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Abstract: The Bühlamnn-Straub credibility model is extended for risk profiles varying with 

time. This is a special case of an evolutionary credibility model with risk parameter 

changing with time according to an unobserved sequence of random variables. The exact 

formulas of Bayes premiums are obtained for models in which the probability distributions 

of risk profiles switch to others at random unobserved time periods with known 

distributions. In particular, for exponential type class of distributions with conjugate priors, 

the Bayes premium is obtained recursively from a non-linear multidimensional Kalman 

type filter. 
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1. Introduction 

The problem of finding Bayes insurance premiums in Bühlmann-Straub 

type models with risk parameter distributions varying with time is 

considered here. The author assumed that I independent contracts from an 

inhomogeneous portfolio are observed during T periods. Hence there are 

given random variables (r.v’s) 𝑋𝑖𝑡, where 𝑖 = 1, 2, … , 𝐼 and 𝑡 = 1, 2, . . , 𝑇. 

𝑖 denotes the individual contract (risk) and 𝑡 is the time period. 𝑋𝑖𝑡 

represents the claim size (number of claims) related to risk 𝑖 at 𝑡. The goal 

of an insurer is to predict the value of a r. v. 𝑋𝑖,𝑇+1 or to estimate the net 

individual premium for contract i and period T + 1. In the Bühlmann model, 

for each contract i, the joint distribution of  𝑋𝑖𝑡 , 𝑡 = 1, 2, … , 𝑇 + 1, depends 

on an unobserved random variable  Θ𝑖, called the risk parameter (risk 

profile), interpreted as an unobserved random feature of policyholder  

i which determines the probability distribution of 𝑋𝑖𝑡 at any time t. The 

basic assumption of the model is the conditional independence of 𝑋𝑖𝑡,  
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𝑡 = 1, 2, . . , 𝑇 given  Θ𝑖, for each 𝑖 = 1, 2, … , 𝐼, and this distribution does 

not vary with the passage of time. Moreover, the independence of contracts 

means that the vector-valued random variables related to each contract in 

a portfolio are independent. In the paper the author relaxes the former and 

finds Bayes premiums under a weaker assumption with the practical 

meaning that the a priori distribution of a risk profile changes at an 

unobserved random time N to the other known distribution. In such case 

the insurer does not know the true distribution of a risk profile. The paper 

analyses two variations of Bühlmann-Straub models with switching risk 

profiles at 𝑁. The portfolio model analysed in this paper may be considered 

as a dynamic extension of the claim dependence with common effects in 

the credibility models presented in Yeo and Valdez (2006), which derived 

Bayes premiums for normal common effects. The credibility premiums for 

such models were found in Wen, Wu and Zhou (2009).  

The modern credibility theory starts with the seminal papers by 

Bühlmann (1967) and Bühlmann and Straub (1970). Credibility models 

were then generalised and analysed by many other authors. Jewell (1975) 

introduced hierarchical credibility, and Hachemeister (1975) regression 

credibility models. There are many papers addressing the time dependence 

issue in credibility models which is very natural in insurance practice; 

Jewell (1975) called them evolutionary credibility models. Such models 

for claim amounts with time risk profiles varying over time were 

investigated by Gerber and Jones (1975), Jewell (1975, 1976), Sundt 

(1981, 1983), Kremer (1982). Evolutionary (also called dynamic) 

credibility models for claim numbers were considered by many authors, 

among them Albrecht (1985), Bolancé, Guillen and Pinquet (2003), 

Bolancé et al. (2007), Purcaru and Denuit (2002, 2003). Various time 

dependence ideas are discussed in the textbook by Denuit et al. (2005). 

There are many papers dealing with credibility models for exponential 

dispersion distributions and their conjugate priors, in which case Bayes 

premiums are credibility premiums, i.e. they are convex combinations of 

theoretical and empirical means.  

The textbook by Bühlmann and Gisler (2005), devoted entirely to 

credibility models, is a rich source of references. Goovaerts et al. (1990), 

Sundt (1983), Denuit et al. (2005, 2007) present the main non-life 

insurance issues and actuarial modelling of dependent risks. Schmidt 

(1998) gives a survey of Bayesian models in actuarial mathematics. In 

classical credibility modelling, the insurer’s goal is to estimate the 

individual mean claim amount or claim frequency. There are other risk 

characteristics of interests, e.g. Pitselis (2013) developed quantile 

credibility models in which quantiles are embedded in Bühlmann (1967) 
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credibility and Hachemeister (1975) regression credibility models, while 

Kim and Jeon (2013) analysed credibility theory based on trimming.  

 In this paper the author presents an evolutionary model which can be 

called a random sequence (e.g. Markov) modulated credibility model 

described in Section 2. Each policyholder of an heterogeneous portfolio is 

characterized by a set of risk profiles. At each time period of an insurance 

contract only one risk profile is active and it is chosen according to the 

value of the current state of a random environment (e.g. the state of an 

unobserved Markov chain). In Section 3, Bayes premium is obtained in 

cases when there are only two possible risk profiles with corresponding 

individual claim amount (frequency) distributions, which means that there 

are two possible credibility models. Initially the contract is fully 

characterized by one model, then, with the passage of time, at a random 

time period there is a change of this model to the other one. One obtains 

the Bayes premium depending on Bayes premiums for both credibility 

models and the probability distribution of the moment of switching the 

models. The paper also considers the simpler case when the change is 

possible only at the determined time period. In Section 4, precise forms of 

Bayes premiums are obtained when in both credibility models the claim 

amounts and risk profiles have distributions from dispersion exponential 

family and its conjugate priors, respectively. Some of the above Bayes 

premiums were calculated in Chowańska (2012).  

2. The portfolio model 

We consider a dynamic model of a portfolio of I individual contracts 

observed during T time periods. For each contract i, random vector 𝑿𝑖 =
(𝑋𝑖1, … , 𝑋𝑖𝑇) denotes the contract history, 𝑋𝑖𝑡 is the claim amount 

(frequency) for the period t, and our interest is to predict 𝑋𝑖,𝑇+1 for each 

i on the basis of all observed vectors 𝑿1, … , 𝑿𝑇 and to establish an 

insurance premium for each policyholder.  

