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Preface

This lecture notes is a supporting material to the subject Mthematics in the
framework of first semester graduate studies in Civil Engineering organised by
Faculty of Civil Engineering of Wroctaw University of Technology. General
idea of the course is to give students an introduction to the most important
problems in ordinary differential equations and some very basic ideas in partial
differential equations with some important applications. | would like to
emphasise that we are in the beginning of the implementing this course. Then
this lectures note should be treated as a first step to help the students studying
the applications of mathematics. It should generally cover the accepted syllabus,
however it is expected that the lectures will modify the presented approach in
the future. Therefore no one-to-one correspondence between this lecture note
and the lectures should be expected.



Introduction
Remarks on notation

The first part of this lecture, containing Chapter 1, Chapter 2 and Chapter 3, is thought as a
repetition of the most important ideas of the ordinary differential equations, which are
necessary in understanding partial differential equations and boundary value problems. It is
assumed, however, that the students are generally familiar with general concepts of ordinary
differential equations, hence it can not be treated as a systematic course of the subject. The
second part contains some selected elements of the partial differential equations theory with
some applications oriented to civil engineering problems.

We begin this course with explaining some most important notations and definitions
who will be useful within this notebook . The basic notations and definitions concerning
partial differential equations will be commented in the Chapter 4.

Definition 0.1 (n-dimensional Euclidean space).
Let R" = {X = (Xl, X2,...Xn): Xj eR,i=12,.., n}: R x...x R be the Cartesian product
of n sets of real numbers. Consider a distance between points of R" defined by the equation

dcy)= |30 - i D
i=1

Consider now (R", +, -, d), where + is the addition of vectors and - multiplication by scalars
(real numbers). The (R", +, -, d) is called the n-dimensional Euclidean space.

Remark 01.

The distance given by eqn. (01) can be considered as generated by scalar product of the form:

n 02
Xoy = Xiyi (02)
i

Compare general theory of unitary spaces ([1]).
Definition 02.

A sequence {Xn }‘F]O_lof elements of R" is said to be convergent to Xo € R N if and only
if

lim d(xp,Xg)=0 (03)
n—oo
The convergence defined by the equation (03) is equivalent to the following one:
lim Xni =Xoi ,Vi=12,.,n (04)
nN—oo
Definition 03.
A neighborhood of the point x, of the radius r is the following set
B(xo,r):{XGRn:d(x,xo)<rjl (05)

An alternative name of this set is an open ball with the center X and radius r.
Definition 04.
Aset U = R" is said to be an open set if and only if



VXoeU 3r>0 B(xy,r)cu (06)
Definition 05.
Aset B < R"is a closed set if and only if for any sequence {x }< B the following implication
holds:

limx =% = xeB (07)

k—w0

It can be proved that a set B is closed if and only if (R” - B) is open.

Definition 06.

The closure of a set B consists of all points in B plus the limit points (in the sense of (07)) of
B. The closure is denoted by B .

Intuitively, these are all the points that are "near" B.

Definition 07.

The interior of the set B, denoted as Int(B) is the largest (in the sense of inclusion) open subset
of B.

Definition 08.

The boundary, éB, of the set B is the following set

OB = B — Int(B) . (08)

In order to make readers familiar with different types of notations that can be found in
the literature two ways of notations will be presented within the further course. Namely the
derivatives are denoted by

dy() d®y(x)  d"y(x) d"y(x) . These are first second , (n-1)th and nth order
dx " ogx?2 T g™ T k"
derivatives, respectively. All of the are derivatives with respect x variable, which is
independent variable in this case. This kind of notation is the classical Leibnitz’s notation. It
is suits very well the separation variable problems.
Alternatively the same derivatives will be denoted by y',y" ..., y(”‘l), y(”).

In the first chapter that concerns ordinary differential equations the independent variables
will be denoted by x, t. In first three chapters only ordinary differential equations are under
consideration, then the definitions 01 to 05 are reduced to one-dimensional case of set of the
real numbers R.




Chapter 1
Basic ideas of ordinary differential equations

Definition 1.1.
Ordinary differential equation is an equation of the form:

G(x, v, Y, y",...,y(”))=0 : .1)

where
G: Rn+1 — R is agiven function, y(x) is the unknown function of the variable x and at
least one of the derivatives y’, y”,...y(”) appears in it.

If the derivative y(n) appears in the equation and simultaneously there is no derivative of any
higher order in the equation, then the equation is called an equation of the n-th order.

Example 1.1.
Consider the following equation:

dy _ 1.2
Y10 , (12)

Where f: R R is a continuous on interval [a,b]. Let F denote an antiderivative of f on the
interval [a,b] .
Then the solution of eqn (2) is given by:

y(x)=F(Xx)+C , (1.3)
where C e R is a constant. Assuming that for x e (a,b) solution (3) satisfies the condition

y(x0)= Yo (14)

Combining (1.3) and (1.4) one gets

C=yo—F(x) (1.5)

Then the solution of (1.2), which satisfies the condition (1.4) takes the form

y(x) = F(x)+ Yo —F(xo) (16)
or
X
y(X)=yg + Jf(t)dt L7
X0

If, for example, equation (1.2) takes the form



dy 2
Y_3
dX X 1 (1'8)

in conjunction with initial condition y(0)=1. Then, by (1.6), the solution takes the form
y(x)=x+1. (1.9)
In order to avoid confusions it is necessary to define some most important objects.

Definition 1.2.
Given a differential equation of the form (1.1). A functiony: | € R — R is called the
solution or integral curve for G, if y is n-times differentiable on I, and

G(x, Y, y’,y”,...,y(”))=0 foreach xel . (1.10)

Given two solutionsu: J € R - Randy: | € R — R, u is called an extension of vif | C J
and

ux)=y(x) xel. (1.11)

A solution which has no extension is called a global solution. A general solution of an n-th
order equation is a solution containing n arbitrary variables, corresponding to n constants of
integration. A particular solution is derived from the general solution by setting the
constants to particular values, often chosen to fulfill set of initial conditions or boundary
conditions. A singular solution is a solution that can't be derived from the general solution.
Example 1.2.

Find the curve, which includes the point A(0,-2), such that the slope of the tangent at each
point is equal to the triple value of ordinate of the point A.

As the slope of the tangent to curve at a given point is the value of the first derivative at this
point, we can write

@ _ 3y, (1.12)
dx
or using another notation
Lyos, (1.13)
y
By integrating both sides of (1.13) one gets
J%dy:jsdx —In|yE3x+C,  y=Ce”. (1.14)

The last expression in egn. (1.14) is the general solution of the egn. (1.12). To solve the
problem stated in the beginning it is sufficient to employ the assumption that the integral
curve should cross the point A(0,-2). Hence y(0) = - 2 and consequently

-2=Ce"°=C,=-2, and y=-2¢% for xe (~o0,+). (1.15)



Definition 1.3.

Consider the following problem:

Find a particular solution of an n-th order differential equation, (1.1), which satisfies given set
of initial conditions

Y(%)=Yor ¥ (%)= Vi V(o) = Vi (112)
The above problem is called the Cauchy problem.
Example 1.4.
Find the solution of the following Cauchy problem
y'=6x, and y(@0)=0, y'(@0)=1 . (1.13)
By successive integration of the differential equation one finds
y'=6x = y=3x"+C,=> y=x*+Cx+C, (1.14)
By substituting initial conditions one gets
0+C,-0+C,=0, and 3-0+C,=1 = C,=L ¢C,=0 (1.15)
Inserting constants to the last equation in (1.14) gives the solution to the problem as
y=x"+x . (1.16)
The next example demonstrates checking the general solution of an ordinary differential
equation.
Example 1.5.
Let us demonstrate that the family of functions of the form
y=C,sinx+C,cosx, (1.17)
where C; and C; are real constants, constitutes the a general solution of the equation

y'(x)+y(x)=0, xeR ) (1.18)

Assume that X, y, Y, € R . Let us define initial conditions as

y(xo) = Yo, yl(Xo) =Y . (1-19)

First let us check that a function of the form (1.17) satisfies the equation (1.18). The first and
second derivatives of function (1.17) are as follows

y'=C,cosx—C,sinx, y"=-C;sinx—C,cosx . (1.20)



Substitution egn. (1.17) and the second eqn. in (1.20) into left hand side of the egn. (1.18)
gives

y"(x)+ y(x)=—C,sinx - C,cosx +C,sinx+C,cosx = 0. (1.21)

Then (1.18) is satisfied. Let us now substitute initial conditions (1.19) into (1.17) and the first
eqn. of (1.20)

C,sinx, +C,cosx,=Y,; C,cosx,—C,sinx, =Y, . (1.22)
Solving egs. (1.22) with respect C, and C; gives

C,=Y,8inX, +Yy,c08%,; C,=Y,C05X, — Y, SiNX, . (1.23)
Finally inserting the solution (1.23) into (1.17) gives

Y = (Y, Sin X, + Y, COSX,)Sin X + (Y, COSX, — Y, SiN X;)COSX . (1.24)

It means that constants are determined In a unique way. This shows that the conditions given
in the definition 1.2 are fulfilled and the family of functions given by (1.17) is the general
solution of the differential equation (1.18).

When solving differential equations an important problem is the existence and
uniqueness of solutions. The question of existence and uniqueness can be a vital one in many
numerical solutions carried out in mechanics. In numerical computations certain specific
algorithms (usually iterative procedures) are created in order to approximate solution.
Therefore the existence of solution should be guaranteed. Moreover it essential to know to
which solution the iterative procedure is convergent. Therefore if the solution is unique the
problem under consideration becomes simpler. Below an example of existence and
uniqueness theorem is given. This theorem is one of the most important for the ordinary
differential equations of the first order.

Theorem 1.1.
Consider the first order ordinary differential equation

y="f(xy) , (1.25)

where f is a continuous function on a rectangle D =[a,b]x[c,d] in the, x,y — plane (R?).

Assume that its partial derivative i—f is defined and continuous on Int(D). Then for any point
y

(X9, ¥o) € Int(D), there exists exactly one solution of the Cauchy problem

y="f(xy) and y(x)=y,

The proof of this theorem can be found in many monographs of the subject, e.g. [2].
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Chapter 2
Most important classes of the ordinary differential equations of the first
order

2.1. Equations of separated variables
Let f be a continuous function on an interval (a, b) and h be a continuous function on an
interval (c, d). Moreover, assume that h does not take zero value on (c, d).
Definition 2.1.
Let x e(a,b) and y(x)e(c,d). Equation

@ _ 109 2.1)
dx  h(y)’
Which can be equivalently written as

h(y)dy = f(x)dx (2.2)
where the unknown function is y(x), is called an equation of separated variables.

Treating the derivatives in the egn. (2.1) as a quotient of two differentials one can
carry out the following transformations:

{hy(0ly' () - f()}dx=0 = jh(y)dy:jf(x)d“c = (2.3)
= d{Hly®)]-F(}=0 = H[y(x)]-F(x)=C
where
H(y) = [h(y)dy; F() = f(xdy (2.4)

and C is a real constant.

The explanation given above shows that the following theorem holds.

Theorem 2.1.

