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DYNAMICS COEFFICIENT FOR TWO-PHASE SOIL MODEL
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Abstract: The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed
to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping.
Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation
equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper de-
rives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully
saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period,
maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows
amplification or attenuation of dynamic response is considered.
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1. INTRODUCTION

Soil is a heterogeneous material consisting of min-
eral or organic grains or man-made with different
sizes and pores occupied by fluid (mainly water) or
gas (mainly air). Soil is, therefore, a three-phase mate-
rial consisting of a solid phase (structure built of par-
ticles), liquid phase and gas phase. There are three
approaches to the accuracy of soil models: single-
phase model as a mixture of three-phase, two-phase
model consisting of a skeleton and the liquid phase in
the pores and three-phase model which takes into
account the interaction of the three phases.

The work of Maurice Anthony Biot in 1956 is as-
sumed to be the beginning of the theory of soil porous
media development. Biot considered the wave propa-
gation in a porous soil medium, using generalized
Lagrangian displacement. He decided to separate the
soil skeleton displacement us with fluid displace-
ment uf and considered kinetic energy and dissipation
energy on the relative motion of fluid to the skeleton.

The paper investigates a description of energy dis-
sipation within two-phase saturated soils-diffusion of
pore-water.

2. DYNAMIC LOADS

The loads acting on the soil can be static, un-
changing over time and/or dynamic varying over time.

This paper relates to dynamic loads which extend
(relative to the static load) to identify the inertial forces
dependent on the density and the soil acceleration.

Dynamic load (Fig. 1) acting on the soil can be di-
vided, on the basis of the force dynamic characteris-
tics, to the following groups:
• periodic (in soil dynamics often called cyclic),

e.g., from a vibrating compaction or vibration of
rotating machines installed on foundations, such as
the turbines, fans, screens, etc.;

• impact or impulse acts directly on the soil or
through the foundation on which shock devices,
such as hammers, presses, etc., are mounted;

• seismic derived from earthquakes and para-seismic,
derived from human activities, such as explosions
in the mines or moving vehicles.
These loads are of different amplitude-frequency

characteristics, and may be stationary with a constant
spectrum in time or non-stationary with the spectrum
changing over time.

In Fig. 1, a yellow area indicates dynamic loads
acting for several minutes, during which there may
occur two radically different phenomena in the soil. In
the case of cohesive soils (e.g., silt or clay), where the
permeability coefficient is small, dynamic analysis is
reduced to a problem without drainage, which signifi-
cantly simplifies the equations of motion. In the case
of cohesionless soil (e.g., sand or gravel), where the
permeability coefficient is large, dynamic analysis
includes the problem of soil liquefaction (especially in
the case of semi-compacted sand).
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Fig. 1. Load types acting on the soil area

In the case of dynamic load transmitted to the soil,
the decisive role as the constitutive relation between
strain and stress is played by the soil model.

3. BIOT THEORY

Biot theory describes the wave propagation in
saturated porous media as a soil skeleton fully satu-
rated with fluid. Biot [3], [4] assumed that the motion
of porous media on the micro level can be described
by continuum mechanics of material. He used La-
grange postulate and Hamilton’s principle to derive
the equations of wave propagation.

The basic assumption of the equations of motion is
the homogenization theory (the literature related to the
theory is very extensive), for example, the volume
averaging method used to describe the micro- and
macroscopic relation.

Many books describe Biot theory of wave propa-
gation and deformation theory of the porous medium,
inter alia: Rice and Cleary [15]; Johnson [11]; Bourbié
at al. [5]; Cristescu [10]; Zimmermann [22]; Allard
[1]; Corapcioglu and Tuncay [8]; Mavko et al. [14];
Kubik et al. [12]; Wang [17]; Cederbaum, Li and
Schulgasser [7]; Santamarina et al. [16]; Carcione [6];
Coussy [9].

The main assumptions of Biot theory are as fol-
lows:
1. In the porous medium there is a relationship

between the current and reference state. Dis-
placement, velocity and deformations of parti-
cles are small. Constitutive equations, dissipa-
tion forces and inertia forces are linear. Thus,

the strain energy, dissipation potential and ki-
netic energy are a square form of variables.

2. Principles of continuum mechanics can be applied
to measure the macroscopic value. The size of av-
eraged macroscopic elementary volume is based
on microscopic structure.

3. Compared to the macroscopic dimensions of the
elementary volume, the wavelength is large. This
volume sufficiently and accurately determines prop-
erties such as porosity, permeability and modulus of
elasticity.

4. The isothermal state is under consideration.
5. The hydrostatic stress is assumed to fill the pores

with viscous fluid.
6. The liquid phase is a continuum. The skeleton is

a solid phase with discrete discontinuous areas.

4. EQUATION OF MOTION
IN LOW FREQUENCY RANGE

The formulation of porous media dynamics is based
on the kinetic energy equation, dissipation function and
it leads to the equations of motion using Lagrange’s
postulate.

