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Abstract: The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics ap-
proach the strength estimation for masonry microstructure with constituents obeying the Drucker–Prager criterion is determined
numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell
critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading
conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corre-
sponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, re-
spectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The crite-
rion has a form of conjunction of Jaeger critical plane condition and Tsai–Wu criterion. The model proposed is identified based
on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results
obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by
the criterion proposed.
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1. INTRODUCTION

Brick masonry is one of the most traditional
building materials. Although it has been known and
used for centuries, its strength behavior is very diffi-
cult to describe. The microstructure of masonry: com-
plex arrangement of bricks, bed and head joints ef-
fects in complex failure mechanisms and strength
anisotropy of the material.

Within numerical analysis, engineering structures
are usually modeled as a continuous medium with
homogenized properties. For masonry microstruc-
ture, these properties are often obtained by employ-
ing finite element analysis at the level of periodic
cell (see, for instance, works of Anthoine [1] and
Shieh-Beygi and Pietruszczak [9]). The numerical
implementation of such approach is however diffi-
cult and calculations require long computational
time. A valid alternative, which allows focusing di-
rectly on failure condition, is to combine homogeni-
zation and the limit analysis.

Over last decades, homogenized limit analysis of
masonry microstructure has been a subject of several
studies. The upper bound strength assessment for
microstructure consisting of infinitely resistant

bricks and zero thickness joints has been presented in
the work of De Buhan and De Felice [2]. The model
has been subsequently implemented as macroscopic
plasticity function into FE code for analysis of an-
cient masonry (De Felice et al. [3]). Precise lower
bound assessment of critical load for masonry micro-
structure has been proposed by Milani et al. [6]. In
the cited work, stress fields in few rectangular seg-
ments of masonry periodic cell have been described
by the n-th degree polynomials. The values of the
fields have been then optimized in the selected nodes
of each segment subjected to the equilibrium, conti-
nuity of the stress vector and the plastic admissibility
conditions. Macroscopic strength criterion obtained
for fields described with polynomial of 3rd degree
has been then implemented to the numerical code.
The obtained macroscopic strength assessment in the
above-mentioned cases has been given in space of
principal stresses in a form of set of intersecting
planes.

The focus of the present work is to propose mac-
roscopic strength criterion for masonry microstruc-
ture under in-plane loading. The proposed criterion
has a form of conjunction of Jaeger [4] and Tsai–Wu
[11] model. These two parts have been associated
with different failure mechanisms: critical plane cri-
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terion has been associated with localized shearing
along the bed joints and Tsai–Wu criterion with oth-
ers, more complicated mechanisms involving failure
in both bed joints and head joints. The complete cri-
terion is identified based on fitting in numerical re-
sults of lower bound strength assessment of masonry
obtained with micro-mechanics approach and subse-
quently verified against results obtained for different
load paths.

The present study is a preliminary one. The micro-
mechanics approach employed to assess strength of
masonry, which has been previously developed by the
author (Kawa et al. [5]) is a simple one. The respec-
tive micro-stress fields constructed within periodic
cell of masonry, which represent variables in formu-
lated constrained optimization problem, can vary only
linearly in selected segments of the cell. This makes
the assessment results obtained, for some loading
paths, not accurate. Verification of performance of the
approach against numerical solution obtained for block
and layered microstructure shows that for a number of
other loading paths the procedure utilized provides
good estimate of masonry strength.

2. HOMOGENIZATION TECHNIQUE

In the framework of micromechanics, macro-
scopic strength criterion represents a set of admissi-
ble macro stress states. The macro stress state is ad-
missible if associated micro stress field is self-
equilibrated and does not violate the respective fail-
ure criterion for all constituents involved. In addi-
tion, for periodic structures, the micro stress field has
to be locally periodic. The above formulation can be
written as (Suquet [10])

,)(,0)),((,0

)(
:)(|

}{0)(

⎭
⎬
⎫

−≤=

⎩
⎨
⎧

∂
∂

∃〉〈=

∈⇔≤

periodicyyyf

y
y

y

Af

ijij

ij
ijij

ijij

ττ

τ
ττ

σσ

(1)

where σij, τij represent macro stress tensor and associ-
ated micro stress field, respectively, f (τij(y), y) is
a local strength criterion at a point with coordinates
y ∈ VRVE, and VRVE is a volume of a periodic cell. The
symbol <.> denotes operation of volume averaging
over a periodic cell.