Let f be a continuous function on an interval (a, b) and h be a continuous function on an
interval (c, d). Moreover, assume that h does not take zero value on (c, d). Then the equation
given below

[hydy=[feodx+C (2.5)

where C is a real constant, gives the general solution of the equation (2.1). Moreover, each
point (x, y) of the rectangular P ={(x,y): x € (a,b) A y € (c,d)} belongs to only one integral
curve of the equation (2.1).

This way the general solution of the equation of separated variables is known provided
that integrals in (2.5) are easy for evaluating. An example of solving this kind of equation is
given below.

Example 2.1.
Find the integral curve of the equation

dy_ 2 , (2.6)
dx y

crossing the point P(1,1).

By separating variables and integrating one gets

11



2 2
ydy = -2xdx = y?:—x2+C = y7+X2:C 2.7

The last equation of (2.7) shows that the integral curves of the eqn. (2.6) are ellipses. Inserting
to this equation coordinates of the point P leads to evaluating the constant C = 3/2. Hence the
ellipse crossing point P is given by the equation

y—+§x2 -1 2.8)

Please note that replacing the constant 2 in egn. (2.6) by 1 leads to integral curve in the form
of circle. Generalising the egn. (2.6) to the form

ay _ X (2.9)
dx y

one gets different shape of integral curves Goering by a value of k. Namely, the integral curve
can be a circle, an ellipse or a hyperbola if k = 1, k > 0, k <0, respectively.

2.2. Homogeneous equation
Let f(u) be a continuous function on (a,b), which satisfies the condition f (u) = 0in (a,b). A

first order differential equation of the form
@ _ f(u) (2.10)
dx

Is called the homogeneous equation. Any homogeneous equation can be reduced to the an
equation of separated variables by applying the described below procedure. Consider the
substitution

u(x):@ = Yy=Xu. (2.11)

Consequently the derivative y’ can be written as

dy d du
A = . 2.12
dx dx(xu) U+de (212)

Substituting egs (2.11) and (2.12) into (2.10) one gets the equation
u+xd—u: f(u), (2.13)
dx

which can be transformed to the form

du dx
fuy-u  x ' (.14

12



The above equation is a equation of separable variables. Hence

du dx
jf(u)_u=j7+cz|n\x\+c, (2.15)

where C is a real constant. The further evaluation is possible if an explicit form of the
function f is known. This is demonstrated by the example given below.

Example 2.2.

Find integral curves corresponding to the equation

2 2
dy _y'-x" (2.16)
dx 2xy
Egn. (2.16) can be written as
dyzl(y_x} 2.17)
dx 2{(x vy

Now it is clear that the equation is a homogeneous equation. According to general procedure
described above substitution y = xu transforms the equation under consideration to the form

u+xd—u:1(u—£j. (2.18)
dx 2 u

The above equation is equivalent to

du 1u?+1
X —_——

—= 2.19
dx 2 u ( )

And hence

du="2 . (2.20)

Integrating left hand side with respect to variable u and right hand side with respect variable x
leads to

In\x\:—_[uzzildu +C. (2.21)

The right hand side can be reduced as follows

2u C
—_[u2+1du+C:—In(u2+1)+C:Inuzjrl. (2.22)
Hence
_in G __ G
In|x| = In o = X|= R (2.23)

Because y = xu therefore, due to (2.23),

13



2 2,,2
‘ ‘_ (2:1‘”‘ - M: El‘u‘ = Xty? C +Cu -C 21 =Cx =
u?+1 u?+1 (UZ+1)Z u+1
(2.24)
c Y o
=|x-2| +y?="1
2 4

The last equation in (2.24) is an equation of circle. This means that the integral curves of egn.
(2.16) are circles with centers at (%O) and radii equal to % These circles are tangent to

the y- axis at the origin.

2.3. Linear equation of the first order
Among ordinary differential equations linear equations play the central role. Due to
their simple form the general theory and methods of solving are well-developed. On the other
hand most simpler problems of classical mechanics are governed by linear differential
equations.
Definition 2.2.
An equation of the form:

y'+p()y=a(x) . (2.25)
where p(x) and g(x) are continuous functions defined on an interval [a,b] = R, is called the
linear differential equation (lde) of the first order. If the right hand side of the equation

(2.25) equals zero, the equation is called a homogeneous linear differential equation (hlde).
Consider hlde

y'+p(x)y=0. (2.26)

Note that the function
Yo(x)=0 (2.27)

is a solution of (2.26), which is called the trivial solution. In the sequel we will seek for a
nontrivial solution, i.e. for a function satisfying (2.26) which is not identically equal to zero. It
is easy to see that the equation (2.27) is an equation of separated variables

dvy: —p(x)dx (2.28)

Integrating the left hand side of egn. (2.28) with respect to variable y and the Wright hand side
with respect to x one gets

In|yl=-[p()dx+InC (2.29)
and hence the general solution of the egn. (2.26) is of the form
y= Clefj p(x)dx . (2.30)

Computations carried out above allows formulating the theorem concerning solution
of hide.

14



Theorem 2.2.
Let us consider a linear homogeneous differential equation of the form (2.26). Assume that
p(x) is a continuous function defined on an interval (a, b). Then egn. (2.30) determines the
general solution of hlde (2.26). Moreover, each point (x, y) of the open set
D={(x,y):xe(ab)rye(-wo,+w)} belongs to only one integral curve of the equation
(2.26).

Having given the general solution of hlde one can construct the general solution of
non-homogeneous Ide (2.25) by applying so-called the method of variation of constants.
This can be done in following way. Assume that the general solution can be found in the form

[ pCodx 2.31)

y(x)=C(x)-e
The function given by (2.31) looks similar to that given by (2.30). In (2.31), however, C is not
a constant value, but another function of the independent variable x. The aim is to determine
function C(x) such that the equation (2.31) will give a general solution of lde under
consideration. The derivative of the function (2.31) is given by

% —c)-e "% s e e M - po : (2.32)

Substitution (2.31) and (2.32) to egn. (2.25) Leeds to

—J.p(x)dx —jp(x)dx

C'(x)e ree P pl+ p9-cxe TP =q(x) (2.33)

Solving egn. (2.33) with respect to C’(x) gives
C'(x) = q(x)e) " . (2.34)
Integrating (2.34) with respect to the variable x the function C(x) can be obtained
(2.31) leads to general solution of non-homogeneous lde
y00 = Ce T e TP el ¥ ax (2.35)

The above considerations leads to the theorem concerning the solution of Ide

Theorem 2.3.

Let us consider a linear differential equation of the form (2.25). Assume that p(x) and g(x) are
continuous function defined on an interval (a, b). Then egn. (2.35) determines the general

solution of Ide (2.25). Moreover, each point (x, y) of the open set
D={(x,y):xe(ab)aye(~oo,+)} belongs to only one integral curve of the equation
(2.25).

The first statement in this theorem has been proved above. The proof of the second statement
can be found in many monographs.

Consider now an example of application of the method of variation of constants.

Example 2.3.

Find the general solution of the non-homogeneous linear equation

15



y(L-x?)+xy = 2x (2.36)

Dividing by (1— xz) one gets

y 22 1%2 (2.37)
Consider first the corresponding homogeneous equation
y'+% =0 (2.38)
By virtue of the Theorem 2.2 the general solution of the egn. (2.38) is given by
~ —J.ﬁdx ~ %In x| .
y=ce =Ce =C ‘1— X ‘ (2.39)

Let us apply the method of variation of constant assuming that we are looking for the solution
of the (2.37) in the form

y(x)=C(x)-v1-x* . (2.40)
First let us find the derivative of the function given by eqn. (2.40).

1

=-(-2x)
yV'(X) = C1— X% +C(x)- 2\/1_7 = C' (V1= %2 —\C/i’%? (2.41)

Next step is the substitution of (2.40) and (2.41) into (2.37)

(%) 1y C x)‘Z(Jr x‘Cg?\X/%—xz _2x 2.42)

( -
\/]__ X 1- X2
Next transformations lead to the general solution of

2X 2xdx 2
C'(x) = 7 =>C(X) = 7 =>C(x) = =
(1—xzﬁ J-(1—xzﬁ 1-x

2
y(x) :(7\/1_7)(2 +C)-V1-x* =2+ Cy1-x2

(2.43)

After some simple rearrangements the integral curves in the eqn. (2.43) take the form

16



_ 2
y=2+C1-x* = y-2=C+1-x* = (yCZZ) =1-x =

1

2
= (y-27=C2(1-x) = (ygf) X2 =1 (2.44)
1

It easy to observe that the final equation in (2.44) is a family of ellipses.

The next example concerns of finding of family of integral curves of non-homogeneous linear
ordinary equation. However, the way of solving the problem is not a conventional one.
Example 2.4.

Find the family of integral curves of the equation

dy 1

S (2.45)
dx xcosy+sin2y

The above equation is neither linear nor of separated variables. In this case instead looking for
integral curves in the form y(x) we will find integral curves in the form of x(y). Please note
that in the (x,y)-plane y(x) and x(y) are the same curves. Therefore, by changing numerator
with denominator (upside down procedure) in both sides of the egn. (2.45), we obtain

%zxcosymin 2y. (2.46)
y

The equation (2.46) is a non-homogeneous linear equation with respect the unknown function
X(y). Hence the routine procedures described above can be applied. The solution of the
corresponding homogeneous equation

ay =XCOS Y (2.47)
dx

is obtained by means of the formula (2.30) in the form
x=Ce™ | (2.48)

Then applying variation of constant procedure one gets

x=C(y)e™" = g—;:C'(y)eS‘”y+C(y)eSi”ycosy =
= C'(y)e™ +C(y)e™ -cosy —C(y)e™"¥ cosy =sin2y = (2.49)

= C'(ye™ =sin2y = C'(y)=e"2siny = C(y)=_[e‘5‘”ysin2ydy+c1

To evaluate the last integral in (2.49) the substitution z=siny—=dz :(cos y)dy and next
integration by parts can be applied, namely

.[e’S‘"VZSin ycos ydy = je’z -2zdz = 2(— e’-z+ fe’zdz): —2e".z2-2e"+C=

_ _ _ (2.50)
=—2e°" siny +(-2e°")+C = —2¢ " (1+siny)+C

17



Then the final formulae for C(y) is
C(y)=-2e""Y(L+siny)+C,. (2.51)
Now combining (2.48) and (2.51) the general solution of (2.46) can be written as
x(y)=C,e™" —2siny -2 . (2.52)

Equation (2.52) describes the family of integral curves of the egn. (2.45).

The method of constant variation gives an universal tool for solving ordinary linear
differential equations. However, there some other methods that can be useful in practical
computations. One of the is the method of undetermined coefficients, which is sometimes
called the lucky guess method. The method bases on the following theorem:

Theorem 2.4.

Consider Ide of the form (2.25). Assume that yy, is the general solution of the corresponding
homogeneous equation (2.26) and y, is any particular solution of the eqn (2.25). Then the
general solution y to the equation (2.26) would be

Y=Ynt+typ . (2.53)
The use of this methods will be explained by examples given below.

