Zachowanie się ortotropowych powłok walcowych
w ośrodku gruntowym pod statycznym
i dynamicznym obciążeniem zewnętrznym

mgr inż. Bartłomiej Kunecki

Rozprawa doktorska

Promotor:
Prof. dr hab. inż. Ernest Kubica

Słowa kluczowe:
powłoki walcowe, przepust stalowy, badania w pełnej skali,
Metoda Elementów Skończonych.
Spis treści

1. Wstęp
 1.1. Wprowadzenie ... 6
 1.2. Cel i zakres pracy ... 8

2. Badania teoretyczne i doświadczalne dotyczące przepustów z blach falistych
 2.1. Wstęp .. 9
 2.2. Metody projektowe ... 9
 2.2.1. Przepusty sztywne ... 10
 2.2.1.1. Sztywność przepustu ... 10
 2.2.1.2. Przepust sztywny ułożony w rowie ... 11
 2.2.1.3. Przepust sztywny ułożony w wykopie odsłoniętym .. 13
 2.2.1.4. Przepust sztywny ułożony w wykopie odsłoniętym nieidealnym 15
 2.2.2. Przepusty podatne .. 16
 2.2.2.1. Siła obciążająca (ściśkająca) ściankę przepustu ... 19
 2.2.2.1.1. Teoria ściskania pierścieniowego (obwodowego) .. 19
 2.2.2.1.2. Metoda Marstona – Spanglera ... 20
 2.2.2.2. Metoda Kleina .. 20
 2.2.2.3. Teoria ściskania pierścieniowego (obwodowego) .. 21
 2.2.2.4. Metoda zgodna z normą kanadyjską (Canadian Highway Bridge Design Code - CHBDC) i amerykańską (Ontario Highway Bridge Design Code - OHBDC) ... 23
 2.2.2.5. Metoda zgodna z normą American Associacion of State Highway and Transportation Officials (AASHTO) ... 25
 2.2.2.6. Metoda współpracy z gruntem ... 26
 2.2.2.7. Metoda Vaslestad ... 27
 2.2.2.8. Analityczna metoda sprężysta .. 29
 2.2.2.9. Metody numeryczne ... 31
 2.2.2.9.1. Metoda Sprężyn .. 31
 2.2.2.9.2. Metoda Elementów Skończonych (MES) .. 32
 2.2.2.3. Wyboczenie ścianki przepustu podatnego .. 34
 2.2.2.4. Wybrane badania przepustów podatnych w skali naturalnej 36
 2.3.1. Przepusty kolejowe w Międzyzdrojach .. 36
 2.3.1.1. Konstrukcja przepustu ... 36
 2.3.1.2. Grunt nasypu ... 37
 2.3.1.3. Wyniki pomiarów przy próbnym obciążaniu .. 37
 2.3.2. Przepust drogowy na drodze krajowej nr 11 ... 38
 2.3.2.1. Konstrukcja przepustu ... 38
 2.3.2.2. Obciążenia ... 39
 2.3.2.3. Wyniki pomiarów ... 40

Strona 3
2.3.3. Przepust drogowy w miejscowości Jeleniów .. 42
 2.3.3.1. Konstrukcja przepustu .. 42
 2.3.3.2. Wyniki pomiarów .. 42

2.3.4. Przepust w Tolpinrud (Norwegia) ... 45
 2.3.4.1. Konstrukcja przepustu .. 45
 2.3.4.2. Aparatura pomiarowa ... 45
 2.3.4.3. Wyniki pomiarów .. 46

2.3.5. Przepust w Dovre (Norwegia) ... 49
 2.3.5.1. Opis konstrukcji .. 49
 2.3.5.2. Wyniki pomiarów .. 51

2.3.6. Przepust w Elkhart Creek (Kanada) ... 54
 2.3.6.1. Opis konstrukcji .. 54
 2.3.6.2. Wyniki pomiarów .. 55

2.3.7. Przepust w Leigh Creek (Australia) .. 57
 2.3.7.1. Opis konstrukcji .. 57
 2.3.7.2. Wyniki pomiarów .. 58

2.3.8. Badania Armco i Thyssen ... 64
 2.3.8.1. Opis konstrukcji .. 64
 2.3.8.2. Program i wyniki testów .. 65

2.4. Podsumowanie stanu badań i sformułowanie tez 71

3. Badania modelowe

3.1. Stanowisko badawcze .. 74

3.2. System zbierania i akwizycji danych ... 75

3.3. Obiekt badań ... 76

3.4. Obciążenia .. 78
 3.4.1. Schematy obciążeń .. 80
 3.4.1.1. Obciążenia statyczne .. 80
 3.4.1.2. Obciążenia zmęczeniowe ... 81
 3.4.1.3. Próba zniszczenia .. 81

3.4.2. Wartości obciążeń dla poszczególnych wariantów badań 82

3.4.3. Wartości obciążenia zmęczeniowego ... 82

3.4.4. Program badań .. 84

3.5. Pomiary, przemieszczeń, odkształceń, sił parcia w gruncie oraz kontrola geometrii ... 84
 3.5.1. Pomiary geometrii podczas obsypywania gruntem 84
 3.5.2. Pomiary przemieszczeń .. 85
 3.5.3. Pomiary odkształceń ... 86
 3.5.4. Pomiary sił parcia w gruncie .. 88
 3.5.5. Punkty pomiarowe .. 88

3.6. Badania gruntu .. 89
3.7. Wyniki pomiarów dla przepustu Multiplate GL4 ... 90
 3.7.1. Symetryczne obciążenie statyczne ... 91
 3.7.2. Symetryczne obciążenie zmęczeniowe ... 107
 3.7.3. Asymetryczne obciążenie statyczne ... 136

3.8. Wyniki pomiaru geometrii przepustu Multiplate GL4 145

3.9. Wyniki badania gruntu .. 146

4. Wyznaczenie wytężenia przepustu metoda elementów skończonych
 4.1. Element powłokowy SHELL4 .. 151
 4.2. Element bryłowy SOLID ... 155
 4.2.1. Sprężysty-idealnie plastyczny model gruntu Druckera – Pragera 157
 4.2.2. Metoda iteracyjna Newtona - Raphona dla zagadnienia nieliniowości fizycznej ... 158
 4.3. Dyskretyzacja modelu badanego przepustu .. 161
 4.4. Wyniki analizy numerycznej ... 162
 4.5. Wpływ warunków brzegowych na rozkład naprężeń w gruncie i powłoce przepustu ... 168
 4.5.3. Przesunięcie obudowy stanowiska badawczego ... 174
 4.6. Przepusty o przekroju eliptycznym ... 176

5. Podsumowanie i wnioski
 5.1. Badania statyczne .. 185
 5.1.1. Siły wewnętrzne: .. 185
 5.1.2. Przemieszczenia i deformacje .. 185
 5.1.3. Obciążenia asymetryczne ... 186
 5.1.4. Naprężenia w gruncie ... 186
 5.1.5. Badania z obciążeniem cyklicznym .. 186
 5.2. Zachowanie się przepustów podatnych w czasie - fazy pracy przepustu 188
 5.3. Rozkład naprężeń nad kluczem przepustu podatnego o dużej rozpiętości 189
 5.4. Analiza wyników z obliczeń numerycznych ... 192
 5.5. Zalecenia dotyczące przyszłych badań ... 193

6. Literatura .. 195
1. Wstęp

1.1. Wprowadzenie

Konstrukcje podatne ze stalowych blach falistych o dużych rozpiętościach są powszechnie stosowane na świecie w budownictwie drogowym i kolejowym, do budowy mostów, tuneli, przepustów, przejść podziemnych dla pieszych, zabezpieczeń lawinowych.

Konstrukcje te mają różnorodne kształty, jednak większość z nich to konstrukcje o przekrojach zamkniętych i rozpiętości do ok. 12.0 m. Obecnie coraz częściej spotyka się przepusty otwarte o przekroju skrzynkowym, tzw. box culvert, oparte na fundamentach betonowych oraz przepusty łukowe, których rozpiętość sięga nawet 20.0 m (tzw. super-span), jak pokazany na rysunku 1.1 przepust wybudowany w Kanadzie (największy tego typu przepust z blachy falistej na świecie) oraz największy jak do tej pory w Europie przepust na drodze krajowej nr 5 Wrocław - Poznań (rysunek 1.2). Grubości fałdowych blach stalowych lub aluminiowych mieszczą się w przedziale od 2.75 mm do 8.00 mm.

Rys. 1.1. Przepust Kemess Arch w Kanadzie o rozpiętości ponad 20 m.

Rys. 1.2. Przepust na drodze krajowej nr 5 Wrocław-Poznań.
Jeden z największych w Europie o rozpiętości ok. 17 m.

Konstrukcje te są podatne i znaczną część obciążenia przenoszą poprzez współpracę z otaczającym je gruntelem. Projektowanie konstrukcji wymaga zrozumienia tej współpracy i określenia sił występujących w konstrukcji.

Grunt uważany jest jako istotny element nośny układu systemu grunt-konstrukcja. Przemieszczenie konstrukcji w kierunku zewnętrznym powoduje nacisk na grunt, a tym samym zwiększenie jego sztywności. Opisana współpraca konstrukcji przepustu z otaczającym go ośrodkiem gruntowym ma decydujący wpływ na rozkład obciążenia działających wokół przepustu. Na rysunku 1.3 przedstawiono schematy rozkładów...
obciążeń według Dreschera dla kołowego przepustu sztywnego, sprężystego, podatnego i idealnie podatnego, w jednakowych warunkach ich ułożenia i przy jednakowym zagłębieniu w gruncie [105].

Przepusty sztywne wykonane z takich tradycyjnych materiałów jak: beton, żelbet, kamionka, zagłębia w gruncie, praktycznie nie odkształcają się pod wpływem działających na nie obciążeń. Brak deformacji przekroju sprawia, że rozkład obciążeń charakteryzuje się dużymi koncentracjami w górnej i dolnej strefie przepustu szczególnie, gdy grunt został słabo zagęszczony w strefach bocznych wykopu. Taki rozkład obciążeń jest bardzo niekorzystny, ponieważ momenty zginające w najbardziej wyżłobionych przekrojach przyjmują wtedy duże wartości, przy czym stan maksymalnych koncentracji obciążeń występuje bezpośrednio po zasypaniu wykopu.

Inaczej zachowują się przepusty podatne z blach falistych i tworzyw sztucznych ułożone w gruncie. Dzięki swojej elastyczności współdziałają one przy przenoszeniu obciążeń z otaczającym je ośrodkiem gruntowym. Dlatego właśnie podczas wymiarowania takich przepustów nie rozpatruje się pracy samych powłok przepustów, lecz analizuje pracę układu przepust-ośrodek gruntowy.

Podstawą interakcji układu przepust-ośrodek gruntowy jest deformacja przekroju obciążonej konstrukcji, odpowiadająca jej reakcja gruntu oraz tzw. zjawisko przesklepienia. Zjawisko przesklepienia powstaje w gruncie nad koroną przepustu, pod wpływem przemieszczania do wewnątrz konstrukcji w górnej jej części. Deformacja ta wywołuje powstanie naprężeń ściśniętych działających w gruncie ku dołowi w płaszczyźnie pionowej, co powoduje dociśnięcie lub odciśnięcie konstrukcji. Z kolei boczne przemieszczania konstrukcji, działające na zewnątrz, trafiają na opór otaczającego gruntu. Tak więc ośrodek gruntowy otaczający przewód ogranicza wielkość deformacji przekroju. Ograniczenie to jest tym większe, im sztywniejszy jest grunt w strefach bocznych przepustu, co zależy od rodzaju gruntu i od stopnia jego zagęszczenia. Odpowiedzią na nacisk stref bocznych przepustu na grunt jest parciu bierne, czyli odpór gruntu. Wartość odkłania obciążonych przepustów podatnych z blach falistych i tworzyw sztucznych jest zatem zależna nie tylko od parametrów wytrzymałościowych materiału konstrukcyjnego, ale także od parametrów wytrzymałościowych otaczającego ją gruntu.

Najważniejszym etapem w procesie budowy jest ułożenie zasypki wokół konstrukcji. Zasypka powinna być wykonana warstwami z materiału dobrej jakości, niespoistego, przepuszczalnego, dobrze zagęszczonego, ułożonego symetrycznie po obu stronach konstrukcji. Szczegółowe zalecenia dotyczące montażu konstrukcji z blach falistych zawarte są w [K1, K3]. Podczas procesu obsypwania boczne parcie gruntu powoduje przemieszczanie się boków przepustu do wewnątrz, natomiast korony przepustu do góry. Zjawisko takie powodowane jest nakładaniem i zagęszczającym kolejnych warstw gruntu. Wartość momentów zginających w ścianie przepustu wraz ze wzrostem wysokości naziomu maleje.

Jak dotąd większość metod projektowych bazuje na doświadczeniach zdobytych przy budowie innych konstrukcji, a nie na modelach analitycznych, z uwagi na to, że te drugie są skomplikowane, pomimo prostoty samego układu przepust – grunt.

Modelowanie analityczne związane jest z następującymi trudnościami:
- tymczasowe obciążenia montażowe w trakcie zagęszczania obserw, poziomy na granicy powierzchnia zewnętrzna przepustu – grunt, nieliniowość materiałowa gruntu i konstrukcji, różnorodność kształtów geometrycznych, inne cechy jak np. belki uszytniające.

Obecnie najlepszą metodą, dzięki której można opisać większość warunków brzegowych tego skomplikowanego problemu jest Metoda Elementów Skończonych.
1.2. Przedmiot, cel i zakres pracy

Przedmiotem opracowania są przepusty podatne o dużych rozpiętościach wykonane ze stalowej blachy falistej poddane statycznemu oraz dynamicznemu (cyklicznemu) obciążeniu zewnętrznemu.

Celem opracowania jest określenie interakcyjnej nośności powłok łukowych w ośrodku gruntowym stanowiącej konstrukcję nośną podatnych przepustów drogowych i kolejowych.

Zakres opracowania obejmuje następujące elementy:

- Omówienie najważniejszych metod projektowych dotyczących przepustów.
- Zestawienie wybranych badań przepustów podatnych w skali naturalnej.
- Sformułowanie tez.
- Badania laboratoryjne przepustu łukowego zamkniętego w skali rzeczywistej.
- Wykonanie analizy numerycznej.
- Analiza wyników i wniosków

Po analizie dotychczasowych rozwiązań i wyników zebranych na podstawie wybranych badań przepustów podatnych w skali rzeczywistej za niezbędne uznano przeprowadzanie badań laboratoryjnych przepustu łukowego zamkniętego w skali rzeczywistej pod kontrolowanym obciążeniem oraz przy dokładnie sprawdzonych warunkach gruntowych.

Badania modelowe przeprowadzono na przepuściu stalowym typu „multiplate” dostarczonym przez firmę ViaCon. Badany przepust został wykonany z arkuszy blachy falistej o wymiarach fali 150 x 50 mm i grubości ścianki 3.75 mm, łączonych ze sobą zakładkowo na śruby wysokiej wytrzymałości. Pofalowanie blachy było w kierunku podłużnym przepustu w celu uzyskania większej sztywności w kierunku obwodowym. Długość modelu wynosiła 14.40 m, szerokość – 2.99 m i wysokość – 2.40 m.

Do przeprowadzenia testów wykorzystano stanowisko do badań elementów konstrukcji mostowych w skali rzeczywistej, na którym zbudowano specjalne ściany oporowe. Pomiędzy ściany wprowadzono konstrukcję przepustu, którą obsypano gruntem. Tak przygotowany przepust poddano obciążeniu przy użyciu dwóch siłowników hydraulicznych oraz specjalnie zaprojektowanej płyty do przekazywania obciążenia z siłowników na grunt i badany obiekt.

Badania polegały na rejestracji w połowie długości modelu następujących wielkości:

- Przemieszczeń normalnych do płaszczyzny powłoki w trzech punktach obwodu (przy użyciu czujników indukcyjnych).
- Odkształceń obwodowych w 14 punktach obwodu (przy użyciu tensometrów elektrooporowych), przy czym w każdym punkcie pomiarowym były umieszczone dwa tensometry – jeden na grzbiecie fali, drugi na przyległym wgłębieniu.
- Naprężenia w gruntie w ośmiu punktach obwodu i dwóch punktach naziomu (przy użyciu tzw. presjometrów).

Rozwiązania teoretyczne uzyskano wykorzystując Metodę Elementów Skończonych budując numeryczny, trójwymiarowy model konstrukcji przepustu, otaczającego go grunty oraz ścian obudowy stanowiska badawczego. Metalową blachę przepustu odwzorowano jako powłokę z materiału liniowo-sprężystego wykorzystując element typu „Shell”, natomiast otaczający grunt opisano wykorzystując sprężysto-idealnie plastyczny model gruntu wg Druckera - Pragera i elementy typu „Solid”.
2. Badania teoretyczne i doświadczalne dotyczące przepustów z blach falistych

2.1. Wstęp

W niniejszym punkcie przedstawiono przegląd tradycyjnych metod stosowanych w projektowaniu przepustów sztywnych i podatnych.

2.2. Metody projektowe

Projektowanie przewodów zanurzonych w gruncie tradycyjnie opiera się na doświadczeniach zebranych przy obserwacji zachowań wcześniej zbudowanych konstrukcji. Ogólne reguły projektowe bazują na doświadczeniach z obserwacji rur o mniejszych średnicach, zbudowanych za pomocą technologii obecnie niestosowanych.

Wiadomo, że wielkość i rozkład obciążeń na przepust od ciężaru gruntu oraz obciążeń zewnętrznych zależy od względnej sztywności przepustu. Z tego względu wyróżniono przepusty sztywne (np. betonowe) i podatne (np. ze stalowych blach falistych, aluminium lub plastiku).

Teorią obliczania przewodów zanurzonych w gruncie zajmowali się badacze z wielu krajów, m.in. Marston, Spangler, Tchebotarioff (USA), Wetzorke (Niemcy), Voellmy (Szwajcaria), Vaslestad (Norwegia), Jakobsen (Szwecja), Klein i Jemielianow (Rosja). Poniżej omówiamy teoretyczne podstawy wyznaczania wypadkowych parci gruntu G na rurę sztywną w wykopie. W opinii projektujących podziemnych dróg, obciążenia są skierowane w kierunku gruntu zalegającego nad przepustem. W niektórych przypadkach, obciążenie może być mniejsze niż ciężar legającego nad przepustem. W innych przypadkach, obciążenie może być większe i może zapobiegać zanieczyszczeniu."}

2.2.1. Przepusty sztywne

Teoria Martona - Spanglera opiera się na założeniu, że obciążenie ciążarem kolumny gruntu znajdującej się nad rurą jest redukowane poprzez przeklepienie, w którym część ciężaru przekazywana jest do kolumny gruntu przekazywana jest do przezyskującą. W niektórych przypadkach obciążenie przekazywane może być mniejsze niż ciężar legający nad przepustem. W innych przypadkach, obciążenie rury może być większe i może zapobiegać zanieczyszczeniu."}

W celu określenia kierunku przekazywania obciążeń należy określić kierunek przemieszczeń lub tendencji do przemieszczeń pomiędzy przekazywaniem na przepust zalegający bezpośrednio nad rurą a sąsiednimi przepustami gruntu.

Rys. 2.1. Klasy przepustów wg teorii Marstona - Spanglera:

a) przepust w rowie, b) przepust w wykopie otwartym, c), d) przepust w wykopie nieidealnym.
Teoria Martona - Spanglera dzieli przepusty podziemne na dwie podstawowe klasy: przepusty ułożone w rowie i przepusty ułożone w wykopie otwartym. Wśród przepustów ułożonych w wykopie otwartym wyróżnia się przepusty w wykopie otwartym nieidealnym. Dla każdej z klas przepustów przyjmuje się, że ciężar przemysłu gruntu nad przepustem jest powiększony lub pomniejszony o wartość tarcia pomiędzy sąsiadującymi pryzmami gruntu po obu stronach przepustu i jest przenoszona przez przepust.

Przepust w rowie to rura ułożona w stosunkowo wąskim wykopie (rowie), co powoduje powstawanie sił tarcia na granicy próżni przeciwko wykopu a zasypany - rysunek 2.1a. Przepust w wykopie otwartym to rura ułożona i obsypana gruntiem innym niż grunt rodzimy – rysunek 2.1b. Przepust w wykopie nieidealnym jest przypadkiem przepustu w wykopie otwartym, szczególnym ze względu na dwa poziomy obsypania nad przewodem – rysunek 2.1c lub zastosowanie warstwy materiału ścieńkiego – rysunek 2.1d.

2.2.1.1. Sztywność przepustu

Sztywność przepustu (sztywność obwodowa) wyznaczana jest doświadczalnie i mierzona jako odporność na ugięcie obwodowe w wyniku podzielenia siły działającej na próbkę przez długość tej próbki i ugięcie, co wyraża się wzorem:

\[S = \frac{F \cdot f}{L \cdot dv} \]

(1)

\[f = 10^{-5} \left(1860 + 2500 \frac{dv}{d_m} \right) \]

(2)

\[d_m \] – uśredniona średnica przepustu.

Do celów projektowych przyjmuje się różne wartości sztywności obwodowej w zależności od norm i wytycznych stosowanych w różnych krajach. Przepisy CEN (Comité Européen de Normalisation) oraz normy ISO definiują sztywność obwodową zależnością:

\[S = \frac{EI}{d_m^3} \]

(3)

gdzie:
\[E \] – moduł sprężystości materiału, z którego wykonana jest konstrukcja,
\[I \] – moment bezwładności przekroju ścianki przepustu,
\[d_m \] – średnica j.w.

Badanie sztywności obwodowej wg normy PN-EN ISO 9969 polega na ściskaniu próbki ułożonej między dwiema równoległymi płytami. Badanie wykonuje się na trzech próbkach o tej samej średnicy. Sztywność obwodową wyznacza się w kiloniutonach jako średnią arytmetyczną z obcięć trzech próbek, korzystając z następującej zależności:

\[S_i = \frac{0.0186 + 0.025 \cdot Y_i \cdot F_i}{D_w \cdot L_i \cdot Y_i} \]

(4)

gdzie:
\[F_i \] – siła odpowiadająca 3% deformacji średnicy przewodu dla i-tej próbki, [kN]
\[L_i \] – długość i-tej próbki, [m]
\[D_w \] – średnica wewnętrzna, [m]
\[Y_i \] – odkształcenie odpowiadające 3% ugięciu, [m]
Według norm niemieckich DIN, sztywność obwodową wyznacza się z zależności:

\[S_R = \frac{EI}{r_m^3}, \] (5)

gdzie:

\[r_m = \frac{d_z^2 + d_w^2}{4} \] – średni promień przewodu,
\[d_z \] – średnica zewnętrzna,
\[d_w \] – średnica wewnętrzna,
\[E \] – j.w.,
\[I \] – j.w.

W normie amerykańskiej American Society for Testing Materiale (ASTM) określa się sztywność obwodową przy ugięciu 5% i wyraża ją stosunkiem F/dv.

W tabeli nr 2.1 zestawiono sztywności obwodowe wyznaczone na podstawie różnych norm [25].

Tabela 2.1. Zestawienie sztywności obwodowych obliczonych wg różnych norm [25].

<table>
<thead>
<tr>
<th>Sztywność nominalna</th>
<th>SN2500</th>
<th>SN5000</th>
<th>SN10000</th>
<th>SN15000</th>
<th>SN20000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oznaczenie</td>
<td>Jedn.</td>
<td>Norma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>N/m²</td>
<td>ISO, CEN</td>
<td>2500</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>Sₚ</td>
<td>N/mm²</td>
<td>DIN, ATV</td>
<td>0.02</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>F/dv</td>
<td>psi</td>
<td>ASTM</td>
<td>18</td>
<td>36</td>
<td>72</td>
</tr>
</tbody>
</table>

Często klasyfikuje się rury ze względu na sztywność używając kryterium Kleina, które wyraża się zależnością:

\[n = \frac{E_g r_m^3}{E \cdot e^3}, \] (6)

gdzie:

\[E_g \] – moduł odkształcalności gruntu,
\[E \] – moduł Younga materiału, z którego wykonany jest przewód,
\[r_m \] – średni promień rury,
\[e \] – grubość ścianki rury.

W przypadku rur sztywnych kryterium przyjmuje wartość \(n < 1 \), dla rur podatnych \(n > 1 \).

2.2.1.2. Przepust sztywny ułożony w rowie

Teoria pierwotnie została przedstawiona przez Marstona w 1913 r. i bazowała na teorii siłosów Janssena. Wyodrębniono jednostkowy element zasypki (\(dz \)), na który działa siła ścinająca od ciężaru gruntu, co pokazano na rysunku 2.2.
Naprężenia ściągające τ_v, działające na krawędziach wykopu są proporcjonalne do naprężenia normalnych pionowych σ_v na całej szerokości wykopu:

$$\tau_v = K \cdot \tan(\varphi) \cdot \sigma_v,$$

gdzie:
- σ_v – naprężenia normalne pionowe,
- φ – kąt tarcia wewnętrznego zasypki,
- K – współczynnik parcia czynnego gruntu wyrażony zależnością:

$$K = \frac{\tan(45 - \varphi/2)}{2} = \frac{1 - \sin(\varphi)}{1 + \sin(\varphi)}.$$

Oznacza to, że współczynnik tarcia pomiędzy zasypką a gruntami rodzinnymi równy jest $\tan(\varphi)$. Użycie czynnego parcia gruntu powoduje, że pionowe i boczne naprężenia są naprężeniami głównymi, bez uwzględnienia naprężenia ściągającego.

Ostatecznie maksymalne obciążenie, jakie działa na przepust, wyznacza się ze wzoru:

$$W_C = C_D \cdot \gamma \cdot B_D^2,$$

gdzie:
- W_C – obciążenie przepustu działające w górnej części przepustu,
- γ – ciężar właściwy zasypki,
- B_D – szerokość wykopu,
- C_D – współczynnik obciążeniowy równy:

$$C_D = \frac{1 - e^{-2K \cdot \tan(\varphi) \cdot \frac{H}{\gamma}}}{2K \cdot \tan(\varphi)},$$

$$H$$ – wysokość naziomu.

Równanie określające współczynnik obciążeniowy C_D wyraża się równaniem zależnym od iloczynu $K \cdot \tan(\varphi)$ oraz stosunku H do B_D. Wartości K i φ można wyznaczyć doświadczalnie, ale w praktyce przyjmuje się wartości K i $\tan(\varphi)$ wyznaczone dla znanych typów gruntów. Wartość iloczynu $K \cdot \tan(\varphi)$ waha się od 0.106 dla miękkich glin ($\varphi = 8^\circ$) do 0.192 dla zwirów i piasków dobrze zagęszczonych ($\varphi = 30^\circ - 35^\circ$).

Poniżej w tabeli 2.2 zestawiono przykładowe wartości φ, K oraz iloczynu $K \cdot \tan(\varphi)$ dla różnych typów gruntów przyjęte w norweskiej normie do projektowania mostów z 1985 r. (Bruprosjektering, 03 Støttemurer) [25].
Tabela 2.2. Zestawienie K i $\tan(\varphi)$ dla różnych rodzajów gruntu.

<table>
<thead>
<tr>
<th>Rodzaj Gruntu</th>
<th>φ</th>
<th>$\tan(\varphi)$</th>
<th>K</th>
<th>$K \cdot \tan(\varphi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Źwir</td>
<td>35°</td>
<td>0.70</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>Piasek</td>
<td>33°</td>
<td>0.65</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>Twarde gliny i namuly</td>
<td>26°</td>
<td>0.49</td>
<td>0.39</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Z przedstawionego powyżej zestawienia wynika, że iloczyn $K \cdot \tan(\varphi)$ ma stałą wartość dla wszystkich przedstawionych typów gruntu. Maksymalna wartość iloczyn ten osiąga dla $\varphi=30^\circ$ i wynosi 0.192.

Christensen zauważył, że bardziej poprawna wartość współczynnika K wyraża się wzorem [89]:

$$K = \frac{1 - \sin^2 \varphi}{1 + \sin^2 \varphi}$$ \hspace{1cm} (11)

Selig i Packard wykazali, że obciążenia wyznaczone zgodnie z teorią Martona – Spanglera są większe w porównaniu z obciążeniami otrzymanymi za pomocą metody elementów skończonych przy użyciu programu SPIDA. Wykazali przy użyciu koła Mohra, że maksymalna wartość iloczynu $K \cdot \tan(\varphi)$ wynosi $\sin(\varphi)$ [90].

2.2.1.3. Przepust sztywny ułożony w wykopie odsłoniętym

Podobnie jak dla przepustu w rowie, Marton stworzył równanie równowagi dla warunków pracy przepustu w wykopie odsłoniętym. Naprężenia ściancejące τ działają do dołu i powodują obciążenie rury większe niż ciężar gruntu znajdującego się w pryzmie bezpośrednio nad rurą. Sytuację pokazano na rysunku 2.3.

Obciążenie wyrażone jest następującą zależnością:

$$W_c = C_c \gamma B_c^2,$$ \hspace{1cm} (12)

gdzie:

B_c – średnica zewnętrznza przewodu,
γ – j.w.,
C_c – współczynnik obciążeniowy wyrażony wzorem:

$$C_c = \frac{e^{\frac{2K \cdot \tan(\varphi)}{\pi}} - 1}{2K \cdot \tan(\varphi)}.$$ \hspace{1cm} (13)

Strona 13
W przypadku przepustów ułożonych pod dostatecznie wysokimi nasypami naprzężenia ścinające zanikają na pewnej głębokości nad przepustem, dla której to głębokości osiadania są równomierne. Dzieje się tak dlatego, iż nie występują względne przemieszczenia pomiędzy sąsiadującymi przysadami gruntu, a więc nie powstają siły ścinające w tej strefie.

Jeżeli odległość od góry przepustu do poziomu płaszczyzny równomiernych osiadań \(H_e \) jest mniejsza od wysokości nasypu \(H \), wówczas mamy do czynienia z występowaniem płaszczyzny osiadań równomiernych. Sytuację taką określa się jako pracę przepustu w warunkach nasypu niepełnego, ponieważ siły ścinające nie powstają w pełnym zakresie wysokości nasypu \(H \). Jeżeli odległość \(H_e \) jest większa od wysokości nasypu \(H \), płaszczyzna osiadań równomiernych nie występuje i mamy do czynienia z pracą przepustu w warunkach wykopu całkowitego. Siły ścinające nad przepustem występują wówczas na całej wysokości \(H \).

Wielkość kierunku względnych przemieszczeń pomiędzy przysadami wewnętrznych (prostokąt ABCD – rysunek 2.3) i sąsiadującymi przysadami gruntu postrzeganej można określić jako przesunięcie między invizowymi pryzmami gruntu, a więc nie powstają siły ścinające w tej strefie.

Jeżeli odległość od góry przepustu do poziomu płaszczyzny równomiernych osiadań \(H_e \) jest mniejsza od wysokości nasypu \(H \), wówczas mamy do czynienia z występowaniem płaszczyzny osiadań równomiernych. Sytuację taką określa się jako pracę przepustu w warunkach nasypu niepełnego, ponieważ siły ścinające nie powstają w pełnym zakresie wysokości nasypu \(H \). Jeżeli odległość \(H_e \) jest większa od wysokości nasypu \(H \), płaszczyzna osiadań równomiernych nie występuje i mamy do czynienia z pracą przepustu w warunkach wykopu całkowitego. Siły ścinające nad przepustem występują wówczas na całej wysokości \(H \).

Wielkość kierunku względnych przemieszczeń pomiędzy przysadą wewnętrzną (prostokąt ABCD – rysunek 2.3) i sąsiadującymi przysadami gruntu wewnętrznych uznajemy za udział od odległości \(H_e \) do osiągania niepełnego, ponieważ siły ścinające nie powstają w pełnym zakresie wysokości nasypu \(H \). Jeżeli odległość \(H_e \) jest większa od wysokości nasypu \(H \), płaszczyzna osiadań równomiernych nie występuje i mamy do czynienia z pracą przepustu w warunkach wykopu całkowitego. Siły ścinające nad przepustem występują wówczas na całej wysokości \(H \).

Przeznaczony do obliczeń odległość \(H_e \) oblicza się z wzoru:

\[
r_{sd} = \frac{(s_m + s_g) - (s_f + d_c)}{s_m},
\]

gdzie:

- \(r_{sd} \) – współczynnik osiadania,
- \(s_m \) – osiadanie powstałe od obciążenia pryzmą gruntu pobocznego na głębokości H,
- \(s_g \) – osiadanie płaszczyzny gruntu rodzimego,
- \(s_f \) – osiadanie podstawy przepustu,
- \(d_c \) – różnica średnicy pionowej przepustu.

Teoretyczne wyznaczenie współczynnika osiadania dla konkretnego przypadku jest bardzo trudne, a czasami niemożliwe. Dlatego współczynnik ten uważa się za wielkość empiryczną, a jego wartości dobiera się na podstawie obserwacji istniejących przepustów. Wykresy do projektowania uwzględniające współczynniki osiadania są zebrane m.in. w pracy Younga i Trotta [33].

Znanych jest wiele alternatywnych metod znajdowania płaszczyzny równomiernych osiadań. Wästlund i Eggwertz uznał iż powinno uwzględniać się w obliczeniach osiadania ciężar całej masy gruntu [34]. Janson zaproponował metodę podobną do teorii Spanglera z różnicą, że do wyznaczania osiadań sugerował przyjąć tylko ciężar gruntu nad płaszczyzną osiadań równomiernych, a za wysokość \(H_e \) przyjąć wartość równą 0.97 średnicy zewnętrznej przepustu \(B_c \) [35]. Aadnesen proponował przyjąć wysokość powierzchni równomiernych osiadań jako \(H_e = 0.8 B_c \) [36]. Taka wartość jest użyta w Normie Norweskiej dotyczącej projektowania rur żelbetowych (NS 3027 og 3028).

Poniżej w tabeli 2.3 przedstawiono wartości iloczynu \(K \cdot \cos(\phi) \) dla różnych teorii obliczeniowych przy \(\phi = 31^\circ \) [22].

<table>
<thead>
<tr>
<th>Autorzy</th>
<th>(K)</th>
<th>Wartość (K)</th>
<th>(K \times \cos(\phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janbu i Christensen (1963)</td>
<td>(\cos^2(\phi))</td>
<td>0.73</td>
<td>0.44</td>
</tr>
<tr>
<td>Ladany i Hoyaux (1969)</td>
<td>(\frac{\sin 2\phi}{2})</td>
<td>0.73</td>
<td>0.44</td>
</tr>
<tr>
<td>Aadnesen (1973)</td>
<td>(1 - \sin(\phi))</td>
<td>0.49</td>
<td>0.30</td>
</tr>
<tr>
<td>Spangler i Handy (1982)</td>
<td>(\frac{1 - \sin(\phi)}{1 + \sin(\phi)})</td>
<td>0.32</td>
<td>0.19</td>
</tr>
</tbody>
</table>

2.2.1.4. Przepust sztywny ułożony w wykopie odsłoniętym nieidealnym

Spangler zauważył, że w niektórych wcześniejszych doświadczeniach Marstona obciążenia na odsłonięte przepusty były do 95 % większe niż ciężar gruntu zalegającego nad konstrukcją [86]. Próba
wyeliminowania wzrostu obciążen na przepust doprowadziła do stworzenia metody budowy przepustu w wykopie nieidealnym.

Høng odnotował parcie na koronę sztywnej rury około 1.5-razy większe niż przyłożone obciążenie [87]. Penman zmierzył parcie gruntu na sztywnym przepuscie żelbetowym poniżej 53 m nasypu kamiennego [88]. Wartość pomierzonego parcia pionowego na koronę przepustu wynosiła około 200% wielkości naprężeń oczekiwanych na tym poziomie przy nieobecności przepustu.

Katona zakwestionował długotrwałą stabilność materiałów organicznych jako materiałów używanych do wzbudzenia efektu przesklepienia [92]. W wyniku jego badań najbardziej przydatnym do tego celu okazał się polistyren spieniony (styropian).

Celem tej metody jest spowodowanie większego osiadania wewnętrznej przymy gruntu w stosunku do przymy zewnętrznej, w ten sposób wytworzono naśladując skierowane w górę wzdłuż boków przymy wewnętrznej. Wynikowe obciążenie przepustu dzięki temu znalezie. Wzór określający obciążenia w wykopie:

\[W_C = C_N \gamma D^2, \]
(15)

gdzie:
- \(C_N \) – współczynnik obciążeniowy będący funkcją współczynnika określonego stosunkiem wysokości naziomu do szerokości wykopu i wsp. osiadania \(r_{ds} \).
- \(D \) – j.w.
- \(\gamma \) – j.w.

![Rys. 2.4. Przepust w wykopie odsłoniętym nieidealnym.](image)

Teoria Marstona i Spanglera określając obciążenia generalnie ignoruje efekty redystrybucji obciążen na parcie poziome. Należy uznać to za błąd, ponieważ zjawisku przesklepienia towarzyszą dwa elementy: redukcja parcia gruntu na podatną część konstrukcji i wzrost parcia w pozostałych jej częściach [22].

Bjerrum i inni wskazali, że wzrost parcia na sąsiadujące niepodatne obszary jest równy lub większy niż redukcja parcia na części podatnej [93]. Wskazali oni również, że zmiany parcia są proporcjonalne do wielkości modułu odkształcenia gruntu. Są one zatem większe w gęstych piaskach niż w piaskach luźnych, a także większe w piaskach niż w glinie lub mułu.

Selig i Packard wykonał metodę elementów skończonych (program SPIDA) analizę przepustu w wykopie nieidealnym. Wykazano, że obciążenia poziome są bardziej niebezpieczne niż pionowe [91]. Wykazano również, że pominięcie współpracy gruntu z rurą w teorii Marsta-Spanglera w przypadku wykopu nieidealnego jest błędnym podejściem.
2.2.2. Przepusty podatne

Wraz z pojawieniem się na rynku stalowych rur cienkościennych oraz rur z tworzyw sztucznych stwierdzono, że dotychczasowe metody obliczeniowe nie są przydatne. W przypadku rur podatnych należało, bowiem uwzględnić udział gruntu stanowiącego obsyпkę przewodu w przenoszeniu obciążenia. Miarą współpracy przewodu z otaczającym go ośrodkiem gruntowym jest stosunek deformacji pionowej przekroju obciążonej rury do pionowego odkształcenia przylegającej warstwy zasyпki.

Gdy deformacja przekroju rury była większa niż odkształcenie warstwy gruntu $Y_1 > Y_2$, wtedy układ przepust-grunt traktowano jako podatny (współpracujący). W przeciwnym przypadku, gdy $Y_1 \leq Y_2$ układ określano jako sztywny (niewspółpracujący) [17].

Rys. 2.5. Schemat do analizy sztywności przepust – grunt [17].

Kryteria projektowe.

Podatne przepusty stalowe wymiaruje się w stanach granicznych użytkowania i nośności. Przy projektowaniu przepustów podatnych stosowane są trzy główne kryteria projektowe:

1. **Kryterium ugięcia**.
2. **Kryterium siły obciążającej ściankę przepustu**.
3. **Kryterium wyboczeniowe**.

Istotą konstrukcji podatnych jest ich współdziałanie z otaczającym gruntem przy udziale zjawiska przekleпienia. W tabeli 2.4 podano podstawowe założenia projektowe w zależności od rodzaju układu (sztywny, podatny) [17].

Tabela 2.4. Założenia do projektowania [17].

<table>
<thead>
<tr>
<th>Rodzaj przepustu</th>
<th>Czynniki określające nośność</th>
<th>Charakterystyka statyczna układu</th>
<th>Dopuszczalne odkształcenie względne</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZTYWNE</td>
<td>Wytrzymałość materiału rury</td>
<td>Przepust stanowi samodzielny układ statyczny</td>
<td>~0 %</td>
</tr>
<tr>
<td>PODATNE</td>
<td>Wytrzymałość materiału rury i wytrzymałość gruntu</td>
<td>Przepust i grunt stanowią współpracujący układ statyczny</td>
<td>>5 %</td>
</tr>
</tbody>
</table>

Obciążenia.

Konstrukcje podatne, podobnie jak wszystkie inne obiekty inżynierskie, poddawane są działaniu obciążen stałych i zmiennych. **Obciążenia stale** to otaczający konstrukcję grunt oraz warstwy nawierzchni drogowej lub kolejowej. Ciężar własny konstrukcji stalowej jest pomijany jako relatywnie mały. **Obciążenia zmienne** to obciążenie drogowe lub kolejowe ustalone zgodnie z obowiązującymi normami.

Na rysunkach 2.6 i 2.7 pokazano zależności obciążen stałych i zmiennych od wysokości naziomu. Wykresy sporządzono na podstawie normy projektowej obowiązującej w Kanadzie: Canadian Highway Bridge Design Code (CHBDC) dla obciążen zmiennych **drogowych i kolejowych** [30].

Strona 16
2.2.2.1. Ugięcie (Równanie Iowa)

Najbardziej znanym równaniem określającym ugięcie jest równanie Iowa, autorstwa Spranglera, obliczające zmianę średnicy poziomej konstrukcji podatnych.

Podczas badań rur podatnych o przekroju kołowym zauważono, że w trakcie przykładania obciążenia rury zmieniały kształt z kołowego na eliptyczny. Spangler założył, że parcia są proporcjonalne do przemieszczeń i przedstawił ich rozkład przedstawiony na rysunku 2.8.
Założenia do teorii Spanglera dotyczącej rozkładu parcia gruntu dla przewodu podatnego są następujące:

1. Obciążenia pionowe od góry rozkładają się równomiernie na szerokości rury i wyrażają się wzorem:

 \[v = \frac{W_c}{2R}, \]
 \[(16) \]
 gdzie:
 \(W_c \) – obciążenie przepustu na jednostkę długości,
 \(R \) – średni promień przepustu.

2. Reakcja u podstawy rury jest równa obciążeniu pionowemu i rozkłada się równomiernie na szerokości \(2\alpha \) zgodnie z rysunkiem 2.8 i wyrażają się wzorem:

 \[h = \frac{W_c}{2R \sin(\alpha)} = \frac{v}{\sin(\alpha)}, \]
 \[(17) \]

3. Parcie poziome rozkłada się parabolicznie na szerokości \(100^\circ \) zgodnie z rysunkiem 2.8 i wyraża się wzorem:

 \[\Delta x = e \frac{\Delta x}{2} = E' \frac{\Delta x}{2R'}, \]
 \[(18) \]
 gdzie:
 \(e \) – moduł biernego odporu,
 \(E' = er \) – moduł reakcji gruntu,
 \(R \) – średni promień przepustu,
 \(\Delta x \) – odkształcenie poziome wyrażone wzorem:

 \[\Delta x = \frac{D_1 K W R^3}{E I + 0.061 E'R^3}, \]
 \[(19) \]
 gdzie:
 \(E \) – moduł Younga dla materiału rury,
 \(K \) – stała podłoża zależna od kąta \(\alpha \),
 \(I \) – moment bezwładności przekroju ścianki rury na jednostkę długości,
 \(D_1 \) – współczynnik ugięcia.

Rys. 2.8. Rozkład parcia gruntu wg założenia Spanglera.
W równaniu Iowa można wyróżnić trzy podstawowe elementy opisujące ugięcie:

\[\Delta x = \frac{\text{współczynnik obciążenia}}{\text{współczynnik sztywności pierścieniowej} + \text{współczynnik sztywności gruntu}}, \]

gdzie:
\[\text{współczynnik obciążenia} = \frac{D_1}{K \cdot W_C}, \]
\[\text{współczynnik sztywności pierścieniowej} = \frac{EJ}{R^3}, \]
\[\text{współczynnik sztywności gruntu} = 0.061 \cdot E'. \]

Zaleca się, aby ugięcie przepustów stalowych nie przekraczało 5% nominalnej średnicy. Za przepust uszkodzony uznaje się przepust, którego średnica pionowa uległa odkształceniu rzędu 20%.

Z badań doświadczalnych wynika, że w równaniu Spanglera największy wpływ na ugięcie rury ma moduł reakcji gruntu \(E' \). Stwierdzono, że wartość \(E' \) zmienia się w zależności od rodzaju gruntu i stopnia zagęszczenia. Przyjęto, że moduł \(E' \) można oszacować, korzystając z zależności [96]:

\[E' = k \cdot M_s, \]

gdzie:
\(k \) – współczynnik zmieniający się od 0.7 do 1.5 w zależności od rodzaju gruntu,
\(M_s \) – moduł edometryczny gruntu.

2.2.2.2. Siła obciążająca (ściskająca) ściankę przepustu

Głównym kryterium wytrzymałościowym przy projektowaniu przepustów podatnych jest założenie, że siła występująca w ściance przepustu nie przekroczy wartości powodującej ścięcia połączeń konstrukcyjnych lub nie spowoduje osiągnięcia granicy plastyczności materiału, z którego wykonany jest przepust.

Do wyznaczenia siły działającej na ściankę przepustu podatnego od roku 1941 używano następujących metod projektowych:

1. **Metoda Marstona – Spanglera** (1941).
2. **Metoda Klein** (1951).
5. **Metoda współpracy z gruntem** (SCI Soil-Culvert Interaction) (Duncan, Drawski – 1983).
8. **Analityczna metoda sprzężysta**.
9. **Metody numeryczne**:
 a. Metoda Sprzężyn.
 b. Metoda Elementów Skończonych MES (FEM - Finite Element Method).

2.2.2.2.1. Metoda Marstona – Spanglera

Metoda Marstona – Spanglera jest jedną z najstarszych metod i zalecana jest dla konstrukcji podatnych o przekrojach kołowych o małych średnicach. Rozkład parcia gruntu wg metody Marstona – Spanglera pokazano na rysunku 2.9. Na podstawie założeń przedstawionych w punkcie „Ugięcie (Równanie Iowa” niniejszej rozprawy wyznaczono zostały wyrażenia określające siłę w ściance przepustu:

\[T_c = 0.7 \cdot P, \]
\[T_h = 0.7 \cdot P, \]

Strona 19
oraz momenty zginające:

\[M_c = 0.02 \, P_v \, R^2, \]
\[M_h = -0.02 \, P_v \, R^2, \]

gdzie:
- \(T_c \) – siła w kluczu i podstawie rury,
- \(T_h \) – siła w części bocznej rury,
- \(P_v \) – obciążenie pionowe,
- \(M_c \) – moment jak na rysunku 2.9,
- \(M_h \) – moment jak na rysunku 2.9,
- \(R \) – promień.

Rozkład momentów zginających został pokazany na rysunku 2.9.