The above definition (1), by virtue of limit theo-
rems, provides a lower bound assessment of micro-
structure strength. For given loading conditions the
value of the assessment can be specified by solving
constrained optimization problem. The variables of
the problem are the values of micro stress fields at
every point of periodic cell, while the constraints are
represented by the equilibrium, boundary and local
plastic admissibility conditions. In order to improve
numerical efficiency of the problem the number of
variables is usually limited by assuming some ideal-
ized micro stress fields. The quality of obtained as-
sessment depends on how well the assumed micro
stress fields approximate the actual ones.

The geometry of periodic cell of the structure con-
sidered is presented in Fig. 1. Given how the cell re-
peats itself within the panel, “transition” of periodicity
along horizontal boundaries is required. The traction
is then equal and opposite in pairs (Fig. 1): a and d, b
and e, as well as f and c.

The methodology of construction of simple stress
fields within a given periodic cell of masonry micro-
structure have been presented in detail in earlier work
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Fig. 1. Assumed geometry of periodic cell of masonry
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of the author (Kawa et al. [5]). In the cited work it has
been shown that the assumed micro stress fields corre-
spond to typical failure mechanisms for masonry.
Based on those fields constrained optimization prob-
lem has been formulated. In order to introduce the
methodology in the present study the basic steps of
this formulation are presented:
(i) The plain stress state is assumed. The micro

stress fields are constructed as follows: The rep-
resentative cell is divided into 8 segments (Fig. 1),
each made of brick or mortar. The fields are as-
sumed to be constant in segments B, D, E and G.
In segments A, C, F and H the values of the
fields can vary linearly from one boundary of the
segment to the other. Vertical normal micro
stress τ11 varies only vertically, horizontal nor-
mal micro stress τ22 – only horizontally and mi-
cro shear stress τ12 in both directions. Since only
liner variation of the fields is possible the local
equilibrium conditions are satisfied at every
point of periodic cell, if the global equilibrium
conditions are satisfied, namely,
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where K
11τ , K

22τ  denote normal micro stresses in
segment K and BD

12τ , EG
12τ  are local correctors

(with average equal to 0) of the macro shear stress
which are equal and opposite in pairs of the seg-
ments B and D as well as E and G, respectively.
The assumed stress fields satisfy periodic bound-
ary conditions with transition.

(ii) The macro stress tensor is defined in terms of its
principal values and angle α which orients base
vectors with respect to head joints. The consis-
tency conditions between micro and macro stress
fields can be expressed as
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where li are geometry parameters (Fig. 1) and σ12
is the average value of shear stress over the peri-
odic cell.

(iii) When the assumed field is constructed according
to (i) and (ii) the plastic admissibility needs to be
checked only at 12 points of periodic cell, which
are:

• any point within segments B, D, E and G;
the micro stress field values in these seg-
ments are
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• all corners of segment A or C; the micro
stress field values in these corners are
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where Atl
ijτ  denotes micro stress fields val-

ues in “top left” corner of segment A, etc.
• all corners of segment F or H; the micro

stress field values in these corners are
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The parameters of strength criterion that need to be
checked vary depending on the constituent which
forms the segment considered.

(iv) The equilibrium equations (2), consistency be-
tween micro/macro fields (3), and plastic ad-
missibility conditions at the 12 points of peri-
odic cell form a complete set of constrains of
the optimization problem considered. The objec-
tive of optimization is to maximize or minimize
one of the principal stresses (e.g., σ1) for given
values of the other principal stress (e.g., σ2) and
orientation angle α. The solution has been ob-
tained in AMPL environment (www.ampl.com)
using the IPOPT solver. IPOPT uses primal-
dual interior point method in order to solve
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nonlinear constrained optimization problem. By
solving a number of optimization problems,
both directional strength test results and admis-
sible macro stress filed in σ1–σ2 space can be
obtained. Since the assumed micro stress filed
is idealized these results cannot be treated as
exact solution – they provide a lower bound of
masonry strength.

