker-lsn-1-2vsAll.

in the ase of real data streams when the �xed hunk size was 1000. This may be due

to the over�tting of the deision trees.

It an be observed that the use of the dynami seletion method knora-e allows the

proposed framework for faster restoration in the event of onept drift (espeially sud-

den). This is partiularly evident in Experiment 1, in whih any preproessing tehnique

has not been used. These observations have been on�rmed by performane loss and

restoration time measures and that was most likely due to the fat that this approah to

des allows for seleting only the lassi�ers learned on the new onept as soon as in the

seond data hunk of its presene.

When the svm was used as the base lassi�er for the proposed framework, the seletion

at the level of base models of all bagging sub-ensembles led to a signi�ant deterioration

of the ahieved results. This may be due to the large pool of not diverse lassi�ers
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Figure 4.27: Results of the experiment regarding hunk-based referene methods for the Gaussian Naïve

Bayes lassi�er.

and suggests that in the ase of svm, strati�ed bagging may not be a good method to

diversify individual base lassi�ers.

The ombination of svm with oversampling in both ases led to a deterioration in its

performane ompared to the version without preproessing. Borderline2-smote, due to
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its harateristis, shifted the deision boundary in favor of the minority lass, leading to

a derease in preision. Random oversampling, on the other hand, signi�antly worsened

the results ahieved in terms of all measured metris, exept for spei�ity, beause

dupliate minority lass instanes resulted in a strong shift of the deision boundary.

When undersampling methods were employed, the use of Random undersampling allowed

for a more aurate adjustment of the deision boundary and thus a signi�ant improve-

ment in reall, F1 sore, Gmeans and ba at the expense of hindering preision. The

use of nn resulted in a similar behavior as in the absene of preproessing. This is due

to the internal struture of this undersampling method, whih leaves instanes lose to

the deision boundary, and thus leads to only minor hanges.

When it omes to online methods (i.e., ob, oob and uob), the use of the Gaussian Naïve

Bayes lassi�er leads to a signi�ant deterioration of methods at the moment of onept

drift ourrene and di�ulties with reovering after the drift. oob and uob mitigate

these e�ets due to built-in resampling mehanisms, but they still struggle due to the

fat that gnb remembers the previous onept.

Deision trees do muh better in online methods beause they have the opportunity to

ahieve optimal preditive ability (as seen before onept drift ours) and they also

ope better with reovery after drift. Generally, when Hoe�ding Trees are used, online

methods work better than the proposed bath methods, exept for the moment when

sudden drift ours, in whih ase online methods rebuild more slowly than hunk-based

ones beause the lassi�ers trained on the old onept are not removed. Theoretially,

with many sudden drifts in a single data stream, hunk-based methods an have an

advantage over online ones, even when using deision trees as base estimators.

rea is by far the worst-performing one of the hunk-based referene methods, espeially

in the ase of onept drift ourrene. In this approah, added to the training sets are

minority lass samples from the old onept, whih makes it di�ult for the method to

reover after drift. Besides, all models are subjet to weighted ombination, as there is

no forgetting mehanism.

ouse builds a new ensemble on eah of the data hunks so that the lassi�ers relate to the

urrent onept. Despite using all minority lass instanes that have ever appeared in the

stream, the pro�t from balaning the problem using real samples, in the ase of a high

Imbalane Ratio, outweighs the loss resulting from using some of the instanes from the

old onept. However, as the Imbalane Ratio dereases, and thus the number of instanes

from the old onept in training set inreases, the algorithm begins to deteriorate.

The km method presents an approah similar to the ones proposed in desis and

desis-sb. As a base, it uses the sea algorithm in whih the ensemble is pruned using
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the au metri. Additionally, it uses the undersampling method based on the k-Means

algorithm. It ahieves partiularly promising results in ase of the inremental onept

drift ourrene. This may be due to the fat that it does not use real majority lass

instanes but its lusters entroids that might better re�et the slowly ourring minor

onept hanges.

Learn++.ds performs omparatively with the proposed methods in terms of Gmeans

and ba, but at the expense of preision and F1 sore. It is somewhat omparable

to the proposed framework, as it also uses preproessing, but the Dynami Classi�er

Seletion is replaed by a weighted ombination. However, the method deteriorates

ompared to those proposed as the Imbalane Ratio dereases. Learn++.nie is also

quite similar to the proposed framework in that it uses the bagging sub-ensembles that

train eah of the base lassi�ers on the whole minority lass from the given data hunk

and part of the majority lass. It is done in suh a way, that no information about

the majority lass is lost. Sub-ensembles are then integrated utilizing the reall-based

weighted ombination. In the ase of both methods, the main di�erene between them

and the proposed framework is the use of dynami seletion, whih seems to perform

better than the weighted ombination.

Answers to researh questions

The answers to the previously formulated researh questions are as follows:

Q1. Whih Dynami Ensemble Seletion methods perform best while dealing with the

onept drift ourrene?

A1. Based on the results obtained in Experiment 1, it an be onluded that knora-e is

the Dynami Seletion method that best opes with the onept drift phenomenon.

This is due to the approah to lassi�er seletion that prefers only loal orales,

whih allows for quik reovery of the generalization ability after the onept drift

ourrene.

Q2. Does performing Dynami Ensemble Seletion at the level of all generated base

models (inluding those forming individual bagging lassi�ers) allow dseis-sb to

ahieve better performane when ompared to Dynami Seletion performed only

at the level of bagging lassi�ers?

A2. Conduted experiments on�rmed, that performing Dynami Ensemble Seletion

at the level of all generated base models leads to better performane when ompared

to Dynami Seletion performed only at the level of bagging lassi�ers. This is due

to the larger and more diverse pool of available models.
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Q3. Can methods ombining data preproessing and Dynami Ensemble Seletion out-

perform state-of-the-art bath-based and online lassi�ers for di�ult data stream

lassi�ation task?

A3. The results obtained in Experiment 3 on�rmed, that the dseis-sb framework

may outperform both bath and online-based state-of-the-art imbalaned data stream

lassi�ation algorithms.