![Rys. 2.9. Wykres momentów zginających.](image)

2.2.2.2. Metoda Kleina

Metoda przedstawiona przez Kleina zakłada, że deformacji przepustu przeciwiała czynny odpór gruntu, wskutek czego następuje pewne zmniejszenie naprężeń w materiale rury, co zostaje uwzględnione przez zastosowanie współczynnika \(\zeta \) zmniejszającego sumę momentów zginających. Dla rur sztywnych współczynnik \(\zeta = 1 \), natomiast dla przewodów podatnych współczynnik ten oblicza się wg następującej zależności [107]:

\[\zeta = \frac{1}{1 + \frac{1}{E} \left(\frac{r_m}{e} \right)^3 \left(\frac{E_g}{b} r - 4 \frac{Q_z + Q_g}{D_z} \right)}, \]

gdzie:
- \(E \) – moduł Younga dla materiału rury,
- \(E_g \) – moduł sprężystości gruntu,
- \(D_z \) – średnica zewnętrzna przewodu,
- \(e \) – grubość ścianki przewodu,
- \(r_m \) – średni promień przewodu,
- \(b \) – odległość między ścianką rury a ścianką wykopu,
- \(Q_z \) – obciążenie zewnętrzne,
- \(Q_g \) – obciążenie pionowe od naziomu o szerokości \(D_z \) wyznaczane ze wzoru:

\[Q_g = \gamma H D_z, \]

\(H \) – wysokość naziomu.

Metoda wprowadza podział na przepusty ułożone na podłożu z gruntu rodzimego – rysunek 2.10a, na podłożu gruntowym wyprofilowanym, pokazanym na rysunku 2.10b oraz na podłożu betonowym jak na rysunku 2.10c [19].
Rys. 2.10. Sposoby podparcia przepustów wg metody Kleina i Jamielnikova:
a) na podłożu gruntownym, b) na podłożu gruntownym wyprofilowanym, c) na podłożu betonowym [19].

Naprzeżenie w ściance rury oblicza się dla przekroju, w którym jest ono maksymalne wg wzoru:

$$\sigma = \frac{\zeta \cdot M}{W} \pm \frac{N}{A} \leq \sigma_d,$$ \hspace{1cm} (27)

gdzie:
- M – moment zginający,
- N – siła osiowa,
- W – wskaźnik wytrzymałości na zginanie na l m,
- A – pole powierzchni przewodu na l m,
- ζ – współczynnik ze wzoru nr (25),
- σ_d – naprężenie dopuszczalne (dla przewodów w gruncie przyjmuje się współczynnik bezpieczeństwa $- 2.5$).

Za wzoru na współczynnik ζ zmniejszający momenty wynika, że im mniejsza jest grubość ścianki, tym współczynnik ten staje się mniejszy. Wynika to z faktu, że rura o cienijszych ściankach (podatna) ulega większej deformacji, wywołując tym samym większy czynny odpór ziemi, co z kolei wpływa na zmniejszenie momentu. Jednak zarówno deformacja rury jak i zmniejszenie momentu jest ograniczona. Ograniczenie to jest zawarte w dodatkowym warunku określającym granice stosowalności wzoru (25), tj.:

$$\zeta > 0,02.$$ \hspace{1cm} (28)

Uwzględnienie tego ograniczenia doprowadza do ustalenia dolnej granicy grubości ścianek t wyrażonej w następujący sposób:

$$t > 0,008 \cdot D,$$ \hspace{1cm} (29)

gdzie:
- t – grubość ścianki przewodu,
- D – średnica przewodu.

2.2.2.2.3. Teoria ściskania pierścieniowego (obwodowego)

Po wypełnieniu dobrze zagęszczonym gruntem dostatecznie wysokiego naziomu rur podatną można analizować jako cienki pierścień poddany ściskaniu. Teoria opierała się na założeniu, że niejednorodny rozkład parcia ma niewielki wpływ na wielkość i rozkład sił osiowych (Marton, Spangler). Założenie to jest prawdziwe dla rur podatnych, dla których wysokość naziomu przekracza 1/8 średnicy rury.

Ścianka przepustu wg teorii ściskania obwodowego powinna być tak zaprojektowana, aby umożliwiać przeniesienie naprężeń pierścieniowych powstałych wskutek pionowego parcia gruntu na poziomie klucza konstrukcji. Jednolite parcie P jest sumą obciążeń od gruntu i obciążeń zewnętrznych i wyraża się wzorem:

$$P = \gamma H + q,$$ \hspace{1cm} (30)

gdzie:
- H – wysokość naziomu,
- γ – ciężar właściwy gruntu,
- q – zmienne obciążenie zewnętrzne naziomu.
Zgodnie z teorią ściskania obwodowego siła ściskająca w ściance przepustu o przekroju kołowym wyraża się wzorem:

$$T = P \frac{d}{2}, \quad (31)$$

gде:
T – siła ściskająca w ściance przepustu,
P – obciążenie wyznaczone ze wzoru nr 30,
d – średnica rury.

W ściance przepustu o kształcie niekołowym parcie gruntu uzależnione jest od krzywizny przekroju poprzecznego, przy czym wielkość sił ściskających w ściance przepustu pozostaje stała na całym obwodzie. Wielkość parcia gruntu na przepust wyznacza się z zależności:

$$P = \frac{T}{R_n} \Rightarrow T = P R_n, \quad (32)$$

gде:
T – siła ściskająca w ściance przepustu,
R_n – promień krzywizny w danym punkcie.

Z powyższego wzoru wynika, że parcie gruntu jest odwrotnie proporcjonalne do promienia krzywizny przekroju w danym punkcie, a więc jest największe tam, gdzie promień krzywizny jest najmniejszy, na przykład w pachwinie przekroju łukowo-kołowego, co potwierdzają badania. Przykłady rozkładów parcia gruntu wg teorii ściskania pierścieniowego pokazano na rysunku 2.11.

Podstawową różnicą powyższej metody w stosunku do teorii Spanglera jest nieuwzględnienie warunku ugięcia. Uznano, że nie ma potrzeby sprawdzania innych warunków wytrzymałościowych, jeżeli połączenia śrubowe przepustu i sam przepust są zaprojektowane ze względu na siły obwodowe [94]. Jednocześnie podkreślono istotną wagę nadzoru podczas wykonywania zasypania na budowie.

Rys. 2.11. Rozkład parcia gruntu wg teorii ściskania pierścieniowego dla przepustu:

a) kołowego, b) eliptycznego poziomego, c) łukowego zamkniętego.
2.2.2.2.4. Metoda zgodna z normą kanadyjską (Canadian Highway Bridge Design Code - CHBDC) i amerykańską (Ontario Highway Bridge Design Code - OHBDC)

Całkowitą siłę w ścianę przepustu wyznacza się z zależności:

\[T_f = a_D T_D + a_L T_L (1 + \phi), \]
\[\text{(33)} \]

gdzie:
- \(T_f \) – całkowita siła osiowa w ścianę przepustu,
- \(a_D \) – współczynnik obciążenia stałego,
- \(T_D \) – siła osiowa wywołana obciążeniem stałym,
- \(a_L \) – współczynnik obciążenia zmiennego,
- \(T_L \) – siła osiowa wywołana obciążeniem zmiennym,
- \(\phi \) – współczynnik dynamiczny.

Siłę osiową \(T_D \) wywołaną obciążeniem stałym wyznacza się ze wzoru:

\[T_D = 0.5 \left(1.0 - 0.1 C_S \right) A_f W, \]
\[\text{(34)} \]

gdzie:
- \(A_f \) – współczynnik przesklepienia odczytywany z rysunku 2.14,
- \(W \) – ciężar kolumny gruntu zalegającego nad przepustem – rysunek 2.13,
- \(C_S \) – parametr sztywności osiowej wyznaczany z zależności:

\[C_S = 1000 \frac{E_g D_s}{E A}, \]
\[\text{(35)} \]

gdzie:
- \(D_s \) – wysokość efektywna przepustu zależna od przekroju poprzecznego pokazana na rysunku 2.12,
- \(E \) – moduł Younga stali, z której wykonano przepust,
- \(A \) – pole przekroju poprzecznego blachy falistej,
- \(E_s \) – efektywny moduł sieczny gruntu, który można przyjmować z tabeli 2.5 lub jako:

\[E_s = \frac{E_g D_{seff}}{1 - \nu^2}, \]
\[\text{(36)} \]

gdzie:
- \(D_{seff} \) – moduł Younga dla gruntu,
- \(\nu \) – współczynnik Poissona dla gruntu.

Siłę osiową \(T_L \) wywołaną obciążeniem zmiennym użytkowym wyznacza się ze wzorów:

\[T_L = 0.5 \ D_h \sigma_l \ m_f, \]
\[\text{(37)} \]

lub

\[T_L = 0.5 \ l_t \ \sigma_l \ m_f, \]
\[\text{(38)} \]

gdzie:
- \(D_h \) – rozpiętość efektywna przepustu pokazana na rysunku 2.12,
- \(l_t = 1.45 + 2H \),
- \(H \) – wysokość naziomu,
- \(\sigma_l \) – ciśnienie zewnętrzne,
- \(m_f \) – współczynnik zależny od ilości pasów drogowych nad przepustem (1.0 dla jednego pasa ruchu; 0.9 dla dwóch lub więcej pasów ruchu).
Rys. 2.12. Definicja \(D_a \) i \(D_h \) dla różnych kształtów przepustów, a - kołowy, b - eliptyczny poziomy, c - eliptyczny pionowy, d - gruszkowy, e - lukowy zamknięty, f, g, h - lukowy [30].

Rys. 2.13. Powierzchnia \(W \) przyjmowana we wzorze nr 34 [30].

Tabela 2.5. Zestawienie modułów siecznych \(E_s \) dla różnych rodzajów gruntów wg CHBDC [30].

<table>
<thead>
<tr>
<th>Grupa gruntu</th>
<th>Zagęszenie wg Proctora Normalnego</th>
<th>Moduł sieczny (E_s) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Żwir</td>
<td>85% – 90%</td>
<td>6</td>
</tr>
<tr>
<td>Piasek żwirowy</td>
<td>90% – 95%</td>
<td>12</td>
</tr>
<tr>
<td>Pospolka</td>
<td>> 95%</td>
<td>24</td>
</tr>
<tr>
<td>Piasek gliniasty</td>
<td>85% – 90%</td>
<td>3</td>
</tr>
<tr>
<td>Żwir gliniasty</td>
<td>90% – 95%</td>
<td>6</td>
</tr>
<tr>
<td>H piaszczysty</td>
<td>> 95%</td>
<td>12</td>
</tr>
</tbody>
</table>
Rys. 2.14. Wykres do wyznaczania współczynnika przesklepienia A_f w metodzie CHBDC [30].

2.2.2.2.5. Metoda zgodna z normą American Association of State Highway and Transportation Officials (AASHTO)

Wymiarowanie przepustu zgodnie ze specyfiką American Association of State Highway and Transportation Officials (AASHTO), podobnie jak w przypadku OHBDC, polega na pominięciu momentów zginających i uwzględnieniu tylko sił osiowych. W metodzie AASHTO rozpatrywane są następujące kryteria:

- uplastycznienie ścianki przepustu,
- wyboczenie ścianki przepustu,
- wytrzymałość połączeń płaszczy stalowych,
- sztywność montażowa.

Obliczeniowa siła w ścianie przepustu T wyznaczana jest zgodnie z teorią ściskania pierścieniowego i wynosi:

$$ T = 0.5 \left(\alpha_L \cdot \varphi \cdot P_L + \alpha_D \cdot P_D \right) D_h, \quad (39) $$

gdzie:
- D_h – rozpiętość konstrukcji,
- P_D – charakterystyczne obciążenie stałe na poziomie klucza konstrukcji,
- P_L – charakterystyczne równomiernie rozłożone obciążenie zmienne na poziomie klucza konstrukcji,
- φ – współczynnik dynamiczny,
- α_L – współczynnik obciążenia zmiennego,
- α_D – współczynnik obciążenia stałego.

Gdy na nasypie występuje nawierzchnia, wówczas należy jej ciężar dodać do obciążenia stałego P_D używając wzoru:

$$ P_D = \gamma H + q_n, \quad (40) $$

gdzie:
- γ – ciężar właściwy gruntu,
- q_n – ciężar nawierzchni,
- H – wysokość naziomu.
2.2.2.2.6. Metoda współpracy z gruntom

Metoda została zaproponowana przez Duncana i Drawskiego w 1983 [97]. Metoda powstała na podstawie wyników kłukuletnich badań na obiektach rzeczywistych, modelach oraz badań z wykorzystaniem Metody Elementów Skończonych. W metodzie tej, oprócz sił osiowych występujących w ściągnięcie konstrukcji, uwzględniono również momenty zginające. Dodatkowo metoda ta rozpatruje dwie fazy pracy konstrukcji:

- faza montażu (gdy zasypka osiągnęła poziom klucza konstrukcji),
- faza użytkowania (gdy zasypka osiągnęła projektowany poziom).

Metoda uwzględnia niebezpieczeństwo powstania przegubów plastycznych w konstrukcji. Poziom wytnięcia konstrukcji jest określany za pomocą współczynnika bezpieczeństwa. W metodzie uwzględniono ponadto względną szybkość konstrukcji i otaczającej ją zasypki.

Konstrukcja jest projektowana przy uwzględnieniu dwóch warunków. Pierwszy z nich, związany z fazą montażu, zakłada, że poziom zasypki jest równy poziomowi klucza konstrukcji, zatem wysokość naziomu H=0. W tym przypadku moment zginający M i siła w ścięgnięciu konstrukcji T są obliczane z uwzględnieniem obciążeń stałych z następujących zależności:

\[M = R_B \gamma D_h^3, \tag{41} \]
\[T = K_{p1} \gamma D_h^2, \tag{42} \]

gdzie:
- \[\gamma \] – ciężar właściwy gruntu,
- \[R_B \] – bezwymiarowy współczynnik redukcyjny zależny od stosunku wysokości do rozpiętości konstrukcji,
- \[K_{p1} \] – bezwymiarowy współczynnik uzależniony od wysokości zasypki znajdującej się poniżej poziomu klucza konstrukcji,
- \[K_{m1} \] – bezwymiarowy współczynnik zależny od parametru \[N_f \] wyrażonego zależnością:

\[N_f = \frac{E_s D_h^2}{EI}, \tag{43} \]

\[\] gdzie:
- \[E_s \] – moduł sieczny,
- \[D_h \] – rozpiętość konstrukcji,
- \[E \] – moduł sprężystości materiału, z którego wykonana jest ścięgnica,
- \[I \] – moment bezwymiarowy ścięgna konstrukcji na jednostkę długości.

Drugi warunek zakłada, że zasypka osiągnęła ostateczny poziom (faza użytkowania). W tym przypadku uwzględniane są również obciążenia zmienne, a moment M i siła T w ściągnięciu konstrukcji określone są równaniami:

\[M = R_B (K_{m2} \gamma D_h^3 - K_{m2} \gamma D_h^2 H) + R_L K_{m3} D_h LL, \tag{44} \]
\[T = K_{p1} \gamma D_h^2 + K_{p2} \gamma D_h H + K_{p3} LL, \tag{45} \]

gdzie:
- \[\gamma \] – ciężar właściwy gruntu,
- \[D_h \] – rozpiętość konstrukcji,
- \[R_L \] – współczynnik zależny od \[N_f \] i \[H/D_h \],
- \[K_{p2} \] – bezwymiarowy współczynnik uzależniony od wysokości naziomu, czyli zasypki znajdującej się powyżej poziomu klucza konstrukcji,
- \[K_{p3} \] – bezwymiarowy współczynnik uzależniony od \[H/D_h \],
- \[K_{m2} \] i \[K_{m3} \] – bezwymiarowy współczynnik zależny od parametru \[N_f \],
- \[LL \] – równomiernie rozłożone obciążenie zmienne.

Dodatkowo w metodzie przewidziano sprawdzenie wytrzymałości połączeń poszczególnych blach. Projektowany przepust musi spełniać poniższy warunek wyrażony zależnością:

\[\]
\[F_s = \frac{P_s}{T_{\text{max}}} \geq 2 \]

gdzie:
\(F_s \) – współczynnik bezpieczeństwa,
\(P_s \) – wytrzymałość łącza zależna od ilości śrub,
\(T_{\text{max}} \) – maksymalna siła w ściance przepustu.

2.2.2.2.7. Metoda Vaslestad

Metoda Vaslestad zalecana jest do projektowania konstrukcji podatnych o dużych rozpiętościach. Podobnie do metody CHBDC i AASHTO, metoda ta pomija wpływ momentów zginających powstających w ścianie konstrukcji, a uwzględnia jedynie siły osiowe. Zgodnie z metodą Vaslestad sprawdzana jest wytrzymałość ścianki konstrukcji na ściananie oraz odkształcenia klucza konstrukcji w czasie układania i zagęszczania zasypki. Metoda uwzględnia wpływ zjawiska przesklepienia gruntu występującego lokalnie nad koroną przepustu [25].

W strefie A odkształcenia w trakcie zasypywania ponad kluczem konstrukcji skierowane są ku dołowi, a przez to powstaje czynne przesklepienie, wzbudzając w ten sposób naprężenia ścinające, działające w górę wzdłuż płaszczyzn AB i CD, co pokazano na rysunku 2.15 [25].

W strefie B, gdzie odkształcenia konstrukcji skierowane są w kierunku gruntu, powstaje strefa przesklepienia biernego oraz wzbudzone zostają naprężenia ścinające w płaszczyznach EF i GH skierowane w dół [25].

![Rys. 2.15. Strefy czynnego i biernego przesklepienia oraz równowaga sił pionowych w przepuścicie [25].](image-url)
Na podstawie analizy zjawiska przesklepienia wyznaczono zależność pozwalającą określić maksymalną siłę T w ściance przepustu o dużej rozpiętości:

$$T = W + V,$$

gdzie:
- W – ciężar gruntu nad konstrukcją pokazany na rysunku 2.13 lub wyznaczany w przybliżeniu ze wzoru:
 $$W = 0.5 \gamma D (H + 0.2 R),$$
- V – pionowa siła ściśnająca wyznaczana ze wzoru:
 $$V = 0.5 \gamma S_{w} (H + R)^{2},$$

$$T = 0.5 \gamma D (H + 0.2 R) + S_{w} (H + R)^{2},$$

gdzie:
- γ – ciężar objętościowy zasypki gruntu;
- D – rozpiętość konstrukcji;
- H – wysokość naziomu;
- R – promień górnej krzywizny konstrukcji.

Ostatecznie po podstawieniu otrzymuje się wzór na siłę T w postaci:

$$T = 0.5 \gamma [D (H+0.2 R) + S_{w} (H + R)^{2}],$$

W tabeli 2.6 zestawiono siły osiowe wyznaczone wg czterech różnych metod. W przykładowie posłużono się przepustem o przekroju elipsy poziomej o rozpiętości $D = 10.78$ m i wysokości $H = 7.13$ m. Krzywizna górnej części przepustu $R_{g} = 6.99$ m. Wysokość naziomu zmieniano od 2 do 10 m. Ciężar właściwy zasypki $\gamma = 20$ kN/m3. W metodzie Vaslestad zaprezentowano wyniki dla trzech różnych współczynników szorstkości r [25].

<table>
<thead>
<tr>
<th>Wysokość naziomu H [m]</th>
<th>AASHTO</th>
<th>LEONARDS</th>
<th>DUNCAN DRAWSKY</th>
<th>VASLESTAD</th>
<th>VASLESTAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$r=0.6$</td>
<td>$r=0.8$</td>
</tr>
<tr>
<td>2</td>
<td>280</td>
<td>293</td>
<td>469</td>
<td>322</td>
<td>331</td>
</tr>
<tr>
<td>6</td>
<td>839</td>
<td>724</td>
<td>1103</td>
<td>814</td>
<td>838</td>
</tr>
<tr>
<td>10</td>
<td>1398</td>
<td>1155</td>
<td>1735</td>
<td>1336</td>
<td>1383</td>
</tr>
</tbody>
</table>
Z porównania wartości siły osiowej w ściance przepustu (tabela 2.6 i rysunek 2.17) wynika, że wartości wyznaczone metodą Veslestada są zgodne z wartościami z metody AASHTO, natomiast mniejsze od wartości z metody „współpracy z gruncem” Duncana i większe od wartości zaproponowanych przez Leonarda.

2.2.2.8. Analityczna metoda sprężysta

Analiza plastyczna zakłada, że w gruncie otaczającym przepust możliwe jest wystąpienie w pewnych płaszczyznach deformacji doprowadzających grunt do granicy wytrzymałości na ścignanie. W przeciwieństwie do niej, analiza sprężysta zakłada, że niewielkie deformacje nie doprowadzą gruntu do osiągnięcia granicy wytrzymałości na ścignanie. Według analizy sprężystej grunt otaczający przepust w żadnym miejscu nie ulega uplastycznieniu, a powstałe naprężenia są na tyle niewielkie, że można założyć, że przepust i otaczający go grunt są materiałami liniowo sprężystymi.

Takie podejście jest często krytykowane jako nieodpowiadające warunkom rzeczywistym, mimo to było ono punktem wyjścia do analiz współpracy gruntu z przepustem przeprowadzonych przez różnych badaczy m.in.: Burns i Richard (1964), Høeg (1966), Krizek (1971), Peck (1972).

Burns, Richard oraz Høeg poddali analizie przepust kołowy, wykonany z materiału sprężystego, zanurzony głęboko w jednorodnym, izotropowym, liniowo – sprężystym ośrodka gruntu.

![Rys. 2.18. Model analizy sprężystej wg Høega.](image)
Naprężenia wylicza się na podstawie analizy dwuwymiarowego zagadnienia w biegunowym układzie współrzędnych. Układ przedstawiono na rysunku 2.18, w którym ρ to obciążenie powierzchniowe, k to współczynnik rozporu bocznego. W rozwijanym przypadku wielkości odkształceń w kierunku osi z (wzdłuż osi cylindra) są równe zeru, w związku z czym naprężenia σr i τθr są również równe zeru. Rozwiązanie to bazuje na funkcji naprężeń Airy’ego, wyprowadzonej z ogólnej teorii sprężystości.

Równania równowagi dla punktu pokazanego na powyższym schemacie przedstawiają się następująco:

\[
\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \sigma_r}{\partial \theta} + \frac{\sigma_r - \sigma_\theta}{r} = 0, \tag{51}
\]

\[
\frac{1}{r} \frac{\partial \sigma_\theta}{\partial r} + \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\tau_{r\theta}}{r} = 0. \tag{52}
\]

Wprowadzając funkcje naprężeń Airy’ego \(\psi \) naprężenia można zapisać w postaci:

\[
\sigma_r = \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2}, \tag{53}
\]

\[
\sigma_\theta = \frac{\partial^2 \psi}{\partial r^2}, \tag{54}
\]

\[
\tau_{r\theta} = \frac{1}{r^2} \frac{\partial \psi}{\partial \theta} - \frac{1}{r} \frac{\partial^2 \psi}{\partial r \partial \theta}. \tag{55}
\]

Otrzymany rozkład naprężeń i odkształceń zależy od względnej sztywności gruntu i osadzonej w nim konstrukcji. Kontrole sztywność układu zapewniają dwa współczynniki:

1. **współczynnik ściśliwości** ośrodka gruntu \(C \) wyrażony zależnością:

 \[
 C = 0.5 \frac{1}{1-\nu} \frac{M}{E_c} \frac{D}{t}, \tag{56}
 \]

2. **współczynnik sprężystości** (podatności) \(F \) wyrażony zależnością:

 \[
 F = 0.25 \frac{1-2\nu}{1-\nu} \frac{M}{E_c} \left[\frac{D}{T} \right]^3, \tag{57}
 \]

gdzie:
- \(M \) – moduł edometryczny gruntu,
- \(\nu \) – współczynnik Poissona dla gruntu,
- \(E_c \) – moduł Younga dla materiału rury,
- \(v_c \) – współczynnik Poissona dla materiału rury,
- \(D \) – średnica rury,
- \(t \) – grubość ścianki.

Układ grunt-konstrukcja, dla którego \(C = 0 \) i \(F = 0 \) oznacza idealnie sztywną konstrukcję ułożoną w idealnie sztywnym gruncie, toteż duża wartość \(F \) oznacza, że rura ma małą sztywność na zginanie.

Burns i Richard wykazali, że w wyniku współpracy gruntu z konstrukcją siły wewnętrzne są uzależnione od współczynnika ściśliwości \(C \), współczynnika podatności \(F \) oraz poślizgu na styku grunt – konstrukcja.

Głównym wadą podejścia sprężystego jest to, że o ile nie stosuje się technik numerycznych, analiza ogranicza się do rozwiązań z podłożem jednorodnym. Także w przypadku, gdy wysokość naziomu jest mała w stosunku do średnicy rury, metoda sprężysta daje wątpliwe rozwiązania.
2.2.2.2.9. Metody numeryczne

2.2.2.2.9.1. Metoda Sprężyn

Początkowo przy wymiarowaniu konstrukcji podziemnych stosowano sposób polegający na wyznaczeniu sił wewnętrznych przy założeniu, że grunt stanowi jedynie obciążenie. Zakładano, że konstrukcja jest poddana równomiernie rozłożonemu obciążeniu pionowemu, podobnie rozłożonemu oddziaływaniu gruntu od spodu oraz parciu bocznemu (rysunek 2.19a). Konstrukcja miała przy tym pełną swobodę odkształceń. Założenia te podane zostały przez Hewetta [104].

Później wprowadzane metody uwzględniały już współpracę gruntu z konstrukcją. Przyjmowano przy tym różne schematy owej współpracy. Dla gruntu dobierany był uproszczony, liniowo-sprężysty model zastępcy. Współpraca gruntu z konstrukcją była realizowana przez zastosowanie schematu, w którym konstrukcja obciążona została przez grunt, a jednocześnie opierała się na nim za pośrednictwem grupy sprężyn. Taki model współpracy konstrukcji podziemnej został zaproponowany przez Voellmy'ego, Windeisa, Morgana, Meissnera oraz Drawskiego. Zakłada on schemat statyczny bazujący na pierścieniu otoczonym przez sprężyny zlokalizowane po obwodzie, których reakcje symulowały zachowanie gruntu. Grunt jednocześnie pełnił rolę czynnika obciąŜającego (rysunek 2.19b). W dalszych pracach zakładało, że na odcinku górnym pierścienia grunt stanowi tylko obciążenie, natomiast na pozostałej części obwodu pełni on rolę sprężystego podłoża (rysunek 2.19d). Przy takim schemacie niektórzy autorzy zakładają obciążenie czynne gruntom jedynie od góry (Bugajewa, Gorelik, Rozsa, Bernvalner [35], [76], [80]), u innych natomiast grunt stanowił sprężyste podłoże, a równocześnie był czynnikiem obciążenia zewnętrznego z góry, z dołu i z boków (rysunek 2.19e, g) (Wołkow, Schulze, Duddeck, Branicki [73], [77], [65]). Do tej grupy koncepcji współpracy gruntu z konstrukcją podatną można zaliczyć sposób rozwiązania zakładający odcinkowe, boczne strefy sprężystego odporu gruntu, np. wg założeń Pytowskiego (rysunek 2.19e) [71].

Duddeck w 1970 r. dokonał porównania wyników obliczenia momentów zginających w kluczu pierścienia kołowego stosując kilka schematów [35]. Wynika z nich, że obliczenia przeprowadzone według Schulzego i Dudbecca (rysunek 2.19e) dają bardzo zbliżone wyniki do wyników otrzymanych z metody Bugajewy (rysunek 2.19d), pomimo że dla tych dwóch metod występują różnice w zakładanych schematach wyjściowych. Mniejsze natomiast wartości momentów otrzymuje się z metod zakładających współpracę pierścienia z ośrodkiem gruntowym na całym obwodzie wg Voellmy, Windeisa, Morgana i in. (rysunek 2.19b). W omawianych koncepcjach istnieje możliwość uwzględnienia składowych stycznych parcia gruntu na ściany tunelu. Zbadano wpływ uwzględniania lub pomijania stycznych składowych

Rys. 2.19. Schematy statyczne wykorzystywane w Metodzie Sprężyn: a) wg Hewetta, b) wg Voellmy‘ego, Morgana i in., c) wg Dudbecka, Schulzego, Wołkowa i in., d) wg Bugajewy i in., e) wg Pytowskiego i in. f) wg Klöppel i Gock g) wg Branickiego i Łanika.
pionowego i poziomego parcia gruntu na wyniki obliczeń momentów zginających. Różnice te są znaczne, wynoszą przeszło 50 % wartości tzn., że: uwzględnienie sił stycznych zwiększa wartości momentów.

Należy wspomnieć jeszcze o stosowaniu schematów statycznie wyznaczalnych, wprowadzających przeguby, które rozmieszczane są zwykle w górnej strefie obwodu konstrukcji. W 1970 Klöppel i Glock zaproponowali zastąpienie ścianki o jednostkowej długości częściowo podparty dwuwymiarowymi elementami belkowymi oraz wprowadzenie dwóch przeróbów w schemat statyczny konstrukcji (rysunek 2.19f) [78]. Współczynnik reakcji podłoż wyznaczono wg wzoru:

\[C = 0,5 \frac{M}{R}, \]

(58)

gdzie:
\(M \) – moduł edometryczny gruntu,
\(R \) – promień przewodu.

We wszystkich wspomnianych koncepcjach nie uwzględniono wpływu odkształceń konstrukcji na stan sił wewnętrznych więc zadanie sformułowane było jako zadanie liniowo - sprężyste. Zalożenie to prowadzi do błędnych wyników w przypadku cienkich ścian konstrukcji, natomiast jest wystarczająco dokładne w odniesieniu do rur, tuneli o masywnej, mało odkształcalnej konstrukcji [79].

2.2.2.2.9.2. Metoda Elementów Skończonych (MES)

W wielu opracowaniach podaje się nazwisko Couranta, który jako matematyk w 1942 roku opublikował pionierską pracę w tej dziedzinie oraz M. J. Tunaera, który w 1956 r. wraz ze swoim zespołem badawczym napisał obszerne pracę poświęconą tej metodzie. Zasadniczy rozwój Metody Elementów Skończonych (MES) przypada na lata sześćdziesiąte, m.in. dzięki pracom Przemienieckiego i Zienkiewicza. Drugim okresem rozwijowym MES jest pojawienie się komputerów osobistych. Pod koniec lat 80-tych wiele renomowanych systemów, takich jak np.: ABAQUS, CANDE, ANSYS, PLAXIS oraz COSMOS/M, zostało przystosowanych do pracy na PC [14].

Sama metoda nie powstała niezależnie od metod istniejących. MES jest metodą konsekwentnego poszukiwania przybliżonych rozwiązań problemów brzegowych. Cechą zasadniczą metod przybliżonych jest zastępowanie układu o nieskończonej liczbie stopni swobody układem o liczbie skończonej. Przy modelowaniu układu rzeczywistego bardzo ważnym etapem jest przejście od modelu fizycznego do dyskretnego tak, aby model dyskretny dostatecznie dokładnie odzwierciedlał zjawiska zachodzące w modelu fizycznym.

Koncepcja MES zakłada, że każdą wielkość (np. przemieszczenie, naprężenie) opisaną za pomocą funkcji ciągłej (pierwotnej) w danym obszarze (fragmencie ciągłym modelu fizycznego), aproksymuje się modelem dyskretnym. Model dyskretny jest złożony ze zbioru funkcji ciągłych określonych w skończonej liczbie podobrazów, zwanych elementami, na jakie podzielono rozpatrywany obszar, który można przedstawić w postaci równania [14]:

\[\Omega = \sum_{i=1}^{n} \Omega_i \]

(59)

Rys. 2.20. Obszar ciągły z podziałem na podobrazy [14].
Poszczególne funkcje ciągłe z podobszarów definiuje się przez wartości funkcji pierwotnej w skończonej liczbie punktów z wnętrza rozważanego obszaru, zwanych węzłami. W celu otrzymania modelu dyskretnego należy zatem w ciągłym fragmencie modelu fizycznego:

a) wyróżnić skończoną liczbę węzłów,
b) określić w węzłach wielkości fizyczne (węzłowe), których wartości się aproksymuje (np. przemieszczenie, naprężenie),
c) podzielić rozpatrywany obszar na skończoną liczbę elementów (elementy łączą się ze sobą we wspólnych węzłach, a ich zbiór musi pokrywać cały obszar),
d) aproksymować wielkości fizyczne w każdym elemencie za pomocą funkcji aproksymujących (np. wielomianów, szeregów itp.) przez wielkości węzłowe. Dla każdego elementu można przyjąć inną funkcję wielomianu, ale wszystkie należy obierać w taki sposób, aby zachować możliwie dobrą ciągłość między poszczególnymi funkcjami na brzegach elementów.

Jeżeli w elemencie jest rozpatrywana jedna wielkość fizyczna opisywana funkcją ciągłą, np. przemieszczenie w kierunku osi z $u_z = (x, y, z, t)$, to określa się ją przez wielkości węzłowe przedstawione na rysunku 2.21 za pomocą związku:

$$u_{z\in}(t) = \sum_{n=1}^{IE} N_n(x,y,z)u_{zn}(t),$$ \hspace{1cm} (60)

dzięki:

- IE – liczba węzłów opisujących element skończony,
- $N_n(x,y,z)$ – funkcja kształtu elementu n,
- $u_{zn}(t)$ – wielkości węzłowe np. przemieszczenia.

Rys. 2.21. Aproksymacja wielkości fizycznej we wnętrzu elementu skończonego [14].

Niezbytnym warunkiem otrzymania żądanej dokładności w MES jest przyjęcie funkcji kształtu dostatecznie dokładnie odwzorowujących rzeczywiste wielkości fizyczne w elemencie. Przy spełnieniu tego warunku i coraz gęstszym podziale obszaru na elementy, otrzymane wartości np. przemieszczenia mogą zbliżyć się do rozwiązania dokładnego. Zbliżanie to osiąga się wtedy, gdy funkcje kształtu zapewniają:

a) ciągłość przemieszczeń wewnątrz elementu oraz ich zgodność na granicach elementów,
b) możliwość opisywania stałych przemieszczeń elementu, a więc jego ruchu jako ciała sztywnego,
c) możliwość opisania stanu stałych odkształceń (a tym samym naprężeń) wewnątrz elementu, występującego przy odpowiednich przemyszczeniach węzłów.

Elementy, w których funkcje kształtu spełniają pierwszy z podanych warunków (a), nazywa się elementami zgodnymi (dostosowanymi). Natomiast elementy, które spełniają tylko warunek drugi i trzeci (b i c), nazywa się elementami zupełnymi (niedostosowanymi) [14].

Strona 33
Przyjęcie do dyskretyzacji elementów zgodnych zapewnia zbieżność rozwiązania modelu dyskretnego od dołu, co pokazano na rysunku 2.22.

Zaletą MES jest możliwość uwzględnienia indywidualnych cech przepustu takich, jak:

a) geometria konstrukcji,
b) nieliniowe właściwości materiału jakim jest grunt,
c) etapowy charakter budowy,
d) zmienne obciążenia.

W komputerowych systemach wykorzystujących MES, takich jak COSMOS czy PLAXIS, do modelowania gruntu przyjmuje się model Coulomba – Mahra lub sprężysto-idealnie nieliniowy model opisany w 1952 roku przez Druckera i Pragera [84].

Użyte w niniejszej rozprawie elementy MES i modele zostały dokładnie przedstawione w punkcie 4 „Wyznaczenie wytworzenia przepustu metodą elementów skończonych”.

2.2.2.3. Wyboczenie ścianki przepustu podatnego

Wyboczenie sprężyste powstaje jako lokalne i może wystąpić w koronie konstrukcji, w jej części dolnej lub w innym dowolnym miejscu, w zależności od tego, w którym miejscu pojawi się krytyczna kombinacja sił osiowych, momentu zginającego, imperfekcji materiału oraz naprężeń lokalnych. W rzeczywistości nigdy nie odnotowano awarii przepustu podatnego ze stalowych blach falistych z uwagi na wyboczenie, poza przypadkami wystąpienia nadmiernych odkształceń w płaszczy przepustu.

Podczas badań modelowych podatnych przepustów z blachy falistej, obsypanych gruntem o małym module odkształcenia zauważono, że blachy uległy zniszczeniu poprzez wyboczenie. Przy zwiększeniu różnicy pomiędzy modułem odkształcenia gruntu a sztywnością samej blachy zniszczenie nastąpiło poprzez uplastycznienie się stali [101].

Zaproponowano następujący warunek wyboczeniowy do projektowania przepustów podatnych o dużych rozpiętościach:

$$f_b = \frac{2}{A} \sqrt{\frac{eEI}{1 - \nu^2}}$$

gdzie:

- f_b – ciśnienie krytyczne powodujące wyboczenie,
- A – pole powierzchni przekroju poprzecznego przepustu na jednostkę długości,
- e – moduł odporu gruntu,
- E – moduł Younga dla przepustu,
- I – moment bezwładności przekroju przepustu na jednostkę długości,
- ν – współczynnik Poissona dla materiału przepustu.
Inny związek opisujący krytyczne ciśnienie powodujące wyboczenie można znaleźć w pracy Luschera [102]. Po przeprowadzeniu badania na rurach zagłębionych w gruncie i analizy teoretycznej zjawiska wyboczenia Luscher zaproponował następującą zależność:

\[p = 1.73 \sqrt[3]{\frac{EIBM_s}{R^3}}, \]

(62)

gdzie:
- \(p \) – ciśnienie krytyczne powodujące wyboczenie,
- \(R \) – promień rury,
- \(E \) – moduł Younga dla rury,
- \(I \) – moment bezwładności przekroju rury na jednostkę długości,
- \(M_s \) – moduł edometryczny gruntu,
- \(B \) – współczynnik sprężystości podłoża.

Korzystając z powyższego równania, można wyznaczyć minimalny moduł edometryczny gruntu potrzebny do zapobieżenia wyboczeniu dla przepustów o dużej rozpiętości (oznaczenia jw.):

\[M_s \geq \frac{p^2 R^3}{3EIB}, \]

(63)

Wykorzystując metody energetyczne, Chelapati i Allgood zaproponowali kolejną formułę opisującą krytyczne ciśnienie wyboczeniowe wyrażone wzorem [103]:

\[p_{cr} = 6 \sqrt{M_s(1 - K_s) \frac{EI}{D^2}}, \]

(64)

gdzie:
- \(p_{cr} \) – ciśnienie krytyczne powodujące wyboczenie,
- \(M_s \) – moduł edometryczny gruntu,
- \(E \) – moduł Younga dla rury,
- \(I \) – moment bezwładności przekroju rury na jednostkę długości,
- \(D \) – średnica rury,
- \(K_s \) – współczynnik oporu bocznego gruntu.

Teoretyczne analizy zjawiska wyboczenia były dokonywane przez wielu badaczy, lecz nie są one stosowane w szerokim zakresie w projektowaniu. Przyczyną takiego stanu rzeczy jest fakt, że „uszkodzenia wybudowanych przepustów, które można byłoby przypisać wyboczeniu, nigdy nie miały miejsca, o ile nie nastąpiły nadmiernie deformacje poprzedzające uszkodzenie” [95].

Norweskie wytyczne do budowy konstrukcji podatnych o dużych rozpiętościach zalecają użycie materiału niespoistego o minimalnym zagęszczeniu 97 % wg Proctora Normalnego. Powoduje to przyjęcie wartości modułu edometrycznego na poziomie min. 20.0 MPa. Przy powyższych założeniach, z zachowaniem podstawowego reżimu jakościowego wynikającego z zaleceń, projektując podatne konstrukcje przepustów o dużych rozpiętościach, nie ma potrzeby rozpatrywać oddzielnie warunku wyboczenia, wystarczy warunek ograniczenia deformacji do 2 % rozpiętości lub wysokości.
2.3. Wybrane badania przepustów podatnych w skali naturalnej

W niniejszym punkcie przedstawiono polowe badania przepustów podatnych w naturalnej skali. Zestawione badania były wykonywane w różnym czasie i miejscu oraz w różnym zakresie.

2.3.1. Przepusty kolejowe w Międzylesiu [10, 11]

2.3.1.1. Konstrukcja przepustu

Badany obiekt jest dwukomorowym przepustem zlokalizowanym w nasypie dwutorowej linii kolejowej Wrocław – Międzylesie w km. 99.912, w miejscowości Krosownice. Przeznaczeniem konstrukcji jest przepuszczenie dużych wód opadowych oraz fali powodziowej. Przedmiotowy przepust został zaprojektowany i wykonany jako typowa konstrukcja multiplate. Widok podczas montażu oraz podstawowe wymiary przekroju poprzecznego prefabrykowanej konstrukcji pokazano na rysunkach 2.24 i 2.25. Obiekt składa się z dwóch ułożonych równolegle obok siebie jednakowych konstrukcji o symbolu katalogowym L29 i długości całkowitej \(L = 21.80 \) m. Przekrój podłużny i widok konstrukcji przepustu pokazano na rysunku 2.23.

Konstrukcja składa się z arkuszów profilowanej blachy falistej o grubości ścianki \(t = 4.75 \) mm i profilu fałdy 150 x 50 mm. Blachę wykonano ze stali konstrukcyjnej Fe360B FN zgodnie z Normą Europejską EN10025. Poszczególne arkusze połączone są ze sobą za pomocą śrub wysokiej wytrzymałości M20-8.8.

![Rys. 2.23. Przekrój podłużny konstrukcji i widok wylotu.](image-url)
2.3.1.2. Grunt nasypu

Przeprowadzono szczegółowe badania laboratorium gruntu użytego do wykonania nasypu nad badanymi przepustami. Rodzaj gruntu określono zgodnie z normą PN-86/B-04280 i zakwalifikowano go jako żwir (Z). Właściwości fizyko-chemiczne gruntu nasypowego, wyznaczone na podstawie normy PN-88/B-04481, zamieszczono w tabeli 2.7.

Tabela 2.7. Właściwości fizyko-chemiczne gruntu.

<table>
<thead>
<tr>
<th>l.p.</th>
<th>Rodzaj badań</th>
<th>Jednostka</th>
<th>Parametry/Wielkości</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zawartość części organicznych</td>
<td>%</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>Granica Atterberga</td>
<td></td>
<td>Grunt niespoisty</td>
</tr>
<tr>
<td>3</td>
<td>Maksymalna gęstość objętościowa szkieletu gruntu</td>
<td>g/cm³</td>
<td>2.21</td>
</tr>
<tr>
<td>4</td>
<td>Wilgotność optymalna</td>
<td>%</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>Zawartość CaCO₃</td>
<td>%</td>
<td>< 1</td>
</tr>
</tbody>
</table>

2.3.1.3. Wyniki pomiarów przy próbnych obciążeniach

Obciążenie statyczne.
Zanotowano następujące maksymalne przemieszczenia przy pierwszym najeździe lokomotyw od strony Wrocławia (czas obciążenia 15 min):
1. Pionowe: – 0.550 mm.
2. Poziome: lewe (str. południowa, od strony sąsiedniej komory) – 0.110 mm, prawe (str. północna) – 0.060 mm.

Zanotowano następujące maksymalne przemieszczenia przy drugim najeździe lokomotyw od strony Międzylesia (czas obciążenia 40 min):
1. Pionowe: – 0.714 mm.
2. Poziome: lewe (str. południowa, od strony sąsiedniej komory) – 0.159 mm, prawe (str. północna) – 0.051 mm.

Obciążenie dynamiczne
Maksymalne przemieszczenia pionowe zarejestrowano podczas przejazdu lokomotyw z prędkością 10 km/h i wyniosły one 0.400 mm, natomiast maksymalne przemieszczenia poziome wystąpiły również przy prędkości 10 km/h i wyniosły w liczbach bezwzględnych ok. 0.200 mm. Wykresy zmian przemieszczeń podczas przejazdu z prędkością 10 km/h przedstawiono na rysunkach 2.26 i 2.27.
2.3.2. Przepust drogowy na drodze krajowej nr 11 [28]

2.3.2.1. Konstrukcja przepustu

Badaniom poddano konstrukcję stuletniego łukowego przepustu ceglanego o promieniu 2,5 m (w kłucz) i grubości 0,40 m posadowionego na fundamencie betonowym. Przepust ceglany został wzmocniony przepustem stalowym z blachy falistej. Przepusty zlokalizowane są pod drogą krajową nr 11, a ich całkowita długość wynosi \(L = 10.90 \) m.

Przepust stalowy to konstrukcja typu \textit{multiplate} o wysokości \(H = 2.95 \) m i rozpiętości \(B = 4.26 \) m, wykonana z profilowanej blachy falistej o wymiarach fali 150 x 50 mm. Poszczególne płaszcze połączone są za pomocą śrub wysokiej wytrzymałości. Przekrój poprzeczny z wymiarami konstrukcji pokazano na rysunku 2.28. Przepust stalowy został posadowiony na przygotowanej podsypce z pospółki o grubości 0,200 m. Podłoże pod konstrukcje zostało dodatkowo wzmocnione geo-włókniną (200 \(\text{g/m}^2 \)).

Przestrzeń pomiędzy przepustem stalowym a wzmocnianym przepustem ceglanym została wypełniona 20 cm. warstwą betonu klasy B15.
2.3.2.2. Obciążenia.

Podczas testu zastosowano trzy schematy obciążenia pokazane na rysunku 2.29:

- **Schemat I** – obciążenie symetryczne: tylną oś pojazdu ustawiono symetrycznie nad przepustem w płaszczyźnie linii pomiarowej.
- **Schemat II** – obciążenie asymetryczne: prawa (południowa) część przepustu została obciążona tzn. tylna oś pojazdu została przesunięta o 1.0 m względem osi symetrii.
- **Schemat III** – obciążenie asymetryczne: lewa (północna) część przepustu została obciążona tzn. tylna oś pojazdu została przesunięta o 1.0 m względem osi symetrii.

Każde obciążenie trwało 15 minut. Pomiary wykonywano bezpośrednio po obciążeniu, a następnie w równych pięciominutowych odstępach czasu.

Wykonano cztery próbowe obciążenia w okresie od października 2000 do lipca 2003 przy użyciu samochodu ciężarowego o ciężarze zestawionym w tabeli 2.8. Pomiędzy testami przepust był poddany normalnej eksploatacji, tj. obciążeniu drogowemu ok. 12 000 pojazdów na dobę, w tym 12% pojazdów ciężarowych.
Tabela 2.8. Zestawienie obciążenia drogowego wykorzystanego podczas testów.