For two-phase soil model the equation of motion is
as follows (Wrana [18])
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Assuming the relative displacement of skeleton to
fluid
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5. PROBLEM FORMULATION
FOR 1D PROBLEM

In general, soils are three-phase media that consist
of solid, fluid and gas constituents with masses Ms,
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Mf, Mg and volumesVs, Vf, Vg, respectively. The vol-
ume Vp of pores and the total volume Vt of the me-
dium are

Vp = Vf + Vg,       Vt = Vs + Vf + Vg. (3)

In the paper, the porosity n = Vp/Vt and the degree
of saturation S = Vf /Vp are considered. Therefore, only
nearly saturated soils are considered for which S is
between 0.95 to 1.0. The gas is dissolved in the fluid,
there is only one homogeneous fluid phase. The unit

mass of the solid 
s

s
s V

M
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is practically independent of the degree of saturation S

and is equal to the unit mass of water 3cm
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One-dimensional case is considered (Bardet [2]).
The terms u and v denote solid and fluid displace-
ments, respectively. The linear strain-displacement

relationship is 
z
u
∂
∂

=ε . The change of effective stress

resulting from ε is
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where Df – bulk modulus of the air-fluid mixture de-
pends on the degree of saturation S.

Assuming that particles are incompressible and
water flow through the solid grains obeys Darcy’s
law, the governing equations are
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u(z, t) – displacement of skeleton,
v(z, t) – displacement of water,
k – permeability coefficient,
g – acceleration due to gravity.

After introducing new constants:

fD
D

=χ  – solid bulk modulus to air-fluid mixture

modulus,
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=β  – solid density to air-fluid den-
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ρ
= – air-fluid wave longitudinal velocity,

w = n(v – u) – relative displacement fluid to
skeleton.

Equations (6) become
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Equation (7) takes into account the viscous damp-
ing between the grains and the water in the pores by

component tw
k
g

, .

6. STEADY STATE RESPONSE
OF THE BIOT COLUMN

The Biot column is considered. At the top (z = 0)
free drained displacement is subjected to harmonic
normal stress σ0 with circular frequency ω and it
is clamped and undrained at the base (z = L) (see
Fig. 2).

Fig. 2. Geometry and boundary conditions
of the Biot column

According to separation rules of variables in space
and time, the following is obtained
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where j = 1− , and solution in space as
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Introducing (8) to (6) and using new complex con-
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Dynamic factor γ is introduced as
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where 20 log10 – coefficient for unit decibels.
The nontrivial solution is obtained from charac-

teristic equation of (10)
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where K1, K2 – from equation (10), and A1, A2, A3,
A4 – from boundary conditions of (12).

After fulfilling the four boundary conditions we
obtain the solution for dynamic coefficient γ as

For γ > 0, the amplitude of vibration is increased
compared to the static displacement, which is analo-
gous to a dynamic system with one degree of freedom
as the resonance area. For γ < 0 the amplitude vibra-
tion is less than that of a solution for the static, outside
the resonance area.

7. EXAMPLE

Various physical factors were considered in the pa-
per. The problem of resonance in skeleton depends on:

D/Df – skeleton stiffness/fluid (water) stiffness, and
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0 β  – undrained wave velocity.

With reference to the undrained case, the calcula-
tion frequency is defined as

fc
Lω

=Ω  [rad]. (14)

In the example a semi-compacted sand layer with
thickness L = 10 m was considered. The parameters used
in the calculation are shown in Table 1. Figures 3 and 4
show the answer to Biot column U(z) at the depth z = 0.
Figure 3 shows the dynamic coefficient value for
skeletal soil, depending on the relation of soil stiffness
to liquid stiffness in frequency parameter Ω. Figure 3b,
c shows the areas of increasing (γ > 0) and damping
(γ < 0) of skeleton displacement amplitudes U(z).

Figure 3 shows the results of dynamic coefficient γ
and Fig. 4. shows the influence of permeability coef-
ficient k on displacement amplitude of u – skeleton,
v – water and p – pore water pressure.

Table 1. Parameter

L [m] σ0 [kPa] ρs [t/m3]
10 100 2.65

8. CONCLUSION

The harmonic response of Biot column of fully-
saturated poro-elastic soil was analytically solved.
A parametric study revealed the influence of soil and
fluid rigidity on frequency.

Results presented in Fig. 3 indicate that:
• Maximum value of dynamic coefficient γ is for Ω

= π/2, 3/2π, 5/2π, etc. that is, the values of reso-
nance (see Fig. 3a).

• Values of resonance amplitude decrease with the
increase of Ω. The largest value of the frequency
amplitude is for Ω = π/2, as shown in Fig. 3b,c and
increases with the axis ratio D/Df,

• In areas between π/2, 3/2π, 5/2π, etc. the skele-
ton displacement amplitude is reduced. The
lowest values are at frequency parameter Ω = π,
2π, 3π, etc.

• According to the Terzaghi equation for maxi-
mum values of skeleton displacement ampli-
tude, the liquid amplitudes are minimum val-
ues.
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(a)

(b)

(c)

Fig. 3. Value of dynamic coefficient γ
depends on D/Df – skeleton stiffness/water stiffness and Ω:

(a) dynamic coefficient γ, (b) γ < 0 – damping area,
(c) γ > 0 – resonance area

Results presented in Fig. 4 indicate that the perme-
ability coefficient k plays an important role in the
dynamic behavior. Figure 4 shows relation of skeleton
and water displacement and pore pressure to perme-
ability coefficient k and calculation frequency Ω. One
can find the result for sand with three different values

of k: k = 0.0001 m/s (FSa), k = 0.001 m/s (MSa) and
k = 0.01 m/s (CSa).

a)

b)

c)

Fig. 4. Influence of permeability coefficient k
on displacement amplitude of (a) u, (b) v, and (c) p
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