Chapter 5

Limited aess to labels

A signi�ant problem when building lassi�ers based on data stream is information about

the orret label. Most algorithms assume aess to this information without any restri-

tions. Unfortunately, this is not possible in pratie beause the objets an ome very

quikly and labeling all of them is impossible, or we have to pay for providing the orret

label (e.g., to human expert). Hene, methods based on partially labeled data, inluding

methods based on an ative learning approah, are beoming inreasingly popular, i.e.,

when the learning algorithm itself deides whih of the objets are interesting to improve

the quality of the preditive model e�etively.

This hapter introdues the new method for ative learning of data stream lassi�er. The

BALS algorithm in based on the notion, that the lassi�er should reeive - in addition

to seleted labeled objets by the ative learning strategy - a pool of randomly seleted

objets from eah data hunk.

Then, the behavior the desis-sb framework ombining DES and preproessing for im-

balaned data stream lassi�ation under the limited aess to labels senario is evalu-

ated. Best performing variant of desis-sb is oupled with random labeling and ative

learning strategy in order to see what is the e�et of limited labeling on ensemble methods

for imbalaned data stream lassi�ation.

153
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5.1 Budget Ative Labeling Strategy

The problem of limited label aess is important due to its prevalene in real data. When

dealing with data streams the problem is not only the ost of obtaining labels but also the

speed at whih the data arrives, whih may prevent labeling the number of samples that

would allow the model to ahieve the expeted lassi�ation performane. Reent works

in this �eld notied that in the event of rapid hanges, using labeling strategies only for

data lose to deision boundaries may not be enough to adapt the lassi�er to the new

distribution su�iently (espeially in the ase where the hanges in the distributions

are very signi�ant) [134℄. Therefore, this setion proposes that the lassi�er should

reeive, in addition to seleted objets labeled by the ative learning strategy, a pool

of randomly seleted instanes from eah data hunk. This proposition is alled Budget

Ative Labeling Strategy (bals).

bls

The researh presented in this work is based on three approahes to lassi�ers' building

on streaming data with limited labeling. The �rst of them is, hereinafter referred to as

the bls, Budget Labeling. In bls, for eah data hunk, the atual labels are obtained

for a �xed perentage of randomly seleted samples, denoted by the budget parameter

b. This approah is presented in Algorithm 12. The desription of the funtions used in

the pseudoode is as follows:

� randomBudget() � selets, aording to the set budget b, a �xed number of

problem instanes randomly hosen from urrent data hunk DSk.

� getLabels() � obtains the real labels for previously seleted samples and on-

struts a learning set LSk.

� updateClassifier() � updates the lassi�er Ψ with learning set LSk.

Algorithm 12 Pseudoode for bls

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � lassi�ation algorithm,

b � budget value.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: Xk = randomBudget(b,DSk) ⊲ Randomly selet perentage of instanes

3: LSk = getLabels(Xk) ⊲ Get labels for the hosen instanes

4: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the lassi�er
5: end for
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als

The seond approah is a simple ative learning solution, further desribed by the als

aronym and presented in Algorithm 13. In the ase of this method, after inrementally

training the model on the fully labeled �rst data hunk (steps 2 and 3), the proessing of

eah subsequent one begins with olleting the support of the existing model Ψ (whih

fores the appliation of probabilisti lassi�er) obtained for the urrent data hunk DSk.
The objets are later sorted aording to the distane from the deision boundary, whih

for a binary problem means an absolute di�erene from the value of .5. Real labels are

obtained for objets for whih the alulated absolute di�erene does not exeed the set

threshold t (steps 5 and 6). In the pseudoode, the one new funtion was used:

� ativeLearning() � selets, aording to the set threshold t, all problem instanes

for whih the distane from the deision boundary doe not exeed the set value.

Algorithm 13 Pseudoode for als

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � lassi�ation algorithm,

t � threshold value.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the lassi�er using whole hunk

4: else

5: Xk = ativeLearning(t,DSk) ⊲ Selet instanes using ative learning

6: LSk = getLabels(Xk) ⊲ Get labels for the hosen instanes

7: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the lassi�er

8: end for

bals

The Budget Ative Labeling Strategy algorithms, whih is the main ontribution of this

setion, ombines both the Budget Labeling and ative learning approahes desribed

in Algorithms 12 and 13. It uses an ative strategy, typial for als (step 5), but eah

performed ative seletion of objets is supplemented by a ertain, predetermined random

samples pool, like in bls strategy (step 6). The proposed approah thus tries to inrease

the generalization ability of the used lassi�ation algorithm, by additional diversi�ation

of samples subjeted to labeling by an expert.

Computational and memory omplexity analysis

The bls algorithm uses a simple sampling without replaement in order to hoose the
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Algorithm 14 Pseudoode for bals

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � lassi�ation algorithm,

t � threshold value,

b � budget value.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the lassi�er using whole hunk

4: else

5: Xk = ativeLearning(t,DSk) ⊲ Selet instanes using ative learning

6: Xk ← randomBudget(b,DSk) ⊲ Randomly selet perentage of instanes

7: LSk = getLabels(Xk) ⊲ Get labels for the hosen instanes

8: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the lassi�er

9: end for

random budget b of instanes from eah data hunk DKk. This operation has the om-

putational omplexity of O(b log b). The used ative learning approah alulates eah

sample's distane from the deision boundary (whih an absolute di�erene of obtained

support and .5), whih has the omplexity of O(| DSk |). Then, als sorts the objets

aording to the aquired distane and uses only those, for whih the distane values

does not exeed the set threshold t. This operation has the omputational omplexity

of O(| DSk | log | DSk |). The proposed Budget Ative Labeling Strategy ombines both

approahes.

5.1.1 Experimental evaluation

This subsetion presents the motivation, goals and set-up of the performed experiments,

as well as their results.

Researh questions

The experiments were designed to answer the following questions:

Q1. Can a lassi�er that will have a quality omparable to the model learned on all

available objets be obtained by using a small budget ombined with ative learning

for data labeling?