Example 2.5.
Find the general solution to the equation

y+4y: x3 . (2.54)

dx

According to Theorem 2.2 the general solution to hlde corresponding to (2.54) is the
following

y=Ce™ (2.55)

Because the equation (2.54) has a constant coefficients on left hand side and its right hand
side is a polynomial of the third degree, we can predict a particular solution of (2.54) in the
form of the polynomial of the third degree, namely

y, = AC +Bx*+Cx+D : 2.55
1

Evaluating derivative of y; as y,'= 3Ax* + 2Bx + C and substituting y; and y;” into (2.54) one
gets

AAX® + x*(3A+4B) + (2B +4C)x +(C +4D) = x* (2.56)

The polynomials of both sides are identical if the corresponding coefficients are mutually
equal. Hence

18



4A=1 = A=

3A+4B=0 §+4B:O:>4B:—§:>B:—%
46 4 ; 1 2.57)
2B+4C=0 -—+4C=0 = C=-—
16 32
C+4D=0 p--tc-_3
4 128

Inserting computed above constant into (2.55) and then combining (2.53), (2.55) and (2.56)
one gets the general solution of the (2.54)

1 3 3 3
X)=Ce ™ +=x® - X2+ —x———. 2.58
%) 4" 16 32" 128 (2.58)

The lucky guess method give satisfactory results not only in the case when the right hand side
of the equation has a form of polynomial. The example below shows another case of right
hand side of a linear equation.

Example 2.6.
Find a particular solution of the equation

d—y+2y: xe*, (2.59)
dx

Which satisfies the initial condition y(0) = 2.
Due to egn. (2.30) it is easy to see that the general solution of the corresponding
homogeneous solution is

y=Ce™ (2.60)

As the right hand side of (2.59) is a product of a polynomial and an exponential function we
will seek a particular solution in the form

¥, = (Ax+ B)e” (2.61)
The way of solving is analogical to the previous one. First the derivative of y; is evaluated
y,'= Ae* + (Ax + B)e* (2.62)
Theny; and y;” are inserted into (2.59) and after some rearrangement in terms one gets
e - x(A+2A)+e*(A+B+2B) = xe* (2.63)

The comparison of corresponding coefficients leads to
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3A=1 A+3B=0
1 1 - (2.64)

aA-topg-_Ip- 1
3 3 9

Inserting constants A and B into (2.61) determines the particular solution of (2.59) as
A :l[x—l)ex . (2.65)

Due to Theorem 2.4 the sum of functions given by (2.60) and (2.65) is the general solution of
(2.59)

11
=Ce 2+ x—=|e* ) 2.66
y 3[ 3] (2.66)

Inserting the initial condition y(0) =2 into (2.66) allows to determine the constant C. Finally
the particular solution under consideration is

19 , 1 1),
=—e T+ x—-=|e . 2.67
y=X 3( 3] (267)

The method of undetermined coefficients can find more applications in conjunction with so-
called superposition principle. The superposition principle play vital role in mechanics when
linear problems are under consideration and it finds many applications in structural
mechanics. We formulate this principle as the theorem below.

Theorem 2.5. (Superposition principle)

Assume that yy is a particular solution of the equation

W\ )y = ,(x) . (2.68)
dx

Assume then y,; is a particular solution of the equation

W )y = £,09 . (2.69)
dx

Then yp = yp1 + Yp2 is a particular solution of the equation

Y by = 00+ F,%) . (2.70)
dx

The next example will demonstrate the usefulness of the above theorem.

Example 2.7.
Find the particular solution of the equation

@, 3y = x* — cos3x , (2.71)
dx

20



which satisfies the initial condition y(0) = g

Applying (2.30) the general solution of the corresponding homogeneous equation is fund as
y=-Ce™®™ . (2.72)
Consider now two non-homogeneous linear differential equations

ﬂ+3y=x2 ; Ol—y+3y=—cos3x @.73)

dx dx
For the first equation we will seek a particular solution in the form of a polynomial of the
second degree, i.e.
y, = Ax* + Bx+C (2.74)

Analogically to the Example 2.4 computing the first derivative of (2.74), substituting it to the
first equation of (2.73) together with the function y; leads to the following equation

3AX® +(2A+3B)x+B+3C=x" . (2.75)
Comparing corresponding coefficients gives the following system of algebraic equations

3A=1 2A+3B=0; B+3C=0
(2.76)

Solving the system (2.76) and substituting constant A, B and C into egn. (2.74) gives final
form of the particular solution y;

Y, ==X —=X+— . (2.77)

Now we hale to find a particular solution of the second equation in (2.73). As its right hand
side is of the form of linear combination of trigonometric functions we will seek for a
particular solution of the form

Yy, = Asin3x + Bcos3x. (2.78)

The algorithm is the same. Find the first derivative y,” of y, and substitute y,’ and y, into the
second equation of (2.73). These steps give the following equation

3Ac0s3x —3Bsin3x + 3(Asin3x + Bcos3x) = —cos3x . (2.79)

And after rearrangements
cos3x(3A+3B) + (3A—3B)sin3x = —Ccos3x. (2.80)
Comparison of coefficients corresponding to sine and cosine leads to the system of algebraic

equations
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3A+3B=-1 , 3A-3B=0 . (2.81)

Solving the above system with respect A and B and inserting the solution into (2.78), one
obtain the following particular solution y,

Y, :—%sinSX—%cosi%x . (2.82)

Applying now the superposition principle, we obtain the general solution of the equation
(2.71) as the sum of solutions given by egs. (2.73), (2.77) and (2.82). Hence the final result is

—fx—i—lsin3x—1c033x . (2.83)
27 6 6

By utilising the initial condition the constant C is determined and the particular solution
which fulfils that condition is

oyt 2502 Lanax—Leosax. (2.84)
3 9 27 6 6

Presented above methods of solving non-homogeneous linear differential equations base on
two steps procedures. In both cases (the method of constant variation and method of
undetermined coefficients) the as the first step the general solution of the corresponding
homogeneous differential equation has to be found. Now we demonstrate a method which
straightforward leads to solution of non-homogeneous equation omitting solving the
homogeneous one. This method is called the method of integrating factor and in many case

can be the most efficient. Consider now a linear equation of the form (2.25). Let us multiply
both sides of (2.25) by the following nonnegative expression

exp(j p(x)dx}O . (2.85)

The left hand side of the above expression, which is any fixed antiderivative of the function
p(t), is called an integrating factor. The both sides multiplication leads to

y'(x)expl[ p(x)dx)+ p(x)y(x)exp(] p(x)dx)=q(x)exp([ p(x)dx) . (2.86)

It is easy to observe that the left hand side of the egn. (2.86) is the derivative of the product of
two functions as

d

&[y(X)exp(j p(x)ax|] : (2.87)
Combining (2.86) and (2.87) one gets

2 lyx)exp(] p(x)ex = a(expl[ pxkix) (288)
Integrating both sides of the (2.88) one obtain
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exp(j dx Iq equ dx)dx +C , (2.89)
where C is a Real constant. Hence
y(x)= exp(—j p(x)dx)jq(x)exp(j p(x)dx)jx +C exp(— _[ p(x)dx). (2.90)

The above procedure shows that the function y(t) given by egn. (2.90) constitutes the general
solution of the eqgn. (2.25). The following example illustrate usefulness of the method of
integrating factor.

Example 2.8.

Find the particular solution of the equation

y+2xy=x (2.91)

which satisfies the condition y(0) = 1.
In the egn. (2.91) p(x): 2x, then the integrating factor equals to

equ dx exp([Zxdx exp( ) . (2.92)

Multiplying both sides of (2.91) by (2.92) the following equation yields

exp(xz)y’ + exp(xz)ny = xexp(xz) , (2.93)

which can be rewritten as

(exp(xz)y)l = xexp(x?). (2.94)

The function on the right hand side of the equation (2.94) can be integrated by substitution
(see Goldmann ....). Namely let z = x? then dz = 2xdx and hence

jxexp X Jdx = J'exp —exp( )= %exp(xz) . (2.95)
Consequently, after integrating both sides of eqn. (2.94) we obtain the following equation
exp(xz)y = %exp(x2)+ C, (2.96)

where C is a real constant. This implies that the general solution of the equation (2.91) takes
form

y:%+Cexp(— xz). (2.97)

Using the initial condition y(0) = 1 the constant C can be easily determined as
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1= y(O):1+C = C:1 , Which gives the final for of the particular solution under
2 2

consideration as

11
y=7+5expl-x’). (2.98)
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Chapter 3
Linear ordinary differential equations of higher order

3.1. Homogeneous linear differential equations
Assume that p(t), pa (t),..., Pn_1(t), pn(t) are continuous function on given interval (a,b).

The ordinary differential equation of the nth order of the type

y® 4o &)y 4 )y D (Y + Pty = a(t) (3.1)

is called a linear ordinary differential equation of the order n (Ide_n).

Before introducing some basic methods in ordinary differential equations of the higher order
we formulate the existence and uniqueness theorem.

Theorem 3.1.

Let us consider a linear differential equation of the form (3.1). Assume that functions
p, (1), p, ()., p,(t) are continuous on the interval (a, b). Then for any point

(ts» Yoo Voo Yo y) € (2,6)x R" the Cauchy problem:
W+ oy (0)y "D+ pp 0y "2 4t oy (Y + pa(ty = a(t) (32)
and y(t,) = Yo, y,(to): /T y(nil) (to): Yna
has exactly one solution in the interval (a, b).
The proof of this theorem can be found in monographs concerning ordinary differential
equations.

In most cases, similarly to the first order case, a way to solve a linear equation of the

form (3.1) leads through solving the following linear homogeneous ordinary differential
equation of the order n (Ihde_n) equation:

4 @y 4y P bt pp @Y+ paly=0 - @)

Fact 3.1.. Assume that y;(t) and y,(t) are two solutions of the equation (3.3) and «, j are two
arbitrary real numbers. Then y3(t) = a y1(t) + B y2(t) is also a solution of equation (3.3).
Proof. Due o linearity of differentiation following equalities hold:

(n-1) (nl

Y+ )Y + o)t Dy (©)Ys + Py (t)ys = (v, + Ay, + () (e, + BY,)
+ P, (0@ + BY,) "7+t s (D@ + BY,) + Py (D@ + By,) =yl + B +ap )y +
+ Ao, (Y5 1)+0401(t)y1” D ap, ()Y + B, (V)Y P+ o, (O)Y: + A0, 1 (B)Y, + ap, (B)Y, +
Y, = aly® + POV + POy 4t POV + P )+

£ AV + POV + Y+t P, Y, + PV,

(34)
Using assumption that y; (t) and y,(t) are solutions of the equation (3.3) we can write
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(Y + p )Y + p, (YD + .t P )Y + Py )+
+ B + P YD + p YD 4.+ Py O, + Pu(t)y,)= 0. (3.5)

The egs. (3.4) and (3.5) show that y(t) is a solution (3.3), which completes the proof.
Corollary 3.1. The set of solutions of a linear homogeneous differential equation constitute a
linear space.