Local criterion of failure for both constituents of
masonry, i.e., brick and mortar has been assumed as
the Drucker–Prager one. Under plane stress condi-
tions, when x3 is chosen as out-of-plane direction, the
criterion can be expressed as
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Parameters of the Drucker–Prager criterion for the
components of the microstructure have been assumed
in such a way that the criterion inscribes (Fig. 2) the
Mohr–Coulomb condition with its typical parameters
for masonry constituents used in earlier work (Kawa
et al. [5]). Typical Mohr–Coulomb and associated
Drucker–Prager parameters of the constituents, which
are related through equations
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are summarized in Table 1.
The assumption of Drucker–Prager criterion for de-

scription of strength of the masonry constituents may
raise some doubts. It is well-known that for typical pa-
rameters, both the Mohr–Coulomb and Drucker–Prager

criterion strongly overestimate strength of masonry in
tension. This is mainly the effect of brick–mortar inter-
face having very low tensile resistance. Usually, to fit
in the experimental results additional tension Cut-Off
criterion is used which limits the mortar strength in ten-
sion zone. In the present paper, the mechanism of tensile
failure of brick–mortar interface has not been con-
sidered. The author focuses on the influence of assumed
local strength criterion describing shearing and com-
pressive resistance of constituents on the shape of mac-
roscopic failure criterion for masonry microstructure.
For this purpose, the assumption of pure Drucker–
Prager criterion as governing constituents strength
seems to be justified. One should note, however, that
the obtained results of microstructure strength in tensile
zone can be inconsistent with real masonry strength.

T a b l e  1

The Mohr–Coulomb and associated Drucker–Prager parameters
for masonry constituents

Mohr–Coulomb Drucker–Prager
Constituent c [MPa] α k [MPa] a

Brick 4.35 30° 3.61 0.16
Mortar 0.35 40° 0.25 0.20

In Figs. 3 and 4, the numerical results obtained for
simulated directional uniaxial compression and tension
tests are presented. Strong dependence of masonry
strength on test direction can be observed in both figures.

For specified load directions α, also the lower
bound of admissible macro stress filed has been ob-
tained numerically. The results obtained for α = 0 and
α = 22.5° are shown in Figs. 5 and 6. As can be
observed in the figures, the shape of the assessment
strongly depends on angle α.

a)       b) 

Fig. 2. The Mohr–Coulomb criterion with inscribed Drucker–Prager criterion
for mortar (interface) (a) and brick (b)
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Fig. 3. Lower bound strength assessment for masonry. Directional uniaxial compression
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Fig. 4. Lower bound strength assessment for masonry. Directional uniaxial tension test
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Fig. 5. Assessment of macroscopic failure criteria for masonry in principal stress space for load angle α = 0°
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Fig. 6. Assessment of macroscopic failure criteria for masonry in principal stress space for load angle α = 22.5°
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3. LAYERED AND
BLOCK MICROSTRUCTURES

It is easy to notice that with replacement of the
material in selected segments of its periodic cell,
masonry microstructure can be converted to either
layered or block microstructure (Fig. 7). Both of
these microstructures are much simpler than masonry
microstructure and the micro stress fields for them
are much easier to construct. For layered micro-
structure only two segments of periodic cell can be
distinguished (Fig. 8). Moreover, two of the micro
stress components τ11 and τ12 are constant in the pe-
riodic cell and thus equal to its macroscopic values
σ11 and σ12. The only unknown components of micro
stress tensor are values of τ22 in two constituents of
microstructure. The constrains of optimization prob-
lem presented in the previous section for masonry
microstructure can be reduced to three consistency
conditions

Fig. 7. Transformations of masonry microstructure
to layered and block microstructures
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and plastic admissibility conditions for points in
two segments of microstructure. The micro stress
field values at these points are: },,,{ 122211 στστ AA
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ij =