Q2. Will suh a method be better in terms of the drift response time (restoration

time) and performane deterioration, when ompared to the referene methods for

dealing with limited labeling?
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Q3. Will the observed behavior also our when dealing with imbalaned real data

streams?

Goals of the experiments

Experiment 1 � Balaned syntheti data streams

The main purpose of the �rst experiment is to evaluate the quality of the bals method,

when ompared to the mlp trained on all available data, bls, and als for the task of

balaned drifting data stream lassi�ation.

Experiment 2 � Imbalaned real data streams

The main goal of the seond experiment is to observe the behavior of the tested methods,

when dealing with the imbalaned real data streams.

Experimental set-up

The analysis was based on six types of syntheti streams, repliated 10 times for sta-

bility of the ahieved results. The detailed harateristis of the generated streams are

desribed below:

� Conept drift types � sudden, gradual and inremental,

� Approahes to repetitive onepts � reurrent and non-reurrent onept drift,

� Data stream size � 500 000 instanes (1000 data hunks, 500 instanes eah)

� Number of onept drift per stream � 9.

Additionally, during Experiment 2, the proposed method was evaluated on the 5 real

data streams desribed in Table 5.1.

Table 5.1: Real data streams harateristis.

Data stream #Samples #Features ir

ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalaned_norm 300 000 33 19

INSECTS-gradual_imbalaned_norm 100 000 33 19

INSECTS-inremental_imbalaned_norm 380 000 33 19

The three onsidered methods were implemented in onsisteny with the sikit-learn

[187℄ api. Evaluation was based on 7 di�erent metris and performed aording to the

Test-Then-Train methodology. The details on experimental set-up are listed below:
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� Classi�ation algorithm � inremental mlp probabilisti lassi�er with ReLu a-

tivation funtion, Adam solver and one hidden layer onsisting of 100 arti�ial

neurons,

� Methods' parameters:

� als � the budget of 5, 10 and 20%,

� bls � a single threshold of absolute distane t = .2 from the deision boundary,

� bals � threshold of absolute distane t = .2 as well as the random budget of

5, 10 and 20%,

� Evaluation metris:

� Experiment 1 � auray sore,

� Experiment 2 � ba, F1 sore, Gmeans, reall, preision, and spei�ity,

Experiments an be repliated aording to the ode available on the GitHub repository

1

.

Experiment 1 � Balaned syntheti data streams

The experimental studies were arried out for three di�erent onept drift types. Figure

5.1 presents the runs for individual approahes to the onstrution of the mlp-based

model for data ontaining sudden drifts.

As an be seen, the bls approah to non-reurring sudden drifts is haraterized by a

onstant learning urve that builds the model in a similar way for eah of the following

onepts. The learning urve ahieved has lower dynamis than the full model (marked

with dotted lines) and in no ase reahes the maximum generalization apability. The

lower learning dynami is diretly aused by the redution of the number of learning

objets. Interestingly, there are no signi�ant di�erenes in quality between using 5, 10

or 20% of objets.

For reurrent drifts, there is a slight hange in the behavior of the bls approah. Ahiev-

ing full disriminative ability auses the model to retain information from previous on-

epts even after they have been hanged. While in the ase of the �rst onept drift,

whih introdues a new distribution of problem lasses for the �rst and only time, qual-

ity degradation ours in the same way as in the full model when a sudden hange ours.

In other situations, the quality redution is less notieable. However, it does not derease

1

https://github.om/w4k2/bals

https://github.com/w4k2/bals
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Figure 5.1: Exemplary results for the stream a�eted by a sudden onept drift.

signi�antly in subsequent iterations of reurrent drifts, and the other models ahieve

higher lassi�ation quality than bls relatively quikly eah time.

The most interesting observation in this ase is the behavior of the lassi�ation approah

als. While in the ase of the �rst and seond onepts (regardless of onept repetition)

its ability to ahieve the full possible lassi�ation auray (relative to mlp trained on a

fully labeled data hunk) an be seen, its progressive degeneration with subsequent drifts

is equally visible. In the ase of non-reurring drifts, it orresponds with the ourrene

of the third onept bls and dereases in auray over time. In the ase of reurrent

drifts, this degeneration ours even faster due to the previously desribed remembering

of old onepts by bls and already with the ourrene of the seond onept drift it

turns out that als is outperformed by the ompetitor based on a random budget.

The observation of the bals method for the �rst two onepts is idential to the als

approah, and in both ases leads to the ahievement of the generalization ability of

the lassi�er built on fully labeled data. However, it is pleasantly surprising that the
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Figure 5.2: Exemplary results for the stream a�eted by a gradual onept drift.

introdution of even a small perentage of random patterns sensitizes suh a method

to the degeneray of subsequent drifts typial of bls. The di�erene between the two

standard approahes (bls and als) and the ombined approah is not just a simple

improvement in lassi�ation auray. It an be seen that by introduing randomly

seleted patterns, the bals method ahieves the full possible lassi�ation auray every

time (albeit sometimes with dereasing dynamis).

The proportional to learning time degeneration of the als approah is probably due to

the inreasing ertainty of the preditions made, in the ase of analysis of the supports

ahieved, whih means their strong polarization, and thus a gradual, rapid redution

of the number of objets loated near the deision boundary. This means that the

solution based on support thresholding � over time � assigns fewer and fewer objets

as potentially useful for labeling. The phenomenon of this polarization is redued by

introduing seemingly di�erent patterns for the built reognition model, modifying the
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Figure 5.3: Exemplary results for the stream a�eted by an inremental onept drift.

statistial distribution of obtained support, whih is a diret result from the new onept

signaling itself for a need for inreased learning rate.

Interestingly, the perentage of random patterns added to the ative labeling model

does not appear to have a signi�ant impat on lassi�ation auray or learning urve

dynamis. Even a small number of suh objets (5%) auses bals to no longer exhibit

the degenerative tendenies of the pure als model.