<table>
<thead>
<tr>
<th>Nr testu</th>
<th>Miesiąc, rok</th>
<th>Obciążenie drogowe [kN]</th>
<th>Wykonane pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oś przednia</td>
<td>Oś tylna</td>
</tr>
<tr>
<td>1</td>
<td>Październik, 2000</td>
<td>80.0</td>
<td>2 x 120.5</td>
</tr>
<tr>
<td>2</td>
<td>Listopad, 2000</td>
<td>75.0</td>
<td>2 x 120.5</td>
</tr>
<tr>
<td>3</td>
<td>Październik, 2001</td>
<td>81.0</td>
<td>2 x 113.0</td>
</tr>
<tr>
<td>4</td>
<td>Lipiec, 2003</td>
<td>96.6</td>
<td>2 x 113.7</td>
</tr>
</tbody>
</table>

2.3.2.3. Wyniki pomiarów.

Rozkłady naprężeń na powierzchni sklepienia ceglanego przed wykonaniem wzmocnienia i betonowaniem dla schematu I i III pokazano na rysunkach 2.30a oraz 2.31a.

Rys. 2.30. Rozkład naprężeń na powierzchni sklepienia ceglanego dla schematu nr I a) przed wzmocnieniem, b) po wzmocnieniu [MPa].
Rozkłady naprężeń na powierzchni sklepienia ceglanego po wykonaniu wzmocnienia i betonowania dla schematu I i III pokazano na rysunku 2.30 b oraz 2.31 b. Niestety, podczas wypełniania mieszaną betonową przestrzeni pomiędzy przepustami uszkodzeniu uległ tensometr nr #3, toteż na wykresach linią przerwaną zaznaczono założone naprężenia. Naprężenia wyznaczono mnożąc pomierzone odkształcenia przez moduł sprężystości dla cegły, wynoszący $E_b = 3\ 500\ \text{MPa}$. Naprężenia ujemne na wykresach oznaczają ściskanie, dodatnie - rozciąganie.

![Rys. 2.31. Rozkład naprężeń na powierzchni sklepienia ceglanego dla schematu nr III](image)

a) przed wzmocnieniem, b) po wzmocnieniu [MPa].

Naprężenia w konstrukcji stalowej zostały obliczone przy założeniu modułu sprężystości dla stali wynoszącym $E_s = 210\ 000\ \text{MPa}$. Pomierzone odkształcenia pozwalają na wyznaczenie naprężeń osiowych oraz naprężeń zginających z następujących zależności:

$$\sigma_N = \frac{\sigma_{A1} + \sigma_{A2}}{2},$$ \hspace{1cm} (65)

$$\sigma_M = \frac{\sigma_{A1} - \sigma_{A2}}{2},$$ \hspace{1cm} (66)

gdzie:

- σ_N – naprężenia osiowe,
- σ_M – naprężenia zginające,
- σ_{A1} – naprężenia w punkcie A1 (góra część fali),
- σ_{A2} – naprężenia w punkcie A2 (dolna część fali).

Wyniki obliczonych naprężeń przedstawiono na rysunkach 2.32 oraz 2.33.

![Rys. 2.32. Rozkład naprężeń na powierzchni przepustu stalowego dla schematu obciążeń nr I](image)

a) naprężenia zginające [MPa] – wykres wykreślono po stronie włókien rozciąganych,
b) naprężenia osiowe [MPa] – ujemne naprężenia oznaczają ściskanie.

Strona 41
Napräżenia w gruncie pomierzone przez czujniki umieszczone u podstawy przepustu stalowego w pierwszym i drugim teście wskazały zero. Jedynie czujnik nr #7 wskazywał wartość w granicach tolerancji błędu i nie przekroczył wartości 5 kPa. Po rocznej przerwie w czasie trzeciego testu stwierdzono wzrost napräżeń w gruncie pod konstrukcją stalową. Napräżenia wyniosły: 50.0 kPa dla punktu nr 1 i 7 oraz 25.0 kPa dla punktu nr 2.

2.3.3. Przepust drogowy w miejscowości Jeleniów [72]

2.3.3.1. Konstrukcja przepustu

Badany obiekt jest przepustem zlokalizowanym na zjeździe z drogi międzynarodowej nr E67 Wrocław – Kudowa do posesji w miejscowości Jeleniów. Przepust został zaprojektowany i wykonany jako konstrukcja typu box culvert o symbolu katalogowym MP 150 17B i długości całkowitej $L = 7.60$ m. Przekrój podłużny konstrukcji przepustu z wymiarami pokazano na rysunku 2.34.
Konstrukcja składa się z arkuszów profilowanej blachy falistej o grubości ścianki $t = 6$ mm i profilu faldy 150 mm x 50 mm. Poszczególne arkusze połączone są ze sobą za pomocą śrub wysokiej wytrzymałości M20 klasy 8.8. W środku rozpiętości przęsła i w narożach zastosowano nakładki wzmacniające z tej samej blachy falistej. Powłokę stalową na końcach utwierdzono w fundamentie betonowym. Przy wlocie i wylocie konstrukcji wykonano betonowe czołowe o szerokości 0.50 m.

2.3.3.2. Wyniki pomiarów

Odkształcenia jednostkowe mierzone w punktach pokazanych na rysunku 2.35 na wewnętrznej powierzchni konstrukcji na górnej i dolnej falde blachy. Naprężenia normalne dla kierunku obwodowego σ_x i prostopadłego do obwodowego σ_y, wyznaczono z zależności:

$$\sigma_x = \frac{E}{1-\nu^2}(\varepsilon_x + \nu \cdot \varepsilon_y),$$

$$\sigma_y = \frac{E}{1-\nu^2}(\varepsilon_y + \nu \cdot \varepsilon_x),$$

gdzie:
- E – moduł Younga,
- ν – współczynnik Poissona,
- ε_x, ε_y – odkształcenia w kierunku x i y.

Na rysunkach 2.36 i 2.37 przedstawiono naprężenia normalne, sporządzone dla dolnej części fal i linii obwodowej, oddalonej o 0.60 m od osi symetrii mostu. Zaprezentowano schemat obcięcia środkowego (S), ponieważ w tym przypadku wartości naprężeń były większe w porównaniu z położeniem bocznym (B). Wartości ujemne naprężeń oznaczają ściskanie.

Rys. 2.35. Rozmieszczenie czujników pomiarowych na powierzchni przepustu.
Rys. 2.36. Wykres naprężeń dla schematu S: a) przy $X_p = -0.90$ m, b) przy $X_p = 0.00$ m.

Rys. 2.37. Wykres naprężeń dla schematu S: a) przy $X_p = 0.90$ m, b) przy $X_p = 1.80$ m.

W tabeli 2.9 przedstawiono ugięcia dla schematu B przy $X_p = 0.0$ m pomierzone dla różnych czasów obciążenia T_i.

Tabela 2.9. Ugięcia dla schematu B przy $X_p = 0.0$ m.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Czas pomiaru [s]</th>
<th>Punkt pomiaru wg rysunku 2.35 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$T_0 = 0$</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>$T_1 = 30$</td>
<td>3.32</td>
</tr>
<tr>
<td>3</td>
<td>$T_2 = 4560$</td>
<td>3.51</td>
</tr>
<tr>
<td>4</td>
<td>$T_3 = 4590$ (po odciążeniu)</td>
<td>0.53</td>
</tr>
</tbody>
</table>
2.3.4. Przepust w Tolpinrud (Norwegia) [22, 25]

2.3.4.1. Konstrukcja przepustu

Konstrukcja Tolpinrud znajduje się w pobliżu miejscowości Hønefoss, około 60 km na północ od Oslo w Norwegii. Jest to konstrukcja łukowa zamknięta o rozpiętości 7.81 m, wysokości 9.92 m oraz całkowitej długości wynoszącej 106.00 m. Konstrukcja zbudowana jest z blachy falistej o wymiarach fali 55 x 200 mm i grubości blachy 6.8 mm wspieranej dwoma belkami betonowymi w górnej części łuku. Przepust pełni rolę kolejowego tunelu pod drogą. Na rysunkach 2.38 i 2.39 pokazano widok wlotu przepustu oraz przekrój poręczny przepustu z wymiarami. Jest to pierwszy przepust o dużej rozpiętości, z blachy falistej wybudowany w Norwegii w 1982. Warto wspomnieć, że oszczędności finansowe w porównaniu z klasycznym mostem wyniosły ok. 25 %, czyli ok. 1.5 miliona koron norweskich.

Naziem wybudowano ze zwiru oraz piasku zagęszczonego przy minimalnym stopniu zagęszczenia wg Proctora Normalnego wynoszącym 97 %. Obszary wypełnienia poszczególnymi rodzajami gruntu pokazano na rysunku 2.39.

![Rys. 2.38. Przepust kolejowy w miejscowości Tolpinrud w Norwegii.](image)

2.3.4.2. Aparatura pomiarowa

Do pomiarów naprężeń w gruncie zastosowano czujniki naporu gruntu (presjometry) typu Glötzl umieszczone w dwóch przekrojach: 25.0 m i 50.0 m od północnego wylotu przepustu. W każdym przekroju zastosowano pięć presjometrów, których rozmieszczenie w przekroju poprzecznym pokazano na rysunku 2.39. Cztery czujniki zostały zamontowane na stalowej powłoce przepustu za pomocą specjalnie przygotowanych blach falistych o wymiarach 60 x 80 cm. Jeden czujnik został umieszczony pionowo w nasypie w odległości 0.5 m od betonowej belki wzmacniającej w celu pomiaru poziomego naporu gruntu.

Dodatkowo w pobliżu każdego presjometru umieszczono czujniki temperatury.

Podczas montażu taśmą stalową mierzono deformację konstrukcji w trzech punktach: w kluczu oraz w skrajnych punktach rozpiętości.
2.3.4.3. Wyniki pomiarów

Pomierzony napór gruntu w koronie konstrukcji (czujnik nr 1) jest niemal zgodny z wyznaczonym pionowym naporem gruntu na wysokości czujnika.

Zarejestrowany przez czujnik nr 2 boczny napór gruntu jest o około 50% mniejszy od wyznaczonego na tym samym poziomie pionowego nacisku gruntu po zakończeniu budowy. Po roku w tym samym miejscu zarejestrowano 100% wzrost bocznego naporu gruntu. Pomiary przez następne lata wskazują na nieznaczny wzrost naporu bocznego.

Napór gruntu w pachwinach konstrukcji (presjometr nr 3) jest mniejszy od naporu gruntu w punkcie nr 2. Należy zaznaczyć jednocześnie, że rozkład naparów w pachwinach wyznaczony na podstawie zależności teorii ściskania pierścieniowego zakłada nieco większe parcie, tj. [106]:

\[p_H = p_v \frac{R_L}{R_H} = 41,1 \text{kPa}, \]

gdzie:
- \(p_v = \gamma H = 19.8 \text{kPa} \) – pionowy napór gruntu na poziomie klucza konstrukcji,
- \(R_L = 3.90 \text{ m} \) – promień łuku w kluczu konstrukcji,
- \(R_H = 1.88 \text{ m} \) – promień łuku w pachwinach konstrukcji.

Nacisk gruntu u podstawy konstrukcji w punkcie 4 wykazywał tendencję malejącą w czasie długoterminowej obserwacji po zakończeniu budowy.

Parcie boczne w odległości 0,5 m od wzmacniającej belki betonowej, mierzone czujnikiem nr 5, pokazano na rysunku 2.41. Zmierzona wartość naporu gruntu w tym punkcie jest bardzo mała w porównaniu z wartościami pomierzonymi w innych punktach.
Rys. 2.40. Zmiany naporu gruntu i temperatury w czasie w czterech punktach pomiarowych (1, 2, 3, 4) na powierzchni przepustu.
Rozkład naporu gruntu na powierzchni przepustu zarejestrowany bezpośrednio po zakończeniu montażu oraz 18 miesięcy po zakończeniu budowy pokazano na rysunku 2.42. Z pomierzonych wartości wynika 100% wzrost parcia gruntu na poziomie czujnika nr 2, tj. w skrajnych punktach rozpiętości.

Długoterminową obserwację deformacji pionowych przepustu pokazano na rysunku 2.43. Od lutego 1983 do listopada 1986 w koronie przepustu zanotowano przemieszczenia skierowane ku dołowi. Całkowite pionowe przemieszczenia wyniosły 15 mm (punkt A) w tym czasie. Wartości zarejestrowane w punktach B i C wskazują, że cała konstrukcja osiadła 10 mm, tak więc względne długoterminowe deformacje w kluczu konstrukcji wyniosły 5 mm.

Całkowite poziome deformacje na poziomie maksymalnej rozpiętości przepustu w tym samym okresie wyniosły mniej niż 15 mm i były skierowane na zewnątrz konstrukcji.

Zarejestrowane wartości deformacji są średnimi z obserwacji w pięciu przekrojach.

Rys. 2.41. Zmiany naporu gruntu i temperatury w czasie w punkcie nr 5 przy belce wzmacniającej.

Rys. 2.42. Napór gruntu pomierzony po zakończeniu budowy i po 18 miesiącach.

Rys. 2.43. Przemieszczenia pionowe w charakterystycznych punktach zanotowane w okresie od 1983 do 1986.
2.3.5. Przepust w Dovre (Norwegia) [22, 25]

2.3.5.1. Opis konstrukcji

Przepust jest zlokalizowany w pobliżu miejscowości Dovre, około 350 km na północ od Oslo w Norwegii. Konstrukcja ma kształt poziomej elipsy wzmocnionej dwoma belkami betonowymi o rozpiętości 10,78 m, wysokości 7,13 m, a jej całkowita długość wynosi 35,0 m. Przepust pełni rolę „przejścia” dla zwierząt na międzynarodowej drodze nr E6. Wysokość naziomu wynosi 4,20 m. Konstrukcja została wzniesiona w roku 1985 i była wówczas największą konstrukcją podatną z blach falistych w Skandynawii. Widok przepustu został pokazany na rysunku 2.44 natomiast jego przekrój porzeczny na rysunku 2.45.

Przepust zbudowano z arkuszów blachy falistej o fali 55 x 200 mm oraz grubości blachy 7 mm. Całość została zmontowana na miejscu budowy i skręcona śrubami wysokiej wytrzymałości o średnicy 20 mm klasy 8.8.

Do wykonania wypełnienia nasypu użyto wysokiej jakości żwiru 0-16 mm w strefie bezpośrednio otaczającej przepust. Po obu stronach przepustu zastosowano żwir 0-100 mm. Strefa wymiany gruntu sięga do 6,0 m po obu stronach konstrukcji i ok. 2 m nad jej kluczem. Pozostały grunt nasypu to żwir układano warstwami, co 30 cm przy minimalnym zagęszczeniu 97 % wg Proctora Normalnego. Na rysunkach 2.46 a, b pokazano krzywą uziarnienia i wykres wilgotności optymalnej gruntu użytego do wykonania nasypu. Wilgotność optymalna wynosi 8 % przy gęstości 21,2 kN/m³.

Strefy gruntu w przekroju zostały pokazane na rysunku 2.45.

Rys. 2.44. Przepust drogowy pod przejściem dla zwierząt w miejscowości Dovre w Norwegii
Rys. 2.45. Przekrój poprzeczny przepustu z pokazaną lokalizacją presjometrów i tensometrów.

Rys. 2.46. Właściwości gruntu nasypu:
a) wykres krzywej uziarnienia, b) wykres wilgotności optymalnej.
2.3.5.2. Wyniki pomiarów

Deformacje pomierzone podczas obsypywania przepustu pokazano na rysunku 2.47. Były one mierzone po zagęszczeniu każdej 30 cm warstwy naziomu w dwóch płaszczyznach: pionowej A-C i poziomej C-D.

Maksymalne wyniesienie korony przepustu wynosiło 65 mm, gdy naziom osiągnął poziom belek wzmacniających. Według norweskich zaleceń dopuszczalne wyniesienie korony przepustu nie może przekroczyć 2 % wysokości przepusty, czyli w tym przypadku 143 mm. Po wykonaniu całego naziomu korona przepustu przemieszczała się 45 mm do wewnątrz przepustu, tak więc ostatecznie korona przepustu przemieszczała się 20 mm do góry.

Przemieszczenia poziome C-D pokazano na rysunku 2.47 po lewej stronie. Rozpiętość maksymalna C-D zmniejszyła się maksymalnie 35 mm, gdy naziom wykonano do poziomu belek wzmacniających. Po całkowitym wykonaniu naziomu przemieszczenia na poziome C-D ustabilizowały się i wynosiły 21 mm.

Podczas montażu konstrukcji zanotowano maksymalny moment o wartości 8.0 kNm/m, który odpowiadał maksymalnemu naprężeniu o wartości 77.0 N/mm². Moment ten pojawił się w kluczu konstrukcji. Na rysunku 2.48 pokazano górną i dolną granicę zarejestrowanych momentów od zakończenia budowy we wrześniu 1985 do sierpnia 1988. W tym okresie maksymalny moment, jaki został odnotowany wynosił 7.6 kNm/m w kluczu konstrukcji. Rozkład momentów zginających nie był symetryczny.
Zmiany rozkładu sił osiowych na obwodzie przepustu zarejestrowane w różnym czasie pokazano na rysunku 2.49. Maksymalna wartość siły osiowej została odnotowana po zakończeniu budowy w wrześniu 1985 i wynosiła 498 kN/m w koronie przepustu. Siła ściskająca w kłuczu wzrosła do 727 kN/m w kwietniu 1986, natomiast w lutym 1987 do 860 kN/m, co odpowiadało naprężeniom o wartości 104 N/mm².

Odnoszono małą wartość siły osiowej po zakończeniu montażu w punkcie nr 2. Wartość tej siły znacząco wzrosła z czasem.

Rys. 2.49. Siły osiowe zarejestrowane w konstrukcji stalowej w różnych odstępach czasu.

Rozkład naporu gruntu wokół elipsy po zakończeniu budowy i po trzech latach pokazano na rysunku 2.50.

Rys. 2.50. Napór gruntu zarejestrowany wokół konstrukcji pod koniec budowy i po trzech latach eksploatacji.

Z długoterminowego pomiaru deformacji przepustu wynika, że maksymalna jej wartość wystąpiła po bokach konstrukcji i wynosiła w poziomie 13 mm.

Rys. 2.51. Zmiany naporu gruntu i temperatury w czasie w punkcie nr 5 przy belce wzmacniającej.
Pomiary parcia bocznego na wysokości belki wzmacniającej (czujnik nr 5) wskazują, że było ono 1.55 razy większe od nacisku pionowego słupa gruntu na wysokości czujnika po zakończeniu budowy. Różnice te zmieniały się wraz ze zmianą temperatury gruntu w ciągu dalszych pomiarów. Charakter zmian pokazano na rysunku 2.51.

W presjometrze umieszczonym 30 cm ponad koroną przepustu zanotowano napor gruntu, który odpowiadał ok. 30% ciężaru kolumny gruntu nad czujnikiem. Pomiary długotrwałe w tym punkcie pokazano na rysunku 2.53 a. Wykorzystując pomiary wykonane czujnikiem nr 1 i 6, na rysunku 2.52 pokazano zmiany naporu gruntu w płaszczyźnie pionowej nad kluczem przepustu. Pomiary wskazują na znaczną redukcję obciążenia gruntem w pobliżu płaszcza przepustu, związaną ze zjawiskiem przeskleplenia.

Na rysunku 2.53 pokazano zmiany naporu gruntu w czasie, występujące w punktach 1, 2, 3, 4 na obwodzie konstrukcji stalowej.

Podczas montażu konstrukcji parcie boczne na poziomie czujnika nr 2 z boku konstrukcji pokrywało się z pionowym ciężarem słupa gruntu w tym miejscu. Zanotowano natomiast wyraźne zmiany po zakończeniu budowy. Po trzech latach, pod koniec pomiarów, parcie boczne było ok. 30% większe od pionowego nacisku gruntu.

Napór gruntu w dolnej części elipsy (czujniki nr 3 i 4) jest niewielki i nie zanotowano wyraźnych jego zmian w czasie.

Rys. 2.53 a, b, c, d. Zmiany naporu gruntu i temperatury w czasie w czterech punktach pomiarowych (1, 2, 3, 4) na powierzchni przepustu.
2.3.6. Przepust w Elkhart Creek (Kanada) [37]

2.3.6.1. Opis konstrukcji.

Przepust Elkhart Creek zlokalizowany jest w Okanagan Connector w Kolumbii Brytyjskiej w Kanadzie. Jest on łukowym przepustem otwartym z blach falistych, posadowionym na ławie fundamentowej. W październiku 1987 przepust wznoszony w tym samym miejscu uległ awarii podczas obsypywania gruntem, gdy naziom wynosił ok. 1.00 m.

Nowa konstrukcja o identycznej geometrii była budowana w okresie od sierpnia do października 1989. Wykorzystano te same ławy fundamentowe i niektóre blachy faldowe z pierwotnego przepustu. Przepust ma rozpiętość 13.37 m, wysokość 7.30 m oraz naziom 9.60 m nad kluczem konstrukcji, grubość blachy faldowej wynosi 7.0 mm. W górnej części przepustu zastosowano usztywnienie w postaci podwójnej blachy falistej oraz belek betonowych. Usztywnienie z blach falistych składa się z przykrעוconych pasów blachy o grubości 7.0 mm i szerokości 0.61 m, rozstawionych co 3.0 m. Konstrukcja jest wykorzystywana do przepuszczenia cieku wodnego oraz jako przejście dla zwierząt pod czteropasmową autostradą. Oś konstrukcji jest prostopadła do osi autostrady, a całkowita długość przepustu wynosi 78.0 m.

Przekrój porzeczny konstrukcji z wymiarami pokazano na rysunku 2.54.
Nasyp wykonano z pospółki o stopniu zagęszczenia 95 – 100 % wg Proctora Normalnego. Laboratoryjnie ustalono gęstość objętościową zasypki równą 22.7 kN/m³. Grunt zagęszczano warstwami o grubości 30 cm.

2.3.6.2. Wyniki pomiarów

Pomiary wykonano podczas montażu konstrukcji. Na rysunku 2.55 pokazano rozkład odkształceń w trzech przekrojach, zarejestrowanych przez tensometry po zakończeniu budowy nasypu. Maksymalne odkształcenie wyniosło 506×10^{-6} mm/m, co odpowiada wartości naprężenia osiowego równego 101.0 MPa. Dodatkowo na rysunku 2.56 pokazano zmiany odkształceń w punkcie E (korona) w zależności od wysokości naziomu podczas budowy.
Na rysunku 2.57 pokazano przemieszczania powłoki przepustu w zależności od wysokości naziomu pomierzone w dwóch charakterystycznych punktach:
- korona przepustu (punkt nr 4),
- punkt maksymalnej rozpiętości (punkt nr 1).

Klucz przepustu podczas wszystkich faz obsypwania gruntem przemieszczył się do góry maksymalnie o 80 mm, natomiast punkt nr 1 przesunął się do wewnątrz przepustu o 25 mm maksymalnie.

Wyniki pomiarów parcia gruntu ponad kluczem powłoki wskazują, że naprężenia w gruncie są mniejsze od ciężaru kolumny gruntu nad czujnikiem, podczas gdy pomiary naporu gruntu na poziomie maksymalnej rozpiętości wskazują na zależność odwrotną. Wykres naporów gruntu w zależności od wysokości naziomu pokazano na rysunku 2.58.

Pomiary względnego i całkowitego osiadania gruntu wykonane przez jedyny sprawny czujnik na poziomie korony przepustu pokazano na rysunku 2.59. Przy całkowitym obsypaniu konstrukcji klucz przepustu przemieszczył się o 66 mm względem punktu pomiarowego, natomiast całkowite przemieszczenie gruntu w punkcie pomiarowym względem punktu odniesienia wyniosło 10 mm.

Rys. 2.57. Zmiany przemieszczeń w zależności od wysokości naziomu, a) punkt nr 4 (znak „+” przemieszczenia do góry), b) punkt nr 1 (znak „+” przemieszczenia do wewnątrz).

Rys. 2.58. Zmiany naporu gruntu i temperatury w czasie, a) czujnik nr 1, b)czujnik nr 2.
2.3.7. Przepust w Leigh Creek (Australia) [40]

2.3.7.1. Opis konstrukcji

Przepust w Leigh Creek jest konstrukcją łukową o długości 26.7 m, posadowioną na żelbetowych ścianach oporowych o wysokości 3.0 m. Rozpiętość łuku wynosi 12.0 m, natomiast jego wyniesienie nad poziom ścian oporowych równa się 4.0 m. Przepust funkcjonuje jako przejazd drogowy do elektrowni Trust nad dwupasmową drogą stanową Hawker – Maree w południowej Australii. Przekrój poprzeczny konstrukcji z wymiarami pokazano na rysunku 2.60.

Cześć stalowa konstrukcji składa się z dwóch łuków o promieniu R = 3.9 m i jednego o promieniu R = 7.7 m wykonanych z blachy falistej o wymiarach 50 x 150 mm i grubości blachy 7 mm. W górnej części łuk jest wzmocniony dwoma belkami betonowymi. Maksymalna wysokość konstrukcji mierzona od powierzchni drogi do klucza łuku wynosi 6.5 m.

Użyto dwóch rodzajów gruntu do wykonania naziomu. Obszar bezpośrednio przy konstrukcji wypełniono piaskiem, natomiast pozostałą część naziomu wypełniono żwirkiem.

Rys. 2.59. Przemieszczenia w gruncie w zależności od wysokości naziomu.

Rys. 2.60. Przekrój poprzeczny przepustu.
2.3.7.2. Wyniki pomiarów

Na rysunku 2.61 zaprezentowano pionowe przemieszczenia trzech charakterystycznych punktów konstrukcji w odniesieniu do korony przepustu (poziom ± 0.00 to korona przepustu) dla różnych poziomów nasypu w przekroju północnym i południowym. Ugięcie przepustu w punkcie B i E (korona) było skierowane na zewnątrz, dopóki poziom nasypu nie wyrównał się z poziomem korony. Po dalszym wypełnieniu nasypu przemieszczenia były skierowane do dołu. Gdy zakończono wykonywanie nasypu średnie przemieszczenie punktów B i E do wewnątrz konstrukcji wynosiło 22 mm. Pomiary dokonywano wczesnym rankiem lub późnym popołudniem, ponieważ temperatury w ciągu dnia dochodziły do 46 °C.

Na rysunku 2.64 pokazano przesunięcia arkuszy blach falistych w miejscach ich łączenia w przekroju południowym. Średnie przesunięcia blach nie przekraczały 0.40 mm. Jednakże w połaciętniu nr 11 i 12 przesunięcia wyniosły odpowiednio 4.37 mm i 2.20 mm przy kompletnym naziomie. Wzrost przesunięć w tych punktach odpowiada wzrost naprężeń osiowych w tensometrach po wschodniej stronie przepustu w porównaniu ze stroną zachodnią (rysunek 2.62). Najmniejsze przesunięcia arkuszy blach (mniejsze niż 0.25 mm) zaobserwowano w miejscach montażu betonowych belek wzmocniających (połączenia nr 3, 4, 9 i 10 wg rysunku 2.64).

Pomiary osiadania gruntu były niemożliwe do przeprowadzenia z powodu wysokich temperatur, które stały się przyczyną rozkalibrowania ręcznych tub pomiarowych. W związku z powyższym nie załączono wyników pomiaru osiadania nasypu.

Rys. 2.61. Przemieszczenia trzech charakterystycznych punktów podczas obsypiania przepustu [mm].
Rys. 2.62. Rozkład naprężeń osiowych podczas obsypywania przepustu – przekrój południowy [MPa].

Rys. 2.63. Rozkład naprężeń osiowych podczas obsypywania przepustu – przekrój północny [MPa].

Rys. 2.64. Przemieszczenia trzech charakterystycznych punktów podczas obsypywania przepustu w przekroju południowym [mm].
Podczas próbnego obciążania pojazdem 50-cio tonowym zarejestrowano odkształcenia stalowej powłoki z południowego przekroju. Nie zamieszczono odkształceń zarejestrowanych w przekroju północnym, ponieważ odkształcenia te wahały się w granicach błędu pomiaru (± 1 μm/m). Wyniki pomiarów w formie wykresów ze wszystkich dziesięciu pozycji nad przekrojem południowym pokazano na rysunkach 2.65 i 2.66. Przy każdym wykresie pokazano pozycje pojazdu. Zarejestrowano maksymalne odkształcenie równe 47 μm/m. Po dociągnięciu odkształcenia wynosiły ± 0 μm/m.

Rys. 2.65. Rozkład naprężeń osiowych podczas sześciu różnych pozycji pojazdu 50 t [MPa].
Podczas próbnego obciążenia pojazdem 170-cio tonowym zarejestrowano jedynie odczyty odkształceń w przekroju południowym z tej samej przyczyny co w przypadku pojazdu 50-cio tonowego. Wykonano podwójny odczyt w pozycji, w której tylna oś pojazdu znalazła się nad kluczem konstrukcji.

Na rysunku 2.67 przedstawiono rozkłady naprężeń osiowych zarejestrowane podczas wszystkich sześciu pozycji. Zarejestrowano maksymalne odkształcenie 108 μm/m w pozycji na rysunku 2.67 d. Po odcięciu konstrukcji odkształcenie wynosiło ±3 μm/m (dokładność pomiaru ± 1 μm/m).

Na rysunku 2.68 zaprezentowano przemieszczenia trzech charakterystycznych punktów na powłoce przepustu dla sześciu pozycji pojazdu 170-cio tonowego. Maksymalne przemieszczania równe 5 mm odnotowano w kluczu konstrukcji.
Rys. 2.67. Rozkład naprężeń osiowych podczas sześciu różnych pozycji pojazdu 170 t [MPa].
Rys. 2.68. Pionowe przemieszczania podczas statycznego obciążania pojazdem 170 t [MPa].
2.3.8. Badania Armco i Thyssen [42]

2.3.8.1. Opis konstrukcji

W czerwcu i lipcu 1963 roku badaniom poddano przepust łukowy zamknięty z blachy falistej o rozpiętości 6.27 m i wysokości 4.01 m. Był to największy wówczas produkowany przez firmę Armco Steel Corp. z USA przepust o tym kształcie.

Badaną konstrukcję zmontowano w ten sposób, że trzy części przepustu ustawiono obok siebie w odległości ok. 10 cm. Przerwy między poszczególnymi częściami zabezpieczono przed dostaniem się gruntu do wewnątrz przepustu, stosując arkusze blachy o szerokości 0.45 m. Pomiarem poddano tylko środkową część przepustu o długości 4.88 m. Końców tej części celowo nie połączono, aby zapewnić im swobodę przemieszczeń. Koniec części północnej przepustu został zastawiony drewnianym szalunkiem. Przekrój poprzeczny stanowiska badawczego pokazano na rysunku 2.69.

Konstrukcję przepustu umieszczono w specjalnie przygotowanym wykopie na terenie fabryki August Thyssen-Huette w Duisburg-Hamborn w Niemczech. Jako wypełnienia naziomu zastosowano pospółkę o wilgotności optymalnej $w_{opt} = 6.8\%$ przy gęstości 19.2 kN/m3. Grunt układano i zagęszczano warstwami o grubości ok. 20 cm.

Rys. 2.69. Przekrój poprzeczny, podłużny oraz rzut przepustu wraz z obciążeniem normowym.
2.3.8.2. Program i wyniki testów

18 czerwca 1963 roku po złożeniu wszystkich części przepustu rozpoczęto proces obsypywania konstrukcji, podczas którego wykonywano pomiary przemieszczeń i odkształceń. Na rysunku 2.70 przedstawiono rozkład sił normalnych i momentów zginających w płaszczyźnie „A” i „B”, po wykonaniu naziomu 1.05 m (w płaszczyźnie B pokazano jedynie momenty zginające). Na rysunku 2.71 pokazano średnie przemieszczenia przepustu po wykonaniu obsybkę do wysokości ¼ wysokości przepustu, natomiast na rysunku 2.72 średnie przemieszczenia po wykonaniu nasypu do wysokości korony przepustu.

Pomiary po wykonaniu naziomu do wysokości 1.05 m wykazały, że rozpiętość przepustu zmniejszyła się o 7.03 cm, natomiast wysokość przepustu wydłużyła się o 9.52 cm, tj. korona przepustu podniosła się o 9.03 cm, a dolna część konstrukcji osiadła 0.49 cm. Maksymalne naprężenia odnotowano w kluczu konstrukcji w skrajnych wózkach przekroju: w płaszczyźnie A (punkt IV) $\sigma_1 = 220.2$ kPa; $\sigma_3 = -271.0$ kPa, w płaszczyźnie B (punkt X) $\sigma_1 = 189.3$ kPa; $\sigma_3 = -210.1$ kPa.

Po wykonaniu naziomu rozpoczęto układanie stalowych sztab w trzech kolumnach na podeście złożonym z podkładów kolejowych o wymiarach 3.15 x 2.60 m. (rysunek 2.69). Sztaby były układane pojedynczo żurawiem budowlanym. Zgodnie z zaleceniami zleceniodawcy (Munich Central Office of Federal Railways) należało zastosować obciążenie 150 t, odpowiadające ciężarowi 50-cio tonowej dwuosowej lokomotyw (po 25 ton na każdą oś) ze współczynnikiem bezpieczeństwa równym 3. Ze względu na dostępność sztab stalowych o określonym ciężarze (od 5 do 10 ton) zastosowano maksymalne obciążenie symetryczne o wartości 1 480 kN (151 t) – rysunek 2.76 a. Pomiary dokonywano przy każdorazowym wzroście obciążenia o 245 kN (25 t). Pomiary wykazały, że przemieszczenia i naprężenia w przepuście były przeciwnie i mniejsze w porównaniu z tymi, które zarejestrowano podczas wykonywania
Obciążenie 1480 kN (151 t) pozostawiono na 6 dni, dokonując pomiarów każdego dnia. W tym czasie zarejestrowano jedynie niewielkie zmiany w naprężeńach i przemieszczeniach. Zaobserwowano także niesymetryczny rozkład naprężeń w obu płaszczyznach. Na rysunku 2.73 przedstawiono rozkład sił normalnych i momentów zginających w płaszczyźnie „A” i „B” zarejestrowanych bezpośrednio po obciążeniu 1 480 kN (151 t). Maksymalne naprężenia odnotowano w kluczu konstrukcji w skrajnych wlokach przekroju: w płaszczyźnie A (punkt IV) $\sigma_1 = -42.0$ kPa; $\sigma_3 = -18.1$ kPa, w płaszczyźnie B (punkt X) $\sigma_1 = -50.7$ kPa; $\sigma_3 = -18.7$ kPa.

Na rysunkach 2.74 i 2.75 pokazano średnie przemieszczenia przepustu bezpośrednio po obciążeniu oraz po sześciu dniach obciążania.

Po obciążeniu symetrycznym jeden z zewnętrznych stosów sztab stalowych przesunięto na przeciwległą stronę. Następnie wykonano tą samą operację ze stosem środkowym. Uzyskano w ten sposób dwa obciążenia asymetryczne o mimośrodku 1.05 i 2.10 m. Schemat obciążzeń asymetrycznych pokazano na rysunku 2.76 b.

W czasie obciążenia asymetrycznych zaobserwowano jedynie niewielkie zmiany w naprężeniach i przemieszczeniach przepustu. Korona przepustu przesunięta się jedynie o 1 mm w prawo. Na rysunku 2.77 pokazano średnie przemieszczenia przepustu po zmianie obciążenia na asymetryczne z mimośrodem 2.10 m.

![Rys. 2.73. Rozkład momentów zginających i sił osiowych w płaszczyźnie A i B po obciążeniu P=1 480 kN (151 t).](image1)

![Rys. 2.74. Przemieszczenia zarejestrowane 21-06-1963 o godz. 17:00 przy obc. P=1 480 kN (odczyt bezpośrednio po obciążeniu).](image2)

![Rys. 2.75. Przemieszczenia zarejestrowane 27-06-1963 o godz. 06:30 przy obc. P=1 480 kN (po sześciu dniach obciążania).](image3)

![Rys. 2.76. Obciążenie normowe P=1 480 kN: a) symetryczne b) asymetryczne.](image4)
Strona 67

Po serii testów z obciążeniem 1 480 kN (151 t) usunięto grunt do poziomu korony przepustu. Następnie zainstalowano trzy czujniki naporu gruntu w rozstawie 2.00 m na poziomie korony przepustu. Na rysunku 2.79. pokazano średnie przemieszczenia zarejestrowane po usunięciu naziomu.

Po uzupełnieniu naziomu do wysokości 1.57 m nad koronę konstrukcji 2 lipca 1963 roku rozpoczęto test z obciążeniem niszczącym. Test polegał na ustawianiu sztab stalowych, aż do uzyskania obciążenia 10 584 kN (1 080 t). Sztaby obciążające układano na tym samym podeście naprzemiennie w celu uzyskania większej stabilności. Schematy obciążenia pokazano na rysunku 2.80.
W pierwszym dniu ustawiono obciążenie 2 553 kN (260 t) i pozostawiono do następnego dnia, w którym zwiększono obciążenie do 4 023 kN (410.5 t). 5 lipca 1963 obciążenie ponownie zwiększono do 9 346 kN (953 t). Przy obciążeniu (8 330 kN) 850 ton pojawiły się dwa wybrzuszenia na wysokości korony od wewnątrz przepustu. Obciążenie 9 344 kN (953 t) pozostawiono na noc pod stałą kontrolą, ponieważ wysoki, niestabilny stos sztab groził przewróceniem. Następnego dnia zaobserwowano, że podest, na którym składano sztaby obciążające, został wбитy w grunt. Powierzchnia docisku została tym samym zwiększona do 20 m² tj. 5.0 x 4.0 m. Obciążenie ostatecznie przerwano przy 1 0584.0 kN (1 080 t), ponieważ dalszy wzrost obciążenia groził zapadnięciem się konstrukcji i uszkodzeniem aparatury pomiarowej.

Na rysunkach od 2.81 do 2.84 przedstawiono rozkład sił normalnych i momentów zginających, natomiast na rysunkach od 2.85 do 2.88 przedstawiono przemieszczenia zarejestrowane w płaszczyznach „A” i „B” w trakcie prób zniszczenia konstrukcji.

W tabeli 2.10 zestawiono średnie wartości przemieszczeń poszczególnych punktów pomiarowych dla wszystkich obciążeń.

W tabeli 2.11 zestawiono naprężenia w gruncie zanotowane przez wszystkie trzy presjometry podczas testu z obciążeniem niszczącym.

Rys. 2.81. Rozkład momentów zginających i sił osiowych w płaszczyźnie A i B przy obciążeniu $P = 175.8$ t.

Rys. 2.82. Rozkład momentów zginających i sił osiowych w płaszczyźnie A i B przy obciążeniu $P = 410.0$ t.
Rys. 2.83. Rozkład momentów zginających i sił osiowych w płaszczyźnie A i B przy obciążeniu $P = 689.5 \, \text{t}$.

Rys. 2.84. Rozkład momentów zginających i sił osiowych w płaszczyźnie A i B przy obciążeniu $P = 561.7 \, \text{t}$.

Rys. 2.85. Przemieszczenia zarejestrowane w dniu 03-07-1963 o godzinie: 08:00; Obciążenie $P = 260.52 \, \text{t}$.

Rys. 2.86. Przemieszczenia zarejestrowane w dniu 04-07-1963 o godzinie: 14:00; Obciążenie $P = 561.70 \, \text{t}$.

Rys. 2.87. Przemieszczenia zarejestrowane w dniu 04-07-1963 o godzinie: 19:50; Obciążenie $P = 820.00 \, \text{t}$.

Rys. 2.88. Przemieszczenia zarejestrowane w dniu 05-07-1963 o godzinie: 17:15; Obciążenie $P = 1 \, 079.77 \, \text{t}$.
Tabela 2.10. Naprężenia w gruncie przy obciążeniu niszczącym.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Obc. P</th>
<th>Oznaczenie czujnika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[t]</td>
<td>[mm]</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>4.3 2.3 31.1 36.0 32.0 56.9 71.7 53.0 44.4 48.5 36.3 2.7</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>4.9 1.7 32.4 44.9 39.9 56.8 90.3 58.6 52.4 55.7 37.9 1.6</td>
</tr>
<tr>
<td>3</td>
<td>151.00</td>
<td>0.7 1.0 2.0 2.0 4.0 5.0 7.0 5.0 3.0 3.0 3.0 1.0</td>
</tr>
<tr>
<td>4</td>
<td>151.00</td>
<td>0.5 1.0 3.0 3.0 4.0 7.0 10.0 6.0 4.0 4.0 4.0 1.0</td>
</tr>
<tr>
<td>5</td>
<td>151.00</td>
<td>1.0 1.0 2.0 2.0 3.0 4.0 9.0 9.0 5.0 5.0 3.0 1.0</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>1.0 1.0 2.0 2.0 3.0 5.0 8.1 7.0 4.0 3.0 3.0 1.0</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>6.0 2.0 31.0 44.0 38.0 51.0 82.0 51.0 50.0 55.0 36.0 2.0</td>
</tr>
<tr>
<td>8</td>
<td>260.52</td>
<td>1.0 0.0 3.0 4.0 4.0 6.0 7.7 6.0 3.0 2.0 3.0 0.0</td>
</tr>
<tr>
<td>9</td>
<td>561.70</td>
<td>0.6 4.0 12.0 12.0 13.0 19.0 28.5 28.0 13.0 10.0 9.0 0.0</td>
</tr>
<tr>
<td>10</td>
<td>820.00</td>
<td>4.0 11.0 37.0 38.0 40.0 60.0 88.0 90.0 37.0 28.0 27.0 3.0</td>
</tr>
<tr>
<td>11</td>
<td>1079.77</td>
<td>4.0 22.0 79.0 80.0 87.0 145.0 164.0 142.0 50.0 39.0 37.0 4.0</td>
</tr>
</tbody>
</table>

Tabela 2.11. Naprężenia w gruncie przy obciążeniu niszczącym.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Obciążenie [kN]</th>
<th>Obciążenie [kPa]</th>
<th>Uwagi</th>
<th>Naprężenie w gruncie [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Punkt 1</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>naziom H=1.57m</td>
<td>31.36</td>
</tr>
<tr>
<td>2</td>
<td>516.07</td>
<td>63.01</td>
<td></td>
<td>44.10</td>
</tr>
<tr>
<td>3</td>
<td>1 160.42</td>
<td>141.69</td>
<td></td>
<td>63.70</td>
</tr>
<tr>
<td>4</td>
<td>1 723.33</td>
<td>210.42</td>
<td></td>
<td>79.38</td>
</tr>
<tr>
<td>5</td>
<td>2 553.10</td>
<td>311.73</td>
<td></td>
<td>112.70</td>
</tr>
<tr>
<td>6</td>
<td>2 553.10</td>
<td>311.73</td>
<td>po 13 godzinach</td>
<td>121.52</td>
</tr>
<tr>
<td>7</td>
<td>2 887.08</td>
<td>352.51</td>
<td></td>
<td>133.28</td>
</tr>
<tr>
<td>8</td>
<td>3 155.40</td>
<td>385.28</td>
<td></td>
<td>145.04</td>
</tr>
<tr>
<td>9</td>
<td>3 483.70</td>
<td>425.36</td>
<td></td>
<td>164.64</td>
</tr>
<tr>
<td>10</td>
<td>4 022.90</td>
<td>491.20</td>
<td></td>
<td>188.16</td>
</tr>
<tr>
<td>11</td>
<td>4 022.90</td>
<td>491.20</td>
<td>po 4.5 godzinach.</td>
<td>193.06</td>
</tr>
<tr>
<td>12</td>
<td>4 022.90</td>
<td>491.20</td>
<td>po 15.5 godzinach.</td>
<td>194.04</td>
</tr>
<tr>
<td>13</td>
<td>4 359.04</td>
<td>532.24</td>
<td></td>
<td>207.76</td>
</tr>
<tr>
<td>14</td>
<td>4 933.32</td>
<td>602.36</td>
<td></td>
<td>226.38</td>
</tr>
<tr>
<td>15</td>
<td>5 168.52</td>
<td>631.08</td>
<td></td>
<td>240.10</td>
</tr>
<tr>
<td>16</td>
<td>5 504.66</td>
<td>672.12</td>
<td></td>
<td>261.66</td>
</tr>
<tr>
<td>17</td>
<td>6 211.63</td>
<td>758.44</td>
<td></td>
<td>205.80</td>
</tr>
<tr>
<td>18</td>
<td>6 757.49</td>
<td>825.09</td>
<td></td>
<td>137.20</td>
</tr>
<tr>
<td>19</td>
<td>7 059.14</td>
<td>861.92</td>
<td></td>
<td>120.54</td>
</tr>
<tr>
<td>20</td>
<td>7 550.70</td>
<td>921.94</td>
<td></td>
<td>145.04</td>
</tr>
<tr>
<td>21</td>
<td>7 931.14</td>
<td>968.39</td>
<td></td>
<td>171.50</td>
</tr>
<tr>
<td>22</td>
<td>8 293.15</td>
<td>1012.59</td>
<td></td>
<td>210.70</td>
</tr>
<tr>
<td>23</td>
<td>8 579.31</td>
<td>1047.54</td>
<td></td>
<td>249.90</td>
</tr>
<tr>
<td>24</td>
<td>8 806.28</td>
<td>1075.25</td>
<td></td>
<td>277.34</td>
</tr>
<tr>
<td>25</td>
<td>9 111.65</td>
<td>1112.53</td>
<td></td>
<td>372.40</td>
</tr>
<tr>
<td>26</td>
<td>9 344.01</td>
<td>1140.90</td>
<td></td>
<td>540.96</td>
</tr>
<tr>
<td>27</td>
<td>9 344.01</td>
<td>467.20</td>
<td>po 14 godz. (pow. nacisku zwiększona do 20 m² na skutek wbicia się w grunt podstawy z podkładów kol.)</td>
<td>683.06</td>
</tr>
<tr>
<td>28</td>
<td>9 807.35</td>
<td>490.37</td>
<td></td>
<td>743.82</td>
</tr>
<tr>
<td>29</td>
<td>10 344.78</td>
<td>517.24</td>
<td></td>
<td>845.74</td>
</tr>
<tr>
<td>30</td>
<td>10 581.75</td>
<td>529.09</td>
<td></td>
<td>910.42</td>
</tr>
</tbody>
</table>

Powierzchnia obciążenia 2.6 m x 3.15 m = 8.19 m²
2.4. Podsumowanie stanu badań i sformułowanie tez

W powyższym punkcie zaprezentowano badania konstrukcji podatnych z blachy falistej o dużej rozpiętości. Badane obiekty mają różne kształty i były badane w różnym zakresie.

Próbne obciążenie przepustów kolejowych w Międzyduńem po zakończeniu budowy wskazują, że przemieszczenia kłucza konstrukcji maksymalnie wynosiły 0.7 mm przy obciążeniu stacjonarnym, co stanowi 0.025% wysokości przepustu. Podczas obciążen dynamicznych przemieszczania były jeszcze mniejsze w porównaniu z obciążeniami stacjonarnymi i miały wraz ze wzrostem prędkości lokomotywy.