For block microstructure the number of segments
rises to four (Fig. 9). The shear component of micro
stress filed τ12 is also constant in periodic cell and
equal to macroscopic stress value σ12. The unknown
values of micro stress fields are τ11 and τ22 which are
constant in the vertical (A-C, B-D) and horizontal
(A-B, C-D) stripes of segments, respectively. The
reduced set of constrains of optimization problem is
formed by consistency conditions
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and plastic admissibility conditions for points in four
segments of microstructure with micro stress fields
values: },,,{ 122211 στττ AAA

ij =  },,,{ 122211 στττ ABB
ij =  =C

ijτ
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For both layered and block microstructures the
presented distributions of micro stress actually appear
in the periodic cell at the beginning of failure. The
results obtained by solving constrained optimization
problems identically as for masonry microstructure for
these two microstructures can be regarded as exact
description of their strength. It is evident that if identi-
cal strength criteria for constituents are assumed the
layered microstructure (no head joints) is stronger,
and block microstructure (continuous head joints) is
weaker than corresponding masonry microstructure.
The numerical solutions obtained for these micro-
structures can be used as upper and lower assessment
of masonry strength, respectively.

In Figs. 10 and 11, the numerical solutions for lay-
ered and block microstructures are presented together
with previously obtained numerical results for masonry.

The graphs presented confirm the fact that results
obtained for masonry microstructure are bounded by
strength of block and layered microstructure. Since
the strength function for masonry (dotted line) pre-
sented in the diagram represents lower bound as-
sessment of masonry strength, the exact solution of
the problem lies between the dotted and the black
line. It can be seen in both diagrams that for a wide
range of angles (0 to 45° for tension and 0 to 70° for
compression) the results obtained for masonry al-
most coincide with numerical solution for layered
microstructure. The analysis of results obtained for
layered microstructure indicates that, for a wide
range of load orientations (including the range men-
tioned above), the strength of the material is associ-
ated with failure of its weaker constituent only. This
mechanism of failure, which usually involves local-
ized shearing along lamination plane, has been re-
ported by Jaeger [4]. Thus, when results obtained for
masonry and layered microstructure coincide, identi-
cal mechanism of failure, i.e., localized shearing
along bed joints, most likely occurs also in masonry
microstructure. The analysis of values of micro-
stress fields obtained for masonry microstructure
confirms this hypothesis.
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Fig. 8. Geometry of layered microstructure considered
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Fig. 9. Geometry of block microstructure considered
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Fig. 10. Lower bound strength assessment for masonry (dots) and exact strength values
for layered (black line) and block (gray line) microstructures. Directional uniaxial tension test
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Fig. 11. Lower bound strength assessment for masonry (dots) and exact strength values
for layered (black line) and block (gray line) microstructures. Directional uniaxial tension test
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4. PROPOSED FAILURE CRITERION:
IDENTIFICATION AND VERIFICATION

As can be seen from both numerical simulations
(Shieh-Beygi and Pietruszczak [9]) and experimental
studies (Page [8]), destruction of brick masonry in the
majority of cases occurs due to failure of its weaker
component, i.e., mortar (interface). The failure can
occur either only in bed joint, in head joint and a part
of bed joint (zigzag pattern) or in all joints simultane-
ously. The two latter mechanisms are quite compli-
cated: selected cases were analyzed in the earlier work
(Kawa et al. [5]). As mentioned in the previous para-
graph, simple mechanism of failure in bed joints only is
virtually identical to mechanism of localized shearing,
reported for sedimentary rocks by Jaeger [4].

In the work by Jaeger [4], a simple anisotropic
criterion has been presented which distinguished two
main mechanisms of failure for sedimentary rock. The
model of material consists of an isotropic matrix and
inclusions in the form of identically oriented, dimen-
sionless weakness planes. Failure of material occurs

either when matrix reaches its strength or when vector
of load on weakness plane causes localized shearing.
Strength criterion for the model is then a conjunction
of an isotropic criterion for the matrix and a criterion
for weakness plane expressed in terms of the stress
vector.

