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Abstract: The primary purpose of this study was to pursue the analysis of the time series data and 
to demonstrate the role of time series model in the predicting process using long-term records of the 
monthly global price of bananas from January 1990 to November 2020. Following the Box-Jenkins 
methodology, ARIMA(4,1,2)(1,0,1)[12] with the drift model was selected to be the best fit model for 
the time series, according to the lowest AIC value in this study. Empirically, the results revealed that 
the MLP neural network model performed better compared to ARIMA(4,1,2)(1,0,1)[12] with the drift 
model at its smaller MSE value. Hence, the MLP neural network model can provide useful information 
important in the decision-making process related to the impact of the change of the future global price 
of bananas. Understanding the past global price of bananas is important for the analyses of current and 
future changes of global price of bananas. In order to sustain these observations, research programs 
utilizing the resulting data should be able to improve significantly our understanding and narrow 
projections of the future global price of bananas. 

Keywords: bananas, global price, time series, modeling, forecasting, seasonal ARIMA, multilayer 
perceptron neural network.
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1. Introduction 

Like COVID-19, Panama Disease, also known as Tropical Race 4, has affected 
the global banana industry. Recently, Panama Disease has suddenly accelerated, 
spreading from Asia to Australia, the Middle East, Africa and Latin America, where 
the majority of the bananas are shipped from globally. Bananas are an economically 
important crop for many developing countries. Currently, the disease is present in 
more than 20 countries, prompting fears of a banana pandemic and shortages of the 
world’s favorite fruit (Altendorf, 2019).

Bananas are the world’s most popular fruit with different tastes, sizes and colours, 
and the fourth most important food crop after wheat, rice, and maize in terms of 
production, and is the world’s favourite fruit in terms of consumption quantity 
(Ruiz et al., 2017). Bananas are among the most traded fruits in the world. In 2017, 
22.7 million tons of bananas, excluding plantains, were traded, representing almost 
20% of global production that year. The value of this trade was worth $11 billion, 
which is higher than the export value of any other exported fruit (Voora, Larrea, and 
Bermudez, 2020).

Asia is the largest banana-producing region, while India and China were the 
two leading banana-producing countries. Asia-Pacific led the market with a 61% 
share of global consumption, while India was the world’s leading producer of banana 
accounting for nearly 25.7% of the total output. The Philippines consolidated its 
position as the second largest exporter of bananas behind Ecuador (Voora et al., 
2020).

Latin America and the Caribbean is the largest exporting region, responsible for 
approximately 80% of global exports. In 2018, global banana exports were estimated 
at 23.3 million tons, with Ecuador being the largest exporter of bananas accounting 
for 24.7% of global exports. Belgium, Costa Rica and Columbia were the other top 
banana exporters in the world, whereas the United States was the leading importer of 
bananas with an 18% share in world imports (Voora et al., 2020).

The retail value of the banana sector was estimated to be worth between $20 
billion and $25 billion in 2016 (Voora et al., 2020). The Market Reports World 
(2019) forecasted that the global banana sector would experience a compound annual 
growth of 1.21% in consumption from 2019 to 2024, reaching a global consumption 
volume of 136 million tons by 2025, compared to 116.2 million tons in 2017. 

According to the U.S. Bureau of Labor Statistics, the average consumer price 
of bananas (all fresh traditional first quality organic and non-organic yellow 
bananas) was $0.53 (Per Lb. in U.S. City Average) with the standard deviation of 
$0.06 (Minimum: $0.40, Maximum: $0.64, and Median: $0.51). Average price is to 
measure the price level in a particular month, not to measure price change over time. 
Furthermore, the average consumer price for bananas was 39.91% higher in 2020 
compared to 1990 (a $13.29 difference in value). Between 1990 and 2020, bananas 
costing $33.30 in 1990 would cost $46.59 in 2020 for an equivalent purchase. 
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Compared to the overall inflation rate of 2.30% during this same period, inflation for 
bananas was lower.

Given this understanding of market demand and supply of bananas globally, 
this study would test one simple research question, namely what is the trend of the 
global price of bananas in the near future? Moreover, a research hypothesis was set 
that there is a consistent increase in the global price of bananas. Hence, the primary 
purpose of this study was to pursue the analysis of time series data and to demonstrate 
the role of the time series model in the predicting process using long-term records of 
the monthly global price of bananas from January 1990 to November 2020.