A general solution of the equation (3.3) bases on so-called fundamental set of solutions.
Definition 3.1. Let yl(t), Yy, (t),..., ¥, (t) be a set of solutions to the equation of (3.3) defined

on the interval (a, b). The set yl(t), Y, (t),..., ¥, (t) is called a fundamental system of solutions
to the eqn. (3.3) on the interval (a, b) if for any t < (a,b) the following condition holds

i) v, oy,

of 1O O (0

d 20 . (3.6)

v () () Ly ()

The determinant in the equation above is called the Wronskian of the egn. (3.3) and usually
denoted by W (t) =W (y,(t). Y, (t),--., Yo (1))
Example 3.1. Consider the linear homogeneous equation of the second order

2t%y"+3ty'—y =0 (3.7)

on the open interval (0,). Let us check that following pair of functions
1
nO=Vt i y0=7 (3.8)

is a fundamental set of solutions for eqn. (3.7). We begin from computing derivatives of
functions y; and y,

1 &

Y@=-ﬁr W®=Tr : 3.9)

N |-

Hence the Wronskian corresponding to eqn (3.7) is

1
t ; -
det T VIS O O N (R SR 2
11 (D t* t2vt 5 ot 2k
24t Tt
:—72\/2:;\&7&0 dla tg(0;) (3.10)

His proves that the set of functions (3.9) is a fundamental set of solutions of eqgn. (3.7).
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One of the most important theorems concerning Wronskian and finding a fundamental set of
solutions is the Liouville theorem.

Theorem 3.2 (Liouville’s formula)

Let y,(t), y,(t),...y,(t) be a fundamental set of solutions of a linear homogeneous
differential equation (3.3) defined on an interval (a, b) and t, < (a,b) . Then for any t < (a,b)

Wronskian W (t) =W (y,(t), y,(t),..., y, (t)) satisfies the following condition:

W (t) :W(to)exp[—j[ pl(r)drj . (3.12)

to

Proof of this theorem can be found in monographs concerning ordinary differential equations.
The next example demonstrates usefulness of the above formula in receiving members of a
fundamental set of solutions.

Example 3.2. Consider the following Ihde_2:

”+1_2ty’+gyzo , (312)

y t t

defined for t > 0. By direct substitution it is easy to verify that the function yl(t)z e' satisfies
the eqgn. (3.12). Now we apply the Liuville’s formula to receive another solution y, such that
y1 and Y, constitute the fundamental set of solutions to egn. (3.12). Let t, € (0,+) . Then due
to Liouville’s formula

Y, (D), v, () B Y, (t), Vo (ty) t
de{yl'(t), yz‘(t)} ) de{yl'(to), yz'(to)})(p[_t{ pl(f)dfj (3.13)

Assume now that to = 1. Due to theorem 3.1. there exists only one solution satisfying the
conditions: y,(1)=0, v,'(1)=1. Then by Liouville’s formula

t e —[‘thm} e pelfooct
det{e | yZ(t)}:detrﬂe I~ - e-e [ =e-e [e”‘ W J =g.g (22l
e,

e y,'(t) (3.14)
—e. e'”% o2 .2 gt -}82' _ }ezm
t t
On the other hand
' y,(t
e ) 1y e ety (3.15)
e, Y,'(t)
Comparing (3.14) and (3.15) one gets
1t t 1 2t-1 t ' 1 t-1
ye—ey:{e /e = y—yzze . (3.16)
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The last equation in (3.16) is a linear ordinary differential equation of the first order with
associated initial condition vy, (1) =0. According to the equation (2.30) the solution of the
corresponding homogeneous equation is

j(-l)dx

y({t)=C-e =Ce' (3.17)

In order to find general solution to eqn. (3.16) let us apply the constant variation method.

y=C)-¢ = y=C'()-e +C)e' = C'(t)e'+C(t)e' —C(t)-e' = e
= C'(t)e' = loyet o C'(ty=e™ RN C(t)= 1j}dt B
t t et
Because t € (0,+w) the function C(t) in (3.18) can be expressed as
C(ty=e™*-Int+C. (3.19)
Therefore the solution of egn. (3.16) is given by
y(t):[e’llnt+C]-et =etInt+Ce'. (3.20)
Utilising the initial condition y,(1) =0 one gets
y)=0= e'Inl+Ce'=0 =>C=e" =y{t)=e" Int—e"-e'=e""Int. (3.21)
It is easy to see that due to (3.16) the pair of functions
(e',e™ Int) (3.22)

satisfies definition 3.1 and therefore constitutes the fundamental set of solutions to the
equation (3.12).

It has been already mentioned that solutions of any lhde_n constitute a linear space.
Let us now turn to some algebraic properties of solutions. The first one is reminding the
concept of linear independence.

Definition 3.2. Functions yl(t), Y, (t),..., ¥, (t) are linearly independent on the interval (a, b) if
and only if for any set of real constants «,, «,,..., &, the relation

Vte (a,b) ay, )+, y,(t) +...+a,y,(t)=0 (3.23)
Implies that

o =0,=.=a,=0. (3.24)
In the opposite case the functions are called to be linearly dependent.
It can be proved that the following fact holds true.
Fact 3.2. Let functions vy, (t), y, (t),..., ¥, (t) be differentiable on an open interval (a, b). Then
a) If W(y,(t), y,(t),...,y,(t)) = 0forany t, (a,b), then functions y,(t), y,(t),..., y, (t) are
linearly independent on (a, b).

b) If functions vy, (t), y,(t),..., , (t) are linearly dependent on (a, b), then
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vte(ab) W(y(t)y,(t)...v,(1)=0 . (3.25)

If we sum up the all given above properties of fundamental set of solutions of a Ihde_n one
can see that fundamental set of solutions is a set of n linearly independent functions in the
linear space of solutions of given Ihde_n. Moreover, it can be proved that the dimension of
this linear space is n. This immediately gives the fact

Fact 3.3. The fundamental set of solutions of a given linear homogeneous differential
equation is an algebraic base in the linear space of solutions of this equation.

It is well-known, however, that having a base of given linear space one can obtain any vector
of this space as a linear combination of the elements of the base. This way we have
damonstarted that the following theorem holds true.

Theorem 3.3. Let y,(t), y,(t),..., ¥, (t) be afundamental set of solutions of given Ihde_n.

Then the general solution of this equation is given by the following formula

y(t) =Cyi () + Coy, (1) +...+ C.y, (1) , (3.26)
Where C4, C»,...,C, are real constant.
The usefulness of this very important theorem is demonstrated on the next example.

Example 3.3 Consider the Ihd2_2

w+3%§yqlfiy:o (3.27)

for t > 0. Find the particular solution satisfying initial conditions y(1) = e and y’(1) = 2e.
In the Example 3.2. we have found a fundamental set of solutions of the eqgn. (3.27) in the
form given by. Then by virtue of the theorem 3.3 we can write the general solution of (3.27)
as

y(t)=Ce' +C,e"Int . (3.28)

In order to solve the problem let us evaluate the first derivative of the function y in the egn.
(3.28).

y'(t)=Cpe' + Cz(eH Int+ e”ij . (3.29)

By the use of the initial conditions one gets the following system of equations
e=Ce'+C,e’Inl and 2e=Cge'+ Cz(eO In1+¢e° -1) : (3.30)

Solving it one obtains: C; =1 and C, = e. Hence the particular solution that we are looking
for is the following function:

y, =e" +e'Int. (3.31)

The theorem 3.3 guarantees that if we know a fundamental set of solution of Ihde_n under
consideration then we know its general solution. However, as it is always the case of algebraic
base, the fundamental set of solutions associated with a given Ihde_n is not a unique one.
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Another set can be obtained by appropriate linear transformation. On the other hand if we
now any set of functions satisfying the condition (3.6) then the corresponding Ihde_n is given
in a unique way. This fact demonstrates the following example.

Example 3.4.

Find a Ihde_2 that has the following fundamental set of solutions.

)=t y,t)=t' . (3.32)
Due to theorem 3.3 the general solution has the form

y(t) =Ct* +C,t* (3.33)
and the first derivative is

y'(t) =3C,t* +4C,t° ) (3.34)

Now consider equations (3.33) and (3.34) as a system and let us solve this system with respect
to unknown C; and C,.

cl=y_t3czt4:%y—cz.t N y'=3-(t33y—czt)-t2+4cz-t3
3 3 V-3y g o
y':Yy—SCZt3+4C2t3:¥y+Czt3 = C,= t3t :t—3y'—t—4y
C1=t%y—(t%y'—§y)-t—t%y'+t§3y = %y—t%y' (3.36)
The second derivative of the general solution (3.33) is
y"(t) = 6C,t +12C,t* . (3.37)

Substituting C; given by (3.35) and C; given by (3.36) to egn. (3.37) gives

4 1 1.3 2 24 6,12 36 6,12
"oy -y tHI2(S Y-y = Sy 2y sty Ty 2y 22 3.38
y'=6-(ay-zY) tH12AGY-5EY) ZY Yt Yy =Yy (39

Finally the equation generated by the fundamental set of solution (3.32) has the following
form

. 6,12
y—¥y+t—2y:0. (3.39)

Now we demonstrate that if a particular solution of a Ihde_n is known then by using this
solution it is possible to reduce by one the order of the Ihde_n.
Theorem 3.4. Assume that ¢(t)is a nontrivial particular solution of lhde_n then by

substitution
y = olt)] zdt (3.40)
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the Ihde_n under consideration can be reduced to a Ihde_n-1.
Proof. The proof will be given for the second order linear homogeneous equation. Let ¢(t) be
a nontrivial particular solution of the equation

y+p(t)y + p,(t)y=0. (3.41)

First two derivatives of the function (3.40) are given by
y'=o/(t)] 2(t)dt+ p(t)2(t) (3.42)
y' = ¢"Of 20t + ¢ O2(0) + ¢ O2(0) + O ) (3.43)
Substituting (3.42) and (3.43) to (3.41) one gets

()] 2(t)at + 20/ O2(1) + (O O+ p, O] V)] 2(t)at + o) 20|+

(3.44)
+ pz(t)[got z t dt]:O

[o"(t)+ PO} 1)+ P, ()] 2(t)dt + 20/ (D) 2(1) + ()2 (1) + P (hplt)2t) =0 (3.45)
The first term in egn. (3.45) equals zero because ¢(t)is a solution of (3.41). Therefore

2¢/(0)2(t) + p(1)Z'(1) + p,(thplt)2(®) =0 . (3.46)

As ¢(t)is a nontrivial solution of (3.41) then dividing both sides of (3.46) by ¢(t) leads to

2(t) + 2(O)[20'(t) + py(thp(t)] =0 . (3.47)

Equation (3.47) is a linear homogeneous differential equation of the first order, which
completes the proof.

The proof of the above theorem in the case of n-th order equation can be carried out
analogically. Now let us demonstrate an example of an application of the theorem 3.4.
Example 3.5.

