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Abstract: The article presents a method of calibration 
of material parameters of a numerical model based on a 
genetic algorithm, which allows to match the calculation 
results with measurements from the geotechnical 
monitoring network. This method can be used for the 
maintenance of objects managed by the observation 
method, which requires continuous monitoring and 
design alterations. The correctness of the calibration 
method has been verified on the basis of artificially 
generated data in order to eliminate inaccuracies related 
to approximations resulting from the numerical model 
generation. Using the example of the tailing dam model 
the quality of prediction of the selected measurement 
points was verified. Moreover, changes of factor of safety 
values, which is an important indicator for designing 
this type of construction, were analyzed. It was decided 
to exploit the case of dam of reservoir, which is under 
continuous construction, that is dam height is increasing 
constantly, because in this situation the use of the 
observation method is relevant.

Keywords: soil parameters; optimization; slope stability; 
genetic algorithm; observational method; monitoring.

1  Introduction
Geotechnical monitoring is closely linked to the 
observational method, which was described by Peck 
(1969). It assumes constant design changes resulting from 
information obtained from measurements. Nowadays, 
data collection and processing are becoming easier 
even with large datasets. Design modifications require 
calculations that are less and less time-consuming due 

to the development of computers and implementation 
of numerical methods. Moreover, numerical methods 
allow to calculate complex structures as a whole without 
the need to separate smaller calculation schemes. These 
methods also allow to take into account poromechanical 
coupling, which is extremely important for challenging 
geotechnical issues, especially in case of dams.

Despite the constant development of computer 
programs, some aspect of FEM modelling remain in 
the designer’s possession. The selection of material 
parameters is a useful example. It was stated by Gioda 
and Sakuri (1987) that back analysis is a practical tool 
for interpreting geotechnical monitoring data and for 
determining the material parameters. The same concept is 
used by researchers (e.g. Gioda and Sakuri, 1987; Zentar et 
al., 2001): the calibration incorporates parameter changes 
to fit the results from the model to the measurement data.

The application of the genetic algorithm for this 
purpose has been successfully presented in many 
publications. The results obtained by Vahdati, P. et al. 
(2013, 2014) show that this type of optimization works 
well for the selected parameters on the basis of data 
gathered from one gauge placed on a real structure 
for elastic-perfectly plastic Mohr-Coulomb model and 
for more sophisticated Hardening-Soil model. Other 
publications have proved that genetic algorithm can be 
applied to optimize material parameters in laboratory 
test (Rokonuzzaman and Sakai, 2010) and to predict the 
behavior of soil in future, (Papon et al., 2011) based on 
fitting numerical results to data from pressuremeter tests 
and resonant column testing. However, most construction 
maintained with observational method are large and data 
is collected from several sensors. Moreover, in such a 
situation, boundary condition can be time-dependent and 
data used to fitting should be treated as a function of time, 
which was presented by Gioda and Sakuri (1987).

According to Whitley (1998) a genetic algorithm 
is any optimization model that uses selection and 
recombination to create new points in the searched space. 
It should be noted, however, that most models are based 
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on the so-called classic genetic algorithm (Holland, 1975). 
In this paper, it was decided to use an algorithm based 
on selection by ranking. The publication (Whitley and 
Starkweather, 1990) shows that such an approach may be 
more effective than the classical one.

In this work the methodology of applied optimization 
algorithm and the result of calibration carried out for five 
different materials, which yields a total of 25 parameters, 
based on the data from 10 sensors is presented. Synthetic 
data was used to estimate the correctness of the 
algorithm. Also prediction, that is calculation concerning 
the future behavior of the model, are considered to check 
the suitability of using the optimization algorithm as a 
complement to the observational method. It was decided 
to use the numerical model of tailing dam as an example. 
Such geotechnical constructions are often complex with 
the crucial impact of filtration. Some of them are also 
maintained with observational method, for example 
OUOW Żelazny Most in Poland (Jamiolkowski, 2014). 

2  Methodology of optimization 
algorithm
The calibration method is based on a genetic algorithm, 
that is it uses recombination to create new solutions. 
When optimizing the parameters of the numerical model, 
it is necessary to perform calculations in order to select the 
best solutions. These calculations take much longer than 
the rest of the algorithm. In addition to the aforementioned 
advantages of the ranking approach, it also minimize the 
calculation time, because less numerical calculations 
need to be performed. The description of the algorithm is 
divided into subsequent steps, explained in the following 
subsections. The algorithm has been implemented using 
Python environment (Van Rossum and Drake, 2009; 
Oliphant, 2006; McKinney, 2010; Hunter, 2007). Due to the 
fact that this type of calibration will not always find the 
optimum, it was decided that its parameters (mentioned 
below) are not fixed, but should be selected to get the best 
results for the specific task. Every calibration user has to 
set these parameters according to his experience.