This paper is organized as follows. The second section briefly reviews the 
time series applications in the global banana market and the availability of neural 
networks for time series modeling and forecasting. The third section shows the data 
source in terms of the monthly global price of bananas. The fourth section presents 
the methodological approach. The fifth section demonstrates the empirical results 
using the seasonal ARIMA and multilayer perceptron neural network. The last 
section provides concluding remarks, and further discussion.

2. Literature review 

Time series forecasting is the use of a model to predict future values based on 
previously observed values, which is one of the most applied data science techniques 
in business, used extensively in finance, supply chain management, production and 
inventory planning. It has a well-established theoretical grounding in statistics, 
and is important because there are so many prediction problems that involve 
a time component. Several articles used time series techniques to forecast banana 
production (Eyduran et al., 2020; Hamjah, 2014; Hossain et al., 2016), while quite 
a few studies focused on banana price forecasting (Fatin, Titik, and Mulyatno, 2020; 
Omar, Dewan, and Hoq, 2014). 

Neural networks have become one of the most popular trends in machine learning 
for time series modeling and forecasting. Recently, there has been increasing interest 
in using neural networks to model and forecast banana harvest yields (Rathod, 
Mishra, and Singh, 2017; Rathod and Mishra, 2018; Rebortera and Fajardo, 2019). 
Despite the importance of banana demand and supply in the global markets, there 
is a lack of studies available in the technical literature on global price forecasting 
schemes. 

3. Data 

The long-term records of the monthly global price of bananas (units: U.S. dollars 
per metric ton, not seasonally adjusted) from January 1990 to November 2020, 
is available to the public from the International Monetary Fund, retrieved from 
FRED, the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/
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PBANSOPUSDM). The average monthly global price of bananas was $710.59 U.S. 
dollars per metric ton with the standard deviation of $272.47 (Minimum: $250.51, 
Maximum: $1,298.34, and Median: $648.51).

4. Methodology

For time series analysis, the Box-Jenkins methodology, introduced by Box and 
Jenkins in 1970, refers to a systematic approach of identifying, fitting, checking, and 
forecasting the ARIMA model (Young, 1977), which can be applied to find the best fit 
to provide an adequate description to the time series. The Box-Jenkins methodology 
can be used as the process for estimating the seasonal ARIMA (SARIMA) model in 
this study based on its autocorrelation function (ACF) and partial autocorrelation 
function (PACF) as a means of determining the stationarity of the univariate time 
series and the lag lengths of the time series.

In statistics, stationarity is a property of a stochastic process. Intuitively, 
stationarity means that the statistical properties (i.e. mean and variance) of the time 
series do not change over time. Thus, the Box-Jenkins methodology starts with the 
assumption that the time series should be as on a stationary status. In the Box-Jenkins 
methodology there are four important steps, including identification, estimation, 
diagnostic checking and forecasting, that should be taken in consideration when 
applying it (Box et al., 2016). The identification step is applied to achieve stationarity 
and to build a suitable model using ACFs, PACFs, and to differencing. If the time 
series is non-stationary, it needs to be stationarized through differencing. 

In the estimation step, plots and summary statistics can be used to identify trends, 
and autoregressive and/or moving average elements to gain an idea of the amount of 
differencing and the size of the lag that will be required for model identification. The 
next estimation step is to use a fitting procedure to find the coefficients of the model. 
In order to find good parameters for the model, Akaike’s Information Criterion 
(AIC) or Bayesian Information Criterion (BIC) can be employed to determine the 
orders of the time series. Good models are obtained by minimizing the AIC or 
BIC value.

The diagnostic checking step is primarily to use the plots and statistical tests 
of the residual errors to determine the model fitting, and to evaluate the fit model 
in the context of the available data and check for areas where the model may be 
improved. The process is repeated until a desirable level of fit is achieved. There 
are many accuracy metrics applied after model identification and estimation helping 
in choosing the best fit model. The commonly used accuracy metrics to judge 
forecasts include: Mean Square Error (MSE) = (1/n) Σ(Yt – Ŷt)

2, Root Mean Square 
Error (RMSE) = √MSE, Mean Absolute Percentage Error (MAPE) = (1/n) Σ(|Yt – Ŷt| 
/ |Yt|) × 100, and Mean Absolute Error (MAE) = (1/n) Σ|Yt – Ŷt|

2. 
The last step is the forecasting stage that can be applied in the forecasting process 

after checking the model in the previous steps. In this study, R 4.0.2 for Windows, 
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an open source for statistical computing and graphics supported by the R Foundation 
for Statistical Computing, was used as the tool to estimate the model parameters to 
fit the SARIMA model and the multilayer perceptron (MLP) neural network model, 
as well to achieve the purpose of this study.