The observations made for sudden drifts, inluding both approahes to drift reurrene,

an be diretly applied to those made for gradual (Figure 5.2) and inremental drifts

(Figure 5.3). The dynamis of the onept hanges themselves do not seem to have muh

in�uene on the relationships between the analyzed algorithms, so the onlusions made

for sudden drift an be easily generalized for all problems onsidered in the researh.
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Experiment 2 � Imbalaned real data streams

Figure 5.4 shows the behavior of the proposed mlp model onstrution approahes when

lassifying real imbalaned data streams. The radar diagrams show the average values

of all six analyzed metris, while the runs are presented for the Gmeans.

In the ase of the CovType stream, whih has the lowest imbalane ratio of all the real

data streams analyzed, there are lear - although of unde�ned type - onept drifts. The

bls method ahieves the generalization apaity of the full model, but the learning urve

has lower dynamis than in the ase of aess to the full training set, whih is again due to

the lower number of patterns used in the training proess. bls also shows a greater, but

delayed in relation to the full model, derease in generalization ability when the onept

drift ours (degrading to the level of a random lassi�er), whih may be due to the

ourrene of drift in prior lass probabilities and a temporary inrease in the imbalane

ratio. When rebuilding the model, the bls ahieves a generation ability lose to that

of the full model, whih inreases with the perentage of budget used. The mlp model

trained with the use of als performs by far the worst, remaining for most of the data

stream at the level of the random lassi�er. Only in the viinity of hunk 180 does the

learning urve begin to be visible, whih leads to the ahieved generalization ability being

lose to the full model. It may be aused by too high ertainty of the predition, whih

translates into the lak of instanes loated within a �xed distane from the deision

boundary. The proposed bals approah, ombining als with a random budget, allows

to ahieve full generalization apaity faster than in the ase of bls, but in the event

of onept drift it shows a faster redution in performane. Reonstrution after drift

ourrene in the ase of BALS is slower than in the ase of bls, however, a higher value

of the examined metris is ahieved.

In the ase of the Poker stream, whih exhibits a higher imbalane ratio of 10, the bls - as

expeted - has the lowest ability to detet the minority lass. This is due to the fat that

mainly the majority lass instanes are drawn to the budget. The model trained with the

use of als, despite a poor start and remaining at the level of the random lassi�er during

the �rst 150 data hunks, at a later stage of the stream ahieves the generalization ability

exeeding that ahieved by the full model. It is aused by hanges in the support spae,

whih lead to an inrease in the number of problem samples ourring at a set distane

from the deision boundary. The use of the bals strategy allows the observation of

behavior idential to that displayed when dealing with syntheti balaned data streams.

In the �rst half of the stream, the model trained using the bals approah, as opposed

to bls and als, performs above the random lassi�er level, and in the seond half, it

ahieves the generalizing ability that exeeds that of the full model.
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Figure 5.4: Results for real imbalaned data streams.
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In the ase of INSECT data streams, whih present by far the most di�ult problems and

the highest imbalane ratio, the mlp models in ombination with the proposed labeling

strategies are not able to ope with the lassi�ation task. The models' performane only

exeeds that of the random lassi�er at the beginning of all three streams, whih may

be due to a drift in prior probabilities and a lower imbalane ratio in the �rst twenty-

�ve data hunks. In the further part of the streams, the limitation of the training set

size makes it impossible to ahieve the generalization ability above that of the random

lassi�er.

Observations

The bals outperforms als algorithm due to the use of an additional fration of la-

beled instanes. However, its size was very small ompared to the fration of objets

seleted aording to the ative learning rule. Additionally, inreasing its number does

not signi�antly improve the quality of the proposed method.

It is obvious that the proposed model obtained slightly worse results ompared to the

lassi�er based on a fully labeled learning set, but the time needed to reah the same

performane is very short.

Answers to researh questions

Q1. Can a lassi�er that will have a quality omparable to the model learned on all

available objets be obtained by using a small budget ombined with ative learning

for data labeling?

A1. Performed experiments on�rmed, that the balsmethod � ombining both random

and ative labeling � is apable of obtaining a generalization ability at the level of

full model.

Q2. Will suh a method be better in terms of the drift response time (restoration

time) and performane deterioration, when ompared to the referene methods for

dealing with limited labeling?

A2. The obtained results on�rmed, that the model trained using bals approah may

display better restoration time as well as less performane deterioration than bls

or als when dealing with onept drift.

Q3. Will the observed behavior also our when dealing with imbalaned real data

streams?
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A3. The onduted experiments proved, that the bals method an be suessfully used

in the ase of relatively highly imbalaned data streams, even without the use of

additional data preproessing.

5.2 desis-sb framework under limited labels senario

This setion fouses on extending the desis-sb imbalaned data stream lassi�ation

framework with an ative learning module. This is to asses the ompatibility of the

proposed bath approah with ative labeling methods and to evaluate its behavior,

ompared to a single MLP lassi�er, when dealing with restrited aess to labels. The

shema of the expanded framework is presented in the Figure 5.5.

time→
data stream
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Figure 5.5: The framework extended with the ative learning module for training base lassi�ers and

to prepare a dsel for dynami seletion proess. Here, Tk is the training data produed by preproessing

(Prepro) data hunk DSk and Ψk is the base lassi�er trained on the kth data hunk. E denotes the

lassi�er pool.

The algorithms desribed in Setion 5.1 will be reused as labeling methods. The �rst

is Budget Labeling (bls) whih trains eah new base lassi�er on a �xed perentage of

randomly seleted problem instanes from the urrent hunk (Algorithm 15). The seond

method is the als that has been modi�ed. As before, this algorithm selets patterns
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that are within a ertain distane from the problem's deision boundary de�ned by the

threshold t, but this time it an also be given the budget b, whih de�nes the perentage

of these patterns we want to label. als pseudoode is presented in Algorithm 16.

As the framework is supposed to work with highly imbalaned problems, another modi-

�ation has been made to labeling methods. If all the labeled instanes ome from the

same lass, a new model is not added to the lassi�er pool.

Algorithm 15 Pseudoode for bls

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � lassi�ation algorithm,

b � budget value.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: Xk = randomBudget(b,DSk) ⊲ Randomly selet perentage of instanes

3: LSk = getLabels(Xk) ⊲ Get labels for the hosen instanes

4: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the lassi�er
5: end for

Algorithm 16 Pseudoode for the modi�ed als

Input:

Stream = {DS1,DS2, . . . ,DSk,DSk+1, . . .} � data stream,

Ψ � lassi�ation algorithm,

t � threshold,

b � budget.