The identically oriented bed joints in a masonry
microstructure can also be interpreted as weakness
planes. Following the idea of Jaeger [4] macroscopic
strength condition for masonry should consist of
weakness plane condition and some other criterion for
matrix. If direction x1 is assumed as perpendicular to
the bed joints, the weakness plane criterion for the
Drucker–Prager material, under plane stress condi-
tions, can be expressed as
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In the above formula, σ11 and σ12 are appropriate
components of stress vector on weakness plane and ac,
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Fig. 12. Critical plane condition (line) together with numerical results for masonry. Load angle α = 0°
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Fig. 13. Critical plane condition (line) together with numerical results for masonry. Load angle α = 22.5°



Failure criterion for brick masonry: a micro-mechanics approach 45

kc are the Drucker–Prager parameters for weakness
plane, which for the case considered should be as-
sumed identical as those of mortar.

Function fc(σij) = 0, transformed to principal stress
space is presented in Figs. 12 and 13 for two different
load directions (α = 0, α = 22.5°) together with as-
sessment of strength criterion for masonry obtained in
Section 2. As can be seen for some load paths the
strength of masonry microstructure coincides with
critical plane criterion.

The results presented in Figs. 12 and 13, which do
not coincide with weakness plane criterion, are obvi-
ously associated with some other mechanism of ma-
sonry failure, different than localized shearing along
bed joints. In the model proposed by Jaeger [4] the
strength for cases not associated with failure along
weakness plane are typically represented by an iso-
tropic criterion of a matrix. Observing Figs. 12 and 13
it can be clearly seen that for these parts of plot in
which the results do not coincide with the weakness
plane criterion the strength is not the isotropic one.
Natural extension of Jaeger model is to replace an iso-
tropic criterion for a matrix with the properly defined
anisotropic one. This idea has been used in one of the
previous works of the author (Lydzba and Kawa [7]) to
describe strength of layered microstructure. In the cited
work, for Drucker–Prager components, the Pariseau
criterion has been chosen as the most appropriate one
for matrix. Here, for the case of brick masonry, the
Tsai–Wu criterion [11] is proposed.

The Tsai–Wu criterion for plane stress conditions
can be written in the form
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where Fij, Fijkl are components of the second and
fourth order anisotropic tensors, respectively. The
criterion is usually identified as follows. Four of the
model constants introduced are obtained from uniaxial
compression and tension tests
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where Yc, Yt denote uniaxial compression and tension
strength in x1 direction (perpendicular to bed joints)
and Xc, Xt – in x2 direction (parallel to bed joints),
respectively. The value of F1212 is typically obtained
from result of pure shearing XYs in x1–x2 plane

21212
1

sXY
F = . (11)

Finally, the value of F1122 component is obtained
from result of equibiaxial tension XYt, as
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For the simplest loading configuration, α = 0, the
F1212 constant vanishes (σ12 = 0). The identification of
the criterion for masonry microstructure has been then
started with results obtained for that direction (Fig. 5).
The results of uniaxial tension and compression tests
in the x2 direction can be taken directly from diagram
as Xc = 1.52 MPa and Xt = 0.56 MPa. Then by using
formulas (10) the values of F22 and F2222 can be deter-
mined. As can be seen in Fig. 9, the values of uniaxial
compression and tension in x1 and the value of equibi-
axial tension are affected by the previously described
mechanism of localized shearing and have already
been described by critical plane condition (8). Con-
sidering this, the values of Yt, Yc and XYt have been
determined based on fitting the proposed criterion in
results not influenced by shearing mechanism. Satis-
factory results have been obtained using formulas
(10) and (12) together with values Yc = 1.43 MPa,
Yt = 0.7 MPa and XYt = 0.43 MPa. In Fig. 14, con-
junctions of identified Tsai–Wu model and critical
plane criterion for direction α = 0 together with nu-
merical results obtained previously for masonry mi-
crostructure are presented.

For identification of F1212 value numerical results
obtained for angle α = 22.5° have been utilized. The
value of the constant has been determined also based
on fitting the Tsai–Wu model in results not associated
with localized shearing (Fig. 13). A very good agree-
ment between identified model and numerical results
has been obtained using value XYs = 0.28 MPa to-
gether with formula (11). The identified conjunction
of the criteria considered together with results of nu-
merical analysis obtained previously for 22.5° (Fig. 6)
are presented in Fig. 15.