5. Empirical results

5.1. Identification of the SARIMA model

R 4.0.2 for Windows, an open source for statistical computing and graphics supported 
by the R Foundation for Statistical Computing, was used as the tool to model and 
forecast the monthly global price of bananas from January 1990 to November 2020 
for this study (Figure 1). 

Fig. 1. Time Series Plot of Monthly Global Prices of Bananas, January 1990-November 2020 

Source: own work.

The function “decompose()” in R can be applied to estimate the seasonal, trend 
and irregular components of a seasonal time series. The plots in Figure 2 showed 
the original time series (top), the estimated trend component (second from top), 
the estimated seasonal component (third from top), and the estimated irregular 
component (bottom). The estimated trend component showed a steady increase over 
time, and the estimated seasonal component definitely displayed seasonality, with 
a pattern recurrence occurring once every 12 months (yearly).

Decomposing the time series means separating the time series into a trend 
component, a seasonal component and an irregular component. Thus, one of the 
main objectives for the decomposition is to estimate the seasonal effects that can 
be used to present seasonally adjusted values. Seasonal adjustment is the estimation 
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Fig. 2. Decomposition of Monthly Global Prices of Bananas, January 1990-November 2020 

Source: own work.

and removal of seasonal effects that are not explainable by the dynamics of trends or 
cycles from a time series to reveal certain non-seasonal features. This can be done by 
subtracting the estimated seasonal component from the original time series. Having 
removed the seasonal variation, the seasonally adjusted time series only contained 
the trend component and an irregular component (Figure 3).

Fig. 3. Time Series Plot of Seasonal Adjusted Monthly Global Price of Bananas,  
January 1990-November 2020 

Source: own work.
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Looking at the time series plot of the data, the ACF is useful for identifying 
stationary or non-stationary time series. For a stationary time series, the ACF will 
drop to zero relatively quickly, while the ACF of non-stationary data decreases 
slowly. Hence, the ACF (Figure 4) of the time series, the seasonally adjusted 
monthly global price of bananas from January 1990 to November 2020, showed 
strong positive correlations at up to 26 lags that never decay to zero. Meanwhile, the 
test statistic of the Augmented Dickey-Fuller Test was Dickey-Fuller = –3.0039 with 
lag order = 7, and the p-value of the test was 0.1532. This suggested that the time 
series was non-stationary and need to be differenced. This was also illustrated by the 
single spike at the first lag, followed by small apparently random values after the 
first lag for the PACF (Figure 5). Typically, the ACF and PACF shown in Figures 4 
and 5 were a time series that has autocorrelation at the first lag only. Since the PACF 
was cut off after the first lag, it seems that the time series followed the autoregressive 
(AR) process.

Fig. 4. ACF Plot of Seasonal Adjusted Monthly Global Price of Bananas, January 1990-November 2020 

Source: own work.

In the time series analysis, differencing can be used to transform a non-stationary 
time series into a stationary one. When both trend and seasonality are present, one may 
need to apply both a non-seasonal first difference and a seasonal difference. The first 
difference of a time series is the time series of changes from one period to the next. 
Note that the graph of the first difference of the time series looked approximately 
stationary (Figure 6). According to the Augmented Dickey-Fuller Test, Dickey- 
-Fuller = –10.218 with lag order = 7, and the p-value of the test was smaller 
than 0.01. It rejected the null hypothesis that is non-stationary, and suggested that the 
first difference of the time series was stationary.
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Fig. 5. PACF Plot of Seasonal Adjusted Monthly Global Price of Bananas, January 1990-November 2020 

Source: own work.

Fig. 6. Time Series Plot of First Difference of Seasonal Adjusted Monthly Global Price of Bananas, 
January 1990-November 2020 

Source: own work.

The ACF of the first differenced time series in Figure 7 showed a significant 
positive spike at the first lag followed by correlations that were statistically 
significant. The corresponding PACF of the first differenced time series in Figure 8 
presented most likely a gradual decrease, and negative after the first few lags. Since 
the ACF was cut off after the first lag and the PACF decreased gradually, a reasonable 
conclusion was that the first differenced time series followed the moving average 
(MA) process.
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Fig. 7. ACF Plot of First Difference of Seasonal Adjusted Monthly Global Price of Bananas,  
January 1990-November 2020 

Source: own work.