1: for eah k,DSk = {x1k, x2k, . . . , xNk } in Stream do

2: if k == 0 then
3: Ψ← updateClassifier(Ψ,DSk) ⊲ Update the lassi�er using whole hunk

4: else

5: Xk = ativeLearning(t, b,DSk) ⊲ Selet instanes using ative learning

6: LSk = getLabels(Xk)
7: Ψ← updateClassifier(Ψ,LSk) ⊲ Update the lassi�er

8: end for

Computational and memory omplexity analysis

The omputational omplexity of desis-sb framework is based on the Dynami Ensem-

ble Seletion methods of as well as on preproessing tehniques. The key fators a�eting

the omputational omplexity of the presented approahes are, respetively, the number

of models in the lassi�er pool for Dynami Seletion algorithms and the number of

problem instanes in a single data hunk in the ase of preproessing tehniques.

Based on preliminary observations, it was established that the knora-u has a linear time

omplexity of O(n) depending on the number of base lassi�ers in the pool. The ros

preproessing tehnique has the logarithmi omplexity of O(log n. Strati�ed Bagging
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performs sampling with replaement for eah lass with omputational omplexity of

O(| i | n), where | i | is the ardinality of the ith lass and n denotes the number of

bootstraps (number of base models in bagging lassi�er) [79℄.

The bls algorithm uses a simple sampling without replaement in order to hoose the

random budget b of instanes from eah data hunk DKk. This operation has the om-

putational omplexity of O(b log b). The used ative learning approah alulates eah

sample's distane from the deision boundary (whih an absolute di�erene of obtained

support and .5), whih has the omplexity of O(| DSk |). Then, als sorts the objets

aording to the aquired distane and uses only those, for whih the distane values

does not exeed the set threshold t. This operation has the omputational omplexity of

O(| DSk | log | DSk |).

5.2.1 Experimental evaluation

Here, the motivation, goals and set-up of the performed experiments are presented.

Researh questions

The experiments were designed to answer the following questions:

Q1. Is the bath-based desis-sb framework for imbalaned data stream lassi�ation,

introdued in Setion 4.2, ompatible with ative learning methods?

Q2. Is it possible to ontrol the metri values obtained in the task of imbalaned data

stream lassi�ation by parametrization of the threshold t in the als method?

Goals of the experiments

Experiment 1 � The impat of ative learning on the dseis-sb framework

The aim of the �rst experiment is to see how the use of a data labeling strategy a�ets

the results ahieved by the proposed framework.

Experiment 2 � The impat of the als distane threshold on the values of evaluation

metris

The aim of the seond experiment is to hek whether the obtained metri values an

be ontrolled by hanging the distane from the deision boundary on the basis of whih

the als selets patterns for labeling.
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Experimental set-up

The analysis was based on six types of syntheti streams, repliated 10 times for sta-

bility of the ahieved results. The detailed harateristis of the generated streams are

desribed below:

� Conept drift types � sudden, gradual and inremental,

� Approahes to repetitive onepts � reurrent and non-reurrent onept drift,

� Data stream size � 50 000 instanes (200 data hunks, 250 instanes eah)

� Number of onept drift per stream � 9,

� Global label noise � 5%,

� Imbalane Ratio � 19.

Additionally, experiments were arried out on 5 real data streams, the harateristis of

whih are presented in the table 5.2.

Table 5.2: Real data streams harateristis.

Data stream #Samples #Features ir

ovtypeNorm-1-2vsAll 266 000 54 4

poker-lsn-1-2vsAll 360 000 10 10

INSECTS-abrupt_imbalaned_norm 300 000 33 19

INSECTS-gradual_imbalaned_norm 100 000 33 19

INSECTS-inremental_imbalaned_norm 380 000 33 19

The experimental evaluation was arried out in aordane with the Test-Then-Train

methodology. The desis-sb framework presented in setion 4.2.2 was hosen as the

lassi�er. Its parameters (i.e. dynami seletion method and preproessing tehnique)

were seleted based on the results of the experiments performed in setion 4.2.3.2 and

are listed below:

� Base lassi�er � Naïve Bayes Classi�er,

� Dynami Ensemble Seletion � knora-u at the level of bagging lassi�ers,

� Data preproessing � Random Oversampling,

� Fixed lassi�er pool size � 5 bagging lassi�ers, 10 base lassi�ers eah (50 models

in total).
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Comparative methods:

� Whole - model updated using all available data,

� bls-15 - 15% of random budget,

� als-15 - 15% of instanes loses to the deision boundary,

� als - all instanes within distane of 0.2 from the deision boundary.

The methods' parameters were seleted based on the experiene gained during researh

on the bals algorithm and also taking into aount the bath approah and base lassi�er

used.

Experiment 1 � The impat of ative learning on the dseis-sb framework

Figure 5.6 shows the results of using the proposed framework in the ase of sudden

onept drifts ourrene. The �rst thing that stands out is that the bls-15 result is

similar to that of the random lassi�er. This is due to the high imbalane ratio (5% of

minority lass) in the data stream. Beause of that bls selets only instanes belonging

to the majority lass and the new model is not added to the pool. At the same time, we

an see that both als-15 and als are doing relatively well. Both in the ase of reurring

and non-reurring drift, als is better at identifying the minority lass, due to the lak

of a set budget. Thanks to this, it maintains a high generalization apaity and in some

ases is able to perform similarly to the model learned on all available data.

Figure 5.7 shows the results obtained in the ase of gradual drift, haraterized by slower

dynamis of hange and the ourrene of instanes from both onepts at the same

time. In this ase, for non-reurring drift, we an observe a progressive deterioration of

the generalizing ability of als. This may be due to a small number of instanes loated

within a given distane from the deision boundary, whih in turn leads to under�tting

in the fae of a onstant onept hange. On the other hand, in the ase of reurring

gradual drift, the als and als-15 remain on a similar level, beause the ensemble always

inludes models that remember the old onept.