Przepusty z blach falistych wykorzystuje się przy wzmacnianiu wyeksploatowanych przepustów betonowych i ceglanych. Metoda polega na wprowadzeniu do wnętrza istniejącego przepustu konstrukcji podatnej, a następnie wypełnieniu przestrzeni pomiędzy starym i nowym obiektem mieszanką betonową lub mieszanką żwirowo – piaskową.

Testy przepustu na tak wzmacnionym przepuście przy drodze krajowej nr 11 wskazują, że rozkład naprężeń we wzmacnianym przepuścicie ceglanym uległ zmianie po wzmacnieniu go powłoką z blach falistych. Odnotowano wyglądanie rozkładu naprężeń wraz ze znaczącym obniżeniem maksymalnych naprężeń w koronie przepustu. Dowodzi to wzmacnienia przepustu ceglanego. Efekt „wyglądania” rozkładu naprężeń zaobserwowano głównie przy obciążeniu asymetrycznym. Pomiary długoterminowe (trzyletnie) wskazują na mały udział przepustu stalowego w przenoszeniu zewnętrznego obciążenia eksploatacyjnego. Odnotowane w tym czasie naprężenia nie przekraczały 2.0 MPa. Naprężenia w gruncie podstawy przepustu były na granicy tolerancji odczytu i nie przekroczyły 5.0 kPa, natomiast wzrosty nieznacznie po roku eksploatacji. Przyczyną takiego zachowania się przepustu jest prawdopodobnie uszytywienie w źdźbłach netto poprzez zastosowanie wypełnienia betonowego.

Na podstawie przeprowadzonych badań można stwierdzić, że zaproponowane rozwiązanie wzmocnienia jest bezpieczne i trwałe pod warunkiem właściwego doboru kształtu i gabarytów konstrukcji podatnej oraz właściwego wykonania betonowej warstwy pośredniej.

Analiza rozkładu naprężeń na powłoce przepustu Box Culvert badanego w miejscowości Jeleniów wskazuje, że ich koncentracja następuje w narożach powłoki. Maksymalne przemieszczenie 3.58 mm podczas obciążenia próbkowego wystąpiło w kłuczu konstrukcji i zmniejszyło się przy kolejnych obciążeniach.

W Norwegii przeprowadzono badania długoterminowe na konstrukcjach podatnych podczas normalnej eksploatacji. Dwie konstrukcje o rozpiętościach 7.80 m i 10.78 m poddano obserwacji przez okres odpowiednio 7 i 3 lata. Po analizie wyników badań można sformułować następujące wnioski:

- Maksymalny moment zginający występuje w kłuczu konstrukcji podczas jej obsypywania.
- Podczas badań długoterminowych w okresie trzech lat zaobserwowano zmiany momentów zginających były względnie małe, a ich rozkłady niesymetryczne.
- Pionowe przemieszczenie kłucza przepustu podczas obsypywania nie przekroczyło 1% wysokości przepustu.
- Pomierzone parcie boczne w punktach maksymalnej rozpiętości były niemal równe parciu pionowemu po zakończeniu budowy. W trakcie eksploatacji wartość parcia bocznego w tym punkcie zmieniała się w zależności od temperatury.
- Maksymalna siła osiowa w płaszczu przepustu po zakończeniu budowy wynosiła 498 kN/m, natomiast maksymalna siła osiowa zanotowana podczas badań długoterminowych osiągnęła wartość 860 kN/m.

W tabeli 2.12 przedstawiono porównanie sił osiowych w ściśnięciu przepustu wyznaczone różnymi metodami. Z niniejszego porównania wynika, że metoda współpracy z gruntem zachowuje najlepszą zgodność z pomierzoną maksymalną siłą osiową w płaszczu przepustu.

<table>
<thead>
<tr>
<th>Metoda</th>
<th>Siła osiowa w ściśnięciu przepustu [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metoda ściskania pierścieniowego</td>
<td>497</td>
</tr>
<tr>
<td>CHBDC</td>
<td>353</td>
</tr>
<tr>
<td>Metoda współpracy z gruntem</td>
<td>865</td>
</tr>
</tbody>
</table>

Tabela 2.12. Porównanie sił osiowych w ściśnięciu przepustu w Dover w Norwegii wyznaczonych różnymi metodami [22].
Badania kanadyjskie na otwartym przepuscie łukowym w Elkhart Creek sprawdziły zachowanie się konstrukcji podczas obsypywania gruntą. Maksymalne przemieszczenie konstrukcji odnotowano w kluczu. Wynosiło ono 80 mm, co stanowiło 1 % wysokości łu.

Rozkład naprężeń osiowych w powłoce był względnie równomierny. Największy wzrost naprężeń odnotowano, gdy zasypka przekroczyła poziom belek wzmocniających w kluczu konstrukcji. Parcie grunt w koronie przepustu po zakończeniu obsypywania stanowiło ok. 40% ciężaru gruntu nad przepustem o wysokości 9.6 m.

Łukowy przepust w Leigh Creek w Australii został poddany obserwacji podczas obsypywania oraz próbnego obciążenia drogowego. Testy wykazały, że podczas obsypywania, klucz łuku przemieszczał się do góry o 150 mm, tj. aż o 3.75% wysokości. Po wykonaniu całego naziomu klucz obniżył się o 22 mm w stosunku do pierwotnego położenia (przed obsypaniem gruntu).

Rozkład naprężeń ściskających był niesymetryczny pomimo symetrycznego układania nasypu. Maksymalne naprężenia ściskające oraz przemieszczenie wystąpiło w kluczu konstrukcji i wynosiło odpowiednio 216 MPa i 5 mm (tj. 1.25 % wysokości łuku).

Badania przeprowadzone w Niemczech na przepuscie o rozpiętości 6.27 m i naziomie $h = 1.57$ m wykazały, że:

- Konstrukcja nie uległa awarii po przyłożeniu maksymalnego zewnętrznych obciążenia wynoszącego 1 140.9 kPa (9 344.0 kN na pow. 8.19 m²). Przy założeniu, że zastępcze normowe obciążenie kolejowe wynosi 52.0 kPa, przepust ten został zatem obciążony prawie 22-krotnym obciążeniem normowym.
- Konstrukcja ma stosunkowo niewielką wrażliwość na obciążenia niesymetryczne.
- Przemieszczenia klucza konstrukcji przy maksymalnym obciążeniu wynosiły 164 mm, co stanowiło 3.8 % wysokości konstrukcji.
- Trwałe wybrzuszenie wewnętrz konstrukcji pojawiło się dopiero przy 8 330.0 kN tj. 1 017.1 kPa.

Z porównania wyników badań przepustów łukowych otwartych i zamkniętych wynika, że przepusty łukowe otwarte są bardziej wrażliwe na deformacje podczas obsypywania gruntę.

W tabeli 2.13 zestawiono ważniejsze badania w skali naturalnej przepustów podatnych, uwzględniając jednocześnie zakres wykonywanych pomiarów.

Tabela 2.13. Zestawienie badań modelowych w naturalnej skali.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Rok</th>
<th>Autorzy</th>
<th>Kształt przekroju poprzecznego przepustu</th>
<th>Rozmiar wys. x szer lub ϕ [m]</th>
<th>Wys. naziomu H [m]</th>
<th>Mierzone wielkości</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Napór gruntu</td>
</tr>
<tr>
<td>1</td>
<td>1948</td>
<td>Peck i Peck</td>
<td>okrągły</td>
<td>ϕ 2.2-4.5</td>
<td>0.6-15</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>1965</td>
<td>Demmin</td>
<td>łukowy zamknięty</td>
<td>6.27 x 4.01</td>
<td>1.05-1.57</td>
<td>X X</td>
</tr>
<tr>
<td>3</td>
<td>1973</td>
<td>Spangler</td>
<td>okrągły</td>
<td>ϕ 1.1</td>
<td>5.0</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>1974</td>
<td>Spangler i inni</td>
<td>okrągły</td>
<td>ϕ 2.74</td>
<td>49.0</td>
<td>X X X</td>
</tr>
<tr>
<td>5</td>
<td>1975</td>
<td>Selig</td>
<td>elipsa pozioma</td>
<td>11.0 x 8.1</td>
<td>8.0</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td>Autor</td>
<td>Typ okrągła/otwarty</td>
<td>Rozmiar</td>
<td>Prawoniesienie</td>
<td>Wysokość</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>6</td>
<td>1975</td>
<td>Selig</td>
<td>lukowy otwarty</td>
<td>15.0 x 5.4</td>
<td>1.5</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>1975</td>
<td>Selig</td>
<td>elipsa pozioma</td>
<td>8.2 x 4.9</td>
<td>0.8</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>1975</td>
<td>Duncan</td>
<td>lukowy zamknięty</td>
<td>7.3 x 5.8</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1976</td>
<td>Lefebvre i inni</td>
<td>lukowy otwarty</td>
<td>15.5 x 7.9</td>
<td>13.4</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>1979</td>
<td>Selig i inni</td>
<td>lukowy otwarty</td>
<td>7.9 x 4.6</td>
<td>7.0</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>1979</td>
<td>Kay i inni</td>
<td>lukowy otwarty</td>
<td>12.0 x 4.0</td>
<td>3.0</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>1981</td>
<td>Bakht</td>
<td>okrągły</td>
<td>φ 7.8</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1981</td>
<td>Bakht</td>
<td>okrągły</td>
<td>φ 7.6</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1981</td>
<td>Bakht</td>
<td>elipsa pozioma</td>
<td>7.24</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1982</td>
<td>Kay i inni</td>
<td>lukowy otwarty</td>
<td>12.0 x 6.5</td>
<td>2.0</td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>1982</td>
<td>Vaslestad</td>
<td>lukowy zamknięty</td>
<td>7.80 x 6.92</td>
<td>1.1</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>1982</td>
<td>Duncan i Jeyepalan</td>
<td>elipsa pozioma</td>
<td>7.5 x 3.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1982</td>
<td>McVay</td>
<td>lukowy otwarty</td>
<td>11.2 x 4.6</td>
<td>3.3</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>1982</td>
<td>Beal</td>
<td>lukowy zamknięty</td>
<td>8.6 x 5.4</td>
<td>0.6</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>1984</td>
<td>Pettersson and Persson</td>
<td>lukowy zamknięty</td>
<td>6.4 x 4.7</td>
<td>1.1</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>1985</td>
<td>Selig and Musser</td>
<td>elipsa pozioma</td>
<td>7.0 x 4.3</td>
<td>0.9</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>1985</td>
<td>Bakht</td>
<td>elipsa pozioma</td>
<td>8.8 x 4.9</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1985</td>
<td>Bakht</td>
<td>elipsa pozioma</td>
<td>8.8 x 4.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1985</td>
<td>Vaslestad</td>
<td>elipsa pozioma</td>
<td>10.78 x 7.13</td>
<td>4.2</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>1985</td>
<td>Temporal i inni</td>
<td>lukowy zamknięty</td>
<td>3.8 x 2.6</td>
<td>1.5</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>1986</td>
<td>Seed and Oy</td>
<td>lukowy otwarty</td>
<td>11.7 x 4.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1986</td>
<td>Bacher and Kirkland</td>
<td>lukowy otwarty</td>
<td>10.7 x 6.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1986</td>
<td>Long i inni</td>
<td>lukowy zamknięty</td>
<td>9.3 x 6.8</td>
<td>4.25</td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>1986</td>
<td>Long i inni</td>
<td>lukowy zamknięty</td>
<td>7.6 x 4.9</td>
<td>8.5</td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>1986</td>
<td>Long i inni</td>
<td>lukowy zamknięty</td>
<td>4.0 x 2.8</td>
<td>0.8</td>
<td>X</td>
</tr>
<tr>
<td>31</td>
<td>1987</td>
<td>Habib i inni</td>
<td>okrągły</td>
<td>φ 2.5</td>
<td>14.5</td>
<td>X</td>
</tr>
<tr>
<td>32</td>
<td>1988</td>
<td>Temporal i Johnson</td>
<td>elipsa pozioma</td>
<td>9.8 x 6.8</td>
<td>1.9</td>
<td>X</td>
</tr>
<tr>
<td>33</td>
<td>1988</td>
<td>Temporal i Johnson</td>
<td>lukowy otwarty</td>
<td>7.5 x 4.2</td>
<td>0.95</td>
<td>X</td>
</tr>
<tr>
<td>34</td>
<td>1989</td>
<td>Byrne, Srithar i Kern</td>
<td>lukowy otwarty</td>
<td>13.37 x 7.30</td>
<td>9.6</td>
<td>X</td>
</tr>
<tr>
<td>35</td>
<td>1997</td>
<td>Równińska, Tłustochowski, Wysokowski</td>
<td>lukowy zamknięty</td>
<td>4.4 x 2.8</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1998</td>
<td>Równińska, Tłustochowski, Wysokowski</td>
<td>lukowy zamknięty</td>
<td>8.98 x 6.70</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>
c.d. tabeli 2.13.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>1998</td>
<td>Rowińska, Tłustochowski, Wysokowski</td>
<td>lukowy zamknięty</td>
<td>3.45 x 3.64</td>
<td>5.4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1998</td>
<td>Kunecki, Korusiewicz, Wysokowski</td>
<td>lukowy zamknięty</td>
<td>2.99 x 2.40</td>
<td>0.3 – 1.0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1998</td>
<td>Kunecki, Korusiewicz, Wysokowski</td>
<td>okrągły</td>
<td>φ 0.8</td>
<td>0.3 – 0.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2002</td>
<td>Korusiewicz, Rowińska, Wysokowski i inni</td>
<td>box culvert</td>
<td>3.55 x 1.42</td>
<td>0.0 – 0.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2003</td>
<td>Machelski i inni</td>
<td>box culvert</td>
<td>5.70 x 1.51</td>
<td>0.5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2003</td>
<td>Vaslestad i inni</td>
<td>lukowy zamknięty</td>
<td>4.26 x 2.95</td>
<td>0.6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W świetle przeprowadzonych studiów literaturowych na temat metod projektowych oraz badań polowych w skali naturalnej przepustów podatnych z blachy falistej stawia się następujące tezy:

1. **Konstrukcje podatne zmieniają swoje właściwości wytrzymałościowe w czasie, na które zasadniczy wpływ ma tzw. „efekt przesklepienia”.** Zjawisku temu towarzyszy redukcja naprężeń w gruncie występująca bezpośrednio w obrębie korony przepustu. Na podstawie przeprowadzonych obserwacji wyróżniono trzy fazy pracy konstrukcji podatnej.

2. **Trójwymiarowy model MES dobrze odwzorowuje zachowanie się układu przepust – grunt przy założeniu właściwego zdefiniowania warunków brzegowych.**

3. **Istnieje wyraźna współzależność pomiędzy rozkładem poziomych naprężeń w gruncie otaczającym przepust walcowy a wysokością naziomu oraz obciążeniem zewnętrznym.**

4. **Rozkład sił wewnętrznych w powłoce przepustu oraz naprężeń w otaczającym gruncie zależny jest od następujących czynników:**
 - kształt powłoki,
 - lokalne zmiany sztywności,
 - rozmiar i charakterystyka konstrukcji współpracujących tj. podłoże, ściany boczne, nawierzchnia, przyczółki i filary mostów.

Określenie wpływu różnych czynników na przebieg ścieżek równowagi, a wiec i na nośność przepustu, może umożliwić optymalizację rozwiązań konstrukcyjnych. Czynnikami (zmiennymi decyzyjnymi) mogą być: kształt powłoki, sztywność podłużna i średnia z uwzględnieniem lokalnych zmian przekroju, rodzaj i zagęśczenie otaczającego gruntu, wysokość naziomu. Parametrami mogą być ubytkowe przepustu, jego długość a także obciążenie zewnętrzne i czas eksploatacji. Funkcje celu mogą być różne, np.: minimalne zużycie materiału, koszt, czas eksploatacji, wyrównanie sił wewnętrznych itp.

3.1. Stanowisko badawcze

Badania przeprowadzono na modelu przepustu wykonanym w Ośrodku Badań Mostów, Betonów i Kruszyw Instytutu Badawczego Dróg i Mostów - Filia Wrocław, wykorzystując w tym celu stanowisko do badań dynamicznych i zmęczeniowych SBDZ tzw. „Stand” pokazany na rysunku 3.1. Stanowisko to tworzy fundament żelbetowy o długości 80.0 m i szerokości 12.0 m wraz z halą oraz stalową ramą stanowiącą konstrukcję oporową dla hydraulicznych urządzeń wymuszających obciążenia. Stanowisko wyposażono w system siłowników hydraulicznych firmy Schenck wraz z systemem sterowania i zasilania, pozwalającym uzyskać pełną kontrolę nad wymuszanymi obciążeniami w czasie rzeczywistym [9].

W skład tego systemu wchodzą [9]:

- 2 siłowniki o maksymalnej sile wymuszającej 1 000 kN i maksymalnym przeswie 400 mm, umożliwiające zadawanie obciążeń dynamicznych w zakresie ± 800 kN, wyposażone w czujniki pomiaru przemieszczeń i siły z dokładnością 0.1% pełnego zakresu,
- 1 siłownik o maksymalnej sile wymuszającej 250 kN i przeswie 500 mm, umożliwiający zadawanie obciążeń dynamicznych w zakresie ± 200 kN, wyposażony w czujniki pomiaru przemieszczeń i siły z dokładnością 0.1% pełnego zakresu, przeznaczony do badań dynamicznych o wyższych częstotliwościach (1-100 Hz),
- hydrauliczny agregat zasilający o wydajności 130 l/min wraz z automatycznym systemem chłodzenia powietrznego,
- elektroniczny system Hydropuls S-59 pozwalający na niezależne sterowanie pracą dwóch siłowników w oparciu o pomierzone w czasie rzeczywistym wielkości siły nacisku tłoka i jego wysuwu. Możliwe jest również uzależnienie programu wymuszeń od dowolnego czujnika (np. przemieszczeń) niezwiązanej z siłownikami.

Stanowisko to przystosowane jest do przeprowadzania badań pod maksymalnym obciążeniem 1 600 kN. Zastosowane urządzenia pozwalają na prowadzenie badań elementów o rozpiętości (długości) do 60 m [9].

3.2. System zbierania i akwizycji danych

System zbierania i akwizycji danych pozwala na pomiar szeregu wielkości opisujących przebieg zjawisk zachodzących w badanych konstrukcjach, m.in.: przemieszczeń, odkształceń, naprężeń, sił, momentów i temperatur. W skład systemu pomiarowego wchodzą [9]:

- urządzenie pomiarowe UPM 100 firmy Hottinger Baldwin Messtechnik umożliwiające jednoczesny pomiar stu wielkości, współpracujące z czujnikami tensometrycznymi, indukcyjnymi do pomiaru przemieszczeń oraz termoparami do pomiaru temperatur,
- dwa dwunastokanałowe wzmacniacze cyfrowe DMC 9012A firmy Hottinger Baldwin Messtechnik, szczególnie przydatne w badaniach dynamicznych z uwagi na dużą szybkość dokonywanych pomiarów,
- komputer Macintosh z oprogramowaniem "BEAM" umożliwiającym sterowanie urządzeniami UPM 100 i DCM 9012A oraz zarządzanie pomierzonymi danymi i ich analizę,
- trzydzieści indukcyjnych czujników przemieszczeń umożliwiających pomiar przemieszczeń w zakresie 100-50 i 20 mm,
- dwa czujniki (wagi) typu C6 pozwalające na pomiar siły do 2 000 kN z dokładnością do 1 %, przystosowane do pomiarów reakcji podporowych badanych przęseł mostowych,
- dwa czujniki siły (wagi) typu U2A pozwalające na pomiar siły do 200 kN z dokładnością do 0.1%.

Zastosowany do pomiarów sprzęt (głównie firmy Hottinger) umożliwia przyjęcie i przetworzenie sygnałów w czasie rzeczywistym, podając wyniki badań w różnorodnej formie zarówno liczbowej jak i graficznej [9].

(*) Autor niniejszej rozprawy mgr inż. Bartłomiej Kunecki jako pracownik Instytutu Badawczego Dróg i Mostów brał udział w przedmiotowych badaniach i jest współautorem raportu dra hab. inż. prof. UZ Adama Wysokowskiego oraz dra inż. Leszka Korasiewicza, pt.: „Sprawozdanie z wykonania badań dla konstrukcji przepustów w systemie Multiplate i z rur DV/Arot Optima” wydanego przez IBDiM, Zielona Góra w 1999 roku.
3.3. Obiekty badań [2]

Badaniem poddano przepust stalowy typu *Multiplate* o symbolu katalogowym GL4 i długości $L = 14.4$ m. Konstrukcja ma rozpiętość 2.99 m, wysokość 2.40 m i jest najczęściej wykorzystywana do budowy średnich przepustów i przejść dla pieszych. Przekrój poprzeczny wraz z wymiarami pokazano na rysunku 3.4.

Konstrukcja składa się ze specjalnie uformowanych płaszcz profilowanej blachy falistej o grubości ścianki $t = 3.75$ mm i profilu fałdy 150 mm x 50 mm, pokazanej na rysunku 3.5. Blachę wykonano ze stali konstrukcyjnej Fe 360 B FN zgodnie z Normą Europejską EN10025. Poszczególne płaszcze połączone są ze sobą za pomocą śrub wysokiej wytrzymałości klasy M20-8.8. Arkusz blachy i sposób ich łączenia pokazano na rysunkach 3.5 i 3.6.

Stanowisko badawcze „Stand” zostało specjalnie przygotowane do przeprowadzenia testów na opisanym przepięciu w skali rzeczywistej. Zainstalowano specjalne ścianki oporowe umożliwiające obsypanie gruntem badanego obiektu. Ścianki oporowe zbudowano z ceowników stalowych C200 oraz drewnianych podkładów kolejowych. Całość dodatkowo wzmocniono zastrzałami wykonanymi z ceowników C180 i C200. Przekrój stanowiska badawczego wraz z modelem pokazano na rysunku 3.2.

Badany obiekt został złożony przed hala badawczą i wsunięty pod ramę stalową pokazaną na rysunku 3.1. Po ustawieniu przepustu na miejscu docelowym rozpoczęto obsypywanie konstrukcji gruntem.
Rys. 3.2. Przekrój stanowiska badawczego.

Rys. 3.3. Widok na przepust gotowy do badań.

Rys. 3.4. Wymiary przekroju poprzecznego przepustu.

Rys. 3.5. Widok śrub, sposób łączenia poszczególnych płaszczy oraz przekrój przez blachę falistą.
3.4. Obciążenia [2]

Wybrano wariant obciążenia symulującego obciążenie taborem kolejowym, które odwzorowano zgodnie z polską normą PN-85/S-10030 oraz europejską normą UIC 71 jako równomiernie rozłożone zastępcze obciążenie o wartości 52 kN/m² występujące na głębokości 0.5 m (rysunek 3.7). W tym celu zastosowano układ przeniesienia obciążenia pomiędzy siłownikami a badanym modelem w postaci dwóch warstw podkładów kolejowych ułożonych naprzemiennie oraz płyty stalowej. Płyta stalowa została dodatkowo usztywniona przez zastosowanie czterech szyn kolejowych. Schemat przekazywania obciążenia zamieszczono na rysunku 3.8, natomiast widok na rysunku 3.9. Powierzchnia nacisku w kształcie prostokąta o wymiarach 3.15 m × 2.60 m wynosiła ok. 8.19 m².

Rys. 3.6. Wymiary jednego płaszcza z blachy falistej.

Rys. 3.7. Schemat zastępczego obciążenia kolejowego zgodnie z normą PN-85/S-10030 oraz normą UIC 71.
Rys. 3.8. Schemat przekazywania obciążenia oraz wymiary płyty modelującej równomierne obciążenia powierzchniowe.

Rys. 3.9. Widok na siłowniki i płyto do przeniesienia obciążenia na grunt.
Ze względu na charakter zmian obciążenia w czasie podzielono obciążenia na statyczne i zmęczeniowe.

3.4.1. Obciążenia statyczne

We wszystkich wariantach obciążenia statycznego stosowano jednakową prędkość obciążania i odciążania badanego modelu, wynoszącą 40 kN/s, czemu odpowiada prędkość zmian obciążenia zastępczego 4.884 kPa/s.

Obciążenia statyczne można ze względu na sposób ich realizacji podzielić na symetryczne i asymetryczne:

- **obciążenie symetryczne** charakteryzuje się zsynchronizowanym w czasie działaniem dwóch siłowników oraz równością maksymalnych sił przez nie wymuszanych $F_{1\text{max}} = F_{2\text{max}}$.

- **obciążenie asymetryczne** wykonywano w dwóch wariantach:

 a) **obciążenie asymetryczne z przesunięciem siłowym**, wariant ten charakteryzuje się zsynchronizowanym w czasie działaniem dwóch siłowników oraz nierównością maksymalnych sił przez nie wymuszanych $F_{1\text{max}} \neq F_{2\text{max}}$.

 b) **obciążenie asymetryczne z przesunięciem czasowym**, wariant ten charakteryzuje się przesunięciem w czasie (opóźnieniem) działania siłownika nr 2 względem siłownika nr 1 oraz równością maksymalnych sił przez nie wymuszanych $F_{1\text{max}} = F_{2\text{max}}$.
Czas \(t_1 = t_3 \) przy stałej prędkości zmian obciążenia zależał od wartości maksymalnej obciążenia. Czasy \(t_2 \) i \(t_4 \) wynosiły około 600 s (10 min).

3.4.1.2. Obciążenia zmęczeniowe

Badania zmęczeniowe zrealizowano dla sinusoidalnego cyklu zmian obciążenia z częstotliwością \(f = 1 \) Hz, przy pełnej synchronizacji działania obu siłowników. Schemat obciążenia zmęczeniowego pokazano na rysunku 3.13.

3.4.1.3. Próba zniszczenia

Próba zniszczenia polegała na stopniowym zwiększaniu obciążenia, aż do maksymalnego, nominalnego obciążenia, jakie można było uzyskać z dysponowanego sprzętu hydraulicznego. Próbę tę przeprowadzono w czterech etapach, którym odpowiadał określony poziom obciążenia.

Zestawienie obciążenie przy próbie zniszczenia przedstawiono w tabeli 3.1.

<table>
<thead>
<tr>
<th>Etap</th>
<th>Siłownik 1 [kN]</th>
<th>Siłownik 2 [kN]</th>
<th>Oba siłowniki [kN]</th>
<th>Ciśnienie p [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>61.05</td>
</tr>
<tr>
<td>II</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>122.10</td>
</tr>
<tr>
<td>III</td>
<td>750</td>
<td>750</td>
<td>1500</td>
<td>183.15</td>
</tr>
<tr>
<td>IV</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
<td>244.20</td>
</tr>
</tbody>
</table>

Schemat obciążenia pokazano na rysunku 3.14. Czasy poszczególnych etapów obciążenia \(t_1, t_2, t_3, t_4 \) wynosiły ok. 5 min.
3.4.2. Wartości obciążenia dla poszczególnych wariantów badań

Zestawienie wszystkich obciążenia statycznych pokazano w tabeli 3.2.
Zgodnie z normą UIC 71 przyjęto następujące wartości zastępczych obciążen normowych:

\[
p_n = 50.0 \text{ kPa} \quad \text{dla} \quad h = 1.0 \text{ m}
\]

\[
p_n = 51.0 \text{ kPa} \quad \text{dla} \quad h = 0.8 \text{ m}
\]

\[
p_n = 51.5 \text{ kPa} \quad \text{dla} \quad h = 0.6 \text{ m}
\]

Dla przyjętych wielkości naziomu h uwzględniono wpływ obciążenia dynamicznych zgodnie ze wzorem:

\[
p_d = p \cdot \psi,
\]

gdzie:

\[\psi \] - współczynnik dynamiczny, wyrażony zgodnie z normą UIC 71 zależnością:

\[\psi = 1.4 - 0.1 \cdot (h - 0.5).
\]

Wartości współczynnika \(\psi\) wynoszą odpowiednio:

\[\psi = 1.35 \quad \text{dla} \quad h = 1.0 \text{ m}
\]

\[\psi = 1.37 \quad \text{dla} \quad h = 0.8 \text{ m}
\]

\[\psi = 1.39 \quad \text{dla} \quad h = 0.6 \text{ m}
\]

Tabela 3.2. Zestawienie wartości obciążenia statycznych.

<table>
<thead>
<tr>
<th>Nazwa obciążenia</th>
<th>Ilość obciążeń</th>
<th>Wsp. dyn. (\psi)</th>
<th>Pow. nacisku</th>
<th>Siłownik nr 1</th>
<th>Siłownik nr 2</th>
<th>Oba siłowniki</th>
<th>Ciśnienie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>([-\text{m}^2])</td>
<td>(\text{kN})</td>
<td>(\text{kN})</td>
<td>(\text{kN})</td>
<td>(\text{kN})</td>
<td>(\text{kPa})</td>
</tr>
<tr>
<td>Naziom (h = 1.0 \text{ m})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ann</td>
<td></td>
</tr>
<tr>
<td>Normowe symetryczne</td>
<td>3</td>
<td>1.35</td>
<td>8.19</td>
<td>277</td>
<td>277</td>
<td>554</td>
<td>67.643</td>
</tr>
<tr>
<td>Normowe asymetryczne (przesunięcie siłowe)</td>
<td>1</td>
<td>1.35</td>
<td>8.19</td>
<td>0</td>
<td>332</td>
<td>332</td>
<td>40.537</td>
</tr>
<tr>
<td>Normowe asymetryczne (przesunięcie czasowe)</td>
<td>1</td>
<td>1.35</td>
<td>8.19</td>
<td>277</td>
<td>277</td>
<td>554</td>
<td>67.643</td>
</tr>
<tr>
<td>Normowe asymetryczne (przesunięcie czasowe)</td>
<td>1</td>
<td>1.37</td>
<td>8.19</td>
<td>900</td>
<td>900</td>
<td>1800</td>
<td>219.780</td>
</tr>
<tr>
<td>Ponadnormowe symetryczne</td>
<td>2</td>
<td>1.35</td>
<td>8.19</td>
<td>286</td>
<td>286</td>
<td>572</td>
<td>572</td>
</tr>
<tr>
<td>Naziom (h = 0.8 \text{ m})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normowe symetryczne</td>
<td>3</td>
<td>1.37</td>
<td>8.19</td>
<td>286</td>
<td>286</td>
<td>572</td>
<td>69.841</td>
</tr>
<tr>
<td>Normowe asymetryczne (przesunięcie czasowe)</td>
<td>1</td>
<td>1.37</td>
<td>8.19</td>
<td>286</td>
<td>286</td>
<td>572</td>
<td>69.841</td>
</tr>
<tr>
<td>Normowe asymetryczne (przesunięcie siłowe)</td>
<td>1</td>
<td>1.37</td>
<td>8.19</td>
<td>286</td>
<td>343</td>
<td>629</td>
<td>76.801</td>
</tr>
</tbody>
</table>
c.d. tabeli 3.2.

<table>
<thead>
<tr>
<th>Ponadnormowe symetryczne</th>
<th>2</th>
<th>1.37</th>
<th>8.19</th>
<th>573</th>
<th>573</th>
<th>1146</th>
<th>139.927</th>
</tr>
</thead>
</table>

Naziom \(h = 0.6 \) m

<table>
<thead>
<tr>
<th>Ponadnormowe symetryczne</th>
<th>3</th>
<th>1.39</th>
<th>8.19</th>
<th>293</th>
<th>293</th>
<th>586</th>
<th>71.551</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Normowe symetryczne</th>
<th>1</th>
<th>1.39</th>
<th>8.19</th>
<th>293</th>
<th>293</th>
<th>586</th>
<th>71.551</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Normowe asymetryczne (przesunięcie czasowe)</th>
<th>1</th>
<th>1.39</th>
<th>8.19</th>
<th>293</th>
<th>352</th>
<th>645</th>
<th>78.755</th>
</tr>
</thead>
</table>

| Normowe asymetryczne (przesunięcie siłowe) | 1 | 1.39 | 8.19 | 293 | 352 | 645 | 78.755 |

Naziom \(h = 0.6 \) m

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap I</th>
<th>1</th>
<th>8.19</th>
<th>250</th>
<th>250</th>
<th>500</th>
<th>61.050</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap II</th>
<th>1</th>
<th>8.19</th>
<th>500</th>
<th>500</th>
<th>1000</th>
<th>122.100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap III</th>
<th>1</th>
<th>8.19</th>
<th>750</th>
<th>750</th>
<th>1500</th>
<th>183.150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap IV</th>
<th>1</th>
<th>8.19</th>
<th>1000</th>
<th>1000</th>
<th>2000</th>
<th>244.200</th>
</tr>
</thead>
</table>

Naziom \(h = 0.3 \) m

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap I</th>
<th>1</th>
<th>8.19</th>
<th>250</th>
<th>250</th>
<th>500</th>
<th>61.050</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap II</th>
<th>1</th>
<th>8.19</th>
<th>500</th>
<th>500</th>
<th>1000</th>
<th>122.100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap III</th>
<th>1</th>
<th>8.19</th>
<th>750</th>
<th>750</th>
<th>1500</th>
<th>183.150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Próba zniszczenia: Etap IV</th>
<th>1</th>
<th>8.19</th>
<th>1000</th>
<th>1000</th>
<th>2000</th>
<th>244.200</th>
</tr>
</thead>
</table>

3.4.3. Wartości obciążenia zmęczeniowego

Dla naziomu \(h = 1.0 \) m.

Liczba cykli \(N = 500 000 \)
Maksymalna siła nacisku \(F_{Cmax} = 554 \) kN
Siła na jeden siłownik \(F_{1max} = F_{2max} = F_{Cmax}/2 = 277 \) kN
\(p_{max} \approx 67.6 \) kPa
Minimalna siła nacisku \(F_{Cmin} = 62 \) kN
Siła na jeden siłownik \(F_{1min} = F_{2min} = F_{Cmin}/2 = 31 \) kN
\(p_{min} \approx 7.6 \) kPa
Średnia siła nacisku \(F_{Cm} = 308 \) kN
Siła na jeden siłownik \(F_{1m} = F_{2m} = F_{Cm}/2 = 154 \) kN
\(p_{m} \approx 37.6 \) kPa
Amplituda \(F_{A} = 246 \) kN
Siła na jeden siłownik \(F_{1A} = F_{2A} = F_{A}/2 = 123 \) kN
\(p_{A} \approx 30.0 \) kPa
Współczynnik asymetrii cyklu \(R \approx 8.9 \)

Dla naziomu \(h = 0.6 \) m.

Liczba cykli \(N = 100 000 \)
Maksymalna siła nacisku \(F_{Cmax} = 586 \) kN
Siła na jeden siłownik \(F_{1max} = F_{2max} = F_{Cmax}/2 = 293 \) kN
\(p_{max} \approx 71.6 \) kPa
Minimalna siła nacisku \(F_{Cmin} = 74 \) kN
Siła na jeden siłownik \(F_{1min} = F_{2min} = F_{Cmin}/2 = 37 \) kN
\(p_{min} \approx 9.0 \) kPa
Średnia siła nacisku \(F_{Cm} = 330 \) kN
Siła na jeden siłownik \(F_{1m} = F_{2m} = F_{Cm}/2 = 165 \) kN
\(p_{m} \approx 40.3 \) kPa
Amplituda \(F_{A} = 256 \) kN
Siła na jeden siłownik \(F_{1A} = F_{2A} = F_{A}/2 = 128 \) kN
\(p_{A} \approx 31.3 \) kPa
Współczynnik asymetrii cyklu \(R \approx 7.9 \)

Strona 83
3.4.4. Program badań

Poniżej przedstawiono zrealizowany program badań w kolejności, w jakiej zostały one wykonane:

1. Badania przy naziomie \(h = 1.0 \, \text{m} \)
 - pierwsze normowe obciążenie symetryczne,
 - drugie normowe obciążenie symetryczne,
 - trzecie normowe obciążenie symetryczne,
 - pierwsze obciążenie asymetryczne - przesunięcie siłowe,
 - drugie obciążenie asymetryczne - przesunięcie siłowe,
 - trzecie obciążenie asymetryczne - przesunięcie czasowe,
 - pierwsze ponadnormowe obciążenie symetryczne,
 - drugie ponadnormowe obciążenie symetryczne,
 - obciążenie zmęczeniowe do \(N = 500 \, 000 \) cykli.

2. Badania przy naziomie \(h = 0.8 \, \text{m} \)
 - pierwsze normowe obciążenie symetryczne,
 - drugie normowe obciążenie symetryczne,
 - trzecie normowe obciążenie symetryczne,
 - pierwsze obciążenie asymetryczne - przesunięcie siłowe,
 - drugie obciążenie asymetryczne - przesunięcie siłowe,
 - pierwsze ponadnormowe obciążenie symetryczne,
 - drugie ponadnormowe obciążenie symetryczne.

3. Badania przy naziomie \(h = 0.6 \, \text{m} \)
 - pierwsze normowe obciążenie symetryczne,
 - drugie normowe obciążenie symetryczne,
 - trzecie normowe obciążenie symetryczne,
 - pierwsze obciążenie asymetryczne - przesunięcie czasowe,
 - drugie obciążenie asymetryczne - przesunięcie siłowe,
 - obciążenie zmęczeniowe do \(N = 100 \, 000 \) cykli,
 - próba zniszczenia.

4. Badania przy naziomie \(h = 0.3 \, \text{m} \)
 - próba zniszczenia.

3.5. Pomiary przemieszczeń, odkształceń, sił parcia w gruncie oraz kontrola geometrii [2]

Podczas wszystkich stosowanych wariantów obciążenia dokonano pomiarów wielkości opisujących przebieg zmian zachodzących w badanej konstrukcji.

3.5.1. Pomiary geometrii podczas obsypywania gruntem

Pomiary geometrii przepustu podczas obsypywania gruntem przeprowadzono w oparciu o instrukcję [K1] dostarczoną przez producenta.

W środkowej części przepustu umieszczono szereg pionów, którymi mierzono odchylenie górnego łuku względem łuku dennego. Schemat rozmieszczenia punktów pomiarowych pokazano na rysunku 3.16.

Wyniki pomiarów przedstawiono w tabelach i na rysunkach w punkcie nr 3.8 ”Wyniki pomiarów geometrii przepustu Multiplate GL4”.

Strona 84
3.5.2. Pomiary przemieszczeń

W środkowej części przepustu, w płaszczynie prostopadłej do jego osi, umieszczono trzy indukcyjne czujniki przemieszczeń zgodnie ze schematem przedstawionym na rysunku 3.19. Pozwalały one na pomiar zmian wymiarów liniowych dla największej średnicy poziomej i pionowej badanego przepustu.

Zastosowano czujniki indukcyjne firmy Hottinger Baldwin Messtechnik, typ W50TS, o zakresie pomiarowym ±50 mm i klasie dokładności 0.4.

Wyniki pomiarów przedstawiono w tabelach i na rysunkach w punkcie 3.7 "Wyniki pomiarów dla przepustu Multiplate GL4".
3.5.3. Pomiary odkształceń

W środkowej części przepustu naklejono 28 czujników tensometrycznych zgodnie ze schematem przedstawionym na rysunku 3.21. Czujniki rozmieszczono w jednakowych odległościach od siebie, mierzonych po obwodzie przepustu (ok. 63.1 cm). W każdym punkcie od wewnątrz przepustu przyklejono po dwa tensometry (tensometr A i B) – na dole i górze fali. Tensometry pozwalały na pomiar odkształceń obwodowych ε.

Naprężenia obwodowe σ wyznaczano ze wzoru:

$$\sigma = \varepsilon E,$$

gdzie

E - moduł Younga, którego wartość przyjęto równą 2.05×10^5 MPa.

Zastosowano tensometry elektrooporowe firmy Hottinger Baldwin Messtechnik, typ 6/120 LY41 o bazie pomiarowej 6 mm, rezystancji 120 Ω i współczyniku k równym 2.02.

Do zbierania i akwizycji danych pomiarowych, dokonywanych za pomocą czujników indukcyjnych i tensometrycznych, wykorzystano system pomiarowy w skład którego wchodziły:

- urządzenie pomiarowe UPM 100 firmy Hottinger Baldwin Messtechnik umożliwiające jednoczesny pomiar 100 wielkości,
- dwa urządzenia pomiarowe DMC 9012A (12 kanałów każdy), szczególnie przydatne w badaniach dynamicznych z uwagi na dużą szybkość dokonywanych pomiarów,
- komputer Macintosh z oprogramowaniem „BEAM” umożliwiającym sterowanie urządzeniami UPM 100 i DMC 9012A oraz zarządzanie pomierzonymi danymi i ich analizę.
Wyznaczenie momentów zginających i sił osiowych

Rozpatrując badany przekrój blachy falistej, który schematycznie pokazano na rysunku 3.22, naprężenia w punktach A i B można przedstawić następująco:

\[\sigma_A = \frac{N}{A} + \frac{M_x}{I_x} a; \quad \sigma_B = \frac{N}{A} - \frac{M_x}{I_x} a, \]

\[\sigma_A - \sigma_B = 2 \frac{M_x}{I_x} a; \quad \sigma_A + \sigma_B = 2 \frac{N}{A}, \]

stąd:

\[M_x = \left(\sigma_A - \sigma_B \right) \frac{I_x}{a}; \quad N = \left(\sigma_A + \sigma_B \right) \frac{I_x}{a}, \]

gdzie:

- \(\sigma_A, \sigma_B \) – Naprężenia w punkcie odpowiednio A i B,
- \(M_x \) – Moment zginający względem osi \(x \),
- \(N \) – Siła osiowa,
- \(I_x \) – Moment bezwładności względem osi \(x \),
- \(A \) – Pole powierzchni przekroju,
- \(a \) – odległość skrajnych wlokien od osi obojętnej.

Wyniki pomiarów przedstawiono w tabelach i na rysunkach w punkcie 3.7 "Wyniki pomiarów dla przepustu Multiplate GL4".

![Rys. 3.22. Schemat obciążenia przekroju blachy falistej siłami osiowymi i momentami zginającymi.](image)

Napräżenia przy obciążeń zmęczeniowych

Podczas obciążeń zmęczeniowych mierzono odkształcenia w górnej i dolnej fałdzie blachy falistej w 14 punktach pokazanych na rysunku 3.23. Pomiarów dokonywano z częstotliwością 50 Hz. Wyniki przedstawiono w tabelach i na wykresach w punkcie "Wyniki pomiarów dla przepustu Multiplate GL4". W tabelach zamieszczono następujące wielkości:

- napräzenia minimalne \(\sigma_{\text{min}} \),
- napräzenia maksymalne \(\sigma_{\text{max}} \),
- napräżenia średnie \(\sigma_{\text{m}} \) (napräżenia średnie wyznaczono jako średnią z trzech kolejnych cykli obciążeń, t.j. 150 pomiarów),
- zakres (rozpiętość) napräżeń \(\Delta \sigma = \sigma_{\text{max}} - \sigma_{\text{min}} \).

![Rys. 3.23. Napräżenia cykliczne - oznaczenia.](image)
3.5.4. Pomiary sił parcia w gruncie

Zastosowano czujniki magnetosprężyste typ PPN-3 produkcji Politechniki Wrocławskiej. Układ pomiarowy PPN-3 sprzężono z komputerem klasy IBM wykorzystywanym do akwizycji danych przy użyciu programu „DYNUSING”.

Wyniki pomiarów przedstawiono w tabelach i na rysunkach w punkcie 3.7 ”Wyniki pomiarów dla przepustu Multiplate GL4”.

3.5.5. Punkty pomiarowe

Pomiarów odkształceń, przemieszczeń i naporu gruntu podczas obciążania statycznego dokonywano w pewnych charakterystycznych punktach procesu obciążania pokazanych na rysunku 3.27.
Przemieszczania i odkształcenia mierzono w punktach 1, 2, 3, 4 i 5, natomiast pomiary naporu gruntu wykonywane były w punktach 1, 3 i 5.

Podczas badań zmęczeniowych wszystkie mierzone wielkości rejestrowano przynajmniej przez jeden pełny cykl zmian obciążenia. Pomiarów dokonywano po różnych liczbach cykli zmęczeniowych, które wynosiły odpowiednio:

Przy naziomie \(h = 1.0 \, \text{m}, N = (5, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500) \times 10^3 \).

Po 283 500 cykłach nastąpiła przerwa w procesie zmęczenia spowodowana awarią urządzeń hydraulicznych.

Przy naziomie \(h = 0.6 \, \text{m}, N = (0.5, 2, 5, 10, 20, 40, 60, 80, 100) \times 10^3 \).

3.6. Badania gruntu

Próbki do badań wstępnych pobierano z dowożonego kruszywa gromadzonego na tymczasowym składowisku przed halą SBM.

Zakres badań wstępnych:
- Uziarnienie kruszywa wg PN-91/B-06714-15,
- Gęstość nasypowa w stanie luźnym i utrzymanym wg PN-77/B-06714-07,
- Optymalne parametry zagęszczenia (wg Proktora Normalnego) wg PN-88/B-04481,
 - Maksymalna wilgotność
 - Maksymalna gęstość szkieletu kruszynowego

Próbki do badań in situ pobierano z zagęszczonych warstw na hali SBM.

Zakres badań in situ gruntu:
- pomiar wysokości pobrania próbki,
- uziarnienie kruszywa wg PN-91/B-06714-15,
- optymalne parametry zagęszczenia (wg Proktora normalnego) wg PN-88/B-04481,
 - maksymalna wilgotność,
 - maksymalna gęstość szkieletu kruszynowego.
3.7. Wyniki pomiarów dla przepustu Multiplate GL4

W pierwszej części niniejszego punktu przedstawiono wyniki z symetrycznych obciążen statycznych. W tabelach od 3.3 do 3.23 przedstawiono wyniki pomiarów przemieszczeń, naprężeń w gruncie oraz sił osiowych N i momentów zginających M na obwodzie przepustu, jakie uzyskano podczas symetrycznych testów statycznych bezpośrednio po obciążeniu (punkt nr 2 wg rysunku 3.27) dla wysokości naziomu $h = 1.0\, \text{m}; \, h = 0.8\, \text{m}; \, h = 0.6\, \text{m}; \, h = 0.8\, \text{m}$.

Na rysunkach od 3.28 do 3.32 pokazano rozkłady momentów gnących, sił osiowych i parcia gruntu, jakie uzyskano podczas wszystkich symetrycznych obciążen statycznych oraz dwóch prób zniszczenia. Wykresy zostały nałożone na obrys przekroju poprzecznego przepustu. Dodatkowo na wykresach zaznaczono różnice pomiędzy nałożonymi rozkładami (obszar zakreskowany).

Na rysunkach od 3.33 do 3.39 pokazano przemieszczenia, jakie uzyskano podczas wszystkich symetrycznych obciążen statycznych oraz dwóch prób zniszczenia. Dodatnie wartości oznaczają przemieszczenia do wewnątrz przepustu, natomiast ujemne wartości oznaczają przemieszczenia na zewnątrz przepustu.