2.1  Measurements data

Prior to performing the optimization, it is required to 
specify the data to which numerical model should be fitted. 
In this work, it was assumed that measurement data are 
functions of time, for example changes of displacement 

in time (data from benchmarks) or changes of piezometric 
head in time (data from piezometers). 

2.2  Numerical (FEM) model

The numerical model should be created using all 
possible construction information, such as geological 
layers arrangement, history of loading or geotechnical 
tests. The size of the model largely determines the time 
needed for optimization. Selection of nodes or elements 
that correspond to actual sensors is necessary to perform 
the algorithm. The results needed from the model are 
only appropriate values (displacement, pressure) of the 
selected nodes or elements in text form. It is obligatory 
to use FEM software that allow to create such an output 
automatically, that is without running the postprocessor.

2.3  Individuals encoding

The genetic algorithm is based on population that 
consist of individuals. The individual represents the 
parameters of all optimized materials. As the Mohr-
Coulomb model was adopted to numerical calculation, 
parameters for each material include: angle of internal 
friction, cohesion, Young‘s modulus, Poisson‘s ratio and 
hydraulic conductivity. Different sets of parameters can be 
selected for each material. The individual is a sequence of 
numbers, which determines all the parameters according 
to the following scheme:scheme: 

𝜑𝜑𝜑𝜑1,𝜑𝜑𝜑𝜑2, … ,𝜑𝜑𝜑𝜑𝑛𝑛𝑛𝑛 , 𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛,𝐸𝐸𝐸𝐸1,𝐸𝐸𝐸𝐸2, … ,𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, 𝜈𝜈𝜈𝜈1, 𝜈𝜈𝜈𝜈2 , … , ν3,𝑘𝑘𝑘𝑘1 ,𝑘𝑘𝑘𝑘2, … ,𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 , 

where: 𝜑𝜑𝜑𝜑 – angle of internal friction, 𝑐𝑐𝑐𝑐 – cohesion, 𝐸𝐸𝐸𝐸 – Young modulus, ν – Poisson ratio, 𝑘𝑘𝑘𝑘 – hydraulic 
conductivity, 𝑛𝑛𝑛𝑛 – number of optimized materials, and the subscript refers to material numbe 

hole dataset according to following formula: 

𝜀𝜀𝜀𝜀 =
1

∑ 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖=1

��
∑ �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�
𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑗𝑗𝑗𝑗=1

�𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚,𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�
�

𝑟𝑟𝑟𝑟

𝑖𝑖𝑖𝑖=1

, 

where: 𝑟𝑟𝑟𝑟 – number of gauges in eme: 

  101000 ∨ 110111  
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ∧ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

→
101000𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥110111

, 

where: ∨, ∧ – crossover point, 1, 0, 𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥 – individuals features. 

ern: 

1 ↔ 2, 2 ↔ 3, 3 ↔ 1, 

where: 1, 2, 3 – three best ranked individuals. 

ern: 
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imposes replacement amo 
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where: ∨, ∧ – crossover point, 1, 0, 𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥 – individuals features. 
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1 ↔ 2, 2 ↔ 3, 3 ↔ 1, 

where: 1, 2, 3 – three best ranked individuals. 

ern: 
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imposes replacement amo 

where: φ – angle of internal friction, c – cohesion, 
E – Young modulus, ν – Poisson ratio, k  –  hydraulic 
conductivity, n – number of optimized materials, and the 
subscript refers to material number.

2.4  Initial population

The initial population of individuals is generated 
randomly. However, parameters are drawn from ranges 
specified by the designer. First reason for such an approach 
is the fact that some parameters cannot exceed certain 
values, for example, the Poisson‘s ratio. Secondly, these 
ranges can be determined on the basis of geotechnical 
documentation, which can lead to a result consistent with 
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engineering experience. Additionally, the calibration time 
can be reduced.