In the ase of the of inremental drift ourrene (Figure 5.8) the observations are similar

to those regarding the gradual onept drift. The di�erene is that whether the drift is

reurring or non-reurring, the als-15 and als methods ahieve nearly idential results.

This may be the result of more instanes available to als as one onept blends seamlessly

into another.

Figure 5.9 shows the results of ombining the desis-sb framework with ative learning

methods in a lassi�ation task of �ve real imbalaned data streams. Radar harts show
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Figure 5.6: Results for sudden drift.

values of six metris averaged over the entire length of the stream, while the runs are

shown for the Gmeans metri. Due to the use of the bath-based data stream lassi�a-

tion approah and the gnb lassi�er as the base model, it was deided to abandon the

bls approah, whih in this ase would remain at the level of the random lassi�er.

In the ase of the CovType stream, the als-15 approah - seleting 15% of the instanes

losest to the problem's deision boundary - ahieves a generalization ability worse than

the full model. At the same time, however, the seletion based on the distane to deision

boundary allows for the seletion of instanes belonging to both lasses for later data

preproessing, and the lower performane is a diret result of the smaller training set

size. Interestingly, the model learning with the use of als almost immediately drops to

the level of a random lassi�er and stays there along the entire length of the stream.

This may be due to the support spae distribution, in whih, due to the high ertainty of
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Figure 5.7: Results for gradual drift.

the model used, there are no instanes lying within a de�ned distane from the deision

boundary.

For the slightly more di�ult Poker stream, both the als and als-15 methods show

similar behavior. als-15 an ahieve generalization apaity lose to the full model but

also shows greater model degradation when onept drifts our. The als approah is

more stable, whih is due to the olletion of more training patterns in the event of

onept drift, as the labeling limitation with this method does not onern the number

of patterns, but only the distane to the deision boundary.

The observations related to the lassi�ation of INSECTS streams, presenting three de-

�ned types of onept drift, are partiularly interesting. In the ase of sudden drift, the

model learned using the als approah ahieves the generalization ability at the level of

the full model. It may be aused by low lassi�ation ertainty, and thus a large number

of patterns loated at a given distane from the deision boundary. The model using
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Figure 5.8: Results for inremental drift.

the als-15 approah ahieves slightly lower results than als, whih is a diret result of

the smaller number of training patterns available. In the ase of gradual drift, all three

approahes have very similar performane. This is due to the drift harateristis and

proves that only a small number of instanes losest to the deision limit is su�ient

for building a useful model. When dealing with inremental onept drift, the model

learned using the als-15 approah displays a orrespondingly lower generalization a-

paity, resulting from the smaller number of patterns used for updating the lassi�er. At

the same time, however, this model is relatively stable ompared to the lassi�er trained

using the als method, whih demonstrates greater degeneration in the event of onept

drift ourrene. This is due to the hanges in the support spae and the lak of patterns

that an be used during the training proess.
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Figure 5.9: Results of the MDE omparison with referene methods for real data streams.



Chapter 5. Limited aess to labels 174

Experiment 2 � The impat of the als distane threshold on the values of

evaluation metris

Figure 5.10 shows the averaged results of the evaluation metris for eah type of onept

drift, depending on the value of threshold t. Additionally, the X-axis shows the average

perentage of instanes used in the training proess, and the right Y-axis shows the

metri values ahieved by the model trained on the entire available data.

Regardless of the type of drift and whether it is reurring or non-reurring, we an

observe more or less the same dependenies for eah of the evaluation metris. The

value of spei�ity, whih is responsible for the ability to reognize the majority lass,

dereases with an inrease in the number of used samples, whih in turn auses an inrease

in the value of reall. This is a typial phenomenon in the problem of imbalaned data

lassi�ation as the two metris are losely related.

Espeially interesting is the behavior of preision metri, whih inreases until the value

of t is approximately .20 or .25 and then starts to deline. This is a sign that model

started to prefer the minority lass.

The values of aggregated metris, i.e. ba, Gmeans, and F1 sore, result diretly from

the values of the base metris. Balaned Auray sore and Gmeans note a ontinuous

inrease that slows signi�antly when t ahieves the value of 0.25 or 0.3. At the same

time, the F1 sore usually reahes its highest value due to the signi�ant inrease in

preision.

Observations

Based on the results obtained, it an be onluded that the proposed bath-based frame-

work for imbalaned data stream lassi�ation is ompatible with ative learning meth-

ods. als works espeially well in the ase of sudden drift, where about 25% of the

instanes losest to the deision boundary are su�ient to ahieve results similar to the

model trained using all instanes of the problem.

Researh on real data streams has shown that the als approah - using all patterns

within a given distane from the problem's deision boundary - annot be used in its

urrent form for every data stream. This is due to the high sensitivity of the method

to the distribution of patterns in the support spae, whih, if the lassi�ation is too

ertain, leads to the lak of patterns that an be used in the model training proess. To

deal with this problem, threshold t should not be set as a �xed parameter, but rather

optimized for eah data hunk, to ensure that models using this approah always get a

training set ontaining patterns useful in the training proess.
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Figure 5.10: Average metri values in relation to the set threshold t.

Answers to researh questions

Q1. Is the bath-based desis-sb framework for imbalaned data stream lassi�ation,

introdued in Setion 4.2, ompatible with ative learning methods?

A1. Obtained results on�rmed, that the desis-sb bath-based framework for imbal-

aned data stream lassi�ation is ompatible with ative learning approahes.

Q2. Is it possible to ontrol the metri values obtained in the task of imbalaned data

stream lassi�ation by parametrization of the threshold t in the als method?

