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We theoretically investigate the tight focusing of radially polarized circular partially coherent
(RPCPC) beams through a high numerical aperture objective. The sub-wavelength super-long op-
tical needle and dark channel can be obtained near the focus, by engineering the source coherent
length of the incident RPCPC beams. The length of the optical needle and the dark channel can be
adjusted, and the obtained maximal lengths of the optical needle and the dark channel are both 22λ.
The full width at half maximum of the optical needle and the dark channel are 0.6λ and 0.48λ, re-
spectively.
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1. Introduction 

Beams with desired intensity distribution have attracted much attention. One example
is an optical needle, i.e., a focal pattern with a small beam size and long depth of focus,
which is of great significance in many applications such as optical data storage, photo-
lithography, and super-resolution microscopy [1–6]. Another example is optical bottle
beams, i.e., beams with a dark center surrounded by three-dimensional regions of high-
er intensity, which can be applied in trapping particles with refractive indices lower
than that of the surrounding medium [7]. Due to the special intensity distribution and
important applications, it is an attractive topic for structuring the optical needle and
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optical bottle beams, and a variety of methods have been proposed for generating such
beams [6–20]. However, the beams are limited to completely coherent laser beams in
most of the studies. In view of the universality and significance of partially coherent
beams, it would be a valuable work to explore the generation of sub-wavelength optical
needle and optical bottle beams adopting partially coherent beams.

Recently, SANTARSIERO and his collaborators proposed a new class of a partially
coherent light source, namely a circular partially coherent light source [21, 22]. This
type of a partially coherent beam exhibits perfect coherence along any annulus, while
the coherence between two points with different radial distances is partial or even van-
ishing [21–24]. In this study, we investigate the focusing of a radially polarized circular
partially coherent (RPCPC) beam by a high numerical aperture (NA) objective. The study
shows that a super-long optical needle with longitudinal polarization and a super-long
dark channel with transversal polarization can be obtained by a tightly focused RPCPC
beam. Moreover, the full width at half maximum (FWHM) of the optical needle and
the dark channel of the optical bottle beams are both sub-wavelength. 

2. Theoretical analysis

The theory of tight focusing of light beams was described by RICHARDS and WOLF orig-
inally [25]. According to the theory, the electric field near the focus formed by a tightly
focused radially polarized completely coherent laser beam can be expressed as [26] 

(1)

where θ is the angle of convergence, φ is the polar angle of incident plane, λ is the wave-
length of incident beam, k = 2π/λ is the wave-number, α = sin–1(NA) is the maximal
angle determined by the NA of the objective, and E0 is the characteristic amplitude of
incident beam. Variables ρ, ψ and z are the cylindrical coordinates of an observation
point near the focus. P(φ, θ) is the pupil apodization function at the exit pupil, and

(2)

where ex, ey, and ez are the unit vectors in the x, y and z directions, respectively. Clearly,
a tightly focused radially polarized beam is depolarized into three components, i.e.,
x-, y-, and z-polarization components in Cartesian coordinates. 

For a partially coherent illumination, the second order correlation properties of the
field can be characterized by the cross-spectral density (CSD). In Cartesian coordi-
nates, the second-order correlation properties of the beam near the focal region can be
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characterized by a 3 × 3 electric cross-spectral density matrix W(ρ1, ρ2, z). The ele-
ments of the 3 × 3 matrix are given by [27]

(3)

where g(φ1, θ1, φ2, θ2) is the two-point pupil apodization correlator of the incident
beam. It should be noted that the superscript T denotes the transpose of the matrix of
K(φ, θ) indicating that KT(φ, θ) is a 1 × 3 matrix. In this paper, RPCPC beam is taken
as an incident laser beam, and its cross-spectral density (CSD) can be expressed as

(4)

where sinc(x) = sin(πx) /πx, ω0 is the beam width, δ is the initial coherent length, and
r = (r, φ) is the position vector at the source plane. The variables r are position vectors
on the left hand side of Eq. (4), but they are scalars on the right hand side because the
cross-spectral density of circular partially coherent Gaussian (CPCG) beam is angle-in-
dependent. Therefore, the correlation between any two of the parallel or orthometric
electric field components of the incident RPCPC beam is [27]

(i, j = x, y) (5)

The coordinate system is shown in Fig. 1a. Figure 1b illustrate the intensity dis-
tribution of incident RPCPC beam, and the direction of polarization is denoted by the
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blue arrows. By setting the first position r1 = ω0, and δ = 0.3ω0 the distribution of the
initial coherence of the incident RPCPC beam is shown in Fig. 1c.

Under the sine condition [25], i.e., r = f sinθ, where f  is the focal length of the
objective, the two point pupil apodizaiton correlation function of the incident beam
can be expressed as

(6)

Substituting Eq. (6) into Eq. (3), and after same tedious integration, the elements
W(ρ1, ρ2, z) in the focal region can be obtained as follows:

Fig. 1. Tight focusing system (a). The intensity distribution of incident RPCPC beam (b). The initial coher-
ence of incident RPCPC beam (c). The parameters of (a) and (b) are chosen as λ = 633 nm, ω0 = 5 mm,
and δ = 0.3ω0.
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(7)

where Mij(ρ1, ρ2, ψ1, ψ2, θ1, θ2), for the elements of  W(ρ1, ρ2, z) are

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

In equations (8) through (16), J0 and J1 are the zero-order and first-order Bessel func-
tions of the first kind, respectively. Setting ρ1 = ρ2 and ψ1 = ψ2, the intensity of x-po-
larization component, y-polarization component, z-polarization component and total
intensity distribution in the focal region can be expressed as 
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(17)

(18)

(19)

(20)

In addition, the intensity of transverse polarized component can be expressed as

(21)

Moreover, the expression of Eq. (19) is the intensity of a longitudinal polarized
component.