2.5  Evaluation

To perform the evaluation, numerical calculation must 
be carried out. The same task is calculated, but the 
optimized materials parameters are assigned according 
to the individuals. Evaluation of an individual involves 
calculation error defined as the difference between 
measurement data and numerical output. Since 
measurement data can have different physical sense 
and therefore different units and values, data should be 
normalized or relative error can be used. The latter was 
implemented, the error is based on mean relative error 
estimated on the whole dataset according to the following 
formula:

scheme: 
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where: r – number of gauges in calibration, ni – number 
of measurements in i-th gauge, xn –measurement value 
from numerical analysis, xm –measurement value from 
monitoring.

2.6  Selecting individuals for reproduction

Three individuals with the lowest error values are 
selected for reproduction. In the method (Whitley and 
Starkweather, 1990) only two best individuals had been 
selected, however, it was decided to increase this number 
due to the computing capabilities of computers, which 
allow to calculate several FEM models at the same time, 
while maintaining the crossover of the best individuals.

2.7  Crossover

Crossover is the exchange of information between two 
individuals. The crossover point is selected, in relation to 
which the sequence of numbers is divided. Then the parts of 
individuals are swapped as shown in the following scheme:
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imposes replacement among the materials. Since it is 
highly time-consuming to establish which method deliver 
the best results selecting the encoding system is treated as 
an algorithm parameter.

2.8  Mutation

Mutation introduces small changes to the newly created 
individuals. Maximum values of changes are defined 
for each type of parameter, for example for all cohesion 
values mutation parameter is the same. Mutation can 
be conducted as addition or multiplication. The second 
option is useful for hydraulic conductivity, as its values can 
differ by several orders of magnitude. Parameters which 
resulted from mutation cannot exceed the ranges defined 
for initial population. A certain number of parameters 
(defined as algorithm parameter) are randomly selected 
for mutation. Each parameter can be increased (addition 
or multiplication by a mutation parameter), decreased 
(subtraction or division) or remain unchanged due to the 
random choice.

2.9  Next population

Each subsequent generation consists of individuals from 
the previous generation without the three worst ones; in 
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their place three individuals created by crossbreeding and 
mutation are added. In the first generation, FEM analysis 
must be carried out for all the individuals, while in each 
subsequent generation, for only three new ones.

3  Optimization based on synthetic 
data
3.1  Synthetic measurement data, numerical 
calculation and algorithm’s parameters.

In this chapter the results of calibration carried out for 
synthetic data are presented. A numerical model with 
some material parameters was created and calculated. 
Selected nodes were treated as sensors and displacement 
and piezometric head values over the time were recorded. 
The data prepared in this way were noised by adding 
values from normal distribution with mean equal to 0 and 
standard deviation adapted to values of the data. Figure 1 
presents an example of the noised synthetic data.

The same model was used both to create the data 
and to perform calibration to ensure that a solution 
of optimization exists. Moreover, the impact of model 
inaccuracies was eliminated. The calculation problem 
concerned embankment of flotation reservoir. The 

height of embankment increased in time as the water 
and sedimentation particles filled the reservoir. 
Numerical model was created using FEM software ZSoil 
(Zimmermann et al. 2016) with assumption of plain strain. 
The first order EAS (enhanced assumed strain) (Simo and 
Rifai, 1990) quadrilateral elements were used. After 205 
computational step the height of the dam was equal to 65 
m, while the depth of subsoil was 265 m. In the figures 2 
to 6 subsequent stages of construction history, geometry, 
mesh and model’s dimensions are presented.

On both right and left edges the horizontal 
displacement was blocked, while on the bottom edge 
horizontal and vertical displacement was fixed. On the 
left edge, water pressure was raised to simulate reservoir 
filling, and the right edge water pressure had constant 
value throughout the whole calculation. As it was already 
mentioned elastic-perfectly plastic Mohr-Coulomb with 
unassociated plastic flow rule was assumed. Coupled 
analysis, i.e. that is consolidation, with adoption of van 
Genuchten’s model of unsaturated zone (Van Genuchten, 
1980) was selected to calculate the distribution of pore 
pressure and deformation of the structure. The model 
consisted of almost 12,000 elements and the calculation 
took less than 30 minutes (on 3.2 GHz CPU and 32GB RAM 
computer). Nodes selected as sensors are shown in Figure 
7. Sensors with letter U are benchmarks, which gather 
information about vertical and horizontal displacement, 

Figure 1: Example of noised data.
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5 