A2. Based on the onduted experiments, it an be onluded that by appropriate

parametrization of the als method, it is possible to optimize the preision metri.
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Conlusions and Future Works

This thesis foused on the use of dynami ensemble seletion methods and data prepro-

essing tehniques in the problem of streaming and imbalaned data lassi�ation. This

work showed the potential of lassi�er seletion methods to deal with lass imbalane, but

also, most of all, proposed new e�etive solutions to the problem of highly imbalaned

data stream lassi�ation, up to this point rarely disussed in the literature. The stated

hypothesis � that there exist suh methods employing data preproessing and lassi�er

seletion that an outperform state-of-the-art lassi�ers for di�ult data lassi�ation

tasks � seems to be proven by ahieving the following goals:

1. Developing an ensemble seletion algorithm for imbalaned data lassi�-

ation, as well as designing a dediated ombination rule.

This goal was met by developing three algorithms based on the lustering of models in

a one-dimensional spae of lassi�er diversity. The lustering spae was based on the

proposed H measure, whih informs about the impat of individual lassi�ers on the

diversity ahieved by the entire ensemble.

The Diversity Ensemble Pruning (dep) algorithm groups the base models in the diver-

sity spae and then evaluates them in terms of balaned auray. The pruned ensemble

onsists of the lassi�ers with the highest ba in eah luster. The Two-step major-

ity voting organization (tsmv) algorithm lassi�es imbalaned data using the two-step

voting struture, instead of pruning the ensemble. In the �rst stage of voting, eah lus-

ter is treated as a separate lassi�er pool, whih independently makes a deision based

on the majority voting. In the seond step, the majority voting proedure is repeated,

ombining the deisions obtained by the individual lusters. The Random Sampling Mul-

tistage Organization (rsmo) algorithm, whih is a modi�ation of tsvm, additionally
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uses sampling with replaement to redue the number of similar lassi�ers used in the

deision-making proess.

The omputer experiments on imbalaned data, as well as statistial analysis on�rmed

the usefulness of the proposed pruning method and showing it's potential for inreasing

the ensemble's ability do detet the minority lass.

The �rst proposition of ensemble methods based on lustering in diversity spae was

published in [281℄. The proposals were then extended in [283℄ and evaluated for the

imbalaned data lassi�ation in [276℄.

2. Proposing a novel distane-based Dynami Ensemble Seletion method

for imbalaned data lassi�ation.

This goal has been ahieved by proposing a novel solution based on dynami lassi�er se-

letion for imbalaned data lassi�ation problem. Two methods were proposed, namely

dese and desire, whih use the Eulidean distane and Imbalane Ratio in the train-

ing set to selet the most appropriate model for the lassi�ation of eah new sample.

Researh onduted on benhmark datasets and statistial analysis on�rmed the use-

fulness of proposed methods, espeially when there is a need to maintain a relatively low

number of lassi�ers.

The propositions of dese and desire were �rst published in [282℄.

3. Developing a hunk-based ensemble algorithm, aimed spei�ally for the

task of highly imbalaned data stream lassi�ation.

This goal was met by proposing a novel, Minority Driven Ensemble method for a hal-

lenging task of imbalaned data stream lassi�ation. mde employs dynami lassi�er

seletion approah to exploit loal data harateristis. The omputer experiments on-

�rmed the usefulness of the proposed method and on the basis of a thorough statistial

analysis.

The proposition of mde was �rst published in [277℄.

4. Designing a novel framework ombining Dynami Ensemble Seletion and

preproessing tehniques for imbalaned data stream lassi�ation.

A novel desis framework ombining Dynami Ensemble Seletion and preproessing

tehniques (both oversampling and undersampling) was proposed for the task of highly

imbalaned data streams. The extended version of this approah, named desis-sb, is

based on using bagging lassi�ers diversi�ed using strati�ed bagging, whih performs sam-

pling with replaement separately from the minority and majority lass. The researh
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onduted on two dynami seletion methods (in two variants) and four preproess-

ing tehniques on�rmed the e�etiveness of the proposed solution and highlighted its

strengths in omparison with state-of-art methods. The proposed framework, ompared

to the referene methods, was haraterized by balaned performane in terms of all eval-

uation metris whih was stable regardless of the imbalane ratio or onept drift type.

Thus, the validity of using the Dynami Classi�er Seletion methods to lassify drift-

ing imbalaned data streams was on�rmed. The obtained results are showing the way

for further researh on employing loal lassi�er ompetenes for di�ult data stream

lassi�ation.

The �rst proposition of desis framework was published in [280℄. The extended desis-

sb framework was proposed in [284℄.

5. Proposing a strategy for learning from drifting data stream under limited

aess to labels senario.

The modi�ation of the ative learning method dediated to non-stationary data stream

lassi�ers was introdued. The proposed bals algorithm, in addition to the pool of ob-

jets seleted for labeling (aording to the rule that objets lose to deision boundaries

have a large impat on model modi�ation), also reeived a small number of randomly

seleted objets from among the other instanes belonging to an analyzed data hunk.

This approah aused the lassi�er to stabilize faster after the onept drift than bls or

als. Also, the deterioration of bals quality is lower than the referene algorithms.

The proposition of bals was �rst published in [278℄.

6. Evaluating the behavior of the previously proposed data stream lassi�a-

tion framework, taking into aount the limitation in the label aess.

This goal was ahieved by ombining the proposed framework with the ative learn-

ing method based on seleting patterns loated at a ertain distane from the deision

boundary. The onduted researh on�rmed the usefulness of the framework under a

high imbalane ratio and limited aess to labels.

7. Conduting an experimental evaluation of the proposed methods in om-

parison to state-of-the-art approahes.

8. Developing a Python Mahine Learning library for di�ult data stream

analysis.

These goals were ahieved by designing an experimental environment for stati lassi�-

ation problems (For Chapter 3), as well as by designing the stream-learn pakage for
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di�ult data stream lassi�ation whih was used to ondut all experiments presented

in Chapters 4 and 5.

The stream-learn pakage has already been tested in the researh proess of preparing

several sienti� artiles, and it is an ideal tool for users who are about the simpliity of

proessing, ease of the use and integration with the sikit-learn mahine learning library.

The artile desribing pakage ontents is available on arXiv [141℄.

Future works

The ideas presented in this thesis may be potentially developed in the following diretions:

� Future researh on lustering-based methods for ensemble pruning may inlude ex-

ploring the di�erent ways of alulating the proposed H measure (inluding both

deterministi and non-deterministi variants) and, in ase of multistage organiza-

tion methods, employing di�erent types of voting (e.g. weighted majority voting).