Suppose that d-variate random vector 𝚯𝑖 = (Θ𝑖1, … Θ𝑖𝑑) is an 

unobserved individual random characteristic of contract i. Moreover, there 

is an unobserved overall portfolio random characteristic 𝒀 =
(𝑌1, 𝑌2, … , 𝑌𝑡 , … ), a sequence of random variables with values in set  

S = {1, …, d}. 𝑌𝑡 is a random factor influencing claim amount of each 

contract i at t so that the conditional distribution of 𝑋𝑖𝑡 given 𝚯𝑖, 𝒀 is the 

conditional distribution of 𝑋𝑖𝑡 given Θ𝑖𝑌𝑡
. Let us denote 𝚯 =

(𝚯1, 𝚯2, … , 𝚯𝐼) and 𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑇+1), and assume that the following 

conditions hold:  

C1. 𝚯1, 𝚯2, … , 𝚯𝐼 , 𝒀 are independent random sequences with known 

distributions. 
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C2. Conditional cumulative distribution function of 𝑿 given 

𝚯 = 𝜽, 𝒀 = 𝒚 is of the form  

𝐹𝑿|𝚯,𝒀(𝒙|𝜽, 𝒚) = ∏ 𝐹𝑿𝑖|𝚯𝑖,𝒀(𝒙|𝜽𝑖, 𝒚)𝐼
𝑖=1 . 

C3. Conditional distribution functions of 𝑿𝑖 given 𝚯𝑖 = 𝜽𝑖, 𝒀 = 𝒚 are 

as follows  

𝐹𝑿𝒊|𝚯𝑖,𝒀(𝒙|𝜽𝑖, 𝒚) = ∏ 𝐹𝑋𝑖𝑡|Θ𝑖𝑌𝑡
,𝑌𝑡

(𝑥𝑡|𝜃𝑖,𝑦𝑡
, 𝑦𝑡)𝑇+1

𝑡=1 , i = 1, 2,…, I. 

C4. For each i and t, 𝐸|𝑋𝑖𝑡| < ∞.  

Condition C3 means that for each contract i random claim amounts for 

subsequent time periods 𝑋𝑖1, … , 𝑋𝑖𝑇 , 𝑋𝑖,𝑇+1 are conditionally, given 𝚯𝑖 =
𝜽𝑖 , 𝒀 = 𝒚, independent and for each time period t the conditional 

distribution of 𝑋𝑖𝑡 given 𝚯𝑖 = 𝜽𝑖, 𝒀 = 𝒚 is the conditional distribution of 

𝑋𝑖𝑡 given Θ𝑖𝑌𝑡
= 𝜃𝑖𝑦𝑡

, 𝑌𝑡 = 𝑦𝑡. Therefore, the current state 𝑌𝑡 determines 

the risk profile Θ𝑖𝑌𝑡
 of the contract.  

Let us note that if we assume additionally that 𝒀 is a Markov chain and  

(𝑋𝑖𝑡|𝚯𝑖 , 𝒀) = 𝜇(Θ𝑖,𝑌𝑡
), 𝑉𝑎𝑟(𝑋𝑖𝑡|𝚯𝑖, 𝒀) = 𝜎2(Θ𝑖,𝑌𝑡

)/𝑤𝑖𝑡, then the 

model may be called the Markov modulated version of the Bühlmann- 

-Straub credibility model.  

Remark 1. Suppose that d = 1 and 𝑌𝑡 = 𝛬, 𝑡 = 1,2, … , 𝑇 + 1. Then, 

Conditions C2 to C4 become Assumptions A2, A4 and A5 formulated in 

Yeo and Valdez (2006). If additionally one assumes that the considered 

above distributions have probability density functions, then our portfolio 

model coincides with the one described in Yeo and Valdez (2006).  

Next, we examine net type premiums:  

𝜇𝑖𝑡(Θ𝑖,𝑌𝑡 , 𝑌𝑡) = 𝐸(𝑋𝑖𝑡|Θ𝑖,𝑌𝑡 , 𝑌𝑡) – the individual net premium,  

𝑃𝑖,𝑇+1
𝐵 = 𝐸(𝑋𝑖,𝑇+1|𝑿1, … , 𝑿𝑇) – Bayes premium,  

𝑃𝑖,𝑇+1
𝐿𝐵  – credibility premium (best linear predictor of 𝑋𝑖,𝑇+1). 

Remark 2. If Y is a Markov chain, then {𝜇𝑖𝑡(𝛩𝑖,𝑌𝑡 , 𝑌𝑡)} is the Markov 

process, 𝑖 = 1,2, … , 𝐼.  

Remark 3. Under Assumptions C1 to C4 we have  

𝑃𝑖,𝑇+1
𝐵 = 𝐸( 𝜇𝑖,𝑇+1(Θ𝑖,𝑌𝑇+1 , 𝑌𝑇+1)|𝑿1, … , 𝑿𝑇).  

The above holds due to the tower property of the conditional 

expectation.  

Recently, the credibility idea was applied for other claim 

characteristics, for instance for trimmed means in Kim and Jeon (2013), or 

quantiles in Pitselis (2013).  
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3. Model with switching distributions 

In this section the author obtains Bayes premiums for two specific models 

of the portfolio from Section 2, and considers one particular contract i. 

Thus index i will be omitted. The premium for 𝑋𝑇+1 based on 𝑋1, … , 𝑋𝑇 is 

of interest here.  