3. Results and discussions

Intensity distribution of different polarized components of the RPCPC beam near the
focus can be calculated by Eqs. (17)–(21). The total intensity and its components in
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Fig. 2. Normalized intensity distribution of RPCPC beam in focal plane. Total intensity (a), transverse
polarized component (b), and longitudinal polarized component (c). The parameters for calculation are
chosen as λ = 633 nm, ω0 = 5 mm, NA = 0.9, f  = 1 cm, E0 = 1, and δ = ω0.
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the focal plane of the objective are shown in Fig. 2. The transverse component of
the intensity in the focal plane is annular-shaped, and the FWHM of the dark hollow
is 0.48λ. The longitudinal component of the intensity is quasi-Gaussian-shaped with
FWHM of 0.6λ.

Figure 2 shows that intensity distribution of RPCPC beam in the focal plane is cir-
cularly symmetric. Therefore, we can consider only the radial direction to study the
influence of initial coherent length on intensity distribution. The intensity profiles of
focused RPCPC beam with different initial coherent length are presented in Fig. 3. Al-
though the spot size of the total intensity increases gradually with the decrease in initial
coherent length, the lateral dimension of the dark hollow of the transverse component
and the focal spot of longitudinal component keep nearly invariant. 

In addition to the intensity of the focal plane, we have also been interested in the
intensity distribution of whole focal pattern. Figure 4 indicates that the focal patterns
lengthen along the longitudinal direction with the decrease in the initial coherent length
of the incident RPCPC beam. The focal pattern is like a light pillar with the initial co-
herent length of 0.3ω0 (Fig. 4c). With the decrement of the initial coherent length, the
transverse component of intensity evolves into dark channel, which is a non-diffracting

Fig. 3. Normalized intensity distribution curves of RPCPC beam for different δ in the focal plane. Total
intensity (a), transverse polarized component (b), and longitudinal polarized component (c). The param-
eters for calculation are chosen as λ = 633 nm, ω0 = 5 mm, NA = 0.9, f  = 1 cm, and E0 = 1.
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focal hole surrounded in the radial direction by the regions of higher intensity as shown
in Fig. 4f. Meanwhile, the longitudinal component of intensity evolves into the optical
needle, which is a focal pattern with a small beam size and long depth of focus as shown
in Fig. 4i. Furthermore, it is interesting to find that the lateral dimension of the dark
channel and optical needle remains nearly intact during the evolution. This indicates
that we can engineer the source coherent length of the incident RPCPC beam to mod-
ulate the length of a dark channel and optical needle, meanwhile keeping the lateral

Fig. 4. Intensity distributions of total intensity (a–c), transverse polarized component (d–f ) and longitu-
dinal polarized component (g–i) of RPCPC beam in r-z plane near the focus for different δ. The parameters
for calculation are chosen as λ = 633 nm, ω0 = 5 mm, NA = 0.9, f  = 1 cm, and E0 = 1.
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dimension invariant. This length-adjustable dark channel and optical needle may have
a potential application in optical data storage, photolithography, super-resolution micros-
copy, and particles trapping. 

Figure 5 illustrates the relation between the length of the optical needle and initial
coherent length of the incident RPCPC beam. The length of optical needle reduces
gradually with increasing initial coherent length. The maximal length of the optical
needle is 22λ, which is generated by a beam with the initial coherent length of 0.3ω0.
Although the length of the focal pattern can be further increased with decreasing initial
coherent length, the needle shape is non-uniform, as shown in the inset of Fig. 5.

Now we focus on the influence of numerical aperture (NA) of the objective on the
intensity distribution in the focal region. As mentioned above, we also consider only
the r direction to study the influence of NA on the intensity distribution, because the
intensity distribution is circularly symmetric. Intensity distribution with Gaussian pro-
file is generated with NA of 0.85 and 0.99, while a relative dark core is observed with
NA of 0.7 (Fig. 6a). Figures 6b and 6c show the intensity distribution curves of the

Fig. 6. Intensity distribution curve of the total intensity for different NA (a). Intensity distribution curve
of the transverse polarized component for different NA (b). Intensity distribution curve of longitudinal
polarized component for different NA (c). The parameters for calculation are chosen as λ = 633 nm,
ω0 = 5 mm, δ = 0.3ω0, f  = 1 cm, and E0 = 1.
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transverse polarized component and the longitudinal polarized component. The lateral
dimension of the dark channel and the optical needle decrease gradually with increas-
ing NA of the objective. Nevertheless, it should be noted that the reduction of the lateral
dimension is relatively small. Figure 7 shows that the length and FWHM of the optical
needle decrease with the increment of NA. This is because a smaller focal pattern can
be produced with a larger NA of the objective. 

4. Concluding remarks

We theoretically investigate the tight focusing the RPCPC beams through a high NA ob-
jective. The results demonstrated that the sub-wavelength optical needle with longitu-
dinal polarization, and the dark channel with transverse polarized can be generated in
the focal region. Moreover, the length of the optical needle and dark channel can be
adjusted by controlling the coherent length of the incident RPCPC beam, and the length
adjustment would not induce the unwilling expansion of the lateral dimension. The ob-
tained maximum length of the optical needle and the dark channel is about 22λ, and
the FWHM of the dark channel and the optical needle are 0.48λ and 0.6λ, respectively.
And the length and FWHM of the optical needle are influenced by the NA of the ob-
jective.
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