W drugiej części niniejszego punktu przedstawiono wyniki badań zmęczeniowych dla 500 000 cykli przy naziomie 1.0 m oraz 100 000 cykli przy naziomie 0.6 m.

W tabeli 3.24 zestawiono naprężenia na obwodzie przepustu pod obciążeniem zmęczeniowym dla 500 000 cykli przy naziomie $h = 1.0\, \text{m}$. Na rysunkach od 3.40 do 3.53 pokazano naprężenia w punkach od T1 do T14 pod obciążeniem zmęczeniowym dla 500 000 cykli przy naziomie $h = 1.0\, \text{m}$.

W tabeli 3.25 zestawiono przemieszczenia przepustu w punktach I0, I6, I4 pod obciążeniem zmęczeniowym dla 500 000 cykli przy naziomie $h = 1.0\, \text{m}$. Na rysunkach 3.54 do 3.56 pokazano przemieszczenia w punkcie I0, I6, I4 pod obciążeniem zmęczeniowym dla 500 000 cykli przy naziomie $h = 1.0\, \text{m}$.

W tabeli 3.26 zestawiono napór gruntu przy obciążeniu zmęczeniowym dla 500 000 cykli przy naziomie $h = 1.0\, \text{m}$.

W tabeli 3.27 zestawiono naprężenia na obwodzie przepustu pod obciążeniem zmęczeniowym dla 100 000 cykli przy naziomie $h = 0.6\, \text{m}$. Na rysunkach od 3.71 do 3.73 pokazano naprężenia w punkach od T1 do T14 pod obciążeniem zmęczeniowym dla 100 000 cykli przy naziomie $h = 0.6\, \text{m}$.

W tabeli 3.28 zestawiono przemieszczenia przepustu w punktach I0, I6, I4 pod obciążeniem zmęczeniowym dla 100 000 cykli przy naziomie $h = 0.6\, \text{m}$. Na rysunkach od 3.71 do 3.73 pokazano przemieszczenia w punkcie I0, I6, I4 pod obciążeniem zmęczeniowym dla 100 000 cykli przy naziomie $h = 0.6\, \text{m}$.

W tabeli 3.29 zestawiono napór gruntu przy obciążeniu zmęczeniowym dla 100 000 cykli przy naziomie $h = 0.6\, \text{m}$.

W trzeciej części niniejszego punktu przedstawiono wyniki z asymetrycznych obciążen statycznych.

W tabelach od 3.30 do 3.38 przedstawiono wyniki pomiarów przemieszczeń, naprężeń w gruncie oraz sił osiowych N i momentów zginających M na obwodzie przepustu, jakie uzyskano podczas asymetrycznych testów statycznych bezpośrednio po obciążeniu (punkt nr 2 wg rysunku 3.27) dla wysokości naziomu $h = 1.0\, \text{m}; \, h = 0.8\, \text{m}; \, h = 0.6\, \text{m}$.

Na rysunkach od 3.74 do 3.76 pokazano rozkłady momentów gnących, sił osiowych i parcia gruntu, jakie uzyskano podczas wszystkich asymetrycznych obciążeń statycznych. Wykresy zostały nałożone na obrys przekroju poprzecznego przepustu.

Na rysunkach od 3.77 do 3.79 pokazano przemieszczenia odczytane podczas wszystkich asymetrycznych obciążeń statycznych. Dodatnie wartości oznaczają przemieszczenia do wewnątrz przepustu, natomiast ujemne wartości oznaczają przemieszczenia na zewnątrz przepustu.
3.7.1. Symetryczne obcięganie statyczne

Tabela 3.3. Przemieszczenia dla obciążeń normowego \(p = 67 643 \) Pa, przy naziomie \(h = 1.0 \) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>(\uparrow I_0)</th>
<th>(\uparrow I_6)</th>
<th>(\downarrow I_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obc. I</td>
<td>2.01</td>
<td>-4.52</td>
<td>2.23</td>
</tr>
<tr>
<td>Obc. II</td>
<td>0.82</td>
<td>-2.33</td>
<td>1.02</td>
</tr>
<tr>
<td>Obc. III</td>
<td>0.74</td>
<td>-2.17</td>
<td>0.92</td>
</tr>
<tr>
<td>Średnie</td>
<td>1.19</td>
<td>-3.01</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Tabela 3.4. Naprężenia w gruncie dla obciążeń normowego \(p = 67 643 \) Pa, przy naziomie \(h = 1.0 \) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obc. I</td>
<td>32.6</td>
<td>48.1</td>
<td>-0.3</td>
<td>11.8</td>
<td>10.2</td>
<td>13.0</td>
<td>11.6</td>
<td>42.4</td>
<td>16.1</td>
<td>54.2</td>
</tr>
<tr>
<td>Obc. II</td>
<td>18.1</td>
<td>33.0</td>
<td>-0.1</td>
<td>13.3</td>
<td>11.6</td>
<td>14.7</td>
<td>14.5</td>
<td>39.9</td>
<td>20.9</td>
<td>53.7</td>
</tr>
<tr>
<td>Obc. III</td>
<td>17.8</td>
<td>33.7</td>
<td>0.0</td>
<td>14.1</td>
<td>11.7</td>
<td>14.3</td>
<td>14.7</td>
<td>38.9</td>
<td>20.0</td>
<td>53.6</td>
</tr>
<tr>
<td>Średnie</td>
<td>22.8</td>
<td>38.3</td>
<td>-0.1</td>
<td>13.1</td>
<td>11.2</td>
<td>14.0</td>
<td>13.6</td>
<td>40.4</td>
<td>19.0</td>
<td>53.8</td>
</tr>
</tbody>
</table>

Tabela 3.5. Siły osiowe N i momenty zginające M na obwodzie przepustu dla obciążeń normowego \(p = 67 643 \) Pa, przy naziomie \(h = 1.0 \) m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obcięganie I</th>
<th>Obcięganie II</th>
<th>Obcięganie III</th>
<th>Średnie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>Nm</td>
<td>N</td>
<td>Nm</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-6 584.4</td>
<td>87.6</td>
<td>-6 442.8</td>
<td>47.9</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-8 071.2</td>
<td>180.2</td>
<td>-5 168.4</td>
<td>115.7</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-10 761.6</td>
<td>-256.2</td>
<td>-10 620.0</td>
<td>-203.3</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-8 354.4</td>
<td>-147.9</td>
<td>-7 646.4</td>
<td>-52.1</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-5 451.6</td>
<td>-92.6</td>
<td>-4 106.4</td>
<td>-34.7</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>-283.2</td>
<td>235.6</td>
<td>141.6</td>
<td>98.4</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-1 203.6</td>
<td>34.7</td>
<td>-424.8</td>
<td>8.3</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-1 274.4</td>
<td>-11.6</td>
<td>-354.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-849.6</td>
<td>45.5</td>
<td>-212.4</td>
<td>10.7</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>70.8</td>
<td>217.4</td>
<td>70.8</td>
<td>90.9</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-5 734.8</td>
<td>-80.2</td>
<td>-3 964.8</td>
<td>-24.8</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>8 425.2</td>
<td>-211.6</td>
<td>-7 717.2</td>
<td>-86.8</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>9 912.0</td>
<td>-197.5</td>
<td>-10 195.2</td>
<td>-169.4</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-5 380.8</td>
<td>248.8</td>
<td>-6 513.6</td>
<td>137.2</td>
</tr>
</tbody>
</table>
Tabela 3.6. Przemieszczenia dla obciążenia ponadnormowego \(p = 219\,780\) Pa, przy naziomie \(h = 1.0\) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>(I_0)</th>
<th>(I_6)</th>
<th>(I_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obc. I</td>
<td>8.56</td>
<td>-21.40</td>
<td>9.87</td>
</tr>
<tr>
<td>Obc. II</td>
<td>4.43</td>
<td>-12.21</td>
<td>5.11</td>
</tr>
<tr>
<td>Średnie</td>
<td>6.50</td>
<td>-16.81</td>
<td>7.49</td>
</tr>
</tbody>
</table>

Tabela 3.7. Naprężenia w gruncie dla obciążenia ponadnormowego \(p = 219\,780\) Pa, przy naziomie \(h = 1.0\) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obc. I</td>
<td>132.7</td>
<td>221.2</td>
<td>-0.1</td>
<td>-67.6</td>
<td>-56.9</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>20.2</td>
<td>203.2</td>
</tr>
<tr>
<td>Obc. II</td>
<td>91.4</td>
<td>170.7</td>
<td>-0.4</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>29.6</td>
<td>226.1</td>
</tr>
<tr>
<td>Średnie</td>
<td>112.1</td>
<td>195.9</td>
<td>-0.3</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>24.9</td>
<td>214.7</td>
</tr>
</tbody>
</table>

Tabela 3.8. Siły osiowe \(N \) i momenty zginające \(M \) na obwodzie przepustu dla obciążenia ponadnormowego \(p = 219\,780\) Pa, przy naziomie \(h = 1.0\) m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I</th>
<th>Obciążenie II</th>
<th>Średnie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>Nm</td>
<td>N</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-18 974.4</td>
<td>602.5</td>
<td>-20 461.2</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-18 266.4</td>
<td>529.0</td>
<td>-19 399.2</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-34 692.0</td>
<td>-1 063.7</td>
<td>-33 700.8</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-31 506.0</td>
<td>-864.5</td>
<td>-27 966.0</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-18 691.2</td>
<td>-172.7</td>
<td>-14 868.0</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>354.0</td>
<td>956.3</td>
<td>495.6</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-5 451.6</td>
<td>173.6</td>
<td>-2 832.0</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-6 867.6</td>
<td>-5.8</td>
<td>-3 327.6</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-3 681.6</td>
<td>228.1</td>
<td>-1 982.4</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-70.8</td>
<td>849.6</td>
<td>-920.4</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-21 027.6</td>
<td>-171.1</td>
<td>-17 346.0</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-32 992.8</td>
<td>-1 004.2</td>
<td>-28 532.4</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-34 125.6</td>
<td>-908.3</td>
<td>-34 692.0</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-15 717.6</td>
<td>1 070.3</td>
<td>-20 036.4</td>
</tr>
</tbody>
</table>

Strona 92
Tabela 3.9. Przemieszczenia dla obciążenia normowego \(p = 69841 \) Pa, przy naziomie \(h = 0.8 \) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>I0</th>
<th>I6</th>
<th>I4-I6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obc. I</td>
<td>1.16</td>
<td>-2.55</td>
<td>1.12</td>
</tr>
<tr>
<td>Obc. II</td>
<td>0.85</td>
<td>-2.24</td>
<td>1.00</td>
</tr>
<tr>
<td>Obc. III</td>
<td>0.83</td>
<td>-2.19</td>
<td>0.98</td>
</tr>
<tr>
<td>Średnie</td>
<td>0.95</td>
<td>-2.33</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Tabela 3.10. Naprężenia w gruncie dla obciążenia normowego \(p = 69841 \) Pa, przy naziomie \(h = 0.8 \) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obc. I</td>
<td>57.2</td>
<td>56.4</td>
<td>0.1</td>
<td>32.2</td>
<td>27.0</td>
<td>22.2</td>
<td>27.4</td>
<td>32.6</td>
<td>29.1</td>
<td>50.2</td>
</tr>
<tr>
<td>Obc. II</td>
<td>51.2</td>
<td>49.8</td>
<td>0.1</td>
<td>31.9</td>
<td>27.4</td>
<td>21.1</td>
<td>26.4</td>
<td>31.3</td>
<td>25.8</td>
<td>50.7</td>
</tr>
<tr>
<td>Obc. III</td>
<td>49.8</td>
<td>48.7</td>
<td>0.1</td>
<td>32.1</td>
<td>27.0</td>
<td>20.9</td>
<td>26.1</td>
<td>30.9</td>
<td>25.3</td>
<td>50.1</td>
</tr>
<tr>
<td>Średnie</td>
<td>52.7</td>
<td>51.6</td>
<td>0.1</td>
<td>32.1</td>
<td>27.1</td>
<td>21.4</td>
<td>26.6</td>
<td>31.6</td>
<td>26.7</td>
<td>50.3</td>
</tr>
</tbody>
</table>

Tabela 3.11. Siły osieowe N i momenty zginające M na obwodzie przepustu dla obciążenia normowego \(p = 69841 \) Pa, przy naziomie \(h = 0.8 \) m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I</th>
<th>Obciążenie II</th>
<th>Obciążenie III</th>
<th>Średnie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>Nm</td>
<td>N</td>
<td>Nm</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-5 805.6</td>
<td>122.3</td>
<td>-5 947.2</td>
<td>91.7</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-2 902.8</td>
<td>57.9</td>
<td>-3 398.4</td>
<td>55.4</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-9 274.8</td>
<td>-119.0</td>
<td>-9 487.2</td>
<td>-110.8</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-10 053.6</td>
<td>-62.0</td>
<td>-10 053.6</td>
<td>-49.6</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-6 867.6</td>
<td>-99.2</td>
<td>-6 655.2</td>
<td>-91.7</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>424.8</td>
<td>130.6</td>
<td>354.0</td>
<td>114.1</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-354.0</td>
<td>10.7</td>
<td>-495.6</td>
<td>9.1</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-424.8</td>
<td>-1.7</td>
<td>-424.8</td>
<td>-3.3</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>354.0</td>
<td>12.4</td>
<td>-354.0</td>
<td>10.7</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-70.8</td>
<td>131.4</td>
<td>-283.2</td>
<td>113.2</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-8 142.0</td>
<td>-114.9</td>
<td>-7 788.0</td>
<td>-105.8</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-11 257.2</td>
<td>-80.2</td>
<td>-10 903.2</td>
<td>-62.8</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-11 186.4</td>
<td>-124.0</td>
<td>-11 044.8</td>
<td>-128.9</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-7 150.8</td>
<td>78.5</td>
<td>-7 292.4</td>
<td>86.8</td>
</tr>
</tbody>
</table>
Tabela 3.12. Przemieszczenia dla obciążenia ponadnormowego \(p = 139 \text{ 927 Pa} \), przy naziomie \(h = 0.8 \text{ m} \).

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>(I_0)</th>
<th>(I_6)</th>
<th>(I_4)</th>
<th>(\bar{I}_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Obc. I</td>
<td>1.76</td>
<td>-4.35</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>Obc. II</td>
<td>1.75</td>
<td>-4.40</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>Średnie</td>
<td>1.76</td>
<td>-4.38</td>
<td>2.07</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 3.13. Naprężenia w gruncie dla obciążenia ponadnormowego \(p = 139 \text{ 927 Pa} \), przy naziomie \(h = 0.8 \text{ m} \).

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obc. I</td>
<td>74.7</td>
<td>83.0</td>
<td>0.0</td>
<td>54.8</td>
<td>46.2</td>
<td>37.6</td>
<td>40.7</td>
<td>61.1</td>
<td>45.7</td>
<td>105.3</td>
</tr>
<tr>
<td>Obc. II</td>
<td>78.5</td>
<td>85.7</td>
<td>-0.1</td>
<td>56.3</td>
<td>46.8</td>
<td>37.8</td>
<td>40.2</td>
<td>64.2</td>
<td>43.7</td>
<td>109.0</td>
</tr>
<tr>
<td>Średnie</td>
<td>76.6</td>
<td>84.4</td>
<td>-0.1</td>
<td>55.6</td>
<td>46.5</td>
<td>37.7</td>
<td>40.5</td>
<td>62.7</td>
<td>44.7</td>
<td>107.2</td>
</tr>
</tbody>
</table>

Tabela 3.14. Siły osiowe \(N \) i momenty zginające \(M \) na obwodzie przepustu dla obciążenia ponadnormowego \(p = 139 \text{ 927Pa} \), przy naziomie \(h = 0.8 \text{ m} \).

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I</th>
<th>Obciążenie II</th>
<th>Średnie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>N</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>Nm</td>
<td>N</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-12 460.8</td>
<td>124.0</td>
<td>-12 390.0</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-8 142.0</td>
<td>159.5</td>
<td>-8 071.2</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-18 620.4</td>
<td>-267.0</td>
<td>-18 974.4</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-17 487.6</td>
<td>-153.7</td>
<td>-17 416.8</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-10 336.8</td>
<td>-116.5</td>
<td>-10 620.0</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>495.6</td>
<td>236.4</td>
<td>566.4</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-1 062.0</td>
<td>14.1</td>
<td>-1 062.0</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-1 203.6</td>
<td>-21.5</td>
<td>-1 062.0</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-991.2</td>
<td>19.0</td>
<td>-991.2</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-424.8</td>
<td>225.6</td>
<td>495.6</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-12 885.6</td>
<td>-116.5</td>
<td>-12 885.6</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-19 540.8</td>
<td>-165.3</td>
<td>-19 611.6</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-21 877.2</td>
<td>-307.5</td>
<td>-22 089.6</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-13 876.8</td>
<td>257.0</td>
<td>-13 876.8</td>
</tr>
</tbody>
</table>
Tabela 3.15. Przemieszczenia dla obciążenia normowego $p = 71551$ Pa, przy naziomie $h = 0.6$ m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>I0</th>
<th>I6</th>
<th>I4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obc. I</td>
<td>1.76</td>
<td>-4.35</td>
<td>2.09</td>
</tr>
<tr>
<td>Obc. II</td>
<td>1.75</td>
<td>-4.40</td>
<td>2.05</td>
</tr>
<tr>
<td>Obc. III</td>
<td>1.35</td>
<td>-3.91</td>
<td>1.70</td>
</tr>
<tr>
<td>Średnie</td>
<td>1.62</td>
<td>-4.22</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Tabela 3.16. Naprężenia w gruncie dla obciążenia normowego $p = 71551$ Pa, przy naziomie $h = 0.6$ m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obc. I</td>
<td>68.5</td>
<td>81.3</td>
<td>-0.5</td>
<td>35.2</td>
<td>29.6</td>
<td>41.3</td>
<td>26.1</td>
<td>32.6</td>
<td>47.9</td>
<td>90.8</td>
</tr>
<tr>
<td>Obc. II</td>
<td>65.7</td>
<td>77.7</td>
<td>-0.1</td>
<td>36.4</td>
<td>30.6</td>
<td>38.9</td>
<td>27.3</td>
<td>33.7</td>
<td>45.7</td>
<td>89.1</td>
</tr>
<tr>
<td>Obc. III</td>
<td>64.6</td>
<td>77.5</td>
<td>-0.3</td>
<td>35.9</td>
<td>30.4</td>
<td>39.2</td>
<td>27.3</td>
<td>33.9</td>
<td>44.8</td>
<td>89.3</td>
</tr>
<tr>
<td>Średnie</td>
<td>66.3</td>
<td>78.8</td>
<td>-0.3</td>
<td>35.8</td>
<td>30.2</td>
<td>39.8</td>
<td>26.9</td>
<td>33.4</td>
<td>46.1</td>
<td>89.7</td>
</tr>
</tbody>
</table>

Tabela 3.17. Siły osiowe N i momenty zginajace M na obwodzie przepustu dla obciążenia normowego $p = 71551$ Pa, przy naziomie $h = 0.6$ m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I</th>
<th>Obciążenie II</th>
<th>Obciążenie III</th>
<th>Średnie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L N</td>
<td>M Nm</td>
<td>L N</td>
<td>M Nm</td>
</tr>
<tr>
<td>Jednostki</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-7 434.0</td>
<td>200.0</td>
<td>-7 363.2</td>
<td>183.5</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-4 531.2</td>
<td>113.2</td>
<td>-4 814.4</td>
<td>108.3</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-13 452.0</td>
<td>-234.7</td>
<td>-13 593.6</td>
<td>-223.2</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-12 177.6</td>
<td>-119.0</td>
<td>-12 460.8</td>
<td>-113.2</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-7 717.2</td>
<td>-119.0</td>
<td>-7 717.2</td>
<td>-114.9</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>708.0</td>
<td>181.0</td>
<td>637.2</td>
<td>171.9</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-424.8</td>
<td>17.4</td>
<td>-495.6</td>
<td>15.7</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-566.4</td>
<td>1.7</td>
<td>-566.4</td>
<td>1.7</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-424.8</td>
<td>20.7</td>
<td>-495.6</td>
<td>18.2</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-70.8</td>
<td>181.8</td>
<td>-141.6</td>
<td>169.4</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-9 274.8</td>
<td>-132.2</td>
<td>-9 062.4</td>
<td>-124.8</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-12 956.4</td>
<td>-114.1</td>
<td>-12 956.4</td>
<td>-114.1</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-16 000.8</td>
<td>-157.9</td>
<td>-15 788.4</td>
<td>-150.4</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-12 885.6</td>
<td>72.7</td>
<td>-12 602.4</td>
<td>71.1</td>
</tr>
</tbody>
</table>
Tabela 3.18. Przemieszczenia dla próby zniszczenia \(p_{\text{max}} = 244\,200\) Pa, przy naziomie \(h = 0.6\) m.

<table>
<thead>
<tr>
<th>Ozn. Czujnika</th>
<th>(I_0)</th>
<th>(I_6)</th>
<th>(I_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
</tr>
<tr>
<td>(p = 61.050) kPa</td>
<td>1.04</td>
<td>-2.43</td>
<td>1.21</td>
</tr>
<tr>
<td>(p = 122.100) kPa</td>
<td>2.03</td>
<td>-4.50</td>
<td>2.12</td>
</tr>
<tr>
<td>(p = 183.150) kPa</td>
<td>3.30</td>
<td>-7.44</td>
<td>3.48</td>
</tr>
<tr>
<td>(p = 244.200) kPa</td>
<td>5.43</td>
<td>-11.69</td>
<td>5.36</td>
</tr>
</tbody>
</table>

Tabela 3.19. Naprężenia w gruncie dla próby zniszczenia \(p_{\text{max}} = 244\,200\) Pa, przy naziomie \(h = 0.6\) m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>(p = 61.050) kPa</td>
<td>52.9</td>
<td>60.1</td>
<td>-0.7</td>
<td>12.7</td>
<td>10.5</td>
<td>32.5</td>
<td>31.8</td>
<td>43.2</td>
<td>34.4</td>
<td>59.1</td>
</tr>
<tr>
<td>(p = 122.100) kPa</td>
<td>79.2</td>
<td>92.0</td>
<td>-0.7</td>
<td>20.9</td>
<td>17.4</td>
<td>46.2</td>
<td>46.2</td>
<td>81.1</td>
<td>46.7</td>
<td>112.3</td>
</tr>
<tr>
<td>(p = 183.150) kPa</td>
<td>100.3</td>
<td>126.7</td>
<td>-0.7</td>
<td>30.7</td>
<td>25.8</td>
<td>63.6</td>
<td>51.9</td>
<td>128.4</td>
<td>56.2</td>
<td>200.1</td>
</tr>
<tr>
<td>(p = 244.200) kPa</td>
<td>128.0</td>
<td>165.4</td>
<td>-0.6</td>
<td>47.2</td>
<td>39.5</td>
<td>82.1</td>
<td>60.3</td>
<td>186.6</td>
<td>60.1</td>
<td>243.5</td>
</tr>
</tbody>
</table>

Tabela 3.20. Siły osiowe \(N \) i momenty zginające \(M \) na obwodzie przepustu dla próby zniszczenia \(p_{\text{max}} = 244\,200\) Pa, przy naziomie \(h = 0.6\) m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>(p = 61.050) kPa</th>
<th>(p = 122.100) kPa</th>
<th>(p = 183.150) kPa</th>
<th>(p = 244.200) kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>(N)</td>
<td>(Nm)</td>
<td>(N)</td>
<td>(Nm)</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-4 672.8</td>
<td>203.3</td>
<td>-8 566.8</td>
<td>237.2</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-3 469.2</td>
<td>61.2</td>
<td>-6 867.6</td>
<td>151.2</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-9 982.8</td>
<td>-145.5</td>
<td>-17 779.6</td>
<td>-299.2</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-9 558.0</td>
<td>-106.6</td>
<td>-16 071.6</td>
<td>-183.5</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-6 655.2</td>
<td>-88.4</td>
<td>-9 699.6</td>
<td>-108.3</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>708.0</td>
<td>138.9</td>
<td>849.6</td>
<td>247.1</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-212.4</td>
<td>14.1</td>
<td>-708.0</td>
<td>22.3</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>8 425.2</td>
<td>-93.4</td>
<td>6 372.0</td>
<td>-82.7</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-141.6</td>
<td>14.9</td>
<td>-566.4</td>
<td>25.6</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-70.8</td>
<td>136.4</td>
<td>-141.6</td>
<td>237.2</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-7 929.6</td>
<td>-102.5</td>
<td>-126 732.0</td>
<td>-133.1</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-10 407.6</td>
<td>-107.4</td>
<td>-18 408.0</td>
<td>-203.3</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-10 974.0</td>
<td>-81.8</td>
<td>-19 399.2</td>
<td>-183.5</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-9 204.0</td>
<td>-4.1</td>
<td>-14 301.6</td>
<td>75.2</td>
</tr>
</tbody>
</table>
Tabela 3.21. Przemieszczania dla próby zniszczenia $p_{\text{max}} = 244 200$ Pa, przy naziomie $h = 0.3$ m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>$\uparrow I_0$</th>
<th>$\uparrow I_6$</th>
<th>$I_4 \Rightarrow$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>Mm</td>
<td>mm</td>
</tr>
<tr>
<td>$p = 61.050$ kPa</td>
<td>2.46</td>
<td>-1.72</td>
<td>2.76</td>
</tr>
<tr>
<td>$p = 122.100$ kPa</td>
<td>4.43</td>
<td>-5.57</td>
<td>4.49</td>
</tr>
<tr>
<td>$p = 183.150$ kPa</td>
<td>6.34</td>
<td>-10.24</td>
<td>6.67</td>
</tr>
<tr>
<td>$p = 244.200$ kPa</td>
<td>9.62</td>
<td>-17.24</td>
<td>9.37</td>
</tr>
</tbody>
</table>

Tabela 3.22. Naprężenia w gruncie dla próby zniszczenia $p_{\text{max}} = 244 200$ Pa, przy naziomie $h = 0.3$ m.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>$p = 61.050$ kPa</td>
<td>87.5</td>
<td>128.2</td>
<td>-0.2</td>
<td>14.1</td>
<td>12.0</td>
<td>31.6</td>
<td>18.5</td>
<td>20.5</td>
<td>10.8</td>
<td>14.2</td>
</tr>
<tr>
<td>$p = 122.100$ kPa</td>
<td>131.7</td>
<td>190.2</td>
<td>-0.8</td>
<td>28.9</td>
<td>24.4</td>
<td>73.1</td>
<td>40.4</td>
<td>48.5</td>
<td>30.9</td>
<td>51.5</td>
</tr>
<tr>
<td>$p = 183.150$ kPa</td>
<td>172.6</td>
<td>246.8</td>
<td>-0.8</td>
<td>45.9</td>
<td>38.8</td>
<td>105.5</td>
<td>67.2</td>
<td>80.1</td>
<td>56.3</td>
<td>115.9</td>
</tr>
<tr>
<td>$p = 244.200$ kPa</td>
<td>215.4</td>
<td>301.9</td>
<td>1.2</td>
<td>63.2</td>
<td>53.5</td>
<td>124.5</td>
<td>99.8</td>
<td>123.6</td>
<td>85.5</td>
<td>240.8</td>
</tr>
</tbody>
</table>

Tabela 3.23. Siły osiowe N i momenty zginające M na obwodzie przepustu dla próby zniszczenia $p_{\text{max}} = 244 200$ Pa, przy naziomie $h = 0.3$ m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>$p = 61.050$ kPa</th>
<th>$p = 122.100$ kPa</th>
<th>$p = 183.150$ kPa</th>
<th>$p = 244.200$ kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>Nm</td>
<td>Nm</td>
<td>Nm</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-3 752.4</td>
<td>114.9</td>
<td>-10 903.2</td>
<td>190.1</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-4 248.0</td>
<td>147.9</td>
<td>-11 611.2</td>
<td>316.5</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-8 496.0</td>
<td>-199.2</td>
<td>-19 611.6</td>
<td>-453.7</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-8 708.4</td>
<td>-306.6</td>
<td>-17 629.2</td>
<td>-507.5</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-5 664.0</td>
<td>-152.9</td>
<td>-10 549.2</td>
<td>-199.2</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>-778.8</td>
<td>31.4</td>
<td>-2 053.2</td>
<td>51.2</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-778.8</td>
<td>31.4</td>
<td>-2 053.2</td>
<td>51.2</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>11 682.0</td>
<td>-136.4</td>
<td>7 646.4</td>
<td>-129.8</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-566.4</td>
<td>30.6</td>
<td>-1 628.4</td>
<td>51.2</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>141.6</td>
<td>286.0</td>
<td>-141.6</td>
<td>471.1</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-9 416.4</td>
<td>-171.1</td>
<td>-16 000.8</td>
<td>-191.7</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-11 682.0</td>
<td>-354.6</td>
<td>-23 293.2</td>
<td>-619.0</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-10 620.0</td>
<td>-106.6</td>
<td>-23 293.2</td>
<td>-231.4</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-4 460.4</td>
<td>163.6</td>
<td>-11 752.8</td>
<td>274.4</td>
</tr>
</tbody>
</table>
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkt pionowy
- Zależność rozkładu dla obciążenia $p=67,6$kPa
- Zależność rozkładu dla obciążenia $p=219,8$kPa
- Różnica pomiędzy rozkładami

Rys. 3.28. Rozkłady dla obciążenia normowego oraz ponadnormowego przy naziomie $h = 1.0$ m
a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkty pomiaru
- Zależny rozkład dla obciążenia \(p = 69,8\, \text{kPa} \)
- Zależny rozkład dla obciążenia \(p = 139,9\, \text{kPa} \)
- Różnica pomiędzy rozkładami dla \(p = 69,9\, \text{kPa} \) i \(p = 139,9\, \text{kPa} \)

Rys. 3.29. Rozkłady dla obciążenia normowego oraz ponadnormowego przy naziomie \(h = 0.8\, \text{m} \)

a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkty pomiaru
- Założony rozkład dla obciążenia $\rho=71.6\,kPa$

Rys. 3.30. Rozkłady dla obciążenia normowego przy naziomie $h = 0.6 \text{m}$

a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkty pomiaru
- Zostały rozkład dla $p=61,050$ kPa
- Zostały rozkład dla $p=244,0$ kPa
- Różnica pomiędzy rozkładami dla $p=61,0$ kPa i $p=244,0$ kPa

Rys. 3.31. Rozkłady dla próby zniszczenia przy naziomie $h = 0.6$m
a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Rys. 3.32. Rozkłady dla próby zniszczenia przy naziomie $h = 0.3\text{m}$
 a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.

Legenda:

- Punkty pomiaru
- Założony rokład dla obciążenia $p=61,0\text{kPa}$
- Założony rokład dla obciążenia $p=244,0\text{kPa}$
- Różnica pomiędzy rozkładami dla $p=61,0\text{kPa}$ i $p=244,0\text{kPa}$

Strona 102
Rys. 3.33. Przemieszczenia dla trzech symetrycznych obciążeń normowych, $h=1.0$ m.

Rys. 3.34. Przemieszczenia dla dwóch symetrycznych obciążeń ponadnormowych, $h=1.0$ m.
Rys. 3.35. Przemieszczenia dla trzech symetrycznych obciążeń normowych, $h=0.8$ m.

Rys. 3.36. Przemieszczenia dla dwóch symetrycznych obciążeń ponadnormowych, $h=0.8$ m.
Rys. 3.37. Przemieszczenia dla trzech symetrycznych obciążeń normowych, \(h = 0.6 \) m.

Rys. 3.38. Przemieszczenia dla próby zniszczenia przy \(h = 0.6 \) m.
Rys. 3.39. Przemieszczenia dla próby zniszczenia przy $h = 0.3$ m.
3.7.2. Symetryczne obciążenie zmęczeniowe

Tabela 3.24. Naprężenia na obwodzie przepustu pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie \(h = 1.0 \text{ m} \) (tensometry od T1 do T7).

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>Tensometry</th>
<th>T1A</th>
<th>T1B</th>
<th>T2A</th>
<th>T2B</th>
<th>T3A</th>
<th>T3B</th>
<th>T4A</th>
<th>T4B</th>
<th>T5A</th>
<th>T5B</th>
<th>T6A</th>
<th>T6B</th>
<th>T7A</th>
<th>T7B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 5 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>6.1</td>
<td>b.d.</td>
<td>0.4</td>
<td>2.6</td>
<td>3.7</td>
<td>2.0</td>
<td>7.1</td>
<td>-1.0</td>
<td>0.4</td>
<td>5.1</td>
<td>5.7</td>
<td>2.2</td>
<td>1.0</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td>-2.4</td>
<td>b.d.</td>
<td>-0.4</td>
<td>-2.2</td>
<td>-12.0</td>
<td>0.2</td>
<td>-4.5</td>
<td>-6.3</td>
<td>-12.2</td>
<td>4.1</td>
<td>-2.6</td>
<td>-5.7</td>
<td>0.8</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>Wart. średni:</td>
<td>2.2</td>
<td>b.d.</td>
<td>-0.1</td>
<td>0.8</td>
<td>-2.9</td>
<td>1.0</td>
<td>2.2</td>
<td>-3.2</td>
<td>-5.3</td>
<td>4.6</td>
<td>1.3</td>
<td>-1.4</td>
<td>0.9</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td>8.5</td>
<td>b.d.</td>
<td>0.8</td>
<td>4.9</td>
<td>15.6</td>
<td>1.8</td>
<td>11.6</td>
<td>5.3</td>
<td>12.6</td>
<td>1.0</td>
<td>8.3</td>
<td>7.9</td>
<td>0.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>N = 20 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>21.1</td>
<td>-11.4</td>
<td>1.2</td>
<td>-4.7</td>
<td>0.4</td>
<td>-1.0</td>
<td>-6.9</td>
<td>3.9</td>
<td>1.2</td>
<td>25.2</td>
<td>14.8</td>
<td>-6.7</td>
<td>8.5</td>
<td>-9.9</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td>11.8</td>
<td>-24.0</td>
<td>1.8</td>
<td>-12.2</td>
<td>-17.9</td>
<td>-1.0</td>
<td>-22.9</td>
<td>1.0</td>
<td>-16.0</td>
<td>16.2</td>
<td>6.3</td>
<td>-15.2</td>
<td>8.1</td>
<td>-11.2</td>
<td></td>
</tr>
<tr>
<td>Wart. średni:</td>
<td>17.3</td>
<td>-17.7</td>
<td>2.3</td>
<td>-9.0</td>
<td>-8.6</td>
<td>-0.4</td>
<td>-16.5</td>
<td>4.4</td>
<td>-8.9</td>
<td>17.0</td>
<td>10.5</td>
<td>-10.8</td>
<td>8.2</td>
<td>-10.6</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td>9.3</td>
<td>12.6</td>
<td>1.0</td>
<td>5.1</td>
<td>16.4</td>
<td>1.4</td>
<td>11.4</td>
<td>5.9</td>
<td>13.4</td>
<td>1.4</td>
<td>8.9</td>
<td>8.5</td>
<td>0.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>N = 50 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>29.6</td>
<td>-16.9</td>
<td>0.6</td>
<td>-2.0</td>
<td>2.0</td>
<td>-2.8</td>
<td>-5.3</td>
<td>1.8</td>
<td>4.5</td>
<td>27.8</td>
<td>13.0</td>
<td>-7.1</td>
<td>16.6</td>
<td>-14.4</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td>22.3</td>
<td>-32.3</td>
<td>0.0</td>
<td>-5.9</td>
<td>-13.0</td>
<td>-3.9</td>
<td>-15.6</td>
<td>-3.3</td>
<td>-7.3</td>
<td>26.8</td>
<td>4.9</td>
<td>-14.6</td>
<td>16.0</td>
<td>-15.6</td>
<td></td>
</tr>
<tr>
<td>Wart. średni:</td>
<td>25.2</td>
<td>-25.4</td>
<td>0.3</td>
<td>-3.4</td>
<td>-4.5</td>
<td>-3.5</td>
<td>-9.7</td>
<td>-0.5</td>
<td>-1.2</td>
<td>27.3</td>
<td>8.8</td>
<td>-10.9</td>
<td>12.9</td>
<td>-14.1</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td>10.8</td>
<td>14.2</td>
<td>0.6</td>
<td>3.9</td>
<td>15.0</td>
<td>1.0</td>
<td>10.4</td>
<td>5.1</td>
<td>11.8</td>
<td>1.0</td>
<td>8.1</td>
<td>7.5</td>
<td>0.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>N = 100 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>35.5</td>
<td>-21.5</td>
<td>0.8</td>
<td>-5.9</td>
<td>0.8</td>
<td>-2.2</td>
<td>-8.7</td>
<td>5.9</td>
<td>15.2</td>
<td>32.7</td>
<td>13.0</td>
<td>-5.9</td>
<td>19.1</td>
<td>-17.7</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td>25.4</td>
<td>-35.9</td>
<td>0.2</td>
<td>-10.4</td>
<td>-14.6</td>
<td>-3.2</td>
<td>-20.1</td>
<td>0.0</td>
<td>2.6</td>
<td>31.7</td>
<td>4.7</td>
<td>-13.6</td>
<td>18.5</td>
<td>-18.9</td>
<td></td>
</tr>
<tr>
<td>Wart. średni:</td>
<td>31.6</td>
<td>-29.0</td>
<td>0.5</td>
<td>-7.6</td>
<td>-5.9</td>
<td>-2.8</td>
<td>-13.5</td>
<td>3.3</td>
<td>9.3</td>
<td>32.1</td>
<td>8.8</td>
<td>-9.7</td>
<td>18.8</td>
<td>-18.2</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td>10.1</td>
<td>14.4</td>
<td>0.6</td>
<td>4.5</td>
<td>15.4</td>
<td>1.0</td>
<td>11.4</td>
<td>5.9</td>
<td>12.6</td>
<td>1.0</td>
<td>8.3</td>
<td>7.7</td>
<td>0.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>N = 200 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>39.0</td>
<td>-23.1</td>
<td>0.8</td>
<td>-4.9</td>
<td>1.0</td>
<td>-2.4</td>
<td>-7.3</td>
<td>4.7</td>
<td>14.6</td>
<td>35.3</td>
<td>13.4</td>
<td>-6.1</td>
<td>22.3</td>
<td>-18.1</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td>28.2</td>
<td>-38.4</td>
<td>0.0</td>
<td>-9.1</td>
<td>-14.4</td>
<td>-3.7</td>
<td>-18.7</td>
<td>-1.2</td>
<td>2.0</td>
<td>34.3</td>
<td>5.1</td>
<td>-13.8</td>
<td>21.9</td>
<td>-19.3</td>
<td></td>
</tr>
<tr>
<td>Wart. średni:</td>
<td>34.7</td>
<td>-31.1</td>
<td>0.5</td>
<td>-6.4</td>
<td>-5.9</td>
<td>-3.1</td>
<td>-12.1</td>
<td>2.0</td>
<td>8.6</td>
<td>34.8</td>
<td>9.1</td>
<td>-9.9</td>
<td>22.1</td>
<td>-18.6</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td>10.8</td>
<td>15.2</td>
<td>0.8</td>
<td>4.3</td>
<td>15.4</td>
<td>1.2</td>
<td>11.4</td>
<td>5.9</td>
<td>12.6</td>
<td>1.0</td>
<td>8.3</td>
<td>7.7</td>
<td>0.4</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
c.d. tabeli nr 3.24.

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>T1A</th>
<th>T1B</th>
<th>T2A</th>
<th>T2B</th>
<th>T3A</th>
<th>T3B</th>
<th>T4A</th>
<th>T4B</th>
<th>T5A</th>
<th>T5B</th>
<th>T6A</th>
<th>T6B</th>
<th>T7A</th>
<th>T7B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 250 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>41.0</td>
<td>-25.6</td>
<td>-0.4</td>
<td>-5.5</td>
<td>0.4</td>
<td>-3.9</td>
<td>-7.7</td>
<td>3.0</td>
<td>14.0</td>
<td>35.9</td>
<td>12.6</td>
<td>-7.1</td>
<td>23.3</td>
<td>-19.1</td>
</tr>
<tr>
<td>Minimum:</td>
<td>29.4</td>
<td>-41.4</td>
<td>-1.2</td>
<td>-9.5</td>
<td>-15.2</td>
<td>-5.1</td>
<td>-19.1</td>
<td>-3.0</td>
<td>1.2</td>
<td>34.9</td>
<td>4.1</td>
<td>-15.0</td>
<td>22.7</td>
<td>-20.3</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>36.4</td>
<td>-33.9</td>
<td>-0.7</td>
<td>-6.9</td>
<td>-6.4</td>
<td>-4.6</td>
<td>-12.5</td>
<td>0.5</td>
<td>7.8</td>
<td>35.4</td>
<td>8.2</td>
<td>-10.9</td>
<td>23.0</td>
<td>-19.6</td>
</tr>
<tr>
<td>Zakres:</td>
<td>11.6</td>
<td>15.8</td>
<td>0.8</td>
<td>4.1</td>
<td>15.6</td>
<td>1.2</td>
<td>11.4</td>
<td>6.1</td>
<td>12.8</td>
<td>1.0</td>
<td>8.5</td>
<td>7.9</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>N = 300 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>42.8</td>
<td>-26.4</td>
<td>0.4</td>
<td>-4.1</td>
<td>0.2</td>
<td>-3.2</td>
<td>-5.7</td>
<td>3.0</td>
<td>15.4</td>
<td>38.2</td>
<td>13.4</td>
<td>-6.5</td>
<td>22.9</td>
<td>-19.9</td>
</tr>
<tr>
<td>Minimum:</td>
<td>32.3</td>
<td>-41.4</td>
<td>-0.4</td>
<td>-8.1</td>
<td>-14.8</td>
<td>-4.3</td>
<td>-16.9</td>
<td>-3.0</td>
<td>3.2</td>
<td>37.3</td>
<td>5.5</td>
<td>-13.8</td>
<td>22.3</td>
<td>-20.9</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>38.6</td>
<td>-34.4</td>
<td>0.1</td>
<td>-5.4</td>
<td>-6.4</td>
<td>-3.7</td>
<td>-10.4</td>
<td>0.4</td>
<td>9.5</td>
<td>37.7</td>
<td>9.3</td>
<td>-10.1</td>
<td>22.7</td>
<td>-20.4</td>
</tr>
<tr>
<td>Zakres:</td>
<td>10.6</td>
<td>15.0</td>
<td>0.8</td>
<td>4.1</td>
<td>15.0</td>
<td>1.0</td>
<td>11.2</td>
<td>6.1</td>
<td>12.2</td>
<td>0.8</td>
<td>7.9</td>
<td>7.3</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>N = 400 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>45.3</td>
<td>-27.2</td>
<td>0.0</td>
<td>-4.3</td>
<td>0.0</td>
<td>-3.2</td>
<td>-5.5</td>
<td>2.4</td>
<td>16.0</td>
<td>39.4</td>
<td>13.8</td>
<td>-7.1</td>
<td>23.1</td>
<td>-21.3</td>
</tr>
<tr>
<td>Minimum:</td>
<td>33.7</td>
<td>-42.6</td>
<td>-0.8</td>
<td>-8.3</td>
<td>-15.4</td>
<td>-4.3</td>
<td>-16.6</td>
<td>-3.9</td>
<td>3.4</td>
<td>38.6</td>
<td>5.5</td>
<td>-14.4</td>
<td>22.7</td>
<td>-21.9</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>39.4</td>
<td>-35.5</td>
<td>-0.4</td>
<td>-5.7</td>
<td>-6.8</td>
<td>-3.8</td>
<td>-10.3</td>
<td>-0.2</td>
<td>9.9</td>
<td>38.9</td>
<td>9.6</td>
<td>-10.8</td>
<td>22.9</td>
<td>-21.4</td>
</tr>
<tr>
<td>Zakres:</td>
<td>11.0</td>
<td>15.4</td>
<td>0.6</td>
<td>4.1</td>
<td>15.4</td>
<td>1.0</td>
<td>11.2</td>
<td>6.3</td>
<td>12.6</td>
<td>0.8</td>
<td>8.3</td>
<td>7.5</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>N = 450 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>45.1</td>
<td>-27.8</td>
<td>-1.0</td>
<td>-4.7</td>
<td>-1.2</td>
<td>-4.1</td>
<td>-5.9</td>
<td>0.6</td>
<td>16.0</td>
<td>40.2</td>
<td>12.4</td>
<td>-8.5</td>
<td>24.0</td>
<td>-21.9</td>
</tr>
<tr>
<td>Minimum:</td>
<td>33.5</td>
<td>-43.8</td>
<td>-2.0</td>
<td>-8.7</td>
<td>-16.8</td>
<td>-5.1</td>
<td>-17.3</td>
<td>-5.7</td>
<td>3.4</td>
<td>39.2</td>
<td>4.1</td>
<td>-16.0</td>
<td>23.3</td>
<td>-23.1</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>40.5</td>
<td>-36.2</td>
<td>-1.4</td>
<td>-6.1</td>
<td>-8.2</td>
<td>-4.7</td>
<td>-10.7</td>
<td>-2.1</td>
<td>9.8</td>
<td>39.7</td>
<td>8.2</td>
<td>-12.2</td>
<td>23.8</td>
<td>-22.6</td>
</tr>
<tr>
<td>Zakres:</td>
<td>11.6</td>
<td>16.0</td>
<td>1.0</td>
<td>4.1</td>
<td>15.6</td>
<td>1.0</td>
<td>11.4</td>
<td>6.3</td>
<td>12.6</td>
<td>1.0</td>
<td>8.3</td>
<td>7.5</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>N = 500 000 cykli.</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>46.1</td>
<td>-28.0</td>
<td>-0.8</td>
<td>-4.3</td>
<td>-0.8</td>
<td>-3.9</td>
<td>-5.1</td>
<td>0.8</td>
<td>17.4</td>
<td>42.0</td>
<td>13.0</td>
<td>-8.1</td>
<td>24.6</td>
<td>-22.3</td>
</tr>
<tr>
<td>Minimum:</td>
<td>34.1</td>
<td>-44.3</td>
<td>-1.6</td>
<td>-8.3</td>
<td>-16.4</td>
<td>-4.9</td>
<td>-16.2</td>
<td>-5.7</td>
<td>4.9</td>
<td>41.0</td>
<td>4.7</td>
<td>-15.6</td>
<td>24.2</td>
<td>-23.5</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>41.4</td>
<td>-36.8</td>
<td>-1.2</td>
<td>-5.7</td>
<td>-7.6</td>
<td>-4.4</td>
<td>-9.8</td>
<td>-2.0</td>
<td>11.4</td>
<td>41.6</td>
<td>8.7</td>
<td>-11.8</td>
<td>24.4</td>
<td>-22.9</td>
</tr>
<tr>
<td>Zakres:</td>
<td>12.0</td>
<td>16.2</td>
<td>0.8</td>
<td>4.1</td>
<td>15.6</td>
<td>1.0</td>
<td>11.2</td>
<td>6.5</td>
<td>12.6</td>
<td>1.0</td>
<td>8.3</td>
<td>7.5</td>
<td>0.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Strona 108
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>MPa</td>
</tr>
<tr>
<td>Maksimu m:</td>
<td>4.1</td>
<td>-3.9</td>
<td>1.4</td>
<td>-3.7</td>
<td>3.0</td>
<td>2.8</td>
<td>-2.0</td>
<td>6.1</td>
<td>6.5</td>
<td>1.2</td>
<td>4.9</td>
<td>1.4</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Minimum:</td>
<td>2.6</td>
<td>-4.5</td>
<td>1.2</td>
<td>-4.9</td>
<td>4.1</td>
<td>-4.5</td>
<td>-5.3</td>
<td>16.9</td>
<td>4.7</td>
<td>-7.5</td>
<td>-2.4</td>
<td>-11.4</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>3.4</td>
<td>-4.2</td>
<td>1.3</td>
<td>-4.2</td>
<td>-0.9</td>
<td>-1.0</td>
<td>-9.0</td>
<td>5.5</td>
<td>0.5</td>
<td>-0.1</td>
<td>-2.3</td>
<td>0.5</td>
<td>2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>Zakres:</td>
<td>1.4</td>
<td>0.6</td>
<td>0.2</td>
<td>1.2</td>
<td>7.5</td>
<td>8.1</td>
<td>14.8</td>
<td>1.4</td>
<td>14.0</td>
<td>3.7</td>
<td>16.2</td>
<td>1.6</td>
<td>2.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

N = 5 000 cykli.