Model 1. Suppose that the risk profile of the contract is a bivariate 

random variable 𝚯 = (Θ1, Θ2), with independent coordinates Θ1,  Θ2, and 

their cumulative distribution functions 𝑈1, 𝑈2, have densities 𝑢1, 𝑢2. Let 

𝐹1(𝑥|𝜃), 𝐹2(𝑥|𝜃), 𝑥 ∈ ℝ, be cumulative distribution functions of claim 

sizes given Θ1 = 𝜃, Θ2 = 𝜃, respectively. Let N be a random variable 

taking values in the set of natural numbers with the probability distribution 

function 𝛲(𝑁 = 𝑛) = 𝑔𝑛, 𝑛 = 1,2 …, and let 𝐺𝑛 = 𝑔1 + ⋯ + 𝑔𝑛, �̅�𝑛 =
1 − 𝐺𝑛. Assume that 𝑁, Θ are independent. Let 𝑌𝑡: = 𝕀(𝑁 ≤ 𝑡), 𝑡 = 1,2, …, 

and 𝕀(𝐴) denote the indicator function of event A.  

Assume that 

C5. 𝑃(𝑋𝑡 ≤ 𝑥|𝚯, 𝑌𝑡) = (1 − 𝑌𝑡)𝐹1(𝑥|Θ1) + 𝑌𝑡𝐹2(𝑥|Θ2).  

According to C5, N may be interpreted as the switching time that is 

beginning from the N-th time period when there is a change of risk profile 

Θ1 into Θ2, and the probability distribution of the claim amounts 𝐹1(𝑥|𝜃) 

changes into 𝐹2(𝑥|𝜃), under various values of risk profiles . Conditions 

C1 to C3 under the assumptions of Model 1 are fulfilled. C3 has a simpler 

form:  

𝐹𝑿|𝚯,𝒀(𝒙|𝜽, 𝒚) = ∏ [(1 − 𝑦𝑡)𝐹1(𝑥𝑡|θ1) + 𝑦𝑡𝐹2(𝑥𝑡|θ2)]𝑇+1
𝑡=1 .  

C4 is expressed as  

∫ ∫ |𝑥|𝑑𝐹𝑖(𝑥|𝜃)𝑑𝑈𝑖(𝜃)
∞

−∞

∞

−∞
< ∞, 𝑖 = 1,2. 

Remark 4. Model 1 may be modified in such a way that at moment N 

of switching, there is random choice of a risk profile with the 

corresponding distribution of the claim amounts, from the given set of 

profiles and distributions of the claim amounts.  

Model 2. Assume that the assumptions of Model 1 are fulfilled, apart 

from the assumption on 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑇+1, … ). Let 𝑌𝑡 = Λ, t = 1, 2, …, 

and  is the Bernoulli distributed random variable with probability law 

𝑝(1) = 𝜋 = 1 − 𝑝(0), 𝜋  (0,1). Then, Condition C5 becomes  

C6. 𝑃(𝑋𝑡 ≤ 𝑥|𝚯,) = (1 − )𝐹1(𝑥|Θ1) + 𝐹2(𝑥|Θ2).  

Denote 𝜇𝑖(𝜃) = ∫ 𝑥𝑑𝐹𝑖(𝑥|𝜃)
∞

−∞
, 𝑖 = 1,2, 𝑥𝑘:𝑡 = (𝑥𝑘 , … , 𝑥𝑡), 

𝑋𝑘:𝑡 = (𝑋𝑘 , … , 𝑋𝑡) , 𝑘 = 1, 2, … , 𝑡 ≤ 𝑇 + 1. 
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One can derive the Bayes premiums for Models 1 and 2. From C5 and 

C6 one obtains the individual premiums for T + 1, respectively:  

𝜇(𝚯, 𝒀) = (1 − 𝑌𝑇+1)𝜇1(Θ1) + 𝑌𝑇+1𝜇2(Θ2),  

𝜇(𝚯,) = (1 − Λ)𝜇1(Θ1) + Λ𝜇2(Θ2), 

and the Bayes premiums:  

𝑃𝑇+1
𝐵 = 𝐸((1 − 𝑌𝑇+1)𝜇1(Θ1)|𝑋1:𝑇) + 𝐸(𝑌𝑇+1𝜇2(Θ2)|𝑋1:𝑇), 

𝑃𝑇+1
𝐵 = 𝐸((1 − )𝜇1(Θ1)|𝑋1:𝑇) + 𝐸(𝜇2(Θ2)|𝑋1:𝑇).  

Proposition 1. Suppose that the assumptions of Model 1 are fulfilled 

and there exist densities 𝑓1(∙ |𝜃), 𝑓2(∙ |𝜃) of the cumulative distribution 

functions 𝐹1(∙ |𝜃), 𝐹2(∙ |𝜃). Then, the Bayes premium is of the form  

𝑃𝑇+1
𝐵 = 𝐴0𝜇1

𝐵(𝑋1:𝑇) + ∑ 𝐴𝑘𝜇2
𝐵(𝑋𝑘:𝑇) + 𝐴𝑇+1

0 𝜇2
0𝑇

𝑘=1 ,  

where 𝜇2
0 = 𝐸𝜇2(Θ2) and, for i = 1,2, 𝜇𝑖

𝐵(𝑋1:𝑇) = 𝐸𝑖(𝜇𝑖(𝛩𝑖)|𝑋1:𝑇)  

is the Bayes premium calculated for the Bühlmann model with 

characteristics 𝛩𝑖, 𝐹𝑖(𝑥|𝜃),  

𝐴0 = �̅�𝑇+1
𝑓1(𝑋1:𝑇)

𝑓(𝑋1:𝑇)
 , 𝐴𝑘 =

𝑔𝑘𝑓1(𝑋1:𝑘−1)𝑓2(𝑋𝑘:𝑇)

𝑓(𝑋1:𝑇)
, 𝐴𝑇+1

0 = 𝑔𝑇+1
𝑓1(𝑋1:𝑇)

𝑓(𝑋1:𝑇)
,  

 𝑘 = 1, 2, … , 𝑇 + 1, where  

 𝑓𝑖(𝑥𝑘:𝑡) denotes the joint density of the cumulative distribution function  

𝐹𝑖(𝑥𝑘:𝑡) = ∫ ∏ 𝐹𝑖(𝑥𝑗|𝜃)𝑡
𝑗=𝑘

∞

−∞
𝑑𝑈𝑖(𝜃), 𝑓𝑖(𝑥1:0) = 1, 𝑓𝑖(𝑥𝑇+1:𝑇) = 1 

and 𝑓(𝑥1:𝑇) is the joint density of 𝑋1:𝑇 : 

𝑓(𝑥1:𝑇) = ∑ 𝑔𝑛𝑓1(𝑥1:𝑛−1)𝑓2(𝑥𝑛:𝑇) + �̅�𝑇𝑓1(𝑥1:𝑇)𝑇
𝑛=1 . 