Fig. 8. PACF Plot of First Difference of Seasonal Adjusted Monthly Global Price of Bananas,  
January 1990-November 2020 

Source: own work.

Seasonal differencing can remove seasonal trends and can also remove 
a seasonal random walk type of non-stationarity. Seasonal differencing is defined as 
the difference between a value and a value with a lag that is a multiple of seasonality. 
In this case, seasonality = 12 months per year is the span of the periodic seasonal 
behaviour. Figure 9 shows the graph of the 12th difference of the time series, which 
looked approximately stationary. Meanwhile, the test statistic of the Augmented 
Dickey-Fuller Test was Dickey-Fuller = –32.05 with lag order = 7, and the p-value 
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of the test was smaller than 0.01. It rejected the null hypothesis that is non-stationary, 
and suggested that the 12th first difference of the time series was stationary. 

Fig. 9. Time Series Plot of 12th Difference of Seasonal Adjusted Monthly Global Price of Bananas, 
January 1990-November 2020 

Source: own work.

Figure 10 showed that ACF demonstrated most likely a steady decay after the first 
few lags and bounced between being positive and negative statistically significant. 
Meanwhile, Figure 11 showed what PACF usually looks like a steady negative 
decay in the partial correlations toward zero. This is consistent with the general 
recommendation that if the autocorrelation at the first seasonal lag is positive, one 
should use an autoregressive (AR) process vs. a moving average (MA) process.

Fig. 10. ACF Plot of 12th Difference of Seasonal Adjusted Monthly Global Price of Banana,  
January 1990-November 2020 

Source: own work.
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Fig. 11. PACF Plot of 12th Difference of Seasonal Adjusted Monthly Global Price of Bananas,  
January 1990-November 2020

Source: own work.

5.2. Estimation of the SARIMA model parameters

SARIMA is an extension of Autoregressive Integrated Moving Average (ARIMA) 
that explicitly supports the univariate time series with a seasonal component. One 
shorthand notation for the SARIMA model is ARIMA(p,d,q)(P,D,Q)[m], where 
p = the order of the autoregressive process (the number of lagged terms), d = the 
number of differences required to make the time series stationary, q = the order of the 
moving average process (the number of lagged terms), P = the order of the seasonal 
autoregressive process, D = the number of seasonal differences applied to the time 
series, Q = the order of the seasonal moving average process, and m = the seasonality 
of the model, i.e. the number of time steps for a single seasonal period.

In backshift notation B, “backshift operator” or “lag operator”, is a useful 
notational device when working with time series lags: Byt = yt−1 (means “back up by 
one time unit”) and Bkyt = yt−k (means “backshift k times”). Thus, the ARIMA(p,d,q)
(P,D,Q)[m] model can be expressed in backshift notation as: 

 ϕp(B)Φp(B
m)(1 – B)d(1 – Bm)Dyt = c + θq(B)ΘQ(Bm)et, (1)

where: ϕp(B) = (1 – ϕ1B – … – ϕpB
p) = (1 – Σp 

i=1 ϕiB
i), θq(B) = (1 – θ1B – … – θqB

q) = 
(1 – Σq 

j=1 θjB
j), ΦP(B

m) = (1 – Φ1B
m – … – ΦPB

mP) = (1 – ΣP 
i=1 ΦiB

mi), ΘQ(Bm) = 
(1 – Θ1B

m – … - ΘQBmQ) = (1 – ΣQ 
j=1 ΘjB

j), c is a constant, and et is the residual 
error (i.e. white noise) (Montgomery, Jennings, and Kulahci, 2008).

Empirically, the choice of the model order is somewhat arbitrary. In order to find 
a solution, the function “auto.arima()” from the “forecast” package in R 4.0.2 for 
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Windows was employed to identify both the structure of the time series (stationary 
or not) and type (seasonal or not), and sets the model’s parameters, that takes into 
account the AIC, AICc or BIC values generated to determine the best fit SARIMA 
model. 

Table 1. Comparison of selected SARIMA models

Model AIC BIC

ARIMA(1,1,1)(1,0,1)[12] 4207.03 4226.59

ARIMA(1,1,2)(1,0,1)[12] 4209.02 4232.50

ARIMA(2,1,1)(1,0,1)[12] 4209.02 4232.62

ARIMA(2,1,2)(1,0,1)[12] 4211.17 4238.57

ARIMA(3,1,1)(1,0,1)[12] 4205.03 4232.43

ARIMA(3,1,2)(1,0,1)[12] 4203.31 4234.62

ARIMA(4,0,1)(1,0,1)[12] 4246.97 4282.21

ARIMA(4,0,2)(1,0,1)[12] 4257.49 4296.65

ARIMA(4,1,1)(1,0,1)[12] 4195.21 4226.52

ARIMA(4,1,2)(1,0,1)[12] 4187.14 4222.36

ARIMA(4,1,2)(1,0,1)[12] with Drift 4186.52 4225.66

Source: own work.