Maksimu m:	8.5	-10.2	6.7	-8.7	-0.2	-5.5	-19.7	14.2	-2.6	-0.2	-6.3	5.5	6.1	6.3
Minimum:	7.1	-10.6	6.3	-10.2	-8.3	-14.0	-34.7	12.8	-16.2	-4.7	-23.3	3.9	4.7	-3.1
Wart. śred.:	7.9	-10.4	6.6	-9.4	-4.4	-9.4	-26.8	13.6	-8.3	-1.8	-13.8	4.5	5.3	2.6
Zakres:	1.4	0.4	0.4	1.4	8.1	8.5	15.0	1.4	13.6	4.5	17.0	1.6	1.4	9.3

N = 50 000 cykli.

Maksimu m:	13.6	b.d.	10.8	-12.4	4.7	-5.5	-34.7	25.0	1.2	-3.5	-4.3	3.4	4.3	8.3
Minimum:	12.6	b.d.	10.3	-13.6	-3.5	-14.2	-42.6	18.9	-11.8	-8.5	-21.1	1.8	2.8	0.0
Wart. śred.:	13.2	b.d.	10.6	-12.9	0.5	-9.6	-34.8	19.9	-4.4	-5.6	-11.7	2.4	3.5	5.2
Zakres:	1.0	b.d.	0.4	1.2	8.5	9.1	16.0	1.8	12.8	5.9	16.8	1.6	1.4	8.3

N = 100 000 cykli.

Maksimu m:	16.6	b.d.	15.4	-15.8	32.5	-7.7	-32.7	28.2	-0.4	-1.0	-3.5	1.8	5.9	8.1
Minimum:	15.6	b.d.	15.0	-17.3	24.4	-16.0	-47.3	26.8	-14.0	-6.1	-18.7	0.0	4.1	0.2
Wart. śred.:	16.2	b.d.	15.3	-16.5	23.2	-11.8	-40.0	24.2	-3.0	-8.6	-11.7	2.4	5.7	5.7
Zakres:	1.0	b.d.	0.2	1.2	8.5	9.1	16.0	1.8	12.8	5.9	16.8	1.6	1.8	7.1

N = 150 000 cykli.

Maksimu m:	20.1	b.d.	17.7	-17.3	33.1	-8.3	-36.5	29.6	0.8	-2.2	-3.2	1.4	4.7	8.7
Minimum:	19.1	b.d.	17.2	-18.5	24.8	-16.9	-51.4	28.2	-12.4	-7.5	-18.3	0.2	2.0	1.2
Wart. śred.:	19.7	b.d.	17.5	-17.9	28.8	-12.5	-43.7	29.0	-4.8	-4.3	-10.0	0.6	3.1	5.8
Zakres:	1.0	b.d.	0.4	1.2	8.3	8.5	14.8	1.4	13.2	5.3	15.0	1.6	2.6	7.5
c.d. tabeli 3.24. (tensometry od T8 do T14).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>MPa</td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.1</td>
<td>22.1</td>
<td>22.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Minimum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>22.7</td>
<td>22.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.7</td>
<td>24.3</td>
<td>24.5</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Zakres:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

N = 250 000 cykli.

Maksimum:														
	24.6	24.1	24.5	0.6										
Minimum:														
	23.7	24.1	24.5	0.6										
Wart. śred.:														
	24.8	24.8	25.2	0.6										
Zakres:														
	1.0	1.2	1.2	1.2										

N = 350 000 cykli.

Maksimum:														
	24.8	24.4	24.7	0.6										
Minimum:														
	24.8	24.4	24.7	0.6										
Wart. śred.:														
	25.6	25.6	25.6	0.6										
Zakres:														
	0.8	0.8	0.8	0.8										

N = 450 000 cykli.

Maksimum:														
	25.0	25.4	25.8	0.6										
Minimum:														
	25.0	25.4	25.8	0.6										
Wart. śred.:														
	25.6	25.6	25.6	0.6										
Zakres:														
	0.8	0.8	0.8	0.8										

N = 500 000 cykli.

Strona 110
Rys. 3.40. Naprężenia w punkcie T1 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie \(h = 1.0 \) m.

Rys. 3.41. Naprężenia w punkcie T2 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie \(h = 1.0 \) m.
Rys. 3.42. Naprężenia w punkcie T3 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0 \text{ m.}$

Rys. 3.43. Naprężenia w punkcie T4 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0 \text{ m.}$
Rys. 3.44. Naprężenia w punkcie T5 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.45. Naprężenia w punkcie T6 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Rys. 3.46. Naprężenia w punkcie T7 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.47. Naprężenia w punkcie T8 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Rys. 3.48. Naprężenia w punkcie T9 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.49. Naprężenia w punkcie T10 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Rys. 3.50. Naprężenia w punkcie T11 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.51. Naprężenia w punkcie T12 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Rys. 3.52. Naprężenia w punkcie T13 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.53. Naprężenia w punkcie T14 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Tabela 3.25. Przemieszczenia przepustu pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>I_0</th>
<th>I_6</th>
<th>I_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 5 000 cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>0.50</td>
<td>-0.20</td>
<td>0.75</td>
</tr>
<tr>
<td>Minimum:</td>
<td>-0.03</td>
<td>-1.66</td>
<td>0.08</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>0.22</td>
<td>-0.89</td>
<td>0.40</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.53</td>
<td>1.47</td>
<td>0.68</td>
</tr>
<tr>
<td>N = 20 000 cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.13</td>
<td>-3.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.59</td>
<td>-5.03</td>
<td>1.32</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>1.85</td>
<td>-4.22</td>
<td>1.64</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.54</td>
<td>1.53</td>
<td>0.68</td>
</tr>
<tr>
<td>N = 50 000 cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.60</td>
<td>-4.67</td>
<td>2.37</td>
</tr>
<tr>
<td>Minimum:</td>
<td>2.05</td>
<td>-6.26</td>
<td>1.69</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>2.32</td>
<td>-5.43</td>
<td>2.02</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.54</td>
<td>1.58</td>
<td>0.68</td>
</tr>
<tr>
<td>N = 100 000 cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>3.32</td>
<td>-6.59</td>
<td>3.10</td>
</tr>
<tr>
<td>Minimum:</td>
<td>2.82</td>
<td>-8.08</td>
<td>2.46</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>3.06</td>
<td>-7.30</td>
<td>2.78</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.50</td>
<td>1.49</td>
<td>0.64</td>
</tr>
<tr>
<td>N = 200 000 cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>3.55</td>
<td>-6.92</td>
<td>3.24</td>
</tr>
<tr>
<td>Minimum:</td>
<td>3.05</td>
<td>-8.43</td>
<td>2.60</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>3.29</td>
<td>-7.65</td>
<td>2.91</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.50</td>
<td>1.51</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Czujniki indukcyjne | I0 | I6 | I4
---|---|---|---
Jednostki | mm | mm | Mm

$N = 250\,000$ cykli.

| Maksimum: | 3.60 | -7.23 | 3.33
| Minimum: | 3.10 | -8.76 | 2.69
| Wart. śred.: | 3.35 | -7.98 | 3.00
| Zakres: | 0.50 | 1.53 | 0.63

$N = 300\,000$ cykli.

| Maksimum: | 3.84 | -7.58 | 3.45
| Minimum: | 3.36 | -9.01 | 2.86
| Wart. śred.: | 3.59 | -8.28 | 3.14
| Zakres: | 0.47 | 1.43 | 0.59

$N = 350\,000$ cykli.

| Maksimum: | 3.90 | -7.83 | 3.55
| Minimum: | 3.42 | -9.29 | 2.94
| Wart. śred.: | 3.65 | -8.56 | 3.24
| Zakres: | 0.48 | 1.46 | 0.61

$N = 400\,000$ cykli.

| Maksimum: | 3.96 | -8.23 | 3.66
| Minimum: | 3.48 | -9.71 | 3.05
| Wart. śred.: | 3.72 | -8.95 | 3.35
| Zakres: | 0.49 | 1.49 | 0.61

$N = 450\,000$ cykli.

| Maksimum: | 4.04 | -8.39 | 3.76
| Minimum: | 3.56 | -9.89 | 3.15
| Wart. śred.: | 3.80 | -9.14 | 3.46
| Zakres: | 0.48 | 1.50 | 0.61

$N = 500\,000$ cykli.

| Maksimum: | 4.04 | -8.39 | 3.76
| Minimum: | 3.56 | -9.89 | 3.15
| Wart. śred.: | 3.80 | -9.14 | 3.46
| Zakres: | 0.48 | 1.50 | 0.61

Strona 119
Rys. 3.54. Przemieszczenia w punkcie I0 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.

Rys. 3.55. Przemieszczenia w punkcie I4 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Rys. 3.56. Przemieszczenia w punkcie I6 pod obciążeniem zmęczeniowym dla 500 tys. cykli przy naziomie $h = 1.0$ m.
Tabela 3.26. Napór gruntu przy obciążeniu zmęczeniowym dla 500 tys. cykli przy naziomie \(h = 1.0 \) m.

<table>
<thead>
<tr>
<th>Oznaczenie presjometrów</th>
<th>(N = 5,000) cykli</th>
<th>(N = 20,000) cykli</th>
<th>(N = 50,000) cykli</th>
<th>(N = 100,000) cykli</th>
<th>(N = 150,000) cykli</th>
<th>(N = 200,000) cykli</th>
<th>(N = 250,000) cykli</th>
<th>(N = 300,000) cykli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nr 1</td>
<td>nr 2</td>
<td>nr 3</td>
<td>nr 4</td>
<td>nr 5</td>
<td>nr 6</td>
<td>nr 7</td>
<td>nr 8</td>
</tr>
<tr>
<td>Jednostki</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
</tr>
<tr>
<td>Maksimum</td>
<td>42.7 68.6</td>
<td>0.2 20.4</td>
<td>17.9 17.1</td>
<td>18.0 29.3</td>
<td>11.6 39.5</td>
<td>15.6 36.3</td>
<td>40.3</td>
<td>37.7 24.9</td>
</tr>
<tr>
<td>Minimum</td>
<td>15.9 22.4</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>1.1 1.8</td>
<td>7.3 2.1</td>
<td>1.4 1.0</td>
<td>18.9</td>
<td>15.4 19.0</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>29.3 45.5 10.2 9.0 9.1 9.9 18.3 6.9 22.4</td>
<td>15.6 16.0 16.2 22.0 9.5 34.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>26.8 46.2 0.2 20.4 17.9 16.0 16.2 22.0 9.5 34.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.9 70.4 0.4 20.2 16.9 16.3 18.9 33.3</td>
<td>15.6 36.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>23.8 29.5 0.0 0.0 0.0 0.0 0.9 2.4</td>
<td>10.4 5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>37.9 49.8 0.2 10.1 8.5 8.6 10.7</td>
<td>21.9 10.6 18.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>28.1 41.2 0.4 20.2 16.9 15.4 16.5 22.9</td>
<td>10.0 34.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.1 66.8 0.4 18.9 16.3 18.2 19.9 37.7</td>
<td>24.9 40.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>29.0 29.5 0.0 0.0 0.0 0.0 0.7 2.9</td>
<td>15.9 13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>45.1 48.2 0.2 9.5 8.2 9.5 11.4</td>
<td>26.8 19.0 22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>32.1 37.3 0.4 18.9 16.3 17.5 17.0</td>
<td>21.8 19.0</td>
<td>35.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>74.1 48.2 0.2 9.5 8.2 9.5</td>
<td>11.4 26.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>25.2 26.8 0.0 14.0 12.9 15.9 13.9</td>
<td>22.1 10.2 30.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>30.2 20.7 0.0 7.0 6.5 21.2 8.3</td>
<td>25.1 23.3 25.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>21.8 26.8 0.0 14.0 12.9 15.9 13.9</td>
<td>22.1 10.2 30.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.5 21.9 0.0 15.5 13.0</td>
<td>17.6 18.2 39.3</td>
<td>31.4 37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>26.3 0.0 0.0 0.0 0.0 0.0 1.4 2.1</td>
<td>17.2 19.3 5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>38.9 11.0 0.0 7.8 6.5 9.5 10.2</td>
<td>28.3 25.4 21.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>25.2 21.9 0.0 15.5 13.0 16.2 16.1</td>
<td>22.1 12.1 31.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.1 16.7 0.0 15.6 13.1</td>
<td>17.3 19.5 43.5</td>
<td>40.3 39.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>28.2 0.0 0.0 0.0 0.0 0.0 1.8 1.0</td>
<td>15.6 25.9 5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>41.2 8.4 0.0 7.8 6.6 9.1 10.8</td>
<td>29.9 22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>25.9 16.7 0.0 15.6 13.1</td>
<td>18.2 17.9 27.9</td>
<td>14.4 32.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.2 38.1 0.0 15.6 13.2</td>
<td>17.3 19.5 43.5</td>
<td>40.3 32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>29.8 9.6 0.0 0.0 0.0</td>
<td>0.0 1.1 1.0</td>
<td>15.6 25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>40.3 23.9 0.0 7.8 6.6 8.7 10.3</td>
<td>29.6 33.1 15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>27.8 28.5 0.0 15.6 13.2</td>
<td>17.3 18.4 27.9</td>
<td>14.4 32.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55.7 5.8 0.3</td>
<td>b.d.</td>
<td>b.d.</td>
<td>24.3 18.1 56.4 42.2 44.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>29.8 0.0 0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>8.4 2.0</td>
<td>34.8 28.6 13.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>42.8 2.9 0.2</td>
<td>b.d.</td>
<td>b.d.</td>
<td>16.4 10.1 45.6 35.4 29.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>25.9 5.8 0.3</td>
<td>b.d.</td>
<td>b.d.</td>
<td>15.9 16.1 21.6 13.6 31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strona 122

<table>
<thead>
<tr>
<th>Oznaczenie presjometrów</th>
<th>nr 1</th>
<th>nr 2</th>
<th>nr 3</th>
<th>Nr 4</th>
<th>nr 5</th>
<th>nr 6</th>
<th>nr 7</th>
<th>nr 8</th>
<th>nr 11</th>
<th>nr 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>N = 350 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>56.0</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>21.0</td>
<td>17.0</td>
<td>54.1</td>
<td>43.8</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>31.5</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>5.3</td>
<td>0.6</td>
<td>32.6</td>
<td>29.1</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>43.8</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>13.2</td>
<td>8.8</td>
<td>43.4</td>
<td>36.5</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>24.5</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>15.7</td>
<td>16.4</td>
<td>21.5</td>
<td>14.7</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>N = 400 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>55.7</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>13.9</td>
<td>16.6</td>
<td>53.8</td>
<td>45.5</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>30.6</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
<td>30.2</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>43.2</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>7.0</td>
<td>8.3</td>
<td>41.9</td>
<td>37.9</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>25.1</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>13.9</td>
<td>16.6</td>
<td>23.8</td>
<td>15.3</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>N = 450 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>55.5</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>8.3</td>
<td>16.9</td>
<td>51.7</td>
<td>48.1</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>29.8</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>0.0</td>
<td>0.1</td>
<td>30.5</td>
<td>32.3</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>42.7</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>4.2</td>
<td>8.5</td>
<td>41.1</td>
<td>40.2</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>25.7</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>8.3</td>
<td>16.8</td>
<td>21.2</td>
<td>15.8</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>N = 500 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>56.1</td>
<td>b.d.</td>
<td>0.3</td>
<td>b.d.</td>
<td>3.5</td>
<td>16.8</td>
<td>51.9</td>
<td>49.8</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>28.9</td>
<td>b.d.</td>
<td>0.0</td>
<td>b.d.</td>
<td>0.0</td>
<td>0.0</td>
<td>29.0</td>
<td>33.3</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>42.5</td>
<td>b.d.</td>
<td>0.2</td>
<td>b.d.</td>
<td>1.8</td>
<td>8.4</td>
<td>40.5</td>
<td>41.6</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>Zakres</td>
<td>27.2</td>
<td>b.d.</td>
<td>0.3</td>
<td>b.d.</td>
<td>3.5</td>
<td>16.8</td>
<td>22.9</td>
<td>16.5</td>
<td>31.1</td>
<td></td>
</tr>
</tbody>
</table>

Strona 123
Tabela 3.27. Naprężenia na obwodzie przepustu pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziemie $h = 0.6$ m (tensometry od T1 do T7).

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>T1A</th>
<th>T1B</th>
<th>T2A</th>
<th>T2B</th>
<th>T3A</th>
<th>T3B</th>
<th>T4A</th>
<th>T4B</th>
<th>T5A</th>
<th>T5B</th>
<th>T6A</th>
<th>T6B</th>
<th>T7A</th>
<th>T7B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimum:</td>
<td>-18.1</td>
<td>14.6</td>
<td>11.0</td>
<td>-13.8</td>
<td>-6.9</td>
<td>0.2</td>
<td>-22.5</td>
<td>15.8</td>
<td>21.1</td>
<td>-6.9</td>
<td>6.3</td>
<td>0.8</td>
<td>1.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>Minimum:</td>
<td>-22.3</td>
<td>-1.4</td>
<td>7.1</td>
<td>-27.0</td>
<td>-36.9</td>
<td>-2.6</td>
<td>-43.0</td>
<td>9.1</td>
<td>5.9</td>
<td>-8.3</td>
<td>-4.3</td>
<td>-8.7</td>
<td>0.4</td>
<td>-4.1</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>-19.5</td>
<td>6.1</td>
<td>8.8</td>
<td>-19.7</td>
<td>-20.6</td>
<td>-1.2</td>
<td>-31.7</td>
<td>13.1</td>
<td>13.6</td>
<td>-7.6</td>
<td>1.0</td>
<td>-3.9</td>
<td>0.9</td>
<td>-3.3</td>
</tr>
<tr>
<td>Zakres:</td>
<td>4.3</td>
<td>16.0</td>
<td>3.9</td>
<td>13.2</td>
<td>30.0</td>
<td>2.8</td>
<td>20.5</td>
<td>6.7</td>
<td>15.2</td>
<td>1.4</td>
<td>10.6</td>
<td>9.5</td>
<td>1.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

$N = 500$ cykli.

Maksimum:	-14.2	12.8	11.6	-14.0	-7.3	1.8	-24.0	17.9	21.1	-7.5	6.7	0.6	2.0	-3.0
Minimum:	-19.3	-3.9	7.5	-28.0	-37.8	-1.0	-45.7	11.6	5.1	-8.9	-4.5	-9.7	1.0	-4.9
Wart. śred.:	-15.9	3.8	9.2	-20.1	-21.0	0.3	-33.5	15.3	13.4	-8.1	1.0	-4.4	1.6	-3.9
Zakres:	5.1	16.6	4.1	14.0	30.4	2.8	21.7	6.3	16.0	1.4	11.2	10.4	1.0	1.8

$N = 2000$ cykli.

Maksimum:	-12.2	11.6	11.8	-13.8	-6.9	2.2	-24.8	18.7	20.5	-7.7	6.5	0.4	2.6	-3.5
Minimum:	-17.5	-4.9	7.7	-27.8	-37.3	-0.6	-46.7	12.8	4.5	-9.1	-4.9	-10.2	1.6	-5.3
Wart. śred.:	-14.0	2.7	9.3	-20.1	-20.5	0.8	-34.6	16.4	12.8	-8.3	0.8	-4.7	2.1	-4.4
Zakres:	5.3	16.4	4.1	14.0	30.4	2.8	21.9	5.9	16.0	1.4	11.4	10.6	1.0	1.8

$N = 5000$ cykli.

Maksimum:	-9.9	10.6	11.6	-13.0	-6.7	2.4	-25.8	19.3	19.1	-7.7	6.3	0.0	3.7	-4.1
Minimum:	-15.4	-5.9	7.3	-27.4	-36.7	-0.6	-47.5	14.0	3.0	-9.1	-5.3	-10.6	2.4	-6.1
Wart. śred.:	-11.8	1.7	9.0	-19.4	-20.0	0.7	-36.0	17.4	12.8	-8.7	0.4	-5.0	3.1	-5.3
Zakres:	5.5	16.4	4.3	14.4	30.0	2.8	21.7	5.3	16.0	1.4	11.6	10.6	1.2	2.0

$N = 20000$ cykli.

Maksimum:	-6.5	9.1	11.2	-11.6	-5.5	2.3	-26.4	20.5	17.0	-6.5	5.9	0.2	5.5	-5.3
Minimum:	-12.4	-7.3	7.1	-25.6	-34.7	-0.6	-47.9	15.4	1.2	-7.9	-5.5	-10.6	4.5	-7.3
Wart. śred.:	-8.5	0.1	8.7	-17.7	-18.7	0.7	-36.2	18.8	9.3	-7.0	0.1	-5.2	5.0	-6.3
Zakres:	5.9	16.4	4.1	14.0	29.2	2.8	21.5	5.1	15.8	1.4	11.4	10.4	1.0	2.0

$N = 60000$ cykli.

Maksimum:	-3.3	5.7	10.6	-9.7	-5.1	1.8	-26.2	21.1	14.6	-3.7	6.3	0.2	8.1	-7.1
Minimum:	-9.5	-10.2	6.7	-22.9	-32.9	-1.0	-47.3	16.4	-0.6	-4.9	-5.3	-10.2	6.9	-8.9
Wart. śred.:	-5.3	-3.2	8.3	-15.4	-17.3	0.2	-35.7	19.5	7.1	-4.1	0.4	-4.7	7.6	-8.0
Zakres:	6.3	15.8	3.9	13.2	27.8	2.8	21.1	4.7	15.2	1.2	11.6	10.4	1.2	1.8

$N = 100000$ cykli.

Maksimum:	-0.2	3.4	10.4	-8.5	-3.9	2.0	-25.0	22.7	14.0	-0.2	7.3	1.6	10.1	-8.7
Minimum:	-6.7	-12.8	6.7	-20.9	-31.1	-0.6	-46.1	18.3	-1.0	-1.4	-4.3	-8.5	9.1	-10.6
Wart. śred.:	-2.2	-5.5	8.0	-13.7	-16.0	0.6	-34.6	21.1	6.8	-0.6	1.4	-3.4	9.7	-9.6
Zakres:	6.5	16.2	3.7	12.4	27.2	2.6	21.1	4.5	15.0	1.2	11.6	10.1	1.0	1.8

$N = 80000$ cykli.

Maksimum:	1.8	2.4	8.9	-8.1	-3.5	0.6	-26.0	22.3	11.4	0.0	5.7	1.2	11.6	-10.4
Minimum:	-4.9	-14.2	5.5	-20.1	-30.0	-1.8	-47.1	18.1	-3.7	-1.0	-5.9	-9.1	10.4	-12.2
Wart. śred.:	-0.3	-6.6	6.7	-13.0	-15.0	-0.6	-35.7	20.8	4.3	-0.4	-0.2	-3.8	11.0	-11.2
Zakres:	6.7	16.6	3.0	11.2	26.2	2.4	20.7	4.5	15.0	1.2	11.6	10.4	1.4	1.8

$N = 100000$ cykli.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimum:</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>9.7</td>
<td>23.3</td>
<td>-1.4</td>
<td>-7.3</td>
<td>7.3</td>
<td>0.0</td>
<td>6.7</td>
<td>-5.7</td>
<td>-29.8</td>
<td>20.3</td>
<td>1.6</td>
<td>-11.6</td>
<td>5.3</td>
<td>-22.7</td>
</tr>
<tr>
<td>2000</td>
<td>10.3</td>
<td>16.6</td>
<td>-0.8</td>
<td>-7.9</td>
<td>6.9</td>
<td>0.6</td>
<td>6.7</td>
<td>-6.3</td>
<td>-30.0</td>
<td>20.7</td>
<td>1.6</td>
<td>-10.8</td>
<td>3.9</td>
<td>-20.3</td>
</tr>
<tr>
<td>4000</td>
<td>11.0</td>
<td>8.9</td>
<td>-0.4</td>
<td>-8.5</td>
<td>6.5</td>
<td>0.6</td>
<td>5.7</td>
<td>-6.5</td>
<td>-30.2</td>
<td>20.9</td>
<td>1.4</td>
<td>-10.2</td>
<td>4.1</td>
<td>-19.3</td>
</tr>
<tr>
<td>6000</td>
<td>11.8</td>
<td>-2.1</td>
<td>0.2</td>
<td>-9.3</td>
<td>6.3</td>
<td>0.8</td>
<td>4.5</td>
<td>-5.5</td>
<td>-31.1</td>
<td>20.9</td>
<td>1.6</td>
<td>-9.7</td>
<td>5.5</td>
<td>-17.3</td>
</tr>
<tr>
<td>8000</td>
<td>13.0</td>
<td>3.6</td>
<td>4.3</td>
<td>-12.0</td>
<td>6.7</td>
<td>1.2</td>
<td>0.0</td>
<td>-2.8</td>
<td>-30.0</td>
<td>21.5</td>
<td>1.4</td>
<td>-9.1</td>
<td>5.5</td>
<td>-16.9</td>
</tr>
<tr>
<td>10000</td>
<td>15.4</td>
<td>12.6</td>
<td>3.0</td>
<td>-13.8</td>
<td>3.7</td>
<td>-9.7</td>
<td>-18.3</td>
<td>-4.7</td>
<td>-53.6</td>
<td>15.8</td>
<td>-20.7</td>
<td>16.0</td>
<td>-1.0</td>
<td>-30.9</td>
</tr>
<tr>
<td>20000</td>
<td>19.3</td>
<td>6.5</td>
<td>-7.9</td>
<td>-16.2</td>
<td>-4.0</td>
<td>-3.5</td>
<td>-8.7</td>
<td>-18.9</td>
<td>-1.4</td>
<td>-52.2</td>
<td>17.7</td>
<td>-19.9</td>
<td>15.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>40000</td>
<td>18.9</td>
<td>-7.3</td>
<td>-6.6</td>
<td>-13.4</td>
<td>1.8</td>
<td>-3.1</td>
<td>-9.2</td>
<td>-0.4</td>
<td>-39.4</td>
<td>21.4</td>
<td>-7.3</td>
<td>-11.3</td>
<td>1.8</td>
<td>-22.4</td>
</tr>
<tr>
<td>60000</td>
<td>19.0</td>
<td>1.0</td>
<td>1.2</td>
<td>1.8</td>
<td>10.6</td>
<td>11.2</td>
<td>18.7</td>
<td>1.6</td>
<td>23.5</td>
<td>5.7</td>
<td>21.9</td>
<td>6.7</td>
<td>6.3</td>
<td>14.0</td>
</tr>
<tr>
<td>80000</td>
<td>20.1</td>
<td>-26.2</td>
<td>3.9</td>
<td>-16.0</td>
<td>5.7</td>
<td>2.0</td>
<td>-3.3</td>
<td>0.6</td>
<td>-28.6</td>
<td>23.3</td>
<td>2.0</td>
<td>-8.5</td>
<td>5.5</td>
<td>-16.4</td>
</tr>
<tr>
<td>100000</td>
<td>19.3</td>
<td>-27.4</td>
<td>7.3</td>
<td>-18.1</td>
<td>-6.5</td>
<td>-10.4</td>
<td>-27.2</td>
<td>-1.4</td>
<td>-53.4</td>
<td>16.6</td>
<td>-19.9</td>
<td>15.4</td>
<td>-2.4</td>
<td>-30.4</td>
</tr>
<tr>
<td></td>
<td>19.6</td>
<td>-64.9</td>
<td>7.9</td>
<td>-17.1</td>
<td>0.3</td>
<td>-3.3</td>
<td>-12.2</td>
<td>-0.1</td>
<td>-40.6</td>
<td>20.4</td>
<td>-7.4</td>
<td>-11.6</td>
<td>0.3</td>
<td>-22.4</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>-64.4</td>
<td>8.3</td>
<td>-16.0</td>
<td>3.9</td>
<td>1.0</td>
<td>-8.3</td>
<td>0.2</td>
<td>-31.9</td>
<td>19.9</td>
<td>1.6</td>
<td>-9.5</td>
<td>5.9</td>
<td>-16.2</td>
</tr>
</tbody>
</table>

Strona 125
Rys. 3.57. Naprężenia w punkcie T1 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \text{ m.} \)

Rys. 3.58. Naprężenia w punkcie T2 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \text{ m.} \)
Rys. 3.59. Naprężenia w punkcie T3 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.

Rys. 3.60. Naprężenia w punkcie T4 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.
Rys. 3.61. Naprężenia w punkcie T5 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.

Rys. 3.62. Naprężenia w punkcie T6 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.
Rys. 3.63. Naprężenia w punkcie T7 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.

Rys. 3.64. Naprężenia w punkcie T8 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.
Rys. 3.65. Naprężenia w punkcie T9 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.

Rys. 3.66. Naprężenia w punkcie T10 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.
Rys. 3.67. Naprężenia w punkcie T11 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.

Rys. 3.68. Naprężenia w punkcie T12 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.
Rys. 3.69. Naprężenia w punkcie T13 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.

Rys. 3.70. Naprężenia w punkcie T14 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.
Tabela 3.28. Przemieszczenia przepustu pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.

<table>
<thead>
<tr>
<th>Czujniki indukcyjne</th>
<th>10</th>
<th>16</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>(N = 500) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>1.55</td>
<td>-2.51</td>
<td>1.72</td>
</tr>
<tr>
<td>Minimum:</td>
<td>0.88</td>
<td>-4.41</td>
<td>0.93</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>1.21</td>
<td>-3.44</td>
<td>1.32</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.68</td>
<td>1.90</td>
<td>0.79</td>
</tr>
<tr>
<td>(N = 2\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>1.65</td>
<td>-2.75</td>
<td>1.84</td>
</tr>
<tr>
<td>Minimum:</td>
<td>0.92</td>
<td>-4.79</td>
<td>0.98</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>1.28</td>
<td>-3.77</td>
<td>1.41</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.73</td>
<td>2.04</td>
<td>0.86</td>
</tr>
<tr>
<td>(N = 5\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>1.76</td>
<td>-3.30</td>
<td>2.00</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.02</td>
<td>-5.03</td>
<td>1.04</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>1.39</td>
<td>-4.03</td>
<td>1.47</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.74</td>
<td>2.04</td>
<td>0.86</td>
</tr>
<tr>
<td>(N = 10\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.05</td>
<td>-3.77</td>
<td>2.14</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.30</td>
<td>-5.37</td>
<td>1.13</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>1.67</td>
<td>-4.85</td>
<td>1.70</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.75</td>
<td>2.10</td>
<td>0.88</td>
</tr>
<tr>
<td>(N = 40\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.59</td>
<td>-4.92</td>
<td>2.59</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.84</td>
<td>-7.04</td>
<td>1.71</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>2.20</td>
<td>-6.01</td>
<td>2.16</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.75</td>
<td>2.12</td>
<td>0.87</td>
</tr>
<tr>
<td>(N = 80\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.60</td>
<td>-5.38</td>
<td>2.65</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.86</td>
<td>-7.50</td>
<td>1.78</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>2.23</td>
<td>-6.45</td>
<td>2.22</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.74</td>
<td>2.13</td>
<td>0.87</td>
</tr>
<tr>
<td>(N = 100\ 000) cykli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum:</td>
<td>2.70</td>
<td>-5.70</td>
<td>2.71</td>
</tr>
<tr>
<td>Minimum:</td>
<td>1.97</td>
<td>-7.81</td>
<td>1.84</td>
</tr>
<tr>
<td>Wart. śred.:</td>
<td>2.34</td>
<td>-6.78</td>
<td>2.28</td>
</tr>
<tr>
<td>Zakres:</td>
<td>0.73</td>
<td>2.12</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Rys. 3.71. Przemieszczenia w punkcie I0 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.

Rys. 3.72. Przemieszczenia w punkcie I4 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie \(h = 0.6 \) m.
Rys. 3.73. Przemieszczenia w punkcie I6 pod obciążeniem zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.
Tabela 3.29. Napór gruntu przy obciążeniu zmęczeniowym dla 100 tys. cykli przy naziomie $h = 0.6$ m.

<table>
<thead>
<tr>
<th>Oznaczenie presjometrów</th>
<th>nr 1</th>
<th>nr 2</th>
<th>nr 3</th>
<th>nr 4</th>
<th>nr 5</th>
<th>nr 6</th>
<th>nr 7</th>
<th>nr 8</th>
<th>nr 11</th>
<th>nr 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kPa</td>
</tr>
<tr>
<td>N = 500 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>59.4</td>
<td>71.5</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>37.9</td>
<td>26.7</td>
<td>35.7</td>
<td>47.3</td>
<td>80.5</td>
</tr>
<tr>
<td>Minimum</td>
<td>28.0</td>
<td>39.4</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>10.7</td>
<td>3.0</td>
<td>12.7</td>
<td>24.2</td>
<td>25.5</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>43.7</td>
<td>55.5</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>24.3</td>
<td>15.6</td>
<td>24.2</td>
<td>35.8</td>
<td>53.0</td>
</tr>
<tr>
<td>Zakres</td>
<td>31.4</td>
<td>32.1</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>27.2</td>
<td>21.2</td>
<td>23.0</td>
<td>23.1</td>
<td>55.0</td>
</tr>
<tr>
<td>N = 2 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>65.6</td>
<td>79.5</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>40.4</td>
<td>28.5</td>
<td>44.7</td>
<td>50.6</td>
<td>84.5</td>
</tr>
<tr>
<td>Minimum</td>
<td>29.0</td>
<td>42.3</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>11.9</td>
<td>3.0</td>
<td>12.1</td>
<td>26.5</td>
<td>25.2</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>47.3</td>
<td>60.9</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>26.2</td>
<td>15.8</td>
<td>28.4</td>
<td>38.6</td>
<td>54.9</td>
</tr>
<tr>
<td>Zakres</td>
<td>36.6</td>
<td>37.2</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>28.5</td>
<td>25.5</td>
<td>32.6</td>
<td>24.1</td>
<td>59.3</td>
</tr>
<tr>
<td>N = 5 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>65.7</td>
<td>80.5</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>43.5</td>
<td>31.3</td>
<td>57.7</td>
<td>48.7</td>
<td>88.2</td>
</tr>
<tr>
<td>Minimum</td>
<td>30.9</td>
<td>44.3</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>13.1</td>
<td>3.7</td>
<td>17.9</td>
<td>27.3</td>
<td>32.4</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>49.0</td>
<td>64.1</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>25.8</td>
<td>15.2</td>
<td>33.3</td>
<td>37.3</td>
<td>57.4</td>
</tr>
<tr>
<td>Zakres</td>
<td>33.4</td>
<td>32.9</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>25.4</td>
<td>22.9</td>
<td>30.8</td>
<td>19.9</td>
<td>49.9</td>
</tr>
<tr>
<td>N = 10 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>68.6</td>
<td>86.1</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>43.5</td>
<td>32.9</td>
<td>57.7</td>
<td>62.4</td>
<td>96.4</td>
</tr>
<tr>
<td>Minimum</td>
<td>31.5</td>
<td>32.4</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>15.1</td>
<td>6.3</td>
<td>20.8</td>
<td>28.9</td>
<td>32.1</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>50.7</td>
<td>66.8</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>29.6</td>
<td>18.2</td>
<td>39.3</td>
<td>38.9</td>
<td>60.1</td>
</tr>
<tr>
<td>Zakres</td>
<td>35.9</td>
<td>38.8</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>27.8</td>
<td>26.3</td>
<td>36.9</td>
<td>19.9</td>
<td>55.9</td>
</tr>
<tr>
<td>N = 20 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>66.8</td>
<td>85.0</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>43.5</td>
<td>31.3</td>
<td>57.7</td>
<td>68.4</td>
<td>114.2</td>
</tr>
<tr>
<td>Minimum</td>
<td>31.5</td>
<td>46.0</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>15.1</td>
<td>6.3</td>
<td>20.8</td>
<td>28.9</td>
<td>70.6</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>49.7</td>
<td>66.0</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>29.6</td>
<td>18.2</td>
<td>39.3</td>
<td>38.9</td>
<td>59.5</td>
</tr>
<tr>
<td>Zakres</td>
<td>35.9</td>
<td>38.8</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>27.8</td>
<td>26.3</td>
<td>36.9</td>
<td>19.9</td>
<td>52.4</td>
</tr>
<tr>
<td>N = 40 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>62.6</td>
<td>87.4</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>36.7</td>
<td>30.3</td>
<td>60.4</td>
<td>62.0</td>
<td>114.2</td>
</tr>
<tr>
<td>Minimum</td>
<td>28.9</td>
<td>41.3</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>11.9</td>
<td>6.2</td>
<td>26.8</td>
<td>29.8</td>
<td>70.6</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>45.8</td>
<td>59.9</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>24.3</td>
<td>18.3</td>
<td>43.6</td>
<td>38.2</td>
<td>92.4</td>
</tr>
<tr>
<td>Zakres</td>
<td>33.7</td>
<td>37.1</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>24.8</td>
<td>24.1</td>
<td>34.4</td>
<td>17.4</td>
<td>43.6</td>
</tr>
<tr>
<td>N = 80 000 cykli</td>
<td></td>
</tr>
<tr>
<td>Maksimum</td>
<td>63.4</td>
<td>76.4</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>48.6</td>
<td>35.4</td>
<td>68.4</td>
<td>50.9</td>
<td>112.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>27.1</td>
<td>47.8</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>21.6</td>
<td>8.4</td>
<td>30.2</td>
<td>34.1</td>
<td>65.0</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>45.3</td>
<td>57.1</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>35.1</td>
<td>21.9</td>
<td>49.3</td>
<td>42.5</td>
<td>88.5</td>
</tr>
<tr>
<td>Zakres</td>
<td>36.3</td>
<td>38.6</td>
<td>0.0</td>
<td>b.d.</td>
<td>b.d.</td>
<td>27.0</td>
<td>27.0</td>
<td>38.2</td>
<td>16.8</td>
<td>47.0</td>
</tr>
</tbody>
</table>
3.7.3. Asymetryczne obciążenie statyczne

Tabela 3.30. Przemieszczenia dla obciążenia asymetrycznego normowego, przy naziomie h = 1.0 m.

<table>
<thead>
<tr>
<th>Oznaczenie czujnika</th>
<th>I0</th>
<th>I6</th>
<th>I4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obciążenie I (jeden siłownik)</td>
<td>0.25</td>
<td>-1.08</td>
<td>0.65</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie siłowe)</td>
<td>0.88</td>
<td>-2.52</td>
<td>1.13</td>
</tr>
<tr>
<td>Obciążenie III (przesunięcie czasowe)</td>
<td>0.87</td>
<td>-2.02</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Tabela 3.31. Naprężenia w gruncie dla obciążenia asymetrycznego normowego, przy naziomie h = 1.0 m.

<table>
<thead>
<tr>
<th>Oznaczenie czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obciążenie I (jeden siłownik)</td>
<td>2.1</td>
<td>27.8</td>
<td>0.2</td>
<td>15.1</td>
<td>12.9</td>
<td>12.1</td>
<td>11.0</td>
<td>1.7</td>
<td>20.7</td>
<td>60.4</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie siłowe)</td>
<td>20.7</td>
<td>41.8</td>
<td>-0.3</td>
<td>17.2</td>
<td>14.7</td>
<td>17.7</td>
<td>17.2</td>
<td>41.4</td>
<td>23.4</td>
<td>64.3</td>
</tr>
<tr>
<td>Obciążenie III (przesunięcie czasowe)</td>
<td>17.3</td>
<td>32.6</td>
<td>-0.1</td>
<td>7.2</td>
<td>6.3</td>
<td>1.0</td>
<td>-5.6</td>
<td>-14.3</td>
<td>22.4</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Tabela 3.32. Siły osiowe N i momenty zginające M na obwodzie przepustu dla obciążenia asymetrycznego normowego, przy naziomie h = 1.0 m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I (jeden siłownik)</th>
<th>Obciążenie II (przesunięcie siłowe)</th>
<th>Obciążenie III (przesunięcie czasowe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>M</td>
<td>Nm</td>
<td>N</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td>N</td>
<td>Nm</td>
<td>N</td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-4 354.2</td>
<td>28.8</td>
<td>-7 039.3</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-1 886.8</td>
<td>-8.5</td>
<td>-5 152.5</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-5 370.2</td>
<td>-77.9</td>
<td>-11 103.2</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-2 685.1</td>
<td>12.7</td>
<td>-8 200.4</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-943.4</td>
<td>5.9</td>
<td>-4 426.8</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>508.0</td>
<td>22.9</td>
<td>362.9</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>0.0</td>
<td>3.4</td>
<td>-435.4</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-145.1</td>
<td>0.0</td>
<td>-362.9</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>0.0</td>
<td>5.1</td>
<td>-217.7</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-145.1</td>
<td>57.6</td>
<td>0.0</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-3 701.1</td>
<td>-34.7</td>
<td>-4 789.6</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-6 458.7</td>
<td>-99.1</td>
<td>-8 853.5</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-6 821.6</td>
<td>-77.9</td>
<td>-10 958.1</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-3 120.5</td>
<td>207.6</td>
<td>-6 603.9</td>
</tr>
</tbody>
</table>
Tabela 3.33. Przemieszczenia dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.8 \, \text{m} \).

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>(\leftrightarrow \text{I0})</th>
<th>(\Uparrow \text{I6})</th>
<th>(\leftrightarrow \text{I4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obciążenie I (przesunięcie silowe)</td>
<td>0.82</td>
<td>-2.18</td>
<td>0.99</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie czasowe)</td>
<td>0.91</td>
<td>-2.35</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Tabela 3.34. Naprężenia w gruncie dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.8 \, \text{m} \).

<table>
<thead>
<tr>
<th>Jednostki</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obciążenie I (przesunięcie silowe)</td>
<td>48.2</td>
<td>49.0</td>
<td>0.0</td>
<td>33.1</td>
<td>27.6</td>
<td>21.1</td>
<td>26.2</td>
<td>31.1</td>
<td>25.5</td>
<td>51.2</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie czasowe)</td>
<td>53.6</td>
<td>49.6</td>
<td>-0.1</td>
<td>33.4</td>
<td>28.2</td>
<td>23.6</td>
<td>27.2</td>
<td>36.5</td>
<td>28.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Tabela 3.35. Siły osiowe \(N \) i momenty zginające \(M \) na obwodzie przepustu dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.8 \, \text{m} \).

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I (przesunięcie silowe)</th>
<th>Obciążenie II (przesunięcie czasowe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L N M</td>
<td>N Nm</td>
<td>N Nm</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-5 950.7 88.1</td>
<td>-6 603.9 94.0</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-3 193.1 47.4</td>
<td>-3 773.6 67.8</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-9 143.8 -108.4</td>
<td>-10 159.8 -125.4</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-9 506.7 -41.5</td>
<td>-10 958.1 -53.4</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-6 313.6 -85.6</td>
<td>-7 257.0 -94.9</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>362.9 107.6</td>
<td>290.3 120.3</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-435.4 10.2</td>
<td>-508.0 9.3</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-508.0 -2.5</td>
<td>-508.0 -4.2</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-362.9 11.0</td>
<td>-362.9 11.0</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-145.1 111.8</td>
<td>-145.1 113.5</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-7 837.6 -106.7</td>
<td>-7 765.0 -99.1</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-10 958.1 -63.5</td>
<td>-11 466.1 -64.4</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-11 248.4 -124.5</td>
<td>-12 191.8 -140.6</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-7 257.0 94.9</td>
<td>-8 345.6 82.2</td>
</tr>
</tbody>
</table>
Tabela 3.36. Przemieszczenia dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.6 \) m.

<table>
<thead>
<tr>
<th>Oznaczenie czujnika</th>
<th>(I_0)</th>
<th>(I_6)</th>
<th>(I_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Obciążenie I (przesunięcie siłowe)</td>
<td>1.23</td>
<td>-3.65</td>
<td>1.57</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie czasowe)</td>
<td>1.35</td>
<td>-3.85</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Tabela 3.37. Naprężenia w gruncie dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.6 \) m.

<table>
<thead>
<tr>
<th>Oznaczenie czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>Obciążenie I (przesunięcie siłowe)</td>
<td>62.1</td>
<td>75.4</td>
<td>0.0</td>
<td>37.7</td>
<td>31.6</td>
<td>41.1</td>
<td>28.0</td>
<td>33.5</td>
<td>48.8</td>
<td>98.4</td>
</tr>
<tr>
<td>Obciążenie II (przesunięcie czasowe)</td>
<td>68.9</td>
<td>76.4</td>
<td>0.3</td>
<td>38.9</td>
<td>32.2</td>
<td>43.6</td>
<td>29.6</td>
<td>43.9</td>
<td>47.1</td>
<td>88.9</td>
</tr>
</tbody>
</table>

Tabela 3.38. Siły osiowe N i momenty zginające M na obwodzie przepustu dla obciążenia asymetrycznego normowego, przy naziomie \(h = 0.6 \) m.