Figure 2 Geometry and mesh of numerical model at computational step 0 

Figure 3 Geometry and mesh of numerical model at computational step 60 

Figure 4 Geometry and mesh of numerical model at computational step 120 

Figure 5 Geometry and mesh of numerical model at computational step 160 

Figure 2: Geometry and mesh of numerical model at computational step 0.
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Figure 2 Geometry and mesh of numerical model at computational step 0 

Figure 3 Geometry and mesh of numerical model at computational step 60 

Figure 4 Geometry and mesh of numerical model at computational step 120 

Figure 5 Geometry and mesh of numerical model at computational step 160 

Figure 4: Geometry and mesh of numerical model at computational step 120.
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Figure 2 Geometry and mesh of numerical model at computational step 0 

Figure 3 Geometry and mesh of numerical model at computational step 60 

Figure 4 Geometry and mesh of numerical model at computational step 120 

Figure 5 Geometry and mesh of numerical model at computational step 160 
Figure 5: Geometry and mesh of numerical model at computational step 160.
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Figure 2 Geometry and mesh of numerical model at computational step 0 

Figure 3 Geometry and mesh of numerical model at computational step 60 

Figure 4 Geometry and mesh of numerical model at computational step 120 

Figure 5 Geometry and mesh of numerical model at computational step 160 

Figure 3: Geometry and mesh of numerical model at computational step 60.
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while sensors starting with P are piezometers and these 
collect piezometric head values.

Initial population consisted of 15 individuals and 
15 generations were assumed. Materials selected for 
optimization were: 1A, 2B, 3C, 4D, 5E. Their location 
in the model is shown in Figures 2 to 6. It was decided 
that 10 parameters could be mutated. Ranges used for 

the assessment of initial population as well as mutation 
parameters are presented in Table 1. Such a calibration 
took about 10 hours, of which only about 5 minutes 
were needed for the operations related to the performing 
genetic algorithm (not FEM analysis).

3.2  Results

The calibration was performed 5 times for different 
random initial populations, yet for the same initial ranges 
and mutation values. Parameter values selected to create 
synthetic data and optimized material parameters are 
presented in Table 1. Optimizations are described with 
Roman numbers I-V. It has to be mentioned that exact 
parameters have not been reproduced in any of the 5 
optimizations. However good approximation was achieved 
for materials 2B, 3C and 5E. Surely, it is connected to role 
the played by each of these material in the model. Layer 
2B corresponds to about 80% of elements in subsoil, layer 
3C is the weak layer that enforces the shape of potential 
failure zone and layer 5E is the stiffest one. The hydraulic 
conductivity values have been optimized satisfactorily. 
Probably narrowing the ranges of Poisson ratio could 

Figure 7: Sensor location in numerical model.

Figure 8: Comparison of best individuals’ error in each generation.

6 

Figure 6: Geometry and mesh of numerical model at computational step 205.
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improve results, as these ranges were the same for all 
materials and relatively wide.

Figure 8 shows the change of error depending on the 
generation number, that is how the error in each of the 
five calibrations was reduced. It can be observed that 
in all five cases error decreased, which means that the 
process gradually improves the initial individuals, which 
were created randomly. However, there is a possibility 
that there will be no significant improvement during the 
optimization process if the first population contains very 
good individual, similar to calibration IV. From a practical 
point of view, such a situation cannot be treated as proof 

of algorithm failure because the parameters provide a 
reasonable fitting to monitoring data.

Figures 9 to 13 show the fitting diagrams for all the 
sensors. Data from measurement is marked with black 
color and in these plots they are shown without noise. On 
the X-axis the time as number of computational step is 
presented and on the Y-axis sensor quantity: displacement 
or piezometric head. It is difficult to decide which 
calibration (from I to V) is the best, but all of them should 
be acceptable in real case. It can be observed that for 
different sensors different sets of parameters correspond 
to the best fitting obtained. 

Table 1: Parameters resulting from calibration.