Consequently, the ARIMA(4,1,2)(1,0,1)[12] with the drift model was selected 
to be the best fit model for the time series, according to the lowest AIC value  
(= 4186.52) in this study (Table 1). Given this option, the ARIMA(4,1,2)(1,0,1)[12] 
with the drift model was chosen for further forecasting process, and the parameters 
of the ARIMA(4,1,2)(1,0,1)[12] with the drift model were presented in Table 2. The 
ARIMA(4,1,2)(1,0,1)[12] with the drift model yielded the following forecasting 
equation:

(1 – ϕ1B – ϕ2B
2 – ϕ3B

3 – ϕ4B
4)(1 – B)(1 – Φ1B

12)Ŷt = 

 c + (1 – θ1B – θ2B
2) (1 – Θ1B

12).  (2)

The ARIMA(4,1,2)(1,0,1)[12] with the drift model for the time series, seasonal 
adjusted monthly global price of bananas from January 1990 to November 2020, can 
be expressed as follows:

(1 + 0.2506B – 0.3871B2 + 0.0506B3 + 0.2801B4)(1 – B)(1 + 0.3492B12)Ŷt =
 1.8360 + (1 + 0.0376B + 0.6005B2) (1 – 0.3620B12). (3)
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Table 2. Parameters of the ARIMA(4,1,2)(1,0,1)[12] with the Drift Model

Parameter Estimate Standard Error

Constant 1.8360 1.0835

AR Lag 1 –0.2506 0.1005

AR Lag 2 0.3871 0.0964

AR Lag 3 –0.0506 0.0631

AR Lag 4 –0.2801 0.0567

Difference

MA Lag 1 –0.0376 0.0994

MA Lag 2 –0.6005 0.1007

SAR 1 –0.3492 2.1797

SMA 1 0.3620 2.2000

Sigma2 estimated as 4653, Log Likelihood = –2083.26

AIC = 4186.52, AICc = 4187.14, BIC = 4225.66

Training Set Error Measure:
RMSE = 67.28535, MSE = 4527.31832, MAE = 48.03735, MAPE = 8.644118

Source: own work.

5.3. Diagnostic checking of the SARIMA model

A common task when building a forecasting model is to check that the residuals 
satisfy some assumptions that they are uncorrelated, normally distributed, etc. The 
top figure of Figure 12 showed that the residuals from the ARIMA(4,1,2)(1,0,1)[12] 
with the drift model did not violate the assumption of constant location and scale. 
The bottom right figure of Figure 12 showed that the residual histogram did not 
reveal a series deviation from normality in this case. The ACF plot of the residuals 
(the bottom left figure of Figure 12) also showed that all sample autocorrelations 
were within the threshold limits, indicating that the residuals appeared to be 
random. 

The Ljung-Box Q-test (Ljung and Box, 1978) is a diagnostic tool used to test 
the lack of fit of a time series model. In this case, the test statistic of the Ljung- 
-Box Q-test was Q = 14.768 with 15 degrees of freedom, and the p-value of the test 
was 0.4682 with model degrees of freedom: 9 and total lags used: 24, indicating 
that the residuals were random and that the model provided an adequate fit to the 
time series. This, combined with the Ljung-Box Q-test statistic, suggested that the 
ARIMA(4,1,2)(1,0,1)[12] with the drift model appropriately modelled the dynamics 
for this time series.
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Fig. 12. Residuals of ACF and PACF 

Source: own work.

5.4. Using the SARIMA model in the forecasting process

The forecasted values of monthly global price of bananas are shown in Table 3. 
Forecasts from ARIMA(4,1,2)(1,0,1)[12] with the drift model are shown in 
Figure 13, presenting a linear upward trend projected to the future. The next figure 
(Figure 14) illustrated that the black line represented the visuals of the monthly global 
price of bananas dataset without forecasting and the red line represented the visuals of 
the monthly global price of bananas dataset with forecasted values. The forecasting 
process with ARIMA(4,1,2)(1,0,1)[12] with the drift model indicated a good fit of 
the model for forecasting at a constant increasing rate in the short term.