<table>
<thead>
<tr>
<th>Tensometr</th>
<th>Obwód</th>
<th>Obciążenie I (przesunięcie siłowe)</th>
<th>Obciążenie II (przesunięcie czasowe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>Jednostki</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.000</td>
<td>-7 257.0</td>
<td>194.8</td>
</tr>
<tr>
<td>T2</td>
<td>0.629</td>
<td>-4 571.9</td>
<td>97.4</td>
</tr>
<tr>
<td>T3</td>
<td>1.258</td>
<td>-13 425.5</td>
<td>-224.5</td>
</tr>
<tr>
<td>T4</td>
<td>1.887</td>
<td>-12 191.8</td>
<td>-100.0</td>
</tr>
<tr>
<td>T5</td>
<td>2.516</td>
<td>-7 402.1</td>
<td>-105.0</td>
</tr>
<tr>
<td>T6</td>
<td>3.145</td>
<td>580.6</td>
<td>162.7</td>
</tr>
<tr>
<td>T7</td>
<td>3.774</td>
<td>-435.4</td>
<td>16.9</td>
</tr>
<tr>
<td>T8</td>
<td>4.403</td>
<td>-508.0</td>
<td>2.5</td>
</tr>
<tr>
<td>T9</td>
<td>5.032</td>
<td>-508.0</td>
<td>17.8</td>
</tr>
<tr>
<td>T10</td>
<td>5.661</td>
<td>-72.6</td>
<td>166.9</td>
</tr>
<tr>
<td>T11</td>
<td>6.290</td>
<td>-9 143.8</td>
<td>-123.7</td>
</tr>
<tr>
<td>T12</td>
<td>6.919</td>
<td>-13 207.7</td>
<td>-133.9</td>
</tr>
<tr>
<td>T13</td>
<td>7.548</td>
<td>-16 038.0</td>
<td>-126.2</td>
</tr>
<tr>
<td>T14</td>
<td>8.177</td>
<td>-12 990.0</td>
<td>72.0</td>
</tr>
</tbody>
</table>
Legenda:

- Punkty pomiaru
- Zaznaczony rozkład dla obciążenia $F_1=0$ kN, $F_2=332$ kN
- Zaznaczony rozkład dla obciążenia $F_1=277$ kN, $F_2=332$ kN
- Zaznaczony rozkład dla obciążenia $F_1=277$ kN, $F_2=277$ kN

Rys. 3.74. Rozkłady dla obciążenia asymetrycznego przy naziomie $h = 1.0$ m
a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkty pomiaru
- Założony rozkład dla obciążenia $F_1=286 \text{ kN}$, $F_2=286 \text{ kN}$
- Założony rozkład dla obciążenia $F_1=286 \text{ kN}$, $F_2=343 \text{kN}$

Rys. 3.75. Rozkłady dla obciążenia asymetrycznego przy naziomie $h = 0.8 \text{ m}$

a) Momenty zginające, b) Siły osiowe, c) Parcie gruntu.
a) Momenty zginające.

b) Siły osiowe.

c) Parcie gruntu.

Legenda:
- Punkty pomiaru
- Zatożony rozkład dla obciążenia F1=293 kN, F2=293kN
- Zatożony rozkład dla obciążenia F1=293 kN, F2=352kN

Rys. 3.76. Rozkłady dla obciążenia asymetrycznego przy naziomie $h = 0.6$ m
a) Momenty zginające, b)Siły osiowe, c) Parcie gruntu.
Rys. 3.77. Przemieszczenia dla trzech asymetrycznych obciążeń statycznych przy $h = 1.0$ m.

Rys. 3.78. Przemieszczenia dla dwóch asymetrycznych obciążeń statycznych przy $h = 0.8$ m.
Rys. 3.79. Przemieszczenia dla dwóch asymetrycznych obciążeń statycznych przy $h = 0.6$ m.
3.8. Wyniki pomiaru geometrii przepustu Multiplate GL4

Wyniki badania geometrii pionowej przepustu podczas obsypywania zamieszczono w tabeli 3.39 oraz rysunku 3.80 (dla ostatniej warstwy gruntu).

![Rys. 3.80. Deformacje przepustu po wykonaniu ostatniej warstwy gruntu.](image)

<table>
<thead>
<tr>
<th>Numer warstwy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-6</td>
<td>-2</td>
<td>-6</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-0.5</td>
<td>-5.0</td>
<td>-5.0</td>
<td>-5.5</td>
<td>-1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-2.5</td>
<td>-4.5</td>
<td>-5.0</td>
<td>-5.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-2</td>
<td>-10</td>
<td>-10.5</td>
<td>-10.5</td>
<td>-2.0</td>
<td>-4.5</td>
<td>-4.5</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-4</td>
<td>-15</td>
<td>-18</td>
<td>-16</td>
<td>-5</td>
<td>-6.5</td>
<td>-6.5</td>
</tr>
</tbody>
</table>
3.9. Wyniki badania gruntu

Wyniki badania uziarnienia gruntu przed zasypaniem zamieszczono w tabeli 3.40 oraz na rysunku 3.81.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Wymiar oczka sita kontrolnego [mm]</th>
<th>Masa zatrzymana na siecie [g]</th>
<th>Udział [%]</th>
<th>Przesiew</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.5</td>
<td>0.0</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>46.9</td>
<td>1.17%</td>
<td>98.83%</td>
</tr>
<tr>
<td>3</td>
<td>16.0</td>
<td>37.2</td>
<td>0.93%</td>
<td>97.90%</td>
</tr>
<tr>
<td>4</td>
<td>12.5</td>
<td>96.9</td>
<td>2.42%</td>
<td>95.48%</td>
</tr>
<tr>
<td>5</td>
<td>10.0</td>
<td>77.5</td>
<td>1.94%</td>
<td>93.54%</td>
</tr>
<tr>
<td>6</td>
<td>8.0</td>
<td>85.6</td>
<td>2.14%</td>
<td>91.40%</td>
</tr>
<tr>
<td>7</td>
<td>6.3</td>
<td>125.1</td>
<td>3.13%</td>
<td>88.27%</td>
</tr>
<tr>
<td>8</td>
<td>4.0</td>
<td>298.9</td>
<td>7.47%</td>
<td>92.53%</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>708.6</td>
<td>17.72%</td>
<td>63.08%</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>865.1</td>
<td>21.63%</td>
<td>41.46%</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>1133.4</td>
<td>28.34%</td>
<td>23.01%</td>
</tr>
<tr>
<td>12</td>
<td>0.25</td>
<td>333.5</td>
<td>8.34%</td>
<td>91.66%</td>
</tr>
<tr>
<td>13</td>
<td>0.125</td>
<td>106.9</td>
<td>2.67%</td>
<td>97.33%</td>
</tr>
<tr>
<td>14</td>
<td>0.063</td>
<td>51.2</td>
<td>1.28%</td>
<td>98.72%</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>33.2</td>
<td>0.83%</td>
<td>99.17%</td>
</tr>
</tbody>
</table>

Suma: 4000.0 % 100.00%

Rys. 3.81. Wykres uziarnienia kruszywa wg tabeli 3.40.

Wyniki badania gęstości nasypowej wg normy PN-77/B06714-07 w stanie luźnym i utrzemionym dla próbki kruszywa pokazano w tabeli 3.41.

Tabela 3.41. Wyniki badania gęstości nasypowej wg normy PN-77/B06714-07.

<table>
<thead>
<tr>
<th>Nazwa</th>
<th>Masa</th>
<th>Gęstość nasypowa [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jednostki</td>
<td>w stanie luźnym</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>g/cm³</td>
</tr>
<tr>
<td>1</td>
<td>3480</td>
<td>1.740</td>
</tr>
<tr>
<td>2</td>
<td>3486</td>
<td>1.743</td>
</tr>
<tr>
<td>3</td>
<td>3474</td>
<td>1.737</td>
</tr>
</tbody>
</table>

Średnia: 1.740 | 1.990
Charakterystyki i klasyfikację normową kruszywa zamieszczono w tabeli 3.42.

Tabela 3.42. Kwalifikacja normowa kruszywa.

<table>
<thead>
<tr>
<th>l.p.</th>
<th>Charakterystyka kruszywa</th>
<th>Jednostka</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d_{10}</td>
<td>mm</td>
<td>0.39</td>
</tr>
<tr>
<td>2</td>
<td>d_{60}</td>
<td>mm</td>
<td>1.97</td>
</tr>
<tr>
<td>3</td>
<td>Wskaźnik różnorzyniastości $U = d_{60}/d_{10}$</td>
<td>-</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>Zawartość frakcji większych od 10 mm</td>
<td>%</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>Zawartość frakcji większych od 2 mm</td>
<td>%</td>
<td>36.8</td>
</tr>
</tbody>
</table>

Klasyfikacja wg normy

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Próbka</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PN-B-11111</td>
</tr>
<tr>
<td>7</td>
<td>PN-75/B-04481</td>
</tr>
</tbody>
</table>

Wyniki badań optymalnej wilgotności i gęstości szkieletu kruszynowego zamieszczono w tabeli 3.43 i na rysunku 3.82.

Tabela 3.43. Wyniki badania optymalnej wilgotności i gęstości szkieletu kruszynowego.

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Jedn.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Próbka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grunt wilgotny</td>
<td>g</td>
<td>110.7</td>
<td>118.8</td>
<td>209.7</td>
<td>163.9</td>
<td>223.6</td>
<td>172.4</td>
</tr>
<tr>
<td>Grunt suchy</td>
<td>g</td>
<td>109.1</td>
<td>117.0</td>
<td>202.3</td>
<td>158.0</td>
<td>211.9</td>
<td>163.3</td>
</tr>
<tr>
<td>Wilgotność</td>
<td>%</td>
<td>1.47</td>
<td>1.54</td>
<td>3.66</td>
<td>3.73</td>
<td>5.52</td>
<td>5.57</td>
</tr>
<tr>
<td>Wilgotność średnia</td>
<td>%</td>
<td>1.50</td>
<td>3.70</td>
<td>5.55</td>
<td>7.35</td>
<td>10.03</td>
<td>11.55</td>
</tr>
<tr>
<td>γ_0</td>
<td>g/cm3</td>
<td>1.959</td>
<td>1.986</td>
<td>2.050</td>
<td>2.119</td>
<td>2.173</td>
<td>2.179</td>
</tr>
<tr>
<td>γ_{os}</td>
<td>g/cm3</td>
<td>1.930</td>
<td>1.918</td>
<td>1.942</td>
<td>1.973</td>
<td>1.980</td>
<td>1.952</td>
</tr>
</tbody>
</table>

Rys. 3.82. Wykres wg Proctora normalnego.
Uziarnienia kruszywa podczas montażu przepustu zostało sprawdzone dla warstwy 1, 2 i 5. Wyniki badań uziarnienia kruszywa pokazano w tabelach od 3.44 do 3.46 i rysunkach od 3.83 do 3.85.

Tabela 3.44. Wyniki badania uziarnienia kruszywa dla warstwy nr 1.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Wymiar oczka sita kontrolnego</th>
<th>Masa zatrzymana na sile</th>
<th>Udział</th>
<th>Przesiew</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jednostki</td>
<td>mm</td>
<td>g</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>31.5</td>
<td>0.0</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>65.4</td>
<td>3.27%</td>
<td>96.73%</td>
</tr>
<tr>
<td>3</td>
<td>16.0</td>
<td>43.4</td>
<td>2.17%</td>
<td>94.56%</td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
<td>56.8</td>
<td>2.84%</td>
<td>91.72%</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>48.8</td>
<td>2.44%</td>
<td>89.28%</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>67.5</td>
<td>3.37%</td>
<td>85.91%</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>107.7</td>
<td>5.38%</td>
<td>80.52%</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>200.6</td>
<td>10.03%</td>
<td>70.49%</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>478.7</td>
<td>23.93%</td>
<td>46.56%</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>424.0</td>
<td>21.20%</td>
<td>25.36%</td>
</tr>
<tr>
<td>11</td>
<td>0.25</td>
<td>155.5</td>
<td>7.77%</td>
<td>17.58%</td>
</tr>
<tr>
<td>12</td>
<td>0.125</td>
<td>208.8</td>
<td>10.44%</td>
<td>7.14%</td>
</tr>
<tr>
<td>13</td>
<td>0.075</td>
<td>39.8</td>
<td>1.99%</td>
<td>5.15%</td>
</tr>
<tr>
<td>14</td>
<td>0.063</td>
<td>4.2</td>
<td>0.21%</td>
<td>4.94%</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>98.9</td>
<td>4.94%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Suma: 2000.1 100.00%

Rys. 3.83. Wykres uziarnienia kruszywa dla warstwy nr 1.
Tabela 3.45. Wyniki badania uziarnienia kruszywa dla warstwy nr 2.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Wymiary oczka sita kontrolnego</th>
<th>Masa zatrzymana na sicie</th>
<th>Udział</th>
<th>Przesiew</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>31.5</td>
<td>0.0</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>28.1</td>
<td>1.41%</td>
<td>98.60%</td>
</tr>
<tr>
<td>3</td>
<td>16.0</td>
<td>34.5</td>
<td>1.73%</td>
<td>96.87%</td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
<td>34.5</td>
<td>1.73%</td>
<td>95.15%</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>30.4</td>
<td>1.52%</td>
<td>93.63%</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>42.7</td>
<td>2.14%</td>
<td>91.49%</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>78.8</td>
<td>3.94%</td>
<td>87.55%</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>160.0</td>
<td>8.00%</td>
<td>79.55%</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>546.2</td>
<td>27.31%</td>
<td>52.24%</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>448.5</td>
<td>22.43%</td>
<td>29.82%</td>
</tr>
<tr>
<td>11</td>
<td>0.25</td>
<td>233.0</td>
<td>11.65%</td>
<td>18.17%</td>
</tr>
<tr>
<td>12</td>
<td>0.125</td>
<td>221.9</td>
<td>11.10%</td>
<td>7.07%</td>
</tr>
<tr>
<td>13</td>
<td>0.075</td>
<td>24.0</td>
<td>1.20%</td>
<td>5.87%</td>
</tr>
<tr>
<td>14</td>
<td>0.063</td>
<td>2.1</td>
<td>0.11%</td>
<td>5.77%</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>115.3</td>
<td>5.77%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Suma:</td>
<td>2000.0</td>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>

Rys. 3.84. Wykres uziarnienia kruszywa dla warstwy nr 2.
Tabela 3.46. Wyniki badania uziarnienia kruszywa dla warstwy nr 5.

<table>
<thead>
<tr>
<th>L.p.</th>
<th>Wymiar oczka sita kontrolnego</th>
<th>Masa zatrzymana na sitie</th>
<th>Udził</th>
<th>Przesiew</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jednostki</td>
<td>mm</td>
<td>g</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>31.5</td>
<td>0.0</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>39.1</td>
<td>1.95%</td>
<td>98.05%</td>
</tr>
<tr>
<td>3</td>
<td>16.0</td>
<td>26.0</td>
<td>1.29%</td>
<td>96.76%</td>
</tr>
<tr>
<td>4</td>
<td>10.0</td>
<td>68.9</td>
<td>3.43%</td>
<td>93.33%</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>36.5</td>
<td>1.82%</td>
<td>91.52%</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>45.2</td>
<td>2.25%</td>
<td>89.27%</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>90.3</td>
<td>4.49%</td>
<td>84.78%</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>194.5</td>
<td>9.68%</td>
<td>75.10%</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>467.4</td>
<td>23.25%</td>
<td>51.85%</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>507.3</td>
<td>25.24%</td>
<td>26.61%</td>
</tr>
<tr>
<td>11</td>
<td>0.25</td>
<td>142.2</td>
<td>7.07%</td>
<td>19.53%</td>
</tr>
<tr>
<td>12</td>
<td>0.125</td>
<td>221.1</td>
<td>11.00%</td>
<td>8.53%</td>
</tr>
<tr>
<td>13</td>
<td>0.075</td>
<td>33.4</td>
<td>1.66%</td>
<td>6.87%</td>
</tr>
<tr>
<td>14</td>
<td>0.063</td>
<td>4.7</td>
<td>0.23%</td>
<td>6.64%</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>133.4</td>
<td>6.46%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Suma:</td>
<td></td>
<td>2010.0</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Rys. 3.85. Wykres uziarnienia kruszywa dla warstwy nr 5.

4. Wyznaczenie wytężenia przepustu Metodą Elementów Skończonych

W niniejszym punkcie zaprezentowano wyniki analizy numerycznej Metodą Elementów Skończonych (MES). Szczegółowo scharakteryzowano model gruntu, nieliniowe procedury iteracyjne oraz elementy skończone użyt w analizie.

Do budowy modelu numerycznego badanego przepustu wykorzystano dwa rodzaje elementów dostępnych w pakietie Cosmos/M 2.5:
- element powłokowy SHELL4 (przepust),
- element brylowy SOLID (grunt, obudowa),

Strona 150
Do dyskretyzacji gruntu wykorzystano sprężysto - idealnie plastyczny model Druckera - Pragera. Przy nieliniowej analizie fizycznej (materiałowej) zachowania się układu grunt - przepust użyto procedury iteracyjnej Netona - Raphsona, dostępnej w module NSTAR pakietu Cosmos/M.

4.1. Element powłokowy SHELL4 [14]

Dyskretyzacji dowolnych powłok (np. walcowych) na płaskie elementy dokonuje się przez aproksymację w sposób ciągły, otrzymując powierzchnię utworzoną z małych płaskich elementów trójkątnych, prostokątnych lub czworobocznych. Przyjęcie do rozważań elementów zakrzywionych pozwala unikać aproksymacji konstrukcji powłokowych. Następnie wprowadza się wypadkowe naprężenia (siły i momenty) odniesione do jednostki długości elementu \(dx \), \(dy \) przedstawionego na rysunku 4.1.

![Rys. 4.1. Wydzielony element powłokowy z wypadkowymi naprężeniami.](image)

Całkowitą siłę normalną, działającą na ściankę boczną o wymiarach \(dy \), \(t \) definiuje się jako:

\[
F_x = \int_{-\frac{1}{2}}^{\frac{1}{2}} dy \sigma_x \left(1 + \frac{z}{r_x} \right) dz
\]

Dzieląc obie strony przez \(dy \) otrzymuje się wyrażenie:

\[
F_{x,y} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \tau_{xy} \left(1 + \frac{z}{r_y} \right) dz
\]

Analogicznie definiuje się siłę styczną oraz siłę poprzeczną na rozpatrywanej ściance:

\[
F_{x,y} = -F_{x,y} = - \int_{-\frac{1}{2}}^{\frac{1}{2}} \tau_{xy} \left(1 + \frac{z}{r_y} \right) dz
\]

Podobnie siły normalne \(F \) styczne i poprzeczne na ściance o wymiarach \(dx \), \(t \):

\[
F_{x} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sigma_x \left(1 + \frac{z}{r_x} \right) dz
\]

\[
F_{x,y} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \tau_{xy} \left(1 + \frac{z}{r_y} \right) dz
\]

Strona 151
Dodatnie kierunki poszczególnych sił przedstawiono na rysunku 4.2a. Pozostałe siły działające na wydzielony element powłoki, czyli momenty zginające i skręcające, definiuje się w następujący sposób:

\[
M_x = \int_{-l/2}^{l/2} \sigma_y \left(1 + \frac{z}{r_y} \right) z \, dz,
\]

(83)

\[
M_y = \int_{-l/2}^{l/2} \sigma_y \left(1 + \frac{z}{r_y} \right) z \, dz,
\]

(84)

\[
M_{xy} = -\int_{-l/2}^{l/2} \tau_{xy} \left(1 + \frac{z}{r_y} \right) z \, dz,
\]

(85)

\[
M_{yx} = -\int_{-l/2}^{l/2} \tau_{xy} \left(1 + \frac{z}{r_y} \right) z \, dz
\]

(86)

Dodatnie kierunki wektorów momentów zginających i skręcających przedstawiono na rysunku 4.2b.

Rys. 4.2. Dodatnie kierunki a) sił, b) momentów.

Z podanych rozważań uzyskano sześć sił i cztery momenty. Do dyskretyzacji jest sześć równań równowagi: trzy równania równowagi sił i trzy równania równowagi momentów. Brakujące równania otrzymuje się z analizy odkształceń powłoki.

Jeśli zna się poszczególne składowe sił i momentów, to ze znanych wzorów wytrzymałości materiałów (dla belki o przekroju prostokątnym o wysokości \(t \) i szerokości \(t \)) można wyznaczyć naprężenia:

\[
\sigma_x = \frac{F_x}{t} - \frac{12M_z}{t^3} z; \quad \tau_{xy} = \frac{F_{xy}}{t} - \frac{12M_{xy}}{t^3} z
\]

(87)

\[
\sigma_y = \frac{M_y}{t^3} z; \quad \tau_{xy} = \frac{F_{yx}}{t} - \frac{12M_{yx}}{t^3} z
\]

(88)

Rozkład naprężeń ścinańych jest paraboliczny wyrażony równaniem:

\[
\tau_{xy} = -\frac{3Q_x}{2t} \left(1 - \frac{4z^2}{t^2} \right); \quad \tau_{yx} = -\frac{3Q_y}{2h} \left(1 - \frac{4z^2}{t^2} \right)
\]

(89)

Element SHELL4 dostępny w pakiecie Cosmos/M jest prostokątnym elementem cienkiej powłoki.
o 4 węzłach, o własnościach zgięciowych i membranowych dla analizy w trzech kierunkach struktury. Ma sześć stopni swobody w węźle (trzy przesunięcia i trzy obroty), które wykorzystuje się do analizy strukturalnej. Do analizy termicznej można użyć tylko jednego stopnia swobody w węźle, reprezentującego temperaturę. Element posiada własności specjalne, tj.: wyboczenie, obciążenia na płaszczyźnie.

Sposób wprowadzania węzłów elementu pokazano na rysunku 4.3. Obydwa sposoby numerowania węzłów (zgodnie i przeciwnie do kierunku ruchu wskazówek zegara) są dozwolone. Element trójkątny jest tworzony przez wskazanie tych samych wspólędnych w globalnym układzie dla węzła trzeciego i czwartego. W układzie współrzędnych elementu oś x biegnie od pierwszego do drugiego węzła. Oś y elementu leży na powierzchni zdefiniowanej przez pierwsze trzy węzły, a węzeł czwarty leży w kierunku prostopadłym do osi x elementu. Oś z elementu uzupełnia prawoskrętny kartezjański układ współrzędnych [14].

Jeśli zdefiniowany układ współrzędnych elementu \((x_e, y_e, z_e)\), jak pokazano na rysunku 4.3, jest różny od przyjmowanego domyślnie układu współrzędnych, to program rozpatruje zmodyfikowany układ \((x, y, z)\) w sposób następujący: Oś z elementu jest normalną do powierzchni powłoki. Dodatni kierunek osi \(z\) jest zgodny z zasadą prawej dłoni (jak kierunki wyznaczone przez węzły 1, 2 i 3), jak pokazano na rysunku 4.4. Jeśli kąt między osią \(x_e\) i normalą do powierzchni \((z)\) jest większy niż \(45°\) \((\alpha > 45°)\), to \(x\) oś elementu jest przyjmowana jako rzut \(x_e\) na płaszczyznę elementu. Jeśli kąt między osią \(x_e\) i normalą do powierzchni \((z)\) jest mniejszy i równy \(45°\) \((\alpha < 45°)\), to \(x\) oś elementu jest przyjmowana jako rzut osi \(y\) na powierzchnię elementu. Oś \(y\) elementu została zdefiniowana tak, że oś z uzupełnia prawoskrętny kartezjański układ z osiami \(x\) i \(y\).

Poniżej podano dostępne opcje dla elementu SHELL4 w systemie Cosmos/M:

1. Rodzaje elementów powłokowych:
 - dwa trójkąty z elementu prostokątnego (QUAD2),
 - cztery trójkąty z elementu prostokątnego (QUAD4),

 ![Rys. 4.4. Modyfikacja układu współrzędnych dla elementu powłokowego: a) dla \(\alpha > 45°\) b) dla \(\alpha < 45°\)](image-url)
2. Opcje analizy
 – regularna analiza powłokowa (membranowa i zgięciowa),
 – analiza membranowa,
 – analiza ściśnięcia płyte,

3. Opcje wyników
 – siły na jednostkę długości i naprężenia w środku elementu,
 – dodatkowo siły węzłowe,
 – dodatkowo naprężenia węzłowe,

4. Kierunki naprężeń:
 – obliczenia naprężeń w-globalnym układzie,
 – obliczenia naprężeń w-zdefiniowanym lokalnym układzie elementu,

5. Sprężysta analiza liniowa – opcja domyślna,
6. Formuła małych przemieszczeń – opcja domyślna,

Dostępne **stałe rzeczywiste** dla elementu SHELL4 w systemie Cosmos/M:
1. grubość (r1),
2. gradient temperatury (r2),

Dostępne **własności materialowe** dla elementu SHELL4 w systemie Cosmos/M:
1. moduł sprężystości (EX),
2. przewodność cieplna w kierunku X globalnego układu (KX),
3. przewodność cieplna w kierunku Y globalnego układu (KY),
4. współczynnik Poissona (NUXY),
5. współczynnik przewodności cieplnej (C),
6. współczynnik rozszerzalności cieplnej (ALPX),
7. gęstość (DENS),
8. moduł poprzeczny (GXY),
9. materiałowy współczynnik tłumienia (DAMP),

Dostępne **obciążenie elementu** dla elementu SHELL4 w systemie Cosmos/M:
1. termiczne,
2. grawitacyjne,
3. ciśnieniowe (przykładane normalnie do czoła elementu).

Rodzaj otrzymywanych wyników:
Składowe naprężenia zawierające naprężenia zredukowane wg Hubera-Misesa podawane są w układzie współrzędnych elementu w punktach centralnych elementu dla dolnej i górnej powierzchni. Opcjonalnie mogą być wyświetlane główne naprężenia. Mogą być również wyświetlane dodatnie wartości sił w węzłach na jednostkę długości oraz składowe naprężenia. Kierunki sił oraz składowe momentów na jednostkę długości dla elementu pokazano na rysunku 4.5.

![Rys. 4.5. Kierunki składowych sił i momentów na jednostkę długości zdefiniowane dla elementu cienkiej powłoki w systemie COSMOS/M.](image-url)
4.2. Element brylowy SOLID [14]

Element SOLID jest 8- i 20-węzłowym, przestrzennym elementem do analizy modeli strukturalnych, termicznych lub płynnych. Posiada tylko trzy stopnie swobody w węźle. Trzy rotacje muszą być równe zero w każdym węźle. Elementowi można przypisać ortotropowe właściwości materiałowe, jeśli co najmniej jeden z przedstawionych warunków jest spełniony:

- moduły sprężystości w co najmniej dwóch kierunkach są różne,
- współczynniki Poissona w co najmniej dwóch płaszczyznach są różne,
- współczynniki termiczne w co najmniej dwóch kierunkach są różne,
- przewodność cieplna w co najmniej dwóch kierunkach jest różna,

Sposób wprowadzania węzłów, pokazany na rysunku 4.6, ilustruje numery lokalne węzłów dla 20-węzłowego elementu. Opuszczone węzły przyjmują wartość zero (0). Graniastosłupy oraz czwórki mogą być rozpatrywane tylko w opcji elementów 8-węzłowych. Ściany graniastosłupu może być uformowany przez nałożenie węzłów 3 i 4 oraz 7 i 8 elementu. Elementy ostrosłupowe są otrzymywane przez podanie tych samych węzłów dla węzłów 5, 6, 7 oraz 8. Na rysunku 4.7 pokazano ośmiowęzłowe elementy. Numerowanie elementów należy prowadzić zgodnie z kierunkiem ruchu wskazówek zegara.

Rys. 4.6. Izoparametryczny element brylowy 3-D.

X, Y, Z – globalny kartezjański układ współrzędnych, x, y, z – układ współrzędnych elementu, a, b, c – układ współrzędnych materiału 1, 2 … – numery powierzchni czołowych, na które działa ciśnienie (dodatnie, jeżeli jest skierowanie do wewnątrz).

Rys. 4.7. Ośmiowęzłowe elementy 3-D: a) przestrzenny element graniastosłupa, b) przestrzenny element ostrosłupa.

Układy współrzędnych elementu i materiału są zdefiniowane następująco:

W **układzie współrzędnych elementu** oś x elementu biegnie od pierwszego do drugiego węzła. Oś y elementu leży na powierzchni zdefiniowanej przez trzy węzły 1, 2, 3 i jest prostopadła do osi x biegnącej w kierunku węzła 4. Oś z uzupełnia kartezjański układ z osiami x oraz y.

Układ współrzędnych materiału (użyty tylko do opisania kierunku ortotropowego) jest zdefiniowany przez dziewięć stałych wartości rzeczywistych definiowanych w sekcji stałych rzeczywistych. Oś a w tym systemie jest zdefiniowana przez wektor łączący punkty 1 do 2, przedstawionych na rysunku 4.6. Oś b leży na powierzchni trzech podanych punktów i biegnie od osi a w kierunku punktu 3. Oś c uzupełnia
kartezjański układ współrzędnych. Ponadto kierunki materiału mogą być zdefiniowane z uwzględnieniem obydwu (globalnego i elementu) układów współrzędnych.

Poniżej podano dostępne opcje elementu SOLID w systemie Cosmos/M:

1. Opcja nr 1:
 - element pełny,
 - 8-węzłowy element nieściśliwej cieczy.

2. Opcja nr 2:
 - redukcja całkowa,
 - element hybrydowy 8-węzłowy,
 - pełne całkowanie.

3. Opcja nr 4:
 - obliczanie naprężeń w globalnym układzie współrzędnych,
 - obliczanie naprężeń w lokalnym układzie współrzędnych.

4. Opcja nr 5:
 - liniowo sprężysty model materiału,
 - sprężysto-plastyczny model materiału wg Misesa (izotropowy),
 - sprężysto-plastyczny model materiału wg Misesa (kinematyczny),
 - hiper-sprężysty model materiału wg Mooneya-Rivlina,
 - nieliniowy sprężysty model materiału,
 - sprężysty – idealnie plastyczny model materiału wg Druckera-Pragera,
 - hiper-sprężysty model materiału wg Blatz-Ko,
 - model materiału typu beton,
 - plastyczny izotropowy model materiału wg Tresca,
 - plastyczny kinematyczny model materiału wg Tresca.

5. Opcja nr 6
 - formuła małych przemieszczeń,
 - formuła dużych przemieszczeń.

6. Opcja nr 7
 - uwzględnienie pełzania materiału.

7. Opcja nr 8
 - formuła małych odkształceń,
 - formuła dużych odkształceń.

Dostępne stałe rzeczywiste dla elementu SOLID w systemie Cosmos/M: (dla struktury ortotropowej elementów wartości następujących stałych rzeczywistych są użyte do określenia położenia trzech punktów definiujących układ współrzędnych materiału):

1. oś x punktu 1 (r1),
2. oś y punktu 1 (r2),
3. oś z punktu 1 (r3),
4. oś x punktu 2 (r4),
5. oś y punktu 2 (r5),
6. oś z punktu 2 (r6),
7. oś x punktu 3 (r7),
8. oś y punktu 3 (r8),
9. oś z punktu 3 (r9).

Dostępne własności materiałowe dla elementu SOLID w systemie Cosmos/M:

1. moduł sprężystości w kierunku głównym 1 materiału (EX),
2. moduł sprężystości w kierunku głównym 2 materiału (EY),
3. moduł sprężystości w kierunku głównym 3 materiału (EZ),
4. przewodność cieplna w kierunku globalnej osi x (KX),
5. przewodność cieplna w kierunku globalnej osi y (KY),
6. przewodność cieplna w kierunku globalnej osi z (KZ),
7. liczba Poissona dla materiału między kierunkami głównymi 1 i 2 (NUXY),
8. liczba Poissona dla materiału między kierunkami głównymi 2 i 3 (NUYZ),
9. liczba Poissona dla materiału między kierunkami głównymi 1 i 3 (NUXZ),
10. ciepło właściwe (C),
11. współczynnik rozszerzalności cieplnej w kierunku głównym 1 materiału (ALPX),
12. współczynnik rozszerzalności cieplnej w kierunku głównym 2 materiału (ALPY),
13. współczynnik rozszerzalności cieplnej w kierunku głównym 3 materiału (ALPZ),
14. gęstość (DENS),
15. moduł sprężystości poprzecznej w płaszczyźnie X-Y (GXY),
16. moduł sprężystości poprzecznej w płaszczyźnie Y-Z (GYZ),
17. moduł sprężystości poprzecznej w płaszczyźnie X-Z (GXZ),
18. spójność (COHESN),
19. kąt tarcia wewnętrznego (FRCANG).

Dostępne obciążenie elementu dla elementu SOLID w systemie Cosmos/M:
1. grawitacyjne,
2. obciążenia węzła są przejęte przez jednostki promieni,
3. ciśnienie (przyłożone prostopadle do powierzchni elementu).

Rodzaj otrzymywanych wyników:

![Rys. 4.8. Izoparametryczny element bryłowy 3-D z zaznaczonymi naprężeńami.](image)

4.2.1. Sprężysto-idealnie plastyczny model gruntu Druckera – Pragera

Poniżej przedstawiono złożenia i ograniczenia modelu materiałowego wg Druckera – Pragera:
- założenie małych odkształceń,
- kąt tarcia wewnętrznego (FRCANG) \(\phi \) może przyjmować wartości od 0° do 90°,
- spójność (COHESN) \(c > 0 \),
- przy nieliniowości fizycznej używana jest iteracyjna metoda Newtona – Raphona,
- możliwe jest uwzględnienie ciężaru własnego gruntu przy wprowadzeniu wartości przyspieszenia ziemskiego.

Warunek plastyczności dla modelu Druckera – Pragera przedstawia się następująco:

\[
F = \frac{2 \sin \phi}{3 - \sin \phi} I_1 + \sqrt{3} J_2 - \frac{6c \cos \phi}{3 - \sin \phi},
\]

(90)
gdzie:

- \(F \) – powierzchnia plastyczności,
- \(\phi \) – kat tarcia wewnętrznego,
- \(c \) – spójność,
- \(I_1 = \sigma_{ij} \),
- \(J_2 = 0.5 \; s_{ij} \; s_{ij} \),
- \(s_{ij} = \sigma_{ij} - 1/3 \; I_1 \; \delta_{ij} \).

Na rysunku 4.9 porównano powierzchnie plastyczności dla modelu Druckera-Pragera oraz Coulomba-Mohra.

![Powierzchnia plastyczności dla modelu Druckera-Pragera i Coulomba-Mohra.](image1)

Rys. 4.9. Powierzchnia plastyczności dla modelu Druckera-Pragera i Coulomba-Mohra.

Dokładny matematyczny opis modelu sprężysto-idealnie plastycznego Druckera-Pragera można znaleźć w pracy [84].

4.2.2. Metoda iteracyjna Newtona - Raphona dla zagadnienia nieliniowości fizycznej

Materiałowa nieliniowość jest realizowana przez zdefiniowanie krzywej \(\sigma-\varepsilon \), pokazanej na rysunku 4.10, z granicą plastyczności \(\sigma_y \). Podobna metoda została wykorzystana w analizie MES przepustu opisanego w pracy [37].

![Wykres \(\sigma-\varepsilon \) dla zagadnienia nieliniowego.](image2)

Rys. 4.10. Wykres \(\sigma-\varepsilon \) dla zagadnienia nieliniowego.
Zastosowano algorytm iteracyjny wg metody Newtona - Raphsona. Metoda ta daje dobre wyniki i jest na ogół szybkozbieżna. Jej wadą jest konieczność budowy i triangularyzacji macierzy sztywności w każdej iteracji [14].

![Diagram](image)

Rys. 4.11. Metoda Newtona - Raphsona.

Poniżej przedstawiono procedurę szukania rozwiązania dla danego układu równań metodą Newtona - Raphsona. Układ równań przedstawia się następująco:

\[
\begin{align*}
\ f_1(x_1, x_2, \ldots, x_n) &= 0 \\
\ f_2(x_1, x_2, \ldots, x_n) &= 0 \\
\vdots & \\
\ f_n(x_1, x_2, \ldots, x_n) &= 0
\end{align*}
\]

Funkcje \(f_1, f_2, \ldots, f_n \) rozwijane są w szereg Taylora w otoczeniu przewidywanego rozwiązania \((x_1, x_2, \ldots, x_n)\), które traktowane jest jako pierwsze przybliżenie poszukiwanego rozwiązania. Rozwinięcie ogranicza się do składników liniowych, tzn. zawierających \((x_i - x_j)^1\):

\[
\begin{align*}
\ f_i(x_1, x_2, \ldots, x_n) &\approx f_i(x_1, x_2, \ldots, x_n) + \left(\frac{\partial f_i}{\partial x_1} \right)(x_1 - x_1) + \\
&\quad + \left(\frac{\partial f_i}{\partial x_2} \right)(x_2 - x_1) + \cdots + \left(\frac{\partial f_i}{\partial x_n} \right)(x_n - x_1) \\
&\quad + \cdots \\
\ f_n(x_1, x_2, \ldots, x_n) &\approx f_n(x_1, x_2, \ldots, x_n) + \left(\frac{\partial f_n}{\partial x_1} \right)(x_1 - x_1) + \\
&\quad + \left(\frac{\partial f_n}{\partial x_2} \right)(x_2 - x_1) + \cdots + \left(\frac{\partial f_n}{\partial x_n} \right)(x_n - x_1)
\end{align*}
\]

(91)
W układzie (92) pochodne cząstkowe \(\frac{\partial f_i}{\partial x_j} \) wyznaczane są dla \((x_1,x_2,...,x_n)\). Po przyrównaniu prawych stron układu (92) do zera i wprowadzeniu oznaczenia \(\Delta x_i = x_i - x_j \), układ ten można przedstawić w następującej formie:

\[
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\begin{bmatrix}
\Delta x_1 \\
\Delta x_2 \\
\vdots \\
\Delta x_n
\end{bmatrix} =
\begin{bmatrix}
-f_1 \\
-f_2 \\
\vdots \\
-f_n
\end{bmatrix}
\]

(93)

Z układu równań (93) wyznaczana jest \(\Delta x_i \) \((i=1,2,...,n)\), a następnie obliczane jest kolejne przybliżenie rozwiązania:

\[
x_1^{(i+1)} = x_1^{(i)} + \Delta x_1^{(i)} \\
x_2^{(i+1)} = x_2^{(i)} + \Delta x_2^{(i)} \\
\vdots \\
x_n^{(i+1)} = x_n^{(i)} + \Delta x_n^{(i)} .
\]

(94)

Proces iteracyjny przedstawia się następująco:

1. Obliczenia rozpoczynają się od założenia pierwszego przybliżenia rozwiązania \((x_1^{(1)},x_2^{(1)},...,x_n^{(1)})\) oraz przyjęcia wartości parametru \(\varepsilon\) wykorzystywanego w kryterium zbieżności.

2. Obliczane są wartości funkcji \(f_j(x_1^{(i)},x_2^{(i)},...,x_n^{(i)})\); \(j=1,2,...,n\).

3. Obliczane są pochodne cząstkowe \(\frac{\partial f_j}{\partial x_k}\) dla \(x_1^{(i)},x_2^{(i)},...,x_n^{(i)}\), \(j=1,2,...,n; k=1,2,...,n\).

4. Rozwiązywany jest układ (93) w celu wyznaczenia \(\Delta x_j^{(i)}\); \(j=1,2,...,n\).

5. Obliczane są kolejne przybliżenia rozwiązania \(x_j^{(i+1)} = x_j^{(i)} + \Delta x_j^{(i)}\); \(j=1,2,...,n\).

6. Obliczane są wartości funkcji \(f_j(x_1^{(i+1)},x_2^{(i+1)},...,x_n^{(i+1)})\); \(j=1,2,...,n\) i sprawdzane kryterium zbieżności, np. \(|f_j(x_1^{(i+1)},x_2^{(i+1)},...,x_n^{(i+1)})|\leq\varepsilon\); \(j=1,2,...,n\). Jeżeli powyższe kryterium zbieżności jest spełnione to obliczenia są zakończone, a liczby \((x_1^{(i+1)},x_2^{(i+1)},...,x_n^{(i+1)})\) są traktowane jako rozwiązanie układu (91). Jeżeli kryterium zbieżności nie jest spełnione, to podstawia się \(i = i + 1\), a obliczenia są kontynuowane od pkt. nr 3.

W celu zmniejszenia liczby operacji często stosuje się stałe macierze w trakcie całego procesu iteracyjnego. W ten sposób zmodyfikowana metoda Newtona - Raphsona wymaga zazwyczaj większej liczby iteracji, jednak czas obliczeń dla jednego kroku iteracyjnego jest znacznie krótszy niż w pełnej metodzie Newtona - Raphsona, co w przypadku dużych układów równań szybko pozwala osiągnąć zbieżność. Dodatkowo w zmodyfikowanej metodzie Newtona - Raphsona macierze są odwracane tylko w pierwszej iteracji dla każdego kroku czasowego. Można także stosować algorytm iteracyjny, w których macierze sztywności zmienia się co kilka iteracji w trakcie jednego przysrostu, albo też odwrotnie - macierz sztywności jest stała przez kilka przyrostów. Częstość zmiany macierzy sztywności zależy od stopnia nieliniości zagadnienia.

Strona 160
4.3. Dyskretyzacja modelu badanego przepustu

Do zamodelowania powłoki przepustu użyto 2 560 elementów typu SHELL4 z następującymi parametrami:
- moduł sprężystości: $E_S = 205 \text{ GPa}$,
- współczynnik Poissona: $\nu = 0.3$,
- gęstość: $\gamma = 7850 \text{ kg/m}^3$.

Przyjęto grubość powłoki równą wysokości falisty tj. 50 mm. Jednocześnie moduł sprężystości E został odpowiednio zredukowany tak, aby zachować właściwą sztywność EI przepustu. Zredukowany moduł sprężystości dla powłoki przepustu wynosi:

$$E_r = E \cdot \left(\frac{t}{50} \right) = 15.375 \text{ GPa}, \quad (95)$$

gdzie:
- $t = 3.75 \text{ mm}$ – grubość blachy falistej.

Do zamodelowania gruntu użyto 20 480 elementów trójwymiarowych typu SOLID z następującymi parametrami:
- moduł sprężystości: $E_G = 90 \text{ MPa}$,
- współczynnik Poissona: $\nu = 0.2$,
- kąt tarcia wewnętrznego: $\phi = 35^\circ$,
- spójność: $c = 0.1 \text{ Pa}$,
- gęstość: $\gamma = 2000 \text{ kg/m}^3$.

Wykorzystano model materiału Druckera - Pragera, natomiast do rozwiązania układu równań nieliniowych zmodyfikowaną metodę Nertona - Raphsona.

Do zamodelowania drewnianej obudowy stanowiska badawczego użyto 1 280 elementów typu SOLID z następującymi parametrami:
- moduł sprężystości: $E_D = 110 \text{ MPa}$,
- współczynnik Poissona: $\nu = 0.2$.
Wykonano dwa modele numeryczne różniące się schematem statycznym. W pierwszym modelu, przedstawionym na rysunku 4.13 a (schemat nr 1), obudowę stanowiska badawczego zastąpiono sztywnymi podporami przesuwnymi. W modelu przedstawionym na rysunku 4.13 b (schemat nr 2) sztywne podpory zastąpiono elementami trójwymiarowymi SOLID podpartymi u podstawy oraz w miejscach wykonania zastrzałów z belek stalowych.

Do analizy porównawczej wybrano model z naziorem \(h = 0.8 \) m oraz obciążenie \(p = 69.841 \) kPa. Uwzględniono ciężar własny gruntu, wprowadzając przyspieszenie ziemskie \(g = 9.81 \) m/s\(^2\). Do obliczeń użyto modułu do strukturalnej analizy nieliniowej NSTAR pakietu Cosmos/M wersja 2.5 dla Windows.

Podział na elementy skończone dla schematu nr 2 pokazano na rysunku 4.14.

4.4. Wyniki analizy numerycznej

Wyniki analizy MES dla dwóch schematów statycznych porównano z wynikami doświadczalnymi. Na rysunku 4.15 pokazano rozkłady momentów zginających i sił osiowych nałożone na obrys przepustu. Dodatkowo na wykresach zaznaczono wartości doświadczalne.
Rys. 4.15. Porównanie rozkładów momentów zginających oraz sił osiowych.
W tabeli 4.1 przedstawiono porównanie przemieszczeń w trzech charakterystycznych punktach przepustu. W tabeli 4.2 porównano wartości naprężeń w gruncie w badanych punktach. W tabelach przedstawiono wartości średnie z testów, ponieważ wykonano trzy obciążenia, uzyskując różne wartości.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>TEST (wartości średnie)</th>
<th>MES (schemat 1)</th>
<th>MES (schemat 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>I0</td>
<td>0.95</td>
<td>-2.33</td>
<td>1.03</td>
</tr>
<tr>
<td>I6</td>
<td>0.16</td>
<td>-1.26</td>
<td>0.16</td>
</tr>
<tr>
<td>I4</td>
<td>0.87</td>
<td>-2.16</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Tabela 4.2. Zestawienie wyników – naprężeń w gruncie.

<table>
<thead>
<tr>
<th>Ozn. czujnika</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>kPa</td>
</tr>
<tr>
<td>TEST (wartości średnie)</td>
<td>52.7</td>
<td>51.6</td>
<td>0.1</td>
<td>32.1</td>
<td>27.1</td>
<td>21.4</td>
<td>26.6</td>
<td>31.6</td>
<td>26.7</td>
<td>50.3</td>
</tr>
<tr>
<td>MES (schemat 1)</td>
<td>29.3</td>
<td>29.3</td>
<td>4.7</td>
<td>22.0</td>
<td>22.0</td>
<td>16.5</td>
<td>16.5</td>
<td>15.7</td>
<td>3.2</td>
<td>15.7</td>
</tr>
<tr>
<td>MES (schemat 2)</td>
<td>37.0</td>
<td>37.0</td>
<td>0.0</td>
<td>25.7</td>
<td>25.7</td>
<td>20.8</td>
<td>20.8</td>
<td>18.0</td>
<td>9.1</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Konstytutywny model sprężysto - idealnie plastyczny Druckera - Pragera przy uwzględnieniu nieliniowości materiałowej oraz warunków brzegowych podparcia dobrze oddaje pracę gruntu niepoistego, jakim jest pospolka. Model numeryczny, dla którego uwzględnilo sztywność ścianki obudowy (schemat nr 2) lepiej odwzorowuje wyniki doświadczalne.

Na rysunku 4.16 a i b pokazano przemieszczenia pionowe oraz deformacje powłoki przepustu dla obu schematów stycznych przy jednakowym współczynniku skali równym 1:447.