Proof. The proof is presented in Appendix.  

Example 1. Suppose that N is geometrically distributed, i.e. 𝑔𝑘 =
𝑝𝑞𝑘−1, 𝑘 = 1,2, …, and, for i = 1, 2, 𝛩𝑖 has Gamma distribution with the 

shape and scale parameters 𝛼𝑖, 𝛽𝑖, respectively, 𝐹𝑖(𝑥|𝜃) = 1 − 𝑒−𝜃𝑥, 
 𝑥 > 0. Then,  

𝜇1
𝐵(𝑋1:𝑇) =

1+∑ 𝑋𝑗
𝑇
𝑗=1

1+𝑇−1
, 𝜇2

𝐵(𝑋𝑘:𝑇) =
2+∑ 𝑋𝑗

𝑇
𝑗=𝑘

2+𝑇−𝑘
, 𝜇2

0 =
𝛽2

𝛼2−1
,  

Note that �̅�𝑇 = 𝑞𝑇, therefore we get the Bayes premium in Proposi-

tion 1 with  

𝐴0 = 𝑞𝑇+1/ (𝑞𝑇 + ∑ 𝑝𝑞𝑛−1𝑇
𝑛=1

𝑓1(𝑋1:𝑛−1)𝑓2(𝑋𝑛:𝑇)

𝑓1(𝑋1:𝑇)
), 
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𝐴𝑘 = 𝑝𝑞𝑘−1𝑓1(𝑋1:𝑘−1)𝑓2(𝑋𝑘:𝑇)/(𝑞𝑇𝑓1(𝑋1:𝑇) +

∑ 𝑝𝑞𝑛−1𝑇
𝑛=1 𝑓1(𝑋1:𝑛−1)𝑓2(𝑋𝑛:𝑇)), 

𝐴𝑇+1
0 = 𝑝𝑞−1𝐴0, 

where for i = 1, 2 and any r – dimensional vector (𝑧1, 𝑧2, … , 𝑧𝑟) densities 

𝑓𝑖(∙) are as follows  

𝑓𝑖(𝑧1, 𝑧2, … , 𝑧𝑟) =
𝛽

𝑖

𝛼𝑖

Γ(𝛼𝑖)
∙

Γ(𝛼𝑖+𝑟)

(𝛽𝑖+∑ 𝑧𝑗
𝑟
𝑗=1 )

𝛼𝑖+𝑟.  

Note that the Bayes premium in Example 1 cannot be expressed in 

a recursive form with updated observations of claim sizes, although in both 

Bühlmann models the Bayes premiums are credibility premiums. The 

reason is that 𝑔𝑘 > 0 for any 𝑘. In the following example we assume that 

there is only one possible moment 𝐾 of switching the distributions.  

Example 2. Suppose that the assumptions of Example 1 are fulfilled, apart 

from the distribution of the switching time period N. Let 𝐾 ≤ 𝑇 be the fixed 

and known moment of a possible change in the distribution of claim sizes 

within the observation period, i.e. 𝑔𝐾 = 𝑝 ∈ (0,1), �̅�𝑇+1 = 1 − 𝑝. 

Now, applying Proposition 1 one obtains the Bayes premium as 

follows  

𝑃𝑇+1
𝐵 = 𝐴0𝜇1

𝐵(𝑋1:𝑇) + 𝐴𝐾𝜇2
𝐵(𝑋𝐾:𝑇) ,  

where 

𝐴0 = (1 − 𝑝)
𝑓1(𝑋1:𝑇)

𝑓(𝑋1:𝑇)
, 𝐴𝐾 = 𝑝

𝑓1(𝑋1:𝐾−1)𝑓2(𝑋𝐾:𝑇)

𝑓(𝑋1:𝑇)
, 

𝑓(𝑥1:𝑇) = (1 − 𝑝)𝑓1(𝑥1:𝑇) + 𝑝𝑓1(𝑥1:𝐾−1)𝑓2(𝑥𝐾:𝑇), 𝑓𝑖, 𝑖 = 1,2, are as in 

Example 1.  

 Let us examine closer the form of the Bayes premium in Example 2. 

Denote 𝑥∙1:𝑟 = ∑ 𝑥𝑗
𝑟
𝑗=1 . Then, for 𝑇 > 𝐾, we obtain 

𝑃𝑇+1
𝐵 = Φ𝑇+1(𝑋∙1:𝑇, 𝑋∙1:𝐾−1) = Φ𝑇+1(𝑋∙1:𝑇−1, 𝑋𝑇, 𝑋∙1:𝐾−1),  

𝑃𝑇
𝐵 = Φ𝑇(𝑋∙1:𝑇−1, 𝑋∙1:𝐾−1),  

where the precise forms of Φ𝑇+1, Φ𝑇 may be obtained from the formulas 

for the densities 𝑓1, 𝑓2, and for the Bayes premiums 𝜇1
𝐵,  𝜇2

𝐵, which are 

functions of the appropriate sums of the observed claims {𝑋𝑡}. Therefore, 

the subsequent premiums may be updated recursively in a non-linear form. 

Thus we have a form of a non-linear Kalman filter. It is possible to express 

𝑃𝑇+1
𝐵  as the non-linear function of 𝑃𝑇

𝐵,  𝑋𝑇 , 𝑋∙1:𝐾−1.  