Table 3. Forecasted Values of monthly global price of bananas U.S. dollars per metric ton

Date Point forecast 95% Lower confidence limit 95% Upper confidence limit
1 2 3 4

December 2020 1197.120 1063.429 1330.811
January 2021 1212.145 1048.047 1376.244
February 2021 1234.762 1053.799 1415.726
March 2021 1238.786 1048.342 1429.231
April 2021 1244.975 1053.400 1436.551
May 2021 1242.932 1048.071 1437.794
June 2021 1241.234 1045.005 1437.464
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1 2 3 4
July 2021 1241.369 1041.357 1441.381
August 2021 1241.096 1037.121 1445.072
September 2021 1243.752 1035.459 1452.045
October 2021 1244.949 1031.879 1458.019
November 2021 1247.691 1030.786 1464.596
December 2021 1249.882 1028.571 1471.194
January 2022 1251.849 1026.836 1476.862
February 2022 1254.101 1025.347 1482.856
March 2022 1255.762 1023.394 1488.129
April 2022 1257.184 1021.337 1493.030
May 2022 1258.610 1019.189 1498.032
June 2022 1260.371 1017.516 1503.226
July 2022 1262.226 1015.886 1508.565
August 2022 1264.215 1014.484 1513.946
September 2022 1266.249 1013.157 1519.340
October 2022 1268.357 1011.951 1524.762
November 2022 1270.242 1010.583 1529.901

Source: own work.

Fig. 13. Observed and forecasted monthly global price of bananas 

Source: own work.
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Fig. 14. Observed and forecasted monthly global price of bananas 

Source: own work.

5.5. Multilayer Perceptron (MLP) neural network model

The Multilayer Perceptron (MLP) neural network is one of the most popular 
machine learning methods, which is able to carry out prediction tasks in a more 
reliable manner. MLP is a system of simple interconnected neurons, or nodes, which 
is a model representing a nonlinear mapping between an input vector and an output 
vector (Gardner and Dorling, 1998). The MLP neural network consists of three layers 
of nodes: an input layer, a hidden layer and an output layer (Figure 15). Except for the 
input nodes, each node is a neuron that uses a nonlinear activation function.

The MLP neural network is trained for multi-step-ahead prediction, on testing 
as well as on training data sets for short-term prediction. Thus, the optimum neural 
network model is proposed for the short-term prediction of the time series. The 
function “mlp()” from the “nnfor” package in R 4.0.2 for Windows automatically 
generates ensembles of networks, the training of which starts with different random 
initial weights. 

Training process was categorized into two main steps: the first is to select the 
best architecture of networks, and the second is to integrate MLP neural networks 
with optimizers. The output indicated that the resulting MLP neural network model 
(Figure 15) has 5 hidden nodes, it was trained 20 times and the different forecasts 
were combined using the median operator. The results were compared with reference 
to the MSE (mean square error) = 992.9927 against ARIMA(4,1,2)(1,0,1)[12] with 
the drift model, MSE = 4527.31832.
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Fig. 15. Single Hidden Layer MLP Neural Network 

Source: own work.

The top figure in Figure 16 showed that the residuals from the MLP neural 
network model did not violate the assumption of constant location and scale. The 
bottom right figure of Figure 16 showed that the residual histogram from the MLP 
neural network model did not reveal a series deviation from normality. At the same 
time, the ACF plot of the residuals (the bottom left figure of Figure 16) from the 
MLP neural network model showed that all sample autocorrelations were within 
the threshold limits, indicating that the residuals appeared to be random. 

Fig. 16. Residuals of ACF and PACF 

Source: own work.
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Table 4. Multilayer perceptron neural network forecasted values of monthly global price of bananas 
U.S. dollars per metric ton

Month 2020 2021 2022 2023 2024 2025
January 1285.627 1339.981 1258.820 1278.070 1308.227
February 1451.027 1383.892 1309.732 1415.763 1410.817
March 1385.847 1367.969 1362.820 1339.679 1450.346
April 1377.963 1352.111 1265.435 1372.017 1427.567
May 1320.321 1322.902 1282.006 1341.870 1379.059
June 1281.345 1304.804 1313.639 1361.867 1372.437
July 1238.360 1312.189 1296.162 1338.052 1361.676
August 1216.296 1296.387 1250.080 1283.677 1361.079
September 1257.593 1302.307 1237.590 1263.882 1325.969
October 1235.542 1233.661 1219.605 1208.279 1254.887
November 1257.689 1302.192 1170.130 1250.265 1299.637
December 1199.071 1274.941 1300.080 1252.743 1324.093

Source: own work.