Na rysunku 4.17 a i b przedstawiono rozkład naprężeń zastępczych w powłoce przepustu. Naprężenia te są wyznaczane z następującej zależności:

\[
\sigma_{zast} = \sqrt{\frac{1}{2} \left((\sigma_x - \sigma_y)^2 + (\sigma_x - \sigma_z)^2 + (\sigma_y - \sigma_z)^2 \right) + 3\left(\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2 \right)}. \tag{96}
\]

Dodatkowo na rysunku 4.18 a i b oraz 4.19 a i b pokazano rozkład naprężeń odpowiednio \(\sigma_x \) i \(\sigma_z \) na powierzchni przepustu. Na rysunkach 4.20 a i b oraz 4.21 a i b zaprezentowano rozkłady naprężeń w otaczającym gruncie w kierunku poziomym (x) i pionowym (y). Naprężenia pokazano dla przekroju środkowego zlokalizowanego bezpośrednio pod obciążeniem. Ze względu na symetrie rozkładów naprężeń w gruncie pokazano połowę schematu dla każdego z modeli.
Rys. 4.16. Przemieszczenia pionowe i deformacje przy współczynniku skali 1:447 dla: a) schematu nr 1 [m], a) schematu nr 2 [m].

Rys. 4.17. Rozkład naprężeń zastępczych σ_{zast} dla: a) schematu nr 1 [Pa], a) schematu nr 2 [Pa].
Rys. 4.18. Rozkład naprężeń σ_x dla: a) schematu nr 1 [Pa], a) schematu nr 2 [Pa].

Rys. 4.19. Rozkład naprężeń σ_y dla a) schematu nr 1 [Pa], a) schematu nr 2 [Pa].
Rys. 4.20. Rozkład naprężeń poziomych σ_x w gruncie w przekroju środkowym dla:
 a) schematu nr 1 [Pa], b) schematu nr 2 [Pa].

Rys. 4.21. Rozkład naprężeń pionowych σ_y w gruncie w przekroju środkowym dla:
 a) schematu nr 1 [Pa], b) schematu nr 2 [Pa].
4.5. Wpływ warunków brzegowych na rozkład naprężeń w gruncie i powłoce przepustu

Analiza MES wykazała duży wpływ sztywności i odległości ścianek obudowy stanowiska badawczego na deformację, rozkład sił wewnętrznych w przepuscie oraz rozkład naprężeń w gruncie. W związku z powyższym podjęto próbę analizy rozkładu naprężeń poziomych w gruncie w zależności od wysokości naziomu przy zastępczym obciążeniu normowym.

Wpływ odległości ścianki przepustu na rozkład naprężeń w gruncie obrazuje rysunek 4.22, na którym pokazano rozkład naprężeń w gruncie w płaszczyźnie równoległej do badanego przepustu w odległości 2.50 m od jego osi symetrii (tuż przy ściance obudowy z podkładek kolejowych). Dodatkowo na rysunkach 4.23 i 4.24 pokazano deformację całego stanowiska badawczego, uzyskaną dla dwóch analizowanych schematów, z zaznaczeniem przemieszczeń poziomych (oś x). Na obu rysunkach deformacje przedstawiono w tej samej skali tj.: 1:447.

Rys. 4.22. Rozkład naprężeń poziomych σx w gruncie w przekroju przy ścianie obudowy stanowiska badawczego [Pa].

Rys. 4.23. Deformacje całego układu z zaznaczeniem przemieszczeń poziomych dla schematu nr 1 [m].
W celu zweryfikowania tezy nr 3 tj. wpływu warunków brzegowych na rozkład poziomych naprężeń w gruncie w zależności od wysokości naziomu i obciążenia zewnętrznego zbudowano pięć modeli numerycznych o schemacie pokazanym na rysunku 4.25. Obliczenia przeprowadzono dla zastępczego obciążenia normowego $Q = 52.0$ kPa przy następujących wysokościach naziomu: $h = 0.4$ m; 0.6 m; 0.8 m; 1.0 m; 1.2 m. Uwzględniono jedynie wpływ obciążenia zewnętrznego, tzn. pominięto ciężar wody w gruncie. Analizę przeprowadzono dla odległości $4 \times R$, czyli podwójnej rozpiętości badanego przepustu.

Rys. 4.25. Schemat statyczny układu do analizy rozkładu poziomych naporów w gruncie w zależności od wysokości naziomu dla obciążenia normowego.
Model przepustu wykonano z 512 elementów typu SHELL4, natomiast model gruntu z 7 168 elementów typu SOLID. W obliczeniach wykorzystano symetrię układu wykonując połowę modelu. Użyto takich samych parametrów jak dla modeli opisanych w punkcie 4.3 "Dyskretyzacja modelu badanego przepustu".

Rozkład naprężeń poziomych σ_x w gruncie wokół przepustu dla poszczególnych wysokości naziomu pokazano na rysunkach od 4.26 do 4.30.

Rys. 4.26. Rozkład naprężeń poziomych w gruncie w przekroju środkowym dla naziomu $h = 0.4$ m [Pa].

Rys. 4.27. Rozkład naprężeń poziomych w gruncie w przekroju środkowym dla naziomu $h = 0.6$ m [Pa].
Rys. 4.28. Rozkład naprężeń poziomych w gruncie w przekroju środkowym dla naziomu \(h = 0.8 \text{ m} \) [Pa].

Rys. 4.29. Rozkład naprężeń poziomych w gruncie w przekroju środkowym dla naziomu \(h = 1.0 \text{ m} \) [Pa].
Rys. 4.30. Rozkład naprężeń poziomych w gruncie w przekroju środkowym dla naziomu $h = 1.2$ m [Pa].

Na rysunku 4.31 pokazano zmiany naprężeń poziomych σ_x w zależności od odległości od ścianki przepustu dla trzech wybranych wysokości naziomu 0.4 m, 0.8 m i 1.2 m. Jak można przewidzieć propagacja poziomych naprężeń ściśkających zwiększa się wraz ze zmniejszeniem wysokości naziomu przy tym samym obciążeniu zewnętrznym.

Kierując się powyższym założeniem wyznaczono odległości od ścianki przepustu \(x \) dla poszczególnych wysokości naziomów \(h \). Na rysunku 4.32 naniesiono wyznaczone odległości \(x \) w zależności od wysokości naziomu \(h \). Jak można zauważyć punkty te dają się aproksymować krzywą ekspotencjalną o następującym równaniu:

\[
x(h) = Ae^{-Bh} + C,
\]

(97)

gdzie:

\(A, B, C \) – parametry funkcji równe:

\(A = 33.4, \)

\(B = 6.94, \)

\(C = 3.92. \)

Powyższą zależność można wykorzystać w przyszłości przy planowaniu podobnych badań, w których należy uwzględnić wpływ ścianki obudowy. Obudowę należy w miarę możliwości oddalić od badanego przepustu lub użyć odpowiednio mniejszego modelu.

Jak wynika z przeprowadzonej analizy numerycznej w przypadku badanego przepustu minimalna odległość ścianki obudowy, przy obciążeniu normowym, która nie wpłynęłaby na zachowanie się przepustu to:

- \(4.40 \) m dla naziomu \(h = 0.60 \) m,
- \(4.11 \) m dla naziomu \(h = 0.80 \) m,
- \(3.99 \) m dla naziomu \(h = 1.00 \) m.

Grunt użyty do obsypania przepustu podatnego o dużej rozpiętości musi być dobry jakości, toteż stanowi on najbardziej kosztowny element jego budowy. Zaproponowana metoda może służyć do oszacowania bezpiecznej odległości od ścianek bocznych przepustu, dla której należy użyć gruntu o odpowiednio wysokich parametrach wytrzymałościowych.

Zaprezentowaną metodę można w przyszłości wykorzystać do wyznaczenia parametrów \(A, B \) i \(C \) dla przepustów o różnej geometrii oraz dla różnych rodzajów gruntu.
4.5.1. Przesunięcie obudowy stanowiska badawczego

W celu dokładniejszego rozpoznania wpływu warunków brzegowych na rozkład naprężeń w gruncie zbudowano dodatkowo trzy modele numeryczne, w których przesunięto sztywne ściany obudowy stanowiska badawczego o 4.00, 6.00, 10.00 m od osi symetrii przepustu. Schemat dodatkowych modeli pokazano na rysunku 4.33. Obliczenia przeprowadzono dla naziomu \(h = 0.8 \) m i zastępczego obciążenia normowego \(Q = 52.0 \) kPa.

Rys. 4.33. Schemat statyczny układu dla trzech wariantów z przesuniętymi ścianami.

Na rysunkach 4.34 a, b, c, d przedstawiono rozkłady poziome naprężeń w gruncie dla modeli z przesuniętymi sztywnymi ścianami obudowy stanowiska testowego w jednakowej skali naprężeń (zakres od -18.0 kPa do -51.5 kPa). W tabeli 4.3 zestawiono przemieszczenia punktów A i B, pokazanych na rysunku 4.33, w przekroju bezpośrednio pod obciążeniem.

a)
Rys. 4.34. Naprężenia normalne poziome wokół przepustu dla:

a) wariantu wyjściowego, b) wariantu I, c) wariantu II, d) wariantu III [Pa].

<table>
<thead>
<tr>
<th>Przemieszczenia</th>
<th>Wariant wyjściowy</th>
<th>Wariant I</th>
<th>Wariant II</th>
<th>Wariant III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Punkt A</td>
<td>-1.1</td>
<td>-4.1</td>
<td>-5.8</td>
<td>-7.6</td>
</tr>
<tr>
<td>Punkt B</td>
<td>-0.1</td>
<td>-1.1</td>
<td>-1.9</td>
<td>-3.5</td>
</tr>
</tbody>
</table>

Przedstawione powyżej wyniki dla wirtualnie przesuniętych ścian obudowy stanowiska badawczego dodatkowo obrazują, jaki wpływ na rozkłady naprężeń poziomych σx oraz przemieszczenia konstrukcji ma nie tylko sztywność samego przepustu, ale również jego otoczenie. Przesunięcie ścian obudowy przepustu
o 1.50 m wpływa znacznie na przemieszczenia klucza konstrukcji (tabela 4.3) oraz na rozkład naprężeń poziomych (rysunek 4.34 a i b).

4.6. Przepusty o przekroju eliptycznym

Przekroje poprzeczne przepustów z blachy falistej przyjmują nierządko kształt elipsy w celu zapewnienia wymaganej wysokości (elipsy pionowe) lub rozpiętości (elipsy poziome). Dobrym przykładem zastosowania kształtu eliptycznego przy budowie podatnego przepustu o dużej rozpiętości jest konstrukcja w pobliżu miejscowości Dovre w Norwegii opisana szczegółowo w punkcie 2.3.5. niniejszej rozprawy.

Aby rozpoznać zachowanie się podatnych przepustów o przekroju eliptycznym obciążonych gruntom oraz obciążeniem zewnętrznym wykonano sześć modeli numerycznych. Przekroje elips pokazano na rysunku 4.35. Wszystkie elipsy mają jednakową rozpiętość równą 1.0 m i różnią się od siebie wysokością. Przekrój nr 5 pokazany na rysunku 4.35 stanowi kombinację elipsy nr 1 oraz elipsy nr 4 wykonaną w ten sposób, że górna cześć elipsy wykonana jest z połowy elipsy pionowej natomiast dolna cześć z elipsy poziomej. Utworzony w ten sposób przekrój zachowuje założoną rozpiętość 1.0 m i jednocześnie jest o 10 % wyższy od przekroju rurowego (nr 2).

W elipsie nr 5' zastosowano dodatkowo 30 cm zakładkę przy połączeniu dwóch połówek elips. Połączenie dwóch połówek elips wykonano w ten sposób, że na odcinku zakładki zwiększono moment bezwładności i pole przekroju ścianki przepustu.

We wszystkich schematach zastosowano te same obciążenia, parametry gruntu i stali. Wybrano najbardziej niekorzystne warunki tj.: przyjęto minimalny naziom nad przepustem określony przez producenta dla tego rodzaju przepustu (0.35 m) oraz maksymalną rozpiętość równą 1.0 m. Przyjęto parametry przepustu typu HEL-COR o wymiarach blachy falistej 68 x 13 mm i grubości ścianki t = 2.3 mm. Obliczenia przeprowadzono dla zastępczego obciążenia normowego o wartości 52.0 kN/m² zgodnie z normą PN-85/S-10030. Do opisania gruntu użyto parametrów odpowiadającym parametrom pospółki. W obliczeniach uwzględniono ciężar własny gruntu oraz przepustu. Schemat statyczny układu pokazano na rysunku 4.36.

![Rys. 4.35. Przekroje poprzeczne analizowanych przepustów.](image-url)

Strona 176
Wnioski z obliczeń numerycznych przepustów eliptycznych:

- Największe sumaryczne naprężenia normalne w ścianie przepustu o wartości 162.8 MPa odnotowano w elipsie poziomej (przekrój nr 1).
- We wszystkich przekrojach dominują naprężenia ściskające.
- Największe naprężenia ściskające odnotowano w elipsie poziomej (przekrój nr 1), natomiast największe naprężenie zginające wystąpiło w elipsie o przekroju nr 5, na połączeniu dwóch połówek elips.
- Maksymalne naprężenie ściskające w gruncie zanotowano w przepuście o przekroju nr 1 i wynosiło 136.34 kPa.
- Przemieszczenia kłuczy przepustów zmieniają się w granicach ok. 2 mm. W tabeli 4.4 zestawiono dokładne przemieszczenia kłuczy dla wszystkich przekrojów.

Zaprezentowane porównanie dowodzi słuszności tezy, że rozkład sił wewnętrznych w powłoce przepustu zależy od jego kształtu oraz lokalnych zmian sztywności powłoki.

<table>
<thead>
<tr>
<th>Numer przekroju</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostki</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Przemieszczenia klucza</td>
<td>2.3</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Wprowadzenie 30 cm zakładki z blachy, która zwiększa zarówno wskaźnik na zginanie jak i powierzchnię przekroju ścianki przepustu w obszarze połączenia elips spowodowało lokalne zmniejszenie naprężeń ściskających, a także zmniejszenie naprężeń zginających w ścianie przepustu w miejscu połączenia połówek elips. Rozkłady naprężeń dla obu przekrojów pokazano na rysunkach 4.58 i 4.62.

Wprowadzenie zakładki wpłynęło korzystnie również na rozkład naprężeń w gruncie wokół przepustu. W przypadku przepustu bez zakładki (przekrój nr 5) naprężenia w gruncie koncentrują się w miejscu połączenia dwóch elips. Po wprowadzeniu uszytywnienia, miejsce występowania maksymalnych naprężeń w gruncie zostało przesunięte w dół, a rozkład naprężeń ma charakter bardziej równomierny. Porównanie wypadkowych rozkładów naprężeń w pachwinie przepustu dla obu przekrojów pokazano na rysunku 4.37.

Proponowane rozwiązanie jest proste do wykonania oraz wpływa korzystnie nie tylko na rozkład sił wewnętrznych w ściance przepustu, ale również na rozkład naprężeń w gruncie w miejscu ich koncentracji.
Dodatkowo należy wspomnieć o praktycznych korzyściach wynikających z zaproponowanego ukształtowania elipsy o przekroju nr 5 i 5’:

- Zwiększona została użytkowa wysokość przepustu o 10 % w porównaniu z przekrojem rurowym o tej samej rozpiętości.
- Zwiększone zostało pole powierzchni przekroju poprzecznego przepustu (światło przepustu), a szczególnie dolna jego część. Takie ukształtowanie przekroju korzystnie wpływa na jego właściwości hydrauliczne. Dla przykładu przy poziomie wody +0.40 m od dna, pole przekroju poprzecznego elipsy nr 5 zwiększyło się o 7.2 % w porównaniu z polem przekroju rury o tej samej rozpiętości. Porównanie powierzchni przekrojów pokazano na rysunku 4.38.

Podsumowując, to proste rozwiązanie połączenia elipsy poziomej (nr 1) z elipsą pionową (nr 4) poprzez wprowadzenie zakładki usztywniającej korzystnie wpływa na rozkład sił wewnętrznych w ściankach przepustu oraz naprężeń w gruncie wokół niego a także jest rozwiązaniem posiadającym walory użytkowe.

Poniżej przedstawiono wyniki jakie uzyskano dla przekroju środkowego modelu. Na rysunkach od 4.39 do 4.62 pokazano rozkłady naprężeń w gruncie w kierunku X (poziomym) i Y (pionowym), przemieszczenia globalne oraz rozkłady naprężeń zginających i osiowych w ściankach wszystkich przepustów.

Rys. 4.38. Porównanie pól powierzchni przekroju przepustu rurowego nr 2 oraz przekroju nr 5 i 5’.
Rys. 4.39. Naprężenia poziome w gruncie dla przekroju nr 1 [Pa].

Rys. 4.40. Naprężenia pionowe w gruncie dla przekroju nr 1 [Pa].

Rys. 4.41. Przesunięcia całego układu grunt - przepust dla przekroju nr 1 [m].

Rys. 4.42. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 1.
Rys. 4.43. Naprężenia poziome w gruncie dla przekroju nr 2 [Pa].

Rys. 4.44. Naprężenia pionowe w gruncie dla przekroju nr 2 [Pa].

Rys. 4.45. Przemieszczenia całego układu grunt - przepust dla przekroju nr 2 [m].

Rys. 4.46. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 2.
Rys. 4.47. Naprężenia poziome w gruncie dla przekroju nr 3 [Pa].

Rys. 4.48. Naprężenia pionowe w gruncie dla przekroju nr 3 [Pa].

Rys. 4.49. Przemieszczenia całego układu grunt - przepust dla przekroju nr 3 [m].

Rys. 4.50. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 3.
Rys. 4.51. Naprężenia poziome w gruncie dla przekroju nr 4 [Pa].

Rys. 4.52. Naprężenia pionowe w gruncie dla przekroju nr 4 [Pa].

Rys. 4.53. Przemieszczenia całego układu grunt - przepust dla przekroju nr 4 [m].

Rys. 4.54. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 4.
Rys. 4.55. Naprężenia poziome w gruncie dla przekroju nr 5 [Pa].

Rys. 4.56. Naprężenia pionowe w gruncie dla przekroju nr 5 [Pa].

Rys. 4.57. Przemieszczenia całego układu grunt - przepust dla przekroju nr 5 [m].

Rys. 4.58. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 5.
Rys. 4.59. Naprężenia poziome w gruncie dla przekroju nr 5' [Pa].

Rys. 4.60. Naprężenia pionowe w gruncie dla przekroju nr 5' [Pa].

Rys. 4.61. Przemieszczenia całego układu gruntu - przepust dla przekroju nr 5' [m].

Rys. 4.62. Rozkład naprężeń: a) zginających [MPa], b) osiowych [MPa] dla przekroju nr 5'.
5. Podsumowanie i wnioski

W celu jednoznacznego określenia nomenklatury użytej w tekście przedstawiono objaśnienia na rysunku 5.1.

5.1. Badania statyczne

5.1.1. Siły wewnętrzne:

Maksymalny moment zginający zanotowany podczas wszystkich statycznych obciążeń normowych wyniósł 227.3 Nm w punkcie T3 dla naziomu \(h = 0.6 \) m, natomiast maksymalną siłę ściskającą odnotowano w punkcie T13 dla tego samego naziomu i wynosiła ona 15 835 N.

Maksymalne siły wewnętrzne podczas wszystkich testów odnotowano przy obciążeniu maksymalnym \(p_{\text{max}} = 244.0 \) kPa dla „próby zniszczenia” przy naziomie \(h = 0.3 \) m i wynosiły one:

- \(M_{\text{max}} = 1 329 \) Nm w punkcie T4,
- \(N_{\text{max}} = 43 188 \) N w punkcie T4.

Na uwagę zasługuje także fakt, że ściskające siły osiowe w przepuszczeniu wykazują tendencję do zanikania w obszarze łuku dennego oraz rozkłady sił wewnętrznych są niesymetryczne przy symetrycznym obciążeniu.

5.1.2. Przesunięcia i deformacje

Zarówno różnice w przemieszczeniach konstrukcji, jak i trwałe deformacje po kolejnych obciążeniach wykazują tendencję do zmniejszania się. Przy pierwszym obciążeniu normowym, przy naziomie \(h = 1.0 \) m, klucz konstrukcji przesunął się o 5.32 mm pod koniec procesu obciążenia (punkt nr 3 wg rysunku 3.27), natomiast trwałe deformacje wynosiły 3.3 mm po odciążeniu konstrukcji (punkt nr 5 wg rysunku 3.27). Po trzecim obciążeniu dla tego samego naziomu przemieszczenia względne wynosiły już 2.45 mm, a trwałe względne deformacje tylko 0.46 mm. Przy kolejnych obciążeniach tendencja ta jest zachowana, co pokazano na rysunkach od 3.33 do 3.39.
Maksymalne przemieszczenia odnotowano przy próbie zniszczenia dla naziomu \(h = 0.3 \) m i wynosiły w kluczu 17.24 mm do wewnątrz przepustu oraz w punktach maksymalnej rozpiętości na zewnątrz przepustu odpowiednio 9.62 mm i 9.37 mm.

5.1.3. Obciążenia asymetryczne

Badany przepust wykazał małą wrażliwość na zastosowane obciążenia asymetryczne. Maksymalne różnice pomiędzy lewą a prawą stroną przepustu zanotowano podczas obciążenia z zastosowaniem jednego siłownika, co pokazano na rysunkach 3.74 oraz 3.77. Różnica w przemieszczeniach poziomych nie przekroczyła 0.40 mm. Obciążenie to wykonano tylko raz dla naziomu \(h = 1.0 \) m. Maksymalne przemieszczenie pionowe wynosiło 3.85 mm dla naziomu 0.6 m. Różnice sił wewnętrznych pomiędzy poszczególnymi wariantami obciążenia asymetrycznego były nieznaczne.

5.1.4. Naprężenia w gruncie

Zaobserwowano wyraźną redukcję naprężeń w gruncie nad kluczem konstrukcji, co potwierdza wystąpienie zjawiska przesklepienia. Zjawisko przesklepienia i związane z nim redukcja obciążenia nad przepustem największej zaobserwowano przy obciążeniu \(p_{\text{max}} = 244.2 \) kPa dla naziomu \(h = 0.6 \) m. Zanotowano wówczas w poziomie klucza konstrukcji naprężenie równe 243.5 kPa (prawie równe obciążeni zewnętrzemu), natomiast bezpośrednio nad kluczem naprężenia te wynosiły 60.1 kPa. Oznacza to, że redukcja naprężeń wyniosła 75 % przy jednoczesnym ugięciu klucza do poziomu 11.69 mm, co stanowi 0.48 % wysokości przepustu.

Przy tym samym obciążeniu, ale zmniejszonym naziomie do poziomu \(h = 0.3 \) m odnotowano redukcję naprężeń z 240.8 kPa w czujniku nr 13 do 85.5 kPa nad kluczem konstrukcji (czujnik nr 11) tj. redukcja naprężeń wyniosła ok. 64% (240.8 kPa = 100%). Jednocześnie zarejestrowano przemieszczenia klucza konstrukcji równe 17.24 mm, co stanowi 0.72% wysokości przepustu.

Redukcja naprężeń w gruncie przy naziomie \(h = 0.3 \) m na poziomie klucza konstrukcji ma niesymetryczny układ, co może być spowodowane przeprowadzonymi wcześniej testami z obciążeniem asymetrycznym oraz niejednolitym rozkładem obciążenia pod płytą obciążającą.

Odnotowano wyraźną koncentrację naprężeń w pachwinach konstrukcji. Maksymalne naprężenie w pachwinie podczas obciążenia normowych zarejestrowano przy naziomie \(h = 0.6 \) m o wartości 78.8 kPa, natomiast maksymalne naprężenie odnotowane podczas wszystkich testów wyniosło 301.9 kPa przy próbie zniszczenia dla naziomu \(h = 0.3 \) m dla maksymalnego obciążenia \(p_{\text{max}} = 244.0 \) kPa w czujniku nr 2.

5.1.5. Badania z obciążeniem cyklicznym

Wyniki badań zwiększeniowych 500 tys. i 100 tys. cykli dają podstawę do sformułowania wniosku, że w wyniku zagęszczania się zasypki gruntowej pod obciążeniami cyklicznymi następuje przyrost sztywności ogólnej konstrukcji. Uwzględnia się to w postaci redukcji ugięć i naprężeń jednostkowych. Występuje zjawisko „przystosowywania się” konstrukcji do obciążenia.

Podczas obciążenia zwiększeniowego od 0 do 500 tys. cykli dla naziomu \(h = 1.0 \) m zaobserwowano, że:

- Maksymalne naprężenie zarejestrowano w punkcie T1A i wynosiło ono 46.1 MPa.
- Minimalne naprężenie zarejestrowano w punkcie T11A i wynosiło ono -62.5 MPa.
- Średnie przemieszczenie klucza konstrukcji pod koniec obciążen cyklicznych wynosiło 9.14 mm do wewnątrz przepustu, co stanowi ok. 90% przyrost w porównaniu z przemieszczeniami zarejestrowanymi na początku procesu obciążania cyklicznego.
- Zakres przemieszczeń klucza konstrukcji podczas całego procesu obciążania cyklicznego od 0 do 500 tys. cykli oscylował w granicach 1.5 mm.
- Wartości naprężeń w łuku górnym charakteryzują się większym zakresem w porównaniu z łukiem dennym.
- Rozkład naprężeń był niesymetryczny.
- Największy przyrost naprężeń zaobserwowano w przedziale od 0 do 200 tys. cykli. Powyżej tej granicy naprężenia stabilizowały się, zachowując charakter asymptotycznego.
Podczas obciążenia zmęczeniowego od 0 do 100 tys. cykli dla naziomu \(h = 0.6 \) m zauważono, że:

- Maksymalne naprężenie zginające zarejestrowano w punkcie T12 i wynosiło 14.5 MPa
- Maksymalne naprężenie osiowe zarejestrowano w punkcie T12 i wynosiło 12.5 MPa (ściśkanie).
- Średnie przemieszczenie klucza konstrukcji wynosiło 6.8 mm z zakresem 2.1 mm do wewnątrz przepustu.
- Wartości naprężeń w luku górnym charakteryzują się większym zakresem w porównaniu z lukiem dennym.
- Rozkład naprężeń charakteryzował się niesymetrycznością.

W tabeli 5.1 przedstawiono pogrupowane wartości naprężeń z odczytów zarejestrowanych pod koniec obciążeń cyklicznych tj. dla 500 tys. cykli przy naziomie \(h = 1.0 \) m i 100 tys. cykli przy naziomie \(h = 0.6 \) m.

Tabela 5.1. Naprężenia zarejestrowane dla 500 tys. cykli przy naziomie \(h = 1.0 \) m i 100 tys. cykli przy naziomie \(h = 0.6 \) m.

<table>
<thead>
<tr>
<th>Czujnik</th>
<th>Jedn.</th>
<th>Odczyty po 500 tys. dla (h = 1.0)</th>
<th>Odczyty po 100 tys. dla (h = 0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Napr.</td>
<td>Zakres</td>
<td>Napr.</td>
</tr>
<tr>
<td></td>
<td>średnie</td>
<td>osiowe</td>
<td>zginające</td>
</tr>
<tr>
<td>T2A</td>
<td>MPa</td>
<td>2,0</td>
<td>-3,4</td>
</tr>
<tr>
<td>T2B</td>
<td>MPa</td>
<td>-5,7</td>
<td>4,1</td>
</tr>
<tr>
<td>T14A</td>
<td>MPa</td>
<td>4,5</td>
<td>6,3</td>
</tr>
<tr>
<td>T14B</td>
<td>MPa</td>
<td>-7,6</td>
<td>15,6</td>
</tr>
<tr>
<td>T3A</td>
<td>MPa</td>
<td>-4,4</td>
<td>1,0</td>
</tr>
<tr>
<td>T3B</td>
<td>MPa</td>
<td>-9,6</td>
<td>15,0</td>
</tr>
<tr>
<td>T13A</td>
<td>MPa</td>
<td>-0,5</td>
<td>1,8</td>
</tr>
<tr>
<td>T13B</td>
<td>MPa</td>
<td>-9,8</td>
<td>11,2</td>
</tr>
<tr>
<td>T4A</td>
<td>MPa</td>
<td>-2,0</td>
<td>6,5</td>
</tr>
<tr>
<td>T4B</td>
<td>MPa</td>
<td>-3,4</td>
<td>13,2</td>
</tr>
<tr>
<td>T12A</td>
<td>MPa</td>
<td>11,4</td>
<td>12,6</td>
</tr>
<tr>
<td>T12B</td>
<td>MPa</td>
<td>41,6</td>
<td>1,0</td>
</tr>
<tr>
<td>T11A</td>
<td>MPa</td>
<td>-54,9</td>
<td>14,8</td>
</tr>
<tr>
<td>T11B</td>
<td>MPa</td>
<td>35,4</td>
<td>1,2</td>
</tr>
<tr>
<td>T6A</td>
<td>MPa</td>
<td>8,7</td>
<td>8,3</td>
</tr>
<tr>
<td>T6B</td>
<td>MPa</td>
<td>-11,8</td>
<td>7,5</td>
</tr>
<tr>
<td>T10A</td>
<td>MPa</td>
<td>30,4</td>
<td>7,9</td>
</tr>
<tr>
<td>T10B</td>
<td>MPa</td>
<td>-14,4</td>
<td>8,3</td>
</tr>
<tr>
<td>T7A</td>
<td>MPa</td>
<td>24,4</td>
<td>0,4</td>
</tr>
<tr>
<td>T7B</td>
<td>MPa</td>
<td>-22,9</td>
<td>1,2</td>
</tr>
<tr>
<td>T9A</td>
<td>MPa</td>
<td>18,6</td>
<td>0,4</td>
</tr>
<tr>
<td>T9B</td>
<td>MPa</td>
<td>-24,5</td>
<td>1,2</td>
</tr>
<tr>
<td>T1A</td>
<td>MPa</td>
<td>41,4</td>
<td>12,0</td>
</tr>
<tr>
<td>T1B</td>
<td>MPa</td>
<td>-36,8</td>
<td>16,2</td>
</tr>
<tr>
<td>T8A</td>
<td>MPa</td>
<td>25,8</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Czujnik</th>
<th>Jedn.</th>
<th>Przem.</th>
<th>Zakres</th>
<th>Przem.</th>
<th>Zakres</th>
</tr>
</thead>
<tbody>
<tr>
<td>I6</td>
<td>mm</td>
<td>9,1</td>
<td>1,5</td>
<td>-6,8</td>
<td>2,1</td>
</tr>
<tr>
<td>I0</td>
<td>mm</td>
<td>3,8</td>
<td>0,5</td>
<td>2,3</td>
<td>0,7</td>
</tr>
<tr>
<td>I4</td>
<td>mm</td>
<td>3,5</td>
<td>0,6</td>
<td>2,3</td>
<td>0,9</td>
</tr>
</tbody>
</table>
5.2. Zachowanie się przepustów podatnych w czasie - fazy pracy przepustu

Z zaprezentowanych badań i studiów literaturowych dotyczących testów na przepustach podatnych wynika, że konstrukcje te zmieniają swoje właściwości wytrzymałościowe w czasie. Na tej podstawie wyróżniono trzy fazy pracy konstrukcji, co sformułowano w tezie nr 1 niniejszej rozprawy.

FAZA I

W fazie pierwszej zmontowaną konstrukcję obsypuje się symetrycznie gruntem, który jest zagęszczany w warstwach nie większych niż 30 cm. Na skutek równomiernego parcia gruntu na ściany boczne konstrukcji klucz przepustu przemieszcza się do góry, natomiast ściany boczne zostają przesunięte do wewnątrz przepustu. W fazie tej obserwuje się maksymalne przemieszczenie klucza konstrukcji, które nie powinno przekraczać 2% wysokości konstrukcji.

Ważnym etapem obsypywania gruntem jest moment, w którym zasypka osiąga poziom klucza przepustu. Należy zachować wówczas szczególną ostrożność przy zagęszczaniu gruntu bezpośrednio nad konstrukcją. Niedopuszczalne jest w tym etapie używanie ciężkiego sprzętu do zagęszczania gruntu.

W fazie tej stan obciążenia konstrukcji powłokowej przepustu jest najbardziej niekorzystny, ponieważ zasypka nie współpracuje jeszcze z przepustem, stanowiąc jedynie jego obciążenie.

FAZA II

W fazie drugiej zostaje przyłożone zewnętrzne obciążenie eksploatacyjne, które powoduje pionowe przemieszczenie klucza do wewnątrz przepustu. W ten sposób w obrębie klucza konstrukcji zostaje zainicjowane zjawisko przeskleplenia wywołujące naprężenia ścignające, działające lokalnie w płaszczyźnie pierwotnej. Zjawisko to oraz oparta na nim metoda projektowa zostały dokładnie opisane przez Vaslestada w pracy [22].

Przy dużych wysokościach naziomu zjawisko przeskleplenia może być wywołane nie tylko przez obciążenie zewnętrzne po rozpoczęciu eksploatacji, ale także już na etapie obsypywania gruntem. Na rysunku 240 pokazano rozkład parcia gruntu w górnej części przepustu o przekroju łukowym zamkniętym, pomierzone przez Lemassona i Longa (1987) [100]. Konstrukcja miała rozpiętość 7.6 m, a wysokość naziomu wynosiła 8.6 m. Zjawisko przeskleplenia i redukcja naprężeń wystąpiła lokalnie ponad kluczem konstrukcji przepustu podczas obsypywania. Wartość naprężeń w gruncie ponad skrajnym obrysem przepustu na wysokości klucza konstrukcji była ponad dwa razy większa niż jego całkowity ciężar.

![Rys. 5.2. Zjawisko przeskleplenia z badań Lemassona and Longa [100].](image)

Zjawisko przeskleplenia i współpraca otaczającego przepust gruntu powoduje, że przepusty o dużych rozpiętościach mogą być obciążane ciężarem wysokich nasypów oraz obciążeniem zewnętrznym, eksploatacyjnym, pomimo zastosowania relatywnie cienkiej blachy falistej.

Ścianki boczne przepustu oraz pachwiny starają się przemieszczać na zewnątrz, napotykając na opór gruntu. Taka sytuacja powoduje w tych strefach zwiększenie naprężeń w gruncie i dodatkowe jego zagęszczenie. Konsolidacja i dalsze zagęszczanie gruntu w drugiej części fazy są przyspieszone na skutek działania takich czynników, jak: drgania, obciążenia dynamiczne, ciężar własny gruntu. Z badań zmęczeniowych na przedmiotowym przepuscie wynika, że największy przyrost sił wewnętrznych oraz przemieszczeń przepustu występuje w granicach od 0 do 200 tys. cykli. Na tej podstawie założono, że faza
drugotrwa od momumentu wystąpienia zjawiska przesklepienia (tj. od przemieszczenia się kłucza przepustu do wewnątrz) do ok. 200 tys. normowych cykli obciążenia taborem kolejowym.

Przedstawione testy oraz badania na obiektach rzeczywistych wykazały, że trwała współpraca pomiędzy gruntem a przepustem podatnym z blachy falistej może być zachowana pod warunkiem użycia dobrej jakości gruntu oraz staranniej kontroli przy montażu i obsypywaniu konstrukcji.

FAZA III

W fazie III wskutek odtwarzania się naturalnej struktury ośrodka gruntu, zasypkę i grunt rodzimy można traktować jako materiał jednorodny. Powyżej 200 tys. cykli przyrost sił wewnętrznych i przemieszczeń konstrukcji jest coraz mniejszy, zachowując charakter asymptotyczny.

Przebieg zmian ugięcia kłucza w czasie kolejnych faz pracy konstrukcji pokazano na rysunku 5.3.

![Rys. 5.3. Zmiany ugięcia kłucza w poszczególnych fazach pracy przepustu.](image)

5.3. Rozkład naprężeń nad kłuczem przepustu podatnego o dużej rozpiętości.

Pionowe naprężenia w gruncie wywołane obciążeniem zewnętrznym q w jednorodnym gruncie od obciążenia pasmowego można wyznaczyć z następującej zależności [59]:

$$
\sigma_y \approx q \left(2\alpha + \sin 2\alpha \cdot \cos 2\beta \right) / \pi,
$$

(98)

gdzie:
\(\alpha, \beta \) i \(q \) jak na rysunku 5.4.

![Rys. 5.4. Schemat do wyznaczania naprężeń w gruncie od równomiernie rozłożonego obciążenia q.](image)

Z porównania naprężeń pionowych w jednorodnym gruncie wywołanych obciążeniem zewnętrznym (wzór nr (98)), z naprężeniami w gruncie zarejestrowanymi nad kłuczem badanego przepustu wynika, że redukcja naprężeń wynosi:

Strona 189
- ok. 70% dla naziomu $h=1.0$ m,
- ok. 60% dla naziomu $h=0.8$ m,
- ok. 34% dla naziomu $h=0.6$ m.

Na rysunku 5.5 zaprezentowano wyniki pomiarów z presjometrów umieszczonych na poziomie korony przepustów (czujniki nr 8, 11, 13) dla trzech wysokości naziomów tj. $h = 0.6$ m, 0.8 m, 1.0 m. Dodatkowo na wykres nałożono teoretyczne rozkłady naprężeń pionowych w gruncie jednorodnym (bez przepustu) dla trzech głębokości: 0.6m, 0.8 m, 1.0 m wyznaczonych zgodnie ze wzorem (98).

Rys. 5.5. Teoretyczne rozkłady naprężeń σ_y wyznaczone wg wzoru (98) dla gruntu jednorodnego oraz pomiary naprężeń w gruncie na poziome korony przepustu.

Jak wykazały badania, zjawisku przesklepienia towarzyszy redukcja naprężeń w gruncie w obrębie korony konstrukcji, co stanowi potwierdzenie tezy nr 1 niniejszej rozprawy. Autor pracy proponuje wyznaczać pionowe naprężenia od obciążenia zewnętrznego na poziomie korony przepustu podatnego mnożąc zależności (98) przez współczynnik redukcyjny ζ tj.:

$$\sigma_{y\text{red.}} = q \left(\frac{2\alpha + \sin 2\alpha \cdot \cos 2\beta}{\pi}\right) \cdot \zeta,$$

wzór (99)

gdzie:
\[\alpha, \beta \] i \[q \] jak na rysunku 5.6,
ζ - współczynnik redukcyjny wyznaczany ze wzoru:

$$\zeta = \sqrt{\left(A^{-1}\cos^2 \gamma + \sin^2 \gamma\right)},$$

wzór (100)

gdzie:
\[\gamma \] jak na rysunku 5.6,
A - współczynnik zależny od parametrów gruntu:
$A = 1.0$ dla przepustu idealnie sztywnego, $A = \infty$ dla przepustu idealnie podatnego.

Oznaczenia i strefę redukcji naprężeń pokazano na rysunku 5.6.
Na rysunku 5.7 pokazano przykładowy rozkład naprężeń \(\sigma_y,\text{red} \) dla wysokości naziomu \(h = 1.0 \) m i zewnętrznego obciążenia normowego \(q = 67.6 \) kPa. Linią przerywaną pokazano rozkład naprężeń w gruncie bez przepustu. Dodatkowo naniesiono wyniki pomiarów wykonanych na badanym przepuscie.

Rys. 5.6. Wyznaczenia zredukowanych naprężeń w gruncie nad kluczem przepustu podatnego o dużej rozpiętości - oznaczenia.

Rys. 5.7. Teoretyczny rozkład naprężeń \(\sigma_y,\text{red} \) wyznaczony wg wzoru (99) dla naziomu \(h = 1.0 \) m. Linią przerywaną zaznaczono rozkład naprężeń bez przepustu.

Strona 191
5.4. Analiza wyników z obliczeń numerycznych

Dokonano analizy porównawczej wyników otrzymanych z badań modelowych oraz otrzymanych z obliczeń numerycznych dla dwóch schematów statycznych.

Z porównania średnich wyników przemieszczeń otrzymanych podczas badań z wynikami otrzymanymi z obliczeń MES wynika, że zdecydowanie lepszy wynik uzyskano dla drugiego schematu statycznego MES. Różnica pomiędzy otrzymanymi wynikami wynosi ok. 7% w odniesieniu do wyników z eksperymentu dla przemieszczeń pionowych oraz ok. 8% i 16% dla przemieszczeń poziomych odpowiednio lewego i prawego punktu pomiarowego. Znaczące różnice w wynikach przemieszczeń poziomych zanotowano dla schematu ze sztywną obudową stanowiska badawczego (model MES nr 1). Różnice te sięgają ok. 84% wartości otrzymanej podczas badań. Porównanie wartości przemieszczeń w trzech punktach pomiarowych pokazano na rysunku 5.8.

![Rys. 5.8. Porównanie wartości przemieszczeń bezwzględnych otrzymanych z testów oraz dla dwóch schematów MES.](image)

W przypadku naprężeń w gruncie, podobnie jak dla przemieszczeń, lepszy wynik otrzymano dla drugiego schematu statycznego. Ogólne naprężenia w gruncie pomierzone podczas badań są większe od wyników otrzymanych z analizy MES. Najmniejszą różnicę pomiędzy wynikami zanotowano dla punktu nr 6 - ok. 3% wartości testowej dla schematu nr 2. Natomiast największą różnicę zaobserwowano dla punktu nr 11 (klucz przepustu) - ok. 88% wartości testowej dla schematu nr 1. Porównanie naprężeń w gruncie we wszystkich punktach pomiarowych pokazano na rysunku 5.9.

Dla schematu z utwierdzoną obudową obliczenia MES wykazały ściskanie na całym obwodzie powłoki. Dla schematu nr 2 z obudową elastyczną największe ściskanie występowało po bokach przepustu, natomiast w strefie łuku dennego występowało rozciąganie. Wartości sił osiowych otrzymanych dla schematu nr 2 są nieco mniejsze od wartości otrzymanych dla schematu nr 1. Momenty zginające na obwodzie wyliczone dla schematu ze sztywną obudową są mniejsze od momentów zginających dla schematu z obudową elastyczną. Dla schematu MES nr 2 wartości momentów lepiej pasują do wyników z eksperymentu. Na rysunku 4.15 a i b na stronie 163 pokazano porównanie rozkładów momentów zginających oraz sił osiowych.

Koncentracja naprężeń zastępczych \(\sigma_{\text{ast}} \) wyznaczonych z zależności (96) w metalowej powłoce występuje w punktach o największej rozpiętości dla schematu nr 2. W przypadku schematu ze sztywną obudową naprężenia zastępcze są nieco mniejsze i rozłożone bardziej równomiernie.
Zaprezentowane powyżej porównanie dowodzi, że rozkład sił wewnętrznych w powłoce przepustu oraz naprężeń otaczającym gruncie zależy od rozmięszenia i charakterystyki konstrukcji współpracujących tj. ściany boczne, co przedstawiono w tezie nr 4 niniejszej rozprawy.

Porównanie wyników eksperymentalnych z wynikami dla modeli numerycznych, w których zmieniono warunki brzegowe świadczy, że trójwymiarowy model MES dobrze odwzorowuje pracę układu przepust-grunt tylko dla modelu z podatną obudową, co dowodzi prawdziwości tezy nr 2 niniejszej rozprawy.

Przyczyny różnice zaobserwowane w siłach wewnętrznych, przemieszczeniach oraz naprężeniach w gruncie pomiędzy wynikami eksperymentu a wynikami numerycznymi mogą być następujące:

- dwa silowniki hydrauliczne mogły nie wystarczyć do uzyskania jednolitego, równomiernego ciśnienia pod płytą obciążającą podczas testu. Cisnienia w środku płyty, na jej krawędziach i w rogach mogły być znacząco różne,
- ściana obudowy stanowiska badawczego była zbudowana z drewnianych podkładek kolejowych nie zespolonych ze sobą, co mogło być powodem wystąpienia zjawiska „klawiszowania” płyty obudowy, a tym samym mogło mieć wpływ na cały układ grunt-przepust.

5.5. Zalecenia dotyczące przyszłych badań

Podatne przepusty o dużej rozpiętości są często używane w krajach skandynawskich jako ochrona górskich dróg przed lawinami skalnymi i śniegowymi. Przyszłe badania powinny dotyczyć pracy przepustu w niesymetrycznym naziomie oraz pod obciążeniem symulującym upadek materiału skalnego.

Podobnie jak przepusty ułożone w nasypach ukośnych, dalszych testów wymagają przepustów z naziomem wzmocnionym geowłókniną lub geosiatką oraz badania zmoceniowe i ich analiza zastosowaniem Metody Elementów Skończonych 3D.

Przyszli badacze powinny skupić się również na badaniach konstrukcji podatnych z blach falistych pod wysokimi naziomami oraz przy zastosowaniu różnego rodzaju gruntów używanych jako zasypki, ze szczególną koncentracją na zjawisku redukcji naprężeń w obrębie klucza konstrukcji.

Tego typu konstrukcje używane są na potrzeby wojska jako magazyny, hangary oraz podziemne schrony przeciwlotnicze [29]. Takie ich przeznaczenie powoduje konieczność przeprowadzenia dalszych badań nad zachowaniem się konstrukcji podatnych o dużych rozpiętościach pod obciążeniem wyjątkowym, tj. eksplozja.
Przepusty podatne można wykorzystać w górnictwie jako zabezpieczenia lub wzmocnienia chodników górniczych. Praca przepustu podatnego z blachy falistej w warunkach eksploatacji górniczej wymaga dalszych analiz, np. w zakresie wrażliwości tego typu konstrukcji na tąpienie.

Jako alternatywa dla małych mostów coraz częściej używane są przepusty otwarte typu Box Culvert (skrzynkowe). Dalsze badania powinny dotyczyć testów ze szczególnym uwzględnieniem współpracy tego typu konstrukcji stalowej z otaczającym go gruntem i zjawiska przesklepienia przy małych wysokościach naziomu. Badania powinny się skoncentrować na dopracowaniu tzw. „interfejsu” w programach wykorzystujących MES pozwalającego na lepsze modelowanie zjawisk zachodzących na granicy przepust-grunt. Dalszych badań i analiz wymaga także praca podpór przepustów typu Box Culvert oraz ich zachowanie się podczas montażu i eksploatacji.
6. Literatura

[34] Wästlund G.E, Gwertz S., Dimensionering av betongrør, Svenska Vatten och avloppsverkforeningen, VAV, 1949.

Wiłun Z., *Zarys geotechniki*, Wydawnictwo Komunikacji i Łączności, Warszaw, 2005

Polskie Normy i Aprobaty Techniczne:

[N8] AT/97-03-0247 – Aprobata techniczna IBDiM – Konstrukcje stalowe karbowane Multiplate MP 150/Arot Via.

[N9] AT/97-03-0248 – Aprobata techniczna IBDiM – Rury stalowe spiralne, karbowane wraz z łącznikami Hel-Cor/Arot Via.

Katalogi i wytyczne:

[K7] AROT Via Polska, Katalog DV Optima – Nowoczesne przepusty drogowe, Edycja B.

[K8] HOBAS, Rury HOBAS, produkcja, własności materiału i dane techniczne, Materiały informacyjne firmy HOBAS.