In the below Proposition 2 we arrive at the Bayes premium for Model 2.  
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Proposition 2. Suppose that the assumptions of Model 2 are fulfilled 

and there exist densities 𝑓1(∙ |𝜃), 𝑓2(∙ |𝜃) of cumulative distribution 

functions 𝐹1(∙ |𝜃), 𝐹2(∙ |𝜃). Then, the Bayes premium is of the form  

𝑃𝑇+1
𝐵 =

𝜋𝑓1(𝑋1:𝑇)

𝜋𝑓1(𝑋1:𝑇)+(1−𝜋)𝑓2(𝑋1:𝑇)
𝜇1

𝐵(𝑋1:𝑇) +

(1−𝜋)𝑓2(𝑋1:𝑇)

𝜋𝑓1(𝑋1:𝑇)+(1−𝜋)𝑓2(𝑋1:𝑇)
𝜇2

𝐵(𝑋𝑘:𝑇),  

where 𝜇1
𝐵(𝑋1:𝑇) = 𝐸1(𝜇1(𝛩1)|𝑋1:𝑇), 𝜇2

𝐵(𝑋𝑘:𝑇) = 𝐸2(𝜇2(𝛩2)|𝑋𝑘:𝑇).  

Proof of Proposition 2 is similar to the proof of Proposition 1, so it is 

omitted. 

Remark 5. Observe that the Bayes premiums given in Example 2 and 

Proposition 2 have a similar structure. In Example 2 the moment of 

switching the distributions of risk profiles and claim amounts may occur 

with probability 𝑝 at fixed period 1 ≤ 𝐾 ≤ 𝑇 or with probability 1 − 𝑝 is 

greater than 𝑇 + 1. In Proposition 2 the ‘nature’ decides on the above 

distributions before the observation period. One may combine Models 1 

and 2, assuming that the switching may occur at moment N with the 

distribution law as below  

𝑃(𝑁 = 0) = 𝜋 = 1 − 𝑃(𝑁 > 0), 

𝑃(𝑁 = 𝑘) = (1 − 𝜋)𝑔𝑘, ∑ 𝑔𝑘 = 1∞
𝑘=1 .  

4. Model with switching for exponential families 

In this section the author provides a formula for the Bayes premium in the 

model switching from one Bühlmann-Straub model to the other one, 

assuming that the claim amounts distributions, given fixed risk profiles, are 

exponential, and the risk profiles laws belong to the class of conjugate 

priors in both models, before and after switching.  

Proposition 3. Assume C1 to C5 and let distribution functions 

𝐹𝑖𝑡(∙ |Θ𝑗), 𝑖 = 1,2, have exponential type densities with respect to measure 

 which is either the Lebesgue measure or the counting measure such that  

𝑓𝑖𝑡(𝑥|𝜃) = exp [
𝑥𝜃−𝑏𝑖(𝜃)

𝜎𝑖
2 𝑤𝑡⁄

+ 𝑐𝑖(𝑥, 𝜎𝑖
2 𝑤𝑡⁄ )], 𝑥 ∈ 𝑅.  

Assume that the risk profiles before and after switching are real valued 

continuous random variables with densities, for i =1, 2,  

𝑢𝑖𝛾𝑖
(𝜃) = exp [

𝑥0𝑖𝜃−𝑏𝑖(𝜃)

𝜏𝑖
2 + 𝑑𝑖(𝑥0𝑖, 𝜏𝑖

2)], 𝜃 ∈ 𝑅,  
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where 𝛾𝑖 = (𝑥0𝑖, 𝜏𝑖
2) ∈ 𝛤𝑖 is fixed. Then, the Bayes premium is of the form  

𝑃𝑇+1
𝐵 = 𝑃1,𝑇+1

𝐵 + 𝑃2,𝑇+1
𝐵 + 𝑃3,𝑇+1

𝐵 ,  

where   𝑃1,𝑇+1
𝐵 =

�̅�𝑇+1𝑓1(𝑋1:𝑇)

𝑓(𝑋1:𝑇)
[𝛼1,1�̅�1,𝑇 + (1 − 𝛼1,1)𝑥01], 

𝑃2,𝑇+1
𝐵 = ∑

𝑔𝑘𝑓1(𝑋1:𝑘−1)𝑓2(𝑋𝑘:𝑇)

𝑓(𝑋1:𝑇)
[𝛼2,𝑘�̅�𝑘,𝑇 + (1 − 𝛼2,𝑘)𝑥02]𝑇

𝑘=1 , 

𝑃3,𝑇+1
𝐵 = 𝑔𝑇+1

𝑓1(𝑋1:𝑇)

𝑓(𝑋1:𝑇)
𝑥02 , 

and for 𝑘 = 1,2, … , 𝑇, 𝑖 = 1,2,  

�̅�𝑘,𝑇 = ∑
𝑤𝑡

𝑤∙𝑘,𝑇

𝑇
𝑡=𝑘 𝑋𝑡 , 𝑤∙𝑘,𝑇 = ∑ 𝑤𝑡

𝑇
𝑡=𝑘  , 𝛼𝑖,𝑘 =

𝑤∙𝑘,𝑇

𝑤∙𝑘,𝑇+𝜎𝑖
2 𝜏𝑖

2⁄
 , 

𝑓𝑖(𝑥𝑘:𝑡) = exp [−𝑑𝑖(𝑥0𝑖
𝑘,𝑡, 𝜏𝑖,𝑘,𝑡

2 ) + 𝑑𝑖(𝑥0𝑖, 𝜏𝑖
2) + ∑ 𝑐𝑖 (𝑥𝑟,

𝜎𝑖
2

𝑤𝑟
)𝑡

𝑟=𝑘 ], 𝑥𝑘:𝑡 ∈

𝑅𝑡−𝑘+1,  

where 𝑥0𝑖
𝑘,𝑡 = (�̅�𝑘,𝑡 +

𝑥𝑜𝑖𝜎𝑖
2

𝑤∙𝑘,𝑡𝜏𝑖
2) (1 +

𝜎𝑖
2

𝑤∙𝑘,𝑡𝜏𝑖
2)

−1

, 𝜏𝑖,𝑘,𝑡
2 = 𝜎𝑖

2 (𝑤∙𝑘,𝑡 +
𝜎𝑖

2

𝜏𝑖
2 )

−1

, 

𝑘 ≤ 𝑡,  

𝑓(𝑥1:𝑇) = ∑ 𝑔𝑛𝑓1(𝑥1:𝑛−1)𝑓2(𝑥𝑛:𝑇) + �̅�𝑇𝑓1(𝑥1:𝑇)𝑇
𝑛=1 . 