Find the general solution to the following equation

v 2t 2
t? t? -1

(3.48)

in the interval (1,+o0). It easy to see that function ¢(t) =t is a nontrivial solution of (3.17),
then according to theorem 3.4 substitution

y =t zdt (3.49)

has to lead to reduction of eqn. (3.49) to a linear homogeneous equation of the first order. The
first and the second derivatives of the function given by eqn. (3.49) are given by
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y':'[zdt+tz; y'=z+z+t-2'=2z+t2' . (3.50)

Substitution (3.49) and (3.50) to (3.51) gives

2z +tz'+ 22t qzdt+tz)— 2t Izdt:O. (3.51)

t? -1 t? -1

By reducing terms we obtain

2
tz'+2z[1+t2tl] -0, (3.52)

Because t e (1,+o0) then dividing both sides by t egn. (3.52) takes the form

2 —
2:3 tlz —0. (3.53)

742

Due to theorem 2.2 the solution of the above equation can be obtained by means of the
formula

(Rt

2(t)=C-e " ©1 (3.54)

The integral in the exponent can be evaluated as follows

2t* -1 -1t tdt 2t
fzﬂdt = ZJ{ 1 ¢ _t}dt = z{lnﬁ —thz _J = In(t* -t} _jtz = -
ol o -f 3= Ay
Hence
2(0)-C (3.56)
(> -1 :

Now the solution can be obtained by substitution (3.56) into (3.49)

C 1 1 1(¢ dt dt ) 1
y(t):tjtT(ﬁ——ljdt:CtJ-('[Z—l_'[zjdtz(:t[Z( '[—:I__J.m_j+t:|= a5

1 1 t, t-1 t, t-1
—Ct{z(ln(t—l)— In(t+1))+C1+J—C2Int+1+Czt+C _C(Zlnt+1+1)+czt

We have already shown that any solution of given lhde_n can be obtained if its
fundamental set of solutions is known. Unfortunately in general case there is no universal
procedure that determines the fundamental set of solutions. There is, however, a special case,
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when such a procedure can be formulated. We will orient our consideration towards this case
now.
Let us consider a linear homogeneous differential equation of the form

vy 4oy D 4 ooy o g iy py =0 : (3.58)

Where pi1, p2,..., pn are real constant. The above equation is called linear homogeneous
differential equation of constant coefficients of order n (Ihdecc_n)

In order to solve an equation of the type (3.58) it is necessary to consider the characteristic
polynomial, which corresponds to given equation. The characteristic polynomial, which
correspond to the equation (3.58) takes the following form:

p(A)=A"+ p A+ P, A 4t A D, (3.59)

Note that the corresponding coefficients of Ihdecc_n and its characteristic polynomial are the

same. The following theorem shows how a fundamental set of solutions of egn. (3.58) can be

obtained.

Theorem 3.5. (Fundamental set of solutions to linear differential equation of nth order with
constant coefficients).

Consider an equation of the form (3.59). Assume that A;, 4z,..., As are real roots of

corresponding to eqn. (3.59) characteristic polynomial with multiplicities equal to ki, kz,...,

ks, respectively. Let A, =a,+if, A= —iB,  Aem=Cm TP Aem =0 —ifn,
where g #0,5,#0,...,5,#0, be complex roots with multiplicities I,1,,...,1,,

respectively, of characteristic polynomial p(1) corresponding to the eqn. (3.59), provided that
k +K, +...+k +2(,+1,+..+1 )=n. Then the fundamental set of solutions to egn. (3.59)

consists of the following functions:

eft tett, . thleM
......................... (3.60)
et et thlpht
e cos At te' cos St t" e cos At
e“sin gt [te“singt  [t"Te“singt
............................................................ (3.61)

{e"m‘ cos Bt {tec‘mt cos 3.t {t'””e“m‘ cos Bt

e“' sin Bt te“' sin B, t t' e sin g t

Remarks.
1. A root Ao of a polynomial p(4) is called to be of multiplicity k if and only if p(%) is
dividable by the expression (1 -4, ) .
2. Please note that p(1) is a polynomial whose coefficients are real numbers, therefore if

any complex number o is a root of p(4) then the conjugate number 4, is a root of p(%)
as well.
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Now some illustrative examples concerning application of the above theorem will be
presented.
Example 3.5. Find the general solution to the following Ihdfcc_4:

2yW_5y" 45y —2y=0 . (3.62)
The corresponding characteristic polynomial is

p(A)=24" -5 +54-2 . (3.63)
It can be factorised in the following way
P(A) = 24 =52 +52 -2 =2(#* ~1)-5(2 = 2)=2(# 1) 22 +1)-54(2* -1)=

= (7 -1)2(# +1)-52)= (2 -1)2 +1)22* ~52+2)= (2~ 1) 2 + 12 - 2)(1 _;j (3.64)

It means that p(1) has four different real roots: 4, =1, A, =-1, 4 =2, 4, =% .

Then by virtue of the theorem 3.4 the fundamental set of solutions of egn. (3.62) is the
following one:

yt)=e', y,t)=e, yt)=e* y,(t)=e> . (3.65)

Hence the general solution is found by applying theorem 3.3 as

t

y=Ce' +Ce +Ce® +C,e?. (3.66)

The next example will be a case where complex roots appear.
Example 3.6.
Find the general solution to the following Ihdfcc_6

y© +y@W_2y =0, (3.67)
Equating the corresponding characteristic polynomial to zero one gets
Beit-22=0 o RA+2-2)=0 : (3.68)
This means that 4, = 4, =0. The second equation
M+2-2=0 (3.69)

factor in the last equation is a biquadratic. By substitution A* =tone gets the quadratic
equation

t?+t-2=0 , (3.70)
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that has the roots t, = -2 and t, =1. By taking square roots of them one obtains the next four
roots of the egn. (3.68), with two complex numbers among them: 4, =0,41,=0, A, =-1,

A=1, A= —2i, A = \/2i . Please note that, as it was indicated in the Remark 2, the roots
/s and Ag are mutually conjugated complex numbers. Then according Theorem 3.4 the
fundamental set of solutions of egn. (3.66) consists of the following functions:

Y1(t):1 ; yz(t):t ; 3’3(t):e_t ; )/4(t):eI ; ys(t):cos\/Et ; ye(t):Sin\/Et . (371)
Finally the general solution of the eqgn. (3.67) takes the following form:

y=C,+C,t+C,e +C,e' +C,cos/2t+C,sin~/2t . (3.72)

Let us now tern to initial and boundary value problems.
Example 3.7. Find the particular solution of the equation

y''=3y"+3y'-y=0 , (3.73)

which satisfies the following conditions: y(0)=1, y'(0)=2 and y"(0)=2.

The characteristic polynomial
p(A)=2-32+31-1=(2-1) (3.74)

has the triple root: A, =4, = A4, =1. Hence the fundamental set of solutions consists of three
following functions

yi(t)=e';  y(t)=te'; y,(t)=t% (3.75)
and the general solution is
y(t)=Ce' +C,te' + C;t%" . (3.76)
Now let us use the initial conditions to determine the constants.
The first condition leads to y(0)=1:> C, =1. The first derivative of function y in egn. (3.76)

IS
y'(t)=Ce' +C,(e' +te')+ C,(2te! +t%) . (3.77)

Then the second condition gives y'(0)=2 = y'(0)=C,+C,(1+0)+C,(0+0)=2 =
= C,+C, =2. Because C; =1, hence C, =1. Now let us compute the second derivative

y'(t)=Ce' +Cyet +C, [ +te' )+ 2C, (" +te' )+ C, (2te" + ') (3.78)

Finally applying the third condition one gets
y'(0)=2 = y"(0)=C,+C,+C,+2C,=2 = C,+2C,+2C,=2.
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Because C, =C, =1one gets 3+2C,=2=C, = —% . Substituting the constants C1, C; and

C; into (3.78) we obtain the required particular solution
t t 1 24t
y(t)=¢' +te - te : (3.79)

The last example deals with boundary conditions.
Example 3.8. One-dimensional boundary value problems
Find a particular solutions of the equation

y'+y=0, (3.80)

that satisfy the following boundary conditions:

a.) y(0) = 0 and y(n/2) = 1 (first problem); b.) y(0) =0and y(x) =0 (second problem);
c.) y(-r) =-1land y(x) =1 (third problem). The equation (3.80) is a linear homogeneous
equation of the second order. Its characteristic polynomial is p(1) - 72 41, with roots 11 = i

and 42 = - i . Then according to the Theorem 3.4 the fundamental set of solutions to the egn.
(3.80) consists of the functions: y;(t) = cost and y,(t) = sint . Consequently the general
solution of (3.80) takes the form:

y(t) =Cqsint+C, cost . (3.81)

Consider now the conditions of case a.). Substituting them to the egn. (3.81) one gets C; = 1
and C, = 0. Then the particular solution is

y(t) =sint (3.82)

In this case there exists a unique solution to the boundary value problem under consideration.
In the case b.), however, substitution boundary conditions into (3.81) leads to C, = 0, but C;
can take any real value. It means the solution exists, but it is not unique. Moreover, there are a
lot of solutions to the boundary value problem b.). Finally let us consider the case c.).
Substitution of boundary conditions into (3.81) leads to contradiction C, =1 and C, =-1
simultaneously, which constitute a contradiction. In this case a solution to the boundary
problem does not exist. Cases b.) and c.) are examples of so-called ill-posed or ill-conditioned
problems. These cases will be commented in section 4.6.

3.2. Non-homogeneous ordinary differential equations
In the previous section only linear homogeneous differential equation were considered. Now
let us gives some ideas concerning equations that are not homogeneous. At first we have to
note that Theorem 2.4 formulated in Chapter 2 remains true for linear differential equations of
the higher order. Now it can be stated as follows
Theorem 3.6.
Consider Ide_n of the form (3.1). Assume that y;, is the general solution of the corresponding
homogeneous equation (3.3) and y, is any particular solution of the corresponding Ihde_n in
the form (3.1). Then the general solution y to the equation (3.1) would be

Yy=yntYp . (3.83)
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The above theorem together with Theorem 3.3 allow to predict the general solution to the
(3.2).
Corollary Let y, be a particular solution to egn. (3.1) and let y,(x),y,(x),...,y,(x)be a

fundamental set of solutions of corresponding to (3.1) homogeneous equation. Then the
general solution of the (3.1) is given by

y(t) = Coy,(X)+ C,y, (X) +...+ C,y, (X) + Y, . (384)

where C,,C,,...,C, are real constant.

Now we consider the problem how a particular solution of (3.1) can be found. We discuss the
method of constant variation (already known from the first order linear differential equations),
which gives an universal tool for solving ordinary linear differential equations. The idea of the
method will be explained for the case of the second order equation. Consider the following
linear differential equation of the second order

yp(X)y + p,(x)y =a(x) - (3.85)

Let yl(t), y,(t)be a fundamental set of solutions of corresponding to (3.85) homogeneous
equation. We will seek for a particular solution of (3.85) in the form

y(x) = C,(x)y;(x)+ C;(x)y,(x) (3.86)
Finding the first derivative of the above function gives
y'(x) = Cll(x)" y1(x)+ Cl(x)yll(x)+ C, I(X)yz (X)Cz (X) Y, '(X)- (3.87)

Assume now that functions C,(x) and C,(x) are selected in such a way that satisfy the
condition

Cy'(x) 1 (x)+ ;' (x)y,(x)=0. (3.88)
Therefore eqn. (3.87) is reduced to
y'(x)=C,(x)y,"(x)+C, (x)- v,'(x). (3.89)
Now let us find the second derivative by means of the egn. (3.89)
y"(x)= G, (x)yy"(x)+ Co(x)y, " (x)+ €, " (x)y, (%) + C, (x)- v, (x) (3.90)

The second derivative (egn. (3.90)), the firs one (egn. (3.89)) and the function y (egn. (3.86))
are now substituted into eqn. (3.81).