Fig. 17. Observed and forecasted monthly global price of bananas 

Source: own work.

The MLP neural network forecasting the values of the monthly global price of 
bananas was presented in Table 4. Forecasts from the MLP neural network model 
are also shown in Figure 17, with a linear upward trend projected into the future. The 
forecasting process with the MLP neural network model indicated a good fit of the 
model for forecasting at a constant increasing pattern in the short term, seasonally.
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6. Discussion and conclusion

Bananas rank as a leading crop in world agricultural production and trade. Assuming 
normal weather conditions and no further spread of banana plant diseases, bananas 
have seen rapidly increasing production and trade volumes in response to fast 
population growth in producing countries, as well as an expanding global import 
demand. Obviously, the future is more intensive regarding knowledge, and more 
understanding of the natural complexities of living systems. To bring together 
a wide variety of perspectives and concepts requires holistic solutions that involve 
working across disciplines, principles and methods to support interdisciplinarity 
and transdisciplinarity, to explore and formalize systems concepts, and to develop 
systemic methods for learning and change.

Despite the importance of banana demand and supply in the global markets, there 
is a lack of studies available in the technical literature on global price forecasting 
schemes. In this study, the best choice time series model was ARIMA(4,1,2)(1,0,1)[12] 
with the drift model as its lowest AIC values among other models. It was noted that 
this ARIMA(4,1,2)(1,0,1)[12] with the drift model provided evidence that the future 
monthly global price of bananas would increase over time. 

Prediction is a kind of dynamic filtering, in which the past values of one or 
more time series are used to predict future values. The MLP neural network is 
one of the most popular machine learning methods, which is able to carry out 
prediction tasks in a more reliable manner. With time series data, lagged values of 
the time series can be used as inputs to a neural network, the MLP neural network 
was applied to time series prediction using its past values of a univariate time 
series in this study.

Empirically, the results revealed that the MLP neural network model performed 
better compared to ARIMA(4,1,2)(1,0,1)[12] with the drift model at its smaller 
MSE value. Hence, the MLP neural network model can provide useful information 
important in the decision-making process related to the impact of the changes of the 
future global price of bananas. Understanding the past global price of bananas is 
important for the analyses of the changes of the current and future global price of 
bananas changes.

In order to sustain these observations, research programs utilizing the resulting 
data should be able to improve significantly our understanding and narrow projections 
of the future global price of bananas. Therefore, checking the validity of the market 
price of bananas in the case of certain countries could be one of the main limitations 
of this study. Furthermore, the nonlinear autoregressive exogenous (NARX) neural 
network can also be used to understand not only past information of the same time 
series (the monthly global price of bananas), but also current and past information 
of the externally determined time series that influences the time series of interest 
(i.e. the production of bananas, climate change considerations, consumer behaviour 
expectation, etc.).



40 Yeong Nain Chi, Orson Chi

References

Altendorf, S. (2019). Banana Fusarium Wilt Tropical Race 4: A mounting threat to global banana mar-
kets? In 2019 Food Outlook - Biannual Report on Global Food Markets (pp. 13-20). Rome: FAO. 
Retrieved from http://www.fao.org/3/ca6911en/CA6911EN_TR4EN.pdf

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2016). Time series analysis: Foreca-
sting and control (5th ed.). Hoboken, N.J.: John Wiley and Sons Inc.

Eyduran, S. P., Akın, M., Eyduran, E., Çelik, S., Ertürk, Y. E., and Ercişli, S. (2020). Forecasting banana 
harvest area and production in Turkey using time series analysis. Erwerbs-Obstbau, 62, 281-291.

Fatin, Z. N., Titik, E., and Mulyatno, S. B. (2020). The analysis of price and market integration of ba-
nana commodities in Lampung, Indonesia. Russian Journal of Agricultural and Socio-Economic 
Sciences, 3(99), 61-68.

Gardner, M.W., and Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) – A re-
view of applications in the atmospheric sciences. Atmospheric Environment, 32(14), 2627-2636.

Hamjah, M. A. (2014). Forecasting major fruit crops productions in Bangladesh using the Box-Jenkins 
ARIMA Model. Journal of Economics and Sustainable Development, 5(7), 96-107.