Proof. The proof is presented in Appendix.  

Remark 6. Analysing the Bayes premium obtained in Proposition 3, 

one can conclude that, in general, there is no recursion form of the Bayes 

premium in Model 1, although there are recursions for the Bayes premiums 

in both possible models – before and after switching. To calculate 𝑃𝑇+1
𝐵  

one needs all observations up to T. In Proposition 4 one obtains the 

recursive algorithm for 𝑃𝑇+1
𝐵  in Model 2. The algorithm is in the updated 

form – it uses the currently observed claim amount and some functions of 

previous observations, also obtained recursively. Thus one obtains 

Kalman-type non-linear filtering formulas.  

Proposition 4. Assume Model 2 and let the densities 𝑓𝑖𝑡(∙ | ∙), 𝑢𝑖𝛾𝑖
(∙), 

i =1,2, satisfy assumptions of Proposition 3. Then,  

𝑃𝑇+1
𝐵 =



𝜋+(1−𝜋)𝐿𝑇
∙ 𝜇1

𝐵(𝑋1:𝑇) +
1−𝜋

𝜋+(1−𝜋)𝐿𝑇
−1 ∙ 𝜇2

𝐵(𝑋𝑘:𝑇),  

where  
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𝐿𝑇: =
𝑓2(𝑋1:𝑇)

𝑓1(𝑋1:𝑇)
=

Φ(𝐶1(𝑋1:𝑇), 𝐶2(𝑋1:𝑇), 𝑥01(1, 𝑇), 𝑥02(1, 𝑇), 𝑤1(1, 𝑇), 𝑤2(1, 𝑇)),  

Φ(𝐶1, 𝐶2, 𝑥1, 𝑥2, 𝑤1, 𝑤2) ≔  

exp [−𝑑2 (
𝑥2

𝑤2
,

1

𝑤2
) + 𝑑1 (

𝑥1

𝑤1
,

1

𝑤1
) + 𝐶2 − 𝐶1 + 𝑑2(𝑥02, 𝜏2

2) −

𝑑1(𝑥01, 𝜏1
2)],  

and, for i =1,2,  

𝐶𝑖(𝑋1:𝑇+1) = 𝐶𝑖(𝑋1:𝑇) + 𝑐𝑖 (𝑋𝑇+1,
𝜎𝑖

2

𝑤𝑇+1
), 𝐶𝑖(𝑋1:1) = 𝑑𝑖(𝑥0𝑖, 𝜏𝑖

2) +

𝑐𝑖 (𝑋1,
𝜎𝑖

2

𝑤1
) ,  

𝑥0𝑖(1, 𝑇 + 1) = 𝑥0𝑖(1, 𝑇) +
𝑋𝑇+1𝑤𝑇+1

𝜎𝑖
2 , 𝑥0𝑖(1,1) =

𝑥0𝑖

𝜏𝑖
2 +

𝑋1𝑤1

𝜎𝑖
2 ,  

𝑤𝑖(1, 𝑇 + 1) = 𝑤𝑖(1, 𝑇) +
𝑤𝑇+1

𝜎𝑖
2 , 𝑤𝑖(1,1) =

1

𝜏𝑖
2 +

𝑤𝑇+1

𝜎𝑖
2 .  

Proof. The proof is presented in Appendix.  

Remark 7. The Bayes premium in Proposition 4 is obtained as a result 

of the non-linear multidimensional Kalman filter.  
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Appendix  

Proof of Proposition 1: Let us note that under the assumptions of the 

model we have  

 𝑃(𝑋1 ≤ 𝑥1, … , 𝑋𝑇+1 ≤ 𝑥𝑇+1|𝑁 = 𝑛, 𝛩1 = 𝜃1, 𝛩2 = 𝜃2) = 
∏ 𝐹1(𝑥𝑘|𝜃1) ∙ ∏ 𝐹2(𝑥𝑟|𝜃2)𝑇+1

𝑟=𝑛
𝑛−1
𝑘=1 ,  

where the first or second products on the right side of the above equality 

are supposed to be 1 if n = 1 or 𝑛 > 𝑇 + 1. Hence, before the moment of 

switching at N we have the Bühlmann model with parameters Θ1, 𝐹1(∙ | ∙) 

and starting from time period N it becomes the model with Θ2, 𝐹2(∙ | ∙). 

Individual premiums for both Bühlmann models are as follows  

𝜇𝑖(Θ𝑖) = ∫ 𝑥𝑑𝐹𝑖(𝑥|Θ𝑖)
∞

−∞
, 𝑖 = 1,2. 

Thus, the individual premium in Model 1, assuming the general risk 

parameter (𝑁, Θ1, Θ2), has the form  

𝑃𝑇+1
𝑖𝑛𝑑 = 𝕀(𝑁 > 𝑇 + 1)𝜇1(Θ1) + 𝕀(𝑁 ≤ 𝑇 + 1)𝜇2(Θ2),  

and the Bayes premium is  

𝑃𝑇+1
𝐵 = 𝑃1,𝑇+1

𝐵 + 𝑃2,𝑇+1
𝐵  , 

where  

 𝑃1,𝑇+1
𝐵 = 𝐸(𝕀(𝑁 > 𝑇 + 1)𝜇1(Θ1)|𝑋1:𝑇), 𝑃2,𝑇+1

𝐵 =
𝐸(𝕀(𝑁 ≤ 𝑇 + 1)𝜇2(Θ2)|𝑋1:𝑇). 