Mat. Par. Real Range Mut. I II III IV V

1A φ [°] 5.1 5÷20 1 8 15 16 15 10

c [kPa] 18 1÷20 1 17 16 16 2 2

E [MPa] 48 20÷80 3 70 40 79 25 56

v [-] 0.25 0.1÷0.4 0.03 0.33 0.12 0.4 0.39 0.31

kx [m/s] 1.0E-11 5E-12÷5E-10 2* 2.0E-10 1.0E-10 2.0E-11 2.0E-10 1.3E-10

2B φ [°] 14.5 10÷20 1 14 15 11 14 11

c [kPa] 5 1÷10 1 8 7 1 7 5

E [MPa] 18 10÷60 3 28 23 33 19 22

v [-] 0.25 0.1÷0.4 0.03 0.15 0.27 0.2 0.25 0.34

kx [m/s] 5.0E-10 5E-11÷5E-9 2* 2.5E-10 2.0E-10 1.0E-10 2.0E-10 5.0E-10

3C φ [°] 10 5÷14 1 7 9 17 12 16

c [kPa] 1 1÷10 1 10 8 4 2 6

E [MPa] 18 10÷60 3 24 15 15 26 16

v [-] 0.25 0.1÷0.4 0.03 0.3 0.15 0.22 0.27 0.19

kx [m/s] 5.0E-10 5E-11÷5E-9 2* 2.0E-09 2.0E-10 1.0E-09 1.0E-09 5.0E-09

4D φ [°] 28 10÷30 1 15 22 28 18 22

c [kPa] 5.2 1÷10 1 5 7 4 7 6

E [MPa] 48 20÷80 3 55 23 48 24 39

v [-] 0.25 0.1÷0.4 0.03 0.22 0.21 0.34 0.12 0.38

kx [m/s] 1.0E-08 5E-9÷5E-7 2* 1.0E-07 1.0E-08 2.5E-07 5.0E-08 1.0E-07

5E φ [°] 36 20÷40 1 29 35 20 34 24

c [kPa] 5.1 1÷10 1 8 4 4 3 2

E [MPa] 120 90÷140 3 93 112 135 130 93

v [-] 0.2 0.1÷0.4 0.03 0.33 0.18 0.24 0.28 0.36

kx [m/s] 1.0E-05 5E-6÷5E-4 2* 5.0E-04 5.0E-06 5.0E-06 5.0E-05 1.0E-04

Remark: Mat. – Material, Par. – Parameter, Real – value used to create synthetic monitoring data, Range – range used to create initial 
population, Mut. – mutation value, * – mutation realized by multiplication or division.
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Figure 10: Results of horizontal (left) and vertical (right) displacement in benchmark U2.

Figure 11: Results of horizontal (left) and vertical (right) displacement in benchmark U3.

Figure 9: Results of horizontal (left) and vertical (right) displacement in benchmark U1.
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4  Predictions
The fitting diagrams presented in the previous chapter 
show that the results obtained from all 5 parameter sets 
are similarly matched to the measurement data. Although 
the fits are not perfect, at the engineering level they are at 
least satisfactory. In other words, if the actual parameters 
on an existing object were not known, all 5 sets would 
be accepted as sufficient matches and all discrepancies 
would be treated as inaccuracies resulting from the fact 
that the numerical model is only an approximation of 
reality.

However, from the designer’s point of view, 
displacement values or piezometric head alone are not 
sufficient to assess the safety of a construction. The factor 
of safety is most often used for this purpose.

Therefore, factors of safety were calculated using 
strength-reduction method (Cała and Flisiak, 2003) with 
reduction of both strength parameters, i.e. cohesion and 

angle of friction. Then FOS values were compared during 
the history of the dam’s erection, at the end of the period 
in which the measurement were available, and also in the 
future, assuming a continuous dam increase of 0.4 m per 
1 calculation step, which gave a total increment of dam 
height equal to 18 m. Further increase would cause the 
failure surface to exceed the model area or to be too close 
to its boundaries. Figures 14 and 15 show the geometry 
of the model at the final computation step and Figure 16 
depicts the comparison of FOS values.

Despite different FOS values for different sets of 
parameters, the failure surfaces are similar. The deeper 
layer of 3C determines failure surface, regardless of the 
set of parameters. In the Figures 17-20, evolution of the 
failure surface due to increasing dam height is shown for 
dataset IV; however, the shape of slip surface is valid for 
all optimized datasets and case with actual parameters.

In addition, predictions of the values that were 
monitored are also shown. The Graphs 21-25 show these 

Figure 12: Results of piezometric head in piezometer P1 (left) and P2 (right).

Figure 13: Results of piezometric head in piezometer P3 (left) and P4 (right).
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predictions - on the horizontal axis there is time (in 
the form of calculation steps) and on the vertical axis 
is the measured value (displacement or piezometric 
height). A continuous line indicates the fit to the existing 
measurements and a dashed prediction.