Cll(x)yll(x)"" Cl(X)ylll(X)+ CzI(X)Y2I(X)+ Cz(x)' yzn(x)""

+ pl(x)' [Cl(x)yl'(x)+ Cz (X)yz(x)]+ P, (X) [Cl(x)yl(x)+ Cz(X)YZ(X)] = q(x)

After some rearrangements one gets

(3.91)
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C,(0y," () + P9 Y," () + P, ()Y () ]+ C, (0], " (0 + P (X) Y, (¥) + P, ()Y, ()] +

+C, (v, (1) + €, (x)y,' (x) = a(x) . (3.92)

Because y;(x) and y,(x) are solutions of homogeneous linear equation corresponding to egn.
(3.85) then first two terms in egn. (3.92) vanish. Then egn. (3.92) reduces to

Cll(x)yll(x)"‘Czl(x)yzl(x): Q(X) (3.93)

Consider now eqgn. (3.88) and (3.93) as a system of two equations and solve them with respect
C, (x) and C, (x). The solution can be written in the form

gel © y,(x) y(x) 0
' _ q(X) yZI(X . C'(X)— Y1'(X) q(X (394)
=00, X)J L yz(x)J |
VX)) Y, (x VX)) Y (x

Note that the denominators in both expressions in (3.94) are the same and are equal to
Wronskian W(x) of the linear homogeneous equation corresponding to eqgn. (3.85). Because
the pair yl(t), y,(t) is the fundamental set of solutions to (3.85) then Wronskian has non-zero
values in the whole domain of the problem. Therefore the solution (3.94) always exists and
the suggested method leads to solution. In order to find a particular solution it is necessary to
integrate expressions in (3.94)

0 Y2(X)J yi(x) 0
C,(x)= I7‘4(X\)N (12) Wlaa o= [ T (\)/(v) (X;‘(X) dx+B, (3.95)

where A, B are real constant. Substitution C,(x) and C,(x) to eqgn. (3.86) gives us the
particular solution.

This way we have proved that suggested procedure allows to obtain a particular solution to a
non-homogeneous linear equation if only a fundamental set of solutions to the corresponding
homogeneous equation is known. Let us now illustrate the procedure by two examples.
Remark.

Note that in the case of the equation of the n-th order system of equations (3.88) and (3.93)
has to be replaced by the following matrix equation

V) (¥ ¥,0 T[S0 ] To
') ¥ () Y, (X) c,x)| |0

=l . (3.96)

FARC . ACIRHOIREI
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Eqn. (3.96) has to be solved with respect to unknown functions C,(t),C,(t),...,C, (t). Next by

integration we are able to find functions C, (t),C, (t)....,C, (t) and then a particular solution to
the equation (3.1) is obtained in the form

Yo (1) = (), (1) + ¢, ()Y, (1) + ¢, (1) y, (1) (3.97)

Example 3.9.
Find the general solution of the following equation

y'+y=sinx . (3.98)

The corresponding to (3.98) homogeneous equation is identical with egn. (3.80). Therefore
the general solution to the homogeneous equation is

Yo =C,sinx+C, cosx . (3.99)

According to the above consideration it is necessary to solved the following system of
equations

C,'(x)sin x+C,"(x)cos x =0

3.100
C,'(x)cos x —C,"(x)sin x =sin x (3.100)

With respect to unknown functions Cl'(x) and C;(x). Dividing the first eqn. in (3.100) by
sinx and the second one by cos x one gets

(v )ein? ' inx=
{Cl (x)sin? x+C,"(x)cos xsin x =0 (3.101)

C,'(x)cos? x—C,"(x)sin x cos x = sin xcos x

By summing up left — and right-hand sides of equations in (3.101) the following equation is
obtained

C,'(x)=sin xcos x . (3.102)
Next integrating with respect to x the function C,(x) is received

Cl(x):%sin2x+ A (3.103)

The first equation in (3.101) gives
C,'(x)cosxsinx =-C,'(x)sin’x . (3.104)

Substituting (3.102) to (3.104) one obtains
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C,'(x)cosxsin x = —sinxcosxsin’x = C,'(x)=-sin’x. (3.105)

By integrating of the last equation one gets
x 1.
C,(x)=—=+=sin2x+B. (3.106)
2 4
Assume that A =B= 0. Then due to eqn. (3.86) a particular solution to (3.98) is given by
y, = Lein®x—Xcosx+ Lsinxcos x = Zsinx— Xcosx . (3.107)
2 2 2 2 2

According to the theorem 3.6 the general solution can be obtained by summing up the
solution yo given by (3.99) and particular solution y, given by (3.107). Therefore the general
solution to equation (3.98) is

y=Clsinx+C2cosx+%sinx—gcosx. (3.108)

Example 3.10.
Find the general solution to the equation
y"+9y =X . (3.109)

It is easy to see that the fundamental set of solutions of corresponding to eqgn. (3.109)
homogeneous equation consists of functions y, =cos3x, y, =sin3x. Therefore, by applying
the constant variation method, we seek for the solution in the form:

y =C,(x)cos3x + C,(x)sin3x . (3.110)

Due to eqgn. (3.96) the derivatives of unknown functions can be found by solving the
following set of equation

cos3x sin3x | C,(x 0
] ! 1,( )| . (3.111)
—3sin3x  3c0s3X || C,(x)| X
Then by eqgn. (3.94)
0 sin3x cos3x 0
X 3c0s3x 1 —3sin3x X 1

= 5 ———=—XC0S3X .
3c0s°3x+3sin“3x 3
(3.112)

C,'(x)

= =-=xsin3x and C,'(x
3c0s%3x+3sin?3x 3 /(%)

In order to find C,(x)and C,(x) both function in egs. (3.112) must be integrated by parts,
namely
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C,(x)= —ijsinSde = 1x -Ecosa’x —HcosSxdx = 1xcosSx —isin 3x+A. (3.113)
3 3 3 9 9 27

C,(x) = %_[xcosSxd = %x%sin 3x —%jsin?,xdx = éxsin 3x+2—17cos3x +B, (3.114)

where A and B are integration constant. Assuming that A = B = 0, the particular solution
(3.110) can be written as follows

y= 1xsin 3xsin 3x+icos3xsin 3x+£xc053xc053x—isin 3XC0s3x =
9 27 9 27

(3.115)
1., ) 1
==Xx(sin“3x+co0s” 3x) = 5x
Therefore due to Theorem 3.6 the general solution to egn. (3.109) is
) 1
y:C15|n3x+C2c053x+§x , (3.116)

where C; and C; are real constant.

Theorem 3.6 shows that like in the case of the equations of the first order the method
of lucky guess van be applied. In order to predict a particular solution of a given linear non-
homogeneous equation the method of undetermined coefficients can be found. In the literature
some theorems treating this case are formulated. These theorems, however are not discussed
within this lecture note.

3.3. Applications to structural mechanics. Beams resting on Winkler-type elastic
subsoil
Consider a beam as in the Figure 3.1. The beam is subjected to external load qg,(x). The

uy

Figure 3.1 Scheme of a beam resting on Winkler-type subsoil

subsoil reaction is r(x) . We assume that the vertical beam deflection y(x) is identical with

vertical deformation of the subsoil. Statics gives us basic equations of Euler’s type of beam. It
is well-known, that the bending moment at the cross-section x satisfies the following
equation:
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M (x) = —EI &EX) (3.117)
dx

Due to Schwedler’s theorem the shearing force at the cross-section x is the first derivative of
bending moment, namely

Q(x) =(L—'\)/(' . (3.118)

Finally the resultant loading q(x) is the first derivative of the shear force, therefore the
deflection y(x) has to satisfy the following equation:

£ d Zy(zx) - _q(x) . (3.119)
dx

Let us now apply the Winkler assumption, which states that subsoil reaction is proportional to
the displacement y(x)

r(x) =CBy(x) , (3.120)

Where B is the width of the beam and C is the coefficient of subsoil stiffness (sometimes
called the Winkler’s constant). As the resultant loading is

G(x) = r(x) = o (x) = CBY(X) = 0 (x), (3.121)

then egn. (3.119) can be written as

El d;‘)’(gx) = g,(x) —CBy(x) . (3.122)

Let us now change the coordinate system by the transformation

(3.123)

where

4EI
=4—. 3.124
L=15c (3.124)

The constant L, is dimensioned in [m], therefore ¢ is considered as dimensionless coordinate.
By means of the chain rule one gets

dy _dydx_, dy

= = , (3.125)
dé dxdé  “dx

and by successive differentiation one obtain
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d 4y . d 4y
= . 3.126
d§4 L\N dX4 ( )
Therefore in new coordinate system eqn. (3.122) takes the form
1d*
El E dé(fg )_ q,($)-CBy(S) . (3.127)

After substitution (3.124) to (3.127) and some simple transformations the following equation
results

d*y(£) _40,(8)
agt +4y(8) = BC : (3.128)

Eqn. (3.128) is a non-homogeneous linear differential equation of the fourth order. First let us
solve the corresponding homogeneous equation. Its characteristic equation

A+4=0 (3.129)

is equivalent to
A =2i A =-2i , (3.130)

The complex roots corresponding to the first of equation in (3.130) are
A= \/E[COSZ+ isian =1+i and 4, = \/E(cos? + isinif) =-1-i, (3.131)
and the roots corresponding to the second equation in (3.131) are as follows
Ay = \/5(00537”+ isinsfj =-1+i and A, = \/E(cos72[+ isin 7;} =1-i. (3132

In virtue of the theorem 3.5 the fundamental set of solutions to homogeneous equation
corresponding to eqn. (3.128) consists of functions

y,=e°cosé, y,=e"sing, y,=evcosé, y,=e*siné (3.133)
and therefore the general solution is
y=Ce cosé+Ce’siné+Ce cosé+Cevsing, (3.134)

where C;, C,, C3 and C4 are integration constant. From engineering point of view more
important, however, are the cases with non-zero the right hand side of the equation (3.128),
namely a non-homogeneous case. Consider now the simplest case, that is the right hand side
of (3.128) is independent of &, q,(£) = q,. This assumption physically means that the loading

of the beam is constant. In this case it is easy to see that the function
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Y, :;I% (3.135)

is a particular solution of the equation (3.128). Hence, by the theorem 3.6, the general solution
to (3.129) under assumption q,(¢) =q, is

y=Ce cosé +Cesing+C,eccosé+Cesiné + S—é ) (3.136)

This way we have a complete information from mathematical point of view. For engineers,
however eqgn. (3.136) is useless unless the constants C4, C,, C3 and C4 remain undetermined.
In order to assign specific values to these constants certain boundary conditions have to be
imposed. As an example a reasonable assumption from engineering point of view is to set that
bending moments and shearing forces at both sides of the beam are equal to zero, namely

M(0)=0, Q(0)=0, M[IWJ:o, Q[}o, (3.137)

Where L is the length of the beam. Application of conditions (3.137) to egn. (3.136) leads to
system of four linear algebraic equations with four unknown parameters Cy, C,, C3 and Cj.
Solving this system (conventional solution of this system is omitted here) shows that under
conditions (3.137) all four constants must be equal to zero, C; = C, = C3 = C4 =0. Therefore
solution to the boundary value problem given by egn. (3.136) and eqn. (3.137) is

d,
=0 , 3.138
Y=4¢ ( )

that is a constant function, independent of coordinate & As in the Winkler’s model the subsoil
reaction is proportional to the displacement, then substituting eqn. (3.138) into eqgn. (3.120)
one gets

r(x) =g, = const. (3.139)

The above equation show an important feature of the Winkler model. Namely, the reaction of
subsoil on uniform loading of the beam is constant and equal to the intensity of the beam.

