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Modeling of thermal tunable multichannel filter 
using defective metallic photonic crystals 
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The transmission spectra of one dimensional metallic photonic crystal containing defects are
studied using a transfer matrix method. We consider silver as a defect layer with a refractive index
dependent on wavelength and temperature simultaneously. Since the loss factor of silver is the
function of temperature, we should find a structure that has sharp transmission peaks to model
a filter. We present the structure with a coupled defect. It is found that the number of transmission
resonant peaks is equal to the number of coupled defects and they are tunable with temperature
and incident angle. 
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1. Introduction

Photonic crystals are periodic structures which control the propagation of light [1–3].
They can provide various applications such as optical waveguides [4], cavities [5], op-
tical fibers [6], optical switches [7], optical filters [8], optical crystal lasers [9], etc.
Optical filters are devices which allow the propagation of light with specific frequency,
while blocking the others. One of the applications of photonic crystals is using them
to design multilayer transmission filters [10, 11]. In general, these filters have structure
as (AB)NC(AB)N. Here A, B and C are dielectric layers and C is a defect. This structure
has a channel that permits propagation of only a single optical frequency. The presence
of only a single transmission peak cannot be optimal because a wide area of band gaps
remains useless. To increase the efficiency, we need to have a multichannel transmission
filter with multitransmission resonant peaks. The permittivity or permeability of one of
the constituent materials of photonic crystals can be dependent on some external param-
eters such as temperature [12, 13], voltage [14], external magnetic field [15, 16], etc. 

In this paper, we use silver (Ag) as a defect layer. The refractive index of Ag is the
function of temperature and wavelength simultaneously. So, we need a structure which
has transmission spectra with sharp resonant peaks. We present a structure with cou-
pled defects air/(ABAC)NABA/air [17], as a multichannel filter that is obtained from
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basic photonic crystal (AB)NA. Here A and B are dielectric layers and C is a metallic
defect layer. Our optical filter is tunable with temperature and incident angle in both
polarizations TE and TM. It will be noted that the number of filtering channels N is
equal to the number of coupled defects. We use a transfer matrix method to calculate
the transmission [18].

2. Theory

In order to model a thermal tunable multichannel optical filter, we need to study the
transmission spectra. We consider the structure as air/(ABAC)NABA/air. Using a trans-
fer matrix method, we can obtain the characteristic matrix of this structure as

(1) 

Here, Ml is the characteristic matrix of each layer (l = A, B, C), and 

(2)

where βl = 2πnldlcos(θl) /λ, and θl is the incident angle in each layer, nl and dl are re-
fractive index and thickness of layers, respectively, pl is also given by pl = nlcos(θl)
for TE mode and pl = cos(θl) /nl  for TM mode.

The metal permittivity in Drude model is taken from [19]

(3)

where ωp and ωc are plasma and electron collision frequency, respectively, and ω =
= 2πc /λ. Temperature dependence of plasma frequency is very small because of
volume expansion, so we can take it to be constant. We consider ωp = 8.24 eV and
ωc(T ) = (0.048/3001.3)T 1.3 [19, 20], and consequently, we have

(4)

where ε and μ are relative dielectric permittivity and relative magnetic permeability,
respectively. For our metal μ is equal to 1. 

By considering the thermal expansion effect, the thickness of each dielectric layer
is given by 

(5)
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Here d0 is the thickness of layer at room temperature (T = 300 K), and α is the thermal
expansion coefficient. The temperature dependence of the refractive index of each di-
electric layer due to the thermo-optic effect is to be taken as 

(6)

where n0 is the refractive index of dielectric layers at room temperature, and γ is thermo
-optic coefficient [20–25]. The transmission coefficient of the structure is given by

(7)

where p0 = n0cos(θ0). So, the transmittance can be calculated as

(8)

3. Numerical results and discussions

We consider the structure as air/(ABAC)NABA/air. Here A and B are dielectric layers
with high and low refractive index, respectively. Layer A is taken to be Si with nA = 3.3
and dA = 117 nm, and layer B is SiO2 with nB = 1.45 and dB = 140 nm at room temper-
ature. The defect layer is Ag with the refractive index as the Eq. (4) by thickness 10 nm.
The thermo-optic coefficients of A and B are 0.5 × 10–6 K–1 and 5.5 × 10–6 K–1, re-
spectively [26]. The thermal expansion coefficients of A, B and C are also given by
1.86 × 10–4 K–1, 1 × 10–5 K–1 [26] and 19.2 × 10–6 [27], respectively. 

We plot the real and imaginary parts of the refractive index of Ag (Eq. (4)) as a func-
tion of temperature and wavelength in (see Fig. 1). 

As it can be seen, the refractive index of Ag layers increases with temperature, so
the transmission peaks can be shifted as a function of temperature. As a result, we can
use this structure to design a thermal tunable filter.
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Fig. 1. The variation of real (a) and imaginary (b) part of refractive index of Ag with wavelength and
temperature. 
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Then we plot the transmission spectra in normal incident room temperature for dif-
ferent magnitudes of N (see Fig. 2). 

As it can be seen in Fig. 2 the number of transmission resonant peaks is equal to
the number of coupled defects N. 
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Fig. 2. Transmission spectra of structure air/(ABAC)NABA/air at normal incidence and different magni-
tudes of N at room temperature.
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The transmission spectra as a function of temperature and wavelength at normal
incidence are shown in Fig. 3 for different values of N.

By increasing the temperature, we can see that the position of resonant transmission
peaks is shifted toward the larger wavelengths for all values of N and the variations
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Fig. 3. Transmission as a function of temperature and wavelength at normal incidence for different
values of N.
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are linear. These movements can be justified by using the constant phase condition.
Since the phase is obtained from βl = 2πnldlcos(θl) /λ, and assuming a constant incident
angle, the magnitude of nldl increases when the temperature increases so to keep the
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Fig. 4. Transmission as a function of incident angle and wavelength at room temperature in TE mode for
different values of N.
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Fig. 5. To be continued on the next page. 
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phase constant, the wavelengths should be increased. Consequently, the movements
are toward the larger wavelength. 

Next, we study the incident angle dependence of the defect modes. We plot the
transmission as a function of an incident angle and wavelength at room temperature
for TE and TM polarizations in Figs. 4 and 5.

From Figs. 4 and 5 we find that the transmission peaks are moving towards a shorter
wavelength by increasing the incident angle. This movement also can be justified with
the constant phase condition. By increasing the incident angle at a constant tempera-
ture, refractive index and thickness values remain unchanged while cos(θ) is decreased.
So, the wavelength should be decreased to maintain the constant phase. 

4. Conclusion

By using a transfer matrix method and coupled defects, we can design a multichannel
filter in the visible region. As we have seen, this filter is tunable with temperature and
the incident angle. We found that the number of resonant transmission peaks is equal
to the number of coupled defects. In addition, we demonstrated that the resonant peaks
are shifted towards higher wavelengths when the temperature gets increased at normal
incidence. Further, as the temperature increases, the peaks become sharper. We also
studied the movements of defect modes when the incident angle increases at constant
temperature. In this case, the peaks are shifted towards shorter wavelengths. 
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