Both the graph of the factor of safety and the 
predictions of the measured values show that, despite a 
good fit, the predicted values may differ significantly from 

the actual values. What is worth emphasizing, however, 
is that the set of parameters which had the smallest error 
during optimization shows predictions, on the basis of 
which (while maintaining appropriate safety factors) 
design modifications assumed by the observation method 
can be prepared.

5  Summary
This article shows that the calibration of material 
parameters of a numerical model for monitoring data using 
the genetic algorithm-based optimization method is also 
possible for more complex geotechnical issues and that it 
also works with a larger number of sensors that collects 
different data. An outline of the implementation of the 
optimization method and its performance on the example 
of artificially generated data is presented. Although the 
results of the matching were satisfactory, the optimization 
algorithm may need to be changed for specific cases. It is 
also obvious that the results of the matching depend on 
the correct creation of a numerical model.

The second part presents the differences between 
predictions created by calculating numerical models 
using optimized parameters and simulating the numerical 

Figure 16: Changes of FOS value in time for different sets of 
parameters.

10 

Figure 14 Geometry of model at the intermediate step (230) of prediction 

Figure 15 Geometry of model at the final step (250) of prediction 

Figure 14: Geometry of model at the intermediate step (230) of prediction.
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Figure 14 Geometry of model at the intermediate step (230) of prediction 

Figure 15 Geometry of model at the final step (250) of prediction Figure 15: Geometry of model at the final step (250) of prediction 
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11 

Figure 17 Failure surface at step 170 for dataset IV 

Figure 18 Failure surface at step 210 for dataset IV 

Figure 17: Failure surface at step 170 for dataset IV.
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Figure 17 Failure surface at step 170 for dataset IV 

Figure 18 Failure surface at step 210 for dataset IV Figure 18: Failure surface at step 210 for dataset IV.
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Figure 19 Failure surface at step 230 for dataset IV Figure 19: Failure surface at step 230 for dataset IV.
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Figure 19 Failure surface at step 230 for dataset IV 

Figure 20: Failure surface at step 250 for dataset IV.
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Figure 22: Prediction of horizontal (left) and vertical (right) displacement in benchmark U2.

Figure 23: Prediction of horizontal (left) and vertical (right) displacement in benchmark U3.

Figure 21: Predictions of horizontal (left) and vertical (right) displacement in benchmark U1.
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model used for data preparation. The most important 
conclusion to be drawn is that not every good match 
guarantees a prediction corresponding to reality. The 
best prediction was obtained for a set of parameters, 
which gives the smallest error during calibration, so it is 
recommended to carry out several calibration processes 
and select the one with the best fit. Perhaps a larger number 
of generation could provide better results, however it was 
decided to shorten the time of optimization. It should 
be stressed that the task of calibration of parameters is 
the inverse problem. The most common way to improve 
the outcome of the inverse problem is regularization. 
Another method in the case presented in the article is to 
better define the ranges from which the initial population 
is drawn and modify the mutation so that correlations 
between individual parameters are taken into account. 
Additionally, in the case of analyses of future behavior of 
geotechnical objects, a statistical approach can be applied 
and conclusions can be formulated based on a group of 

potential solutions. When discussing the problem from 
the perspective of inverse problem, the appropriate choice 
of sensor position should be considered. It would be worth 
examining whether there exists such a group of sensors 
that would allow to obtain a unique solution. It will 
certainly be the subject of the author’s future research, 
especially as it would facilitate the design of monitoring 
networks and maintenance of geotechnical objects using 
the observation method.

However, it should also be noted that the predictions 
for the measurements of the sensors taken into account 
are the same for all the cases for a sufficiently short 
prediction period. This is consistent with the observation 
method, which requires not only continuous monitoring 
but also verifying the assumptions made and modifying 
the project. A much more serious danger is evident when 
comparing the factor of safety values. Large discrepancies 
already exist during data matching (about step 200, i.e. 
before prediction). As with prediction, the smaller the 

Figure 24: Prediction of piezometric head in piezometer P1 (left) and P2 (right).

Figure 25: Prediction of piezometric head in piezometer P3 (left) and P4 (right).
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error during calibration, the closer the values of FOS 
were to reality. Only the set of parameters for which the 
minimum error was achieved reproduces FOS in a design-
suitable manner. Although all the predicted FOS values 
are smaller than the actual, that is safe; this cannot be 
regarded as a rule because of a small test group. The 
failure surfaces were correctly reconstructed.
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