Denote 

 𝑓(𝑛, 𝜃1, 𝜃2|𝑥1:𝑇) =
𝜕2

𝜕𝜃1𝜕𝜃2
𝑃(𝑁 = 𝑛, Θ1 ≤ 𝜃1, Θ2 ≤ 𝜃2|𝑋1:𝑇 = 𝑥1:𝑇) ,  

and for any k, i = 1,2, 𝑓𝑖(𝑥1, … , 𝑥𝑘 ,) = ∏ 𝑓𝑖(𝑥𝑟|)𝑢𝑖()𝑘
𝑟=1 , (𝑥1, … , 𝑥𝑘) ∈

𝑅𝑘,  ∈ 𝑅1, 

𝑓𝑖(𝑥1, … , 𝑥𝑘) = ∫ 𝑓𝑖(𝑥1, … , 𝑥𝑘 , )𝑑
∞

−∞
. 

Note that the above density is the joint density of k claim sizes in the 

Bühlmann model with characteristics Θ𝑖 and 𝐹𝑖(∙ | ∙).  

The joint conditional probability-density function of risk parameter 

(𝑁, Θ1, Θ2), given the observed claim sizes 𝑥1:𝑇 , is  

𝑓(𝑛, 𝜃1, 𝜃2|𝑥1:𝑇) =
𝑔𝑛𝑓1(𝑥1:𝑇,𝜃1)𝑢2(𝜃2)

𝑓(𝑥1:𝑇)
 , for 𝑛 > 𝑇, 
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𝑓(𝑛, 𝜃1, 𝜃2|𝑥1:𝑇) =
𝑔𝑛𝑓1(𝑥1:𝑛−1,𝜃1)𝑓2(𝑥𝑛:𝑇,𝜃2)

𝑓(𝑥1:𝑇)
, for 𝑛 ≤ 𝑇, 

where 𝑓(𝑥1:𝑇) = ∑ 𝑔𝑛𝑓1(𝑥1:𝑛−1)𝑓2(𝑥𝑛:𝑇) + �̅�𝑇𝑓1(𝑥1:𝑇)𝑇
𝑛=1 ,  𝑥1:𝑇 ∈ 𝑅𝑇, is 

the density function of the observed claims 𝑋1:𝑇 during T time periods. In 

the above conditional densities the assumption of independence of 

𝑁, Θ1, Θ2 was used Hence  

𝐸(𝕀(𝑁 > 𝑇 + 1)𝜇1(Θ1)|𝑋1:𝑇 = 𝑥1:𝑇) = 

∑ ∫ ∫ 𝜇1(𝜃1)𝑓(𝑛, 𝜃1, 𝜃2|𝑥1:𝑇)𝑑𝜃1𝑑𝜃2
∞

−∞

∞

−∞
∞
𝑛=𝑇+2 =  

∑ 𝑔𝑛 ∫ 𝜇1(𝜃1)
𝑓1(𝑥1:𝑇,𝜃1)

𝑓1(𝑥1:𝑇)
𝑑𝜃1 ∙

𝑓1(𝑥1:𝑇)

𝑓(𝑥1:𝑇)

∞

−∞
∞
𝑛=𝑇+2 = �̅�𝑇+1 ∙ 𝜇1

𝐵(𝑥1:𝑇) ∙

𝑓1(𝑥1:𝑇)

𝑓(𝑥1:𝑇)
, 

𝐸(𝕀(𝑁 ≤ 𝑇 + 1)𝜇2(Θ2)|𝑋1:𝑇 = 𝑥1:𝑇) =

∑ ∫ ∫ 𝜇2(𝜃2)𝑓(𝑛, 𝜃1, 𝜃2|𝑥1:𝑇)𝑑𝜃1𝑑𝜃2
∞

−∞

∞

−∞
𝑇+1
𝑛=1  = 

∑ 𝑔𝑛 ∫ 𝜇2(𝜃2)
𝑓2(𝑥𝑛:𝑇,𝜃2)

𝑓2(𝑥𝑛:𝑇)
𝑑𝜃2 ∙ ∫

𝑓1(𝑥1:𝑛−1,𝜃1)𝑓2(𝑥𝑛:𝑇)

𝑓(𝑥1:𝑇)
𝑑𝜃1 +

∞

−∞

∞

−∞
𝑇
𝑛=1   

𝑔𝑇+1 ∫ 𝜇2(𝜃2)𝑢2(𝜃2)𝑑𝜃2 ∙
𝑓1(𝑥1:𝑇)

𝑓(𝑥1:𝑇)

∞

−∞
 = 

∑ 𝑔𝑛
𝑇
𝑛=1 𝜇2

𝐵(𝑥𝑛:𝑇) ∙
𝑓1(𝑥1:𝑛−1)𝑓2(𝑥𝑛:𝑇)

𝑓(𝑥1:𝑇)
+ 𝑔𝑇+1𝐸[𝜇2(Θ2)] ∙

𝑓1(𝑥1:𝑇)

𝑓(𝑥1:𝑇)
 .  

The above derivations give us the Bayes premium in Proposition 1.  

Proof of Proposition 3: We apply the form of Bayes premium from 

Proposition 1. First, to find 𝜇1
𝐵(𝑋1:𝑇), 𝜇2

𝐵(𝑋𝑘:𝑇) we use the Bayes premiums 

for exponential classes of distributions and their conjugate priors derived 

in Bühlmann and Gisler (2005, 2.5.1). Hence, if there is no change of the 

model up to time period T we have  

𝜇1
𝐵(𝑋1:𝑇) = 𝛼1,1�̅�1,𝑇 + (1 − 𝛼1,1)𝑥01, 

where �̅�1,𝑇 = ∑
𝑤𝑘

𝑤∙
𝑋𝑘

𝑇
𝑘=1  , �̅�∙ = ∑ 𝑤𝑘

𝑇
𝑘=1  , 𝛼1,1 =

𝑤∙

𝑤∙+𝜎1
2 𝜏1

2⁄
 .  