Hossain, M. M., Abdulla, F., and Majumder, A. K. (2016). Forecasting of banana production in Bangla-
desh. American Journal of Agricultural and Biological Sciences, 11(2), 93-99.

Ljung, G. M., and Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 
65(2), 297-303.

Market Reports World. (2019). Banana market size, share, analysis – segmented by geography – 
growth, trends, and forecast (2019-2024) (Global Banana Market Research Report, Market Re-
ports World). Retrieved from https://www.marketreportsworld.com/banana-market-13487750

Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2008). Introduction to time series analysis and 
forecasting. Hoboken, N.J.: John Wiley & Sons. Inc.

Omar, M. I., Dewan, M. F., and Hoq, M. S. (2014). Analysis of price forecasting and spatial co-inte-
gration of bananas in Bangladesh. European Journal of Business and Management, 6(7), 244-255.

Rathod, S., and Mishra, G. C. (2018). Statistical models for forecasting mango and banana yield of 
Karnataka, India. Journal of Agricultural Science and Technology, 20, 803-816.

Rathod, S., Mishra, G. C., and Singh, K. N. (2017). Hybrid time series models for forecasting banana 
production in Karnataka State, India. Journal of the Indian Society of Agricultural Statistics, 71(3), 
193-200.

Rebortera, M. A., and Fajardo, A. C. (2019). An enhanced deep learning approach in forecasting bana-
na harvest yields. International Journal of Advanced Computer Science and Applications, 10(9), 
275-280.

Ruiz, A., Fobelets, V., Grosscurt, C., Galgani, P., Lord, R., Hardwicke, R., Tarin, M. P. G., McNeil, D., 
and Aird, S. (2017). The external costs of banana production: A global study (Research Report 
Prepared for Fairtrade International, True Price & Trucost). Retrieved from http://makefruitfair.org/
wp-content/uploads/2017/07/170224_Research_Report_External_Cost_of_Bananas_-_final.pdf

Voora, V., Larrea, C., and Bermudez, S. (2020). Global market report: Bananas. Sustainable Commodi-
ties Marketplace Series 2019, The International Institute for Sustainable Development. Retrieved 
from https://www.iisd.org/system/files/publications/ssi-global-market-report-banana.pdf

Young, W. L. (1977). The Box-Jenkins approach to time series analysis and forecasting: principles 
and applications. RAIRO. Recherche opérationnelle, 11(2), 129-143. Retrieved from http://www.
numdam.org/article/RO_1977__11_2_129_0.pdf



Modeling and forecasting of monthly global price of bananas using seasonal ARIMA... 41

MODELOWANIE I PROGNOZOWANIE MIESIĘCZNEJ GLOBALNEJ 
CENY BANANÓW Z WYKORZYSTANIEM SEZONOWEJ ARIMA 
I WIELOWARSTWOWEJ SIECI NEURONOWEJ PERCEPTRONOWEJ 

Streszczenie: Podstawowym celem tego badania była analiza danych szeregów czasowych oraz 
wskazanie ważności modelu szeregów czasowych w procesie predykcji z wykorzystaniem długoter-
minowych zapisów miesięcznej ceny bananów na świecie od stycznia 1990 r. do listopada 2020 r. 
Zgodnie z metodologią Boxa-Jenkinsa wybrano jako najlepiej dopasowany dla szeregu czasowego 
model ARIMA(4,1,2)(1,0,1)[12] z dryfem, zgodnie z najniższą wartością AIC. Na podstawie wyników 
empirycznych stwierdzono, że model sieci neuronowej MLP działał lepiej w porównaniu z modelem 
ARIMA(4,1,2)(1,0,1)[12] z dryfem z mniejszą wartością MSE. Wynika z tego, że model sieci neurono-
wej MLP może dostarczyć użytecznych informacji, które są ważne w procesie decyzyjnym dotyczącym 
wpływu zmian przyszłej globalnej ceny bananów. Postrzeganie przeszłych światowych cen bananów 
jest ważne dla analiz zarówno bieżących, jak i przyszłych zmian światowych cen. Aby podtrzymać te 
obserwacje, programy badawcze wykorzystujące uzyskane dane powinny umożliwiać znaczne popra-
wianie wnioskowania i zawężać prognozy przyszłych światowych cen bananów. 

Słowa kluczowe: banany, cena globalna, szeregi czasowe, modelowanie, prognozowanie, sezonowy 
model ARIMA, wielowarstwowa sieć neuronowa perceptronowa. 
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