Let us now turn another important application the above model in foundation
engineering. Consider a infinite beam loaded by a single force P concentrated at given point
Xo as indicated in Fig. 3.2. Then the right side in eqn. (3.128) is a non-continuous function.

P

X,

Figure 3.2. Infinite beam subjected to a single force P



As the scheme is symmetric with respect to axis perpendicular to beam at the point Xo.
Therefore we reduce the scheme to half-infinite beam loaded at its left hand end, & =0 (the
dependence between coordinates x and & is given by egn. (3.123)), as it is indicated in Fig.
3.3. Moreover, let us confine ourselves to interval & > 0, obtaining values at the point £ =0 as
limits, assuming continuity of the solutions (Fig. 3.3).

Figure 3.3. Reduction of the problem to the half-infinite part

In such case for &> 0 the right hand side in egn. (3.128) vanishes and the resulting equation
is

d*y($) _
i +4y(£)=0. (3.140)

The above equation will be considered together with the following boundary conditions

. e e dy o P
limy(¢)=0; !Lng‘o' limQ(¢) = 7 (3.141)

The third condition deals with shearing force given by (3.118) and is usually called anti-
symmetry condition. Equation (3.140) is the homogeneous equation corresponding to eqn.
(3.128) hence the general solution to (3.140) is given by egn. (3.134). Analysing the form of
(3.134) and taking into account bounded character of trigonometric functions it is easy to see
that the first and the second terms tend to infinity as & tends to infinity, while the third and the
fourth terms tend to zero when ¢ tends to infinity. Therefore to fulfill the first condition in
(3.141) we have to impose that C; = C, = 0 and the solution (3.118) take the form

y=Ce<cosé+Ce sing . (3.142)

In order to implement the second condition of (3.141) note that

(% = (-1)(Cefcosé+Cesiné)re(Cy(-siné)+CocosE) . (3.143)

Therefore

. dy . dy

!LTEZO = !Lr[r)y—g=—(c3-1+c4-o)+1-(—ca-0+c4.1):—ca+c4=o:>ca=c4
(3.144)

Consequently eqn. (3.143) takes the form
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y =C,e(cos&+sin &) . (3.145)

In order to utilise the third condition of (3.141) we have to observe that

d’y am El d’y
M(x)=-EISY and Q=SV- E18Y 3.146
(x) el Q x 4z ( )

It easy to check that the second derivative of y with respect ¢ is given by

d? el
dT‘f)zl =2C,e“(sin& —cosé) (3.147)
and hence
d’y .
d7§3 =4C,e " cosé. (3.148)

3

If £—0" then d’y — 4C, and therefore the third condition of (3.141) is equivalent to

de*

P El P

——=-—4C, = Cj=——
20 ° 2BCL,

. (3.149)

Finally, due eqgn. (3.145) and egn. (3.141), the displacements of the beam under consideration
are given by

_x x . x
y(x) = G [cos+sm} for x>0. (3.150)
L L,

P
2BCL,,

By finding second and third derivatives bending moments and shearing forces in a given
cross-section of the beam can be found, which is an important task when a foundation beam is
designed. In practical cases usually several different forces acting on the beam have to be
considered. But such a case can be easily handled by means of the superposition theorem.
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Chapter 4
Introduction to partial differential equations

4.1. Example of physical problems leading to partial differential equations and
boundary value problems. The vibrating string
A tightly stretched string, whose position of equilibrium is an interval [a,b] on the x axis, is
vibrating in the xy plane (see Fig. 4.1).

y

|

|

|

|
0 (x,0) (x+Ax,0) x
Figure 4.1. Scheme of forces acting on a string

In the equilibrium position each point of the string has coordinates (x,0). At the time t each
point is a subject of a transverse displacement y(x,t) at time t. We simplify movements of the
string such that each point moves in the direction of the y axis only. Then at time t the point
has coordinates (x,y). Let T denotes the tension of the string. At each point (x,y) of the string
the part of the string on the left of that point exerts a force of magnitude T in the tangential
direction upon the part on the right . Let us denote by H the x-component of the force T. We
assume that the variation of H with x and t can be neglected. The assumptions imposed above
seem to be quite stringent. But it is appeared that they are quite well satisfied by strings of
musical instruments under ordinary conditions of operations.

Now let V(x,t) denote the y component of the tensile force exerted by the left-hand portion
of the string on the right-hand portion at the point (x,y). We take the positive sense of V as
that of the y axis. If a is the slope angle of the string at the point (x,y) at time t, then

%:tana =Yyy(x1) (4.1)

as indicated in Fig. 4.1. Thus the y component V(x,t) of the force exerted at time t by the part
of the string on the left of a point (X,y) upon the part on the right is given by the equation

V(x,t) =—Hy, (x,t) H>0. 4.2)
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Suppose that all external forces such as the weight of the string and resistance forces,
other than forces at the end points, can be neglected. Consider a segment of the string not
containing an end point and whose projection on the x axis has length Ax. Since x components
of displacements are negligible, the mass of the segment is d4x where the constant ¢ is the
mass of the string per unit length (mass density). At time t the y component of the force
exerted by the string on the segment at the left-hand end (x,y) is V(x,t), given by equation (4.2).
The tangential force exerted on the other end of the segment by the part of the string on the
right of that end is also indicated in Fig. 4.1. Its y component is given by

H tan B = Hyy (x+ Ax,t) (4.3)
where f# is the slope angle of the string at the right-hand end of the segment. The negative
sign signifies that the force is exerted upon the part of the string on the left by the part on the
right. The acceleration of the end (x,y) in the y direction is y(x,t). From Newton's second law
of motion, it follows that

OAXYit (X, 1) = —Hyy (X, 1) + Hyy (X + AX, t) (4.9)

approximately, when 4x is small. Hence

CH oy (x+Ax )=y, (xt) H
Ve (1) == lim - = Yulxt) (45)
at each point where the partial derivative exists. Substitution 52 _ H Jeads to the equation
o)
2
yie(x 1) =a%yyu(x,t) (4.6)

The constant a has a physical dimension of velocity. This is so-called the equation of
vibrating string or one-dimensional wave equation, which is classified as a linear partial
differential equation of the second order. Using the classical Leibnitz’s notation it can be
written as:

*y(x1) _ 2 9%y(x1) @7)
ot? ox?

When external forces parallel to the y axis act along the string, let F denote the force per unit
length of string, the positive sense of F being that of the y axis. Then a term F4x must be added
on the right-hand side of equation (4.4) and the equation of motion is

V(X t)= azyxx(x.t)+g (4.8)

In particular, with the y axis vertical and its positive sense upward, suppose that the
external force consists of the weight of the string. Then FAx = - dAxg, where g is the
acceleration of gravity; and equation (4.8) becomes the linear nonhomogeneous equation.
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Yi (X't): azyxx(x,t)— g (4.9)

In equation (1), F may be a function of x, t, y, or derivatives of y. If the external force per
unit length is a damping force proportional to the velocity in the y direction, for example, F
is replaced by — By; , where the positive constant B is a damping coefficient. Then the
equation of motion is linear and homogeneous:

B
yo(x,t)=ay, (x,t)-by,(x,t) , b:g (4.10)

If one end x = 0 of the string is kept fixed at the origin at all times t > 0, the boundary
condition there is clearly

y(0,)=0 , t>0 (4.11)

But if that end is permitted to slide along the y axis and if the end is moved along that axis
with a displacement f(t), the boundary condition is the linear nonhomogeneous condition

yO,0=f(t) , t=0 (4.12)

When the left-hand end is looped around the y axis and a force g(t), (t > 0) in they
direction is applied to that end, g(t) is the limit of the force V(x,t) described above as x tends
to zero through positive values. The boundary condition is then

—Hy,O,)=9g(t) , t>0 . (4.13)

The negative sign disappears, however, if x = 0 is the right-hand and because g(t) is then the
force exerted on the part of the string to the left of that end.

4.2. Notations and preliminary definitions

Classical notation. According to the classical notation, which has been proposed by Leibnitz,
the partial derivative of order k of function u with respect independent variables x; and X; is
denoted by

d*u(x)
ool
Lower index notation. In this kind of notations the partial derivative with respect independent
variable x or t is denoted by yx or y; . Second derivatives are denoted by Yy, Yxt, Vit
General index notation

Let a=(a,az,...,a,) be avector with non-negative components. The vector . is called a

multiindex with the length equal to ‘a‘ =g +op+.tay If aisa given multiindex, then

for any integer | < k.

D“ u(x) denotes the following partial derivative of the function u of order \a\ :

a‘“‘u(x) a1 A0
a _ 7%
D U(X)———a ...6X”u

X
oxloxg?..oxgm L

(4.14)
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If k is a positive integer then
DX u(x):{D“ u(x):\a\:k} (4.15)

constitutes the set of all partial derivatives of order k. If k =1 one gets

Du=| M M M gradu (4.16)
OX OXp  OXp

for a function u of the class C((-o0, +o0)), the gradient of the function u. In the case of k =2,
if u is a function of C?((-o0, +o0)), elements of D?u are elements of matrix

Pu o
oxZ " oxox,

DT , (4.17)
ou

ox.ox, T ox?

Which is known as a hesjan. The trace of the matrix (4.17):

n 2
Au=tr(D?u)= za—f (4.18)
it OX;
is the laplasjan of the function u.
After presentation of notations that can be met in the course of partial differential
equations the definition of the partial differential equation can be formulated.
Definition 4.1. Let U be an open set in R" . Consider an equation of the form

F(D* u(x), D u(x),..., Du(x)u(x),x)=0, (4.19)

where xeU cR", F R™xR" xR"xRxU >R isa given function and u:U —> R is
the unknown function. Equation (4.19) is called a partial differential equation of the order k.

4.3. Classification
Among partial differential equations the special role is played by linear differential equations.
This is because historically almost all problems in physics and mechanics had led to this type
of equations. On the other hand a closed form solutions for an equation which is not linear
can be hardly obtain. Below definitions of linear equations together with some relative forms
are given.
Definition 4.2. A partial differential equation of order k is called linear if it can be expressed
in the following form

> a,(x)DU = f(x) , (4.20)

<k
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where \a\ <k and a,(x) and f(x) are given functions. Functions a,(x) do not depend on neither

any derivative of the function u nor the function u itself. If f =0 then equation (4.20) is

called homogeneous.
Definition 4.3. A partial differential equation of order k is called half-linear or semi-linear if it
can be expressed in the following form

> a,(x)DU+a, (D" u,..,Du,u,x) =0 (4.21)

lal=k

Definition 4.4. A partial differential equation of order k is called quasi-linear if it can be
expressed in the following form

> a,(D"u,..,Du,u,x)Du+a,(D"* u,..,Du,u,x)=0 . (4.22)

|er|=k
Definition 4.5. A partial differential equation (4.19) of order k is called totally non-linear if

function F depends on derivatives of order k in a non-linear way.
Definition 4.6. An equation of the form

F(D*u(x), D**u(x)...., Du(x),u(x),x) =0 , (4.23)

where F is a given known function of the type F:R™ xR™  x...xR™xR"xU —>R" , 0
is the column vector of zeros and u:U — R™,u = (u',..u™) is and unknown function is called
a system of partial differential equations of order k.