The Bayes premium for Model 2 based on observations 𝑋𝑘:𝑇 is  

𝜇2
𝐵(𝑋𝑘:𝑇) = 𝛼2,𝑘�̅�𝑘,𝑇 + (1 − 𝛼2,𝑘)𝑥02, 

where �̅�𝑘,𝑇 = ∑
𝑤𝑡

𝑤∙𝑘,𝑇
𝑋𝑡

𝑇
𝑡=𝑘  , 𝑤∙𝑘,𝑇 = ∑ 𝑤𝑡

𝑇
𝑡=𝑘  , 𝛼2,𝑘 =

𝑤∙𝑘,𝑇

𝑤∙𝑘,𝑇+𝜎2
2 𝜏2

2⁄
 .  
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Now it is sufficient to derive for i = 1, 2, and 1 ≤ 𝑘 ≤ 𝑡 ≤ 𝑇 , the 

boundary densities 𝑓𝑖(𝑥𝑘:𝑡). Using the assumed densities in the formulation 

of Proposition 3 we obtain 

𝑓𝑖(𝑥𝑘:𝑡) = ∫ (∏ exp [
𝑥𝑟𝜃−𝑏𝑖(𝜃)

𝜎𝑖
2 𝑤𝑟⁄

]𝑡
𝑟=𝑘 )

∞

−∞
exp [

𝑥0𝑖𝜃−𝑏𝑖(𝜃)

𝜏𝑖
2 ] 𝑑𝜃 ∙

exp[𝐶𝑖(𝑥𝑘:𝑡)], 

where 𝑥𝑘:𝑡 ∈ 𝑅𝑡−𝑘+1, 𝐶𝑖(𝑥𝑘:𝑡) = ∑ 𝑐𝑖 (𝑥𝑟,
𝜎𝑖

2

𝑤𝑟
) + 𝑑𝑖(𝑥0𝑖, 𝜏𝑖

2)𝑡
𝑟=𝑘 , which 

may be rewritten as follows 

𝑓𝑖(𝑥𝑘:𝑡) = ∫ exp[𝑥0𝑖(𝑘, 𝑡)𝜃 − 𝑏𝑖(𝜃)𝑤𝑖(𝑘, 𝑡)]
∞

−∞
𝑑𝜃 ∙ exp[𝐶𝑖(𝑥𝑘:𝑡)],  

where we introduced notations:  

 𝑥0𝑖(𝑘, 𝑡) = ∑
𝑥𝑟𝑤𝑟

𝜎𝑖
2

𝑡
𝑟=𝑘 +

𝑥0𝑖

𝜏𝑖
2  , 𝑤𝑖(𝑘, 𝑡) = ∑

𝑤𝑟

𝜎𝑖
2

𝑡
𝑟=𝑘 +

1

𝜏𝑖
2.  

Let us introduce new parameters 𝑥0𝑖
𝑘,𝑡

 and 𝜏𝑖,𝑘,𝑡
2  of conjugate prior 

distribution as  

 𝑥0𝑖
𝑘,𝑡 = (�̅�𝑘,𝑡 +

𝑥𝑜𝑖𝜎𝑖
2

𝑤∙𝑘,𝑡𝜏𝑖
2) (1 +

𝜎𝑖
2

𝑤∙𝑘,𝑡𝜏𝑖
2)

−1

=  
𝑥0𝑖(𝑘,𝑡)

𝑤𝑖(𝑘,𝑡)
,  

 𝜏𝑖,𝑘,𝑡
2 = 𝜎𝑖

2 (𝑤∙𝑘,𝑡 +
𝜎𝑖

2

𝜏𝑖
2 )

−1

=
1

𝑤𝑖(𝑘,𝑡)
, 𝛾𝑖,𝑘,𝑡 = (𝑥0𝑖

𝑘,𝑡, 𝜏𝑖,𝑘,𝑡
2 ),  

Then, 𝑓𝑖(𝑥𝑘:𝑡) can be rewritten as follows:  

 𝑓𝑖(𝑥𝑘:𝑡) = exp (−𝑑𝑖(𝛾𝑖,𝑘,𝑡)) ∙ ∫ 𝑢𝑖𝛾𝑖,𝑘,𝑡
(𝜃)𝑑𝜃

∞

−∞
∙ exp[𝐶𝑖(𝑥𝑘:𝑡)],  

which completes the proof since the integral above is equal to 1.  

Proof of Proposition 4: The formula for 𝑃𝑇+1
𝐵  follows directly from 

Proposition 3 and its proof since we may write  

𝑓𝑖(𝑥1:𝑇) = exp [−𝑑𝑖 (
𝑥0𝑖(1,𝑇)

𝑤𝑖(1,𝑇)
,

1

𝑤𝑖(1,𝑇)
) + 𝑑𝑖(𝑥0𝑖, 𝜏𝑖

2) + ∑ 𝑐𝑖 (𝑥𝑟 ,
𝜎𝑖

2

𝑤𝑟
)𝑇

𝑟=1 ].  

Thus the definitions of 𝐿𝑇, and 𝑥0𝑖(1, 𝑇), 𝑤𝑖(1, 𝑇) give us the recursion 

described in the proposition. Finally, we obtain the desired Bayes 

premium, which is a non-linear function of the particular statistics obtained 

recursively in the updated forms.  
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O DYNAMICZNYCH MODELACH WIARYGODNOŚCI 

Streszczenie: Model Bühlmanna-Strauba rozszerzono o profile ryzyka zmieniające się 

z czasem. Jest to szczególny przypadek ewolucyjnego modelu wiarygodności ze zmiennym 

w czasie parametrem ryzyka zależnym od nieobserwowanego ciągu zmiennych losowych. 

Otrzymano dokładną postać składek bayesowskich dla modeli, w których rozkłady 

prawdopodobieństwa profili ryzyka zmieniają się w nieobserwowanych losowych 

momentach o znanych rozkładach. Przede wszystkim dla wykładniczych klas rozkładów ze 

sprzężonymi rozkładami a priori otrzymano składkę bayesowską rekurencyjnie jako 

pewien nieliniowy wielowymiarowy filtr Kalmana.  

Słowa kluczowe: składka bayesowska, model Bühlmanna-Strauba, model wiarygodności, 

dyspersyjne modele wykładnicze, sprzężone rozkłady a priori. 
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