The identified criterion has been verified against
numerical results obtained for different loading con-
figuration than used previously for identification of
the model. In Figs. 16 and 17, a comparison of iden-
tified model with results obtained for α = 45° and
α = 67.5° is presented. The obtained agreement seem
to be satisfactory, especially as in Fig. 16, where
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localized shearing is the governing mechanism of
failure for almost all results.

In Figs. 18 and 19, the identified model has been
compared with the results obtained numerically for

directional uniaxial compression and tension tests
(Figs. 3 and 4). It appears from the results presented
that identified model is also in good agreement with
these results.

      

  

 

α = 0°

 

x1 
1 σ

 
 

3σ  

x2 

Fig. 14. Results from Fig. 5 (dots) together with identified model (line). Load angle α = 0°
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Fig. 15. Comparison of microstructural analysis results (dots) with identified model (line). Load angle α = 22.5°
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Fig. 16. Comparison of microstructural analysis results (dots) with identified model (line). Load angle α = 45°
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5. CONCLUSION

In this work, a phenomenological strength criterion
for in-plane loaded masonry has been proposed. The
model has a form of conjunction of Jaeger [4] critical

plane and Tsai–Wu [11] criteria. A procedure of identi-
fication of the proposed criterion has also been pre-
sented. The procedure has been based on fitting in re-
sults of lower bound strength assessment of masonry,
obtained by micro-mechanics approach. The identified
model has been verified against numerical results ob-
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Fig. 17. Comparison of microstructural analysis results (dots) with identified model (line). Load angle α = 67.5°
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Fig. 18. Comparison of microstructural analysis (dots) with identified model (line). Directional compression test
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Fig. 19. Comparison of microstructural analysis (dots) with identified model (line). Directional tension test
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tained for different loading paths. It appears from the
diagrams presented that agreement between identified
model and lower bound strength assessment for ma-
sonry microstructure is satisfactory.

The following conclusions can be drawn from the
present study:
(i) The strength of masonry is bounded by strength of

layered and block microstructures. For both of
these microstructures exact solution (in the bound
of numerical error limit) is easy to obtain. While
these assessments seem to be very coarse, for
many load paths they almost coincide, providing
good estimation of masonry strength.

(ii) The mechanism of localized shearing along bed
joints is a governing mechanism of the masonry
microstructure failure for number of load paths.
The resulting strength of the mechanism can be
easily analytically described with critical plane
criterion proposed by Jaeger [4].

(iii) It appears from the results presented that for all
other more complicated mechanisms of masonry
failure, when the Drucker–Prager criterion is as-
sumed to be local strength condition for masonry
components, the Tsai–Wu criterion provides satis-
factory description of microstructure strength.
This criterion can be easily identified using results
of microstructural analysis for load paths not in-
fluenced by localized shearing in bed joints.

(iv) The conjunction of the two above conditions pro-
vides useful phenomenological model of masonry
strength. Its simplicity and good agreement be-
tween identified model and numerical strength
results obtained with micromechanics suggest that
properly identified model can be widely used for
estimation of strength in the modelling of large
masonry structures

As has been mentioned before, the current study is
a preliminary one. The above findings are subject to
two main limitations:
(i) The local criterion used for constituents of masonry

in this work is the Drucker–Prager one. It is known
that this criterion (used without additional Cut-Off)
strongly overestimates tensile strength of brick–
mortar interface and as a consequence also tensile
strength of masonry microstructure. Adding Cut-Off
at constituent level may result in the need of intro-
ducing additional part in phenomenological macro-
scopic description of masonry strength. The modi-
fied macroscopic criterion for brick masonry will be
the subject of further studies. Also the approach pre-
sented is a simple in-plane limit analysis of micro-
structure and no 3D effects have been studied. In
consequence, the obtained admissible macro stress

field in the compression zone can be strongly under-
estimated. For these two reasons the results obtained
so far are not realistic and thus no comparison with
experimental data available in literature (see, for in-
stance, Page [8]) has been provided. Further studies
with updated model will include this comparison.

(ii) The micro-mechanic procedure utilized in this paper
uses simple micro-stress fields constructed within
periodic cell of masonry. The obtained lower bound
assessment of masonry strength for some load paths
can be inaccurate. The future study investigating
more precise assessment, using, for instance, meth-
odology proposed by Milani et al. [6] is needed.
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