It would be useful to also onsider ways of dealing with ties during the voting pro-

ess and, possibly, investigate the e�ets of data dimensionality on the performane

of the proposed algorithms.

� Future work on distane-based des may involve the exploration of di�erent ap-

proahes to the base lassi�ers' weighting, as well as using di�erent ombination

methods and the use of proposed methods for the imbalaned data stream lassi-

�ation.

� The mde algorithm an be extended for other types of base lassi�ers, e.g. by

taking into aount the threshold for the minority lass supports returned by eah

of the models in the ensemble.

� Further researh regarding desis and desis-sb frameworks for imbalaned data

stream lassi�ation may inlude problems with multiple onept drifts. A om-

prehensive analysis employing measures used to evaluate the behavior of methods

during onept drift ourrene, their extension for many onept drifts in a sin-

gle the data stream, and their statistial analysis. It is also possible to extend

the researh to other methods of Dynami Ensemble Seletion and preproessing

tehniques, as well as to adapt our proposition to the multi-lass lassi�ation task.

� Employing the bals method for another lassi�ation models and lassi�er ensem-

bles, as well as using the information on the onept drift rapidness to establish the

proportion between the number of objets labeled by ative learning and random

hoosing.
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� Conduting a broader experimental evaluation of the proposed framework for the

imbalane data stream lassi�ation under a senario of restrited aess to labels.

Publiations

The seleted parts of the thesis have been already published in:

� Paweª Zyblewski, Robert Sabourin, and Mihaª Wo¹niak. Preproessed dynami

lassi�er ensemble seletion for highly imbalaned drifted data streams. Informa-

tion Fusion, 66:138 � 154, 2021 (if: 13.669, mnisw: 200)

� Paweª Zyblewski and Mihaª Wo¹niak. Novel lustering-based pruning algorithms.

Pattern Analysis and Appliations, pages 1�10, 2020 (if: 1.512, mnisw: 70)

� Paweª Zyblewski, Robert Sabourin, and Mihaª Wo¹niak. Data preproessing and

dynami ensemble seletion for imbalaned data stream lassi�ation. In Ma-

hine Learning and Knowledge Disovery in Databases, pages 367�379, Cham, 2020.

Springer International Publishing (ore: a, mnisw: 140)

� Paweª Zyblewski and Mihaª Wo¹niak. Dynami lassi�er seletion for data with

skewed lass distribution using imbalane ratio and eulidean distane. In Inter-

national Conferene on Computational Siene, pages 59�73. Springer, 2020

(ore: a, mnisw: 140)

� Paweª Zyblewski. Clustering-based ensemble pruning in the imbalaned data lassi-

�ation. In International Conferene on Computational Siene. Springer, 2021 [a-

epted for publiation℄ (ore: a, mnisw: 140)

� Paweª Zyblewski, Paweª Ksieniewiz, and Mihaª Wo¹niak. Classi�er seletion for

highly imbalaned data streams with minority driven ensemble. In Arti�ial In-

telligene and Soft Computing, pages 626�635, Cham, 2019. Springer International

Publishing (ore: National, mnisw: 20)

� Paweª Zyblewski, Paweª Ksieniewiz, and Mihaª Wo¹niak. Combination of ative

and random labeling strategy in the non-stationary data stream lassi�ation. In

International Conferene on Arti�ial Intelligene and Soft Computing, pages 576�

585. Springer, 2020 (ore: National, mnisw: 20)

� Paweª Zyblewski and Mihaª Wo¹niak. Clustering-based ensemble pruning and

multistage organization using diversity. In International Conferene on Hybrid

Arti�ial Intelligene Systems, pages 287�298. Springer, 2019

(ore: National, mnisw: 20)
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� Paweª Ksieniewiz and Paweª Zyblewski. stream-learn�open-soure python library

for di�ult data stream bath analysis. arXiv preprint arXiv:2001.11077, 2020

During the work on the thesis I have also oauthored other researh:

� P. Ksieniewiz, P. Zyblewski, M. Chora±, R. Kozik, A. Gieªzyk, and M. Wo¹niak.

Fake news detetion from data streams. In 2020 International Joint Conferene on

Neural Networks (IJCNN), pages 1�8, 2020 (ore: a, mnisw: 140)

� Dominika Suªot, Paweª Zyblewski, and Paweª Ksieniewiz. Analysis of variane

appliation in the onstrution of lassi�er ensemble based on optimal feature sub-

set for the task of supporting glauoma diagnosis. In International Conferene on

Computational Siene. Springer, 2021 [aepted for publiation℄

(ore: a, mnisw: 140)

� Paweª Zyblewski, Marek Pawliki, Rafaª Kozik, and Mihaª Choras. Cyber-attak

detetion from iot benhmark onsidered as data streams. In International Con-

ferene on Computer Reognition Systems, 2021 [aepted for publiation℄

Additionally, at the time of ompleting this thesis, the following artiles are undergoing

the review proess:

� Paweª Ksieniewiz, Paweª Zyblewski, and Robert Burduk. Fusion of linear base

lassi�ers in geometri spae. Knowledge-Based Systems, 2021

� Paweª Ksieniewiz, Paweª Zyblewski, Weronika Borek, Rafaª Kozik, Mihaª Choras,

and Mihaª Wozniak. Alphabet �atting as a variant of n-gram feature extration

method in ensemble lassi�ation of fake news. Engineering Appliations of Arti-

�ial Intelligene, 2021

� Paweª Ksieniewiz and Paweª Zyblewski. stream-learn�open-soure python library

for di�ult data stream bath analysis. Neuroomputing, 2021

� Joanna Komornizak, Paweª Zyblewski, and Paweª Ksieniewiz. Prior probability

estimation in dynamially imbalaned data streams. In The International Joint

Conferene on Neural Networks, 2021

The researh presented in this thesis was supported by the Polish National Siene Centre

under the grant No. 2017/27/B/ST6/01325.
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