4.4. Some important examples of partial differential equations
In this section some most well-known in physics partial differential equations are listed.

Linear equations

The Laplace equation
n
Au=>"u,, =0 (4.24)
i=1

The Helmholz equation (eigenvalue problem of the Laplace operator)
—-Au=Au , 1eR (4.25)

The linear transport equation
U+ b'u, =0 (4.26)

The Liouville equation
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The heat conduction equation

The Schrédinger equation

The Kolmogorov equation

The Fokker-Planck equation

The wave equation

The general wave equation

The Airy equation

Half-linear equations

The non-linear Poisson equation

The non-linear wave equation

52

u—Au=0
2
ilul+ h Au=0
2z 8zm

u, — Zn:a“uxlxj +Yb'u, =0

ij=1 i-1

i,j=1

u, —Au=0

n n
ij i _
U, — E alu,, + Elb u, =0
ij i=:

U, +U,, =0
—Au = f(u)
u, —Au = f(u)

- D@, - > b, =0

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



Totally non-linear equations

The Hamilton-Jacoby equation
u, +H(Du,x)=0 (4.37)
The scalar law of conservation
u, +divF(u)=0 . (4.38)
4.5. The classical classification of the linear equations of the second order

Consider a domain include in R% The second-order linear partial differential equation

2 2 2
AdYU g U cOU pM N il (4.39)
OX oxoy oy oX oy

Where A, B,..., G are constants of functions of x and y only, is elliptic, parabolic, or
hyperbolic type in a domain of the xy pane if the quantity

B?-4AC (4.40)
is negative, zero, or positive, respectively, throughout the domain. The three types require

different kinds of boundary conditions to determine a solution.
Example 4.1. Consider the Laplace equation in the form

P o

aXX 8y2

0 . (4.41)

For this case A=C =1 and B, D, E, F and G vanish. Therefore B> —4AC = -4 <0, hence the
Laplace equation is elliptic in every domain.

Example 4.2. In the case of wave equation (4.7), B?-4AC =+4a®>0, hence the wave
equation is hyperbolic in every domain.

Example 4.3. Consider the heat conduction equation of the form

2
KTU_M_g (4.42)
ox- oy

For this case A=k, E=1and B, C, D, F and G vanish. Therefore B> —4AC =0, hence the
heat conduction equation is parabolic in every domain.

4.6. Boundary value problems
Example 4.3. The problem consisting of the partial differential equation (the Laplace
equation)
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2 2
4 U(xz.y)+6 ux.y) _,

for xy0 and yy0 4.43
x o ) ) (4.43)
and the two boundary conditions
u,y) = (0.y) , y>0 (4.48)
OX
u(x,0)=sinx+cosx , x>0 (4.49)

is an example of a boundary value problem in partial differential equations. The domain is the
first quadrant of the xy plane. Let us verify that the function

u(x,y)=e(sinx + cosx) (4.50)

is a solution of that problem. First let us find partial derivatives of the function given by eqn.
(4.50).

2

‘iu:_e*y(sinx+cosx) = %:e’y(sinx+COSX) (4.51)
2

%:e‘y(cosx—sinx) = 272:(_1)9'V(sinx+cosx) (4.52)

The above equations evidently show that function u defined by (4.50) satisfies the Laplace
equation. Moreover

au

U (0,y)=e(cos0—sin0)=e” = u(0,y)=

0y)=e” and &
u(0,y)=¢e and — ax

,y) (4.53)

and
u(x,0) = €°(sin x + cos x) = sin x + cos x.. (4.54)

This means that the boundary conditions are fulfilled by the function (4.50).

Let u denote the unknown function in a boundary value problem. A condition that
prescribes the values of u itself along a boundary is known as a boundary condition of the first
type, or a Dirichlet condition. A boundary condition of the second type, also called a
Neumann condition, proscribes the values of the normal derivative du/dn of the function at
the boundaries. Among other kinds of boundary conditions are those of the third type in
which values of hu + du/dn are prescribed at the boundaries, where h is either a constant or a
function of the independent variables.

If the partial differential equation in u is of second order with respect to one of the
independent variables t and if the values of both u and u; are prescribed on a boundary t = 0,
the boundary condition is one of Cauchy type with respect t.

From the viewpoint of applications it is usually very important to avoid of so-called
ill-conditioned problems. The notion is explained by the definition given below.

Definitin 4.7. (Hadamard’s well-posedness)
A boundary value problem is said to be well-posed if
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1. it has a solution,

2. the solution is unique,

3. the solution depends continuously on the given data.
Otherwise the problem is ill-posed or ill-conditioned.

Chapter 5
Some simple methods of solving partial differential equations and
boundary value problems

5.1. Successive integration
As in the case of ordinary differential equations as one of the most important notions
are particular and general solutions. The definitions are given below.
Definition 5.1. A particular solution of a given partial differential equation of order n in the
domain D is called a function of the class C"(D), which satisfies the given equation in each
point of D.
Example 5.1. Consider the equation

Xu, —yu, =u . (5.1)

y

Let us demonstrate that the function
u(x,y)=xy (5.2)

Is the particular solution to egn. (5.1) in any domain D — R®. It is obvious that the function
defined by (5.2) is of the class C*(D). Substitution of the function u into the left-hand side of
the egn. (5.1) gives

0 0
x&(xzy)— y@(xzy)z X2xy — yx> = yx* . (5.3)

This means that the equation (5.1) is satisfied independently of the choice of the domain D.
Definition 5.2. A general solution to a given partial differential equation of order n is the
family of its all particular solutions.

In order to illustrate similarities and differences between ordinary and partial
differential equations, let us start with some very simple examples.
Example 5.1. Find a general solution to the following equation of the second order:

2
ou_, (5.4)
OXoy
The equation (5.4) can be written as
ofou)_g, (5.5)
ox\ oy
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ou

which means that the derivative = is constant with respect to the variable x. Then it follows
oy
that
Mgty ©9)
oy

where g is any function of class C!((-o0, +o0)). Finally function u can be obtained by
integrating the above derivative with respect to variable y , namely

u=[g(y)dy+y(x). 57)

where y(x) is any function of the class C%((-o0, +00)) of variable x solely. If now ¢(y) is any

antiderivative of the function g, then it follows that the general solution to the egn. (4.11) has
a form:

u(x,y) =e(y) +y(x) (5.8)

Note that the general solution (5.8) contains a huge number of functions in comparison with
analogical problems in ordinary differential equations.
Example 4.2. Find the general solution to the equation

NN _g, (5.9)

ox oy

Let us introduce new independent variables in the following way

E=X+Y ; n=Xx-Yy : (5.10)
Consequently
1 1
u(xy)=) 36 +n) 26 -n) | =hle) 61)
and
u_ochos ohon_oh oh (5.12)
ox 0Eox onox OE on
Similarly
u_oh_oh (5.13)
o o5 on
Substituting (5.12) and (5.13) to (5.9) one gets
oh
—=0 . 5.14
on (5.14)

Integrating the last equation with respect to variable 5 one obtain
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h(&n)=g(&) . (5.15)

where g is any function of the class Cl(— oo;+oo). Coming back to initial coordinate system the
general solution o eqn. (5.9) appears as

ux,y)=g(x+y) . (5.16)

5.2. Separation of variables
In section 2.1. ordinary differential equations of separated variables has been
considered. Here separation of variables will be applied as a method of finding solutions of
selected boundary value problems associated with certain types of partial differential
equations. The method will be demonstrated on the basis of the string equation (4.6). Assume
that xc [0,c] and t > 0. We will seek for a solution which satisfies the following boundary

conditions:

y(0,t)=0, y(c,t)=0, vy,(x,0)=0. (5.17)
In determining nontrivial (trivial solution means that y = 0) solutions of all homogeneous
equations (4.6) and (5.17) in the above boundary value problem, using ordinary differential
equations we seek functions of the form

y(x,t) = X (X)-T(t) (5.18)

which satisfy those equations. Note that X is a function of x alone and T a function of t alone.
Note, too, that X and T must be nontrivial. If y = XT satisfies equation (4.6), then

X(x)-T"(t) =a’x"(x)-T(t); (5.19)
And we can divide by a?XT to separate variables

X"(X) _ T"(t)
X(X) a’T(t)

vxe[0,c] V,>0 (5.20)

Since the left-hand side here is a function of x alone, it does not very with t. However, it is
equal to a function of t alone, and so it cannot vary with x. Hence both sides must be some
constant value, which we denote as - 4 in common, that is

X"(X) = -AX(X) T'(t)=-4a°T(t) . (5.21)
If XT is to satisfy the first of conditions (5.17), then X(0)T (t) must vanish forallt >0. But T
is nontrivial then it follows that X(0) =0. Likewise, the last two conditions of (5.17) are

satisfied by XT if X(c) =0 and T’(t) = 0. Thus XT satisfies equations (4.6) and (5.17) when X
and T satisfy these two homogeneous problems:

X"(X)+AX(X)=0, X(0)=0, X(c)=0 (5.22)

T"(t) + 22T (t) = 0, T'(0)=0 , (5.23)
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where the parameter A has the same value in both problems. Note that problem (5.23) has only
one boundary condition and therefore many solutions for each 4. Since problem (5.22) has
two boundary conditions, it may have nontrivial solutions for particular values of 1.

If 1=0, then
1=0 = X"(X)=0= X'(X)=A=> X(X)=Ax+B . (5.24)

On the other hand
X(0)=0 = B=0; X(C)=0=A-C+0=0 = A=0. (5.25)

Therefore his problem has just trivial solution X(x) = 0 when 4 = 0.
If />0, we may write A =a? (a > 0). The differential equation in problem (5.22)

takes the form
X"+a’X =0 (5.26)
Its general solution is
X (x)=C,sinax+C, cosax (5.27)
The condition X(0) = 0 implies that C, = 0; and if the condition X(c) = Ois hold,
C,sinac=0 . (5.28)

In order for there to be a nontrivial solution, then, « must satisfy the equation

sinac=0=>a=2%  n=12. (5.29)
C

Thus, except for the constant factor Cy,

X (X) =sin% n=12.. (5.30)

n27Z'2

The numbers 2 =qa? =—
c

for chich problem (5.22) has nontrivial solution are called

eigenvalues of the problem, and the functions (5.30) are the corresponding eigenfunctions.
When 4 <0, let us write 2 = - #2 (8 > 0). Then

X (x) = D,sinh(sx) (5.31)
is the solution of linear homogeneous equation
X"— %X =0 (5.32)

That satisfies the condition X(0) = 0. Since sinh(fc) # 0 then D; = 0 if X(c) = 0. Thus the
problem (5.22) has no negative eigenvalues.
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2_2

When A = n—f , problem (5.23) becomes
c

2
(M) + [?j T(t)=0; T(0)=0 . (5.33)
Except for a constant factor, then

nzat

T(t) =cos—— . (5.34)
c
Therefore each function of the infinite set
Yy, (X,t) =sin n—ﬂxcosn—”at , n=12,... (5.35)
c c

satisfies all homogeneous equations (4.6) and (5.17).
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